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Abstract. Mathematical modeling has the potential to assist radiofre-
quency ablation (RFA) of tumors as it enables prediction of the extent
of ablation. However, the accuracy of the simulation is challenged by
the material properties since they are patient-specific, temperature and
space dependent. In this paper, we present a framework for patient-
specific radiofrequency ablation modeling of multiple lesions in the case
of metastatic diseases. The proposed forward model is based upon a
computational model of heat diffusion, cellular necrosis and blood flow
through vessels and liver which relies on patient images. We estimate
the most sensitive material parameters, those need to be personalized
from the available clinical imaging and data. The selected parameters
are then estimated using inverse modeling such that the point-to-mesh
distance between the computed necrotic area and observed lesions is
minimized. Based on the personalized parameters, the ablation of the
remaining lesions are predicted. The framework is applied to a dataset
of seven lesions from three patients including pre- and post-operative CT
images. In each case, the parameters were estimated on one tumor and
RFA is simulated on the other tumor(s) using these personalized parame-
ters, assuming the parameters to be spatially invariant within the same
patient. Results showed significantly good correlation between predicted
and actual ablation extent (average point-to-mesh errors of 4.03 mm).

Keywords: Radiofrequency ablation - Heat diffusion - Inverse model-
ing - Liver

1 Introduction

In radiofrequency ablation (RFA), a probe is placed within the malignant tissue
with electrodes at its tip to create heat, thus causing coagulative necrosis at
temperatures above 50 °C. In order to prevent recurrence, the procedure needs
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to generate a necrosis that covers completely the tumor, which relies on opti-
mal heat duration and probe placement. The results of RFA are significantly
improved by the experience of the clinicians [1]: for the same physician, survival
rate of treated patients increased twofolds over a four years period. This learning
curve is partly due to the difficult assessment of the cooling effect of the large ves-
sels, porous circulation and blood coagulation, which results in suboptimal abla-
tion and local recurrences in up to 60 % of the cases [2]. To improve the planning
of the procedure, computerized simulations have been devised to better predict
the extent of the necrosis and eventually modify the probe position or the dura-
tion of heating for example. A patient-specific tool showing the extent of ablation
given the probe position, the heat duration and patient images will potentially
be beneficial in providing a personalized treatment planning and guidance, as it
could improve the current clinical outcome. Studies [3-5] have investigated the
finite element method (FEM) to simulate the heat transfer on generic human
anatomies and eventually optimize the placement of the probes [6]. Simulations
with animal-specific [7] or patient-specific anatomies were also recently consid-
ered [8] with the inclusion of cooling effects computed from simulated hepatic
venous flow and hepatic parenchymal flow. However, nominal tissue parameters
were employed in these studies with values often based on ez vivo experiments
on animal tissue sometimes with a large varying range between published stud-
ies. Because tissue properties are patient-specific and can depend on the current
state of the tissue, a proper estimation of those parameters is needed but has
been often overlooked. In this paper, we present a computational model of heat
transfer and cellular death during RFA which is based on patient-specific tis-
sue parameters and anatomies estimated from CT (Sect.2). Our framework is
adapted to situation where no temperature map is available. We rely on the
Lattice-Boltzmann Method (LBM) to compute not only heat diffusion, cellular
necrosis as in [8] but also blood and parenchyma flow in the liver tissue. This
latter method is based on a computational fluid Dynamics (CFD) solver which
incorporates a porous part to deal with the liver parenchyma. This framework is
particularly efficient for the personalization as it provides a fast solver and natu-
rally accounts for the flow transition between veins and parenchyma. The model
is then personalized based on the first ablation. This information is used to plan
subsequent ablation(s) of the same or additional lesions to treat. This can be
validated in case of the ablation of multiple tumors inside the liver, assuming
that the parameters are spatially invariant within the same patient. In Sect. 3,
heat conductivity and porosity were selected as the most sensitive parameters
for predicting the necrosis extent. After their estimation on patient specific data,
we demonstrate improved prediction accuracy. Sect. 4 concludes the paper.

2 Mathematical Model of RFA Simulation

The simulation of heat transfer inside the liver depends on the patient-specific
anatomy (Sect.2.1) and on the blood flow inside the main vessels and the
parenchyma considered as a porous medium (Sect.2.2). The different steps of
our method are illustrated in Fig. 1.
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Fig. 1. Estimation of the personalized parameters and the forward model (blue: input,
green: processes, purple: output) (Color figure online).
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2.1 Patient-Specific Liver Anatomy

Volumetric binary images of the parenchyma, tumors, hepatic veins, vena cava,
portal vein and the hepatic artery when visible are generated from a semi-
automatic segmentation [9] of preoperative CT images. A multi-label mask image
is created to identify the different structures of this detailed anatomical model of
patient’s liver and circulation tree. To define the computational domain, a level
set representation of the liver, without tumor and vessels is computed. From the
vessel masks, a porosity map is created to identify the porous parenchyma and
the vessels. Because non-visible, the walls of the vessels are extrapolated using
26 connectivities dilatation of the vessels masks. The vessel extremities, which
do not have walls are manually identified.

2.2 Hepatic Blood Flow Computation

Model Description. The blood in the main vessels and in the parenchyma
are combined in the generalized 3D incompressible Navier-Stokes equation for
fluid flow in porous media, thus considerably easing the definition of boundary
conditions between vessels and parenchyma, improving on [8]. More precisely,
writing v as the blood velocity and p the pressure inside the liver, we solve:

0 1 _
a—‘t] +v.Vv = f;Vp +uViv+F F= 7#((11262)2‘, (1)

The added force F represents the total body force due to the presence of a porous
medium [10]. F depends on the porosity coefficient e (fraction of blood volume
over the total volume) whose default values are 1in the CT-visible vessels, 0.1 in
the porous parenchyma [7], and 0.04in the vessel walls to model an impermeable
medium. Experiments have been performed to obtain a sufficiently small porosity
(0.04) to avoid flowing through the vessel wall. At the border of the liver, no flux
boundary conditions are used whereas Dirichlet boundary conditions are applied
at the inlets of portal vein and vena cava and at the outlet of the vena cava:
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the portal vein and vena cava inflow, ¢, and ¢, are fixed as well as the
vena cava outlet pressure pg (see Fig.2 for more details). This method makes
the boundary conditions simple to treat: no boundary conditions are fixed on
the extremities of the vessels inside the parenchyma thanks to the use of the
porosity map. This framework mainly avoids the occurrence of shear stress on
the vessel walls due to their much lower value of porosity. Figure?2 illustrates
flows calculated in a patient-specific geometry.

Implementation using LBM. Equation 1 is solved using Lattice Boltzmann
Method (LBM) for fast computation on general purpose graphics processing
units (GPU). LBM has been developed for CFD and is now a well-established
discretization method. In RFA| it has been validated in [8] through a compar-
ison with an analytical solution, for a similar accuracy as FEM. An isotropic
Cartesian grid with 19-connectivity topology and Neumann boundary conditions
is employed. A Multiple-Relaxation-Time (MRT) model is used for increased
stability [11]. At position x for the edge e;, the governing equation is: f(x +
eiAx,t + At) = f(x,t) + A[f“(x,t) — f(x,1)] + Atg(x,t). In this equation,
f(x) = {fi(x)},_; 19 is the vector of distribution function with f;(x) being the
probability of finding a particle travelling along the edge e; of the node x at a
given time; ¢ = Ax/At; ¢ = 1/4; Az is the spacing; f{(x,t) = wip[l + =];

2
ccy

9i(x,t) = wip®F w = {w;},_, 19 is the vector of weighting factors and A the
MRT matrix. The fluid mass density and velocity are computed from the LBM
distributions as p = 221 fi(x,t) and pv = Zil eifi(x,t) + 5L pF and are
updated at every node of the grid for every timestep At.

2.3 Model of Heat Transfer and Cellular Necrosis in Liver Tissue

This model describes how the heat flows from the probe through the liver while
accounting for the cooling effect of the main vessels and parenchyma. Its main

Fig. 2. Set-up and results of the hepatic blood flow computation with a zoom inside
the vena cava on the right and at the extremities of the hepatic veins on the left.
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parameters are then optimized to match the observed extent of the necrosis.
Assuming blood vessels and surrounding tissue isolated from each other, the
temperature is computed by solving the diffusion equation:

everywhere in the domain, to which we add either the cooling term H (T —
T)/(1 — €) when a point belongs to a large vessel, where blood velocity is high,
(Pennes model [12]) or —eppepv - VT'/(1 —€) when it belongs to the parenchyma,
where tissue is dominating (WK model [13]). T, @, v and Ty stand for tempera-
ture, source term, blood velocity and the mean temperature (assumed constant)
of the blood in large vessels. A weakly coupling model is considered: the blood
flow has an influence on the temperature distribution through the WK model
but the temperature does not affect the blood flow (coagulation is not consid-
ered here), which allows us to speed up the calculations since the blood flow
distribution is computed only once, at the beginning of the simulation. The dis-
cretization of the bioheat equation also relies on LBM using a no-flux boundary
condition on the liver boundary defined as a level-set function. Tissue necrosis is
computed using a 3-state model based on the simulated temperatures [14] using
Eq. 3, where k¢, k;, are the damage and recovery rate respectively.

kg (T)

AT VD p k(1) = kpeT/Te(1 - A) (3)

2.4 Parameter Estimation

As parameters in the heat transfer and cellular necrosis equation are customarily
taken from the literature, we aim to personalize them given the observed extent
of the necrotic region measured post-operatively as temperature maps are not
readily available. Most of the parameters are defined as constant whereas the
heat capacity ¢; and conductivity dt = dt*(1+0.00161) (T —310)W (mkK) "' are
temperature dependent and therefore spatially distributed [8]. Using DAKOTA?!,
we first perform a sensitivity analysis to know which parameters mostly influ-
ence the volume and the point-to-mesh error [15] of the computed necrosis
area. Then, we optimize the most sensitive ones: the heat conductivity and
the porosity, as to minimize the average point-to-mesh error between computed
and observed necrotic region. To this end, we use a gradient-free optimization
method, the Constrained Optimization BY Linear Approximations (COBYLA),
which required only a few numbers of forward simulations.

3 Experiments and Results

All experiments were executed on a Windows 7 desktop machine (Intel Xeon, 2.80 GHz,
45GB RAM, 24 CPUs) with a Nvidia Quadro 6000 1.7 GB (448 CUDA cores).

! http://dakota.sandia.gov - multilevel framework for sensitivity analysis.
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Table 1. Ranges of parameters values explored in the sensitivity analysis.

Notation | Parameter name Min - Max

H Convective transfer coefficient | 24.4 x 10* 48.8 x 10* W (m® K)™!
ds Heat conductivity 0.251.24 W(m K)~*

kf Damage rate coefficient 3.2x107% 3.4x1073 s~ ¢

€ Porosity 0.1 0.9

Porosity
1
_ :
0.6
04
|02
0.04

Velocity Magnitude

Fig. 3. Set-up of the synthetic case. Top: The cylinder with the porosity field used.
The boundary conditions are the output pressure and the input flow. Down: The heat
distribution initially applied and the velocity distribution used.

3.1 Sensitivity Analysis

We want to know the sensitivity of four uncertain parameters of our model:
dt, H, k}, € on the volume of the computed necrosis but also on the point-to-
mesh error between the computed necrosis area and the one computed with
the nominal parameters from the literature. To this end, a synthetic case has
been setup to speed-up the process (Fig.3). The range of parameters values
used [3] are reported in Table 1. These parameters of interest were modelled with
a uniformly distributed uncertainty, and the sensitivity analysis was performed
using variance based decomposition to compute the global sensitivity indices
(so-called Sobol indices). dt has the largest total effect (0.58) as compared with
ks, H and € (0.16, 0.15, 0.43) on the volume of the lesion, whereas € and dt have
the same larger total effect (0.37) as compared with k¢ and H (0.16, 0.35) on
the point-to-mesh error with respect to lesion obtained with nominal values. As
it is not reasonable to try to estimate all of these four parameters at once, we
decided to estimate only two of them: we chose d; for its effect on the volume, as
the nominal value of k; [14] seemed accurate and e. H was chosen large enough
to maintain a constant temperature of 37°C in the CT-visible vessels. We fixed
the other parameters to nominal values for the personalization on patient data.
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3.2 Verification of the Optimization Framework

In order to confirm the accuracy of the optimization framework, we considered
a synthetic case on a regular cuboid domain where all the phenomena occurring
during RFA were present (diffusion, reaction and advection) and with nominal
parameters of tissue properties. First we simulated a necrotic area with generic
parameters by emulating the clinical RFA protocol: during 7 min, we heated at
105 °C, the simulation continued for 3 more minutes without heating so that each
cell reached a steady state. Then, the main parameters: d; and € are estimated by
minimizing the mean of the point-to-mesh error between the computed necrotic
region and the one created at the first step. We managed to obtain the estimated
parameters with 6.1 % of error on d; and 2.1 % on € in 32min after 36 iterations
with a mean of the point-to-mesh error of 1073 mm.

Fig. 4. Computed necrosis compared qualitatively well with the predicted lesion after
personalization on the first tumor of each patient.

Table 2. Evaluation on patient data.

Patient | Tumor | Probe Point-to-mesh | DICE | Estimated parameters
size diameter error
d_t €
1-1 5cm 4cm then 5/4.06+2.56 mm | 72.0% | 0.250 W(m K)f1 0.0997
cm
1-2 3.5cm 4cm  then|4.65+3.52mm | 74.9%
5cm
1-3 4.2cm 4cm  then|4.62+3.32mm | 69.0%
5cm
2-1 1.5cm 4cm 2.57+1.89mm | 77.2% | 0.275 W(mK)™* | 0.1028
2-2 1lcm 3.5cm 5.66 +£4.25mm | 60.9%
3-1 lem 3cm 3.01+£2.05mm | 74.0% | 0.489 W(mK)™* | 0.1
3-2 1lcm 3cm 3.64+2.89mm | 74.1%




10 C. Audigier et al.

3.3 Evaluation on Patient Data

We evaluated our model on 3 patients, with 7 ablations (several tumors ablated
for each patient) for whom pre- and post-operative CT images were available.
Clinical RFA protocol was simulated: the probe was deployed within the tumor
and cells in a diameter defined pre-operatively around the center of the tumor
probe tip were heated at 105 °C during 7 min or 2 times 7 min. The diameter and
heat duration were iteratively increased according to the size of the tumor. The
simulation continued for 3 more minutes without any heat source so that each
cell reached a steady state. The parameters were considered spatially invariant
within the same patient. Nevertheless, the cell death model locally changes the
properties of the tissue, and different parameters are related to different location
inside the liver (H and e are related to large vessels, and parenchyma respec-
tively), but we consider that they have a constant value. The parameters are
estimated on one tumor by reducing the error with the ground-truth. Then,
we computed the cell death area of the other tumor(s) of this patient with the
personalized parameters. The computed cell death area compared qualitatively
well with the observed post-operative necrosis zone for tumor located at dif-
ferent place inside the liver, close to large vessels, on the border (Fig.4, the
predicted lesion was manually segmented by an expert and registered to pre-
operative image). Quantitatively, average point-to-mesh errors (Table2) were
within tolerance in clinical routine for the four tumors estimated with the per-
sonalization of the main biological parameters, as the probes can be deployed
in steps of 1cm. The estimated heat conductivities were lower than the nomi-
nal value (0.512 W(mK)™!), whereas the porosity was very close (0.1). Other
experiments on patient 1 showed also a significant improvement of the correlation
between predicted and actual ablation extent compared to the prediction using
only nominal parameters (average point-to-mesh errors of 4.44 mm vs 4.98 mm,
average Dice score of 72.0% vs 68.5%). Patient 2 presents a quite large Dice
difference between the two cases. It might be due to segmentation or registra-
tion issues, and potentially to model limitations (assumptions, etc.), which will
be further investigated in a pre-clinical setup. The main parameters are first
considered with nominal values taken from the literature and then optimized to
match the observed extent of the necrosis. Current errors can be explained by
segmentation and registration processes but also by the limited number (2) of
personalized parameters.

4 Discussion and Conclusion

The personalization of the sensitive tissue parameters allows to have a better
estimation of the necrosis and to predict the outcome of RFA in case of multiple
tumors inside the liver. As our framework totally rely on LBM, no advanced
meshing techniques are required. All the computations are directly done from
patient images: heat propagation and cell death modeling as well as the heat
sink effect of blood vessels and porous circulation in the liver. The coupled
computation of the porous and hepatic flow eliminates the difficulties in the
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setting of boundary conditions in the parenchyma, and the occurence of shear
stress on the vessels wall is avoided as the Pennes Model is used in the big vessels
where the flow is not accounted for. The current method needs several tumors for
validation and is worth using only when no temperature maps are available, but
it could be easily translated into clinical settings. Adaptation for RFA under
image-guidance is considered: RFA procedure is usually done in several steps
(increase in probe diameters for example). An intra-operative image is acquired
at the end of the first step and used to personalize key parameters, providing
a powerful guidance tool. No post-operative images are required. A necessary
step before deploying this method in clinical settings is a pre-clinical validation
with extensive data on larger populations to evaluate the computational model
of RFA and to consider potential safety issue of the proposed application. Even
if promising results are achieved with the use of patient-specific parameters, the
impact of possible biases in the post- to the pre-operative image registration like
the impact of the average simulation of the probe need to be investigated as well
as the sensitivity of the results with respect to segmentation.
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