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Abstract. The modeling of tracer kinetics with use of low-temporal-resolution
data is of central importance for patient dose reduction in dynamic contrast-
enhanced CT (DCE-CT) study. Tracer kinetic models of the liver vary according
to the physiologic assumptions imposed on the model, and they can substantially
differ in the ways how the input for blood supply and tissue compartments are
modeled. In this study, single-input flow-limited (FL), Tofts-Kety (TK), exten-
ded TK (ETK), Hayton-Brady (HB), two compartment exchange (2CX), and
adiabatic approximation to the tissue homogeneity (AATH) models were applied
to the analysis of liver 4-phase DCE-CT data with fully continuous-time
parameter formulation, including the bolus arrival time. The bolus arrival time for
the 2CX and AATH models was described by modifying the vascular transport
operator theory. Initial results indicate that single-input tracer kinetic modeling is
feasible for distinguishing between hepatocellular carcinoma and normal liver
parenchyma.

Keywords: Continuous-time tracer kinetic modeling � Bolus arrival time �
Vascular transport operator � Four-phase dynamic contrast-enhanced CT

1 Introduction

Dynamic contrast-enhanced CT (DCE-CT) that involves intravenous administration of
iodinated contrast agent (CA) can measure the vascular physiology of tumors through
an analysis of the temporal changes of CT attenuation during sequential imaging. The
fitting of a predefined compartmental model involves estimation of the values of kinetic
parameters that provide a best fit to an observed concentration-time curve [1, 2].
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A mathematical model is applied to the arterial and the tissue tracer concentration to
estimate the physiologic parameters of interest.

Assessment of hemodynamic changes is particularly challenging for the liver due to
its dual blood supply [3]. A dual-input model has potential to provide the physiologic
proportions of blood supply to the liver tissue from the hepatic arterial system and from
the portal venous system in vivo [4]. However, practical application of a dual-input model
has various limitations. First, the hepatic artery may be difficult to locate, because it is thin
and hardly visible on images. Therefore, the hepatic arterial input is generally approxi-
mated by sampling of the concentration-time curve at the abdominal aorta [4, 5, 6], which
is a global input that supplies blood to the abdominal cavity. Thus, because the delay and
dispersion of the CA to the aorta-hepatic artery pathway are prone to errors in the
estimation of the flow [7], most of the currently developed dual-input liver models might
not generate a precise physiological reality, although they would be physiologically more
accurate than single-input models. Second, the low temporal resolution of 4-phase DCE-
CT data may hamper the use of dual-input models with different physiologic scenarios
because of high uncertainty in the intervals of data points that might contain mixed
hepatic arterial and portal flow information. Furthermore, an additional parameter, such
as arterial flow fraction in the dual-input models, can cause the total number of unknown
parameters to exceed the effective degrees of freedom in measured data. Therefore, it may
be necessary to make simplifying assumptions in order to reduce the number of
parameters down to a manageable number, while providing a reasonable goodness-of-fit
as well as enabling the study of different tracer kinetic models with varying degrees of
complexity in the capillary-tissue system. Ultimately, there is a trade-off between com-
putational cost and potential benefits of a precise model.

Tumor angiogenesis in the liver develops generally from the arterial blood supply
rather than from the portal circulation, because the portal blood supply decreases with
advancement of the tumor and eventually the tumor is fed mainly by arterial flow [8].
Thus, hepatic tumor circulation differs from the overall circulation pattern [9].

We performed a pilot study to evaluate six different single-input tracer kinetic models
with the fundamental biophysical concepts and tracer kinetic principles of dynamic
contrast-enhanced imaging: the flow-limited (FL) model [1], Tofts-Kety (TK) model [10],
extended TK (ETK) model [11], Hayton-Brady (HB) model [12], two compartment
exchange (2CX) model [13], and adiabatic approximation to the tissue homogeneity
(AATH) model [14]. For parametric fitting of 4-phase DCE-CT data, the six models were
extended to a fully continuous-time parameter formulation, including the bolus arrival time.
Thus, the aim of this study was to investigate the discriminatory ability of each model
between hepatocellular carcinoma (HCC) and normal liver parenchyma, and to demon-
strate the potential of single-input tracer kinetic modeling in liver 4-phase DCE-CT.

2 Methods

2.1 Arterial Input Function

To derive the continuous formulation of each kinetic model in the time domain, first an
arterial input function (AIF) needs to be modeled as a continuous-time functional form.
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The AIF was acquired on the abdominal aorta with use of a sums-of-exponentials
model from individual patients [15]. By imposing the bolus arrival time tLag;A

� �
in

the artery [16], a functional form for the AIF model can be given by CA tð Þ ¼
AB t � tLag;A
� �

e�lB t�tLag;Að Þ þ AG

n
e�lG t�tLag;Að Þ � e�lB t�tLag;Að Þ� �

gu t � tLag;A
� �

, where

CA tð Þ is the arterial blood concentration of CA (in g/ml), and u tð Þ is the unit step
function. The AB ¼ aB � aBaG= lB � lGð Þ; AG ¼ aBaG= lB � lGð Þ2; lB and lG are
scaling constants that govern the height and shape of the AIF.

2.2 Continuous-Time Formulation of Tracer Kinetic Models

Once the AIF is modeled as a continuous-time functional form, an analytic solution for
each kinetic model can be derived by incorporating the scaling constants of the AIF.
Adopting the approach of a linear time-invariant system, the concentration of CA for
the liver tissue, CT tð Þ; can be described as a convolution integral between the impulse
response function, QT tð Þ; and CA tð Þ;

CT tð Þ ¼ QT tð Þ � CA tð Þ
1� HLV

; ð1Þ

where HLV is the hematocrit of blood in large vessels (ffi 0:45) [1], and � denotes the
convolution operator. All models considered here basically fall under this assumption.
The impulse response functions QT tð Þ; for the six different models are given by
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QT;AATH tð Þ ¼ vP
F
VP
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where QT;FT tð Þ; QT;TK tð Þ; QT;ETK tð Þ; QT;HB tð Þ; QT; 2CX tð Þ and QT;AATH tð Þ represent
the QT tð Þ; for the FL, TK, ETK, HB, 2CX, and AATH models, respectively. Note that
d tð Þ is the Dirac delta function, vP is the plasma volume fraction, vI is the interstitial
volume fraction, vD ¼ vP þ vI is the relative distribution volume,VP is the plasma
volume (in ml), F is the plasma flow (in ml/min), PS is the permeability-surface area
product (in ml/min), and E ¼ 1� e�PS=F is the extraction fraction, respectively. The
AHB, a and b are reparametrization of the compartmental variables [12]. To account for
the difference in bolus arrival times between CA tð Þ; and CT tð Þ; a time lag (delay) to the
liver tissue, tLag;T, can be imposed on either CA tð Þ; or QT tð Þ to calculate CT tð Þ. For
the AIF described above, the analytic forms of CT tð Þ; are given explicitly for the six
different models by

CT;FL tð Þ ¼ QT;FL t � tLag;T
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CT;ETK tð Þ ¼ QT;ETK t � tLag;T
� �� CA tð Þ
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CT;AATH tð Þ ¼ QT;AATH t � tLag;T
� �� CA tð Þ

1� HLV

¼ vP
1� HLV

F
VP

aB
l2B

1þ aG
lG

� 	
�
� 1
lB

AB

lB
� AG

� 	
e�lB t�tBATð Þ

� AG

lG
e�lG t�tBATð Þ�AB

lB
t � tBATð Þe�lB t�tBATð Þ

�
u t � tBATð Þ

� aB
l2B

1þ aG
lG

� 	
� aBE

lB � vP
vI

EF
VP

� �2
2
64 1þ aG

lG � vP
vI

EF
VP

 !
e�

vP
vI
EF
VP

t�VP
F �tBATð Þ

� 1

lB � vP
vI

EF
VP

� �2 1�
vP
vI

EF
VP

lB

 !2

aB � AG 2lB � lGð Þf g
2
4

�E aB � AG 2lB � lG � vP
vI

EF
VP

� 	
 �
e�lB t�VP

F �tBATð Þ

� AG
1
lG

� E
lG � vP

vI
EF
VP

 !
e�lG t�VP

F �tBATð Þ

� AB
1
lB

� E
lB � vP

vI
EF
VP

 !
t � VP

F
� tBAT

� 	#
e�lB t�VP

F �tBATð Þu t � VP

F
� tBAT

� 	
;

ð13Þ

where CT;FL tð Þ; CT;TK tð Þ; CT;ETK tð Þ; CT;HB tð Þ; CT;2CX tð Þ and CT;AATH tð Þ represent
CT tð Þ for the FL, TK, ETK, HB, 2CX, and AATH models, respectively. The tBAT ¼
tLag;A þ tLag;T is the bolus arrival time from the injection site of CA to the target tissue.

2.3 Kinetic Parameter Calculation

Model fitting was performed with a constrained nonlinear optimization algorithm based
on MINPACK-1 [17], which yields the sum of squared errors as a measure of the
goodness-of-fit [18]. The number of curve-fitting parameters was limited to at most
four to avoid over-fitting to the data. The parameters that can be directly estimated by
parametric fitting for each model are as follows: F=VP; vP; vI; tLag;T

� �
for the FL

model, EF=VP; vP; vI; tLag;T
� �

for the TK and ETK models, AHB; a; b; tLag;T
� �

for
the HB model, and F=VP;PS=VP vP; vIf g for the 2CX and AATH models. With these
parameterizations, blood flow BFð Þ for the FL, 2CX, and AATH models, blood volume
BVð Þ for all models except the HB model, mean transit time MTTð Þ for the FL, 2CX,
and AATH models, permeability-surface area product PSð Þ for the 2CX and AATH
models, extraction-flow product EFð Þ for all models except the HB model, and efflux
rate constants (EF=VI for the TK, ETK, and AATH models, and PS=VI for the 2CX
model, where VI is the interstitial volume (in ml)) can be computed according to:
BV ¼ 100 � VP= 1� HSVð Þ � mf g (in ml/100 g), where HSV is the hematocrit in small
vessels ffi 0:25ð Þ [1], and m ¼ qTVP=vP is the mass of the tissue with density
qT (= 1.04 g/cm3 in the case of soft tissue), BF ¼ BV � F=VP (in ml/min/100 g),
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MTT ¼ vDVP= vPFð Þ (in min), PS ¼ 1� HSVð Þ � BV � PS=VP (in ml/min/100 g), EF ¼
1� HSVð Þ � E � BF (in ml/min/100 g), EF=VI ¼ vP=vIð Þ � EF=VP (min−1), and PS=VI ¼
vP=vIð Þ � PS=VP (min−1).

The tLag;T for the 2CX and AATH models was modeled by modifying the vascular
transport operator (VTO) theory [19], so that it could directly be estimated during the
fitting procedure. Originally, the VTO theory was designed to estimate a pure delay of
concentration-time curves at inflow and outflow on intravascular transport along a
single path. The VTO consists of two components in series, a pure delay and a fourth-
order linear differential operator that gives a dispersive delay. The parameters of the
VTO are MTT and relative dispersion (RD), which is the standard deviation (SD) of
the impulse response divided by MTT. To calculate SD at the target tissue, we used the
tissue reside function, RT tð Þ ¼ QT tð Þ � VP= vPFð Þ instead of the impulse outflow
response, hT tð Þ ¼ �dRT tð Þ=dt in [19], and then multiplied vD into the SD to calculate
the RD for each of the 2CX and AATH models. The RD and its corresponding tLag;T for
the 2CX and AATH models can be given by
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z1

0

s�MTTð Þ2RT;2CX sð Þds
s

¼ vD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� A
a3

2þ aMTT 2þ aMTTð Þð Þ � 1� A

b3
2þ bMTT 2þ bMTTð Þð Þ

s
;

ð14Þ
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0:48

� 	
; ð16Þ

where RD2CX; RDAATH; RT;2CX tð Þ and RT;AATH tð Þ are the RD and RT tð Þ for the 2CX
and AATH models, respectively. The constant 0.48 is a maximum RD for the dis-
persiveness of the operator [19]. In case that tLag;T was a negative value or a value
greater than a stipulated threshold, it was assigned a value of 0 in the curve-fitting
process so that it could converge into a new value.
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2.4 Patients and DCE-CT Imaging

We investigated nine patient HCC cases to demonstrate clinical applicability of the six
different single-input tracer kinetic models with the proposed continuous-time
parameter formalism in 4-phase liver DCE-CT. The patients were scanned with a 64
multidetector CT scanner (LightSpeed VCT or Discovery CT750 HD; GE Medical
Systems, Milwaukee, WI). A total of 1.7 ml/kg (80 to 135 ml) of nonionic iodinated
CA (Iomeron; Eisai, Tokyo, 350 mg/ml) was injected with 30 s injection duration time
at the rate of 3–5 ml/s and a volume as per 550–600 mgI/kg weight. The arterial-phase
timing was determined with bolus tracking technology (Smart Prep; GE Healthcare),
and scan was initiated 17 s after the preselected threshold of 200 HU was attained, with
a region of interest (ROI) placed in the aorta above the celiac axis branching, where the
tLag;A was determined by observation of a snapshot to show the onset time of temporal
enhancement in the aorta. The portal-venous phase and delayed phase initiated at 70 s
and 150 s, respectively, after the preselected threshold of 200 HU was attained. In the
patient cohort, tLag;A ranged from 10 to 16 s, and the time when the preselected
threshold of 200 HU was attained ranged from 14 to 24 s. The following CT parameters
were used for obtaining volume data: 120 kVp, Auto mA, 16� 0:625 mm detector
collimation, 2.5 mm slice thickness, 95 to 120 slices, and a pitch of 1.

2.5 Image Processing and Analysis

To enhance contrast-to-noise ratios, DCE-CT images were denoised by use of multiple
observations Gaussian process regression [20]. To reduce movement-induced artifacts,
we coregistered each set of dynamic images with the portal-phase image as a template
by using the Insight Segmentation and Registration Toolkit [21]. The registration was
performed based on serial applications of 3D rigid, affine, and symmetric force Demons
deformable registration methods with use of a multiresolution scheme [16]. For curve-
fitting of the 4-phase DCE-CT data, 2D spatial filtering with a 5� 5 pixel median
kernel was applied on each DCE-CT sequence before extracting a voxel-level tissue
concentration-time curve for fitting. ROIs were manually drawn by an experienced
radiologist over a primary HCC and its adjacent normal tissue for each patient. Mean
values in the ROIs (in total, 9 HCC and 9 normal tissue ROIs) were recorded for each
parameter for each model for each patient. An example of fitting the voxel-level
4-phase DCE-CT data in HCC and normal tissue with the six different kinetic models is
shown in Fig. 1.

2.6 Statistical Analysis

The predictable value of each parameter was evaluated by measuring the area under the
receiver operating characteristic curve AZð Þ. The Mann-Whitney (MW) test was used to
test for differences in the mean values of each parameter between normal liver
parenchyma and HCC ROIs. To assess the independent impact of each parameter on
differentiation between HCC and normal liver parenchyma, binary logistic regression
(BLR) analysis was performed with bootstrapping with 1000 replications. A P value
<0.05 indicated a significant difference.
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3 Results

Results of ROI analysis and comparison of the various hepatic microcirculatory
parameters for the different models are shown in Table 1. In all of the applicable
models, the ROIs of HCC showed increased BF and BV , earlier bolus arrival time
tLag;T, shorter MTT ; and smaller E than those of the normal liver tissue. The three
parameters (i.e., AHB, a, and b) for the HB model were all higher in the HCCs than in
the normal liver tissue. The EF and EF=VI were higher in the HCC with the TK, ETK,
and AATH models, whereas the EF and PS=VI were lower with the 2CX model. The vI
was lower in the HCC with the FL, TK, ETK, and AATH models, whereas it was
higher with the 2CX model. The PS was higher in the HCC with the AATH model,

Fig. 1. Graphs illustrating examples of fitting the voxel-level 4-phase DCE-CT data with the FL,
TK, ETK, HB, 2CX, and AATH models in the HCC (left) and normal liver tissue (right).

Fig. 2. Parametric maps obtained with six different tracer kinetic models for a patient with HCC.
Each model displays two most significant parameters that yielded relatively higher discriminatory
ability between HCC and normal liver tissue.
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Table 1. Statistics (mean ± SD) for ROI analysis of each parameter in the HCC and background
liver tissue, and the corresponding results of MW and BLR tests.

Parameter Model Mean ± SD AZ P-value

HCC Normal MW BLR

BF (ml/min/100 g) FL 100.2 ± 84.53 40.52 ± 15.32 0.840 0.014 0.027
2CX 93.49 ± 51.31 44.14 ± 13.09 0.938 0.001 0.011
AATH 75.95 ± 40.71 41.19 ± 12.82 0.840 0.014 0.018

BV (ml/100 g) FL 11.74 ± 7.681 6.958 ± 2.378 0.790 0.040 0.253
TK 36.41 ± 22.86 20.44 ± 8.038 0.802 0.031 0.137
ETK 11.70 ± 6.870 4.935 ± 1.053 0.975 <0.001 0.009
2CX 24.97 ± 7.750 20.30 ± 4.343 0.654 0.297 0.056
AATH 18.88 ± 6.872 14.78 ± 2.977 0.679 0.222 0.048

MTT (min) FL 0.560 ± 0.338 1.366 ± 1.097 0.765 0.063 0.080
2CX 0.658 ± 0.332 1.125 ± 0.783 0.679 0.222 0.060
AATH 0.791 ± 0.421 1.316 ± 0.983 0.691 0.190 0.066

PS (ml/min/100 g) 2CX 29.01 ± 21.60 56.44 ± 45.14 0.765 0.063 0.113
AATH 23.91 ± 16.41 18.46 ± 4.744 0.556 0.730 0.224

EF (ml/min/100 g) TK 119.4 ± 156.1 29.70 ± 12.51 0.802 0.031 0.042
ETK 38.27 ± 39.50 23.88 ± 8.052 0.519 0.931 0.154
2CX 13.46 ± 11.68 19.11 ± 6.205 0.716 0.136 0.315
AATH 16.85 ± 9.953 13.08 ± 2.833 0.593 0.546 0.209

EF=V I or PS=V I

(min−1)
TK 4.947 ± 5.314 1.243 ± 0.708 0.827 0.019 0.024
ETK 85.22 ± 159.9 1.197 ± 0.647 0.654 0.297 0.360
2CX 181.7 ± 224.1 235.2 ± 321.8 0.531 0.963 0.675
AATH 29.61 ± 62.90 0.985 ± 0.539 0.580 0.605 0.313

vI FL 0.173 ± 0.119 0.238 ± 0.081 0.753 0.077 0.345
TK 0.265 ± 0.110 0.287 ± 0.071 0.605 0.489 0.665
ETK 0.211 ± 0.146 0.262 ± 0.097 0.753 0.077 0.518
2CX 0.179 ± 0.168 0.152 ± 0.132 0.556 0.730 0.695
AATH 0.199 ± 0.154 0.209 ± 0.132 0.531 0.863 0.895

E 2CX 0.224 ± 0.108 0.605 ± 0.192 0.963 <0.001 0.002
AATH 0.304 ± 0.093 0.438 ± 0.084 0.877 0.006 0.004

AHB HB 16.49 ± 11.19 3.119 ± 2.459 0.975 <0.001 0.004
a 14.63 ± 3.312 7.470 ± 5.046 0.877 0.006 0.004
b 5.690 ± 2.530 2.648 ± 1.320 0.864 0.008 0.006
tLag;T (min) FL 0.028 ± 0.026 0.141 ± 0.087 0.926 0.001 0.004

TK 0.034 ± 0.034 0.142 ± 0.087 0.877 0.006 0.004
ETK 0.089 ± 0.049 0.271 ± 0.092 0.963 <0.001 0.021
HB 0.021 ± 0.026 0.026 ± 0.043 0.531 0.863 0.778
2CX 0.020 ± 0.024 0.156 ± 0.084 0.988 <0.001 0.002
AATH 0.057 ± 0.036 0.181 ± 0.072 0.963 <0.001 0.002

Note—MW = Mann-Whitney, and BLR = binary logistic regression. Bold numbers indicate statistical
significance (P < 0.05).
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while it was lower with the 2CX model. Considering parameters with AZ > 0.95 as well
as statistical significance in both the MW and BLR tests, the ETK-model-derived BV
(AZ = 0.975, MW: P < 0.001, and BLR: P = 0.009) and tLag;T (AZ = 0.963,
MW: P < 0.001, and BLR: P = 0.021), the HB-model-derived AHB (AZ = 0.975, MW:
P < 0.001 BLR: P = 0.004), and the 2CX-model-derived E (AZ ¼ 0:963,
MW: P < 0.001, and BLR: P = 0.002) and tLag;T (AZ ¼ 0:988, MW: P < 0.001, and
BLR: P = 0.002), and the AATH model-derived tLag;T (AZ = 0.963, MW: P < 0.001,
and BLR: P = 0.002) led to a favorable outcome in this study. However, we note that
all of the six different single-input models showed statistical significance in terms of
discrimination between HCC and normal liver tissue. Parametric maps for two most
significant parameters for each model that yielded relatively higher discriminatory
ability between HCC and normal liver tissue are shown in Fig. 2.

4 Conclusion

We developed six different tracer kinetic models for 4-phase DCE-CT data analysis
with fully continuous-time parameter formulation based on the linear time-invariant
system, including the bolus arrival time. In particular, we enabled 4-phase data fitting
with full two-compartment models such as the 2CX and AATH models by introducing
the VTO theory. Because kinetic parameter values differ substantially among different
models, the selection of a tracer kinetic model influences its discriminatory ability.
The preliminary results indicate that single-input tracer kinetic modeling of the liver is
feasible although the portal venous contribution to tumor perfusion is still an open
question. Further work is encouraged to establish the clinical usefulness of the pro-
posed approach in the imaging diagnosis and prognosis of HCC.
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