
 

M. Ioannides et al. (Eds.): EuroMed 2014, LNCS 8740, pp. 91–101, 2014. 
© Springer International Publishing Switzerland 2014 

Content-Based Filtering for Fast 3D Reconstruction  
from Unstructured Web-Based Image Data  

Konstantinos Makantasis1, Anastasios Doulamis2, Nikolaos Doulamis2,  
Marinos Ioannides3, and Nikolaos Matsatsinis1 

1
 Technical University of Crete,Chania, Crete, 73100 Greece 

2 National Technical University of Athens,Heroon Polytechniou str. 15773 Athens, Greece 
3 Cyprus University of Technology, Archbishop Kyprianou 30, Lemesos, Cyprus, 3036 
konst.makantasis@gmail.com, {adoulam,ndoulam}@cs.ntua.gr, 

marinos.ioannides@cut.ac.cy, nikos@ergasya.tuc.gr 

Abstract. The huge amount of visual collections provides a unique opportunity 
for cultural heritage e-documentation and 3D reconstruction. The main difficul-
ty, however, is its unstructured nature. In this paper a new content-based image 
filtering is proposed to discard image outliers that either confuse or significantly 
delay the 3D reconstruction process. The presented approach exploits a dense-
based unsupervised paradigm applied on multi-dimensional manifolds where 
images are represented as image points. The multidimensional scaling algo-
rithm is adopted to relate the space of the image distances with the space of 
Gram matrices to compute the image coordinates. Evaluation on a dataset of 
about 31,000 cultural heritage images being retrieved from internet collections 
with many outliers indicate the robustness and cost effectiveness of the pro-
posed method towards an affordable 3D reconstruction. 

Keywords: Content-based filtering, image matching, outliers’ removal, 3D  
reconstruction. 

1 Introduction 

Several billions of images exist nowadays in loosely structured repositories over the 
web (e.g., Flickr, Picasa) while their number rapidly grows every day. Although such 
proliferation of billions of photographs, online available for free, provides a unique 
opportunity for cultural object documentation, there are currently limited technologi-
cal tools in performing massive 3D object reconstruction. 

The main difficulty in exploiting such “wild image collections” for cultural e-
documentation is their unstructured nature. Consider, for example, a query on web 
collections containing the keywords “Acropolis, Parthenon.” As response to that 
query, a large set of image outliers is retrieved, which depict not only the Parthenon 
monument itself, but also the view of the city of Athens from the Acropolis site. On 
the other hand, manual annotation is an arduous and inconsistent task, mainly due to 
the complexity of the visual content, the huge effort required and the subjective hu-
man’s perception. Therefore, content-based filtering algorithms are necessary for a 
computationally efficient e-documentation using Web-based images. 
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algorithm (DBSCAN) is applied [15] for separating image outliers from the relevant 
data. Finally, experimental results are presented that indicates the computational im-
provement achieved by the proposed method in 3D object reconstruction. The 
pipeline of the proposed methodology is presented in Figure 1. 

2 Geometric Invariant Visual Modeling 

2.1 ORB-Based Visual Content Representation 

In this paper, local visual descriptors, as the ORB descriptor [11], are used to capture 
the different geometric perspectives of an object. Our choice for a local visual repre-
sentation is to describe different image views, required for 3D reconstruction, instead 
of an overall image content description. Additionally, the choice of ORB is justified 
by the fact that it performs better than SURF [16] and, on the other, it performs as 
well as SIFT [17], though of two orders of magnitude faster.     

ORB descriptor exploits FAST feature detector [12] to locate image keypoints. 
FAST classifies an image pixel ݌ with intensity of ܫሺ݌ሻ by extracting a ring of 16 
pixels around ݌ and then, compares the intensity values with an appropriate threshold [11] ݐ. Although, FAST does not produce a measure for corners’ magnitude, ORB 
employs a Harris corner measure [18] to order FAST keypoints and pick the top ܭ of 
them. In this way, ORB reduces the number of extracted corners of FAST to the ܭ 
most suitable. 

2.2 Visual Similarity Degree 

For estimating visual similarity between two different images, A and B, their corres-
pondent points have to be computed. Correspondences can be estimated by performing 
a nearest-neighbor keypoints matching algorithm between every pair of images. Due to 
the fact that ORB keypoints are described by a binary pattern, multi- probe Locality 
Sensitive Hashing [19] is used for nearest-neighbor search exploiting the Hamming 

distance, ܦு . Let us denote as ݇௜ሺ஺ሻ the ݅௧௛ keypoint of the image ܣ (extracted via the 
ORB algorithm) which is described by a feature vector ܎ሺ஺ሻ. Then, the most relevant 

keypoint ௝݇೔ሺ஻ሻ of another image ܤ, described by a feature vector ܎ሺ஻ሻ with respect to the ݅௧௛ keypoint of image ܣ, ݇௜ሺ஺ሻ, is obtained by the following minimization, ݆௜ ൌ arg min௝ୀଵ,ଶ,…௞ ሺܦுሺf ሺ࡭ሻ, f ሺ࡮ሻሻሻ 
 (1)

Then keypoints  ݇௜ሺ஺ሻ and ௝݇೔ሺ஻ሻ are considered as correspondent points. Having  

detected all correspondent points between two images ܣ and ܤ we can form a set ܯሺ஺՜஻ሻ that contains pairs of all keypoints from the first image ܣ, along with the  

correspondent points ௝݇೔ሺ஻ሻ. The set of final matches ܯሺ஺,஻ሻ between images ܣ and ܤ  

is defined as the intersection of the sets ܯሺ஺՜஻ሻ and ܯሺ஻՜஺ሻ. The choice for using a 
two-way matching is justified by the fact that the nearest neighbor of an extracted 
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keypoint in image ܣ may be different from the nearest neighbor of the correspondent 
keypoint in image ܤ. As the number of extracted keypoints for each image is equal to ܭ, we define a visual similarity metric between images ݅ ൌ ݆ and ܣ ൌ  as ܤ

௜ୀ஺,௝ୀ஻ݏ ൌ หܯሺ஺,஻ሻหܭ  
 (2)

 
where หܯሺ஺,஻ሻห refers to the cardinality of ܯሺ஺,஻ሻset. 

The output of the aforementioned process for ܰimages is an ܰ ൈ ܰ symmetric ma-
trix ܁ whose elements ݏ௜,௝ א ሾ0,1ሿ், with ݅, ݆ ൌ 1,2, … ܰ. Variable ݏ௜,௝ ൌ 0 indicates 
that no relation between the contents of images ݆ and ݅ exists. Instead, for same im-
ages ݏ௜,௝ ൌ 1. We denote as ۲ the negative log ሺ܁ሻ; similar images receive close to 
zero while quite dissimilar very high value. 

D ൌ ࢐൧,࢏ࢊൣ ൌ െlog ሺSሻ  (3)

 
D is a square ܰ ൈ ܰ symmetric matrix with non-negative elements and zeroes on the 
main diagonal. 

3 Image Representation onto Multidimensional Manifolds  

By examining the constructed dissimilarity matrix D, it is easy to be observed that the 
distance between the visually similar images is small. This means that if images are 
represented as points onto a multidimensional manifold, then visually similar images 
will belong to high spatial density subspaces, instead of image outliers which will be 
spread out onto the space.  

Let us define as ܠሺ௜ሻ א  Թఓ the coordinates of ݅௧௛ image in the μ-dimensional space. 
We define the multidimensional space in a way so that the norm (distance) between 
two points (images) of the space represented by the coordinates ܠሺ௜ሻ and ܠሺ௝ሻ should 
be equal to the their respective image distance ݀௜,௝ ൌ െlog ሺݏ௜,௝ሻ, i.e., ฮܠሺ௜ሻ െ ሺ௝ሻฮܠ  ൌ݀௜,௝ ׊ ݅, ݆. The coordinates of all ܰ images in the dataset can be compactly represented 
by a matrix א ܆ Թே ൈ ఓ.  

If we define the Gram matrix ۰ ൌ ܆ ڄ  T of images’ coordinates, then the classical܆
Multi-Dimensional Scaling (cMDS) [14] can be used to establish a connection be-
tween the space of the distances and the space of Gram matrix B based on Theorem 1 
[20]. 
 
Theorem 1. A non-negative symmetric matrix ۲ א Թே ൈ ே with zeroes on the diagon-

al, is an Euclidean distance matrix if and only if ۰ ؜  െ ଵଶ ۶ ڄ ۲ ڄ ۶, where ۶ ؜ ۷ െ ଵே ૚ ڄ ૚T, is positive semidefinite with I the unit matrix and 1 a vector of all ones  

elements. Furthermore, this B will be the Gram matrix for a mean centered configura-
tion with interpoint distances given by D (proof of this theorem can be found in [20]). 
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 In cases where dissimilarity matrix D is not Euclidean the matrix B as described by 
the above theorem will not be positive semi-definite, and thus will not be a Gram ma-
trix. To handle such cases, cMDS projects the Gram matrix B onto the cone of posi-
tive semi-definite matrices by setting its negative eigenvalues to zero. In order to get 
matrix X, the Gram matrix B is spectrally decomposed into ܃ ڄ ܄ ڄ ܆ T and then܃ ൌ ܃ ڄ ݅ ௜ forߣ ௜ andݍ ଵ/ଶ . If we denote as܄ ൌ 1,2, … , ܰ the eigenvectors and eigen-
values of B, then matrix U is the square ܰ ൈ ܰ matrix whose ݅௧௛ column is the eigen-
vector ݍ௜  of B and V is the diagonal matrix whose diagonal elements are the corres-
ponding eigenvalues. Finally the dimension μ of the multidimensional space is equal 
to the multiplicity of non-zero eigenvalues of matrix B.  

4 Density Based Partitioning 

By representing, the images as points onto the manifold, we are able to remove out-
liers, improving 3D reconstruction. 

4.1 Estimation of Image Spatial Density 

The density of an area can be defined as the number of points ݑ existed within a spe-
cified radius ݎ on the hyperspace manifold. As no a prior knowledge about the dataset 
is available, these parameters cannot be set to any predefined value. For this reason, 
we need a procedure to automatically estimate both ݎ and ݑ parameters. 

For a given image ܣ, let us assume that there exists a non-linear relationship, ݃ሺ஺ሻሺڄሻ that relates parameter u with the radius r. Then ݎ ൌ ݃ሺ஺ሻሺݑሻ. Function ݃ሺ஺ሻሺڄሻ 
indicates the distance required to be defined for a space in order to contain u points 
within radius r from image ܣ. Function ݃ሺ஺ሻሺݑሻ is monotonically increasing, meaning 
that as variable u increases the radius r increases too. 

Then, to estimate the best trade-off point between u and r we adopt the following 
procedure. First, we define a line segment l that connects the points ܋ଵ ൌ ሺݑ ൌ 1, ݎ ൌ݃ሺ஺ሻሺ1ሻሻ and ܋ே ൌ ሺݑ ൌ ܰ, ݎ ൌ ݃ሺ஺ሻሺܰሻሻ onto the (u,r) plane. The farthest point of 
the curve defined by ݃ሺ஺ሻሺڄሻ from the straight line l [green line in Figure 2(a)] corres-
ponds to the best trade-off point [21]. To detect this point, initially we define a unit 
vector as ܝ ൌ ே܋ െ ே܋ଵ/ԡ܋ െ  .ଵԡ. It is clear that vector u is parallel to line segment l܋
Then, we define as ܞ௜  a vector that connects points ܋௜ ൌ ሺݑ ൌ ݅, ݎ ൌ ݃ሺ஺ሻሺ݅ሻ and ܋ଵ. A 
geometric clarification of the vector ܞ௜  is presented in Figure 2(a). The inner product 
between vector ܞ௜  and u, i.e., ܘ௜ ൌ ܝ ڄ  .௜ onto the line segment lܞ ௜ , projects vectorܞ
Having estimated the vectors ܞ௜  and ܘ௜  , we are able to compute a distance between 
vector ܞ௜  and its projected version onto the line segment l. 

݁௜ ൌ ԡ࢏ܞ െ ԡ  (4)࢏ܘ
 

Figure 2(b) plots the distances ݁௜  between curve’s points and the straight segment l 
versus u parameter for better explanation of the architecture. In the following,  
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reachable or density connected to a core sample. However, in the context of this pa-
per, we have two types of images. The first type includes the images that potentially 
contribute to the 3D reconstruction engine (e.g., images of different object views), 
and the second the outliers. Partitioning the data as the conventional DBSCAN mini-
mizes the probability of excluding relevant images but this also implies that some of 
the outliers are also included in the target subspace. 

An alternative approach, named Core Sample Partitioning (CSP) in this paper, is to 
set more strict criteria in creating the partitions. In particular, CSP exploits the notion 
of directly density-reachability, i.e. grouping together all points that are only directly 
density reachable to a core sample, creating this way a set that minimizes the proba-
bility of an image outlier to belong to the partitioned compact subset. Assuming that a 
sufficient large set of images depicting a cultural heritage object of interest is availa-
ble, the proposed modified DBSCAN approach selects images for the 3D reconstruc-
tion process that yield low computational complexity, while its precision performance 
remains almost the same. 

 

 

Fig. 3. F1 Score regarding partitioning performance using conventional DBASCAN and the 
modified CSP along with other clustering approaches  

5 Experimental Results 

The research presented in this paper is part of 4D-Ch-World project [22]. Using ex-
pert’s assessment, we have initially annotated a large collection of 31,000 images into 
two categories; (i) the one of “relevant image set” and (ii) the one of image outliers. 
For the evaluation, we range the noise, i.e. the ratio of image outliers, in the created 
datasets from 5% to 60%. 

Figure 3 presents the F1 Score for two density-based image partitioning approaches 
that is, of conventional DBSCAN, its modified method called CSP. In Figure 3  
we have also compared the center-based clustering of k-Means and density-based al-
gorithm of Mean-Shift. The conventional DBSCAN yields better results for small 
number of outliers (less than 30%) while CSP is more robust for mostly corrupted 
retrieved data. This is due to the fact that the CSP is more prone to false negatives, 
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