Automating Cross-Disciplinary Defect Detection
in Multi-disciplinary Engineering Environments

Olga Kovalenkol, Estefania Serral’, Marta Saboul,
Fajar J. Ekaputra', Dietmar Winkler', and Stefan Biffl'

! Christian Doppler Laboratory for Software Engineering
Integration for Flexible Automation Systems,
Vienna University of Technology,
Favoritenstrasse 9-11/E188, A-1040 Vienna
{firstname.lastname}@tuwien.ac.at
% Department of Decision Sciences and Information Management, KU Leuven
Naamsestraat 69, B-3000 Leuven, Belgium
estefania.serralasensio@kuleuven.be

Abstract. Multi-disciplinary engineering (ME) projects are conducted in com-
plex heterogeneous environments, where participants, originating from different
disciplines, e.g., mechanical, electrical, and software engineering, collaborate to
satisfy project and product quality as well as time constraints. Detecting defects
across discipline boundaries early and efficiently in the engineering process is a
challenging task due to heterogeneous data sources. In this paper we explore
how Semantic Web technologies can address this challenge and present the On-
tology-based Cross-Disciplinary Defect Detection (OCDD) approach that sup-
ports automated cross-disciplinary defect detection in ME environments, while
allowing engineers to keep their well-known tools, data models, and their cus-
tomary engineering workflows. We evaluate the approach in a case study at an
industry partner, a large-scale industrial automation software provider, and re-
port on our experiences and lessons learned. Major result was that the OCDD
approach was found useful in the evaluation context and more efficient than
manual defect detection, if cross-disciplinary defects had to be handled.

1 Introduction

Multi-disciplinary engineering (ME) projects represent complex environments, where
different disciplines (e.g., mechanical, electrical and software engineering), have to
collaborate efficiently in order to deliver high-quality end products and to satisfy tight
timeframes [12]. An example ME project is designing a power plant and correspond-
ing control system. In ME projects, engineering data is spread over numerous hetero-
geneous data sources derived from various discipline-specific tools and corresponding
data models and data formats. Typically the tools are loosely coupled with limited
capabilities for cross-disciplinary data exchange or/and data analysis. As a conse-
quence, risks of deviations and defects in project data increase.

Errors made during the early development stages are especially critical, as they can
potentially affect the artifacts of all latter phases. Staying undetected, such defects can

K. Janowicz et al. (Eds.): EKAW 2014, LNAI 8876, pp. 238-249, 2014.
© Springer International Publishing Switzerland 2014

Automating Cross-Disciplinary Defect Detection 239

lead to costly corrections during the commission phase or even to failures during the
operation phase. Hence, ensuring consistency of project data and detecting emerging
deviations and defects early are crucial requirements [6]. To this end, handling cross-
disciplinary defects raises additional challenges. A cross-disciplinary defect is a de-
fect that can only be identified by analyzing the data from several disciplines. For
instance, the sensor type specified in the physical topology (mechanical engineering)
of the automation system has to match the information in the corresponding electrical
plan (electrical engineering) and the value range for control variables (software engi-
neering) to describe a correct system. It is important to mention that interrelations
between data of different disciplines are often not explicitly documented, but instead
are only implicitly available as internal knowledge of the engineers. As the cross-
disciplinary relations are not represented in a machine-understandable way, they can-
not be automatically checked. Therefore, cross-disciplinary defect detection typically
requires manual checking by the engineers, which is time consuming and error-prone.
Thus, there is a need for effective and efficient defect detection methods, including
cross-disciplinary defect detection, in ME projects.

In this paper we present an ontology-based approach for automated defect detec-
tion across discipline boundaries. Ontologies allow representing the data models of
different engineering disciplines and/or tools and cross-disciplinary interrelations
between the heterogeneous project data in a machine-understandable form, thus,
enabling automated processing and analysis across disciplines. Comprehensive que-
ries can be defined and executed in order to (a) check whether or not project data
satisfies specified cross-disciplinary dependencies; and (b) to detect deviations and
candidate defects in the ME project data. As an advantage the Ontology-based Cross-
Disciplinary Defect Detection (OCDD) approach does not require the project partici-
pants to change their well-known tools and workflows.

The remainder of the paper is structure as follows. Section 2 presents related work;
Section 3 describes the engineering practice in ME projects; Section 4 introduces the
OCDD approach in the context of an industrial case study; Section 5 reports on pre-
liminary evaluation within the case study at the industry partner; Section 6 discusses
the implementation strategy of the proposed approach in ME settings; and Section 7
concludes the paper and depicts future work.

2 Related Work

This section summarizes related work on defect detection in multi-disciplinary engi-
neering (ME) projects and the use of semantic web approaches in industrial contexts.

Defect Detection in ME Environments. Engineers of individual disciplines typi-
cally apply isolated and discipline-specific tools and data models while designing
their artifacts. Within each discipline, well-defined approaches are used for quality
assurance (QA) and engineering data analysis according to domain specific industry
standards and best practices, e.g., simulation of electrical circuits and systems [16]; or
static analysis methods (e.g., inspections or code analysis techniques [8]) and testing
of software components [13]. However, in ME environments these isolated discip-
lines have to collaborate and exchange data — a major challenge for defect detection

240 0. Kovalenko et al.

and QA. Defects and inconsistencies have to be detected as early as possible to mi-
nimize risks, solve conflicts, and improve product quality.

In [2] an openness metric for a systematic assessment of interoperability capabili-
ties in ME projects has been applied to a set of selected tools. The main outcome was
that isolated tools can support data exchange standards, e.g., XML or AutomationML'
to enable collaboration between disciplines. However, loosely coupled tools do not
support cross-disciplinary QA. Tool suites, e.g., Comos®, typically cover a range of
disciplines and provide functionality also for cross-disciplinary collaboration. These
tools suites include a common data model that could enable basic QA tasks, e.g., de-
fect detection. As for the drawbacks there may be some reduction of feature sets com-
pared to isolated and highly specific solutions. In addition, project participants have to
switch from their well-known tools to the all-in-one solution which might represent a
barrier regarding acceptance, time and cost. Therefore, there is a need for approaches
and tool-support for the engineers in ME projects to: (a) explicitly specify the cross-
disciplinary interrelations between the heterogeneous engineering artifacts; (b) per-
form data analysis and detect defects across disciplines: and c) keep their customary
engineering workflows and tools.

Semantic Web-Based Approaches. Semantic based solutions have been devel-
oped for various industries such as the aeronautical industry [1], the automotive indus-
try [5], chemical engineering [11], heavy industries [15], factory automation [9] or,
more broadly, manufacturing in general [10,14]. As opposed to these efforts, which
typically focus on a single domain (with the notable exception of [4, 5]), we aim to
support mechatronic systems, which, by definition combine the work of multiple en-
gineering disciplines such as mechanical, electrical and software engineering. This
combination of disciplines is a key differentiating feature of our efforts with respect to
the predominantly mono-domain approaches reported so far in the literature.

The major goal of the various ontology based solutions reported so far is the inte-
gration and consolidation of engineering data [15, 19]. Such integration is a pre-
requisite to enable a range of intelligent applications such as decision support [1],
automatic cost estimation [10], semantic-aware multiagent systems for manufacturing
[11] or enterprise specific tasks such as bid analysis, market analysis and continuous
process improvement by analyzing and integrating employee feedback [18]. The iden-
tification of errors, faults and defects across engineering models from different discip-
lines is an important but less frequent application and has only been reported by [4].
A mono-disciplinary defect detection system for identifying faults of electronic con-
trol units in cars has been achieved using ontologies and rules at AUDL’.

! AutomatonML: https://www.automationml.org

2 COMOS:
http://www.automation.siemens.com/mcms/plant-engineering-software

3 http://www.w3.0rg/2001/sw/sweo/public/UseCases/Audi/

Automating Cross-Disciplinary Defect Detection 241

3 The Engineering Process in Multi-Disciplinary Environments

Multi-disciplinary engineering (ME) projects, e.g., in the automation systems engi-
neering (ASE) domain, typically require concurrent engineering [7]. Due to tight
project delivery times and project constrains engineering teams work in parallel rather
than sequentially, often in a geographically distributed setting. This requires adjusting
the engineering process and including a set of synchronizations at each project stage
to (a) propagate changes across disciplines and (b) identify early defects and inconsis-
tencies across disciplines from concurrent changes in heterogeneous project data.
Figure 1 shows the data synchronization process with defect detections mechanisms.

Mechanical Electrical Software
Characteristics Properties Functions

Discipline-Specific Eng. = Synchronization
@ Mechanical Eng. o - Consistent? = EZiggtaezgpéﬁng;g
= Electrical Eng. Heterogeneous Data BZ;ZE;‘ Ezteaﬁﬁlon
S Software Eng. <Synchronized Data P T;f
J Consistent

Fig. 1. Synchronization Process in Multi-Disciplinary Engineering Projects

The main aim of synchronization is addressing different types of heterogeneities
that exist in ASE projects: technical heterogeneity (various engineering tools and
technologies applied), semantic heterogeneity (dissimilar data models and formats),
and process heterogeneity (tailored development processes). To manage these hetero-
geneities engineers from different disciplines work together during the synchroniza-
tion on a) propagating changes that were made to data of a discipline since the last
synchronization; and b) checking the consistency of engineering data across discip-
lines. If inconsistencies have been detected, a next step is to define actions and re-
sponsible roles for getting to a consistent state by defect repair or conflict resolution.
Such checking is performed iteratively, until the data is proved to be consistent.

Two important types of defects affect engineering processes (a) intra-disciplinary
defects (affect data within one discipline) and (b) cross-disciplinary defects (affect
data in more than one discipline), e.g., changing a sensor (mechanical engineering)
might have an effect on the related software component (software engineering) and
might lead to defects if not addressed properly. While intra-disciplinary defects are
usually discoverable by discipline-specific tools, cross-disciplinary defects are de-
tected and fixed mainly during the synchronization phase. Because of the lack of tool
support, cross-disciplinary data analysis is usually performed manually by project
engineers, which is time consuming and error-prone.

Based on the described above, it is necessary in ME projects to provide efficient
and effective mechanisms for defect detection. These mechanisms should be aware of
the following requirements: (a) different disciplines involved; (b) large number of
heterogeneous engineering artifacts; (c) cross-disciplinary dependencies in the project
data; and d) concurrent engineering.

242 0. Kovalenko et al.

4 Automating Cross-Disciplinary Defect Detection: A Power
Plant Automation System Case Study

This section presents the ontology-based cross-disciplinary defect detection (OCDD)
approach for ME projects and introduces it within a case study at an industry partner.
Figure 2 gives an overview on the approach and contrasts it with a traditional manual
defect detection.

In traditional settings (lower part of Figure 2) the data and data models of the
involved disciplines (e.g., mechanical, electrical and software engineering) are com-
pletely isolated and locked in discipline-specific tools using heterogeneous data mod-
els and data formats. Therefore all cross-disciplinary data exchange and analysis
activities (including defect detection) rely on the knowledge of domain experts and
require manual processes.

With the OCDD approach (upper part of Figure 2) an ontology layer is created for
(1) capturing explicitly the discipline specific data models and knowledge in corres-
ponding ontologies and (2) defining mappings between these ontologies correspond-
ing to cross-disciplinary dependencies. This knowledge layer enables the automation
of the defect detection process as follows. Firstly, domain experts formulate consis-
tency checks focusing on the engineering objects that are important in more than one
discipline. Secondly, a knowledge engineer translates the checks defined by the do-
main experts into corresponding SPARQL queries to be executed over the created
ontological system, thus performing the cross-disciplinary data analysis and defect
detection in an automated way.

cross discipline boundaries & Domain-specific knowledge

N\ 4

1 Comprehensive queries Ontology-based approach
a
in ontologies

Knowledge
engineer

mappings

@ Cross-disciplinary links

~ explicitly defined as mappings
ME Ontology
«@J\; Automated cross-disciplinary

¥/

defect-detection

Mechanical Software Traditional engineering process
engineer engineer
[ME] Defects? [SE | . Cross-disciplinary activities
- Physical plant Links 2. - Control system rely on engineers knowledge
topolo: software units : s it :
@'— trical [SE data model . Implicit cross-disciplinary links
EE W engineer
- Electrical wiring . Manual data analysis across
topology discipline boundaries
EE data model |

Fig. 2. Ontology-based Cross-Disciplinary Defect Detection (OCDD) vs. a traditional manual
approach in ASE (ME — mechanical engineering; EE — electrical eng.; SE — software eng.).

We continue with an overview of a case study in a ME project at an industry part-
ner, a large-scale industrial automation software provider (Sections 4.1- 4.3).

Automating Cross-Disciplinary Defect Detection 243

4.1 Case Study Overview

The case study was performed in the ME project concerning the development of a
power plant and the corresponding control system. Engineering data from three do-
mains were considered: (a) hardware configuration (HC) domain (sub-part of
mechanical engineering), responsible for designing the physical plant topology; (b)
control system (CS) domain (a sub-part of software engineering), responsible for
developing PLC code for the corresponding control system; and (c) project configura-
tion (PC) domain, responsible for managing the projects’ data, people involved in the
development and history of changes in the engineering data of these projects.

The following links, implicitly known by the project engineers, exist between
these domains: (a) variables link CS and HC domains, i.e. for each device a set of
global variables from the PLC code, are defined for its inputs and outputs; and (b)
artifacts link the PC domain with HC and CS domains, i.e. an artifact can represent
either a code unit or a software variable on a CS side; or a certain hardware device on
a HC side.

4.2 Case Study: Knowledge Representation

We hereby describe the knowledge representation for the Hardware Configuration
(HC), Control System (CS) and Project Configuration (PC) domains. All presented
ontologies are OWL ontologies.

Hardware Configuration Ontology
The HC domain operates with data about devices, their inputs and outputs and va-
riables that get and set values on certain inputs/outputs. Corresponding ontology was
populated by transformation from the XML files obtained from the industry partner.
Figure 3 presents the part of the ontology relevant within the case study. Arrows
denote the object properties. An important concept in the ontology is Device, which
represents a specific device within a power plant (e.g., a temperature sensor). Specify-
ing device information is stored via concept DeviceDef. Another important concept is
Variable, which represents variables defined on devices’ inputs and outputs. E.g.,
value measured by a specific temperature sensor will be set as a value of the corres-
ponding variable. VariableDef comprises additional variable information, such as its
size, type, and extra flags. Variables are grouped via VarGroup, which is assigned to
a certain device. A specific device can have many variable groups assigned to it.

Device hasVarGrpSlot | YarGroup | hasvarSiot | Variable
hasDevicelD [P | hasitemD T hasVarlD
hasVarDefSlot

DeviceDef VariableDef
hasDeviceName hasvVarType |«
hasDeviceDescriptior hasvarBitsize

3 : hasDevDefSlot hasVarFlags
hasDevicelocation

Fig. 3. Part of the Hardware Configuration Ontology relevant within the case study

244 0. Kovalenko et al.

Control System Ontology

The CS domain manages the control system software. Corresponding ontology (de-
picted in Figure 4) was obtained by transformation from the XML files. The data
is compliant with the IEC61131-3 standard for representing programmable logic
controllers.

4>- hasQutputVarsSlot
Pou haslnterfaceSlot E

hasName
hasPouType

outputVars
inputVars

hasInputVarsSlot
externalVars

hasExternalVarsSlot

localVars

=

haslLocalVarsSlot H
Poulnstance: | | Poulnstance.hasTypeName globalVars
hasName | | = POU.hasName hasName
hasGlobalVarsSlot ;
hasTypeName| | «poulnstanceSiot P isConstant
| isRetained
+ hasPoulnstanceSlot | Task Variable
Resource [————— hasName hasName
hasName | nasTaskSlot | haspPriority isNegated hasVariableSlot
haslInterval hasInitialValueSlot
I hasGlobalVarsSlot

Fig. 4. Part of the Control System Ontology relevant within the case study

An important concept within this ontology is POU (program organization unit),
which can represent a function, a function block (containing a set of functions) or a
program (containing a set of functions and functions blocks). Every POU has an In-
terface, where the variables are declared. The Variable concept generalizes five dif-
ferent variable types: global variable (visible within all POUs), local variable (visible
within one POU); external variable (referencing a global variable); input variable
(transferred to a specific POU as an input parameter before execution); and output
variable (takes a value after the POU execution). The concepts globalVars, localVars,
externalVars, inputVars and outputVars comprise a set of variables of a correspond-
ing type, which can be then assigned to a specific Interface (for local, external, input
and output variables) or to a specific Resource or Task (for global variables).

Resource represents a device controller. For each resource a set of tasks are de-
fined. Task combines a set of POUs with the execution configuration. To be executed
in run-time POU must be assigned to a resource and/or task. This is done via concept
Poulnstance (similar to classes and their instances in Object Oriented Programming).
POU instances exist only in run-time and refer to a name of a corresponding POU (a
dashed arrow in Figure 4 depicts this connection that should have been represented
via object property, but due to peculiarities of data representation in initial XML files,
must be checked additionally, by comparing the string values of the properties
POU.hasName and Poulnstance.hasTypeName.

Project Configuration Ontology

The PC domain comprises more general project related information such as: engineer-
ing projects under development; project members and their responsibilities; and the

Automating Cross-Disciplinary Defect Detection 245

history of changes in the engineering data of these projects. Figure 5 presents the
ontology part relevant within the case study.

The Project concept represents an engineering project and comprises such details
as its id, name, start and end dates and current stage. Engineers working in a project
are represented via the concept ProjectMember. Every project member has a set of
assigned responsibilities. Responsibility is a tuple relating a specific project with a
specific project role. The following project roles are defined in the ontology: “Requi-
rementsEngineer”, “Modeler”, “Developer”, “Tester”, “Validator” and “ProjectLead-
er”’. Thus, a project member can be a tester in one project and developer in another.
Artifact represents various artifacts that are managed during the development (e.g. a
specific variable or a piece of code). Activity represents a single change in the project
engineering data and is used to store a history of changes. Following information is
defined for each activity: who performed it? (refers to a ProjectMember); which arti-
fact was influenced? (refers to an Artifact); what kind of activity it was? (refers to
ActivityType, which can be “Create”, “Delete”, “Modify” or “Validate”).

i wasPerformedBy

ProjectMember Project |Artifact |
hasPersonlD hasProjectlD I A
hasFullName hasProjectName]
hasStathDate belongsTo | \asPerformedon
hasResponsibility hasPlannedEndDate Activity
Responsibility hasEndDate wasPerformedAt
- hasProjectStage wasPerformedOnProperty
hasCorrProjectRole . haslnitialPropertyValue
ProjectRole haSCOWPFOJeCt} hasFinalPropertyValue
hasRoleName ActivityType hasActivityType
hasRoleDescription | hasActivity TypeName [—
hasAllowedActivities| hasActivity TypeDescription

Fig. 5. Part of the Project Configuration Ontology relevant within the case study

4.3 Case Study: Cross-Disciplinary Defect Detection

In the case study we focus on checking the variable data across the HC, CS and PC
domains. Variables are important engineering objects in ASE and often link several
domains/disciplines. In particular, variables are defined on the devices inputs and
outputs (HC domain); then the same variable data are included into the PLC code (CS
domain); and finally there are changes made on variable data (PC domain). According
to the industry partner up to 40,000 variables can be managed in a specific project
[12], which is a hard task, if doing this with the traditional manual approach.

To make the relations between the variables in HC, CS and PC domains explicit,
the following mappings have been defined: a) CS:Variable and HC:Variable are spe-
cified as subclasses of PC:Artifact; and b) CS:Variable is specified to be equivalent to
HC:Variable. Although few and straightforward, these mappings already enable ex-
ecuting comprehensive checks on variable data across domain boundaries, which was

246 0. Kovalenko et al.

not possible to perform automatically before. Below two sample cross-disciplinary
checks are explained in details (SPARQL implementation can be found 0n1ine4).

Q1: Which global variables on CS side are not declared on HC side? Each
global variable declared in the control system software (CS ontology) should be de-
clared on a specific device input or output in the hardware system topology (HC on-
tology). If a corresponding declaration is missing on the HC side, this might indicate
two possible problems: a) either there is a redundant global variable (CS side); b) or a
variable declaration is missing in the physical system topology (HC side).

Q2: Which changes on global variables declared at a certain device were not
allowed by a project role of the project member that performed them? Each
project member has a project role (or a set of them) that specifies which activities
(s)he can perform in this project (e.g., a developer can create, modify and delete arti-
facts, while a validator can only validate). If there are doubts on the consistency of
global variables in a project, one way to find the cause could be checking whether
someone has performed an activity not allowed by his role. If such changes are found,
corresponding global variables are the first candidates to be tested for consistency.

Of course, the range of possible checks over HC, SC and PC domains is not limited
to variable data only. For instance, there is an implicit connection between the
CS:Resource and HC:Device (both represent specific aspects of a hardware device)
and at the same time they both can be seen as an PC:Artifact. After defining explicit
mappings, it becomes possible to perform various checks concerning hardware devic-
es across the domains (similar to those described above concerning variables).

5 Evaluation of the Case Study Results

In this section we discuss the results of prototypic implementation of OCDD approach
obtained within the case study in the ME project at the industry partner.

We performed several interviews with the domain experts at the industry partner to
ask for their feedback and opinion on the OCDD approach comparing with a tradi-
tional manual defect detection approach, with a particular focus on the foreseen
benefits and limitations of applying the OCDD in practice. The interviews were semi-
structured (acc. to [3]) and were performed in two stages: 1) requirements capture: the
desired consistency checks for the case study were identified and formulated; and 2)
approach validation: to validate that the captured requirements were efficiently ad-
dressed by the OCDD approach.

In the interviews, the industry experts were concerned about the additional model-
ing complexity introduced: it is necessary to specify an ontology for each discipline
and the mappings between the ontologies. Since the domain experts at the industry
partner do not possess such skills in their current setup, this also implies the need for a
Knowledge Engineer to manage semantic technologies.

In spite of these concerns, the industry experts do believe that the approach
provides valuable improvements: 1) the cross-disciplinary relations between the

* SPARQL implementation of the queries in this paper: 128.130.204.52/ekaw14-queries.html

Automating Cross-Disciplinary Defect Detection 247

engineering artifacts are explicitly specified and presented in machine-understandable
form; 2) having the connections defined in a machine understandable format makes
possible to identify the exact relevant data set (in the engineering data of other discip-
lines) that must be checked to solve a defect; 3) knowing the defect’s origin, it is
possible to identify how this defect was produced, and therefore, take measures to
avoid it in the future; 4) defects across the disciplines can be detected automatically,
leading to significant time savings and higher recall compared to the traditional ma-
nual defect detection approach. Experts at the industry partner also estimated the
overall effectiveness of the OCDD approach as being higher due to the fact that the
process relies on formally defined parameters (data models and relations between
them) and not on subjective human-based estimation.

6 Discussion

This section discusses in details specific aspects of the implementation strategy of the
proposed OCDD approach.

Domain Knowledge Modeling. Ontology enables gathering knowledge from the
heterogeneous data sources and tools within the domain (e.g. CAE tools that corres-
pond to the mechanical engineering) and making it explicit. However, this means
extra time and complexity for modeling the domain knowledge in terms of classes,
relations and axioms. This step requires close collaboration of the engineers of the
ME project and knowledge engineer(s), as the domain experts typically have no ex-
pertise in the semantic web technologies. From the positive side, knowledge captured
by the ontology is reusable, flexible and customizable and, therefore, can be easily
used to implement the cross-disciplinary defect detection in next projects.

Data Import. Most of the engineering tools allow their data to be exported in one
of the widely used formats, e.g. XML or spreadsheet data. In this case, there are tools
already available that support automated data transformation from these formats into
ontology (for an instance, XMLTab” and MappingMaster®). In the worst case, if the
data can be only obtained in a proprietary tool format, one converter has to be imple-
mented for each engineering tool. Although this requires extra effort from the project
engineers, once the converters have been implemented they can be reused for the next
projects, as the tool data model typically is stable and do not change with time.

Comprehensive Querying. Semantic technologies provide high expressiveness
and enable (in contrary to UML diagrams and SQL queries) the possibility to create
mappings between different models and to query the different models (corresponding
to disciplines) at the same time. For the time being, cross-disciplinary data analysis
and defect detection are mainly performed manually in industrial ME practice. For
instance, several engineers from different disciplines (e.g. mechanical engineering
and software engineering) typically spend several days to complete one or at most
several specific consistency checks for their engineering artifacts. Having in mind that
a number of checks are needed during the synchronization and at least several syn-

5 http://protegewiki.stanford.edu/wiki/XML_Tab
6 http://protege.cim3.net/cgi-bin/wiki.pl?MappingMaster

248 0. Kovalenko et al.

chronizations are needed during the ME project development, the ability to automati-
cally execute checks (encoded in SPARQL queries) will significantly reduce the time
and efforts to perform the cross-disciplinary data analysis in a ME project.

Limited Scalability of Ontologies. Semantic web technologies provide an ex-
pressive and explicit way to define domain knowledge, mappings, and queries. How-
ever, the performance of the data storage and the memory usage become challenging
when managing larger datasets (e.g., millions of instances) [17]. Especially high com-
putational load is to be expected when it comes to reasoning and querying for large
instance data sets [19]. Therefore, the difficulty of using semantic technologies is the
need for very powerful computer hardware to perform within reasonable time. In
future work, we would like to analyze how a selection of specific mapping and query-
ing techniques and/or technologies can help mitigating these problems.

Domain-Expert Support. In the current approach, a knowledge engineer is
needed to work with semantic web technologies since domain experts do not typically
have the appropriate skills. This could be mitigated by creating a GUI that hides the
technological details and allows the domain experts performing the needed activities
to manage the project data (e.g., data import, creation of mappings, and querying).
This will also encourage the usage of the system from non-experts in semantic web.

7 Conclusion and Future Work

In the multi-disciplinary engineering projects (ME) participants from different engi-
neering disciplines collaborate to deliver a high-quality end product. Typically, the
disciplines are rather isolated and use heterogeneous data models to represent com-
mon concepts in the project team. Therefore, it is difficult to efficiently analyze data
and perform defect detection activities across the disciplines. In this paper we intro-
duced the ontology-based cross-disciplinary defect detection (OCDD) approach that
supports automated cross-disciplinary defect detection. We presented the preliminary
evaluation based on prototypical implementation of the OCDD approach in a case
study ME project at an industry partner, an industrial automation software provider.
Major result was that the OCDD approach was found useful in the evaluation context
and more efficient than traditional manual defect detection if heterogeneous data ori-
ginating from different engineering disciplines have to be handled.

As future work we plan a) to align our domain ontologies to existing domain-
agnostic, core engineering ontologies that model concepts and patterns suitable for
representing any type of engineering knowledge (e.g. MASON [10] and OntoCAPE
[11]); and to existing ontologies partially covering one of the domains of interest
(e.g., the W3C Organization ontology’ partially covers Project Configuration do-
main); b) to investigate how the selection of a certain mapping and querying mechan-
ism influences the efficiency of the approach; and c) to provide a user-friendly
interface for data querying to hide the complexity of SW technologies from domain
experts.

7 http://www.w3.org/TR/vocab-org/

Automating Cross-Disciplinary Defect Detection 249

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. Adams, T., Dullea, J., Clark, P., Sripada, S., Barrett, T.: Semantic integration of heteroge-

neous information sources using a knowledge-based system. In: Proceedings of 5th Inter-
national Conference on Computer Science and Informatics (CS&I 2000), Citeseer (2000)
Fay, A., Biffl, S., Winkler, D., Drath, R., Barth, M.: A method to evaluate the openness of
automation tools for increased interoperability. In: Proceedings of 39th Annual Conference
of the IEEE Industrial Electronics Society, IECON 2013, pp. 6844—6849. IEEE (2013)
Gray, D.E.: Doing research in the real world. Sage (2009)

Histbacka, D., Kuikka, S.: Semantics enhanced engineering and model reasoning for con-
trol application development. Multimedia Tools and Applications 65(1), 47-62 (2013)
Hefke, M., Szulman, P., Trifu, A.: An ontology-based reference model for semantic data
integration in digital production engineering. In: Proceedings of the 15th eChallenges Con-
ference. Citeseer (2005)

Kovalenko, O., Winkler, D., Kalinowski, M., Serral, E., Biffl, S.: Engineering process im-
provement in heterogeneous multi-disciplinary environments with the defect causal analy-
sis. In: Proceedings of the 21st EuroSPI Conference (2014)

Kusiak, A.: Concurrent engineering: automation, tools, and techniques. John Wiley &
Sons (1993)

Laitenberger, O., DeBaud, J.M.: An encompassing life cycle centric survey of software in-
spection. Journal of Systems and Software 50(1), 5-31 (2000)

Lastra, J.L.M., Delamer, I.M.: Ontologies for production automation. In: Advances in Web
Semantics I, pp. 276-289. Springer (2009)

Lemaignan, S., Siadat, A., Dantan, J.Y., Semenenko, A.: MASON: A proposal for an on-
tology of manufacturing domain. In: IEEE Workshop on Distributed Intelligent Systems:
Collective Intelligence and Its Applications, DIS 2006, pp. 195-200. IEEE (2006)
Morbach, J., Wiesner, A., Marquardt, W.: OntoCAPE - a (re) usable ontology for computer-
aided process engineering. Computers & Chemical Engineering 33(10), 1546-1556 (2009)
Mordinyi, R., Winkler, D., Moser, T., Biffl, S., Sunindyo, W.D.: Engineering object
change management process observation in distributed automation systems projects. In:
Proceedings of the 18th EuroSPI Conference, Roskilde, Denmark (2011)

Naik, S., Tripathy, P.: Software testing and quality assurance: theory and practice. John
Wiley & Sons (2011)

Obitko, M., Marik, V.: Ontologies for multi-agent systems in manufacturing domain. In:
Proceedings of the 13th International Workshop on Database and Expert Systems Applica-
tions, pp. 597-602. IEEE (2002)

Peltomaa, 1., Helaakoski, H., Tuikkanen, J.: Semantic interoperability-information integration
by using ontology mapping in industrial environment. In: Proceedings of the 10th Interna-
tional Conference on Enterprise Information Systems — ICEIS 2008, pp. 465—468 (2008)
Sage, A.P., Rouse, W.B.: Handbook of systems engineering and management. John Wiley
& Sons (2011)

Serral, E., Mordinyi, R., Kovalenko, O., Winkler, D., Biffl, S.: Evaluation of semantic data
storages for integrating heterogeneous disciplines in automation systems engineering. In:
39th Annual Conference of the IEEE Industrial Electronics Society, pp. 6858—6865 (2013)
Uschold, M., King, M., Moralee, S., Zorgios, Y.: The enterprise ontology. The Knowledge
Engineering Review 13(01), 31-89 (1998)

Wiesner, A., Morbach, J., Marquardt, W.: Information integration in chemical process en-
gineering based on semantic technologies. Comp. & Chem. Eng. 35(4), 692-708 (2011)

	Automating Cross-Disciplinary Defect Detection in Multi-disciplinary Engineering Environments
	1 Introduction
	2 Related Work
	3 The Engineering Process in Multi-Disciplinary Environments
	4 Automating Cross-Disciplinary Defect Detection: A Power Plant Automation System Case Study
	4.1 Case Study Overview
	4.2 Case Study: Knowledge Representation
	4.3 Case Study: Cross-Disciplinary Defect Detection

	5 Evaluation of the Case Study Results
	6 Discussion
	7 Conclusion and Future Work
	References

