
 

K. Janowicz et al. (Eds.): EKAW 2014, LNAI 8876, pp. 238–249, 2014. 
© Springer International Publishing Switzerland 2014 

Automating Cross-Disciplinary Defect Detection  
in Multi-disciplinary Engineering Environments 

Olga Kovalenko1, Estefanía Serral2, Marta Sabou1,  
Fajar J. Ekaputra1, Dietmar Winkler1, and Stefan Biffl1 

1 Christian Doppler Laboratory for Software Engineering  
Integration for Flexible Automation Systems, 

Vienna University of Technology, 
Favoritenstrasse 9-11/E188, A-1040 Vienna 

{firstname.lastname}@tuwien.ac.at 
2 Department of Decision Sciences and Information Management, KU Leuven 

Naamsestraat 69, B-3000 Leuven, Belgium 
estefania.serralasensio@kuleuven.be 

Abstract. Multi-disciplinary engineering (ME) projects are conducted in com-
plex heterogeneous environments, where participants, originating from different 
disciplines, e.g., mechanical, electrical, and software engineering, collaborate to 
satisfy project and product quality as well as time constraints. Detecting defects 
across discipline boundaries early and efficiently in the engineering process is a 
challenging task due to heterogeneous data sources. In this paper we explore 
how Semantic Web technologies can address this challenge and present the On-
tology-based Cross-Disciplinary Defect Detection (OCDD) approach that sup-
ports automated cross-disciplinary defect detection in ME environments, while 
allowing engineers to keep their well-known tools, data models, and their cus-
tomary engineering workflows. We evaluate the approach in a case study at an 
industry partner, a large-scale industrial automation software provider, and re-
port on our experiences and lessons learned. Major result was that the OCDD 
approach was found useful in the evaluation context and more efficient than 
manual defect detection, if cross-disciplinary defects had to be handled.  

1 Introduction 

Multi-disciplinary engineering (ME) projects represent complex environments, where 
different disciplines (e.g., mechanical, electrical and software engineering), have to 
collaborate efficiently in order to deliver high-quality end products and to satisfy tight 
timeframes [12]. An example ME project is designing a power plant and correspond-
ing control system. In ME projects, engineering data is spread over numerous hetero-
geneous data sources derived from various discipline-specific tools and corresponding 
data models and data formats. Typically the tools are loosely coupled with limited 
capabilities for cross-disciplinary data exchange or/and data analysis. As a conse-
quence, risks of deviations and defects in project data increase.   

Errors made during the early development stages are especially critical, as they can 
potentially affect the artifacts of all latter phases. Staying undetected, such defects can 



 Automating Cross-Disciplinary Defect Detection 239 

lead to costly corrections during the commission phase or even to failures during the 
operation phase. Hence, ensuring consistency of project data and detecting emerging 
deviations and defects early are crucial requirements [6]. To this end, handling cross-
disciplinary defects raises additional challenges. A cross-disciplinary defect is a de-
fect that can only be identified by analyzing the data from several disciplines. For 
instance, the sensor type specified in the physical topology (mechanical engineering) 
of the automation system has to match the information in the corresponding electrical 
plan (electrical engineering) and the value range for control variables (software engi-
neering) to describe a correct system. It is important to mention that interrelations 
between data of different disciplines are often not explicitly documented, but instead 
are only implicitly available as internal knowledge of the engineers. As the cross-
disciplinary relations are not represented in a machine-understandable way, they can-
not be automatically checked. Therefore, cross-disciplinary defect detection typically 
requires manual checking by the engineers, which is time consuming and error-prone. 
Thus, there is a need for effective and efficient defect detection methods, including 
cross-disciplinary defect detection, in ME projects.  

In this paper we present an ontology-based approach for automated defect detec-
tion across discipline boundaries. Ontologies allow representing the data models of 
different engineering disciplines and/or tools and cross-disciplinary interrelations 
between the heterogeneous project data in a machine-understandable form, thus, 
enabling automated processing and analysis across disciplines. Comprehensive que-
ries can be defined and executed in order to (a) check whether or not project data 
satisfies specified cross-disciplinary dependencies; and (b) to detect deviations and 
candidate defects in the ME project data. As an advantage the Ontology-based Cross-
Disciplinary Defect Detection (OCDD) approach does not require the project partici-
pants to change their well-known tools and workflows.  

The remainder of the paper is structure as follows. Section 2 presents related work; 
Section 3 describes the engineering practice in ME projects; Section 4 introduces the 
OCDD approach in the context of an industrial case study; Section 5 reports on pre-
liminary evaluation within the case study at the industry partner; Section 6 discusses 
the implementation strategy of the proposed approach in ME settings; and Section 7 
concludes the paper and depicts future work. 

2 Related Work 

This section summarizes related work on defect detection in multi-disciplinary engi-
neering (ME) projects and the use of semantic web approaches in industrial contexts.  

 
Defect Detection in ME Environments. Engineers of individual disciplines typi-

cally apply isolated and discipline-specific tools and data models while designing 
their artifacts. Within each discipline, well-defined approaches are used for quality 
assurance (QA) and engineering data analysis according to domain specific industry 
standards and best practices, e.g., simulation of electrical circuits and systems [16]; or 
static analysis methods (e.g., inspections or code analysis techniques [8]) and testing 
of software components [13]. However, in ME environments these isolated discip-
lines have to collaborate and exchange data – a major challenge for defect detection 



240 O. Kovalenko et al. 

and QA. Defects and inconsistencies have to be detected as early as possible to mi-
nimize risks, solve conflicts, and improve product quality.  

In [2] an openness metric for a systematic assessment of interoperability capabili-
ties in ME projects has been applied to a set of selected tools. The main outcome was 
that isolated tools can support data exchange standards, e.g., XML or AutomationML1 

to enable collaboration between disciplines. However, loosely coupled tools do not 
support cross-disciplinary QA. Tool suites, e.g., Comos2, typically cover a range of 
disciplines and provide functionality also for cross-disciplinary collaboration. These 
tools suites include a common data model that could enable basic QA tasks, e.g., de-
fect detection. As for the drawbacks there may be some reduction of feature sets com-
pared to isolated and highly specific solutions. In addition, project participants have to 
switch from their well-known tools to the all-in-one solution which might represent a 
barrier regarding acceptance, time and cost. Therefore, there is a need for approaches 
and tool-support for the engineers in ME projects to: (a) explicitly specify the cross-
disciplinary interrelations between the heterogeneous engineering artifacts; (b) per-
form data analysis and detect defects across disciplines: and c) keep their customary 
engineering workflows and tools.  

 
Semantic Web-Based Approaches. Semantic based solutions have been devel-

oped for various industries such as the aeronautical industry [1], the automotive indus-
try [5], chemical engineering [11], heavy industries [15], factory automation [9] or, 
more broadly, manufacturing in general [10,14]. As opposed to these efforts, which 
typically focus on a single domain (with the notable exception of [4, 5]), we aim to 
support mechatronic systems, which, by definition combine the work of multiple en-
gineering disciplines such as mechanical, electrical and software engineering. This 
combination of disciplines is a key differentiating feature of our efforts with respect to 
the predominantly mono-domain approaches reported so far in the literature.  

The major goal of the various ontology based solutions reported so far is the inte-
gration and consolidation of engineering data [15, 19]. Such integration is a pre-
requisite to enable a range of intelligent applications such as decision support [1], 
automatic cost estimation [10], semantic-aware multiagent systems for manufacturing 
[11] or enterprise specific tasks such as bid analysis, market analysis and continuous 
process improvement by analyzing and integrating employee feedback [18]. The iden-
tification of errors, faults and defects across engineering models from different discip-
lines is an important but less frequent application and has only been reported by [4]. 
A mono-disciplinary defect detection system for identifying faults of electronic con-
trol units in cars has been achieved using ontologies and rules at AUDI3. 

                                                           
1 AutomatonML: https://www.automationml.org 
2 COMOS:  
  http://www.automation.siemens.com/mcms/plant-engineering-software 
3 http://www.w3.org/2001/sw/sweo/public/UseCases/Audi/ 



 Automating Cross-Disciplinary Defect Detection 241 

3 The Engineering Process in Multi-Disciplinary Environments 

Multi-disciplinary engineering (ME) projects, e.g., in the automation systems engi-
neering (ASE) domain, typically require concurrent engineering [7]. Due to tight 
project delivery times and project constrains engineering teams work in parallel rather 
than sequentially, often in a geographically distributed setting. This requires adjusting 
the engineering process and including a set of synchronizations at each project stage 
to (a) propagate changes across disciplines and (b) identify early defects and inconsis-
tencies across disciplines from concurrent changes in heterogeneous project data. 
Figure 1 shows the data synchronization process with defect detections mechanisms. 
 

 

Fig. 1. Synchronization Process in Multi-Disciplinary Engineering Projects 

The main aim of synchronization is addressing different types of heterogeneities 
that exist in ASE projects: technical heterogeneity (various engineering tools and 
technologies applied), semantic heterogeneity (dissimilar data models and formats), 
and process heterogeneity (tailored development processes). To manage these hetero-
geneities engineers from different disciplines work together during the synchroniza-
tion on a) propagating changes that were made to data of a discipline since the last 
synchronization; and b) checking the consistency of engineering data across discip-
lines. If inconsistencies have been detected, a next step is to define actions and re-
sponsible roles for getting to a consistent state by defect repair or conflict resolution. 
Such checking is performed iteratively, until the data is proved to be consistent.  

Two important types of defects affect engineering processes (a) intra-disciplinary 
defects (affect data within one discipline) and (b) cross-disciplinary defects (affect 
data in more than one discipline), e.g., changing a sensor (mechanical engineering) 
might have an effect on the related software component (software engineering) and 
might lead to defects if not addressed properly. While intra-disciplinary defects are 
usually discoverable by discipline-specific tools, cross-disciplinary defects are de-
tected and fixed mainly during the synchronization phase. Because of the lack of tool 
support, cross-disciplinary data analysis is usually performed manually by project 
engineers, which is time consuming and error-prone. 

Based on the described above, it is necessary in ME projects to provide efficient 
and effective mechanisms for defect detection. These mechanisms should be aware of 
the following requirements: (a) different disciplines involved; (b) large number of 
heterogeneous engineering artifacts; (c) cross-disciplinary dependencies in the project 
data; and d) concurrent engineering.  



242 O. Kovalenko et al. 

4 Automating Cross-Disciplinary Defect Detection: A Power 
Plant Automation System Case Study 

This section presents the ontology-based cross-disciplinary defect detection (OCDD) 
approach for ME projects and introduces it within a case study at an industry partner. 
Figure 2 gives an overview on the approach and contrasts it with a traditional manual 
defect detection.  

In traditional settings (lower part of Figure 2) the data and data models of the  
involved disciplines (e.g., mechanical, electrical and software engineering) are com-
pletely isolated and locked in discipline-specific tools using heterogeneous data mod-
els and data formats. Therefore all cross-disciplinary data exchange and analysis  
activities (including defect detection) rely on the knowledge of domain experts and 
require manual processes.  

With the OCDD approach (upper part of Figure 2) an ontology layer is created for 
(1) capturing explicitly the discipline specific data models and knowledge in corres-
ponding ontologies and (2) defining mappings between these ontologies correspond-
ing to cross-disciplinary dependencies. This knowledge layer enables the automation 
of the defect detection process as follows. Firstly, domain experts formulate consis-
tency checks focusing on the engineering objects that are important in more than one 
discipline. Secondly, a knowledge engineer translates the checks defined by the do-
main experts into corresponding SPARQL queries to be executed over the created 
ontological system, thus performing the cross-disciplinary data analysis and defect 
detection in an automated way. 

 

Fig. 2. Ontology-based Cross-Disciplinary Defect Detection (OCDD) vs. a traditional manual 
approach in ASE (ME – mechanical engineering; EE – electrical eng.; SE – software eng.). 

We continue with an overview of a case study in a ME project at an industry part-
ner, a large-scale industrial automation software provider (Sections 4.1- 4.3).  



 Automating Cross-Disciplinary Defect Detection 243 

4.1 Case Study Overview 

The case study was performed in the ME project concerning the development of a 
power plant and the corresponding control system. Engineering data from three do-
mains were considered: (a) hardware configuration (HC) domain (sub-part of  
mechanical engineering), responsible for designing the physical plant topology; (b) 
control system (CS) domain (a sub-part of software engineering), responsible for 
developing PLC code for the corresponding control system; and (c) project configura-
tion (PC) domain, responsible for managing the projects’ data, people involved in the 
development and history of changes in the engineering data of these projects. 

The following links, implicitly known by the project engineers, exist between 
these domains: (a) variables link CS and HC domains, i.e. for each device a set of 
global variables from the PLC code, are defined for its inputs and outputs; and (b) 
artifacts link the PC domain with HC and CS domains, i.e. an artifact can represent 
either a code unit or a software variable on a CS side; or a certain hardware device on 
a HC side. 

4.2 Case Study: Knowledge Representation 

We hereby describe the knowledge representation for the Hardware Configuration 
(HC), Control System (CS) and Project Configuration (PC) domains. All presented 
ontologies are OWL ontologies.  

Hardware Configuration Ontology 
The HC domain operates with data about devices, their inputs and outputs and va-
riables that get and set values on certain inputs/outputs. Corresponding ontology was 
populated by transformation from the XML files obtained from the industry partner.  

Figure 3 presents the part of the ontology relevant within the case study. Arrows 
denote the object properties. An important concept in the ontology is Device, which 
represents a specific device within a power plant (e.g., a temperature sensor). Specify-
ing device information is stored via concept DeviceDef. Another important concept is 
Variable, which represents variables defined on devices’ inputs and outputs. E.g., 
value measured by a specific temperature sensor will be set as a value of the corres-
ponding variable. VariableDef comprises additional variable information, such as its 
size, type, and extra flags. Variables are grouped via VarGroup, which is assigned to 
a certain device. A specific device can have many variable groups assigned to it. 

 

Fig. 3. Part of the Hardware Configuration Ontology relevant within the case study 



244 O. Kovalenko et al. 

Control System Ontology 

The CS domain manages the control system software. Corresponding ontology (de-
picted in Figure 4) was obtained by transformation from the XML files. The data  
is compliant with the IEC61131-3 standard for representing programmable logic  
controllers.  

 

Fig. 4. Part of the Control System Ontology relevant within the case study 

An important concept within this ontology is POU (program organization unit), 
which can represent a function, a function block (containing a set of functions) or a 
program (containing a set of functions and functions blocks). Every POU has an In-
terface, where the variables are declared. The Variable concept generalizes five dif-
ferent variable types: global variable (visible within all POUs), local variable (visible 
within one POU); external variable (referencing a global variable); input variable 
(transferred to a specific POU as an input parameter before execution); and output 
variable (takes a value after the POU execution). The concepts globalVars, localVars, 
externalVars, inputVars and outputVars comprise a set of variables of a correspond-
ing type, which can be then assigned to a specific Interface (for local, external, input 
and output variables) or to a specific Resource or Task (for global variables). 

Resource represents a device controller. For each resource a set of tasks are de-
fined. Task combines a set of POUs with the execution configuration. To be executed 
in run-time POU must be assigned to a resource and/or task. This is done via concept 
PouInstance (similar to classes and their instances in Object Oriented Programming). 
POU instances exist only in run-time and refer to a name of a corresponding POU (a 
dashed arrow in Figure 4 depicts this connection that should have been represented 
via object property, but due to peculiarities of data representation in initial XML files, 
must be checked additionally, by comparing the string values of the properties 
POU.hasName and PouInstance.hasTypeName.  

Project Configuration Ontology 

The PC domain comprises more general project related information such as: engineer-
ing projects under development; project members and their responsibilities; and the 



 Automating Cross-Disciplinary Defect Detection 245 

history of changes in the engineering data of these projects. Figure 5 presents the 
ontology part relevant within the case study. 

The Project concept represents an engineering project and comprises such details 
as its id, name, start and end dates and current stage. Engineers working in a project 
are represented via the concept ProjectMember. Every project member has a set of 
assigned responsibilities. Responsibility is a tuple relating a specific project with a 
specific project role. The following project roles are defined in the ontology: “Requi-
rementsEngineer”, “Modeler”, “Developer”, “Tester”, “Validator” and “ProjectLead-
er”. Thus, a project member can be a tester in one project and developer in another. 
Artifact represents various artifacts that are managed during the development (e.g. a 
specific variable or a piece of code). Activity represents a single change in the project 
engineering data and is used to store a history of changes. Following information is 
defined for each activity: who performed it? (refers to a ProjectMember); which arti-
fact was influenced? (refers to an Artifact); what kind of activity it was? (refers to 
ActivityType, which can be “Create”, “Delete”, “Modify” or “Validate”). 

 

Fig. 5. Part of the Project Configuration Ontology relevant within the case study 

4.3 Case Study: Cross-Disciplinary Defect Detection 

In the case study we focus on checking the variable data across the HC, CS and PC 
domains. Variables are important engineering objects in ASE and often link several 
domains/disciplines. In particular, variables are defined on the devices inputs and 
outputs (HC domain); then the same variable data are included into the PLC code (CS 
domain); and finally there are changes made on variable data (PC domain). According 
to the industry partner up to 40,000 variables can be managed in a specific project 
[12], which is a hard task, if doing this with the traditional manual approach.  

To make the relations between the variables in HC, CS and PC domains explicit, 
the following mappings have been defined: a) CS:Variable and HC:Variable are spe-
cified as subclasses of PC:Artifact; and b) CS:Variable is specified to be equivalent to 
HC:Variable. Although few and straightforward, these mappings already enable ex-
ecuting comprehensive checks on variable data across domain boundaries, which was 



246 O. Kovalenko et al. 

not possible to perform automatically before. Below two sample cross-disciplinary 
checks are explained in details (SPARQL implementation can be found online4). 

Q1: Which global variables on CS side are not declared on HC side? Each 
global variable declared in the control system software (CS ontology) should be de-
clared on a specific device input or output in the hardware system topology (HC on-
tology). If a corresponding declaration is missing on the HC side, this might indicate 
two possible problems: a) either there is a redundant global variable (CS side); b) or a 
variable declaration is missing in the physical system topology (HC side).  

Q2: Which changes on global variables declared at a certain device were not 
allowed by a project role of the project member that performed them? Each 
project member has a project role (or a set of them) that specifies which activities 
(s)he can perform in this project (e.g., a developer can create, modify and delete arti-
facts, while a validator can only validate). If there are doubts on the consistency of 
global variables in a project, one way to find the cause could be checking whether 
someone has performed an activity not allowed by his role. If such changes are found, 
corresponding global variables are the first candidates to be tested for consistency. 

Of course, the range of possible checks over HC, SC and PC domains is not limited 
to variable data only. For instance, there is an implicit connection between the 
CS:Resource and HC:Device (both represent specific aspects of a hardware device) 
and at the same time they both can be seen as an PC:Artifact. After defining explicit 
mappings, it becomes possible to perform various checks concerning hardware devic-
es across the domains (similar to those described above concerning variables).  

5 Evaluation of the Case Study Results  

In this section we discuss the results of prototypic implementation of OCDD approach 
obtained within the case study in the ME project at the industry partner.  

We performed several interviews with the domain experts at the industry partner to 
ask for their feedback and opinion on the OCDD approach comparing with a tradi-
tional manual defect detection approach, with a particular focus on the foreseen  
benefits and limitations of applying the OCDD in practice. The interviews were semi-
structured (acc. to [3]) and were performed in two stages: 1) requirements capture: the 
desired consistency checks for the case study were identified and formulated; and 2) 
approach validation: to validate that the captured requirements were efficiently ad-
dressed by the OCDD approach.  

In the interviews, the industry experts were concerned about the additional model-
ing complexity introduced: it is necessary to specify an ontology for each discipline 
and the mappings between the ontologies. Since the domain experts at the industry 
partner do not possess such skills in their current setup, this also implies the need for a 
Knowledge Engineer to manage semantic technologies. 

In spite of these concerns, the industry experts do believe that the approach  
provides valuable improvements: 1) the cross-disciplinary relations between the  

                                                           
4 SPARQL implementation of the queries in this paper: 128.130.204.52/ekaw14-queries.html 



 Automating Cross-Disciplinary Defect Detection 247 

engineering artifacts are explicitly specified and presented in machine-understandable 
form; 2) having the connections defined in a machine understandable format makes 
possible to identify the exact relevant data set (in the engineering data of other discip-
lines) that must be checked to solve a defect; 3) knowing the defect’s origin, it is 
possible to identify how this defect was produced, and therefore, take measures to 
avoid it in the future; 4) defects across the disciplines can be detected automatically, 
leading to significant time savings and higher recall compared to the traditional ma-
nual defect detection approach. Experts at the industry partner also estimated the 
overall effectiveness of the OCDD approach as being higher due to the fact that the 
process relies on formally defined parameters (data models and relations between 
them) and not on subjective human-based estimation. 

6 Discussion 

This section discusses in details specific aspects of the implementation strategy of the 
proposed OCDD approach.  

Domain Knowledge Modeling. Ontology enables gathering knowledge from the 
heterogeneous data sources and tools within the domain (e.g. CAE tools that corres-
pond to the mechanical engineering) and making it explicit. However, this means 
extra time and complexity for modeling the domain knowledge in terms of classes, 
relations and axioms. This step requires close collaboration of the engineers of the 
ME project and knowledge engineer(s), as the domain experts typically have no ex-
pertise in the semantic web technologies. From the positive side, knowledge captured 
by the ontology is reusable, flexible and customizable and, therefore, can be easily 
used to implement the cross-disciplinary defect detection in next projects. 

Data Import. Most of the engineering tools allow their data to be exported in one 
of the widely used formats, e.g. XML or spreadsheet data. In this case, there are tools 
already available that support automated data transformation from these formats into 
ontology (for an instance, XMLTab5 and MappingMaster6). In the worst case, if the 
data can be only obtained in a proprietary tool format, one converter has to be imple-
mented for each engineering tool. Although this requires extra effort from the project 
engineers, once the converters have been implemented they can be reused for the next 
projects, as the tool data model typically is stable and do not change with time.  

Comprehensive Querying. Semantic technologies provide high expressiveness 
and enable (in contrary to UML diagrams and SQL queries) the possibility to create 
mappings between different models and to query the different models (corresponding 
to disciplines) at the same time. For the time being, cross-disciplinary data analysis 
and defect detection are mainly performed manually in industrial ME practice. For 
instance, several engineers from different disciplines (e.g. mechanical engineering 
and software engineering) typically spend several days to complete one or at most 
several specific consistency checks for their engineering artifacts. Having in mind that 
a number of checks are needed during the synchronization and at least several syn-
                                                           
5 http://protegewiki.stanford.edu/wiki/XML_Tab 
6 http://protege.cim3.net/cgi-bin/wiki.pl?MappingMaster 



248 O. Kovalenko et al. 

chronizations are needed during the ME project development, the ability to automati-
cally execute checks (encoded in SPARQL queries) will significantly reduce the time 
and efforts to perform the cross-disciplinary data analysis in a ME project.  

Limited Scalability of Ontologies. Semantic web technologies provide an ex-
pressive and explicit way to define domain knowledge, mappings, and queries. How-
ever, the performance of the data storage and the memory usage become challenging 
when managing larger datasets (e.g., millions of instances) [17]. Especially high com-
putational load is to be expected when it comes to reasoning and querying for large 
instance data sets [19]. Therefore, the difficulty of using semantic technologies is the 
need for very powerful computer hardware to perform within reasonable time. In 
future work, we would like to analyze how a selection of specific mapping and query-
ing techniques and/or technologies can help mitigating these problems. 

Domain-Expert Support. In the current approach, a knowledge engineer is 
needed to work with semantic web technologies since domain experts do not typically 
have the appropriate skills. This could be mitigated by creating a GUI that hides the 
technological details and allows the domain experts performing the needed activities 
to manage the project data (e.g., data import, creation of mappings, and querying). 
This will also encourage the usage of the system from non-experts in semantic web.  

7 Conclusion and Future Work 

In the multi-disciplinary engineering projects (ME) participants from different engi-
neering disciplines collaborate to deliver a high-quality end product. Typically, the 
disciplines are rather isolated and use heterogeneous data models to represent com-
mon concepts in the project team. Therefore, it is difficult to efficiently analyze data 
and perform defect detection activities across the disciplines. In this paper we intro-
duced the ontology-based cross-disciplinary defect detection (OCDD) approach that 
supports automated cross-disciplinary defect detection. We presented the preliminary 
evaluation based on prototypical implementation of the OCDD approach in a case 
study ME project at an industry partner, an industrial automation software provider. 
Major result was that the OCDD approach was found useful in the evaluation context 
and more efficient than traditional manual defect detection if heterogeneous data ori-
ginating from different engineering disciplines have to be handled. 

As future work we plan a) to align our domain ontologies to existing domain-
agnostic, core engineering ontologies that model concepts and patterns suitable for 
representing any type of engineering knowledge (e.g. MASON [10] and OntoCAPE 
[11]); and to existing ontologies partially covering one of the domains of interest 
(e.g., the W3C Organization ontology7 partially covers Project Configuration do-
main); b) to investigate how the selection of a certain mapping and querying mechan-
ism influences the efficiency of the approach; and c) to provide a user-friendly  
interface for data querying to hide the complexity of SW technologies from domain  
experts. 

                                                           
7 http://www.w3.org/TR/vocab-org/ 



 Automating Cross-Disciplinary Defect Detection 249 

References 

1. Adams, T., Dullea, J., Clark, P., Sripada, S., Barrett, T.: Semantic integration of heteroge-
neous information sources using a knowledge-based system. In: Proceedings of 5th Inter-
national Conference on Computer Science and Informatics (CS&I 2000), Citeseer (2000) 

2. Fay, A., Biffl, S., Winkler, D., Drath, R., Barth, M.: A method to evaluate the openness of 
automation tools for increased interoperability. In: Proceedings of 39th Annual Conference 
of the IEEE Industrial Electronics Society, IECON 2013, pp. 6844–6849. IEEE (2013) 

3. Gray, D.E.: Doing research in the real world. Sage (2009) 
4. Hästbacka, D., Kuikka, S.: Semantics enhanced engineering and model reasoning for con-

trol application development. Multimedia Tools and Applications 65(1), 47–62 (2013) 
5. Hefke, M., Szulman, P., Trifu, A.: An ontology-based reference model for semantic data 

integration in digital production engineering. In: Proceedings of the 15th eChallenges Con-
ference. Citeseer (2005)  

6. Kovalenko, O., Winkler, D., Kalinowski, M., Serral, E., Biffl, S.: Engineering process im-
provement in heterogeneous multi-disciplinary environments with the defect causal analy-
sis. In: Proceedings of the 21st EuroSPI Conference (2014) 

7. Kusiak, A.: Concurrent engineering: automation, tools, and techniques. John Wiley & 
Sons (1993) 

8. Laitenberger, O., DeBaud, J.M.: An encompassing life cycle centric survey of software in-
spection. Journal of Systems and Software 50(1), 5–31 (2000) 

9. Lastra, J.L.M., Delamer, I.M.: Ontologies for production automation. In: Advances in Web 
Semantics I, pp. 276–289. Springer (2009) 

10. Lemaignan, S., Siadat, A., Dantan, J.Y., Semenenko, A.: MASON: A proposal for an on-
tology of manufacturing domain. In: IEEE Workshop on Distributed Intelligent Systems: 
Collective Intelligence and Its Applications, DIS 2006, pp. 195–200. IEEE (2006) 

11. Morbach, J., Wiesner, A., Marquardt, W.: OntoCAPE - a (re) usable ontology for computer-
aided process engineering. Computers & Chemical Engineering 33(10), 1546–1556 (2009) 

12. Mordinyi, R., Winkler, D., Moser, T., Biffl, S., Sunindyo, W.D.: Engineering object 
change management process observation in distributed automation systems projects. In: 
Proceedings of the 18th EuroSPI Conference, Roskilde, Denmark (2011) 

13. Naik, S., Tripathy, P.: Software testing and quality assurance: theory and practice. John 
Wiley & Sons (2011) 

14. Obitko, M., Marik, V.: Ontologies for multi-agent systems in manufacturing domain. In: 
Proceedings of the 13th International Workshop on Database and Expert Systems Applica-
tions, pp. 597–602. IEEE (2002) 

15. Peltomaa, I., Helaakoski, H., Tuikkanen, J.: Semantic interoperability-information integration 
by using ontology mapping in industrial environment. In: Proceedings of the 10th Interna-
tional Conference on Enterprise Information Systems – ICEIS 2008, pp. 465–468 (2008) 

16. Sage, A.P., Rouse, W.B.: Handbook of systems engineering and management. John Wiley 
& Sons (2011) 

17. Serral, E., Mordinyi, R., Kovalenko, O., Winkler, D., Biffl, S.: Evaluation of semantic data 
storages for integrating heterogeneous disciplines in automation systems engineering. In: 
39th Annual Conference of the IEEE Industrial Electronics Society, pp. 6858–6865 (2013) 

18. Uschold, M., King, M., Moralee, S., Zorgios, Y.: The enterprise ontology. The Knowledge 
Engineering Review 13(01), 31–89 (1998) 

19. Wiesner, A., Morbach, J., Marquardt, W.: Information integration in chemical process en-
gineering based on semantic technologies. Comp. & Chem. Eng. 35(4), 692–708 (2011) 


	Automating Cross-Disciplinary Defect Detection in Multi-disciplinary Engineering Environments
	1 Introduction
	2 Related Work
	3 The Engineering Process in Multi-Disciplinary Environments
	4 Automating Cross-Disciplinary Defect Detection: A Power Plant Automation System Case Study
	4.1 Case Study Overview
	4.2 Case Study: Knowledge Representation
	4.3 Case Study: Cross-Disciplinary Defect Detection

	5 Evaluation of the Case Study Results
	6 Discussion
	7 Conclusion and Future Work
	References




