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Preface

The series of scientific conferences “Information Technologies and Mathematical
Modelling” (ITMM) started in 2002. In the beginning, it had the status of a
national conference or national conference with international participation. In
2012, it was named after A. F. Terpugov, an outstanding scientist of the Tomsk
State University, a leader of the famous Siberian school on applied probability,
who was one of the first organizers of the conference.

Today we observe the process of globalization of the sciences involving Rus-
sian scientists into global science scene. This is why the ITMM conference was
given an international status.

Traditionally, the conference has from eight to 12 sections in various fields of
mathematical modelling and information technologies. A strong focus is on ap-
plied problems in education, economics, technology and management. Through-
out the years, the sections on probabilistic methods and models, queueing theory,
telecommunication systems, and software engineering have been the most pop-
ular at the conference.

This volume presents new results in the theory of random processes, meth-
ods of study of queueing systems, probabilistic methods and models, analysis of
telecommunication systems and networks, software engineering, and others. It
is targeted at specialists in probabilistic theory, random processes, mathemat-
ical modeling, as well as engineers engaged in logical and technical design and
operational management of telecommunication and computer networks, contact
centers, databases, software design, etc.

November 2014 Anatoly Nazarov
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A Novel Framework for the Design

and Development of Software Routers

Davide Adami1, Stefano Giordano2, Michele Pagano2, and Luis G. Zuliani3

1 CNIT Research Unit - University of Pisa, Pisa, Italy
2 Dept. of Information Engineering, University of Pisa, Pisa, Italy

3 Link Protect GmbH, Münchner Straße 92, 85614 Kirchseeon, Germany
m.pagano@iet.unipi.it

Abstract. Flexibility and programmability are key features of open net-
working platforms to effectively design, develop and assess new Future
Internet architectures. This paper introduces a novel framework, based
on open source software and PC hardware, that defines all the building
blocks necessary to provide a full set of advanced networking capabilities
(including QoS support and Traffic Engineering). The framework imple-
mentation also takes into account software reuse by facilitating main-
tenance and customization of the network protocol stack in software
routers. The proposed open framework is also available as live distribu-
tions, which allow network designers to take advantage of its capabilities
with a short learning curve.

Keywords: software routers, open frameworks, QoS, traffic engineering.

1 Introduction

Originally conceived as an experimental packet-switched network, the Internet
has become a global communication infrastructure. As scalability and robustness
are critical requirements of this evolutionary process, academia and industry are
increasingly relying on field trials in order to develop and assess novel network
solutions [16]. In this context, PCs started to be used as platforms for the de-
velopment of router prototypes thanks to the availability of powerful and cheap
commodity hardware and the wide spread of open source software. When playing
such a role, PCs are called SRs (Software Routers) [11].

Usually, SRs are based on open source, Unix-like OSes, such as GNU/Linux
and BSD variants. These systems, in addition to routing and forwarding ca-
pabilities, may offer complete solutions to filter and manipulate layer 2 and
above information, with a level of flexibility which is comparable only to costly,
commercial routers. Moreover, SRs have programmability features, enabling the
development of third party extensions and completely new functionalities as well
as fine-tuning of existing ones.

During the last years, SRs have started playing an important role even in the
market. Leading network vendors are exploring the SOHO (Small Office/Home

A. Dudin et al. (Eds.): ITMM 2014, CCIS 487, pp. 1–10, 2014.
c© Springer International Publishing Switzerland 2014



2 D. Adami et al.

Office) market with embedded SRs, using mixed open and closed source solu-
tions (for the OS and protocol stack, respectively [9]). More recently, SRs are
being used for the deployment of NGNs (Next Generation Networks) and also
as learning tools (see, for instance, [6]). Despite their increasing popularity, SRs
have relevant weaknesses. On the one hand, off-the-shelf SRs are often shipped
with closed networking stack that limits (or even prevents) the development of
new capabilities. On the other hand, completely open SRs are often developed
for specific purposes, like the optimization of an existing routing protocol or the
design of a brand new scheduler. These enhancements tend to be developed as
ad-hoc, intrusive hacks in the original source code, making its maintenance and
reuse a complex and time-consuming task. QoS (Quality of Service) support is a
concrete example of this deficiency: there is a large number of open source tools
to enforce QoS, but a clear lack of orchestrating procedures to achieve a specific
behaviour.

Taking into account the above-mentioned weaknesses, this paper deals with
the design and development of a novel open framework for SRs with advanced
network functionalities. The goal is twofold: to provide flexible tools for the
configuration and management of QoS–aware networks and to allow the evalu-
ation of NGN architectures through fully-operational trials. In more detail, the
framework is exclusively based on free and open source software, and delivers
out-of-the-box automatic management of virtual circuits and traffic differentia-
tion, by effectively combining the DS (DiffServ) and MPLS (MultiProtocol Label
Switching) IETF architectures, still the most advanced QoS and TE (Traffic En-
gineering) solutions for IP networks.

Indeed, MPLS [18] allows the management of pseudo-virtual circuits over a
wide range of layer 2 and 3 protocols, including IP: in an MPLS network the IP
header is used exclusively at edge routers to map packets into a FEC (Forwarding
Equivalence Class). All packets associated to a given FEC are “tagged” with an
identical label; for instance, in an IP over Ethernet network, labels are inserted
between the Ethernet and the IP packet headers, in a structure called Shim
Header. Inside an MPLS cloud, only labels are used to forward packets, according
to label forwarding tables (much simpler than IP routing tables). The path that
all packets belonging to the same FEC use to traverse the network is called
LSP (Label Switched Path) and the network nodes are denoted as LSRs (Label
Switching Routers). TE capabilities of MPLS allow to avoid congestion both
in the steady–state and in failure scenarios by establishing LSPs along links
with available bandwidth and providing resilience in case of failure by means of
built–in mechanisms, such as link protection and fast reroute.

DS [12] maps the incoming packets in classes, and resource reservation is per-
formed on a per-class basis. These service classes, known as PHBs (Per Hop
Behaviours), specify how packets must be treated by a router (i.e., how a router
must distribute its resources, prioritizing certain classes on detriment of others).
Packets at ingress routers are classified in one of the defined PHBs: EF (Expe-
dited Forwarding), AF (Assured Forwarding) and Default PHB, typically used
for Best Effort (BE) traffic, by setting the suitable DSCP (DS Code Point) in
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the IP header TOS field, renamed DS field. While DS assures data delivery with
“relative” QoS, there is no TE control in DS networks.

In more detail, two different solutions, DiffServ over MPLS [15] and DS-TE
(DiffServ-aware MPLS TE, [13,14]) have been standardized to make DS and
MPLS interwork. Thus, DS packets are transported inside LSPs and the network
is enabled to perform TE while QoS is guaranteed. More specifically, DiffServ
over MPLS allows the creation of TE–LSPs that carry DS marked IP packets
from a single or multiple classes (L-LSP and E-LSP, respectively), with assured
bandwidth. However, the main problem is that such integration of DS and MPLS
is not able to guarantee end-to-end QoS to TE-LSPs on a per-class basis under
any operating conditions because QoS is only provided at node level and MPLS
is unaware of traffic classes. DS-TE makes MPLS aware of traffic classes, allowing
end-to-end resource reservation with traffic class granularity and providing the
fault tolerance of MPLS at traffic class level. To achieve such differentiated
treatment, in [14] the concept of CT (Class Type) is introduced. A CT is the
set of traffic trunks crossing a link that is governed by a specific set of BCs
(Bandwidth Constraints). CTs are used for link bandwidth allocation, constraint
based routing and admission control.

The rest of the paper is organized as follows. Section 2 describes the gen-
eral features of the proposed open framework architecture; then, Section 3 and
Section 4 detail the Data Plane and Control/Management Plane functionalities,
respectively. Finally, conclusions are drawn in Section 5.

2 Open Framework Architecture and Features

Our open framework (see Figure 1) is based on a sharp separation among the
functionalities of data, control and management planes. The next subsections
detail these functionalities and provide an overview of the key features of DS-
MPLS nodes, which will be denoted in the following as DS-LSRs.

2.1 Data Plane

The data plane is responsible for data forwarding in accordance with the rules
established by the control and management planes. Its components are briefly
described in the following.

1. Traffic Control: enforces the QoS of data flows. It is responsible for per-
forming label–based packet switching and includes the following entities:
– Policy Enforcer: available in edge DS-LSRs, it filters the incoming pack-

ets, admitting only those from authorized parties and at rates that are
in conformance with Service Level Agreements (SLAs).

– Classifier: processes incoming packets in a pre-routing phase, preparing
them to be forwarded using class-specific resources.

– Lookup: instead of destination-based routing, it uses multiple routing ta-
bles to route packets in LSPs, also taking into account other parameters
such as DS classes.
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TED
PCE

LCS RSVP-TEOSPF-TE

LSP-DB

NMS

PCC

SSM1 SSM2 SSMNTRAFFIC
CONTROL

Management
Plane

Control
Plane

Data
Plane

Fig. 1. DS-MPLS Open Framework architecture

– Forwarder: it uses a set of schedulers to forward MPLS packets according
to DS classes specification on a per-LSP basis.

2. SSMs (Service-Specific modules): are external programs developed to
bring intelligence to the network. This way, other than just forwarding pack-
ets, SRs can elaborate data, simplifying the creation of upper layer applica-
tions and overlays. SSMs can perform basic services, such as cryptography
and compression, as also more advanced functions, such as video transcoding.

2.2 Control Plane

The key part of the open framework architecture is the control plane, that has
been completely designed and implemented to support both DiffServ over MPLS
and DS-TE. Roughly speaking, it collects the network state information, com-
putes the suitable paths for the user traffic and sets up the corresponding LSPs.
Its main components are the following:

1. TED (Traffic Engineering Database): describes the properties and state
of network links and routers. It is defined by using XML.

2. LSP-DB (LSP Database): details the characteristics of the active LSPs.
As the TED, it is defined by using XML.
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3. PCE (Path Computation Element): is responsible for processing LSP
setup requests (in case of bidirectional circuit requests, the PCE computes
a path that is able to accommodate two LSPs in opposite directions). This
module may employ different Path Computation Algorithms, working in
a centralized or distributed manner [10]. In case of DS-TE architecture,
it supports MAM (Maximum Allocation Model) and RDM (Russian Dolls
Model) bandwidth allocation models [17]. After the path computation phase,
LSPs are established.

4. LCS (LSR Control System): configures all routers involved in LSP setup
or teardown requests. It uses a secure, centralized approach to contact and
configure DS-LSRs. The LCS is formed by two distinct components: the LCA
(LSR Control Agent) and the LLEA (LSR Local Enforcement Agent). The
LCA is always in the same node as the PCE, no matter if the node is a DS-
LSR or a host external to the network. It is responsible for receiving the LSP
information from the PCE and translating it into configuration commands
for all the routers in the path. The LCA controls all the DS-LSR specific
information such as the labels to be configured in the interfaces. Once the
set of commands that each router must execute to configure the LSP(s) are
defined, the LCA contacts the LLEAs entities in every DS-LSR along the
path. Each LLEA is responsible for locally executing the set of commands
to configure the LSP(s), and then to report back to the LCA the state of
the operation.

5. RSVP-TE: is used to perform robust, automatic provisioning of LSPs.
6. OSPF-TE: is responsible for maintaining, updating and synchronizing the

TED across the DS domain.

2.3 Management Plane

The management plane provides the system interfaces to control and query all
other entities. It consists of the following components:

1. NMS (Network Management System): provides graphical and
command-line user interfaces for network resources administration. NMS
users can setup and teardown LSPs, manage FEC-LSP associations, and
analyse the operational state of DS-LSRs, links, protocols and virtual cir-
cuits.

2. PCC (Path Computation Client): generates LSP setup requests and
sends them to the PCE.

3 Data Plane Functionalities

The open framework data plane uses both standard GNU/Linux routing and
traffic control functionalities, as well as a number of experimental tools to add
new advanced capabilities, such as label-switching routing. Usually, these exter-
nal add-ons require intrusive kernel patching and hacking of userspace tools. In
the open framework to build up a full-featured data plane, customized patches
have been developed to circumvent version mismatches.
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3.1 LSP Establishment

MPLS support in the open framework is granted by the MPLS for
Linux project [4]. It consists of several patches in the Linux kernel and in the
following userspace tools: iproute2 (traffic control in Linux) [2], iptables (layer
3 packet filtering) [5], and ebtables (layer 2 cell/frame filtering) [3]. A new tool
called mpls allows to manage LSPs.

To establish E-LSP and L-LSPs, our open framework takes advantage of an
mpls tool feature that allows to set the EXP field of the shim header and the TC
index field of the packet buffer descriptor (internal to the DS-LSR) in function of
the DSCP value in the IP header. The TC index plays a key role when assigning
MPLS packets to schedulers.

To setup an LSP, the following steps are mandatory:

– ingress and core DS-LSRs: creation of an entry in the NHLFE (Next
Hop Label Forwarding Entry) table, with the corresponding mapping from
DSCP to EXP and TC index;

– core and egress DS-LSRs: creation of an entry in the ILM (Incoming
Label Map) table, to map incoming and outgoing labels;

– core DS-LSRs: cross-connection between ILM and NHLFE entries.

3.2 FEC to LSP Binding

Since the standard GNU/Linux networking stack was not designed with MPLS
support in mind, routing decisions can only be taken based on the information
contained in the IP routing table. The availability of a single routing table is
a significant limitation in case TE policies should be applied and, for instance,
two packets with the same source and destination IP addresses should be sent
towards the destination by means of different LSPs (maybe configured on the
same outgoing interface).

On the ingress DS-LSR, the FEC-to-NHLFE table allows to associate each
incoming packet belonging to a specific FEC with a set of instructions (NHLFE)
that indicate how to forward the packet to the next LSR. Nevertheless, due to
limitations of the userspace Linux tools, IP packets can not be directly assigned
to FECs at ingress DS-LSRs.

To overcome these issues, the open framework provides a great amount of flex-
ibility regarding FEC definition. Almost every field of layers 2, 3 and 4 packet
headers can be used to define a FEC. Moreover, the framework introduces multi-
ple routing tables, whose lookup priorities are higher with respect to the default
IP routing table.

In more detail, by using forward marks, each FEC is associated with a specific
routing table, which usually contains a single entry related to a specific LSP
(in fact, its NHLFE). This solution enables the finest QoS routing granularity,
although it is also the most expensive in terms of resources. The open framework
also allows the use of multiple NHLFE entries per table.
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3.3 Hierarchical Scheduling

The open framework provides QoS support through a modular tree of hierarchi-
cal packet schedulers, available on every interface of DS-LSRs. The hierarchical
scheduler tree is illustrated in Figure 2.

Fig. 2. Hierarchical scheduler tree

The reservable bandwidth for all interfaces is initially divided between three
types of traffic: DS-MPLS, control and BE. By reserving a fraction of bandwidth
to control traffic, the control plane is isolated from the data plane (out-of-band
approach). Also, by reserving a small amount of bandwidth to BE traffic, a min-
imal service level is guaranteed, avoiding complete starvation of the lowest class.
To enable bandwidth separation, the HTB (Hierarchical Token Bucket) [1] packet
scheduler is used. While the interface bandwidth share reserved to control traffic
is managed by a FIFO queue, the BE traffic is sent to a RED (Random Early
Detection) queue. The DS-MPLS traffic bandwidth share is managed by another
HTB scheduler, which is responsible for guaranteeing the nominal bandwidth to
LSPs.

When establishing a new LSP, a specific hierarchical scheduler subtree is con-
figured according to the type of the LSP. The default scheduler subtrees for
E-LSPs and L-LSPs (carrying AF and EF traffic) are depicted in Figure 3.
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Fig. 3. E-LSP (left) and L-LSP (right) scheduler subtrees

The E-LSP subtree divides the bandwidth among the configured PHBs. Ac-
cording to our default configuration, each one of the three AF classes can use
up to 100% of the LSP bandwidth, with a guaranteed bandwidth equal to 25%
of the LSP capacity. A guaranteed level of 25% of total bandwidth is offered to
the EF PHB, with no borrowing allowed from other classes. There is no band-
width reservation for the BE traffic inside LSPs. The drop precedences for the
AF PHBs are enforced using the GRED (Generalized Random Early Detection)
queueing discipline, a multiple virtual queues RED variant. GRED uses the TC
index (which is directly related to the EXP shim header field) to discriminate
AF packets. EF packets have a small buffer FIFO queue, while BE packets are
managed by a RED queue.

L-LSP scheduler subtrees are simpler: for AF and EF traffics, GRED and
FIFO queue are used, respectively.

To assign every MPLS packet to the correct subtree according to the label
field of its shim header, a specially crafted TC filter rule (tc is one of the main
iproute2 tools) is used.

4 Functionalities of Control and Management Planes

The open framework control and management planes provide all the function-
alities necessary to automatically setup, monitor and teardown LSPs. The key
entity is the PCE, which communicates with the PCC integrated in the NMS.
The link metrics usable by routing algorithms are the reservable bandwidth, the
maximum delay and a user-defined cost (for instance, monetary cost or power
consumption). The TED as well as signalling and routing protocols used by
MPLS were extended to support the non-standard metrics.
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An LSP setup request must contain the following information: ingress and
egress DS-LSRs, bandwidth, and LSP type (Non specified; E-LSP; L-LSP car-
rying BE, AFyx or EF traffic; LSP carrying TE-Class[0-7] traffic). Optionally,
it can also specify the maximum delay, the user-defined cost and the path com-
putation algorithm. Moreover, if a bandwidth allocation model is used (MAM
or RDM), it is also necessary to specify the priority and the preemption of the
LSP. Finally, when a bidirectional circuit is requested, the PCE computes two
LSPs with the same path and properties, but with opposite directions.

An LSP teardown request must specify only the identifier of the LSP to be
removed. As already highlighted in section 2.1, due to the centralized architec-
ture of the LSP provisioning process, the PCE relies on the LCS to enforce the
configuration of the DS-LSRs involved.

Moreover, to properly flood TE-LSAs describing TE link properties, the OSPF
implementation of the Quagga [7] suite of protocols is used.

Finally, the RSVP-TE daemon from the TEQUILA project [8] has been en-
hanced to become an integral part of the framework.

5 Conclusion

Programmability and virtualisation will be the key features of next generation
routers in order to enhance the intelligence of the network and to offer a more
effective support for new emerging applications. Since the lack of flexibility is
currently the Achilles heel of high-end network devices, partially or completely
open SRs are becoming more and more valuable. Taking into account this sce-
nario, the open framework described in the paper is completely based on both
open source software and commodity PCs. More specifically, it defines and im-
plements all the building blocks necessary to integrate DS domains over MPLS
tunnels with QoS guarantees and provides a full set of advanced networking
functionalities (including QoS and TE).

As programmability, flexibility and ease of use are primary features of the
open framework, NGNs designers can quickly benefit from virtual circuits with
bandwidth guarantees and traffic differentiation, as well as from the flexibility
of service-specific modules. Moreover, unlike other similar projects, the open
framework does not limit to just shipping software, but provides a cohesive
integration of networking tools to enable even greater capabilities.

Finally, the live distribution releases allow to easily use the open framework
functionalities.
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Abstract. Land cover change detection analysis by remote sensing cur-
rently is used for monitoring and accounting. The existing diversity of
change detection methods and the absence of the conventional way of
change detection methods choice in each case do not allow unsupervised
analysis of large amounts of data. A proposed multi-stage approach, in-
volves the use of multiple change detection methods and thresholding
functions, as well as a way to assess the scale of changes. This approach
allows to select data and deserves expert review from a large amount of
incoming data. On the example of Portugal’s land cover change analy-
sis project, the paper shows result fragments of change detection which
were obtained by different methods and threshold functions. The assess-
ment of changes scale was concluded to see whether further analysis is
necessary for landscape fragments.

Keywords: Remote sensing, change detection, Landyn project.

1 Introduction

Amounts of data coming from different remote sensing (RS) satellites and accu-
mulated in the relevant archives are increasing every day and can run into ter-
abytes daily. At the same time, the subject of special interest in such archives is
multi-temporal data, allowing detection of land cover changes and their dynamics
in different territories. However, due to the large amount of data in these archives
and complexity of change detection analysis, identification of changes occurring
in landscape and defining their scope, speed and the short- and long-term fore-
casting of these phenomena is extremely difficult and sometimes impossible in
practice.

So, ways of solving the problem of land cover change detection on aerospace
images (AI) are sought. The results of change detection can be extremely useful
in monitoring of emergencies flow and early (preventive) detection of its causes.
Searching and selecting appropriate ways and methods to detect the changes
in each case have not been yet trivial[1–3]. In addition, the task is complicated
by a wide range of potentially available methods of change detection based on
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different mathematical apparatus and the absence of formalized procedures of
such search and selection.

There are several basic well-known approaches to the land cover change de-
tection by the RS data (algebraic, transformation, classification)[3]. Each of the
approaches alone and its combinations are characterized by its own set of advan-
tages and disadvantages that should be considered under different data distor-
tion, sometimes significantly impede solution of changes detection problem. The
sources of such distortions include satellite imagery conditions, atmospheric con-
ditions, illumination of the study area, soil moisture and other factors, which are
not always eliminated by data correction[2, 3]. Furthermore, we should take into
account different degree of observed changes in different band of multi-channel
AI.

Today, the problem change detection usually solved without significant empir-
ical study, and consideration of the aforementioned disturbing factors. However,
there are some fairly successful attempt to analyze the land cover change detec-
tion methods allowing identifying areas of practical applicability and efficiency
of these methods[4].

For the development of features to implement in an extremely large amount
of data of quickly land cover changes detection and searching for areas with
significant dynamic of change, we propose to discuss the appropriate multi-stage
approach and some details of its practical use.

2 Multi-stage Approach

Stage 1. Recharging archive of RS data with new images and formation of multi-
temporal series of images for the area of interest -
It1, It2, ..., Itn-1, Itn; I’t1, I’t2, . . . , I’tn-1, I’tn, . . . ; I”t1, I”t2, . . . , I”tn-1, I”tn; . . .

Stage 2. Change detection analysis in the existing archive of RS data in pairs
of images (It1−Itn, I’t1−I’tn, etc.), where It1 - initial (first) image of the observed
period, and Itn - most actual (last) image of the observed period.

In general, the solution of the change detection problem requires two multi-
temporal AI of the same landscape fragment, in the time period of interest. The
images that capture the changes are represented in form of two arrays: It1 =
i1xyz, x = 1..H, y = 1..W, z = 1..M and It2 = i2xyz, x = 1..H, y = 1..W, z = 1..M ,
where H and W - the number of elements in rows and columns in initial AIs, M
- the number of bands (channels) of the images. Simple form of change detection
process can be represented as follows[3]:

– on the basis of multi-temporal data arrays It1 and It2 difference image
D = dxy, is formed with some change detection method. Each element of D
reflects the degree (probability) of change;

– getting matrix of changes B = bxy, with the thresholding of D; values of
matrix B reflect the presence or absence of significant change at each point;
the threshold value may be fixed empirically or calculated using a specific
functions.
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Details of the most common change detection methods are listed below.
The result of the change detection process usually varies significantly depend-

ing on the threshold calculation characteristics, so details of threshold searching
should be given. Methods of the threshold value calculation using a different
mathematical approaches[6, 7, 12], but the most common are techniques with
the matrix D histogram analysis.

For example, method of Yanni is based on finding histogram peaks[8]. Otsu
method determines the threshold value by reducing the variance in the two
classes of values - below and above of threshold[7, 15]. In the method of Kittler-
Illingworth[6, 15] which assumes that normalized histogram consist of the two
components (corresponding to the two classes), each of them has a normal dis-
tribution with mean values μ1(τ), μ2(τ) and standard deviations σ1(τ), σ2(τ).
Threshold τ chosen in such a way to minimize the area of the intersection region
of these two distributions in histogram. Also for the values separation in D into
two classes unsupervised classification methods can be used[12].

In the context of the priori information lack about the characteristics of
the analyzed image histograms, Kittler-Illingworth and Otsu methods received
steady spread in practice, than we choose them as the main methods of threshold
searching[7].

Stage 3. Selection multi-temporal series of original images, which scale of
change deserves special attention, for further analysis.

To assess the scale of change we identify areas with a high concentration of
changes using a ”sliding window” of order r. Area covered with ”sliding window”
considered as high concentration area when concentration of changes di above
a certain threshold t, where di = ni/S

w, ni - amount of changed pixels in the
”window”, Sw = (2·r+1)2 - the area of ”sliding window”, and i = 1..N , where N
- number of regions with a high concentration of change. As an integral criterion
of change scale we will use parameter Md =

∑
( i = 1)Ndi · Sw/S, where S -

area of the region under consideration.
Choice of algorithm parameters, such as the order of the window r and the

threshold of concentration t deserve individual detailed consideration, so we
choose appropriate values empirically t = 0.5, r = 20.

Stage 4. Expert analysis of selected multi-temporal images, reflecting the trend
of interest (fixed and projected) of land cover changes.

As a result of a multi-stage approach, researcher have opportunity to analyze
significantly reduced set of multi-temporal data on the final stage, allowing more
quickly, carefully and thoroughly assess the existing land cover trends.

3 Change Detection Methods

Image Difference method is used more often than others because of its ease of
implementation and performance[2, 3]. Each cell of D contains absolute value
of the respective cells I1 and I2 difference, dxyz = |i1xyz − i2xyz|. The smaller the
value of a particular element of the matrix, the less probability that a significant
change has occurred in corresponding area.
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Ratio method is also relatively wide used method, which differs from the
previous one, with using division instead of difference dxyz = |i1xyz/i2xyz|. In this
case, dxyz ∈ (0,+∞) and the closer the value dxyz to 1, the less likely in the
corresponding region significant change occurred.

Change vector analysis method considers the cell values of matrices I1 and
I2 with fixed coordinates x and y as the vectors (M -dimensional) coordinates:
V 1
xy = {i1xy1, i1xy2, . . . , i1xyM} and V 2

xy = {i2xy1, i2xy2, . . . , i2xyM}. Thus, the values of
the difference matrix D cells can be obtained as the Euclidean distance between
the corresponding vectors. The advantage of this method is that it allows you
to receive a two-dimensional matrix D without additional channels fusion. Also,
this method is sometimes used to classify types of changes, since this case, is
possible to find M -dimensional vector of changes in addition to the value of
changes[3, 9, 10].

The principal components analysis method uses statistical Karhunen-Loeve
transform to reduce the dimension[11]. As a result, we obtain the transformed
matrices I1 and I2. In most cases after conversion only one or two principal
components leaved[3]. This technique also belongs to the most effective and
commonly used despite of low performance.

The method chi-square mean transformation Y = (X−Mx)T ·Σ−1 ·(X−Mx)

[3, 16], where X -vector of difference [Dxy1,Dxy2, . . . ,DxyM ]T , Mx vector of
means, and Σ−1- co-variance matrix for D.

In methods using regression, the difference is defined as the difference between
the values of cells I2 and calculated values based on the regression function
(values i1xyz are considered as arguments, and the corresponding i2xyz as the
value of the function)[12, 16]. On the first step form of the regression function
f(x) and its coefficients is selected, with some method (e.g., the least squares
method). Further, as described above, apply the formula dxyz = |f(i1xyz )−i2xyz |.

Unsupervised clustering method, provides preliminary clustering images I1
and I2 to get Ic1 and Ic2. And then finding the difference dxyz = |i1xyz

− i2xyz
|.

The main complexity of this method consist in selection the type and parameters
of the clustering algorithm (such algorithms as k -means and ISODATA are used
widely)[3, 9].

4 Case Study for Change Detection

Here are some details of the above-described multi-stage approach application
for solving applied problems of land cover change detection in Portugal and
identify fragments with areas of low and high scale of change, carried out within
the framework of an international research project with the support of the Por-
tuguese Landyn Science Foundation[13].

To study used random sampling area (fig. 1) for 1980, 1995 and 2010 (1279
pieces) provided by the General Directorate of planning in Portugal (Direo-
Geral do Territrio, DGT), and have a total area of 499,596 hectares (about 6%
of the territory). Each element matched area 2 × 2 km. The samples dataset in
ESRI shapefile format in was converted into a raster format (TIFF) with a 100-
meter spatial resolution and then imported into the IDRISI Selva software[14].
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Fig. 1. The study area and test data

Landscape class structure of the study area is represented by two sets of data
- the integrated set of 7-landscaped classes and detailed set of 32 landscape
classes).

To improve the reliability of the change detection analysis to the whole dataset
of Portugal used change detection methods that implement the algebraic (image
difference and change vector analysis) and transformational (principal compo-
nent and ”chi” - square) approaches, also two threshold methods was applied,
that were mentioned above.

Figure 4 shows the fragments of results obtained by various methods of change
detection and threshold identification. It can be seen that the result of the change
detection procedure is strongly dependent on applied methods. Also, the pro-
posed method of change scale assessment allows effectively detect the areas of
high concentration of changes deserving detailed consideration and differentiate
images having such areas of images with minor amounts of high concentration
areas.

After determining the data sets with a high scale changes implemented fourth
stage of approach in which these data are used for the simulation.
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Fig. 2. Binary maps with high (a-d) and low (e-h) scale landscape changes, obtained
by different methods of change detection: a) and e) image difference; b) and f) vector
analysis; c) and g) the principal component analysis; d) and h)”chi” square, with 2
different thresholding methods: Kittler-Illingworth and Otsu

5 Conclusion

We have proposed multi-stage approach to the analysis of land cover dynamics
using change detection methods to the tasks of expediting aerospace monitoring
and retrieval of high scale landscape changes.

There are some of the international research project implementation details,
which allowed testing proposed multi-stage approach on real data. Testing of
multi-stage approach using algebraic and transformational approach change de-
tection methods allowed us to determine areas with significant changes in a given
time and to simplify the procedure for selecting data from a cumbersome array
of multi temporal date in areas with significant landscape dynamics.
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Abstract. This paper is focused on the problem of flow parameters es-
timation of the modulated semi-synchronous integrated flow of events,
which is related to the class of doubly stochastic Poisson processes
(DSPPs) with a a piecewise constant intensity process, that are typi-
cal for telecommunication networks. To solve this problem, first of all,
the probabilistic characteristics of the flow should be found. In this pa-
per we propose a technique for obtaining the formulas for calculating the
probability density of the length of the interval between the neighboring
flow events and the joint probability density of the length of the two
neighboring intervals. Also we find the conditions of the flow recurrence.
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(DSPP), flow state, flow parameters estimation, probability density, joint
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1 Introduction

Due to the rapid evolution of computing and information technology during
the last several decades, a new sphere of queueing theory applications – de-
sign and development of computer, telecommunication and other networks – has
appeared. The use of mathematical methods developed in a queueing theory
allows to find the quality characteristics of network components operation for
various problems, such as estimation of probabilistic characteristics of switching
and routing nodes, analysis of nodes buffer storage, the local and global flows
management and so on.

It is worthwhile to note that the conditions of the real objects and systems
operation are such that we can assert that the servers parameters are known
and stable as time goes, but we can not tell this about the intensity processes
and parameters of the input flows of events that come to the servers. Moreover,
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the intensities of the input flows usually vary within time, and frequently their
changes are accidental. As a result, it is necessary to consider the mathematical
models of doubly stochastic Poisson processes (DSPPs), which are characterized
by having the number of events in any given time interval as being Poisson
distributed, conditionally to another positive stochastic process called intensity
[1]–[4].

There are two known classes of doubly stochastic flows of events. The first
class contains the flows of events, which intensity process is a continuous random
process [1], [2]. The second class contains flows, which intensity is a piecewise
constant stationary random process with a finite number of states. These flows
are typical for telecommunication networks. The flows of the second type were
considered for the first time and independently presented by Basharin, Koko-
tushkin and Naumov [5] and Neuts [6]. Basharin et al. named these flows as
Markov chain (MC) arrival processes; Neuts – as Markov Versatile arrival pro-
cesses (MVP). Since the early 1990s to date, these flows of events are called as
the doubly stochastic flows of events or MAP-flows, or MC-flows [7]–[9].

As has been mentioned above, in the real situations the intensity process of
the input flow of events may vary in time in a random way and it is typically
unobservable. Also the flow parameters can be unknown. In such situations, the
use of adaptive queueing systems, when the unknown parameters or states of the
input flow are estimated during the system operation and the service procedure
is changed correspondingly, seems to be more rational. That is why, the central
problems faced when modeling these processes are: 1) flow states estimation on
monitoring the time moments of the events occurrence (the filtering of the un-
derlying and unobservable intensity process) [10]; 2) flow parameters estimation
on monitoring the time moments of the events occurrence [11].

This paper is focused on the problem of flow parameters estimation of the
modulated semi-synchronous integrated flow of events, which is related to the
class of Markovian arrival processes (MAPs). To solve this problem, first of all,
the probabilistic characteristics of the flow should be found. So in this paper we
propose a technique for obtaining the formulas for calculation the joint proba-
bility density of the intervals length of the flow and find the conditions of its
recurrence.

The rest of the paper is organized as follows. In Section 2 we present the modu-
lated semi-synchronous integrated flow of events, which provides our framework.
In Section 3 we derive the formulas for probability density p(τ) calculation and in
Section 4 – for joint probability density p(τ1, τ2) calculation. And finally, Section
5 contains the conditions of the flow recurrence.

2 Problem Statement

In this paper we consider the modulated semi-synchronous integrated flow of
events (further flow of events), which intensity process is a piecewise constant
stationary random process λ (t) with two states 1, 2 (first, second correspond-
ingly). In the state 1 λ (t) = λ1 and in the state 2 λ (t) = λ2 (λ1 > λ2). The
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duration of the process λ (t) staying in the first (second) state is distributed ac-
cording to the exponential law with parameter β (α). If at the time moment t the
process is found in the first (second) state, then at the interval [t, t +Δt) , where
Δt (hereinafter) is sufficiently small, with probability βΔt+o(Δt) (αΔt+o(Δt))
the sojourn time of the process λ (t) in the first (second) state comes to the end
and the process λ (t) transits to the second (first) state. During the time interval
when λ (t) = λi , a Poisson flow of events with intensity λi, i = 1, 2, arrives.
Also at any moment of an event occurrence in state 1 of the process λ (t), the
process can change its state to state 2 with probability p (0 ≤ p ≤ 1) or continue
to stay in state 1 with complementary probability 1 − p. I.e., after an event
occurrence the process λ (t) can change or not change its state from state 1 to
state 2. The transition of the process λ (t) from state 2 to state 1 at the moment
of an event occurring in the second state is impossible. At the moment when the
state changes from the second to the first state, an additional event in state 1 is
assumed to be initiated with probability δ (0 ≤ δ ≤ 1) . I.e., first the transition
from state 2 to state 1 is made and thereafter an additional event is initiated
or not. Such flows with additional events initiation are called integrated flows.
Under the made assumptions we can assert that λ (t) is a Markovian process. So
the flow can be characterized by {D0, D1} , in terms of the rate matrices,

D0 =

∥∥∥∥−(λ1 + β) β
(1− δ)α −(λ2 + α)

∥∥∥∥ , D1 =

∥∥∥∥ (1− p)λ1 pλ1

δα λ2

∥∥∥∥ . (1)

Intensities of the process λ (t) transitions from state to state without the event
occurrence fill in the matrix D0 in (1). Intensities of the process λ (t) transitions
from state to state with the event occurrence fill in the matrix D1 in (1). Diagonal
elements of the matrix D0 are intensities of the process λ (t) output from its
states taken with the opposite signs. Fig. 1 shows the possible variant of the
flow formation. Here 1, 2 are the states of the process λ (t); additional events,
that may occur in the first state at the moment of process λ (t) transition from
state 2 to state 1, are marked with letter δ; the flow events t1, t2, ... , are shown
as circles.

Fig. 1. The formation of the flow
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It should be mentioned that the process λ (t) is basically unobservable. We
register only time moments t1, t2, ... of the flow events occurring. The process
λ (t) is considered in a steady-state conditions. So under the made assumptions
we can assert that the sequence of the time moments t1, t2, ... corresponds to an
embedded Markov chain, i.e. the flow has the Markov property if the evolution
of the flow is considered from the time moment tk, k = 1, 2, ..., of the event
occurrence.

Denote by τk = tk+1 − tk, k = 1, 2, ... , the value of interval k length between
the neighboring flow events. In a steady-state conditions we may take that the
probability density of the interval k length is p(τk) = p(τ), τ ≥ 0, for any
k. Thereby we may also take that the time moment tk is equal to zero, i.e.
the moment of the event occurrence is τ = 0. Now let (tk, tk+1), (tk+1, tk+2)
be the neighboring intervals with the corresponding values of interval length
τk = tk+1 − tk, τk+1 = tk+2 − tk+1. Due to the stationary of the flow, the
arrangement of the intervals on a time axis is arbitrarily. That is way we may
consider the neighboring intervals (t1, t2), (t2, t3) with the corresponding values
of interval length τ1 = t2 − t1, τ2 = t3 − t2 ; τ1 ≥ 0, τ2 ≥ 0, wherein τ1 = 0
corresponds to the time moment t1 and τ2 = 0 corresponds to the time moment
t2 of the flow events arrival. The respective joint probability density is defined
as p(τ1, τ2), τ1 ≥ 0, τ2 ≥ 0.

3 The Expressions for Probability Density p(τ )

Let us introduce into consideration the probabilities pij(τ) that there is no events
at the interval (0, τ) and that at the time moment τ the value of the process
λ (t) is λ (τ) = λj in condition that at the time moment τ = 0 the value of the
process λ (t) is λ (0) = λi, i, j = 1, 2. Then the probabilities pij(τ) satisfy the
following systems of differential equations:

p′11(τ) = −(λ1 + β)p11(τ) + α(1 − δ)p12(τ) ,
p′12(τ) = −(λ2 + α)p12(τ) + βp11(τ) ;

(2)

p′22(τ) = −(λ2 + α)p22(τ) + βp21(τ) ,
p′21(τ) = −(λ1 + β)p21(τ) + βα(1 − δ)p22(τ) ;

(3)

with the boundary conditions: p11(0) = 1, p12(0) = 0; p22(0) = 1, p21(0) = 0.
Solving the systems of equations 2, 3, we find the probabilities pij(τ), i, j = 1, 2:

p11(τ) =
1

z2 − z1
[(λ2 + α− z1)e

−z1τ − (λ2 + α− z2)e
−z2τ )] , (4)

p12(τ) =
β

z2 − z1
(e−z1τ − e−z2τ ), p21(τ) =

α(1 − δ)

z2 − z1
(e−z1τ − e−z2τ ) , (5)

p22(τ) =
1

z2 − z1
[(λ1 + β − z1)e

−z1τ − (λ1 + β − z2)e
−z2τ ) , (6)

z1 =
1

2
[λ1 + λ2 + α + β −

√
(λ1 − λ2 − α + β)2 + 4αβ(1 − δ)] , (7)
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z2 =
1

2
[λ1+λ2+α+β+

√
(λ1 − λ2 − α + β)2 + 4αβ(1− δ)], 0 < z1 < z2 . (8)

According to the definition of the flow we introduce the probability p11(τ)×
×e−βΔτ (1− e−λ1Δτ )(1−p) = p11(τ)λ1(1−p)Δτ + o(Δτ) – the joint probability
that the process λ (t) changes its state from the first state to the first one at
the interval (0, τ) without the event occurring (λ (0) = λ1, λ (τ) = λ1), and
at the half-interval [τ, τ + Δτ) the duration of the first state does not come to
the end, the event of the Poisson flow with intensity λ1 arrives and the process
λ (t) remains in the first state. The joint probabilities take the following form
for different i and j (i, j = 1, 2)

p11(τ)λ1(1− p)Δτ + o(Δτ) , p12(τ)αδΔτ + o(Δτ) ,

p11(τ)λ1pΔτ + o(Δτ) , p12(τ)λ2Δτ + o(Δτ) ,

p21(τ)λ1(1− p)Δτ + o(Δτ) , p22(τ)αδΔτ + o(Δτ) ,

p21(τ)λ1pΔτ + o(Δτ) , p22(τ)λ2Δτ + o(Δτ) .

The corresponding probability densities take the form

p̃
(1)
11 (τ) = p11(τ)λ1(1− p) , p̃

(2)
11 (τ) = p12(τ)αδ ,

p̃
(1)
12 (τ) = p11(τ)λ1p , p̃

(2)
12 (τ) = p12(τ)λ2 ,

p̃
(1)
21 (τ) = p21(τ)λ1(1− p) , p̃

(2)
21 (τ) = p22(τ)αδ ,

p̃
(1)
22 (τ) = p21(τ)λ1p , p̃

(2)
22 (τ) = p22(τ)λ2 .

Then the probability densities p̃ij(τ), that the process λ (t) changes its state
from the state i to the state j without the event occurrence at the interval (0, τ)
and with the event occurrence at the time moment τ , can be written for different
i and j (i, j = 1, 2) as

p̃11(τ) = p11(τ)λ1(1− p) + p12(τ)αδ , p̃12(τ) = p11(τ)λ1p+ p12(τ)λ2 ,
p̃21(τ) = p21(τ)λ1(1− p) + p22(τ)αδ , p̃22(τ) = p21(τ)λ1p+ p22(τ)λ2 .

(9)

Substituting 4–6 into 9 we find the explicit formulas for probability densities
p̃ij(τ), i, j = 1, 2.

Let us denote by πi(0) the conditional stationary probability that the process
λ (t) sojourns in the state i (i = 1, 2) at the time moment τ = 0 in condition
that at this time moment the flow event has arrived (π1(0) + π2(0) = 1). Since
the sequence of the time moments of the flow events arrival corresponds to an
embedded Markov chain, the following equations take place:

π1(0) = π1(0)p11 + π2(0)p21 , π2(0) = π1(0)p12 + π2(0)p22 , (10)

where pij is a transitional probability that the process λ (t) changes its state
from the state i to the state j (i, j = 1, 2) during the time from the event
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arrival at the time moment τ = 0 till the moment of the next flow event arrival.
Here the probabilities pij are determined as

pij =

∫ ∞

0

p̃ij(τ) dτ , (11)

where p̃ij(τ) are defined by 9, pij(τ) are defined by 4–6. Calculating the corre-
sponding integrals 11 we find

p11 =
1

z1z2
[λ1(1− p)(λ2 + α) + αδβ] , (12)

p12 =
1

z1z2
[λ1p(λ2 + α) + λ2β] , (13)

p21 =
1

z1z2
[λ1α(1− p + pδ) + αδβ] , (14)

p22 =
1

z1z2
[λ2(λ1 + β) + λ1pα(1− δ)] . (15)

Substituting 12–15 into 10, we obtain the explicit formulas for πi(0):

π1(0) = α
λ1(1 − p+ pδ) + δβ

pλ1λ2 + λ1α+ λ2β + αδ(pλ1 + β)
, (16)

π2(0) =
λ1(1− p+ pδ) + δβ

pλ1λ2 + λ1α + λ2β + αδ(pλ1 + β)
. (17)

And the probability density is defined by the formula

p(τ) =

2∑
i=1

πi(0)

2∑
j=1

p̃ij(τ), τ ≥ 0 . (18)

Substituting first 9 into 18 and next 4–6 and 16, 17 into 18, carrying out some
transformations, we obtain the explicit expression for probability density p(τ)
calculation:

p(τ) = γz1e
−z1τ + (1− γ)z2e

−z2τ , τ ≥ 0 , (19)

γ =
1

z2 − z1
[z2 − λ1π1(0)− (αδ + λ2)π2(0)] , (20)

where z1,z2 are defined by 7, 8; π1(0), π2(0) are defined by 16, 17.

4 The Expressions for Joint Probability Density p(τ1, τ2)

Since the sequence of the time moments of the flow events arrival corresponds to
an embedded Markov chain, the following formula for joint probability density
p(τ1, τ2) takes place:

p(τ1, τ2) =
2∑

i=1

πi(0)
2∑

j=1

p̃ij(τ1)
2∑

k=1

p̃jk(τ2), τ1 ≥ 0, τ2 ≥ 0 . (21)
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Then substituting first p̃ij(τ1), p̃ij(τ2), that are defined by 9, next pij(τ1), pij(τ2),
that are defined by 4–6 for τ = τ1 and τ = τ2, and finally π1(0) and π2(0), that
are defined by 16, 17 into 21, carrying out some transformations, we find the
formula for p(τ1, τ2) calculation in the following form:

p(τ1, τ2) = p(τ1)p(τ2) + γ(1− γ) λ1(λ2−pλ2−pαδ)
λ1λ2+λ1α+λ2β+αδβ×

×(ze−z1τ1
1 − z2e

−z2τ1)(ze−z1τ2
1 − z2e

−z2τ2), τ1 ≥ 0, τ2 ≥ 0 ,

(22)

where p(τ1), p(τ2) are defined by 19 for τ = τ1 and τ = τ2, γ are defined by 20.

5 The Recurrence Conditions of the Flow

It can be shown by using the equations 20, 16 and 17 that

γ(1− γ) = 1
(z2−z1)2

(λ1 − λ2 − αδ) λ1λ2+λ1α+λ2β+αδβ
pλ1λ2+λ1α+λ2β+αδ(pλ1+β)×

×[π1(0)(pλ1 + β)− απ2(0)] .

(23)

It follows from 22, 23 that
1) if λ1−λ2−αδ = 0, then the joint probability density 22 becomes factorable:

p(τ1, τ2) = p(τ1)p(τ2); and it follows from 7, 8 that z1 = λ1, z2 = λ2 + α+ β; 20
implies γ = 1. In this case p(τ) = λ1e

−λ1τ , τ ≥ 0.
2) if λ2− pλ2− pαδ = 0, p �= 1, then the joint probability density 22 becomes

factorable: p(τ1, τ2) = p(τ1)p(τ2); and it follows from 16, 17 that π1(0) = 1− p,
π2(0) = p. 20 implies

γ =
1

z2 − z1
[z2 − λ1(1− p)− λ2] ,

and, consequently,

p(τ) = γz1e
−z1τ + (1 − γ)z2e

−z2τ , τ ≥ 0 .

3) if π1(0)(pλ1 + β)−απ2(0) = 0, then the joint probability density 22 becomes
factorable: p(τ1, τ2) = p(τ1)p(τ2); it follows from 7 that z1 = λ1(1−p+pδ)+ δβ;
20 implies γ = 1. In this case p(τ) = z1e

−z1τ , τ ≥ 0.
If one of these conditions is met, the flow of events will be the recurrent flow.

For, let p(τ1, ..., τk, τk+1) be the joint probability density of τ1, ..., τk, τk+1, where
τk = tk+1 − tk, k = 1, 2, .... For k = 2 we have p(τ1, τ2) = p(τ1)p(τ2). Now we
proceed by mathematical induction. Assume that p(τ1, ..., τk) = p(τ1)...p(τk).
Since the sequence of time moments t1, t2, ..., tk, tk+1 of the flow events occur-
rence is an embedded Markov chain, then the flow has the Markov property at
the moments of the flow events arrival. Then p(τ1, ..., τk, τk+1) = p(τ1, ..., τk)×
×p(τk+1|τ1, ..., τk) = p(τ1, ..., τk)p(τk+1|τk), where p(τk+1|τk)=p(τk, τk+1)/p(τk).
Since for the neighboring intervals (tk, tk+1) and (tk+1, tk+2), k = 1, 2, ... we have
p(τk, τk+1) = p(τk)p(τk+1), then p(τk+1|τk) = p(τk+1). This proves the factor-
ization of the joint probability density p(τ1, ..., τk, τk+1).
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6 Conclusion

The obtained results provide the possibility to solve the problem of the flow
parameters estimation. In general, the method of moments is used to estimate
the unknown flow parameters. For the particular cases of the recurrent flow we
can apply the maximum-likelihood technique.
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Abstract. One of the significant, fundamental and demanded tasks of
modern statistical data analysis and computer science is to develop meth-
ods for the analysis of different types of data. The paper considers a sit-
uation, when one part of the researching data is numerical and the part
is multiple. The notion of the set of bipartite sets of events is offered.
This set consists of the sets of events, whose first part corresponds to the
random variables, and second part — to the sets.

In this work it is considered all possible types of the set of bipartite
sets. The formula of probabilistic distribution for all types of this set
is shown. The concepts of the Minkovsky set-operation of the set of
bipartite sets of events and its probability are resulted. Also in paper
practical problems of application of the given set are considered.

Keywords: Bipartite set of events, probabilistic distribution, set of bi-
partite sets of events.

1 Introduction

In some fields of science and practical activities different researches result in
solving the problems of system analysis. In paper it is considered a situation,
when the one part of the events describing the complex system’s behavior is
numerical and the second part is sets. The main difficulty for analysis of such
complex systems lies in the fact that number of all possible events is big and
the data describing systems behavior is polytypic. This problem is especially
actual for applied fields of science, whose are bound up with analysis of social,
economic and natural systems. They are medicine, ecology, biology, actuary,
finances, insurance, sociology and others.

In works [1], [2] the bipartite set of random events method was suggested, in
which each system’s element represents a bipartite set of random events. The
first part of this set corresponds to the random variables, and second part – to
the sets. The basic idea of this method concludes in reduction of an analysis of
system’s elements to analysis of corresponding bipartite sets of events.
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In this work the notion of the set of bipartite sets of events is offered. The
work considers all possible types of this set, and the formula of probabilistic dis-
tribution for these sets is shown. Particular attention is paid for the application
of this set.

2 Bipartite Set of Events

In paper it is studied complex system, whose behavior is describing by numeric
and set data. Then the results of observation for the behavior of researching
object is a set, which consists of random variables and random sets [4], [5].
Consider the probabilistic space (Ω,F ,P). Let X ⊂ F be the finite set of events
chosen from algebra F of that space. Let designate N = |X|.

Definition 1. Random set of events under a set of the chosen events X is de-
cided on probabilistic space as a random element of

K : (Ω,F ,P)→
(
2X, 22

X
)

on values from measurable space
(
2X, 22

X
)
, where 2X is power set X, 22

X

is

algebra of all its subsets.

Probabilistic distribution [6] of random set of events K which has been set
under a set of the chosen events X ⊆ F can be presented several equivalent
distributions of the probabilities generated by a set of events X [3]. In this work
we define it by probability distribution of the I-st sort.

Definition 2. Probabilistic distribution of the I-st sort is a set from 2N proba-
bilities of type{

p(X) = P(K = X) = P

(( ⋂
x∈X

x

)⋂( ⋂
x∈Xc

xc

))
, X ⊆ X

}
.

As stated above, our general situation, when the one part of the results of
observation for behavior of researching object are numerical and the second part
— sets, can be described as the set of the random elements.

Definition 3. The bipartite set of random elements is set of the random ele-
ments, that can be defined in that way:

{ξ,K} = ξ ∪K = {ξa, a ∈ A, Kβ , β ∈ B} , (1)

where first part of set is the random variables ξ = {ξa, a ∈ A}, the second part
is the random sets of events K = {Kβ, β ∈ B}, A is the indices set of a random
variables, and B — indices set of a random sets.
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Now we considered the bipartite set of random events, which corresponds the
bipartite set of random elements, defined above.

Let {ξa, a ∈ A} are random variables with finite set of possible values

Ra =
{
ra1 , . . . , raNa

} ⊂ R, a ∈ A.

To each random variables can be put in correspondence set of events

ξa =⇒ Ya = {Ya(ra), ra ∈ Ra} .

The event Ya(ra) = {ξa ≤ ra} = {ω : ξa(ω) ≤ ra} is the event from definition
of distribution function of random variable and a set with inserting structure
of dependences. To first part of set {ξ,K} (random variables) can be put in
correspondence set of events:

ξ =⇒ Y =
∑
a∈A

Ya.

For each random set of events Kβ, β ∈ B can be put in correspondence the
finite set of events Xβ :

Kβ ⇐⇒ Xβ.

To second part of set {ξ,K} can be put in correspondence common set of
events X:

K ⇐⇒ X =
∑
β∈B

Xβ , β ∈ B.

Definition 4. Bipartite set of events is union of two sets: set of events that
determined by random variables, and set of events that determined by random
sets of events:

{Y,X} = {Ya, Xβ , a ∈ A, β ∈ B} . (2)

Complete characteristics of bipartite set of events is given by its probabilistic
distribution. In paper [3] were found all forms of probabilistic distribution of
bipartite set. In paper we present one of them.

Definition 5. Probabilistic distribution of the I-st sort for the bipartite set of
events is a set from probabilities of type {Y,X}:⎧⎨⎩p (r,X) = P

( ⋂
a∈A

{ ⋂
y �=r

{ξ = y}c} ⋂
xβ∈X

xβ

⋂
xβ∈Xc

xc
β , a ∈ A, β ∈ B

)⎫⎬⎭ ,

where xβ ∈ X, β ∈ B, r = {ra, ra ∈ R}, X = {Xβ, Xβ ⊆ Xβ}.
The comparison between system’s elements is difficult, but it is offered the

reduction a system’s elements to corresponding bipartite sets of events. If we
known the probabilistic distributions of the bipartite sets of events then we can
compare them by using the Minkovsky set-operations [2].
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3 Minkovsky Set-Operations

The operation under events from the each part consisted the bipartite sets of
events is called an arbitrary Minkovsky set-operation. For example, the
Minkovsky symmetry difference set-operation of two bipartite sets of random
events s1 and s2:

s1(Δ)s2 =
{
Y1
a(ra)ΔY2

a(ra), X1
βΔX2

β, Xβ ⊆ Xβ , ra ∈ Ra, a ∈ A, β ∈ B
}
.

The probability of the Minkovsky symmetry difference set-operation is

P
(
s1(Δ)s2

)
=

1

|A|
∑
a∈A

1

|Ya|
∑
ra∈R

P
(
Y1
a(ra)ΔY2

a(ra)
)
+

+
1

|B|
∑
β∈B

1

|Xβ|
∑

Xβ⊆Xβ

P
(
X1

βΔX2
β

)
.

It was proved in work [2] that probability of the Minkovsky symmetry dif-
ference set–operation of two bipartite sets of random events can be used as a
distance between sets.

4 Terrace-Event for Bipartite Set of Event

Let’s spend the redenotation of bipartite set of random events presented by
formula (2) in that way:

Z = {Y,X} = {Ya,Xβ, a ∈ A, β ∈ B}.

Let s is bipartite set of random events, which is a subset of bipartite set of
random events Z (i.e. s ⊆ Z):

s = {YsA ,XsB , sA ⊆ A, sB ⊆ B}.

Definition 6. Terrace–event for bipartite set of events s represents as a set of
not intersected events where each event is a subset of appropriate set of events
Ya or Xβ:

ter(s) = ter{YsA ,XsB} =
⋂

a∈sA

ter(Ya)
⋂

β∈sB

ter(Xβ) =

=
⋂
a∈sa

Ya(ra)
⋂

β∈sB

( ⋂
xβ∈Xβ

xβ

⋂
xβ∈Xc

β

xc
β

)
,

sA ⊆ A, sB ⊆ B, ra ∈ Ra, Xβ ⊆ Xβ, Ra =
{
ra1 , . . . , raNa

} ⊂ R, a ∈ A.
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5 Set of Bipartite Sets of Events

Definition 7. Set of bipartite sets of events is a set, consisting of the sets of
events, whose first part corresponds to the random variables, and second part —
to the random sets:

S =
{
s1, . . . , sn

}
. (3)

Here are the possible types of the structure of the set S:

1. Set of similar sets of events. All sets are generated by the same bipartite set
of random elements, they are described by the same bipartite set Z, hence
the terrace–event of set si, i = 1, . . . , n are the same. They differ from each
other by the probability of their occurrence:

S =
{
s1 =

{Y1
a , X

1
β

}
, . . . , sn =

{Yn
a ,Xn

β

}
, a ∈ A, β ∈ B

}
.

This situation is very simple.
2. Set of subsets of the same bipartite set. This is the situation, when bipartite

sets of events si are the subsets of the same bipartite set Z:

S =
{
s1 =

{
Ys1A ,Xs1B

, s1A ⊆ A, s1B ⊆ B
}

, . . . ,

sn =
{YsnA ,XsnB

, snA ⊆ A, snB ⊆ B
}}

.

3. Set of subsets of the different bipartite sets. In this case, bipartite sets
of events si are the subsets of the same bipartite set Zi = {Yi,Xi} =
{Yi

a,X
i
β , a ∈ Ai, β ∈ Bi}:

S =
{
s1 =

{
Yk1

A
,Xk1

B
, k1

A ⊆ A1, k1
B ⊆ B1

}
, . . . ,

sn =
{Ykn

A
,Xkn

B
, kn

A ⊆ An, kn
B ⊆ Bn

}}
.

This situation is the most common, and set with this type structure is more
difficult for studying.

6 Probabilistic Distribution for the Sets of Bipartite Sets
of Events

In this part of the paper we present the form of the probability distribution for
the set of bipartite sets of events.
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6.1 Set of Similar Sets of Events

Let the probabilistic distribution of bipartite set of events s ⊆ Z is given:

p (s) = p (Ya, Xβ) = p (r,X) =

= P
( ⋂

a∈A

{Ya(ra)}
⋂

xβ∈X

xβ

⋂
xβ∈Xc

xc
β , a ∈ A, β ∈ B

)
,

xβ ∈ X, β ∈ B, r = {ra, ra ∈ R}, X = {Xβ, Xβ ⊆ Xβ} .
Then probabilistic distribution for the set of bipartite sets of events S ={

s1, . . . , sn
}

p (St) , St ⊆ S has next form:

p
(
St

)
= P

( ⋂
si∈St

s

)
=

= P
( ⋂

si∈St

{ ⋂
a∈A

Yi
a(ra)

⋂
xβ∈X

xβ

⋂
xβ∈Xc

xc
β

})
, St ⊆ S.

6.2 Set of Subsets of the Same Bipartite Set

As it shown above, in this situation,

S =
{
s1 =

{
Ys1A ,Xs1B

, s1A ⊆ A, s1B ⊆ B
}

, . . . ,

sn =
{YsnA ,XsnB

, snA ⊆ A, snB ⊆ B
}}

.

Let the probabilistic distribution of all bipartite sets of events is given

p
(
si
)
, si ∈ S.

Probabilistic distribution for this type of set of bipartite sets of events S:

p
(
St

)
= P

( ⋂
si∈St

si

)
== P

( ⋂
si∈St

{ ⋂
a∈siA

ter(Ya)
⋂

β∈siB

ter(Xβ)
}
=

= P
( ⋂

a∈sia

Ya(ra)
⋂

β∈siB

( ⋂
xβ∈Xβ

xβ

⋂
xβ∈Xc

β

xc
β

))
, siA ⊆ A, siB ⊆ B, St ⊆ S.

6.3 Set of Subsets of the Different Bipartite Sets

Now we considered the third type of set, when bipartite sets of events si are the
subsets of the same bipartite set Zi = {Yi,Xi} = {Yi

a,X
i
β, a ∈ Ai, β ∈ Bi}:

S =
{
s1 =

{
Yk1

A
,Xk1

B
, k1

A ⊆ A1, k1
B ⊆ B1

}
, . . . ,
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sn =
{Ykn

A
,Xkn

B
, kn

A ⊆ An, kn
B ⊆ Bn

}}
,

here Aj is the indices set for numerical part of the bipartite set sj ∈ S, Bj —
the indices set for plural part. The denotation kj

A made for index from indices

set Aj . Likewise, denotation kj
B — made for index from indices set Bj . So, set

of event Yk1
A
⊆ Yi, and Xk1

B
⊆ Xi

β .
Probabilistic distribution for this type of set of bipartite sets of events S is as

follows:

p
(
St

)
= P

( ⋂
si∈St

si

)
== P

( ⋂
k1
A∈A1

Yk1
A
. . .

⋂
kt
A∈At

Ykt
A

⋂
k1
B∈B1

( ⋂
xβ∈X

k1
B

xβ

⋂
xβ∈Xc

k1
B

xc
β

)
. . .

⋂
kt
B∈Bt

( ⋂
xβ∈Xkt

B

xβ

⋂
xβ∈Xc

kt
B

xc
β

)
,

Yk1
A
⊆ Yi, Xk1

B
⊆ Xi

β, St ⊆ S.

In this formula for simplicity for a subset St is determined subset
{
s1, . . . , st

}
with the indices set for numerical part A1, . . . , At, indices set for plural part
B1, . . . , Bt, and corresponding indices k1

A, . . . , kt
A and k1

B, . . . , kt
B. Actually, it

considered arbitrary set of bipartite sets St ⊆ S with power t (i.e. |St| = t).

7 Applications of Sets of Bipartite Sets of Events

Now we consider the practical problems of application of the described sets.
Sets of described types can be generated as a result of the following tasks:

– determining the best or the worst elements of the system,

– classification of elements or groups,

– ranking system elements,

– factor analysis,

– cluster analysis,

– data visualization,

– search association rules (finding relationships between the sets of events),

– covariance analysis of polytypic data (identifying links between different
data),

– regression analysis of polytypic data (depending on the construction of func-
tions between the data),

– predicting the behavior of the system,

– decision-making in fuzzy data,

– bank (insurance) score.
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8 Conclusion

One of the significant, fundamental and demanded tasks of modern statistical
data analysis and computer science is to develop methods for the analysis of
different types of data. In the paper a situation was considered, when one part
of the researching data is numerical and the second part is multiple.

The notion of the set of bipartite sets of events, consisting of the sets of events,
whose first part corresponds to the random variables, and second part — to the
sets, was offered.

The work considers all possible types of the set of bipartite sets. And it
presents the forms of the probability distribution for the described types of set
of bipartite sets of events. The concepts of the Minkovsky set-operation of the
set of bipartite sets of events and its probability are resulted. Also in the paper
practical problems of application of the given set are considered.
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1 Introduction

Investigations of sound propagation in the atmosphere are necessary for the
prediction of its characteristics, finding direction toward a sound source, and
quantitative interpretation of the data of acoustic sounding [1]. In the outdoor
atmosphere, the sound propagation is influenced by a large number of factors,
including the vertical atmospheric stratification, turbulence, viscosity, and effects
caused by finite dimensions of sound beams in the transverse direction, that is,
by the angular divergence of acoustic beams broadened due to the atmospheric
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turbulence [2, 3]. Difficulties of analytical approaches to a solution of the problem
of acoustic radiation transfer through the outdoor atmosphere call for the use of
numerical methods (for example, see [4, 5]), from which the method of statistical
simulation (Monte Carlo) is most promising [6, 7]. This method allows sound
scattering on the acoustic refractive index fluctuations caused by wind velocity
and temperature inhomogeneities to be taken into account for the most realistic
models of the atmosphere.

The equation of acoustic radiation transfer in the turbulent atmosphere in the
form of the Neumann series for the acoustic ray intensity was derived in [8]. In
[9], the Monte Carlo method was first used to solve the problem of acoustic wave
propagation through a vertically stratified turbulent atmosphere. The density of
collisions of acoustic particles - phonons - was estimated in terms of the acoustic
energy flux density scattered by the atmospheric turbulence derived in [10] in
the single scattering approximation.

In the present work, we use the modified Monte Carlo algorithm to solve the
problem of acoustic radiation propagation in the atmosphere.

2 Model of the Atmosphere and Geometry of the
Numerical Experiment

For a 500-m standard plane-stratified turbulent atmosphere, the total attenua-
tion coefficient was calculated from the formula

σatt(zi) = σcl + σmol(zi) + σT (zi) + σV (zi), (1)

where σcl and σmol(zi) are the coefficients of classical and molecular absorption,
σT (zi) and σV (zi) are the coefficients of scattering by turbulent temperature and
wind velocity fluctuations, zi = zi−1 + dz, dz = 20m, i = 1, . . . , 26, and z0 = 0.

The coefficients of classical and molecular absorption σcl and σmol(zi), in m−1,
were taken from [11, 12].

Analytical expressions for the scattering coefficients were derived in [9, 13]
for the von Karman model of the three-dimensional spectra of temperature and
wind velocity fluctuations:

σT (zi) = 0.9λ−1/3(zi)C
2
T (zi)T

−2(zi)L
−7/3
0 (zi)

×{
0.07143

[
B7/6(zi)− λ7/3(zi)

]− 0.1A2(zi)
[
B−5/6(zi)− λ−5/3(zi)

]
−A(zi)

[
B1/6(zi)− λ1/3(zi)

]}
;

(2)

σV (zi) = 1.569ε2/3(zi)λ
−1/3(zi)c

−2(zi)L
−13/3
0 (zi)

×{
0.1429 [B(zi) + 2A(zi)]

[
B7/6(zi)− λ7/3(zi)

]
−0.0769 [B13/6(zi)− λ13/3(zi)

]−A(zi) [A(zi) + 2B(zi)]

× [
B1/6(zi)− λ1/3(zi)

]− 0.2A2(zi)B(zi)
[
B−5/6(zi)− λ−5/3(zi)

]}
,

(3)

where λ(zi) is the wavelength, c(zi) is the velocity of sound, L0(zi) in the outer
scale of the atmospheric turbulence, C2

T (zi) is the structure function of the wind
velocity field T (zi), ε(zi) is the kinetic energy dissipation rate,
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A(zi) = 2L2
0(zi) + λ2(zi);

B(zi) = 4L2
0 + λ2(zi).

(4)

The normalized scattering phase functions were calculated from the following
formulas [9, 13]

gT (zi, θ) = 0.1062L6
0(zi) cos

2 θ
[
2L2

0(zi)(1− cos θ) + λ2(zi)
]−11/6

×{
0.07143

[
B7/6(zi)− λ7/3(zi)

]− 0.1A2(zi)
[
B−5/6(zi)− λ−5/3(zi)

]
−A(zi)

[
B1/6(zi)− λ1/3(zi)

]}−1
;

(5)

gV (zi, θ) = 0.1191L
13/3
0 (zi) cos

2 θ(1 + cos θ)

(
A(zi)

2L2
0(zi)

− cos θ

)−11/6

×
{
0.1429 [B(zi) + 2A(zi)]

[
B7/6(zi)− λ7/3(zi)

]
−0.0763

[
B13/6(zi)− λ13/3(zi)

]
−A(zi) [A(zi) + 2B(zi)]

×
[
B1/6(zi)− λ1/3(zi)

]
− 0.2A2(zi)B(zi)

[
B−5/6(zi)− λ−5/3(zi)

]}−1

.

(6)

Calculations were performed for point-sized and finite-aperture (circular aper-
ture with a diameter of 1m.) sound sources with acoustic power of 1W placed
at altitude zs above the Earth’s surface for frequencies of 1, 2, 3, and 4kHz typ-
ically used in sodars (acoustic radars) [1]. Emitted radiation was continuous in
the solid angle subtended by the circular cone of half-angle φ = 2.5, 5, 10, 15,
20, and 25◦ with respect to the vertical I|0(φ, ϕ) = I0(φ), that is, independent of
the azimuth angle ϕ. For the finite-aperture sources, calculations were performed
for uniform or Gaussian distribution of emitted radiation over the source aper-
ture. According to the data of sodar [14] and lidar measurements [15], the outer
scale of turbulence L0 changes from a few meters to 150 m in the atmospheric
boundary layer. In our calculations, it was set equal to 2, 4, 6, 8, 10, 15, 20, 40,
60, and 80m. Acoustic radiation of the source propagated through the plane-
parallel layers of the atmosphere with the coefficients of classical and molecular
absorption σcl(i) and σmol(i) and scattering on turbulent temperature and wind
velocity fluctuations σT (i) and σV (i) being constant within these layers, where
i = 1, . . . , 25. In calculations of their altitude dependence, the vertical profiles
of the atmospheric temperature, pressure, and velocity of sound were taken for
the standard model of the atmosphere [16].

Figure 1 shows the vertical profiles of the total attenuation coefficient calcu-
lated from Eq. (1) for frequencies F = 1− 4kHz, and Figure 2 shows the vertical
profiles of the phonon scattering probability Psc(i) = [σT (i) + σV (i)]/σatt(i),
where σT was calculated from Eq. (2) and σV was calculated from Eq. (3). It
should be noted that at a frequency of 2kHz, the turbulent attenuation becomes
comparable with the molecular absorption in the surface layer of the atmosphere
for L0 ≥ 15m (sc(i) ≥ 0.5, see Fig. 2.

As demonstrated in [6], at the frequency F = 1kHz they are comparable for
L0 ≥ 20m. In this case, the main contribution to the turbulent attenuation of
sound propagating along the vertical direction comes from the dynamic turbu-
lence. The contribution of temperature fluctuations is by 1–2 orders of magnitude
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Fig. 1. Vertical profiles of the total attenuation coefficient for F = 1 − 4kHz and
L0 = 10 (a) and 80m (b)

Fig. 2. Vertical profiles of the phonon scattering probability for F = 1 − 4kHz and
L0 = 10 (a) and 80m (b)

smaller. This was also pointed out in [4]. From Fig. 1 it can also be seen that
in the surface layer, the attenuation coefficient increases approximately by an
order of magnitude when the outer scale of turbulence L0 increases from 10 to
80m. In this case, the phonon scattering probability (Fig. 2) increases from 0.35
to 0.95. These data are confirmed by the results presented in [17], where it was
concluded that the magnitude of the excess turbulent attenuation fluctuates in
wide limits and can be as great as the classical and molecular absorption.

The normalized phase functions of sound scattering on temperature fluctua-
tions calculated by Eq. (5), and the normalized phase functions of sound scat-
tering on wind velocity fluctuations calculated by Eq. (6) for frequencies in the
range 1-4 kHz.

3 Computational Algorithm

To construct a computational algorithm, both standard computational proce-
dures borrowed from [18] and procedures developed in [6, 7, 19] with allowance
for the specifics of sound interaction with the atmosphere were used. We con-
sidered a point-sized source of acoustic radiation placed at an altitude of 35 m
above the ground and having an acoustic power of 1 W. A hypothetical receiver
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was placed above the source at an altitude of 500 m from the ground. The coor-
dinates of the point of phonon emission (x0, y0, z0) and their directional cosines
(ω1, ω2, ω3) were calculated using the procedure described in [18]. The Earth’s
surface was considered absolutely absorbing, and when the phonon trajectory
intersected the plane z = 0, the phonon was considered absorbed, and a new
phonon history was modelled. The phonon free path was modelled by the fol-
lowing scheme.

a) Let c be the cosine of the angle between the positive direction of the z
axis and the direction of phonon emission; then Δl = dz/c be the distance
passed by the phonon through atmospheric layers with attenuation coefficients
σatt[1], . . . , σatt[N ].

b) By subsequent subtraction, we find the number j of the layer such that

z[1]− z0
c

σatt[1]+Δl

j−1∑
m=2

σatt[m] < ln(rand) ≤ z[1]− z0
c

σatt[1]+Δl

j∑
m=2

σatt[m],

where rand is a random number uniformly distributed in the interval [0,1].
c) If there is no number j satisfying condition (14), it is considered that the

phonon have been escaped from the medium; otherwise,

lfree =
z[1]− z0

c
+Δl(j − 2)−

ln(rand) +Δl
j−1∑
m=2

σatt[m]

σatt[j]
.

The point of the next collision was chosen by the well-known formulas [18].
Then the collision type was chosen. The following procedure was used.
d) p1 = σcl(j), p2 = σmol(j), p3 = σT (j), p4 = σV (j).
e) P1 = p1, P2 = p1 + p2, P3 = p1 + p2 + p3, P4 = p1 + p2 + p3 + p4.
f) F1 = P1/P4, F2 = P2/P4, F3 = P3/P4, F4 = P4/P4 = 1.
g) α = rand, find the number k = min{l : α < Fl}.
h) If k = 1, classical absorption was simulated; if k = 2, molecular absorption;

if k = 3, scattering on the temperature fluctuations; otherwise, scattering on the
wind velocity fluctuations.

In the case of absorption, the phonon was annihilated, and its statistical weight
was added to the element of the array determining the value of the acoustic wave
intensity absorbed in the j-th atmospheric layer. In the case of scattering, the
scattering angle was determined by the scattering phase function given by Eq. (5)
for scattering by temperature fluctuations and by Eq. (6) for scattering by wind
velocity fluctuations. The procedure of simulation of the scattering angle was
described in detail in [20] Calculations were carried out on a personal computer
for 106 phonon histories, which provided acceptable calculation errors of 3–10%.

4 Calculation Results and Their Discussion

Figure 3 shows dependencies of the transmitted (Itr , W/m2) and multiply scat-
tered radiation intensities (Imsc, W/m2) over the detector zones for F = 1.7 kHz,
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φ = 5◦ (a and c) and 15◦ (b and d); F = 4kHz, φ = 5◦ (e and g) and 15◦ (f
and h), source altitude zs = 35m, and outer scale of turbulence, in meters, indi-
cated at the upper right of the figure. Results of our calculations demonstrate that
the contribution of multiple scattering Imsc to the transmitted radiation intensity
Itr within the cone of source radiation increases with the outer scale of turbulence
from 10.5% (for L0 = 10m) to 53% (forL0 = 20m); for L0 = 40m, the transmitted
radiation intensity is completely determined by multiple scattering. In this case,
the sharp decrease of Itr and Imsc in Fig. 3 is explained by the fact that received ra-
diation is beyond the limits of the cone of source radiation divergence. Within the
cone of source radiation divergence, the multiple scattering contribution increases
from 4.7 · 10−7 to 4.3 · 10−6 W/m2, that is, by 89% when L0 increases from 10 to
80 m. This increase in multiple scattering contribution virtually compensates for
the decrease in the transmitted radiation intensity with increasing outer scale of
turbulence and, as can be seen from Fig.3a, the transmitted radiation intensity
for ≤ 50m is virtually independent of the outer scale of turbulence.

Fig. 4. Total attenuation of acoustic waves
propagating along vertical paths versus alti-
tude. Here the solid curves show the results
of our Monte Carlo calculations; closed tri-
angles and circles show results of acoustic
measurements in [21] with a tethered bal-
loon.

Figure 4 shows the total attenu-
ation of acoustic waves propagating
along vertical paths versus distance.
Here the solid curves show the re-
sults of our Monte Carlo calculations,
and closed triangles and circles show
results of acoustic measurements per-
formed in [21] with a tethered bal-
loon. Calculations were performed for
the vertical profiles of the atmospheric
temperature and relative air humidity
measured in [21] during first accent
and descent of the tethered balloon on
April 17, 1973. A good agreement of
the results of our Monte Carlo calcula-
tions with the experimental data [21]
can be seen. This demonstrates the ef-
ficiency of the developed Monte Carlo
algorithm.

Statistical estimates of the trans-
mitted radiation intensity for finite-
aperture sources (with a circular

aperture 1 m in diameter and a Gaussian distribution of emitted radiation) with a
frequency of 2 kHz demonstrated that in the examined angular source divergence
angles, it increased by 66–68% compared to that for the point source. For the
uniform distribution of emitted radiation over the source aperture, Itr(0

◦, 2.5◦)
remained virtually unchanged. For F = 3kHz, L0 = 10m, φ = 2.5◦ , and Gaus-
sian distribution of emitted radiation, Itr(0

◦, 2.5◦) = 1.6 · 10−4 W/m2, that is,
it increased by a factor of 2.2 compared to Itr(0◦, 2.5◦) = 7.26 · 10−5 W/m2 for
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Fig. 3. Distribution of the intensity of transmitted (Itr, W/m2) and multiply scattered
radiation (Imsc, W/m2) over the detector zones for F = 1.7kHz, φ = 5 (a and c) and
15◦ (b and d); F = 4kHz, φ = 5 (e and g) and 15◦ (f and h) the indicated values of
the outer scale of atmospheric turbulence
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Fig. 5. Effect of the finite circular source aperture (D = 1m) with uniform and Gaus-
sian distributions of emitted radiation on the intensity of transmitted (Itr) and multiply
scattered acoustic radiation Imcs for F = 3kHz, φ = 2.5◦, and L0 = 10m

the point source (see Fig. 5). At the same time, it remained virtually unchanged
for the uniform distribution of emitted radiation.

Fig. 6. Dependence of the transmitted ra-
diation intensity on the source divergence
angle and its analytical approximation by
the power-law dependence (the solid curve)
for F = 4kHz and L0 = 10m

Analytical approximation of the re-
sults of Monte Carlo calculations by
power-law, logarithmic, and exponen-
tial dependences demonstrated that
they are best described by a power-
law dependence of the form

Itr(0
◦, φ) = Aφ−B , (7)

where Itr is in W/m2 and φ is in de-
grees, with the correlation coefficient
close to 1.

Figure 6 shows the dependence
Itr(0

◦, φ) for the radiation frequency
F = 4kHz and outer scale of turbu-
lence L0 = 10m. It can be seen that

when the source divergence angle increases from 5 to 25◦, Itr decreases by 96%,
which is essential and confirms the necessity of application of massive protective
shields in sodars [1]. Table 1 below gives values of the corresponding constants
A and B entering into formula (17) for L0 = 10m and typical sodar frequencies.

Table 1. Values of the coefficients in Eq. (7)

F , kHz A B

1 2.8 · 10−3 2.00
1.7 1.7 · 10−3 2.00
2 1.4 · 10−3 2.03
3 2 · 10−5 2.02
4 4 · 10−6 1.97
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From Table 1 it follows that the dependence on the source divergence angle
is quadratic in character. It is impossible to obtain the dependence of these
coefficients on the outer scale of turbulence in this stage, because it is within the
limits of the calculation error.

5 Conclusions

Statistical estimates of the contribution of multiply scattered radiation to the
intensity of acoustic radiation transmitted through the lower 500-m atmospheric
layer demonstrated that for a frequency of 1.7 kHz, it increases from 15 to 80%
with the outer scale of atmospheric turbulence. For a frequency of 4.5 kHz, it
increases from 30% to the value comparable with the total transmitted radiation
intensity.

The contribution of multiple scattering to the transmitted radiation inten-
sity increased with the outer scale of turbulence from 10.5% (for L0 = 10m)
to 53% (for L0 = 20m); for L0 = 40m, the transmitted radiation intensity was
completely determined by the contribution of multiple scattering. Statistical es-
timates demonstrate that the intensity of transmitted radiation within the limits
of the cone of source radiation is virtually independent of the outer scale of at-
mospheric turbulence. The decrease in the transmitted radiation intensity with
increase in the source divergence angle is quadratic in character. The transmit-
ted radiation intensity Itr decreases by 96% when the source divergence angle
increases from 5 to 25◦ . This is essential and confirms the necessity of applica-
tion of massive protective shields in sodars. These quantitative estimates can be
used for interpretation of results of acoustic sounding and for prediction of the
conditions of acoustic radiation propagation in the atmosphere. The results of
Monte Carlo calculations are in good agreement with the available experimental
data, which confirms the efficiency of the developed Monte Carlo algorithm.
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Abstract. This paper describes genetic algorithm of neural network
training with automatic architecture generation, proposed method par-
allelization of training and modification to this method. And contains A
comparative analysis of the original algorithm without the use of paral-
lelization with proposed parallelization algorithm by splitting into groups
and exchange of individuals between groups.
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1 Introduction

Recent time parallelization of neural networks training is one of the trends in
the development of neural networks. Due to the fact that the training process is
complex, requiring a time consuming task. With the increasing number of inputs
and complexity of the neural network architecture of computing the number of
operations required for computation and training time will only increase. Par-
allelization of the neural network training can significantly reduce the amount
of time required for training. There is a fairly large number of papers devoted
to this subject. Most of them, considered parallelization of classical gradient
methods of training neural networks (Backpropagation methhod) [1,3,4,6,7,8,9].
There is also a small number of papers on the parallelization of training neu-
ral networks based on genetic algorithms as a mechanism of weights correction
with a given architecture of the neural network [2,5]. In this paper, we propose
an approach to parallelization of neural networks using a more complex genetic
algorithm, belonging to the category of neuroevolution genetic algorithms. The
proposed algorithm provides correction weights simultaneously with the auto-
matic construction of a neural network architecture. Additionally offers one of
the possible modifications of the proposed method. Computational experiments
were carried out for the problem of time series prediction.
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2 Genetic Algorithm of Neural Network Training with
Automatic Architecture Generation

Proposed genetic algorithm utilizes direct genetic encoding. Direct encoding al-
lows simplify interpretation of neural network architecture obtained through ge-
netic search. [10] Genetic algorithm based on supervised learning. The choice of
supervised learning caused by the usage of the neural networks for the problem of
forecasting of time-series in the experiment part. The algorithm starts with the
process of generating the initial population of individuals. Each individual of the
initial population is a minimum size neural network with pre-established number
of input and output neurons, depending on the conditions of the problem. All
input and output neurons connects with each other after creation. Minimum size
neural network presented in Figure 1 and it’s data shown in Table 1.

Fig. 1. Minimum size neural network

Table 1. Minimum size neural network data

Neuron, NO 1 2 3

Weights [0, 1] [0, 2] [0,5; 0,6]

Input connections [network input 1] [network input 2] [1, 2]

Output connections [3] [3] [network output 1]

Training starts right after initial population generation. Training process uses
training samples. Each individual in population performs computation on ev-
ery sample in training samples and compares individual result with desired re-
sult from the sample. After this each individual calculates it’s fitness function
value defined as inverse of summarized error on every sample in training sam-
ples. Training performs genetic operations, such as reproduction and mutation,
over individuals of the population. Modified classic one-point crossover opera-
tion used as reproduction operation in algorithm [3]. Crossover point defined
as middle value of number of neurons in parent network with bigger number
of neurons. After computation of the crossover point, algorithm copies neurons
from parent individuals into a new individual. Connections of the neurons also
copied. If both neurons, which this connection connects, get copied into a new
individual, connection remain unchanged. Otherwise, if one of the neurons is
absent, connection changes and instead of non-existing neuron it uses another,
randomly chosen neuron. Reproduction operation performs over a given num-
ber of individuals in the population with best value of fitness function. Each
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Fig. 2. Reproduction with crossover point equals 2

selected individual selects another individual from the selected group to perform
reproduction. Reproduction operation presented in Figure 2.

Mutation performs over a given number of individuals with worst value of
fitness function. Mutation consists two phases. On the first phase, mutation
randomly adds or remove hidden neurons to selected individuals. On the sec-
ond phase, mutation randomly changes weights of the connections. After genetic
operations algorithm sorts population based on fitness function value and re-
moves individuals with worst fitness function value from the population. Repro-
duction, mutation and removal of weak individuals performs certain number of
times. Later starts comparison of results of best individual on testing samples
with provided testing error threshold. If the error of best individual less than a
given error threshold, training is considered successful and the algorithm stops.
Otherwise, training starts again.

3 Parallelization of Genetic Algorithm

Proposed parallelization method based on splitting entire population of individ-
uals into separate groups. The number of groups is set at the begging of the
algorithm. The number of individuals in each group is equal or nearly equal.
Each group trains independently. This allows to make several different genetic
searches at the same time. After completion of training in each group, algo-
rithm selects best individual from groups. Training with splitting population
into groups presented in Figure 3.

The work also addressed method of partitioning the population into groups
and splitting the training sample into groups so that each group was trained
on its portion of the sample shown in Figure 4. This approach can significantly
reduce the time and number of operations required for each training group com-
pared with the previously proposed approach. However, this approach can only
be used under certain conditions, namely the absence of a logical connection be-
tween sample examples of learning itself. In the context of the problem of time
series prediction, this approach can not be used in connection with what has not
been considered in detail.
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Fig. 3. Training with splitting population into groups

Fig. 4. Training with splitting population and training samples into groups

In addition to the partition of the population into groups, this paper proposes
the use of an exchange of individuals between groups. At each learning step,
after performing the reproduction, mutation and deletion of weak individuals,
each group performs the exchange, in which randomly selected a predetermined
number of individuals with the best fixtures and move them to another randomly
selected group. This change can increase the diversity of individuals in each
group, allowing groups to coordinate their search direction, based on the training
results already obtained in the other groups. This modification is also applicable
to the approach to the partition of the population into groups and crashed on a
training sample group.

4 Results of Experiments

To compare performance of genetic algorithm without parallelization and with
parallelization and also with parallelization and exchange of individuals, se-
ries of experiments was performed. Each experiment contained neural network
training with automatic architecture generation on the problem of forecasting
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time-series. Experiment time-series had information about numerical parameter
over 14 years. Training and testing samples was created by using window method
with window size of 4 years. Training samples size was 7 and testing samples size
was 3. Neural network gets 4 input values contains information about 4 years
and returns value for the next year. Population had 100 individuals. The number
of generations equals 30. The number of groups was set to 4. The sampling of
results are shown in the Table 2 and it’s graph presented in Figure 5.

Fig. 5. Time per experiment graph

Table 2. Time per experiment

Method 1 2 3 4 5 6 7 8 9

1 13,98 14,03 13,3 12 12,5 12,84 13,7 12,42 12,9

2 5,37 6,64 5,89 6,53 6 6,46 5,85 5,46 5,84

3 5,06 3,82 5,77 4,77 5,32 4,32 5,71 4,36 4,93

Where Method 1 - without parallelization, Method 2 - parallelization with
splitting into groups, Method 3 - parallelization with splitting into groups and
exchange.

5 Conclusion

The experimentation results shows the success of the use of proposed paral-
lelization method for presented genetic algorithm based on splitting individuals
of population into groups and his modification with the exchange of individuals.
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Abstract. Stationary functioning of a closed queueing network with
temporarily non-active customers is analyzed. Non-active customers are
located in the network nodes in queues, being not serviced. For a cus-
tomer, the opportunity of passing from its ordinary state to the tem-
porarily non-active state (and backwards) is provided. Quantity of work
for customer service is a random distributed value. Stationary distribu-
tion insensitivity with respect to functional form of distribution of work
quantity for customer service is established.

Keywords: closed queueing network, temporarily non-active customers,
stationary distribution insensitivity.

1 Introduction

Currently, attention to queueing theory is mainly stimulated by the need to
apply results of this theory to important practical problems. During the past
years, an important research effort has been devoted to the problem of queueing
systems reliability. Herewith, the problem of customer reliability becomes rele-
vant too. Indeed not only queueing system can break down. Customers may also
lose their quality indicators. Queueing network with temporarily non-active cus-
tomers is a model with customers, which are partly unreliable. The necessity of
their study was caused by practical considerations, because such networks allow
us to consider models with partially unreliable customers. Non-active customers
are located in the network systems in queues, being not serviced. For a customer,
the opportunity of passing from its ordinary state to the temporarily non-active
state (and backwards) is provided. Non-active customers can be interpreted as
customers with defect that makes them unfit for service. G. Tsitsiashvili and M.
Osipova [1,2] have observed an open exponential queueing network with non-
active customers and have established the form of stationary distribution.

The standard assumption in analysis of classical queueing networks [3,4] is
that service time is exponentially distributed random value. But real numerous
statistical data prove the opposite. Therefore there is an actual problem to de-
velop an analytical apparatus for the study of queueing networks with arbitrary
functions of service time distribution. Currently, this problem attracts increasing
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attention of researchers. The first result about stationary distribution insensitiv-
ity belongs to B.A. Sevastyanov, who has observed queueing system M/G/m/0
and has proved stationary distribution insensitivity [5]. BCMP-theorem (Bas-
kett, Chandy, Muntz, Palacios) [6] is the first result about stationary distribu-
tion insensitivity for queueing networks. We have generalized the result [1,2] in
the case of random distributed service times [7] – [9]. We have established sta-
tionary distribution insensitivity with respect to functional form of service time
distribution.

V. A. Ivnitsky [10] has considered quite interesting class of queueing networks:
customer service has not ”temporal” but so-called ”energetical” interpretation.
Every service operation is characterized by the random variable of work to be
performed. Stationary distribution insensitivity with respect to functional form
of distribution of work quantity for customer service has been obtained for dif-
ferent classes of open and closed queueing networks [10].

This paper provides stationary functioning of a closed queueing network with
temporarily non-active customers. Quantity of work for customer service is a
random distributed value. Stationary distribution insensitivity with respect to
functional form of distribution of work quantity for customer service is estab-
lished.

2 Queueing Network Description

A closed queueing network with the set of systems J = {1, 2, . . . , N} is con-
sidered. M customers are circulating in the network. Non-active customers are
located in the network systems in queues, being not serviced. There are input
Poisson flows of signals with rates νi and ϕi, i ∈ J . When arriving at the system
i ∈ J the signal with rate νi induces an ordinary customer, if any, to become a
non-active. When arriving at the system i ∈ J the signal with rate ϕi induces an
non-active customer, if any, to become an ordinary. Signals do not need service.

Let ni(t), n
′
i(t) are numbers of ordinary and non-active customers in the sys-

tem i ∈ J at time t accordingly.
Stochastic process z(t) = ((ni(t), n

′
i(t)), i ∈ J) is considered. Space of states

for process z(t) is Z = {((n1, n
′
1), . . . , (nN , n′

N ))|ni, n′
i ≥ 0,

∑
i∈J(ni + n′

i) =
M, i ∈ J}.

Numbering of ordinary customers in the system queue is made from the ”tail”
of the queue to the device. Non-active customers in the queue of the system
i ∈ J are numbered as follows: a customer, which has become non-active in the
last turn, has number n′

i. When arriving at the system i ∈ J the signal with
rate νi induces an ordinary customer with number 1 to become a non-active
customer with number n′

i+1. When arriving at the system i ∈ J the signal with
rate ϕi induces a non-active customer with number n′

i to become an ordinary
customer with number 1. So, the set of customers numbers in the system i ∈ J
is (1, . . . , n′

i, 1, . . . , ni).
The discipline of service is LCFS-PR. When arriving at the system i ∈ J

a customer receives immediate service and gets number ni + 1. Displaced
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customer keeps number ni and becomes the first in the queue to finish its ser-
vice. Customer service has not ”temporal” but so-called ”energetical” interpre-
tation. Every service operation is characterized by the random variable of work
to be performed. Quantities of work for customer service are independent ran-
dom distributed values ηi(ni + n′

i) with functions of distribution Bi(ni + n′
i, z)

(Bi(ni + n′
i, 0) = 0, i ∈ J) and expected values τi(ni + n′

i) < ∞. The speed of
customer service is αi(ni + n′

i), i ∈ J . Here ni, n
′
i are numbers of ordinary and

non-active customers in the system i ∈ J accordingly. After the service in the
system i ∈ J the customer passes to the system j ∈ J with the probability pi,j
(
∑N

j=1 pi,j = 1). Let pi,i = 0, i ∈ J .
A traffic equations system is:

εi =

N∑
j=1

εjpj,i, i ∈ J. (1)

It has been proved [4], that traffic equations system has the unique non-trivial
solution up to constant.

3 Stationary Distribution Insensitivity

The model of closed queueing network with temporarily non-active customers
when Bi(ni + n′

i, z) = 1 − exp{−μiz} (z > 0, μi > 0), τi(ni + n′
i) = 1/μi and

αi(ni + n′
i) = 1, i ∈ J, has been considered in [7]. The following theorem has

been proved.

Theorem 1. Markov process z(t) = ((ni(t), n
′
i(t)), i ∈ J) is ergodic and has

stationary distribution

p((n1, n
′
1), . . . , (nN , n′

N )) =
1

G(M,N)
p1(n1, n

′
1) . . . pN (nN , n′

N),

where ((n1, n
′
1), . . . , (nN , n′

N )) ∈ Z.

pi(ni, n
′
i) =

( εi
μi

)ni
( εiνi
μiϕi

)n′
i

, i ∈ J,

εi is the traffic equations system solution. G(M,N) – a normalizing constant,
which can be found from the condition:∑

((n1,n′
1),...,(nN ,n′

N ))∈Z

p((n1, n
′
1), . . . , (nN , n′

N )) = 1. (2)

We consider a closed queueing network, where quantities of work for customer
service are independent random distributed values. In this case z(t) is not a
Markov process.

Denote by ψi,k(t) – the remaining quantity of work for service of the customer,
which has position k in the system i at time t, ψi(t) = (ψi,1(t), . . . , ψi,ni+n′

i
(t)),

i ∈ J .
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dψi,ni+n′
i
(t)

dt
= −αi(ni + n′

i), i ∈ J.

So we introduce into consideration Markov process ζ(t) = (z(t), ψ(t)), where
ψ(t) = (ψ1(t), . . . , ψN (t)).

Denote by

F (z, x) = F (z, x1,1, . . . , x1,n1+n′
1
;x2,1, . . . , x2,n2+n′

2
; . . . ;xN,1, . . . , xN,nN+n′

N
) =

= lim
t→∞P{z(t) = z, ψi,1(t) < xi,1, . . . , ψi,ni+n′

i
(t) < xi,ni+n′

i
, i ∈ J}, z ∈ Z,

xk,l ∈ R ∀ k = 1, N, l = 1, nk + n′
k.

Functions F (z, x) are called stationary functions of probabilities states distri-
bution of the process ζ(t).

Theorem 2. Markov process ζ(t) is ergodic. Stationary functions of probabili-
ties states distribution of the process ζ(t) are:

F (z, x) = G−1(M,N)p1(n1, n
′
1)p2(n2, n

′
2) . . . pN (nN , n′

N )× (3)

×
N∏
i=1

ni+n′
i∏

s=1

1

τi(s)

xi,s∫
0

(1 −Bi(s, u))du, z ∈ Z,

where

pi(ni, n
′
i) = εi

ni

(εiνi
ϕi

)n′
i

ni+n′
i∏

s=1

τi(s)

αi(s)
, (4)

εi is the traffic equations system solution. G(M,N) is a normalizing constant,
which can be found from the condition (2).

Proof. Denote by ei ∈ Z – the vector, which coordinates equal 0 with the ex-
ception of (ni, n

′
i) = (1, 0), and denote by e′i ∈ Z – the vector, which coordinates

equal 0 with the exception of (ni, n
′
i) = (0, 1), i ∈ J .

We consider the process ζ(t). In the case of exponentially distributed ser-
vice times the process z(t) is ergodic by ergodic Markov theorem. The process
ζ(t) is also ergodic, because ζ(t) is obtained from z(t) by adding of continuous
components.

The process ζ(t) changes its states due to incoming signals. Such changes we
will call spontaneous changes.

Suppose that h is a small time interval and consider the probability

P{z(t+ h) = z, ψi,1(t + h) < xi,1, . . . , ψi,ni+n′
i
(t + h) < xi,ni+n′

i
, i ∈ J}.

This event may occur in the following ways:

1. From the moment t during time h there were no spontaneous changes and
service in any system was not over. The probability of this event is
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P{z(t) = z, ψi,1(t) < xi,1, . . . , αi(ni + n′
i)hIni>0 ≤ ψi,ni+n′

i
(t) <

< xi,ni+n′
i
+ αi(ni + n′

i)hIni>0, i ∈ J}×

×(1−∑N
i=1(νiIni>0 + ϕiIn′

i>0)h + o(h)).

2. During time h a customer has been serviced in the system j ∈ J and has
been routed to the system i ∈ J . There were no spontaneous changes.

P{z(t) = z− ei + ej, ψk,1(t) < xk,1, . . . , αk(nk + n′
k)hInk>0 ≤ ψk,nk+n′

k
(t) <

< xk,nk+n′
k
+ αk(nk + n′

k)hInk>0, k ∈ J, k �= i, k �= j,

ψj,1(t) < xj,1, . . . , ψj,nj+n′
j
(t) < xj,nj+n′

j
, ψj,nj+n′

j+1(t) <

< αj(nj + n′
j + 1)(h− θ),

ψi,1(t) < xi,1, . . . , αi(ni + n′
i − 1)(h− θ)Ini>1 ≤ ψi,ni+n′

i−1(t) <

< xi,ni+n′
i−1 + αi(ni + n′

i − 1)(h− θ)Ini>1}×

×Bi(ni + n′
i, xi,ni+n′

i
+ αi(ni + n′

i)θ)pj,iIni>0,

here 0 < θ < h.
3. During time h an informational signal with rate νi has arrived at the system

i ∈ J . There were no other spontaneous changes. No customer was serviced.

P{z(t) = z + ei − e′i, ψk,1(t) < xk,1, . . . , αk(nk + n′
k)hInk>0 ≤ ψk,nk+n′

k
(t) <

< xk,nk+n′
k
+ αk(nk + n′

k)hInk>0, k ∈ J, k �= i,

ψi,1(t) < xi,1, . . . , αi(ni + n′
i)h ≤ ψi,ni+n′

i
(t) <

< xi,ni+n′
i
+ αi(ni + n′

i)h}(νih+ o(h))In′
i>0.

4. During time h an informational signal with rate ϕi has arrived at the system
i ∈ J . There were no other spontaneous changes. No customer was serviced.

P{z(t) = z − ei + e′i, ψk,1(t) < xk,1, . . . , αk(nk + n′
k)hInk>0 ≤ ψk,nk+n′

k
(t) <

< xk,nk+n′
k
+ αk(nk + n′

k)hInk>0, k ∈ J, k �= i,

ψi,1(t) < xi,1, . . . , αi(ni + n′
i)hIni>1 ≤ ψi,ni+n′

i
(t) <

< xi,ni+n′
i
+ αi(ni + n′

i)hIni>1}(ϕih+ o(h))Ini>0.

5. During time h there were more than two changes of queueing network con-
dition. This probability is o(h).
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Therefore

P{z(t+ h) = z, ψi,1(t+ h) < xi,1, . . . , ψi,ni+n′
i
(t+ h) < xi,ni+n′

i
, i ∈ J} =

= P{z(t) = z, ψi,1(t) < xi,1, . . . , αi(ni + n′
i)hIni>0 ≤ ψi,ni+n′

i
(t) <

< xi,ni+n′
i
+ αi(ni + n′

i)hIni>0, i ∈ J}×

×(1−∑N
i=1(νiIni>0 + ϕiIn′

i>0)h + o(h))+

+
∑N

i=1

∑N
j=1,j �=i P{z(t) = z − ei + ej, ψk,1(t) < xk,1, . . . , αk(nk + n′

k)hInk>0 ≤
≤ ψk,nk+n′

k
(t) < xk,nk+n′

k
+ αk(nk + n′

k)hInk>0, k ∈ J, k �= i, k �= j,

ψj,1(t) < xj,1, . . . , ψj,nj+n′
j
(t) < xj,nj+n′

j
, ψj,nj+n′

j+1(t) < αj(nj +n′
j+1)(h−θ),

ψi,1(t) < xi,1, . . . , αi(ni + n′
i − 1)(h− θ)Ini>1 ≤ ψi,ni+n′

i−1(t) < (5)

< xi,ni+n′
i−1 + αi(ni + n′

i − 1)(h− θ)Ini>1}×
×Bi(ni + n′

i, xi,ni+n′
i
+ αi(ni + n′

i)θ)pj,iIni>0+

+
∑N

i=1 P{z(t) = z + ei − e′i, ψk,1(t) < xk,1, . . . , αk(nk + n′
k)hInk>0 ≤

≤ ψk,nk+n′
k
(t) < xk,nk+n′

k
+ αk(nk + n′

k)hInk>0, k ∈ J, k �= i,

ψi,1(t) < xi,1, . . . , αi(ni + n′
i)h ≤ ψi,ni+n′

i
(t) <

< xi,ni+n′
i
+ αi(ni + n′

i)h}(νih+ o(h))In′
i>0+

+
∑N

i=1 P{z(t) = z − ei + e′i, ψk,1(t) < xk,1, . . . , αk(nk + n′
k)hInk>0 ≤

≤ ψk,nk+n′
k
(t) < xk,nk+n′

k
+ αk(nk + n′

k)hInk>0, k ∈ J, k �= i,

ψi,1(t) < xi,1, . . . , αi(ni + n′
i)hIni>1 ≤ ψi,ni+n′

i
(t) <

< xi,ni+n′
i
+ αi(ni + n′

i)hIni>1}(ϕih+ o(h))Ini>0 + o(h).

Every probability from (5) may be expressed in terms of functions

Ft(z, x) = P{z(t) = z, ψi,1(t) < xi,1, . . . , ψi,ni+n′
i
(t) < xi,ni+n′

i
, i ∈ J}.

Consider the decomposition of Ft(z, x) in a Taylor series, taking into consid-
eration that

P{z(t) = z, ψi,1(t) < xi,1, . . . , αi(ni +n′
i)h ≤ ψi,ni+n′

i
(t) < xi,ni+n′

i
+αi(ni +n′

i)h, i ∈ J} =

= Ft(z, xi,1, . . . , xi,ni+n′
i
+ αi(ni + n′

i)h, i ∈ J)−
N∑

k=1

Ft(z, xi,1, . . . , xi,ni+n′
i
+ αi(ni + n′

i)h,
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i ∈ J, i �= k;xk,1, . . . , xk,nk+n′
k
−1, αk(nk + n′

k)h) + . . .

+Ft(z, xi,1, . . . , xi,ni+n′
i−1, αi(ni + n′

i)h, i ∈ J).

Therefore

P{z(t) = z, ψi,1(t) < xi,1, . . . , αi(ni +n′
i)h ≤ ψi,ni+n′

i
(t) < xi,ni+n′

i
+αi(ni + n′

i)h, i ∈ J} =

= Ft(z, xi,1, . . . , xi,ni+n′
i
, i ∈ J) +

N∑
i=1

∂Ft(z, xi,1, . . . , xi,ni+n′
i
, i ∈ J)

∂xi,ni+n′
i

αi(ni + n′
i)h−

−
N∑
i=1

∂Ft(z, xl,1, . . . , xl,nl+n′
l
, l ∈ J, l �= i;xi,1, . . . , xi,ni+n′

i−1, 0)

∂xi,ni+n′
i

αi(ni + n′
i)h+ o(h).

We consider Bi(ni + n′
i, xi,ni+n′

i
+ θ) as a function of the variable θ, use its

decomposition in a Taylor series and let t tend to infinity. So we obtain the
following equations system:

F (z, x) = F (z, x)+h

N∑
i=1

αi(ni+n′
i)

(
∂F (z, x)

∂xi,ni+n′
i

−
( ∂F (z, x)

∂xi,ni+n′
i

)
xi,ni+n′

i
=0

)
Ini>0−

−
( N∑

i=1

(
νiIni>0 + ϕiIn′

i>0

)
h+ o(h)

)
F (z, x)+ (6)

+h

N∑
j=1

N∑
i=1,i�=j

αj(nj + n′
j + 1)pj,iBi(ni + n′

i, xi,ni+n′
i
)×

×
(∂F (z + ej − ei, x)

∂xj,nj+n′
j+1

)
xj,nj+n′

j
+1=0

Ini>0+

+

N∑
i=1

F (z + ei − e′i, x)(νih + o(h)In′
i>0+

+

N∑
i=1

F (z − ei + e′i, x)(ϕih+ o(h))Ini>0 + o(h).

Subtracting F (z, x) from both sides of (6), dividing both sides of (6) by h and
letting h tend to zero, we obtain the following differential equations system:

F (z, x)

N∑
i=1

(
νiIni>0 + ϕiIn′

i>0

)
=

=

N∑
i=1

αi(ni + n′
i)

(
∂F (z, x)

∂xi,ni+n′
i

−
( ∂F (z, x)

∂xi,ni+n′
i

)
xi,ni+n′

i
=0

)
Ini>0+
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+

N∑
j=1

N∑
i=1,i�=j

αj(nj + n′
j + 1)pj,iBi(ni + n′

i, xi,ni+n′
i
)×

×
(∂F (z + ej − ei, x)

∂xj,nj+n′
j+1

)
xj,nj+n′

j
+1=0

Ini>0+ (7)

+

N∑
i=1

F (z + ei − e′i, x)νiIn′
i>0 +

N∑
i=1

F (z − ei + e′i, x)ϕiIni>0.

Divide (7) into the next local balance equations:

F (z, x)
(
νiIni>0 +ϕiIn′

i>0

)
= F (z+ ei− e′i, x)νiIn′

i>0 +F (z− ei + e′i, x)ϕiIni>0,
(8)

αi(ni + n′
i)

(( ∂F (z, x)

∂xi,ni+n′
i

)
xi,ni+n′

i
=0
− ∂F (z, x)

∂xi,ni+n′
i

)
Ini>0 = (9)

=

N∑
j=1,j �=i

αj(nj + n′
j + 1)pj,iBi(ni + n′

i, xi,ni+n′
i
)×

×
(∂F (z + ej − ei, x)

∂xj,nj+n′
j+1

)
xj,nj+n′

j
+1=0

Ini>0, i ∈ J.

Substituting F (z, x), determined by means of (3), (4), into local balance equa-
tions (8), (9), considering traffic equation system (1), we obtain identity. �
Denote by {p(z), z ∈ Z} – stationary distribution of the process z(t). From the
foregoing theorem, considering equality p(z) = F (z,+∞), we obtain

Corollary 1. Process z(t) is ergodic and has stationary distribution

p(z) = G−1(M,N)p1(n1, n
′
1)p2(n2, n

′
2) . . . pN (nN , n′

N ), z ∈ Z,

which does not depend on functional form of Bi(s, x), i ∈ J . Probabilities
pi(ni, n

′
i), i ∈ J, may be found by means of (4).

4 Conclusion

We have considered stationary functioning of a closed queueing network with
temporarily non-active customers. Expression for stationary distribution has
been derived. Finally, stationary distribution insensitivity with respect to func-
tional form of distribution of work quantity for customer service is established.
Research results have practical importance and may be used for real networks
investigation.
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Abstract. The problem of guaranteed parameter estimation and change
point detection of threshold autoregressive processes with conditional
heteroscedasticity (TAR/ARCH) is considered. The parameters of the
process are assumed to be unknown. A sequential procedure with guar-
anteed quality is proposed. The results of simulation are presented.

Keywords: TAR/ARCH, guaranteed parameter estimation, change
point detection.

1 Introduction

The TAR models were first proposed by Tong in [1] and since then they became
a standard class of nonlinear time series models. The values of the threshold
process are determined not only by values of the process, but by the abrupt
changes in its dynamics. The parameters, which regulate moving of the process
through regions of state space, are called threshold parameters. Autoregressive
heteroscedastic (ARCH) models have proved to be very useful for describing
changing in volatility of econometric processes and other time series. The first
efforts to combine aforementioned models and to research properties of such
models were made in [2], [3], [4].

Most statistical limit theorems require the existence of stationary distribution
of the processes, so it is important to obtain necessary and sufficient conditions
of ergodicity for a given class of models. Such conditions are especially important
for investigation of asymptotic properties of estimators of unknown parameters.
For TAR(1) model a necessary and sufficient condition for geometrical ergodicity
was considered in [5]. Conditions for existence geometric ergodicity of process
generated by AR-ARCH model were proposed in [6], but they are more restric-
tive than those, that were obtained in [7] since the exact specifications of the
AR/ARCH model were not used. A method for determining whether threshold
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AR/ARCH model is ergodic and what moments exist when it is ergodic was
proposed in [8].

Estimation of unknown parameters of models with mixed structure, which
consists of both linear and nonlinear parts, is very interesting for applications
but quite a difficult task. A modified quasi-maximum likelihood estimator for
AR(1)/ARCH(1) model based on truncation of the likelihood function was pro-
posed in [7]. Estimators based on least squares method were considered in [9].

The idea of constructing estimators for unknown parameters of models us-
ing special stopping rule, in order to guarantee precisely their quality, was first
proposed in [10]. Since then, it was widely used in literature for estimating pa-
rameters in models with independent and dependent data. In [11] a method
for estimation unknown autoregressive parameters of AR/ARCH model with
guaranteed accuracy based on weighted least square method was proposed. In
[12] sufficient conditions for ergodicity of the process were obtained and guaran-
teed sequential estimators of the autoregressive parameters of TAR(1)/ARCH(1)
model were proposed. The accuracy of the estimation depends on the procedure
parameters.

The problem of change point detection arises often in different applications
connected with time series analysis, financial mathematics, image processing, etc.
Two types of algorithms are used to detect the change point: a posteriori method,
when the estimation of the change point is conducted in a sample of a fixed size,
and sequential methods, when the decision on change point can be taken after
getting a next observation. The properties of the sequential procedures usually
can be investigated either for the case of independent observations or when the
number of observations tends to infinity [13], [14], [15].

Last decades autoregressive conditional heteroscedasticity processes are widely
used in various applications. The problem of change point detection for this type
of processes under different assumptions on parameters and noise distributions
is considered in [16], [17], [18],[19], [20], etc. The properties of algorithms are
studied asymptotically or by simulation. Theoretical investigation of algorithm
properties for a fixed sample size is usually impossible.

In [11] we proposed to detect the instant of parameters’ change in the
AR(p)/ARCH(q) process by making use of guaranteed sequential estimators.
The sequence of estimators was constructed and the estimators obtained on dif-
ferent time intervals were compared. In this study such approach is applied to the
TAR(1)/ARCH(1) model. The properties (the asymptotic and non-asymptotic)
of procedures are investigated. The special construction of the estimators based
on the weighted least squares method guarantees prescribed accuracy of the pro-
posed procedure, i.e. prescribed upper boundaries for the false alarm and delay
probabilities.

Simulation experiments were conducted and the results showed good perfor-
mance of the proposed procedure.
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2 Problem Statement

We consider TAR(1)/ARCH(1) autoregressive process specified by the equation

xk+1 = λ1x
+
k + λ2x

−
k +

√
ω + α2x2

kξk+1;
x+
k = max{0, xk};

x−
k = min{0, xk},

(1)

where {ξk}k≥0 is a sequence of independent identically distributed random vari-
ables with zero mean and unit variance, ω > 0. The value of the parameter vector
λ = [λ1, λ2] changes from μ0 = [μ0

1, μ
0
2] to μ1 = [μ1

1, μ
1
2] at the change point θ.

Values of the parameters before and after θ are supposed to be unknown. The
difference between μ0 and μ1 satisfies the condition

(μ0
i − μ1

i )
2 ≥ Δ, i = 1, 2, (2)

where Δ is the known value defining the minimum difference between the pa-
rameters before and after the change point. The problem is to detect the change
point θ from observations xk.

3 Ergodic Region of the Process

In [12] sufficient conditions of the ergodicity according to [21] were obtained

λ1 < 1, λ2 < 1, λ1λ2 < 1;

α2 <
min{(1− λ1)

2, (1− λ2)
2, (1− λ1)

2(1− λ2)
2, (1 − λ1λ2)

2}
(2− λ1 − λ2)2μ2

,
(3)

where μ = max

{
∞∫
0

zfξ(z)dz,−
0∫

−∞
zfξ(z)dz

}
.

At the Fig.1 one can see an example of ergodic (a) and non-ergodic (b)
TAR/ARCH process. Non-ergodic process is characterized by sharp changes.

Note that if in process (1) the parameter α = 0 then the noise variance is
constant. As a result we have the process TAR(1) with well-known necessary and
sufficient conditions of ergodicity [5]: λ1 < 1, λ2 < 1, λ1λ2 < 1. Our conditions
(3) take the same form in the case α = 0.

4 Guaranteed Parameter Estimator

Since the parameters both before and after the change point are unknown, it is
logical to use estimators of the unknown parameters in the change point detec-
tion procedure. We use the sequential estimators proposed in [12] for a case of
symmetric density distribution function. The main advantage of the estimators
is their preassigned mean square accuracy depending on the parameter of the
estimation procedure. Here we construct modified estimators which allow us to
use non-symmetric noise distributions.
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Fig. 1. Ergodic (a) and non-ergodic (b) processes

It should be noted that if parameters ω and α are unknown then process (1)
has unknown and unbounded from above noise variance. To obtain a process with
bounded noise variance we denote max{1, |xk|} as mk and rewrite the process
in the form

yk+1 = λ1yk,1 + λ2yk,2 + γkξk+1;

yk+1 =
xk+1

mk
, yk,1 =

x+
k

mk
, yk,2 =

x−
k

mk
, γk =

√
w + αx2

k

mk
.

(4)

The noise variance of the process {yk} is bounded from above by the unknown
value (ω + α2). To eliminate the influence of the unknown constant the special
factor ΓN constructed by first N observations is used. If the distribution density
function is symmetric, i.e. fξ(x) = fξ(−x), and satisfy certain conditions [22]
then ΓN can be taken in the following form

ΓN = CN

N∑
k=1

(
xk

min{1, |xk|}
)2

, CN = E

(
N∑

k=1

ξ2k

)−1

. (5)

It was proved in [12] that

E
1

ΓN
≤ 1

ω + α2
. (6)

If {ξk} have standard normal distribution then the sum
N∑

k=1

ξ2k has χ2 distri-

bution with N degrees of freedom. In this case one has

CN =
1

2N/2Γ (N/2)

+∞∫
0

xN/2−3e−x/2dx =
Γ (N/2)

4Γ (N/2− 2)
=

1

(N − 2)(N − 4)
.

This constant is defined for N ≥ 5.
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If the function fξ(x) is not symmetric and |λ1| < 1, |λ2| < 1 then we propose
to construct the factor ΓN as follows

ΓN = CN

N∑
k=1

( |xk|+ |xk−1|
min{1, |xk|}

)2

, CN = E

(
N∑

k=1

ξ2k

)−1

. (7)

The factor also satisfies condition (6) because from (1) one has

(ω + α2)ξ2k ≤ (xk+1 − λ1x
+
k + λ2x

−
k )

2/(min{1, |xk|})2.
The proposed estimator of the parameter vector λ is written in the following

form

λ̂i = λ̂i(H) =
1

ΓNH

τi∑
k=N+1

vk,iyk,iyk+1, i = 1, 2, (8)

where the stopping time τi = τi(H) are defined by the following conditions

τi = min

{
t > N :

t∑
k=N+1

y2k,i ≥ ΓNH

}
, i = 1, 2. (9)

The weights {vk,i} possess the value unity at the interval [N + 1, τi − 1]. At the
moment τi they are defined from the equation

τi∑
k=N+1

vk,iy
2
k,i = ΓNH, i = 1, 2. (10)

The properties of the estimator were established and proved in [12].

Theorem 1. For process (1) satisfying conditions (3) stopping time τi (9) is
finite with probability one. Estimators (8) are unbiased and the variance of the
estimators is bounded from above

E(λ̂i − λi)
2 ≤ 1

H
, i = 1, 2. (11)

Hence, the parameter H defines the accuracy of the estimator.
It is shown in [12] that the random variable

√
Hζi =

√
H(λ̂i − λi) con-

verges by distribution to the random variable Z with the characteristic function
φ(y) = Ee−η2y2/2, where η2 = (ω + α2)/ΓN , i.e. Eη2 < 1. Using this result we
can formulate the following theorem which gives an asymptotic upper bound for
the probability of large values of the standard deviation for the estimator (8).
This result is more precise then one obtained in [12].

Theorem 2. If process (1) is ergodic, and the compensating factor ΓN satisfies
the following conditions N → ∞, N/H → 0 as H → ∞, then for sufficiently
large H

P
{(

λ̂i − λ
)2

> x

}
≤ 2

(
1− Φ

(√
xH

))
, (12)

where Φ(·) is the standard normal distribution function
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Proof. For ergodic process (1) as N →∞ for the compensating factor ΓN (5)
the following convergency in probability takes place [21]

η = (ω + α2)/ΓN →P E
(
(ω + α2)/ΓN

) ≤ 1.

The condition N/H → 0 guarantees us that the number of observation for the
constructing of the compensating factor Γn is not too large.

Denote Eη as β2 and consider as H →∞ the probability

P
{(

λ̂i − λ
)2

> x

}
→

∫
y2>xH

e−β2y2/2dy ≤ 2
(
1− Φ

(√
xH/β

))
.

Since β < 1 then one obtain (19). The theorem has been proved.

a) b)

Fig. 2. Parameter estimators (a) and their errors (b)

On Fig. 2 a typical behavior of the proposed parameter estimators and their
squared errors with H = 100 are shown. One can see that the estimators are
rather close to the parameter values.

5 Change Point Detection Procedure

Consider now the change point detection problem for process (1). At the first

stage, we define intervals [τn−1
i + 1, τn

i ], n ≥ 1. The estimators λ̂n
i of the pa-

rameters of process (1) are constructed on each interval. Then the estimators
on intervals [τn−l−1

i + 1, τn−l
i ] and [τn−1

i + 1, τn
i ], where l > 1 is an integer, are

compared. If the interval [τn−1
i +1, τn

i ] does not include the change point θ, then
vector λ on this interval is constant. It can be equal to the initial value μ0 or the
final value μ1. Thus for certain n, if τn−l

i < θ < τn−1
i +1, the difference between

values of the parameters on intervals [τn−l−1
i + 1, τn−l

i ] and [τn−1
i + 1, τn

i ] is no
less then Δ. This is the key property for the change point detection. Two pa-
rameters can change at the moment θ, i.e. λ1 and λ2. Note that at the estimator
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λ̂i the values yk,i are used, and yk,1yk,2 = 0. That allows us to construct change
point detection procedures separately for every parameter.

We construct a set of sequential estimation plans

(τn
i , λ̂n

i ) = (τn
i (H), λ̂n

i (H)), n ≥ 1, i = 1, 2,

where {τn
i }, n ≥ 0 is the increasing sequence of the stopping instances (τ0 = N),

and λ̂n
i is the guaranteed parameter estimator on the interval [τn−1

i +1, τn
i ]. The

following condition holds true for the estimator

E(λ̂n
i (H)− λi)

2 ≤ 1

H
. (13)

Then we choose an integer l > 1. We associate the statistic Jn
i with the n−th

interval [τn
i + 1, τn

i ] for all n > l

Jn
i =

(
λ̂n
i − λ̂n−l

i

)2

. (14)

This statistic is the squared deviation of the estimators with numbers n and
n− l. Properties of the statistics are given in the following theorem.

Theorem 3. The expectation of the statistics Jn
i (14) satisfies the following

inequality:

E [Jn
i | τn

i < θ] ≤ 2

H
;

E
[
Jn
i | τn−l

i < θ ≤ τn−1
i

] ≥ Δ.
(15)

Proof. Denote the deviation of the estimator λ̂n
i from the true value of the

parameter λi as ζni . Let the parameter value remains unchanged until the instant

τn
i , i.e., θ > τn

i . In this case, λ̂n
i = μ0

i + ζni , λ
n−l
i = μ0

i + ζn−l
i and statistic (14)

can be written in the form

Jn
i =

(
ζni − ζn−l

i

)2
,

where

ζni =
1

ΓNH

τn
i∑

k=τn−1
i +1

vk,iyk,iγkξk+1. (16)

The expectation of the statistic is equal to

EJn
i = E(ζni )

2 + E(ζn−l
i )2 − 2Eζn−l

i ζni .

For every n according to (11) E(ζni )
2 ≤ 1/H . Using conditional expectation

properties it can be shown that Eζn−l
i ζni = 0 for l > 0. Hence

E[Jn
i |θ > τn

i ] ≤
2

H
. (17)
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Let the change of the parameter took place on the interval [τn−l
i , τn−1

i ] i.e.

τn−l
i < θ ≤ τn−1

i . In this case, λ̂=
i μ1

i + ζni , λ̂
n−l
i = μ0

i + ζn−l
i , and statistic (14) is

Jn
i = (μ1

i − μ0
i + ζni − ζn−l

i )2.

The expectation of the statistics can de written as

EJn
i (μ

1
i − μ0

i )
2 + 2(μ1

i − μ0
i )E(ζni − ζn−l

i ) + E(ζni − ζn−l
i )2.

Taking into account that Eζn−l
i ζni = 0, (μ1

i −μ0
i )

2 ≥ Δ and (11) one can obtain

E
[
Jn
i | τn−l

i < θ ≤ τn−1
i

] ≥ Δ.

Thus (15) is implied. The theorem has been proved.
Hence, the change of the expectation of the statistic Jn

i allows us to construct
the following change point detection algorithm. The Jn

i values are compared
with a certain threshold δ, where 2/H < δ < Δ. When the value of the statistic
exceeds δ then the change point is considered to be detected. If at least one
parameter of the vector λ = [λ0, λ1] changes then the change point θ can be
detected.

The probabilities of false alarm and delay in the change point detection in any
observation cycle are important characteristics of any change point detection
procedure. Due to the application of the guaranteed parameter estimators in the
statistics, we can bound these probabilities from above.

Theorem 4. The probability of false alarm P0 and the probability of delay P1

in any observation cycle [τn−1
i + 1, τn

i ] are bounded from above

P0 ≤ 2

δH
, P1 ≤ 2

(
√

Δ−√δ)2H
. (18)

Proof. First we consider the false alarm probability, i.e. the probability that the
statistic Jn

i exceeds the threshold before the change point. Using the Chebyshev
inequality, we have

P0 = P {Jn
i > δ| τn

i < θ} = P {
(ζni − ζn−l

i )2 > δ
} ≤ 2

δH
.

This imply the first inequality from (18).
Then we consider the delay probability, i.e., the probability that the statistic

Jn
i does not exceed the threshold after the change point

P1 = P {
Ji < δ| τn−l

i < θ < τn−1
i

}
= P

{
|μ1

i − μ0
i + ζni − ζn−l

i | < √
(δ)

}
.

Taking into account that |μ0
i −μ1

i | >
√

Δ and using the absolute value properties
and the Chebyshev inequality, one has

P1 ≤ P
{
|μ0

i − μ1
i | − |ζni − ζn−l

i | < √δ
}
≤ P

{
|ζni − ζn−l

i | >
√

Δ−
√

δ
}

≤ E(ζni − ζn−l
i )2

(
√

Δ−√δ)2
≤ 2

H(
√

Δ−√δ)2
.
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This imply the second inequality from (18). The theorem has been proved.
Then we consider asymptotic properties of the proposed change point detec-

tion procedure for H → ∞ if process (1) is ergodic. At the previous subsection
it was shown that Eζni ζn−l

i = 0. So the random variables
√

H/2(ζni −ζn−l
i ) have

the same asymptotic distribution as
√

Hζi and one can obtain the similar result.

Theorem 5. If process (1) is ergodic, and the compensating factor ΓN satisfies
the following conditions N → ∞, N/H → 0 as H → ∞, then for sufficiently
large H

P
{(

ζni − ζn−l
i

)2
> x

}
≤ 2

(
1− Φ

(√
xH/2

))
, (19)

where Φ(·) is the standard normal distribution function

This result implies the asymptotic inequalities for the probabilities of false
alarm and delay.

Theorem 6. In the conditions of the Theorem 5 the probabilities of false alarm
and delay for sufficiently large H

P0 ≤ 2
(
1− Φ

(√
δH/2

))
;

P1 ≤ 2
(
1− Φ

((√
Δ−

√
δ
)√

H/2
))

.
(20)

where Φ(·) is the standard normal distribution function

Proof. Along the lines of the proof of Theorem 4 one has

P0 = P {Jn
i > δ| τn

i < θ} = P
{(

ζni − ζn−l
i

)2
> δ

}
;

P1 = P {
Ji < δ| τn−l

i < θ < τn−1
i

} ≤ P {(
ζni − ζn−l

i

)2
>

(√
Δ−

√
δ
)2

}
.

This and the result of Theorem 5 imply inequalities (20). The theorem has been
proved.

We can use these estimators instead of (18) for sufficiently large H .
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Abstract. In this paper the NP-hard Maximum Clique Problem (MCP)
is considered. It is supposed that the input graph is sparse. Also, it is
believed that the input graph can have a huge number of vertices. A
biphasic algorithm for finding the exact solution of the MCP is proposed
in the paper. The first phase of the algorithm is the preprocessing of
the input graph by decomposing it into atoms. The second phase of the
algorithm reduces to an application for each atom classical algorithm
Wilf and then to the formation of solutions for the graph as a whole. The
level of sparseness of the input graph is given in the form of restrictions
on its treewidth. It have been proved that the running time of biphasic
algorithm is polynomial in the number of vertices and the exponential of
the treewidth of the input graph.

Keywords: Graph algorithms, sparse graphs, decomposition graph,
atom graph, preprocessing, biphasic algorithms, treewidth,
FPT-algorithms.

1 Introduction

Maximum Clique Problem (MCP) is one of the well-known NP-hard problems
of discrete Mathematics and complexity theory. This problem has a wide variety
of applications. In modern applications, such as analysis of chemical compounds
and genomic database, automating the design of complex technical products and
systems, data clustering, searching the maximum cliques have to be carried out
in sparse graphs of very large dimension [1], [2], [8]. The input graphs can contain
up to a million vertices. Due to this fact, efficient algorithms are demanded to
find exact solution of the MCP in a reasonable time in our class of graphs.

This paper proposes a biphasic algorithm for finding the exact solution of
MCP, the first phase of which — preprocessing of the input graph by decompos-
ing it into atoms, and the second phase — application for each atom classical
algorithmWilf [14] and then formation of solution for the graph as a whole. Spar-
sity level of the input graph is given in the form of restrictions on its treewidth
and in the form of assumption of the presence of clique minimal separators in
the above graph. The paper shows that the running time of the proposed algo-
rithm depends polynomially on the number of vertices and exponentially on the
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treewidth of the input graph, which allows to use it for the processing of large-
scale graphs with small treewidth. In this paper the basic concepts and notation
of [10] are used. For simplicity, let consider only connected ordinary graphs, i.e.
finite, undirected, without loops and multiple edges graphs consisting of one
connected component.

2 Formulation of a Problem

Consider a connected ordinary graph G = (V,E) with vertex set V and edge
set E, where n = |V | ≥ 2, |E| ≥ 1. The set of all vertices of G, adjacent to a
vertex v ∈ V , forms in a graph G neighborhood N(v) of this vertex, and the
set N [v] = N(v) ∪ {v} — closed neighborhood. Graph G′ = (V ′, E′) is called a
subgraph if V ′ ⊆ V , E′ ⊆ E. If the set of vertices of the subgraph G′ is V ′, and
the set of edges E′ coincides with the set of all edges of G, both ends of which
are owned by V ′, then G′ = (V ′, E′) is called a subgraph which is generated by
the set V ′, and is denoted by G(V ′).

The set of vertices V ′ ⊆ V forms a clique graph G = (V,E), if any two vertices
belonging to it are adjacent in G, i.e. the subgraph G(V ′) is complete. Clique
is called maximal, if it is not contained in the clique with more of vertices, and
maximum, if the number of vertices in it is the greatest among all cliques. Size
of the maximum clique of graph G is denoted ϕ(G) and is called as the clique
number of a graph G. The set of vertices V ′ ⊆ V is independent in G, if any two
vertices belonging to it are not adjacent, i.e. the subgraph G(V ′) has no edges.
An independent set is called maximal, if it is not a proper subset of another
independent set. If the independent set’s number of vertices in it is the greatest
among all independent sets, it is called maximum. Cardinality of the maximum
independent set of vertices of a graph G is called as a number of independence
and is denoted by α0(G).

The notions of clique and independent set are opposites in the sense that
every clique (maximal, maximum) of a graph G is an independent set (maximal,
maximum) in the complementary graph G. Therefore, ϕ(G) = α0(G).

Recognition version of the MCP traditionally formulated as follows.

INSTANCE: Given a graph G = (V,E) and an integer 0 ≤ L ≤ n.
QUESTION: Is there a clique of size at least L in G?

Similarly, let formulate recognition version of the Maximum Independent Set
Problem (MISP). Note that the graph G is always G = H , where H = G, and
the transition to the complement of n-vertex graph feasible in time O(n2). Thus,
problems of MCP and MISP are polynomially reducible to each other and, in
this sense, are equivalent. Both of these tasks in recognition formulation are NP-
complete and polynomial time algorithms have not been yet found [9]. Further,
in this paper the optimization versions of these problems, which is required for a
given connected graph to find the maximum clique (maximum independent set)
will be considered.
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3 Basic Classical Algorithms for Solving

There are many algorithms to find the exact solution of MCP and MISP, the
execution of which depends exponentially on the number of vertices and edges
of the input graph. The most famous of these are algorithm Bron–Kerbosch
and algorithm Wilf. Algorithm Bron–Kerbosch is a recursive procedure that
consistently increases candidate clique [3]. Time of the algorithm is

O(poly(n) · 3n/3) = O(poly(n) · 1, 4422n), (1)

where poly(n) — a polynomial in the number of vertices of the input graph.
Since the graph with n vertices can contain up to 3n/3 maximal cliques [10],
then algorithm Bron–Kerbosch is comparable in complexity to the procedure of
exhaustive search. There are various modifications of the algorithm [12]. The
fastest of them finds an exact solution of MCP for time

O(poly(n) · 20,249n) = O(poly(n) · 1, 1888n).
Unlike to algorithm Bron–Kerbosch, Wilf recursive algorithm [14] is designed

to find the exact solution of the MISP. Its essence is as follows. For any arbitrarily
chosen vertex v ∈ V of G = (V,E) there are two types of independent sets: those,
which include the vertex v, and those, which do not include this vertex. Based
on this, the original problem can be split into two subtasks (like smaller versions
of the original), respectively to the two cases:

– formed independent set contains selected vertex v. In this situation, all the
vertices of N(v) can no longer go to the independent set, and its further
extensions must be implemented in a graph G(V \N [v]) = G−N [v];

– formed independent set does not contain the vertex v. Further, expansion of
this set should continue in the graph G(V \ {v}) = G− v.

A function which returns the cardinality of the maximum independent set of
n-vertex graph G is denoted by maxset(G) and by T (n) — its execution time.
Then the general scheme of the recursive splitting algorithm for finding solution
of MISP is described by the equation

maxset(G) = max{maxset(G− v), 1 +maxset(G−N [v])},
and evaluation of working time is calculated from the inhomogeneous linear
recurrence relation with constant coefficients

T (n) = T (n− 1) + T (n− 2) + f(n), (2)

where f(n) is a function of polynomial order of growth. Equation (2) is valid,
since the graph G − v contains exactly n − 1 vertices, and the graph G − N [v]
can have up to n − 2 vertices (vertex v excluded itself and at least one of the
vertices adjacent to it). Application to (2) technology Kullmann–Luckhardt [7]
leads to the estimate

T (n) = O(poly(n) · 1, 619n),
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that is somewhat worse than (1). However, the selection rule of the vertex v,
which is used during splitting in maxset(G), can be improved. For example, if
a vertex of degree 3 is selected, the recurrence relation is achieved.

T (n) = T (n− 1) + T (n− 4) + f(n)

and evaluation
T (n) = O(poly(n) · 1, 39n), (3)

which is better than (1).
Next, let propose a modification of the classical algorithm Wilf as a biphasic

procedure based on decomposition approach to solving optimization problems
on sparse graphs, namely, the preliminary decomposition of the original graph
into atoms, retaining all its cliques.

4 Decomposition, Which Retains All Cliques of the
Graph

Firstly, it is needed to introduce the necessary concepts. Let G = (V,E), n = |V |,
|V | ≥ 2, |E| ≥ 1, be connected to an ordinary graph. Under the atom graph
G = (V,E) is meant its maximum on the inclusion subgraph having no clique
minimal separators. It is believed that the set of vertices S ⊆ V separates two
non-adjacent vertices x and y of the graph G, if in the subgraph G(V \ S)
vertices x and y belong to different connected components. The set S is then
called (x, y)-separator and minimal (x, y)-separator, if no proper subset is not
(x, y)-separator. Separator S is considered to be minimal, if the graph G has at
least one pair of vertices x and y that S is minimal (x, y)-separator. Minimal
separator S is called as a clique, if S forms a clique in G.

The idea of decomposition of the graph into atoms was proposed by Tarjan
[13] in 1985 as a means of implementing the approach of ”divide and rule” for
solving optimization problems. Tarjan found that atomic decomposition does
not destroy the cliques of the graph on the one hand and does not generate new
cliques on the other hand. Later in [11] it was proved that the atomic decom-
position is unique for each graph, if it is carried out only with help of clique
minimal separators. Currently atomic decomposition is especially relevant in
modern applications, which are based on graph-theoretic models of large dimen-
sion. Therefore, important to create new and improve the known polynomial
algorithms for performing such a decomposition.

Decomposition of G into atoms is reduced to its multiple division into parts
by one of the found clique minimal separators S, then allocation of connected
components of G(V \ S) and copy S into these components. This process con-
tinues until obtained parts will not contain clique minimal separators. Atomic
decomposition algorithm presented in the [6]. This algorithm allows for time
O(n3) for a graph G = (V,E) to find a set of its clique minimal separators Δ(G)
and a set of atoms Ω(G). It is important to note that a pair of Ω(G), Δ(G)
— a compact description of any large-scale graphs with preservation of its in-
ternal structure. This description can be pre-created and stored in the external
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memory, and necessary for the processing atoms sequentially loaded into RAM.
It is possible to organize parallel and distributed computing by simultaneous
processing of several atoms.

Known important properties of atoms [11], [13]:

1. Every atom of Ω(G) is the induced subgraph of G.
2. Set Ω(G) always keeps all cliques of the graph G, i.e. every clique in G

becomes a clique of one of its atoms, and new cliques does not occur.
3. 1 ≤ |Ω(G)| ≤ n, i.e. the number of atoms in Ω(G) does not exceed the

number of vertices of G.
4. For sparse graph G (for graph with limited by the value of k treewidth)

the number of vertices of each atom is bounded above by a positive integer
constant k < n.

Wilf modified algorithm is based on the specified properties of atoms and
proceeds from the assumption that the input graph is sparse.

5 Characterization of Sparse Graphs

There are several definitions of sparse graphs. Connected graph G = (V,E),
n = |V | ≥ 2, |E| ≥ 1, is called (edge) sparse, if the number of its edges satisfies
the condition:

|E| ≤ anb, (4)

where a > 0, 1 ≤ b < 2 — positive real constants and n = |V |. It is believed
that the smaller the value of b, the more sparse is the graph G. For comparison,
in each tree, the number of edges is n − 1, i.e. b = 1, which corresponds to
the lower boundary value of b, and for any complete n-vertex graph always
|E| = n(n− 1)/2, i.e. b = 2, which is equal to the upper boundary value of b.

There is another definition of a sparse graph, which is expressed through a
numerical parameter tw(G), called the treewidth of the graph [4]. Boundaries
of tw(G): 1 ≤ tw(G) ≤ n − 1. So, every n-vertex tree (n ≥ 2) has a unit
treewidth which corresponds to the lower boundary for tw(G), and for complete
n-vertex graph inherent treewidth equal to n−1, which corresponds to the upper
boundary for tw(G). Let k is a given positive integer constant. If tw(G) ≤ k, then
let say that the graph G = (V,E) has a limited (by the value of k) treewidth.
It is assumed that the smaller the value of k, the more sparse graph G is. It is
known [4] that if tw(G) ≤ k, then for the number of edges of G = (V,E) takes
place the inequality:

|E| ≤ kn− k(k + 1)/2. (5)

When k = 1 and k = n−1, the relation (5) leads to inequalities (4), corresponding
to trees and complete graphs. Consequently, the restriction tw(G) ≤ k does not
contradict (4) and defines a natural measure of edge sparsity of G. As it is given
that always ϕ(G)− 1 ≤ tw(G), it is possible to say that the value of tw(G) also
limits the size of cliques of the graph G.



74 V. Bykova and R. Illarionov

6 Description of the Biphasic Algorithm and Analysis of
Computational Complexity

Finding the exact solution MCP is applied to a sparse connected graph G =
(V,E), n = |V | ≥ 2, |E| ≥ 1, such that tw(G) ≤ k, is to implement two phases.

Phase 1: Building an atomic representation Ω(G) for a graph G.
Phase 2: Consistently apply the algorithm to all the atoms of an obtained

set of atoms Ω(G). Previously, perform transition to its complement for each
atom. Form solution for G based on the results: maximum clique is defined as
the largest by inclusion among all maximal cliques found in the atoms. As a
result, give the maximum clique of G and its power.

Runtime phase 1 is O(n3). Taking into account the properties of atoms above,
and the estimation (3), the time of solving the problem in relation to a single
atom is obtained

O(poly(k) · 1, 39k),
and for graph G as a whole

O(n · poly(k) · 1, 39k). (6)

From (6) it follows that the running time of biphasic algorithm is polynomially
dependent on n and exponentially on k. Consequently, the more sparse is the
input graph, the faster the algorithm. Algorithms with estimates of the form
(6) are called Fixed Parameter Tractable algorithms (FPT-algorithms) [5]. The
existence of such an algorithm for MCP and MISP suggests that these problems
are FPT-solvable with respect to treewidth of the graph.

7 Conclusions

In this paper the proposed algorithm which is based on decomposition approach
to solving the MCP can be also applied to other algorithms for solving this
problem, in particular, to the algorithm Bron–Kerbosch and its other versions.
This approach allows the creation of FPT-algorithms for solving NP-hard prob-
lems on sparse graphs of large dimension. The main drawback of the proposed
approach is: not all graphs have clique minimal separators. However, in modern
applications such graphs are rare.
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1 Introduction

Nowadays, the global information space has applied a technology pervasive com-
puting and multi-agent systems, as well as ontology repository of knowledge to
solve problems of information retrieval. So it making the reason to create the
ontology with active semantics as one of possible approaches to develop such
concept as ”Internet with thinking skills”.

In ontology with active semantics reflects not only the knowledge domain con-
cepts and relationships between them, but actions (processes) that are relevant
to the semantics of these concepts. That is, depending on the task, concepts may
play a role of the object or the subject of the action. In this case, there is an op-
portunity to develop and explore the ontology not only as a source of knowledge,
but as a ”tool” to solve various problems, especially computing tasks.

Thus, the creation of an ontology with the active semantics is a perspective
direction. Its main element is categorical object the ”Action”. To date, the au-
thors investigated the different implementation models. Proposed in this paper
an agent-based model of hierarchy processes uniquely corresponds to the scheme
of categorical objects. This enables the implementation of remote computing,
which can be the basis of centers of GRID-calculations. They are required to
solve many problems, such as automation technology of outsourcing knowledge.

2 Development of a Hierarchy Processes

Since the activity of the ontology depends on its processes, then to ensure the
integrity of the knowledge base about the processes of ontology, it is necessary to
solve the problem of determining their connectivity, which is necessary to build
up the tree interaction processes. To solve this problem, as well as allocation
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of general concepts based on formal descriptions of ontology, it is proposed to
use the agent-based approach. View of a tree in the form of ontology processes
interacting agents, in our opinion, is the most appropriate way, as this imple-
mentation strategy allows not prescribe formal links between processes, thereby
reducing the amount of memory required and simplifying the use of ontologies
in cloud computing.

One of the most important properties of agents is an ability interoperability.
An agent is created for each semantic vertex in the ontology. Each agent has
its own purpose, that it must reach when needed. Agents of complex processes
designed to solution two tasks: break the task into subtasks and send the request
to their decision, the results assembly from the lower-level agents.

Way to communication of agents is one of the major challenges that must
be addressed. To implement communication between agents is necessary to use
the mechanism of mixed communications, which assumes the division of the
whole set of agents in the system into two classes - class of customers and class
of contractors, and organize the interaction between them through the bulletin
board.

Agents will be represented by the streams that are suitable mechanism for
building a system whose functionality is clearly divided into a few computa-
tional operations. In addition to the functional separation of the program into
a plurality of operations, multi-agent approach allows us to reduce the run time
by parallelization on multiprocessor computers.

The author of [1,2] proposed a categorical apparatus of ontology in which
causal and propozitional models are the basis for the entry ”Action”. Its graph-
ical interpretation is shown in Figure 1. All properties of the action displayed
by element P, indicating the action parameters, the initial object over which it
is necessary to perform an action, or source data to perform the computational
process, the final results of the object or action, derived objects or intermediate
results of the action, the place of performance of action, etc.

In this work are invited to perform a hierarchy of processes through the use of
a causal model. In this model action is activated if the event E, what is happening
with the subject of the action S, is interpreted as the cause of an event happening
with the object O of action. When implementing process hierarchy tool T can
serve as multi-agent system, in which the mapping actions A in agents will be
through the definition of D.

All processes in any domain can be classified as simple or complex. [3] If
you take a subject area - set theory, the processes - a set-theoretic operations
of union, intersection, difference, complement, and symmetric difference. Simple
processes are operations of union, intersection and difference, we extend their
by logical operations of conjunction, disjunction and checking the validity of the
inclusion of one set to another. omplement of a set, symmetric difference and
testing the equality of two sets are complex processes.

Initial hierarchy of processes for three complex operations will contain two
levels, as shown in Figure 2. When determining new operations the number of
levels may increase if the following two conditions: firstly, the operation can
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Fig. 1. Graphical interpretation of the entry ”Action”

Fig. 2. Initial hierarchy of processes

be expressed through simple operations; secondly, the formula determines the
operation which contains the sign of one of the more difficult operations, located
at the top level of the hierarchy.

3 Implementation of the Multi-agent Model of Processes
Hierarchy

A hierarchy of processes is performed using multi-agent approach, which makes it
easy to use ontologies in applications that implement the technology of pervasive
computing, since the construction of the agents in the system can be carried out
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taking into account the peculiarities of the ”exit” agents outside the application
located on the same computer. Such agents will be able to exchange messages
with other agents in the network. Location agents on different computers will
enable the computing power of many machines in the network, thereby increasing
the capacity of the entire computer system.

To implement the actions in the system, we use a simplified causal model, as
it allows you to organize the interaction between multiple agents in the system
based on a causal relationship. The relations between the system is implemented
on the basis of a mixed communication mechanism that partially combines direct
and indirect communications mechanisms. All agents of the system are divided
into two classes, ”Customers”, which serve as complex agents and contractors,
which act as simple agents. The system sends data to process ”Contractors”
on the basis of analysis boards, in which are located requests of agents’ ”Cus-
tomers”. ”After executing computing by agents ”Contractor” , data is sent di-
rectly to the agent ”Customer”.

Described above allowed to develop multiagent model of hierarchy of pro-
cesses, which is presented in Figure 3.

Initial expression, in this case, the set-theoretic formula passes through an I
/ O module in the operation queue, where the search engine sequentially selects
the formula for their processing. Based on their analysis occurs selection of a
suitable agent to perform calculations, and sent him to the computational data.

When using multi-agent model of hierarchy of processes in any domain is
necessary the decomposition of the received information for calculating or pro-
cessing. The agent transmits the received information to decomposition module
where it enters the separation module. Here, the expression is divided into parts,
and the intermediate information is used to correct the division is stored in the
buffer memory of decomposition module. After completion of the decomposition
processed information is passed back to the agent. Decomposition is not per-
formed if the agent is a base, since the information is already indivisible in this
context.

If the agent is a base, its methods evaluate the expression. If the agent is
derived, computing parts fit onto the evaluation stack.

After placing the information in the evaluation stack the system sends the
request to all basic agents with indicating of calculation parameters. Suitable
agents send a response containing the address of the agent and the information
about it. After this there is sampling occurs most suitable agent for calculations.
After selecting the agent receives computing information along with a return
address derivative agent.

After calculating the information by agent, the result is returned to the cus-
tomer adress. Basic agents return information directly to derivatives agents.
When derivative agent receives all the necessary information, it checks whether
the calculations are finished. If the calculations is not finished, we return to the
stack, if the calculations are finished, the agent issues a message containing the
result of the calculation, or returns to its destination.
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Fig. 3. Multi-agent model of hierarchy of processes

It should be noted that all agents in the system send into messages stack in
during process work. Presentation of agents implemented using threads. Each
thread defines a class object that represents the process of system. Attributes
and methods show properties of actions stored in the ontology. In addition,
these components of the model, as a search engine, decomposition module are
also agents that perform system functions.

4 Principles of Multi-threaded Programming in the
Implementation of the Multi-agent Hierarchy Processes

Consider some of the principles of multi-threaded programming, which are suit-
able for the implementation of the multi-process hierarchy in the ontology [4].
Functionality of the program clearly and naturally divided into several dis-
parate operations. During the execution of long and complex calculations are
not blocked by the GUI. The program can run on a multiprocessor computer.

Of course, the execution of the multi-model assumes that the program is
separated into a plurality of heterogeneous operations, which are the processes of
ontology. The program also performs some calculations, that should not interfere
with the operation of the program. Also be aware that the multithreaded system
has several advantages.

Improved application response - any program containing many independent
from each other actions can be redesigned so that each action is performed in a
separate thread. For example, the user interface multithreaded should not wait
for the completion of one task to start the other.

More efficient use of multiprocessing - typically applications that implement
concurrency through streams should not consider the number of available
processors [5]. Application performance increases uniformly in the presence of
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additional processors. Computational algorithms and applications with a high
degree of parallelism, for example, matrix multiplication can be performed much
faster. Improved structure of the program - some programs more efficiently rep-
resented as several independent or semi-independent units than a single mono-
lithic program. Multithreaded programs are easier to adapt to changes in user
requirements.

Efficient use of system resources - programs that use two or more processes
that have access to shared data through shared memory, contain more than one
thread of execution. Moreover, each process is complete and the state of the
address space of the operating system.

5 Conclusion

To test the proposed agent-based model a prototype software has been developed.
Computational experiments were designed to test the correctness and speed of
calculation. Now, the experimental results show that the agent model has a high-
performance, simplicity of design and also easy way to make changes, compared
with the previously developed models.

Thus, this paper shows how to implement an approach to remote computing,
which allows to use multi-agent technology to implement the actions prescribed
in the ontology. This enables the use of ontologies in the computation processes
or information processing cycles. Besides the use of multithreaded programming
can significantly reduce processing time in computer networks.
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Abstract. The problem of statistical estimation of a linear functional
of an unknown distribution with prior guess about the value of this func-
tional is considered. A combined estimator of the functional is proposed
to be used. The estimator is a linear combination of prior guess and non-
parametric estimator. The optimal (in terms of minimal mean square
error) weighting factor is subject of estimation itself, that can be done
by using of prior guess recursively k times. According to this, k–adaptive
combined estimators of the functional are proposed, their limiting distri-
butions are presented. Examples of combined estimators and numerical
results are provided.
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1 Introduction

A variety of problems in statistical processing of experimental data comprise
estimation of a linear functional of an unknown distribution. Linear functionals
represent certain numerical (probabilistic) characteristics of the observed ran-
dom variable. In order to reduce the size of expensive experimental data or to
improve the accuracy of estimation for a fixed sample size, the additional (prior,
initial) information can be used. The additional information may be used in nu-
merous statistical problems, may exist in various forms and may come from dif-
ferent sources. There are many papers in the literature devoted to the estimation
of the probability characteristics with using additional information. Estimators
of the mean were proposed in [1]–[4]. Estimators of the variance of finite sam-
ples have been considered in [5] and [6]. Estimators of conditional quantile have
been developed in [7]. In [8] this problem was considered for dependent data. A
new class of M -estimators with auxiliary information has been introduced in [9].
Missing data case represented in [10], censored data case has been considered in
[11]. Using a priori information in the processing of tomography data is reported
in [12]. Problems of adaptive classification and optimization are considered in
[13].

In this paper we consider the case when there exists an assumption on the
value of estimated functional. The assumed value we will refer to as a prior
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guess. The term ’prior guess’ has been probably first introduced by Ferguson
[14] and used later in various contexts. Combined statistical estimators adapting
a prior guess and their properties have been considered in [15]–[17]. In this paper
we propose k–adaptive combined estimators that use prior guess recursively k
times. Asymptotic distributions of the estimators have been obtained, that allow
to study the influence of a prior guess to the estimation accuracy. The limit case
is considered as k →∞.

2 Statement of the Problem

Let X1, ..., Xn be independent observations of size n over a random variable X
with unknown distribution function F on R1. Consider the problem of statistical
estimation of a linear functional on a certain class of distributions F .

J(F ) = MF [ϕ(X)] =

∫ ∞

−∞
ϕ(x)dF (x), F ∈ F , (1)

where ϕ is known real function. Nonparametric estimator of the functional is
Ĵ = J(Fn), where Fn(x) = n−1

∑n
i=1 c(x−Xi) is empirical distribution function,

c(t) = {0, t < 0; 1, t ≥ 0}.
Suppose that there is an assumption that J may be equal to Ψ . The value of

Ψ is called a prior guess, it acts as a prior (possible) value of the functional J .
The problem is to construct an estimator of functional (1), taking into account
nonparametric estimator Ĵ and prior guess Ψ . Following to [17] and [15], we
consider a combined estimator of the form

Ĵ(λ) = (1− λ)Ĵ + λΨ = Ĵ − λ(Ĵ − Ψ), (2)

where the weighting coefficient λ is selected from the minimum of mean square
error (MSE) SF (λ) = MF [Ĵλ − J ]2 and its optimal value is given by

λ∗
n = (1 + nΔ2

F /σ2
F )

−1 = (1 + b
2

n(F ))−1 (3)

with minimum of MSE SF (λ
∗
n) = σ2

F (1 − λ∗
n)/n, where σ2

F = DF (ϕ(X)) is the
variance of ϕ(X), ΔF = J(F ) − Ψ is the value of displacement of the prior
guess from the true value J(F ), and bn(F ) =

√
nΔF /σF is the normalized

displacement.
The weighting factor λ∗

n varies between 0 < λ∗
n ≤ 1, and shows contribution

of each estimator to the combined estimator (2). If ΔF = 0, we have λ∗
n = 1, and

prior guess Ψ should be taken as the estimator of the functional J(F ). When
ΔF �= 0, which usually happens in practice, λ∗

n < 1, and with the growth of
sample size (n→∞), λ∗

n → 0, the influence of a prior guess and the advantage
in estimation accuracy decrease.

The asymptotic behavior of optimal estimator Ĵ(λ∗
n) is given by the following

theorem. In order to describe asymptotic properties we consider the convergence
bn → b, referring to a series of samples from the sequence of random variables
X .
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Theorem 1. Let σ2
F < ∞ for each F ∈ F and sequence bn converges to b

as n → ∞. Then the random sequence ξ∗n =
√

n(Ĵ(λ∗
n) − J)/σF converges in

distribution to the random variable ξ∗ = η − λ∗(η + b), where λ∗ = 1/(1 + b2)
and η ∈ N(0, 1) is standard normal random variable. The random variable ξ∗

has variation Dξ∗ = [b2/(1 + b2)]2, mean Mξ∗ = −b/(1 + b2), and MSE Sξ∗ =
b2/(1 + b2).

Proof. The convergency in distribution follows from the central limit theorem
and the continuity theorem ([18], Chapter 6). Moments of ξ∗ are calculated
analytically.

The significant benefit in MSE of the optimal estimator Ĵ(λ∗
n) as compared

to regular estimator Ĵ makes it interesting to use. Unfortunately, the coefficient
λ∗
n depends on the unknown distribution function F , and usually, its value is

unknown, that complicates the practical use of the formulae (2) and (3). The
solution to this situation is building statistical estimators of λ∗

n and adaptive
estimators of the functional J(F ).

3 Adaptive Estimators

We construct adaptive estimators based on consequent use of a prior guess. The
first estimator can be obtained by substitution of F with Fn in formula (3):

λ̂1 = λ(Fn) = (1 + nΔ̂2/σ̂2)−1 = (1 + b̂2n)
−1,

where Δ̂ = Ĵ −Ψ is estimator of displacement, b̂n =
√

nΔ̂/σ̂ is estimator of nor-

malized displacement. Substituting λ with λ̂1 in (2), we obtain the first adaptive

combined estimator Ĵ1 = Ĵ − λ̂1(Ĵ −Ψ). Using Ĵ1 in estimation of displacement

ΔF , we obtain Δ̂1 = Ĵ1 − Ψ and b̂1,n =
√

nΔ̂1/σ̂. Then the second estimator

will be λ̂2 = (1+ b̂21,n)
−1 and Ĵ2 = Ĵ− λ̂2(Ĵ−Ψ). After repeating this procedure

k times consecutively, we obtain the following expressions for the estimator

Ĵk = Ĵ − λ̂k(Ĵ − Ψ), λ̂k =
(
1 + b̂2k−1,n

)−1

, (4)

b̂k,n =

√
n(Ĵk − Ψ)

σ̂
= b̂n(1− λ̂k) = b̂n

(
b̂2k−1,n

1 + b̂2k−1,n

)
, b̂0,n = b̂n,

Let us refer to Ĵk as k–adaptive estimator. We emphasize here that the prior
guess Ψ has been used at each step of estimation of ΔF .

4 Asymptotic Properties

Consider the asymptotic behavior of Ĵk. Let ξk,n =
√

n(Ĵk − J)/σ̂. Denote

ηn =
√

n(Ĵ−J)/σ̂, bn =
√

nΔF /σ̂ and consider the sequence of functions defined
as q0(x) = x, qk(x) = xq(qk−1(x)), k ∈ {1, 2, 3, . . .}, where q(x) = x2/(1 + x2).
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Using these notations, (4) can be written as b̂k,n = b̂nq(b̂k−1,n) = qk(b̂n) and

ξk,n = −bn + qk(b̂n), b̂n = ηn + bn.
The following lemma gives properties of function family qk(x) that shown in

figure 1.
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Fig. 1. Sequence of functions qk(x) for k ∈ {0, 1, 2, 4, 16,∞}

Lemma 1. The functions qk(x), k ∈ {0, 1, 2, . . .} have following properties:
1. qk(x) is odd function by x, i.e. qk(−x) = −qk(x);
2. qk(x) is monotonically increasing function by x;
3. qk−1(x) > qk(x) when x > 0 and qk−1(x) < qk(x) when x < 0;
4. limx→±∞ qk(x)/x = 1 for each k;
5. limk→∞ qk(x) = q∞(x), where

q∞(x) =

⎧⎨⎩
(x −√x2 − 4)/2, x ≤ −2,
0, |x| < 2,

(x +
√

x2 − 4)/2, x ≥ 2.

Proof. The function q0(x) is odd and monotonically increasing, q(x) is even
and monotonically increasing when x > 0. Based on that, the first and second
propositions can be obtained by induction.

The third proposition can be proved using the inequality q(x) < 1 that holds
for any x. When x > 0, we have q1(x) = xq(x) < x = q0(x). Suppose that
qk−1(x) < qk−2(x) for x > 0. Then qk(x) = xq(qk−1(x)) < xq(qk−2(x)) =
qk−1(x). Since qk(x) is odd function, the third proposition is proved.

The fourth proposition is obvious for k = 0 because q0(x) = x. Suppose
for some k that limx→±∞ qk−1(x)/x = 1 and consider limx→±∞ qk(x)/x =
limx→±∞ q(qk−1(x)) = limx→±∞ q(x) = 1.
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Proving the fifth proposition, denote p = q∞(x) for fixed x. The limit in
recursive equation qk(x) = xq(qk−1(x)) as k → ∞ leads to the equation p =
xp2/(1 + p2). Solutions to the equation are p0 = 0, p− = (x − √x2 − 4)/2,
p+ = (x+

√
x2 − 4)/2. The value p0 is only root for |x| < 2. In order to remove

extraneous roots for particular x, consider the case of x > 2, when p− < 1
and p+ > 1. If we prove that qk(x) > 1 for x > 2, then the roots p− and
p0 are extraneous. Obviously q0(x) > 1, suppose qk−1(x) > 1 and consider
qk(x) = xq(qk−1(x)) > xq(1) = x/2 > 1. Similarly, the roots p+ and p0 are
extraneous for x < −2. Root values at x = ±2 we consider as a limit cases for
x = 2 + 0 and x = −2− 0.

In the following theorem the convergence bn → b in probability means utilizing
a series of samples from the sequence of random variables X .

Theorem 2. Let σ2
F < ∞ for each F ∈ F and sequence bn converges to non-

random value b in probability as n → ∞. Then for each k the random sequence
ξk,n converges in distribution to random variable ξk and

1. ξk = −b+ qk(η + b) if |b| <∞,
2. ξk = η if |b| =∞,
3. P {ξk < x} = Φ

(
q−1
k (x+ b)− b

)
, x ∈ (−∞,∞),

where η ∈ N(0, 1) is the standard normal random variable, q−1
k (x) is inverse

function, Φ(x) is standard normal distribution function.

Proof. The functions qk(x) are continuous and σ̂2 converges to σ2
F in probability

as n→∞. Then the first statement of the theorem follows from convergency of
ηn to η in distribution by the central limit theorem and the continuity theorem
([18], Chapter 6).

The second statement of the theorem follows from the representation

ξk,n = ηn − ηn + bn
1 + q2k−1(ηn + bn)

,

where the second term converges weakly to zero as |bn| → ∞ due to the propo-
sition 5 from lemma 1.

Since qk(x) is monotonically increasing function, then the distribution of the
random variable ξk is defined by the formula

P {ξk < x} = P
{
η < q−1

k (x+ b)− b
}
= Φ

(
q−1
k (x+ b)− b

)
= Gk,b(x).

In particular, Gk,±∞(x) = Φ(x), Gk,0(x) = Φ(q−1
k (x)), and Gk,0(x) is symmetric

around the point x = 0.

5 Examples of k–Adaptive Combined Estimators and
Numerical Results

In this section we provide some examples of estimators, their asymptotic prop-
erties, and results of numeric calculations.
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Fig. 2. Dependence of the variation Dξ∗ and Dξk (left plot), mean Mξ∗ and Mξk
(right plot) on normalized displacement b and k ∈ {0, 1, 2, 4, 16,∞}

Consider the k–adaptive combined estimators Ĵk under k ∈ {1, 2} and corre-
sponding normalized asymptotic random variables ξk.

Ĵ1 = Ĵ −
[
1 + b̂2n

]−1

(Ĵ − Ψ), ξ1 = −b+
(η + b)3

1 + (η + b)2
,

Ĵ2 = Ĵ −
[
1 +

b̂3n

1 + b̂2n

]−1

(Ĵ − Ψ), ξ2 = −b+
(η + b)7

[1 + (η + b)2]2 + (η + b)6
.

If ΔF = 0 then bn = b = 0 and ξ1 = η3/(1 + η2), ξ2 = η7/[1 + η2]2 + η6

has symmetric distribution with mean Mξ1 = 0, Mξ2 = 0 and variation Dξ1 =
Sξ1 ≈ 0.467, Dξ2 = Sξ2 ≈ 0.316, which shows potential benefit of using prior
guess, it should be compared with variation of regular nonparametric estimator
Dξ0 = Sξ0 = 1. If ΔF �= 0 and b = ±∞ then ξk = η. In that case asymp-
totic distributions of adaptive estimator Ĵk and nonparametric estimator Ĵ are
identical and equal to normal distribution.

According to lemma 1, the limit estimator (obtained after using the prior
guess infinite number of times, k =∞), can be written as

Ĵ∞ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Ĵ −
[
1 +

(
b̂n−
√

b̂2n−4
)2

4

]−1

(Ĵ − Ψ), b̂n ≤ −2,

Ψ, |b̂n| < 2,

Ĵ −
[
1 +

(
b̂n+
√

b̂2n−4
)2

4

]−1

(Ĵ − Ψ), b̂n ≥ 2.

Using the change of variables in the moment expression for asymptotic nor-
malized random variable ξk (see theorem 2 and lemma 1), we have the ex-
pression Mξmk =

∫∞
−∞ xmdΦ(q−1

k (x + b) − b) =
∫∞
−∞(qk(z + b) − b)mdΦ(z) for

numerical calculation of mean Mξk, dispersion Dξk = Mξ2k− (Mξk)
2, and MSE

Sξk = Dξk +Mξ2k for k ∈ {0, 1, 2, . . . ,∞}.
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Fig. 3. Dependence of the MSE Sξ∗ and Sξk on normalized displacement b and k ∈
{0, 1, 2, 4, 16,∞}

According to theorem 1 the optimal estimator Ĵ(λ∗
n) (see (2), (3)) corresponds

to normalized asymptotic random variable ξ∗ = η − λ∗(η + b), where λ∗ =
1/(1 + b2). It has variation Dξ∗ = [b2/(1 + b2)]2, mean Mξ∗ = −b/(1 + b2), and
MSE Sξ∗ = b2/(1 + b2).

Table 1. Extremal points of Dξk, Mξk, Sξk. Arguments of maximum (rows 3, 6, 9)
and points of intersection with level one (rows 4 and 8) are presented with accuracy
±0.07.

No k 1 2 4 16 ∞
1. minb Dξk = minb Sξk, b = 0 0.467 0.316 0.221 0.161 0.153

2. maxb Dξk 1.148 1.293 1.501 1.829 1.909

3. argmaxb Dξk ±2.94 ±2.8 ±2.66 ±2.66 ±2.66

4. b : Dξk = 1 ±1.82 ±1.68 ±1.54 ±1.40 ±1.40

5. maxb |Mξk| 0.366 0.519 0.668 0.829 0.860

6. argmaxb |Mξk| ±1.82 ±1.82 ±1.68 ±1.68 ±1.68

7. maxb Sξk 1.251 1.494 1.823 2.315 2.431

8. b : Sξk = 1 ±1.40 ±1.26 ±1.12 ±0.98 ±0.98

9. argmaxb Sξk ±2.66 ±2.52 ±2.38 ±2.38 ±2.24

Variation Dξk and Dξ∗, mean Mξk and Mξ∗ (figure 2), MSE Sξk and Sξ∗

(figure 3) depend on normalized displacement b and order k. The value k = 0
corresponds to regular nonparametric estimator, Ĵ0 = Ĵ and Dξ0 = Sξ0 ≡
1,Mξ0 ≡ 0 do not depend on b. Extremal points of that functions are presented
at table 1. Potential benefit from using prior guess is shown at the row 1 of
the table. This significant advantage at the neighborhood of point b = 0 is
compensated by loss of efficiency in the neighborhood of b = ±2.
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Abstract. The article considers the problems of colored timed Petri net
apparatus application for modeling the procedures of operative estimate
of bitrate in packet switching net channels based on algorithms of moving
average and exponential moving average.

Keywords: flow rate, packet net, moving average, exponential moving
average, quality of service, Petri net, CPN Tools.

1 Introduction

Development of modern telecommunication is to a great extent determined by
the widespread implementation of quality of service (QoS) methods assurance,
which is understood as the ability of a net to provide specific service to the traffic
of each application. The necessary service is characterized by such parameters
as carrying capacity (bandwidth), packet delay and its variation (jitter), percent
of lost packets [1, 2].

The choice of the most efficient quality of service management methods in
corporate networks, development of new QoS methods appear to be a complex
problem that may be solved by means of simulation preferably using the in-
struments of telecommunication net research that are not attached to particular
equipment, but based on mathematical models. The report considers the mod-
eling problems of one of QoS mechanisms – traffic control using the apparatus
of hierarchical colored timed Petri nets [3]. The given apparatus features the
following advantages:

– Petri net is a universal algorithmic system providing description practically
of any algorithms;

– colors enable to describe and model algorithms depending on processed data
content;

– hierarchical pattern enables to build complex multicomponent models;

– time property enables to model dynamic characteristics of objects.

A. Dudin et al. (Eds.): ITMM 2014, CCIS 487, pp. 91–100, 2014.
c© Springer International Publishing Switzerland 2014
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CPN Tools is a freely distributable packet. It was chosen as a development sys-
tem, and in order to design network models the authors used a general approach
described in [4–6].

Among other QoS mechanisms (traffic marking and classification, queue man-
agement, overload management) of great importance are the mechanisms of
traffic management that directly determine the packet delay and loss proba-
bility thereof, as well as the efficiency of network equipment resource usage. The
following are the standard management methods:

– traffic profiling, which is performed at the border network equipment, and
which is to limit packet flow rate in accordance with the dedicated band-
width;

– shaping – smoothing of the traffic pulsation to eliminate bursts leading to
the loss of frames and buffer thrashing, and unpredictable delay fluctuations
that negatively impact the multimedia applications.

At the present time there is a significant development of various adaptive meth-
ods of traffic management and rearrangement of nodal equipment (switches and
routers) bandwidth in real time [7].

A mandatory component of any traffic management policy is bitrate measure-
ment. There are the following rate measurement algorithms:

– averaging over adjacent time intervals. The main disadvantage of the said
algorithm is the impossibility to estimate bitrate with high burst;

– sliding window provides good approximation of the average bitrate by com-
puting the simple moving average (MA), however, requiring considerable
computing resources;

– leaky bucket and token bucket algorithms are easy to realize and therefore ex-
tensively used in profiling and shaping, however, practically do not measure
the current bitrate, but only the limit thereof.

In order to measure the bitrate in reference [8] it is suggested to use the
more easily realizable algorithm of exponential smoothing (exponential moving
average - EMA), applied in short-term forecasting of time series [9, 10].

CPN Tools modeling of traffic rate measurement by algorithms of averaging
complementary intervals, leaky bucket and token bucket is considered in [11,
12]. Therefore, further we are to consider the formation principles of colored
timed Petri nets for algorithms of bitrate measurement based on EMA and MA
algorithms.

2 EMA Algorithm Modeling

In the traditional approach the exponential smoothing of the traffic profile di-
rectly in the channel for any moment in time tj = jT I, where TI is the bit
length, EMA Vj value equals:

Vj = α ·Xj + (1− α) · Vj−1 (1)
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where α is smoothing constant (0 < α < 1), Xj - instantaneous data rate at the
moment, which may have the value of 0, if at this period of time there is no data
transfer in the channel, or the maximum value of physical channel speed.

For purposes of traffic management it is necessary to take into account the
data rate not in the random moment of time, but either at the start of frame
transfer, or at the end of frame transfer. Besides, the traffic profile represents a
time series consisting of zeroes and ones: sequence of ones is determined by the
number of bit intervals, during which the frame is transferred, and the sequence
of zeroes – by the number of bit intervals, during which there is a pause between
frames (fig. 1). Thus, to compute the EMA traffic rate it is possible to use the
following recurrence formulas:{

V Pi = (1− α)Pi · V Li−1

V Li = 1− (1− α)Li · (1− V Pi)
(2)

where V Pi, V Li – average rates respectively at the start and at the end of
transfer of i frame; Pi and Li - length of the interframe pause and transfer time
of i frame respectively.

The average rate in the time interval t ∈ (ti−1, ti) may be evaluated as follows:

Vi ≈ V Pi · Pi + V Li · Li

Pi + Li
(3)

Fig. 1. Timing chart of EMA application

In this case to simulate the researched algorithms we form a frame flow,
movement of which is determined by the content of the frames, and due to
this fact it is important to effectively use the feature of marker coloration. There
were introduced two types markers:
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– information markers, the movement of which imitates frame processing in a
switch marked by a multiset with frame color, which may occupied either by
transfer of the frame of frm color, reflecting the structure of the transferred
frame and consisting of sender and receiver addresses src and dst, qos priority
control field, szfrm size of transferred data and delay total delay to compute
the delay of frame movement in the net, or by avail color (free), that enables
to reveal and process the events related to the presence or absence of the
frame in position;

– control markers, the colors of which reflect the condition of frame flow pro-
cessing in the switch.

Traf input

In frame
avail

In

EA data

Ed

1`(0,0,0,0,0,0)

EA param

Ep

1`(100000)

Collector
Out frmOut

Data
Collector

Ed

empty

Exponential
average

input (ea_data,ea_param,szfrm);
output (ea_data_new);
action
let
val alpha = getAlpha(ea_param);
val count = #1 ea_data;
val prev_time = #3 ea_data;
val s0 = getS0(#2 ea_data);
val s0_int = toInteger(s0*100000.0);
val delta_time = getDeltaTime(prev_time);
val s_pause = getSPause(alpha,delta_time,s0);
val s_pause_int = toInteger(s_pause*100000.0);
val s_frame = getSFrame(alpha,szfrm,s_pause);
val s_frame_int = toInteger(s_frame*100000.0);
in
(count+1,s_frame_int,curTime()+szfrm,s0_int,s_pause_int,szfrm)
end

f(src,dst,qos,szfrm,delay)

avail

ea_data_new
ea_param ea_data

ea_data_new

1`(src,dst,qos,szfrm,delay)

Fig. 2. Petri subnet, modeling the EMA algorithm

Petri net simulating the EMA algorithm is shown in fig. 2 and includes the
following positions:

– Traf input, that accepts the markers corresponding to the input frame flow;

– EA param includes the marker with information about the smoothing con-
stant (α = 1/ea param);

– EA data, that includes a marker with information about the current value
of the computed ea data rate;
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– Data Collector - the aggregator of markers with information about the com-
puted rate (count – i marker number, s frame int, curTime()+szfrm, s0 int,
s pause int, szfrm – computed values of V Pi, V Li, V Li−1, Pi and Li respec-
tively).;

– Collector – output position of the model;

In the subnet there is one Exponential average transition that realizes traffic
bitrate measuring according to the algorithm of exponential smoothing by com-
puting next values of V Pi and V Li rates using CPN ML language procedures.
Herewith, the direct computation by formula (2) realizes user getSPause and
getSFrame functions. It should be noted that the use of the above mentioned
functions is connected with conversion of the format of variables with floating
point in integers, which may lead to an error, the impact of which should be
compensated by introduction of scaling.

3 MA Algorithm Modeling

Using the traditional approach the simple moving average of traffic in a channel
for a random moment of time tj = jT I, Vj will be equal to:

Vj =
1

T
·
T−1∑
i=0

Xj−i = Vj−1 +
Xj −Xj−T+1

T
(4)

where T – a sliding window of averaging.
Taking into account the fact that the traffic profile represents a time series

consisting of zeroes and ones: rate should be computed at the start of frame
transfer and at the end of frame transfer, the window will not move along the
time axis uninterruptedly, but “by jerks”, as shown in fig. 3 Thus, similarly to
EMA, the computation formula for and may be represented as follows:{

V Pi = V Li−1 −
∑

τ1 Lτ1

V Li = V Pi +
1
T · Li − 1

T ·
∑

τ2 Lτ2

(5)

where the sums represent the amount of bits transferred into the channel on
time intervals τ1 ∈ (ti−Pi−T, ti−T ) and τ2 ∈ (ti−T, ti+Li−T ) respectively,
i.e. removed from the window when it moves during i frame arrival and transfer
end. The said fact causes certain difficulties in practical realization of the MA
algorithm, as it is necessary not just to retain the frame lengths, caught in the
window, but also to retain the length of pauses between them and ”split” the last
frame, if the rear edge of the window matches the time of the transfer thereof.

The variant of Petri net modeling the MA algorithm has been suggested in
reference [13], and fig. 4 shows a more compact realization of the subnet including
the following positions:

– Ingress port, that accepts the markers describing the frames of the input
traffic flow;
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Fig. 3. Time chart of MA application

– Forefront, Backfront, that include time markers representing the start (Fore-
front) and the end (Backfront) of frame receiving;

– SW param, contains marker with information about the size of averaging
window (fw param) in bit intervals;

– Framefront, Frameback, that contain markers caught in the current position
of averaging window, with time markers representing the start (Framefront)
and the end (Frameback) of the respective frame receiving;

– Cache – buffer position used for aggregation of two net branches;
– SW size, contains the volume of data caught in averaging window in the

current position thereof;
– Frame size cache, intended for temporary storage of information about the

size of the frame added to averaging window;
– Data collector2, contains markers with information about a sequence number

of a marker (count2 ) and volume of data (fw data new), caught in averaging
window at the moment of the end of the respective frame receiving (cur-
rent value of channel usage may be computed as a ratio of fw data new to
fw param);

– Packet counter – buffer position, calculating marker filling of Data collector2
position;

– Collector – output port, collecting markers of the processed frames for fur-
ther processing.

The net operation of MA algorithm modeling is described below.
The next input marker goes to Ingress Port position, after that there takes

place Split frame transition actuation. Then Forefront position is taken by the
marker, containing information about a frame, which will be used for computa-
tion of the current position of the window at the moment of frame appearance
(the frame will not be registered in the size of the window), and Backfront po-
sition – by the time marker increased by the size of the frame.

After that the marker in Backfront goes through the transition No bf check
or Check backfront, and marker in Forefront – through transition No ff check,
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input (sz_front,fw_data);
output (sz_front_new,
fw_data_new);
action
let
val dt = cT() - #2 sz_front;
val szn = #1 sz_front - dt;
val fwdn = fw_data - 
(#1 sz_front - szn);
in
((szn, #2 sz_front), fwdn)
end
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input (sz_front,sz_back,fw_data);
output (fw_data_new);
action
let
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if(#1 sz_front< #1 sz_back) 
then (fw_data - #1 sz_front)
else (fw_data -  #1 sz_back)
end
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input (sz_front,fw_data);
output (sz_front_new,
fw_data_new);
action
let
val dt = cT() - #2 sz_front;
val szn = #1 sz_front - dt;
val fwdn = fw_data - 
(#1 sz_front - szn);
in
((szn, #2 sz_front), fwdn)
end
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Fig. 4. Petri subnet, modeling the MA algorithm

or Check forefront. Transitions Check backfront and Check forefront have the
highest priority and are necessary to process the cases, when at appearance of
the next frame (Check forefront) or receiving thereof (Check backfront) the back
front of averaging window is in the period of time when the receiving of the
already arrived frame took place (”splitting” of the frame according to formula
(5)). In such cases the information about the amount of data in ”the sliding win-
dow” at the current moment should be adjusted. Adjustment values sz front new
and sz data new are computed by the appropriate procedures taking into account
the current simulated time obtained using cT() function.

No bf check transition or Check backfront transition actuation leads to marker
removal from Back Front position, and in case of No ff check or Check forefront
actuation the marker transits to Cache buffer position. Then, there occurs the
actuation of Add Frame to SW transition that saves information about the pro-
cessed frame in averaging window (Frame front and Frame back). As the infor-
mation about the amount of data in the window increases by the size of the
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appeared frame after receiving thereof, it is necessary to change the values in
SW size position after a period of time that equals the size of the frame. The
said is realized by Frame size cache position and Resize SW transition.

Reduce SW size transition removes the information about the frames miss-
ing the current ”sliding window” from Frame front, Frame back and SW size
positions.

4 Results

For the example the created models application, below are the results of modeling
of bitrate measurement in the Ethernet switch supporting IEEE 802.1 Q/P.
Simulated time is represented in TI (one cycle corresponds to 100 ns Ethernet
or 10 ns for Fast Ethernet). The input traffic was modeled using the special Petri
net [14] and represents a combination of two components, merger of which forms
the data flow with pronounced bursts:

– Regular, representing a sequence of 100 double-framed packets with the
length of 12176, the period of which linearly increases by 5% from 200000;

– Random, with frames, length distribution of which is of pronounced bimodal
nature: 25% of all frames have minimal and maximal length (512 and 12176
respectively), the length of others is equally distributed in the remaining
range. The frames follow through time intervals, distributed according to
the exponential law (technological interval of 160 cycles is also taken into
account).

Fig. 5 shows the realization profile of the input traffic with the length of
around 11000000 cycles (the amount of frames of the regular composition is 100,
average length of the interframe intervals of the random component of the input
flow is 2960 cycles), and realization of rate changes through MA (T =500000)
and EMA (α = 1/250000) algorithms. The transient process with the length of
500000 bit cycles is not shown. Channel load factor, computed according to the
input realization, equals to 0.748.

Both algorithms produce quite similar results and clearly follow the linear
trend of implementration concerning the changes in bitrate.

However, the comparison of the Petri nets, presented in figs. 2 and 4, visually
shows a clear advantage of EMA algorithm in realization simplicity unlike MA.

Therefore, the presented subnet, modeling MA algorithm, may be imple-
mented not from the point of view of MA feasibility assessment, but as a “sam-
ple” model for comparison with new algorithms of bitrate assessment, based on
exponential smoothing. Thus, the modeling results show the effectiveness of the
operative measurement of the current bitrates in the telecommunication equip-
ment using EMA algorithm that may be used for evaluation of rate not just of
the general flow, but of individual components, corresponding to the introduced
QoS classes.

Scientific novelty of the research results is the following:
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Fig. 5. Results of MA and EMA algorithms modeling

– authors first proposed to use EMA algorithm for traffic bitrate measure-
ments;

– authors developed two models in timed colored Petri nets modeling EMA
and MA algorithms, and conducted a comparative analysis of both models;

– research demonstrated the advantage of ease of implementation and lower
computational complexity of EMA algorithm in comparison with MA
algorithm;

In the engineering realization of EMA algorithm it is possible to decrease
the computing complexity via linear approximation of the exponential transfer
characteristic, enabling to reduce the number of multiplication in processing of
each frame to two.

The obtained values of the current rate are easy to use for solution of routine
problems of traffic management:

– in the course of profiling during the frame receiving the value VL is fore-
casted. This value is compared with the given boundary value, and according
to the result of the comparison the frame is either deleted, or marked;

– in the course of shaping of the output traffic in the case, when the forecasted
VL is greater than the boundary value, it is necessary to increase the time
of the current pause by a calculated value.

The advantage of the suggested method of data rate measurement is the pos-
sibility of the efficient usage of measurement results for dynamic redistribution
of the bandwidth, load balancing and other tasks of net adaptive management.
On the basis of the suggested method it is possible to realize EMA of higher
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orders, modeling of which is performed through cascade connection of several
Petri subnets, shown in fig. 2.

The problems of smoothing parameter choice depending on the required ac-
curacy of evaluation of traffic rate and traffic parameters are the subject of the
separate research.
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Abstract. The present paper deals with some simple finite population
queueing systems which are used to describe the cold redundancy sys-
tems. The systems are assumed to be in a complete failure state as soon
as all of the units are failed. For such models the time dependent state
probabilities and reliability function are analyzed. It is shown that the
reliability function have a weak sensitivity to the shape of the life and re-
pair time distributions and this sensitivity vanishes upon the probability
of the complete failure state decreases.
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1 Introduction

The stability behavior of the systems by varying of their parameters or initial
conditions represents a kernel research topic almost in all areas of natural sci-
ences. Particularly, the insensitivity or weak sensitivity of system’s characteristic
measures to the shape of the input distributions of the corresponding random
variables plays an important role by modeling and analyzing of the complex
stochastic systems.

One of the first result concerning insensitivity of system’s characteristics to
the shape of service time distribution has been proposed by B.Sevast’yanov [9],
who has proved insensitivity of the Erlang’s formulas to the shape of service time
distribution for the loss queueing systems. In [4] I.Kovalenko has shown that the
necessary and sufficient condition for insensitivity of stationary characteristics to
the shape of repair time distribution in case of reliability systems with a Poisson
flow of failures and generally distributed repair times of elements. According to
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this condition any element subject to failure must be immediately accepted for
the repair. The sufficiency of this condition for recurrent failure flow and general
repair time distribution was found in Rykov [6] by means of the theory of multi-
dimensional alternating processes. At the same time Koenig et al. [3] has applied
the complementary variable method and shown some examples where reliability
characteristics strongly depend on the shape of life and repair time distributions.

The problem of insensitivity or weak sensitivity of the reliability characteris-
tics to the shapes of input distributions is not still exhaustively studied. Within
the paper we intend to analyze some simple finite source queueing models, which
are appropriate to describe cold redundancy systems. Some types of finite pop-
ulation queues were analyzed by Knessl et al.[2], Langaris and Katsaros [5]. In
Rykov [7] and Rykov et al. [8] it was shown that while the sensitivity of steady-
state probabilities to the form of inter-arrival and service time distributions in
case of cold redundancy system are obviously observable, the waiting time distri-
bution exhibits only a weak sensitivity. The loss systems with Poisson arrivals as
expected are insensitive to the type of service time distributions and homogeneity
of the servers but the same systems with generally distributed inter-arrival time
do not possess such a property any more. A missing link in sensitivity analysis
of such systems consists in investigation of the probabilistic characteristics on
one life cycle of such systems, e.g. reliability function and mean time to failure.
This problem will be the topic of the present research.

The following notations are used within the paper. GI/GI/m/n//n−m stands
for a closed queueing system with n sources of customers, m servers and n −
m places in the buffer, where GI means ”General Independent”. At the first
position of this notation GI specifies the recurrent flow of failures and at the
second one – the recurrent service process. These symbols can be changed by
M for exponential distributions in a Markov case. In the paper we consider two
types of cold redundancy models, namely M/GI/1/2//1 and GI/M/1/2//1,
and compare them with the simple Markov model M/M/1/2//1. The mean
time to failure, the mean service time as well as the failure and repair intensities
are denoted respectively by ā, b̄,α(x) and β(x). Denote also the Laplace-Stiltjes
transforms (LST) of the life and repair time by ã(s) and b̃(s).

2 The M/GI/1/2//1 Queueing System

2.1 Non-stationary State Probabilities

Consider a two source cold redundancy system M/GI/1/2//1 with one repair
server. The units have an exponential life time distributions with parameter α
and general repair time distribution B(t). Denote by

{Z(t)}t≥0 = {J(t), X(t)}t≥0

a two-dimensional stochastic process, where the first component stands for the
number of failed elements at time t and the second one stands for the elapsed
repair time of the unit at time t. The process {Z(t)}t≥0 is obviously Markovian
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one with state space E = {0, (i, x)|i ∈ {1, 2}, x ∈ R+}. Define the following state
probabilities:

(1) π0(t) = P[N(t) = 0] – the probability that both of units are operational at
time t.

(2) πi(t;x)dx = P[N(t) = i; x < X(t) ≤ x+ dx] – the joint probability that at
time t there are i failed units and the unit is being repaired with the elapsed
repair time between x and x+ dx, i = 1, 2.

The system of forward partial differential equations for i = 0, 1, 2 and x > 0:[ d

dt
+ α

]
π0(t) =

∫ ∞

0

π1(t;u)β(u)du, (1)[ ∂

∂t
+

∂

∂x
+ α+ β(x)

]
π1(t; x) = 0;[ ∂

∂t
+

∂

∂x
+ β(x)

]
π2(t; x) = απ1(t; x)

with the boundary condition π1(t; 0) = απ0(t) +
∫∞
0 π2(t; u)β(u)du, π2(t; 0) =

0, together with the normalizing equation π0(t) +
∑2

i=1

∫∞
0 πi(t; x)dx = 1 and

initial condition π0(0) = 1,πi(0; x) = 0, i = 1, 2, for any fixed x.

Theorem 1. The state probabilities in terms of the LT are given by

π̃0(s) =
1

s + α
[1 + π̃1(s; 0)b̃(s + α)], (2)

π̃1(s; x) = π̃1(s; 0)e
−(s+α)x(1−B(x)),

π̃2(s; x) = π̃1(s; 0)(e
−sx − e−(s+α)x)(1 −B(x)),

π̃1(s; 0) =
α

(s+ α)(1 − b̃(s)) + sb̃(s+ α)
.

Proof. By taking Laplace transforms of equations from (1), we obtain

sπ̃0(s)− 1 = −απ̃0(s) +

∫ ∞

0

π̃1(s; u)β(u)du, (3)

sπ̃1(s; x) +
∂π̃1(s; x)

∂x
= −(α + β(x))π̃1(s; x),

sπ̃2(s; x) +
∂π̃2(s; x)

∂x
= −β(x)π̃2(s; x) + απ̃1(s; x),

π̃1(s; 0) = απ̃0(s) +

∫ ∞

0

π̃2(s; u)β(u)du, π̃2(s; 0) = 0.

Solving the second differential equation from (3), we get

π̃1(s; x) = π̃1(s; 0)e
−(s+α)x(1 −B(x)). (4)
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Combination of the third equation of (3) and (4) leads to

π̃2(s; x) = π̃1(s; 0)(e
−sx − e−(s+α)x)(1 −B(x)). (5)

Substituting (4) and (5) respectively into the first and fourth equations of (3),
after some algebra yields

π̃0(s) =
1

s+ α

[
1 + π̃1(s; 0)b̃(s+ α)

]
, (6)

π̃1(s; 0) =
α

1− b̃(s) + b̃(s + α)
π̃0(s),

that finishes the proof.

2.2 Reliability Function

Denote by T the random variable of the time to the complete failure of the
system, then the reliability function is R(t) = P[T > t].

Theorem 2. The Laplace transform of R(t) is of the form

R̃(s) =
s+ α[2 − b̃(s + α)]

(s + α)(s + α− αb̃(s + α))
. (7)

Proof. In order to evaluate the reliability of the system we will treat complete
failure state, where N(t) = 2 for the first time, as absorbing one. We get a new
system with the following set of equations:[ d

dt
+ α

]
π0(t) =

∫ ∞

0

π1(t;u)β(u)du, (8)[ ∂

∂t
+

∂

∂x
+ α + β(x)

]
π1(t; x) = 0, π1(t; 0) = απ0(t)

with the initial condition π0(0) = 1. By taking Laplace transforms of these
equations, we obtain

sπ̃0(s)− 1 = −απ̃0(s) +

∫ ∞

0

β(u)π̃1(s; u)du, (9)

sπ̃1(s; x) +
∂π̃1(s; x)

∂x
= −(α + β(x))π̃1(s; x), π̃1(s; 0) = απ̃0(s).

From the second and third equations of (9) we obtain

π̃1(s; x) = π̃1(s; 0)e
−(s+α)x(1 −B(x)) = απ̃0(s)e

−(s+α)x(1−B(x)). (10)

Substituting (10) into the first equation of (9) yields

(s + α)π0(s) = 1 + απ̃0(s)b̃(s+ α),
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this implies π0(s) =
1

s+α−αb̃(s+α)
. Hence we have

R̃(s) = π̃0(s) +

∫ ∞

0

π̃1(s; x)dx = π̃0(s)
[
1 + α

∫ ∞

0

e−(s+α)x(1−B(x))dx
]

Upon substitution, one gets formula (7).

Corollary 1. For the mean time to failure E[T ] and the variance V[T ] we get

E[T ] =
1

α

[
1 +

1

1− b̃(α)

]
, (11)

V[T ] =
2 + (b̃(α) − 2)b̃(α)− 2αb̃ ′(α)

[α(1− b̃(α))]2
. (12)

Proof. The statement follows from the property of the Laplace transform,

E[T ] =

∫ ∞

0

R(t)dt = R̃(s)

∣∣∣∣
s=0

,

V[T ] = E[T 2]− E[T ]2 = −
[
2R̃ ′(s) + R̃2(s)

]∣∣∣∣
s=0

.

Remark 1. For exponential distribution of the repair time B(x) = 1− e−βx,

R(t)=
e−

1
2
(2α+β)t

[√
β(4α+ β) cosh( 1

2

√
β(4α+ β)t) + (2α− β) sinh( 1

2

√
β(4α+ β)t)

]
√

β(4α+ β)
.

and E[T ] = 1
α

[
2 + β

α

]
, V[T ] = 1

α2

[(
2 + β

α

)2

− 2
]
.

Remark 2. Denote by NT – random value of the number of repairs until the
system reaches the complete failure state N(t) = 2. This value describes also
the number of regenerative cycles (e.g. the time between two successive visits
of state N(t) = 1) without complete failure. Since a complete failure occurs in
each regeneration cycle with a probability

pF = P[A < B] =

∫ ∞

0

A(u)b(u)du = 1− b̃(α),

the number of repairs NT has a geometrical distribution

fNT (n) = P[NT = n] = b̃(α)n(1 − b̃(α))

with the mean number E[NT ] =
1
pF
−1. This characteristic is a natural discrete-

valued counterpart of the time to failure T .

We now turn to the loss system M/GI/2/2//0 with two servers. The correspond-
ing LSTs are denoted by b̃i(s) and repair intensities are βi, i = 1, 2. Consider a
Markov process

{Z(t)}t≥0 = {J(t), X1(t), X2(t)}t≥0



106 D. Efrosinin and V. Rykov

with state space E = {0, (1, x1, 1), (1, x2, 2), (2, x1, x2)|x1, x2 ∈ R+}. We note
that J(t) = 1 stands for the case when a certain server 1 or 2 is occupied. By
analogy with a previous system define the state probabilities π0(t), π1(t;x, 1),
π1(t;x, 2) and π2(t;x, y).

Theorem 3. The Laplace transform of R(t) is of the form

R̃(s) =
s+ α[2 − p1b̃1(s + α)− p2b̃2(s + α)]

(s+ α)(s + α− αp1b̃1(s + α)− αp2b̃2(s + α))
, (13)

where pi = P[arriving customer to the empty system is served by server i].

Proof. As before the state J(t) = 2 stands for the absorption. Hence we get the
following system of differential equations,[ d

dt
+ α

]
π0(t) =

∫ ∞

0

π1(t;u, 1)β1(u)du+

∫ ∞

0

π1(t;u, 2)β2(u)du,[ ∂

∂t
+

∂

∂x
+ α + β1(x)

]
π1(t;x, 1) = 0,[ ∂

∂t
+

∂

∂x
+ α + β2(x)

]
π1(t;x, 2) = 0;

π1(t; 0, 1) = αp1π0(t), π1(t; 0, 2) = αp2π0(t).

By applying the LST to this system we get an expression for the transform π̃0(s),
which has to be substituted to

R̃(s) = π̃0(s) +

∫ ∞

0

(π̃1(s;x, 1) + π̃1(s;x, 2))dx,

in a similar as it was done in Theorem 2.

3 The GI/M/1/2//1 Queueing System

3.1 Non-stationary State Probabilities

Consider now analogous system with generally distributed life time of the unit
and exponentially distributed repair time. Denote by {Z(t)}t≥0={J(t), X(t)}t≥0

stochastic process, where the first component denotes the number of failed units
at time t and the second one denotes the elapsed operational time of the working
unit. Define the state probabilities:

(1) πi(t; x)dx = P[N(t) = i, x < X(t) ≤ x + dx] – the joint probability that at
time t there are i failed units and the operational has elapsed working time
between x and x+ dx, i = 0, 1.

(2) π2(t) = P[N(t) = 2] – the probability of the ”bad” state (complete failure
state) of the system at time t.
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These probabilities satisfy the system of the forward differential equations,[ ∂

∂t
+

∂

∂x
+ α(x)

]
π0(t; x) = βπ1(t;x), (14)[ ∂

∂t
+

∂

∂x
+ (α(x) + β)

]
π1(t; x) = 0,[ d

dt
+ β

]
π2(t) =

∫ ∞

0

α(u)π1(t; u)du

with the boundary conditions π0(t; 0) = 0, π1(t; 0) =
∫∞
0 π0(t;u)α(u)du +

βπ2(t), together with normalizing condition
∑1

i=0

∫∞
0 πi(t; x)dx + π2(t) = 1

For the initial condition π0(0; x) = δ(x), where δ(x) is a Dirac-δ-function, the
solution of the system (14) is of the form:

Theorem 4. The state probabilities in terms of the Laplace transform are given
by

π̃0(s; x) =
[
e−sx + π̃1(s; 0)(e

−sx − e−(s+β)x)
]
(1−A(x)), (15)

π̃1(s; x) = π̃1(s; 0)e
−(s+β)x(1−A(x)),

π̃2(s) =
1

s + β
ã(s+ β)π̃1(s; 0),

π̃1(s; 0) =
(s+ β)ã(s)

(s + β)(1 − ã(s)) + sã(s + β)
.

Proof. By taking Laplace transform of equations from (14), we obtain

sπ̃0(s; x) +
∂π̃0(s; x)

∂x
− δ(x) = −α(x)π̃0(s; x) + βπ̃1(s; x), (16)

sπ̃1(s; x) +
∂π̃1(s; x)

∂x
= −(α(x) + β)π̃1(s; x),

sπ̃2(s) = −βπ̃2(s) +

∫ ∞

0

α(u)π̃1(s; u)du,

π̃1(s; 0) =

∫ ∞

0

π̃0(s; u)α(u)du + βπ̃2(s), π̃2(s; 0) = 0.

From the second equation of (16) it follows,

π̃1(s; x) = π̃1(s; 0)e
−(s+β)x(1−A(x)).

Substituting this expression to the first equation of (16) and solving the corre-
sponding differential equation, we get

π̃0(s; x) =
[
e−sx + π̃1(s; 0)(e

−sx − e−(s+β)x)
]
(1−A(x)).

The last two expressions of (15) follows directly via substitution of these results
to the remaining equations.
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3.2 Reliability Function

Theorem 5. The Laplace transform of R(t) is of the form

R̃(s) =
(1− ã(s))(1 + ã(s + β))

s(1 − ã(s) + ã(s + β))
. (17)

Proof. To derive the function R(t) consider the system of differential equations
with absorption in state 2,[ ∂

∂t
+

∂

∂x
+ α(x)

]
π0(t; x) = βπ1(t;x), (18)[ ∂

∂t
+

∂

∂x
+ (α(x) + β)

]
π1(t; x) = 0,

π1(t; 0) =

∫ ∞

0

π0(t;u)α(u)du

with initial state π0(0; x) = δ(x). By taking Laplace transform, we obtain

sπ̃0(s; x) +
∂π̃0(t;x)

∂x
− δ(x) = −α(x)π̃0(s; x) + βπ1(s; x), (19)

sπ̃1(s; x) +
∂π̃1(s; x)

∂x
= −(α(x) + β)π̃1(s; x),

π̃1(s; 0) =

∫ ∞

0

π̃0(s; u)α(u)du.

Expressions for π̃0(s; x) and π̃1(s; x) follow from Theorem 4. Substituting to the
last equation (19) and expressing through π̃1(s; 0) leads to

π̃1(s; 0) =

∫∞
0 a(u)e−sudu

1− ã(s) + ã(s + β)
=

ã(s)

1− ã(s) + ã(s+ β)
.

Hence we have

R̃(s) =

∫ ∞

0

1∑
i=0

π̃i(s; x)dx = π̃1(s; 0)
1

s

[
1− ã(s)

]
+

∫ ∞

0

(1−A(x))e−sxdx

=
1

s

[
1− ã(s)

][
π̃1(s; 0) + 1

]
,

which implies the required statement.

Corollary 2. For the mean time to failure E[T ] and the variance V[T ] we get

E[T ] = ā
[
1 +

1

ã(β)

]
, (20)

V[T ] =
(1 − ã2(β))ā2 + 2āã′(β) + (1 + ã(β))ã(β)ã′′(0)

ã2(β)
. (21)
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Proof. According to the property of Laplace transform E[T ] = R̃(s)

∣∣∣∣
s=0

. Since

uncertainty 0
0 occurs upon substitution of s = 0, we evaluate a limit using

L’Hospital rule,

lim
s→0

R̃(s) = lim
s→0

(1− ã(s))(1 + ã(s+ β))

s(1− ã(s) + ã(s+ β))
= lim

s→0

−ã′(s)(1 + ã(s+ β))

1− ã(s) + ã(s+ β)
=

ā(1 + ã(β))

ã(β)
.

The value V[T ] can be evaluated due to the same arguments.

Remark 3. The probability of the complete failure in one regeneration cycle is
given by

pF = ã(β),

and the number NT has a density function

fNT (n) = P[NT = n] = (1− ã(β))nã(β).

Now we consider the loss system GI/M/2/2//0.

Theorem 6. The Laplace transform of R(t) is of the form

R̃(s) =
(1− ã(s))(1 + ã(s + β1)p1 + ã(s+ β2)p2)

s(1− ã(s) + ã(s+ β1)p1 + ã(s + β2)p2)
. (22)

Proof. To derive the function R(t) consider the system of differential equations
with absorption in state J(t) = 2,[ ∂

∂t
+

∂

∂x
+ α(x)

]
π0(t; x) = β1π1(t;x, 1) + β2π1(t;x, 2), (23)[ ∂

∂t
+

∂

∂x
+ (α(x) + β1)

]
π1(t; x, 1) = 0,[ ∂

∂t
+

∂

∂x
+ (α(x) + β2)

]
π1(t; x, 2) = 0,

π1(t; 0, 1) = p1

∫ ∞

0

π0(t;u)α(u)du, π1(t; 0, 2) = p2

∫ ∞

0

π0(t;u)α(u)du

with initial state π0(0; x) = δ(x). The system can be solve by means of the LST.
The statement now follows due to the same arguments as in Theorem 5.

4 Numerical Examples

Now we provide sensitivity analysis of the reliability function to the shape of life
and repair time distributions. The random value X is assumed to be exponential
E(1, λ), Erlang E(n, λ), n > 1, uniform U(a, b) and Weibull W(λ, b) distributed.
For evaluation of R̃(s) we need to specify the corresponding LSTs:
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Fig. 1. Reliability function R(t) (a) α = 2.5 (b) α = 0.01

Table 1. Evaluation results for the M/GI/1/2//1 system

Distr.
α = 2.5 α = 0.01

E[T ] V[T ] E[NT ] pF E[T ] V[T ] E[NT ] pF

E(1, 1) 0.96 0.60 0.41 0.71 1.02 · 104 1.04 · 108 100 0.0099
E(5, 5) 0.86 0.47 0.15 0.87 1.02 · 104 1.03 · 108 100 0.0099
U(0, 2) 0.90 0.50 0.25 0.80 1.02 · 104 1.03 · 108 100 0.0099

W(2, 1.13) 0.87 0.48 0.19 0.84 1.02 · 104 1.03 · 108 100 0.0099

Table 2. Evaluation results for the GI/M/1/2//1 system

Distr.
β = 2.5 β = 0.01

E[T ] V[T ] E[NT ] pF E[T ] V[T ] E[NT ] pF

E(1, 1) 4.50 18.25 2.50 0.29 2.01 2.04 0.01 0.99
E(5, 5) 8.59 56.85 6.59 0.13 2.01 0.41 0.01 0.99
U(0, 2) 6.03 28.49 4.03 0.19 2.01 0.69 0.01 0.99

W(2, 1.13) 7.34 41.63 5.34 0.16 2.01 0.57 0.01 0.99

f̃(s) =
[ λ

s + λ

]n
, X ∼ E(n, λ)n ≥ 1,

f̃(s) =
e−as − e−bs

s(b − a)
, X ∼ U(a, b),

f̃(s) = 1− sb
√

π

2
e(

sb
2 )2erfc

(sb

2

)
, X ∼ W(2, b),

where erfc(x) = 2√
π

∫∞
x

e−u2

du – is a complementary error function.

Consider first the system M/GI/1/2//1. Figures 1(a,b) illustrates the ef-
fect of the shape of the repair time distribution functions on the form of the
reliability function R(t). The parameters of distribution functions are chosen
in such a way that E[B] = 1. The variances of B are equal, respectively, to
V[B] = {1.00; 0.20; 0.33; 0.27}. We study two cases, where α = 2.5, figure la-
beled by ”a”, and the rare event case, where α = 0.01, figure labeled by ”b”.
The values of E[T ], V[T ], E[NT ] and pF are gathered in Table 1.
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Fig. 2. The function 1− FNT (n) (a) α = 2.5 (b) α = 0.01
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Fig. 3. Reliability function R(t) (a) β = 2.5 (b) β = 0.01

The discrete counterpart to the function R(t), i.e. the function 1−FNT (n) =
1−∑k=0n fNT (k), is analyzed in Figure 2(a,b). The figures show the insensitivity
of the shape of distribution functions in case of small pF . The results for the
system GI/M/1/2//1 are shown in Figures 3(a,b) is analyzed.
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Abstract. A controllable repairman model consists of L machines sub-
ject to failures and two repair servers working at different speeds. The
problem of optimal allocation of failed machines between the servers is
examined. The optimal control policy is calculated versus cost struc-
tures. As a result the optimal policy can be of threshold type, hysteretic
type or have more complicated form. It is shown that the corresponding
Markov process for hysteretic control policy belongs to the class of the
Quasi-Birth-and-Death processes (QBD) with three diagonal block in-
finitesimal matrix. The stationary characteristics in this case are derived
in matrix analytic form. Some numerical results are used to illustrate a
number of features of the controlled model under study.
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1 Introduction

The machine repairman systems are normally described by means of the closed
queueing systems, i.e. the systems with finite population. In such a system the
customers of the finite population are the machines which are working at the op-
eration area and during operation time they can fail independently of each other.
The failed machines are sent to the repair facility where they can be restored.
After the repair the machine becomes as good as a new one and is returned to
the operational area. If all repair servers are busy a just failed machine has to
wait for the repair at the buffer. In most cases in multi-server case the repair
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servers are assumed to be homogeneous, i.e. they repair the machines at equal
speeds [2]. Only few papers deal with heterogeneous servers, see e.g. [9].

The problem of optimal allocation between heterogeneous servers was stud-
ied exhaustively only for infinite population queues. In [10] it was shown that
the optimal allocation policy in heterogeneous system without preemption and
switching costs is of threshold type, i.e. the server with larger mean usage cost
has to be used if the queue length reaches some prespecified threshold level. The
equivalent system with switching cost was analyzed in [5], where the hysteretic
allocation policy took place. Due to this policy the usage of the server with
higher mean usage cost is performed via the switch-on and switch-off threshold
levels. For some other results concerning the hysteretic policy we refer the reader
to [1,4,6].

In this paper we combine the finite population queueing system with het-
erogeneous repair facility and optimal allocation problem which obviously rep-
resents a missing subject among the available results. For the fixed threshold
level and specified cost structure we have obtained explicitly the corresponding
average cost which was minimized. To calculate the policy we use a dynamic-
programming approach. Several structural properties of a control policy are es-
tablished as well.

The rest of the paper is organized as follows: Section 2 describes the math-
ematical model based on a controllable Markov process. In Section 3 optimiza-
tion problem is formulated and optimal equations for the dynamic-programming
value function are derived. Section 4 deals with explicit evaluation of the mean
performance measures. Finally, some numerical examples are presented in
Section 5.

2 Mathematical Model

Consider the machine repairman system described in introduction. L machines
subject to failure are working in- parallel. The operational time of each machine
is exponentially distributed with parameter λ. The machines fail independently
of each other. The repair facility consists of two heterogeneous servers with
exponential distributed repair times with parameters μ1 > μ2 > 0. The process
of the repair is assumed to be without preemption, i.e. the failed machine can not
change the server during the repair process. The operational and repair times
are assumed to be mutually independent.

Let Q(t) denote the number of failed machines in the buffer and Di(t) – the
state of the ith repair server. The system states at time t are described by a
continuous-time Markov process

{X(t)}t≥0 = {Q(t), D1(t), D2(t)}t≥0.

The controllable model associated with a Markov process {X(t)}t≥0 is a five-
tuple

{E,A, {A(x), x ∈ E}, λxy(a), c(x, a)}.
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– E is a state space of the process {X(t)}t≥0,

E = {x = (q, d1, d2); q ∈ {0, 1, . . . , L}, dj ∈ {0, 1}, q +
2∑

j=1

dj ≤ L}.

Further in the paper the notations q(x), dj(x), j = 1, 2, will be used to specify
the certain components of the vector state x = (q, d1, d2) ∈ E.

– A = {0, 1, 2} is an action space with elements a ∈ A, where a = j > 0 means
”to send a failed machine to the server j”, j = 1, 2, and a = 0 means ”to
send a failed machine to the buffer”.

– The subsets A(x) ⊆ A of control actions in state x ∈ E, where A(q, 0, 0) ≡
A,A(q, 0, 1) = {0, 1} and A(q, 1, 0) = {0, 2}.

– λxy(a) is a transition intensity to go from state x to state y under a control
action a. It is assumed that the model is stable and conservative, i.e.

λxy(a) ≥ 0, y �= x, λxx(a) = −λx(a) = −
∑
y �=x

λxy(a), λx(a) <∞,

λxy(a) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
λ
[
L− q(x) −∑2

j=1 dj(x)
]

y = x+ ea, a ∈ A(x),

μjdj(x) y = x− ej , q(x) = 0,

μjdj(x) y = x− ej − e0 + ea, q(x) > 0,

a ∈ A(x− ej − e0).

The notation ej is used for the vector with 1 in the jth position (beginning
from 0th) and 0 elsewhere.

– c(x, a) is an immediate cost in state x under control action a,

c(x, a) = c(x) + c01λ
[
L− q(x)−

2∑
j=1

dj(x)
]
1{d2(x)=0,a=2}+[

c01μ1d1(x)1{d2(x)=0,a=2} + c10μ2d2(x)1{a=0∨a=1}
]
1{q(x)>0},

c(x) = c0q(x) +

2∑
j=1

cjdj(x)

where c0 – holding cost per unit of time in the buffer, cj – usage cost of a
repair server j per unit of time, c01 and c10 – fixed costs for switching on
and off of the slower repair server. If c0 = cj = 1, j = 1, 2 and c01 = c10 = 0,
then c(x, a) represents the number of failed machines in state x.

We will next explain how the controller chooses its actions. According to the
stationary Markov policy f : E → A whenever at a decision epoch the system
state is x ∈ E, the controller choses an action f(x) = a ∈ A(x) ⊆ A regardless
of the past history of the system. We have two types of decision epochs:

– just after a failure of a machine at state x the controller chooses an action
a ∈ A(x), which prescribes to allocate the machine to one of available servers
or to the buffer;
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– just after a repair completion at server j in state x the controller chooses an
action a ∈ A(x − e0 − ej), which prescribes to take another machine from
the queue, if it is not empty, and allocate it to one of available repair servers
or put it back to the buffer.

3 Optimization Problem for Performance Characteristics

The process {X(t)}t≥0 has a finite state space hence we may guarantee that
this process is an irreducible, positive recurrent Markov process defined through
its infinitesimal matrix Λ = [λxy(f(x))]. As it is known [8], for ergodic Markov
process with costs the long-run average cost per unit of time (also referred to as
gain) for the policy f coincides with corresponding assemble average,

gf = lim
t→∞

1

t
V f (x, t) =

∑
y∈E

c(y, a)πf
y , (1)

where

V f (x, t) =

∫ t

0

∑
y∈E

P
f [X(u) = y|X(0) = x]c(y, a)du (2)

denotes the total average cost up to time t when the process starts in state x and
πf
y denotes a stationary probability of the process given policy f . The policy f∗

is said to be optimal when for any admissible policy f

gf
∗
= min

f
gf . (3)

We expect that the gain gf
∗
will be smaller or equal to the gain under other

heuristic allocation policies, e.g. Fastest Free Server discipline, which prescribes
to use a fastest server among available.

The optimal policy f∗ can be evaluated by means of a Howard iteration al-
gorithm [3], which constructs a sequence of improved policies until the average
cost optimal is reached. The key role in this algorithm is played by the dynamic
programming value function v : E → R+ which indicates a transition effect of
an initial state x to the total average cost and satisfies a well-known asymptotic
relation,

V f (x, t) = gf t+ vf (x) + o(1), x ∈ E, t→∞. (4)

The functions V f , vf and gf further in the paper will be denoted by V , v and
g without upper index f .

The system will be uniformized as in Puterman [7] with the uniformization
constant

λL+ μ1 + μ2 = 1,

which can be obtained by time scaling. As it is well known, the optimal policy
f and the optimal average cost g are solutions of the optimality equation

Bv(x) = v(x) + g, (5)

where B is the dynamic programming operator acting on value function v.
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Theorem 1. The dynamic programming operator B is defined as follows

Bv(x) = c(x) +
[
L− q(x)−

2∑
j=1

dj(x)
]
λ min

a∈A(x)
{v(x+ ea) + c011{a=2}}+ (6)

[
q(x) +

2∑
j=1

dj(x)
]
λv(x) +

∑
j:dj(x)=1

μjv(x− ej)1{q(x)=0} +
∑

j:dj(x)=0

μjv(x)+[
μ1d1(x) min

a∈A(x−e1−e0)
{v(x− e1 − e0 + ea) + c011{d2(x)=0,a=2}}+ (7)

μ2d2(x) min
a∈A(x−e2−e0)

{v(x− e2 − e0 + ea) + c101{a=0∨a=1}}
]
1{q(x)>0}.

Proof. The optimality equation is obtained by analyzing the function V (x, t) in
some infinitesimal interval [t, t+dt]. It leads to the differential equation. Applying
further the limit expression

lim
dt→0

V (x, t + dt)− V (x, t)

dt
= 0

and taking into account Markov property of {X(t)}t≥0 with asymptotic relation
(4) ones get (6).

Corollary 1. From (6) it follows that the optimal policy f = (f0, f1, f2) consists
of components which specify the control action just after a new arrival in state
x, just after a service completion at server 1 or 2 for nonempty queue,

f0(x) = argmin
a∈A(x)

{v(x+ e0), v(x + e1)1{d1(x)=0}, (v(x + e2) + c01)1{d2(x)=0}},

f1(x) = argmin
a∈A(x−e1−e0)

{v(x− e1), v(x − e0), (v(x − e1 − e0 + e2) + c01)1{d2(x)=0}},

f2(x) = argmin
a∈A(x−e2−e0)

{v(x− e2) + c10, v(x− e2 − e0 + e1), v(x − e0)}.

In case c01 = c10 = 0, fj(x) = f0(x− ej − e0), j = 1, 2.

4 Explicit Evaluation of the Gain Function

As is shown in Section 5 the optimal control policy can be approximated by
the hysteretic policy with two threshold levels (U,D), D ≤ U , i.e. the slower
server must be activated when the queue length reaches the upper bound U and
deactivated – when the queue length goes below the lower bound D. Under the
fixed values U and D the gain g can be evaluated explicitly using the right hand
side of (1).

Denote by π the row vector of the stationary state probabilities with compo-
nents πx = limt→∞ P[X(t) = x]. Define the following row-subvectors,

π00 = (π000, π001), πk =

{
(πk10, πk11) 0 ≤ k ≤ U − 1,

πk11 U ≤ k ≤ L− 2.

The corresponding transition diagram is shown in Figure 1.
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Fig. 1. Transition rate diagram for the hysteretic policy (U,D)

Theorem 2. The Markov process {X(t)}t≥0 for the thresholds (U,D) is of the
QBD-type (Quasi-Birth-Death) with a state space

E = {x = (q, d1, d2); dj ∈ {0, 1} if q ∈ {0, 1, . . . , U−1}, dj = 1 if U ≤ q ≤ L−2}
and three-diagonal block infinitesimal matrix Λ = [λxy(U,D)] defined as

Λ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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. . .
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.

.

.

0 . . . 0 0 C1 −BU−2
2 AU−1

0 0 0 0 0 0 . . . 0

0 . . . 0 0 0 C1 −B3 aU
0 0 0 0 0 . . . 0

0 . . . 0 0 0 0 C2 −bU2 aU+1
0 0 0 0 . . . 0

0 . . . 0 0 0 0 0 c2 −bU+1
2 aU+2

0 0 . . . . . . 0

.

.

.
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
.
.
.

0 . . . 0 0 0 0 0 0 0 0 c2 −bL−4
2 aL−3

0 0

0 . . . 0 0 0 0 0 0 0 0 0 c2 −bL−3
2 aL−2

0

0 . . . 0 0 0 0 0 0 0 0 0 0 c2 −bL−2
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where

C0 :=

(
μ1 0
0 μ1

)
, B0 =

(
Lλ 0
−μ2 (L − 1)λ + μ2

)
, A

k
0 =

(
(L− k)λ 0

0 (L− k − 1)λ

)

B
k
1 =

(
(L − k − 1)λ + μ1 0

−μ2 (L− k − 2)λ + c2

)
, C1 =

(
μ1 0
0 c2

)
, A

D−1
0 =

(
(L− D + 1)λ 0

0 (L − D)λ

)
,

B
D−1
1 =

(
(L− D)λ + μ1 0

−μ2 (L − D − 1)λ + c2

)
, A

k
0 =

(
(L− k)λ 0

0 (L− k − 1)λ

)
,

B
k
2 =

(
(L− k − 1)λ + μ1 0

0 (L− k − 2)λ + c2

)
, C2 =

(
0 c2

)
, A

U−1
0 =

(
(L − U + 1)λ 0

0 (L − U)λ

)
,

B3 =

(
(L− U)λ + μ1 −(L− U)λ

0 (L − U − 1)λ + c2

)
,

a
k
0 = A

k
0 · e2 = (L − k − 1)λ, b

k
2 = B

k
2 · e2 = (L − k − 2)λ + c2, c2 = C2 · e2 = μ1 + μ2.

Proof. The statement can be proved by simple block identification at the system
of balance equations taking into account defined above specifications of the sub-
vectors.
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Theorem 3. The stationary state probabilities π00 and πk, 0 ≤ k ≤ L − 2, can
be calculated by

π00 = πL−2

L−2∏
i=0

ML−2−i,

πk = πL−2

L−k−3∏
i=0

ML−2−i, 0 ≤ k ≤ L− 3,

πL−2 =
[
1 +

U−1∑
k=0

L−k−3∏
i=0

ML−2−ie+

L−3∑
k=U

L−k−3∏
i=0

ML−2−i

]−1

,

where Mk satisfies the recursive relations

Mk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C0B
−1
0 , k = 0

C0

(
Bk−1

1 −Mk−1A
k−1
0

)−1
, 1 ≤ k ≤ D − 1

C1

(
BD−1

1 −MD−1A
D−1
0

)−1
, k = D

C1

(
Bk−1

2 −Mk−1A
k−1
0

)−1
, D + 1 ≤ k ≤ U − 1

C2

(
B3 −MU−1A

U−1
0

)−1
, k = U

c2
(
bk−1
2 − ak−1

0 Mk−1e1
)−1

, k = U + 1

c2
(
bk−1
2 − ak−1

0 Mk−1

)−1
, U + 2 ≤ k ≤ L− 2.

Proof. The main idea consists in deriving the recursive relations for the sub-
vectors πk from the system of balance equations in the form

π00 = π0M0, πk = πk+1Mk+1,

where matrices Mk can be evaluated also by the recursive relations defined in the
statement. Note that the inverse matrices which are involved into these formulas
are well defined since the matrices are main diagonal dominant and hence non-
singular.

Corollary 2. The main performance measures:

– Load factor of the repair server j = 1, 2

Ū1 =

U−1∑
k=0

πke+

L−2∑
k=U

πk, Ū2 = π00e1 +

U−1∑
k=0

πke1 +

L−2∑
k=U

πk;

– Mean number of busy servers C̄ =
∑2

j=1 Ūj;
– Mean number of failed machines in the buffer

Q̄ =
U−1∑
k=0

kπke+
L−2∑
k=U

kπk;



120 D. Efrosinin, C. Spannring, and J. Sztrik

– Mean number of failed machines in the system N̄ = C̄ + Q̄;
– Mean waiting and sojourn time of the failed machine

W̄ =
Q̄

λ(L− N̄)
, T̄ =

N̄

λ(L− N̄)
;

– P[Machine n is failed] = λW̄
λW̄+1

;
– The mean cost per unit of time

g(U,D) = c0Q̄+

2∑
j=1

cjŪj + c01λ(L − U)πU−1e0 + c10μ2

D−1∑
k=0

πke1.

5 Numerical Examples

In this section we discuss some interesting observations about the properties of
the optimal control policy f = (f0, f1, f2). To evaluate optimal policies we apply
the Howard iteration algorithm [3] and formulas obtained in previous section.

Table 1. Component f0 of the (a) optimal control policy (b) hysteretic control policy

(a) (b)

System State x Queue Length q(x)

(d1, d2) 0 1 2 3 4 . . . 15

(0,0) 1 1 1 1 1 . . . 1

(0,1) 0 0 1 1 1 . . . 1

(1,0) 0 0 0 2 2 . . . 2

(1,1) 0 0 0 0 0 . . . 0

System State x Queue Length q(x)

(d1, d2) 0 1 2 3 5 . . . 15

(0,0) 1 1 1 1 1 . . . 1

(0,1) 1 1 1 1 1 . . . 1

(1,0) 0 0 0 2 2 . . . 2

(1,1) 0 0 0 0 0 . . . 0

Table 2. Component f1 of the (a) optimal control policy (b) hysteretic control policy

(a) (b)

System State x Queue Length q(x)

(d1, d2) 1 2 3 4 5 . . . 15

(1,0) 1 1 1 1 1 . . . 1

(1,1) 0 0 1 1 1 . . . 1

System State x Queue Length q(x)

(d1, d2) 1 2 3 4 5 . . . 15

(1,0) 1 1 1 1 1 . . . 1

(1,1) 1 1 1 1 1 . . . 1

Table 3. Component f2 of the (a) optimal control policy (b) hysteretic control policy

(a) (b)

System State x Queue Length q(x)

(d1, d2) 1 2 3 4 5 . . . 15

(0,1) 2 2 2 2 2 . . . 2

(1,1) 2 2 2 2 2 . . . 2

System State x Queue Length q(x)

(d1, d2) 1 2 3 4 5 . . . 15

(0,1) 2 2 2 2 2 . . . 2

(1,1) 2 2 2 2 2 . . . 2
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(a) (b)

Fig. 2. The regions of optimality for threshold U in (a) infinite population (b) finite
population L = 10 model

If the switching costs c01 and c10 are set to be equal to 0, than, as expected,
the optimal control policy f is of threshold type, i.e. is defined through a single
threshold level, U = D > 0, like at a similar system with infinite population. Due
to this policy the second server with a higher cost per service period c2

μ2
> c1

μ1

must be used in state x = (q, 1, 0) whenever the number of failed machines in
the buffer exceeds the threshold level U , q(x) > U .

If the switching costs are differs from 0 for the most values of system param-
eters λ, μ1 and μ2 the optimal policy belongs to the hysteretic policy with two
threshold levels, (U,D), discussed at the beginning of the previous section. This
policy is optimal in infinite population case as well. But surprisingly this policy
for the closed system is not optimal everywhere, i.e. for some values of system
parameters, e.g. if c01 is very large comparing to other costs, one more threshold
level appears for the activation of the first server in state x = (q, 0, 1).

Tables 1–3 illustrate the components fj , j = 0, 1, 2, of the optimal control
policy (OCP) and the hysteretic control policy (HCP), (4, 1), for the following
values,

L = 17, λ = 1, μ1 = 5, μ2 = 1, c0 = c1 = c2 = 1, c01 = 50, c10 = 5.

The gain function for these policies are equal to

gOCP = 11.0125, gHCP = 11.0524.

As we can see, the difference is not sufficient. In other numerical examples the
observable difference in performance was not more than 0.5%, so the hysteretic
policy can be treated as a quasi-optimal one.

Another observation concerns the optimal threshold policy with threshold
level U if c0 = c1 = c2 = 1 and c01 = c10 = 0. The areas of optimality for
threshold level depending on ratios r1 = μ1

λ and r2 = μ2

λ for infinite and finite
population models are shown in Figure 2. The larger upper region stands for the
case U = 1, below is shown the region for U = 2 and so on. We observe that
the slope in the finite case is flatter. In finite population case the faster server
must be more than four time faster as the slower one to get non-trivial solution
U > 1, otherwise the optimal threshold policy will coincide with the fastest free
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server discipline U = 1, where the fastest available server must be used each
time there is a waiting machine in the buffer.

6 Conclusion

In this paper we have studied a controllable machine repairman model with het-
erogeneous repair servers. For the model without switching costs the optimal
control policy has a threshold structure. We expect that this fact can be rig-
orously proved using event-based dynamic programming approach to prove the
monotonicity properties of the value function in the same way as it was done
for infinite population models. In general case with switching costs the optimal
control policy can be more complicated as a known hysteretic policy but the
difference in performance between the policies is negligible.
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Abstract. In the paper, we propose methods of quasi-geometric and
gamma approximation of the probability distribution of the calls number
in the orbit for retrial queueing systems. The description and analysis of
the application area of each method for retrial queueing system M |GI |1
are given. In addition, the results of both approximations are compared
and a table of decision making on the choice of the approximation method
are composed. Numerical examples of using the approximation methods
for retrial queueing system MMPP |M |1 are presented.

Keywords: retrial queueing systems, number of calls in the orbit,
gamma-approximation, quasi-geometric approximation.

Introduction

In queueing theory, there are two classes of queueing systems: systems with queue
and loss systems. In life real systems, there are situations when queue cannot
be explicitly identified, but also we cannot say that calls are lost if they come
when the service device is unavailable. Usually, primary call does not refuse to
be serviced and performs repeated calls to get the desired service in random time
intervals. Examples of these situations are telecommunication systems. Thus a
new class of queueing systems has been appeared: the systems with a source of
repeated calls or Retrial queueing systems.

The first papers about systems with repeated calls were published in the
middle of 20th century. The most of them were devoted to practical problems and
influence of repeated attempts on telephone traffic, communication systems etc.
[1–6]. The most comprehensive description and detailed comparison of classical
queueing systems and retrial queues are contained in books by Artalejo J.R.,
Gomez-Corral A., Falin G.I. and Templeton J.G.C. [7–9].

The majority of studies of retrial queueing systems are perfomed numerically
or via computer simulation [10, 11]. Analytical results are obtained only in cases
of simple input and service processes (e.g. stationary Poisson input process or
the exponential distribution of service law) [8]. Retrial queueing systems with
BMAP input flow [12] are investigated by Dudin A.N. and. Klimenok V.I [14,

� This work is performed under the state order No. 1.511.2014/K of the Ministry of
Education and Science of the Russian Federation.

A. Dudin et al. (Eds.): ITMM 2014, CCIS 487, pp. 123–136, 2014.
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15] in whose works matrix methods are mainly used. Also matrix methods for
retrial queues analysis are used by Neuts M.F., Artalejo J.R., Gomez-Corral A.
[16], Diamond J.E., Alfa A.S. [17] and etc. The most extensive review of retrial
queues studies via matrix methods is presented in A. Gomez-Corrals work [18].
Asymptotic and approximate methods were developed by Falin G.I. [19], Artalejo
J.R. [20], Anisimov V.V. [21] and others [22–24].

In a number of our previous papers devoted to the study of various single-
server retrial queueing system [25, 26], we proposed the asymptotic analysis
method for retrial queueing systems under a heavy load condition. During the
investigation, we showed that asymptotic characteristic functions of the proba-
bility distribution of the number of calls in the orbit in systems with different
input process and services laws (M |M |1, M |GI|1, MMPP |M |1, MMPP |GI|1)
have form of characteristic function of gamma-distribution. However, we have
demonstrated that the proposed method has a fairly narrow range of applicabil-
ity: for a load rate ρ > 0.95 Kolmogorov distance between exact and asymptotic
distributions has values Δ ≤ 0.05. In addition, we have obtained [25, 26] second-
order asymptotic characteristic functions of the probability distribution of the
number of calls in the orbit which increased the range of the method applicability
to a load value equal to 0.8.

In this paper we propose methods of quasi-geometric and gamma approxima-
tion of the probability distribution of the calls number in the orbit for retrial
queueing systems to increase the range of the applicability. The description of
these methods is given for retrial queueing system M |GI|1, but they can be ap-
plied for all types of retrial queues where the mean and variance of distribution
(or their estimates) can be obtained (e.g. the MMPP |M |1 retrial queues).

The paper consists of five sections. In Section 1, there is the description of
the mathematical model of retrial queue M |GI|1. In Section 2, the method of
quasi-geometric approximation is described and its numerical analysis is carried
out. In the next section, we depict the method of gamma approximation and
give some numerical results. In Section 4, we compare results of quasi-geometric
and gamma approximations and make conclusions about what type of approxi-
mation is to be used for different sets of parameters. In the last section, the nu-
merical results for quasi-geometric and gamma approximations for retrial queue
MMPP |M |1 are presented.

1 Mathematical Model and the Process under Study

Let us consider retrial queueing system of M |GI|1 type. Structure of the system
is presented in Figure 1.

The input process is Poisson Arrival Process with rate λ. The service time of
each call has general distribution function B(x). If a call arrives when a service
device is free, the call occupies the device for the service. If the device is busy,
the call goes to the orbit where it is staying during a random time. A duration of
that time has an exponential distribution with parameter σ. After this random
time, the call from the orbit makes an attempt to reach the device. If the device
is free, the call occupies it, otherwise the call instantly returns to the orbit.
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Fig. 1. Retrial queueing system M |GI |1

Falin G.I. [8] investigated retrial queueing system M |GI|1 by the method of
elapsed service time. Obtained formula for generating function of probability
distribution of the number of calls in the orbit has the following form:

g(z) =
1− z

k(z)− z
exp

{
λ

σ

∫ z

1

1− k(x)

k(x)− x

}
(1)

where k(z) = β(λ− λz) =

∫ ∞

0

e−(λ−λz)xdB(x) is Laplace-Stieltjes transform of

the service time distribution function.
Also using the method of introducing the additional variable of the remaining

service time, it can be derived that the characteristic function of the number of
calls in the orbit has form:

H(u) = (1− ρ)

[
1− eju

1− ejuB∗(u)

]
· exp

{
−j

λ

σ

∫ u

1

1−B∗(x)
1− e−jxB∗(x)

}
(2)

where B∗(u) =
∫ ∞

0

e−(λ−λeju)xB(x)dx is Fourier transform of the service time

distribution function.
It is easy to show that result of investigation of retrial queueing system

M |GI|1 by the method of remaining service time (5) and the result (5) obtained
by Falin G.I. are equivalent.

Applying the inverse Fourier transform to the characteristic function H(u),
the exact distribution Pi of the number of call in the orbit can be found.

However, for more complex retrial queues (where the incoming flow is not
Poisson process) analytical results for calculating the probability distribution
are not known in the scientific literature. In this regard, in this paper we pro-
pose an approximate method of quasi-geometric and gamma approximations of
the probability distribution of the number of calls in the orbit by means of ob-
taining first and second moments. Firstly we investigate retrial queueing system
M |GI|1 by proposed methods for the purpose of comparing approximate and
exact distributions. In last section some numerical examples of applying quasi-
geometric and gamma approximations for retrial queueing system MMPP |M |1
are demonstrated.
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2 Quasi-geometric Approximation

Definition. A discrete probability distribution Kgi for i ≥ 0, for which the
following equality holds

Kgi =

{
(1− p0)(1 − δ)δi−1, for i ≥ 1,
p0, for i = 0,

is called [27] a quasi-geometric distribution of defect 1.
It is easy to show that mean and variance of the distribution Kgi are equal

to
1− p0
1− δ

, and 2δ
1− p0
(1− δ)2

respectively.

Let i(t) denote the number of calls in the orbit and Pi be the probability that
there are i calls in the orbit at the moment t where i ≥ 0. The mean and the
variance of the distribution Pi are denoted as E{i(t)} and var{i(t)} respectively.

The method of quasi-geometric approximation of the probability distribution
of the number of calls in the orbit consists in the approximation of the probability
distribution Pi by the quasi-geometric distribution Kgi which parameters p0 and
δ are calculated through equating means and variances of distributions Pi and
Kgi.

So parameters p0 and δ of the distribution of quasi-geometric approximation
are defined through first and second order moments as follows

δ =
var{i(t)}

2E{i(t)}+ var{i(t)} and p0 = 1− (1− δ)E{i(t)}. (3)

Let us note that the value of p0, defined by the formula (3) may be negative.
In this case we assume p0 = 0. Then quasi-geometric distribution will be shifted.

For the construction of the proposed approximation, it is enough to know
the first and second order moments, whereas the distribution function may be
unknown. Thus, the proposed method can be applied for more complex systems,
in which we can find means and variance of the distribution of the number of
calls in the orbit.

In the considered retrial queueing systemM |GI|1 values of the first and second
order moments can be found from the form of the characteristic function (5) using
the known formula for calculation of k-th order initial moments of distribution:

E{ik(t)} = (−j)k
dkH(u)

duk
. (4)

Let us compare the probability distribution of the number of calls in the orbit
Pi and its quasi-geometric approximation Kgi for different values of the system
parameters. We show results on the approximation of the figures.

As distribution law of service time we choose gamma distribution with pa-
rameters αs = βs = 0.1, thus the mean of service time distribution is equal
b = 1.
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Let the rate of input process be equal to λ = ρ/b where variable ρ is the
system load. We will analyze the results of approximation depending on the
parameters ρ and σ.

In Figure 2, we show comparison of distributions (Pi is exact distribution and
Kgi is its quasi-geometric approximation) for ρ = 0.5 and σ = 10.

Fig. 2. Comparison of quasi-geometric and exact distributions for ρ = 0.5 and σ = 10

In the following tables (1, 2, 3) we show the Kolmogorov distance [28] between
approximate and exact distributions:

Δ = max
0≤i≤N

∣∣∣∣∣
i∑

n=0

Kgn −
i∑

n=0

Pn

∣∣∣∣∣
for different values of the system parameters.

Table 1. Kolmogorov distance between quasi-geometric approximation and exact dis-
tribution for αs = βs = 0.1

Values of the load rate σ = 0.1 σ = 0.5 σ = 1 σ = 2 σ = 10

ρ = 0.1 0.032 0.014 0.011 0.009 0.008

ρ = 0.3 0.095 0.054 0.050 0.028 0.022

ρ = 0.5 0.014 0.068 0.029 0.040 0.017

ρ = 0.8 0.205 0.017 0.022 0.027 0.026

ρ = 0.9 0.286 0.046 0.023 0.009 0.016

ρ = 0.95 0.337 0.192 0.058 0.064 0.057

We assume the criterion of applicability of methods is the condition Δ ≤ 0.05
(where Δ is Kolmogorov distance between the approximate and exact distribu-
tions). Then, from the above tables it can be concluded that the quasi-geometric
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Table 2. Kolmogorov distance between quasi-geometric approximation and exact dis-
tribution for αs = βs = 1

Values of the load rate σ = 0.1 σ = 0.5 σ = 1 σ = 2 σ = 10

ρ = 0.1 0.034 0.010 0.006 0.005 0.003

ρ = 0.3 0.107 0.068 0.048 0.036 0.026

ρ = 0.5 0.198 0.096 0.089 0.074 0.056

ρ = 0.8 0.504 0.138 0.035 0.032 0.057

ρ = 0.9 0.566 0.245 0.119 0.049 0.016

ρ = 0.95 0.595 0.288 0.174 0.040 0.012

Table 3. Kolmogorov distance between quasi-geometric approximation and exact dis-
tribution for αs = βs = 10

Values of the load rate σ = 0.1 σ = 0.5 σ = 1 σ = 2 σ = 10

ρ = 0.1 0.034 0.009 0.005 0.004 0.002

ρ = 0.3 0.112 0.070 0.046 0.033 0.021

ρ = 0.5 0.247 0.105 0.097 0.078 0.054

ρ = 0.8 0.574 0.215 0.060 0.047 0.060

ρ = 0.9 0.629 0.333 0.189 0.058 0.036

ρ = 0.95 0.657 0.384 0.267 0.138 0.016

Table 4. The range of the applicability of quasi-geometric approximation method

Values of the retrial rate σ Values of the load rate ρ

σ = 0.1 ρ < 0.1

σ = 0.5 ρ < 0.2

σ = 1 ρ ≤ 0.3

σ = 2 ρ < 0.5 or 0.7 < ρ < 0.9

σ = 10 Any ρ

approximation of the probability distribution of the number of calls in the orbit
provides the best results when the rate σ increases. Note that in the case σ = 10
Kolmogorov distance between the exact distribution and its quasi-geometric ap-
proximation does not exceed 0.06. In the Table 4, the range of the method
applicability is demonstrated depending on the system parameters values.

3 Gamma Approximation

In this section, we offer to approximate the probability distribution of the number
of calls in the orbit Pi by discrete analogue (defined below) of the gamma distri-
bution Gi with a shape parameter α and an inverse scale (rate)
parameter β.

The method of gamma approximation consist in approximation the probabil-
ity distribution Pi by the discrete analogue of the gamma distribution Gi which
parameters is calculated through equating means and variances of distributions



Quasi-geometric and Gamma Approximation for Retrial Queueing Systems 129

Pi and Gi. So parameters α and β are the following

α =
E{i(t)}
var{i(t)} , β =

E2{i(t)}
var{i(t)}

where E{i(t)} is mean and var{i(t)} is variance of the distribution Pi of the
number of calls in the orbit, which are calculated by known formula (4).

Several discrete analog alternatives of gamma distribution can be offered. In
particular, they are the following:

1. G1(i) = c1f(i) where c1 is a normalizing constant, and f(i) is the density of
the gamma distribution at point i.

2. G2(i) = F (i+1)−F (i) where F (i) is function of the gamma distribution at
point i.

3. G3(i) =

{
c3 · F (0.5), if i = 0,
F (i + 0.5)− F (i − 0.5), if i ≥ 1

where c3 is a normalizing constant.

We use the second way for calculation of probability distribution Gi.
Let us compare the probability distribution of the number of calls in the

orbit Pi and its gamma approximation Gi for different values of the system
parameters.

As distribution law of service time we choose gamma distribution with pa-
rameters αs = βs = 0.1, thus the mean of service time distribution is equal
b = 1.

Let the rate of input process equals λ = ρ/b where variable ρ is the system
load. We will analyze the results of approximation depending on the parameters
ρ and σ.

In Figure 3 we show comparison of distributions (Pi is exact distribution and
Gi is its gamma approximation) for ρ = 0.9 and σ = 1.

Fig. 3. Comparison of gamma approximation and exact distributions for ρ = 0.9 and
σ = 1
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In the following tables (5, 6, 7) we show the Kolmogorov distance [28] between
approximate and exact distributions:

Δ = max
0≤i≤N

∣∣∣∣∣
i∑

n=0

Gn −
i∑

n=0

Pn

∣∣∣∣∣
for different values of the system parameters.

Table 5. Kolmogorov distance between gamma approximation and exact distribution
for αs = βs = 0.1

Values of the load rate σ = 0.1 σ = 0.5 σ = 1 σ = 2 σ = 10

ρ = 0.1 0.067 0.028 0.023 0.021 0.019

ρ = 0.3 0.122 0.076 0.058 0.049 0.039

ρ = 0.5 0.031 0.038 0.037 0.038 0.038

ρ = 0.8 0.009 0.032 0.061 0.075 0.121

ρ = 0.9 0.013 0.034 0.041 0.055 0.101

ρ = 0.95 0.023 0.062 0.039 0.054 0.081

Table 6. Kolmogorov distance between gamma approximation and exact distribution
for αs = βs = 1

Values of the load rate σ = 0.1 σ = 0.5 σ = 1 σ = 2 σ = 10

ρ = 0.1 0.077 0.022 0.015 0.011 0.008

ρ = 0.3 0.199 0.148 0.107 0.081 0.059

ρ = 0.5 0.082 0.162 0.162 0.142 0.112

ρ = 0.8 0.021 0.042 0.052 0.060 0.066

ρ = 0.9 0.009 0.019 0.024 0.029 0.035

ρ = 0.95 0.005 0.010 0.012 0.014 0.030

Table 7. Kolmogorov distance between gamma approximation and exact distribution
for αs = βs = 10

Values of the load rate σ = 0.1 σ = 0.5 σ = 1 σ = 2 σ = 10

ρ = 0.1 0.078 0.020 0.012 0.008 0.005

ρ = 0.3 0.213 0.155 0.106 0.075 0.048

ρ = 0.5 0.096 0.198 0.197 0.166 0.119

ρ = 0.8 0.027 0.056 0.074 0.087 0.105

ρ = 0.9 0.013 0.026 0.035 0.043 0.057

ρ = 0.95 0.006 0.018 0.018 0.021 0.028
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Table 8. The range of the applicability of quasi-geometric approximation method

Values of the retrial rate σ Values of the load rate ρ

σ = 0.1 ρ ≥ 0.8

σ = 0.5 ρ ≤ 0.1 or ρ ≥ 0.8

σ = 1 ρ ≤ 0.1 or ρ > 0.8

σ = 2 ρ < 0.2 or ρ ≥ 0.9

σ = 10 ρ ≤ 0.2 or ρ ≥ 0.95

As in the previous section, we assume that the criterion of applicability of
methods is the condition Δ ≤ 0.05. Then the following table 8 for the range
of the method applicability depending on the system parameters values can be
composed

4 Comparison of Quasi-geometric Ang Gamma
Approximations

In following figures 4 and 5 we demonstrate the comparison of results of proposed
methods: quasi-geometric ang gamma approximations of probability distribution
of the number of calls in the orbit.

In Figure 4 there are presented gamma and quasi-geometric approximations
and exact distribution for αs = βs = 0.1, ρ = 0.8 and σ = 0.1.

Fig. 4. Comparison of quasi-geometric and gamma approximations for ρ = 0.8 and
σ = 0.1

From the figure, it is obvious that quasi-geometric approximation gives un-
satisfactory results and it is necessary to apply gamma approximation in this
case.

In Figure 5 there are presented gamma and quasi-geometric approximations
and exact distribution for αs = βs = 10, ρ = 0.9 and σ = 10.
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Fig. 5. Comparison of quasi-geometric and gamma approximations for ρ = 0.9 and
σ = 10

From the figure, it is obvious that exact distribution is similar to geometric
ones, so the quasi-geometric approximation is applied in this case.

By comparing Table 4 and Table 8, an overall table of decision making about
type of using approximation is composed (see Table 9).

Table 9. Decision making about the type of approximation in use

Values of the load rate σ = 0.1 σ = 0.5 σ = 1 σ = 2 σ = 10

ρ = 0.1 Kgi Kgi Kgi Kgi Kgi
ρ = 0.3 Kgi Kgi Kgi
ρ = 0.5 Kgi
ρ = 0.8 Gi Gi Gi Kgi Kgi
ρ = 0.9 Gi Gi Gi Gi Kgi
ρ = 0.95 Gi Gi Gi Gi Gi

5 Quasi-geometric and Gamma Approximation for
Retrial Queueing System MMPP |M |1

In this section, we demonstrate some numerical examples of applying proposed
approximation methods for retrial queuing system MMPP |M |1. Structure of
such system is presented in Figure 6.

The input process is Markov Modulated Poisson Process. The underlying
process n(t) is Markov chain with continuous time and finite set of states n = 1, 2,
. . . , W . MMPP is a particular case of Markovian Arrival Process (MAP) and
it is defined by matrix D0 and D1 [13]. Elements of the matrix D0 describe
represent transitions with and elements of D1 observable transitions.

We denote the generator of the underlying process n(t) by matrix Q = D0 +
D1. And the matrix Q has elements qmv where m, v = 1, 2, . . . , W .
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Fig. 6. Retrial queueing systems MMPP |M |1

Matrix D1 is diagonal one with diagonal elements ρλn where n = 1, 2, . . . , W
and ρ is some parameter defined below. We introduce a matrix Λ = diag{λn}.
Then the following equality holds: D1 = ρΛ.

The vector-row θ is the probability distribution of underlying process of
MMPP n(t) which is defined as the unique solution of the system:{

θQ = 0,
θe = 1

where e is unit column-vector, 0 is zero row-vector.
The service time of each call is distributed by exponential law with parameter

μ. If a call arrives when a service device is free, the call occupies the device for
the service. If the device is busy, the call goes to the orbit where it is staying
during a random time. A duration of that time has an exponential distribution
with parameter σ. After this random time, the call from the orbit makes an
attempt to reach the device. If the device is free, the call occupies it, otherwise
the call instantly returns to the orbit.

It is known that the rate of MMPP is defined as λ = θ · ρΛ · e.
Let the system parameters be such that the following equation holds: θ ·Λ·e =

μ. So the parameter ρ =
λ

θ ·Λ · e =
λ

μ
and it is called the load in the system.

In numerical example let the system parameters be the following:

μ = 1, σ = 1,

Λ =

⎛⎝0.488 0 0
0 0.976 0
0 0 1.463

⎞⎠ , Q =

⎛⎝−0.5 0.2 0.3
0.1 −0.3 0.2
0.3 0.2 −0.5

⎞⎠ .

In Figure 7 and Figure 8, we show comparison of distributions (Pi is exact
distribution, which is obtained numerically, Kgi and Gi are the quasi-geometric
and gamma approximations correspondently) for different values of ρ.
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Fig. 7. Comparison of quasi-geometric and gamma approximations for ρ = 0.9 in retrial
queue MMPP |M |1

From the Figure 7 it is obvious that quasi-geometric approximation gives un-
satisfactory results and it is necessary to apply gamma approximation in this
case. The same result we have for the retrial queue M |GI|1 (Table 9). For these
values of system parameters the Kolmogorov distance between the exact distri-
bution and gamma approximation is equal to 0.023.

Fig. 8. Comparison of quasi-geometric and gamma approximations for ρ = 0.3 in retrial
queue MMPP |M |1

From the Figure 8 we can conclude that quasi-geometric approximation gives
the better results then gamma approximation. The same result we also have for
the retrial queue M |GI|1 (in Table 9). In this case the Kolmogorov distance
between the exact distribution and quasi-geometric approximation is equals to
0.039.
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Thus the proposed method of quasi-geometric and gamma approximations
can be applied for systems with not only Poisson arrival process but also for
systems with more complex models of input process (MMPP, MAP, etc).

Conclusion

In the paper, methods of quasi-geometric and gamma approximation of the prob-
ability distribution of the calls number in the orbit for retrial queueing systems
are proposed. Based on a study of the M |GI|1 system, methods are described
and conclusions about their applicability are made by means of the numerical
comparison of approximate and exact distributions. The table for decision mak-
ing about the type of approximation in use is composed. Thus we conclude that
these approximations can be applied for almost all values of system parameters
ρ and σ. The main advantage of the proposed approximate methods is that for
their application we need to know only the mean and variance (or their esti-
mates). In addition, numerical examples of using of approximation methods for
retrial queueing systems MMPP |M |1 were presented in the paper.
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Abstract. The article describes the method of signal-to-noise ratio es-
timation for speech signals. The proposed method is based on the theory
of active perception. Within the scope of work assumes that the speech
signal includes a desired signal (system formation) and noise. The con-
versions, which were described in the theory of active perception, allow
allocating the desired signal and solving the problem of signal to noise
ratio estimation. The work includes experimental data confirming work-
ability of the proposed method.

Keywords: signal to noise ratio (SNR) estimation, speech signal, theory
of active perception (TAP).

1 Introduction

Speech processing system (speaker identification, speech recognition), working
under noise conditions, must possess stability to various distortion of input sig-
nal. Therefore, to adjust the signal processing algorithm by noise level, such
systems must possess the ability of level rating of signal’s distortion (signal to
noise ratio, SNR), and that kind of rating must be done only by a distorted
signal.

Let us consider identity of existent methods of signal to noise ratio estimation:

1. by SNR estimation analyzable signal is divided into segments length by 20-
30 ms., the overlap between segments is 50 percent, then the spectrum of
each segment is calculated and by the spectra noise estimation [1] are done;

2. methods of SNR estimation are developed taking into account that analyz-
able signal contain speech and pauses [2].

The analysis of works permits to sort out the following classes of methods of
SNR estimation:

1. methods based on voice activity determination are to signal segmentation ac-
tive speech and pauses, to signal and noise power estimate and to computing
SNR [2];
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2. methods using controlled recursive averaging [3], in such methods estimation
of noise is performed by averaging the previous values of the spectral power
using a smoothing parameter, which depends on probability of the presence
of the signal in different frequency band: it shows that the presence of speech
in some segment in a certain frequency band may be determined by relation
to local energy of noisy speech to its minimum in that segment. If the value
of this ratio is less than the threshold, we can conclude that there is no
speech signal in segment;

3. methods of noise assessment based on the minimum statistic, methods of this
class are based on two assumptions [4]. The first consists in independence
of noise and speech, the second - the power spectrum of the noisy speech
signal is similar to the noise power spectrum. Therefore, noise dispersion
estimate is to calculate the minimum of the spectral concentration of noisy
speech signal in fixed length segment. Disadvantages of the method are that
it is necessary to select the length of the segment. In this case the wrong
choice can considerably affect the assessment’s result. Another disadvantage
of the method is entering of a delay in the noise estimation parameters, as
the length of the segment (1.6 - 2.8 s.) is chosen to ensure including part of
speech and pauses;

4. methods of noise parameters assessment based on the histogram using ob-
servation that the most frequently occurring value of the energy in some
frequency band corresponds to the noise level in this frequency band, i.e. the
noise level corresponds to the maximum energy histogram [5].

In this work the solution of SNR estimation is based on using a systematic
approach to signal processing described in the theory of active perception [6].

Let us consider the basic propositions of the theory of active perception.
From the point of view of an observer, sound signal contains a desired signal
(information message) and a hindrance. Desired signal is the information, which
is required for the observer to make decisions under the task, and the noise -
all the other information. In this work, desired signal is considered as a system
formation. In this case, it must contain the structural elements and connections.

Theory of Active Perception (TAP) contains description of operations that
allow to allocate the structural elements of the signal and links between them.
For detection system elements in TAP integral conversion is used, and to identify
links between elements - differentiation. The result of the identification of the
differential structure is the signal’s spectral description.

Conversion integration and differentiation together form a composition which
is called U -transform: U = d ◦ ∫ .

Transformations of integration and differentiation for one-dimensional signals
realized with the help of four-base dimensional filter-coatings (F0, F1, F2, F3,
see fig.1).

Let f(t) – analyzable sound signal, observed on a finite time interval. Re-
sult of applying the U -transform to the signal f – multilevel (roughly exact)
spectral representation D = dij , i = 1,K, j = 1,Mi, where K – is number of
dissection level, Mi – number of signal’s segments on the i-th dissection level,
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Fig. 1. Basis functions

Q-transform F0
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f (t) ||mi || μ0
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f(t) – analyzed signal
{Fi} – set of filters
{mi} – mass vector
{μi} – set of numbers, derived
in a result of U-transform

Fig. 2. U -transform circuit

dij – spectrum, which is included N spectrum factor (number of using filters),
dij{k} – k-th spectrum factor (k = 1, L), fij – signal’s segment f , by which is
calculated the spectrum dij (see fig.2). In calculating the spectral representation
of the signal segments are not overlapped. Example U -transform computation is
given in [7].

Considered methods of SNR estimation based on use of the Fourier transform.
Comparing the Fourier transform with U-transform (major transformation of
TAP) can be noted following [6]:

1. Fourier coefficients, except for the certain their lack – complexity, there are
integral characteristics that do not contain information about the structural
properties of the signal;

2. filters are used in the U -transform, which is endowed with differentiating
properties which allows to highlight structural elements of the signal and
links between them.
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1.1 Signal to Noise Ratio Estimation on the Basis of the Theory of
Active Perception

Conducted researches have established properties of the spectra (within the U -
transform) relating to the desired signal and pause. The desired signal can be
represented as a set of voiced and unvoiced segments (see fig.3):

1. elements of signal spectrum, which is related to pause, close to zero values
(section 1).

2. signal segment spectrum relating to voiced sound contains elements diverged
considerably from each other by magnitude, but differ in a lesser degree than
for a voiced segment (section 2);

3. signal segment spectrum relating to voiced sound contains elements diverged
considerably from each other by magnitude (section 3).
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F3 = -0.0067
STD(F1, F2, F3) =
0.0376

Section 2
F1 = -0.338
F2 = -0.3912
F3 = 0.4129
STD(F1, F2, F3)
= 0.4029

Section 3
F1 = -7.89
F2 = 6.48
F3 = 3.34
STD(F1, F2, F3)=
7.56

Fig. 3. Properties of Desired Signal And Pause

Let us consider the table (see tab. 1) in which gives values of the spectral
coefficients for different sections of the signal and the standard deviation (STD).
It may be noted that the result of exposure of noise on the signal:
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Table 1. Influence of Noise on Speech

Uniform Noise (SNR = 8 dB) Normal Noise (SNR = 4 dB)

Signal Section 1 2 3 1 2 3

Experiment N. 1 (segment size = 8 ms)

STD(F1, F2, F3) 0.4747 1.3124 13.0893 1.0637 1.2250 7.0924

F1 0.6516 -1.1670 -3.3792 0.8600 0.5248 1.5579

F2 0.8198 -0.0529 17.7059 1.6997 -1.9050 10.2402

F3 -0.0735 1.4483 -6.2735 -0.4129 -0.4175 -3.8153

Experiment N. 2 (segment size = 8 ms)

STD(F1, F2, F3) 0.7981 0.5843 12.7010 1.3569 1.3808 5.7403

F1 -0.7303 1.0742 -4.3398 0.7722 3.3808 0.2616

F2 0.1213 0.9121 15.6942 -1.9404 1.2583 7.9577

F3 -1.4737 1.9954 -7.8480 -0.5106 0.7893 -3.2680

1. on the set of spectra factors (under certain noise level) it becomes impossible
to distinguish the unvoiced sections of the speech signal from the pause
sections (this is also corresponds to the subjective perception of the person
of noisy speech signal);

2. values of spectra factors relating to voiced segments decrease with increasing
noise.

It is known that an increase in the noise level rhythmic pattern of word or
phrase is a parameter which is destroyed in the last turn [10]. Therefore, when
SNR estimation we can use the signal segments for which the standard deviation
of spectra factors max (desired signal) and the lowest (noise).

Let a finite time interval [0;T ] is taken sound signal f(t), which is a function
of speech signal s(t, λ) and signal-independent noise n(t):

f(t) = F (s(t, λ), n(t)), 0 ≤ t ≤ T, (1)

where λ = λ1, . . . , λm is vector of parameters of speech signal. It is assumed that
direct observation is only the received signal f(t) available. Let sa(t, λ) is active
speech without pauses, then signal to noise ratio estimation (ξ) can be written
as follows:

ξ =
E{s2a(t, λ)}
E{n2(t)} , (2)

where E – calculating expectation’s operator.
The proposed method of SNR estimation (at the i-th level of decomposition)

includes the following operations:

1. the definition of the standard deviation (SD) of spectra factors relating to

the signal: σ̂ = max[(σ({dij(t)}))], j = 1, 2i−1, t = 1, N ;
2. definition STD of spectra factors relating to noise: σ̂n = min[(σ({dij(t)}))],

j = 1, 2i−1, t = 1, N ;

3. calculation of SNR estimation ξ̂: ξ̂ = 10 log10
(σ̂s−σ̂n)

2

σ̂2
n

.
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The proposed method has two parameters:

1. signal segment length (in milliseconds) to compute the spectrum;
2. number of filters which is used in the calculation of the spectrum.

2 Computing Experiment

Let us consider results of SNR estimation based on proposed and existing meth-
ods. When testing was used database of records votes 100 speakers (audio sam-
pling frequency – 16 kHz, depth coding – 8 bits). Computing experiment involved
deformation records and signal to noise ratio estimation.

Table 2 - Table 3 shows the results of estimation of accuracy of calculation
the SNR for existing algorithms.

Table 2. Results of SNR Estimation Method Proposed in [8]

Noise / SNR (in dB) -2 4 10 16 22 28 34 40 Estimation error

Noise 1 -1.7 2.9 8.9 15.6 22.5 29.4 36.6 38.7 1.08

Noise 2 -1.35 3.11 9.11 15.9 22.9 30.2 37.3 38.6 1.29

Noise 3 -1.16 3.52 9.86 16.5 23.5 30.5 37.6 39.0 1.32

Noise 4 0.03 5.26 11.87 18.8 26.0 33.1 38.4 39.7 2.72

Table 3. Results of SNR Estimation Techniques

SNR (in dB) / Source -10 -5 0 5 10 15 20 25 30 35 Error

[9], stationary noise - -6.1 -3.4 1.9 7.92 13.1 18.1 23.5 29.2 32.2 2.06

[10], white noise -8.6 -3.7 1.2 6.01 11.02 16.02 21.57 26.85 32.96 - 1.48

[10], white noise -0.2 -0.95 1.9 3.5 6.6 10 14.1 17.9 21.9 - 5.19

[2], stationary noise -2 1.3 0.1 4.8 8.13 - - - - - 1.73

Table. 4 - Table. 7 shows the average test results of the proposed method (for
two types of voices: male and female).

Table. 8 shows a calculation error signal / noise ratio under varying conditions.
The table shows that the smallest error is achieved using 64 filters, with the
duration of the analyzed signal has low effect on the accuracy of SNR estimation.

Analyzing the given table can be noted that the proposed method by accuracy
of SNR estimation is not inferior to the existing methods, and in some cases -
shows the best results. The advantages of the proposed method is also easy to
implement and a wide range of SNR estimation: from -5 to +35 dB.
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Table 4. Results of Accuracy of Method (Women’s Voices, 8 Seconds)

Algorithm Pa-
rameters / SNR
(in dB)

-5 0 5 10 15 20 25 30 35

Uniform Noise
8 ms., 128 filters

-7.11 -2.85 4.01 10.15 15.93 21.07 26.30 31.50 36.11

Normal Noise -5.82 -6.68 -1.55 4.52 10.07 15.57 20.55 25.49 31.03

Uniform Noise
4 ms., 64 filters

-2.87 0.20 5.29 11.28 17.03 22.24 27.22 32.76 37.65

Normal Noise -1.68 0.38 2.49 6.76 11.12 16.68 21.93 26.62 31.97

Uniform Noise
2 ms., 32 filters

0.01 2.83 8.26 13.95 19.32 24.63 29.06 34.18 39.35

Normal Noise 5.03 5.79 8.48 9.36 14.00 20.24 24.41 29.99 34.93

Table 5. Results of Accuracy of Method, the Men’s Voices, 4 Seconds

Algorithm Pa-
rameters / SNR
(in dB)

-5 0 5 10 15 20 25 30 35

Uniform Noise
8 ms., 128 filters

-9.59 -8.54 -2.07 4.17 10.47 16.31 21.72 27.17 31.98

Normal Noise -7.36 -4.90 -6.13 -1.15 3.92 10.32 15.38 21.10 26.28

Uniform Noise
4 ms., 64 filters

-5.81 -3.20 0.28 5.37 12.23 18.22 22.89 28.89 33.41

Normal Noise -1.87 -1.69 -0.26 2.04 7.11 11.69 17.34 22.39 28.36

Uniform Noise
2 ms., 32 filters

-0.45 0.48 3.60 9.68 14.86 20.34 25.51 30.47 35.80

Normal Noise 4.19 5.02 3.25 6.03 10.42 15.28 20.39 26.17 31.25

Table 6. Results of Accuracy of Method, Women’s Voices, 8 Seconds

Algorithm Pa-
rameters / SNR
(in dB)

-5 0 5 10 15 20 25 30 35

Uniform Noise
8 ms., 128 filters

-7.34 -3.77 2.95 8.53 13.85 20.01 25.28 30.73 36.00

Normal Noise -5.54 -6.38 -1.95 2.46 8.88 14.60 19.70 24.70 30.76

Uniform Noise
4 ms., 64 filters

-3.95 -0.42 5.18 10.77 15.30 21.21 26.58 31.31 37.02

Normal Noise -0.34 -1.43 0.86 5.20 10.46 15.66 21.09 26.02 31.71

Uniform Noise
2 ms., 32 filters

1.41 4.86 9.04 15.37 19.14 24.40 31.39 34.15 39.96

Normal Noise 4.41 3.28 5.52 8.56 14.89 20.09 25.19 30.35 35.41

Table 7. Results of Accuracy of Method, Women’s Voices, 4 Seconds

Algorithm Pa-
rameters / SNR
(in dB)

-5 0 5 10 15 20 25 30 35

Uniform Noise
8 ms., 128 filters

-8.35 -4.27 2.71 8.60 14.35 20.13 25.60 30.40 36.15

Normal Noise -6.99 -6.57 -3.42 1.97 8.26 13.79 19.83 24.78 30.45

Uniform Noise
4 ms., 64 filters

-5.10 0.50 3.91 10.02 15.12 21.66 26.74 31.19 37.63

Normal Noise -3.92 -1.11 0.01 4.79 9.88 15.81 20.96 27.10 31.46

Uniform Noise
2 ms., 32 filters

0.47 5.24 8.16 14.55 18.07 24.73 29.56 34.52 40.17

Normal Noise 3.39 5.00 6.01 8.75 13.99 18.99 24.98 29.97 35.75
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Table 8. Calculation Error SNR (in dB)

Men Women

Noise Type / filter amount 128 64 32 128 64 32

Uniform noise, 4 sec. 4.82 2.52 1.00 1.58 1.01 4.50

Normal noise, 4 sec. 8.62 6.24 4.60 5.88 3.58 2.05

Uniform noise, 8 sec. 1.33 1.76 4.07 1.42 0.98 4.97

Normal noise, 8 sec. 4.65 2.90 2.43 5.31 3.90 1.76

3 Conclusion

Method of signal/noise ratio estimation in the observed speech signal was de-
vised. The proposed method is based on the theory of active perception. Using
this theory we revealed the structural elements of the signal and links between
them, and thus detected desired signal and hindrance.

Research of the algorithm on testing and real signals confirmed its efficiency
and ability to be used in speech signal processing, which requires adjustment to
the quality of the analyzed signal.
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Abstract. An explicit form of a probability density function of interval
duration between two adjacent events of modulated synchronous doubly
stochastic flow is derived. Also an explicit form of a joint probability
density function for modulated synchronous flow interval duration is ob-
tained. This flow is one of the mathematical models of information flows,
which take place in digital networks with integral service. The flow is
considered in stationary mode when there are no transition processes. A
recurrent conditions for modulated synchronous flow are obtained using
the formula for joint probability density function.
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1 Introduction

Mathematical models of queueing theory are widely used to describe real phys-
ical, technological and other processes and systems. In connection with rapid
development of computer equipment and information technologies an impor-
tant sphere of queueing theory applications appeared. This sphere was called
as design and creation of data-processing networks, computer communication
networks, satellite networks and telecommunication networks [1].

In practice, an intensity of input flow varies along with time. Moreover, these
variations are often of a random nature. This leads to consideration of a doubly
stochastic flow of events [2,3,4,5,6]. An example of such flow is a modulated
synchronous doubly stochastic flow [7,8].

2 Problem Statement

Let us consider the modulated synchronous doubly stochastic flow of events,
whose rate is a piecewise constant random process λ(t) with two states:
λ1, λ2(λ1 > λ2). The sojourn time of the process λ(t) in state λi has exponential
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probability distribution function with the parameter αi, i = 1, 2. If at the mo-
ment t the process λ(t) sojourns in the state λi than in the small half-interval
[t, t+Δt), with probability αiΔt+ o(Δt) process finishes its stay in the state λi

and moves to the state λj with probability is one (i, j = 1, 2, i �= j). During the
time random interval when λ(t) = λi Poisson flow with rate λi, i = 1, 2 arrives. A
state transition of the process λ(t) may also occur at the moment of Poisson flow
event arrival. Moreover, the passing from the state λ1 to the state λ2 is realized
only at the moment of event occurrence with probability p (0 < p ≤ 1). With the
complementary probability 1−p the process remains at the state λ1. The passing
from the state λ2 to the state λ1 is also realized only at the moment of event
occurrence with probability q (0 < q ≤ 1). With the complementary probability
1− q the process remains at the state λ2. In the described conditions, λ(t) is the
Markovian process.

Fig. 1. Forming the modulated synchronous flow

An example of this situation is shown on the fig. 1, where λ1, λ2 are the states
of process λ(t), t1, t2, . . . are the moments of the flow events occurrence.

Block matrixes of infinitesimal coefficients are of the form:

D1 =

∣∣∣∣(1 − p)λ1 pλ1

qλ2 (1− q)λ2

∣∣∣∣ , D0 =

∣∣∣∣−(λ1 + α1) α1

α2 −(λ2 + α2)

∣∣∣∣ .
The elements of the matrix D1 are intensities of the process λ(t) passing

from the state to the state with an event occurrence. Off-diagonal elements of
matrix D0 are intensities of the process λ(t) passing from the state to the state
without an event occurrence. Diagonal elements of matrix D0 are the intensities
of process λ(t) leaving its states, which are taken with the opposite sign. We
should note that if αi = 0, i = 1, 2 there is a usual synchronous flow of events
[9].

3 Probability Density Function of Modulated
Synchronous Flow Interval Duration

A stationary mode of the flows is considered. A sequence of time moments of
event occurence t1, t2, . . . tk, . . . is an imbedded Markov chain. So the flow has a
markovian chain characteristic when its evolution is considered from the moment
tk.
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Let τ is a value of the random variable of interval duration between the
moments of two adjacent flow events. Then a probability density function of
interval duration between the moments of modulated synchronous flow adjacent
event occurrence is written in the form of:

p(τ) =
2∑

i=1

πi(0)
2∑

j=1

p̃ij(τ), (1)

where πi(0) is a conditional stationary probability that the process λ(t) sojourns
in the state λi at the moment τ = 0 when the flow event occured in the moment
τ = 0 , i = 1, 2 (π1(0) + π2(0) = 1); p̃ij(τ) is a probability density function of
the interval between two adjacent flow events and probability of λ(τ) = λj when
λ(0) = λi (i, j = 1, 2).

Let us introduce pij(τ), i, j = 1, 2 is a transition probability that there are no
flow events on the interval (0; τ) and λ(τ) = λj at the moment τ when λ(0) = λi

(i, j = 1, 2). Then for introduced probabilities pij(τ) we have the folowing system
of differencial equations:

p′11(τ) = −(λ1 + α1)p11(τ) + α2p12(τ),
p′12(τ) = −(λ2 + α2)p12(τ) + α1p11(τ),
p′22(τ) = −(λ2 + α2)p22(τ) + α1p21(τ),
p′21(τ) = −(λ1 + α1)p21(τ) + α2p22(τ),

p11(0) = 1, p12(0) = 0, p22(0) = 1, p21(0) = 0.

Solving obtained system of differential equtions we find out that

p11(τ) = λ1(1− p)λ2+α2

z1z2
+ λ2q

α1

z1z2
,

p12(τ) = λ1p
λ2+α2

z1z2
+ λ2(1 − q) α1

z1z2
,

p22(τ) = λ2(1− q)λ1+α1

z1z2
+ λ1p

α2

z1z2
,

p21(τ) = λ2q
λ1+α1

z1z2
+ λ1(1− p) α2

z1z2
,

z1z2 = λ1λ2 + λ1α2 + λ2α1.

(2)

Let us derive a formulas for probability densities p̃ij(τ), i, j = 1, 2. For this
purpose we should consider the interval (0, τ +Δτ) and how the process λ(t)
behaves oneself on this interval. The interval (0, τ +Δτ) consists of two parts:
the interval (0, τ), where τ = 0 is a moment of event occurence (for this interval
the probabilities pij(τ), i, j = 1, 2 are already defined in formula 2), and the
small enough half-interval [τ, τ +Δτ).

Then p̃ij(τ)Δτ+o(Δτ), i, j = 1, 2 is a joint probability that there are no events
on the interval (0, τ), the process λ(t) moves from the state λi to the state λk

on the interval (0, τ), then during the half-interval [τ, τ +Δτ) the process λ(t)
doesn’t leave the state λk, the Poisson flow event occures with the intensity λk

and the process λ(t) moves from the state λk to the state λj on this half-interval
[τ, τ +Δτ).

As an example, we consider a formula derivation for a joint probability
p̃11(τ)Δτ + o(Δτ). To carry out this probability let us consider two cases:
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1. p̃
(1)
11 (τ)Δτ + o(Δτ) is a joint probability that there are no events on the

interval (0, τ), the process λ(t) remains at the state λ1 on the interval (0, τ),
then during the half-interval [τ, τ +Δτ) the process λ(t) doesn’t leave the
state λ1, then the Poisson flow event occures with the intensity λ1 and the
process λ(t) remains at the state λ1 on this half-interval [τ, τ +Δτ). This
joint probability is of the form:

p̃
(1)
11 (τ)Δτ + o(Δτ) =

= p11(τ)e
−α1Δτ (1− e−λ1Δτ )(1− p) =

= p11(τ)λ1Δτ(1 − p) + o(Δτ).

Moving Δτ → 0 we get the following expression for probability density
p̃
(1)
11 (τ):

p̃
(1)
11 (τ) = p11(τ)λ1(1− p).

2. p̃
(2)
11 (τ)Δτ + o(Δτ) is a joint probability that there are no events on the

interval (0, τ), the process λ(t) moves from the state λ1 to the state λ2 on
the interval (0, τ), then during the half-interval [τ, τ +Δτ) the process λ(t)
doesn’t leave the state λ2, then the Poisson flow event occures with the
intensity λ2 and the process λ(t) moves from the state λ2 to the state λ1.
This joint probability is of the form:

p̃
(2)
11 (τ)Δτ + o(Δτ) =

= p11(τ)e
−α2Δτ (1− e−λ2Δτ )q =

= p11(τ)λ2Δτq + o(Δτ).

Moving Δτ → 0 we get the following expression for probability density
p̃
(2)
11 (τ):

p̃
(2)
11 (τ) = p11(τ)λ2q.

Then, using the equation p̃11(τ) = p̃
(1)
11 (τ) + p̃

(2)
11 (τ) the formula for probability

density p̃11(τ) is written in the form of:

p̃11(τ) = p11(τ)λ1(1 − p) + p11(τ)λ2q.

On the base of the derivation described above another probability densities
p̃12(τ), p̃21(τ), p̃22(τ) are obtained.

Therefore the probability densities p̃ij(τ), i, j = 1, 2 are of the form:

p̃11(τ) = p11(τ)λ1(1 − p) + p12(τ)λ2q,
p̃12(τ) = p11(τ)λ1p + p12(τ)λ2(1− q),
p̃22(τ) = p22(τ)λ2(1 − q) + p21(τ)λ1p,
p̃21(τ) = p22(τ)λ2q + p21(τ)λ1(1− p),

(3)

where probabilities pij(τ), i, j = 1, 2 are defined in 2.
To find out probability πi(0), i = 1, 2 let us introduce probability pij , i, j = 1, 2

that during the time interval between the moment τ = 0 (the moment of event
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occurence) and the moment of the next event occurence the process λ(t) moves
from the state λi to the state λj , i, j = 1, 2. The probability pij doesn’t depend
on time, it is a stationary probability of the process λ(t) transition from the
state λi to the state λj between the moments of two adjacent flow events.

Then we get the following system for πi(0), i = 1, 2:

π1(0) = π1(0)p11 + π2(0)p21,
π2(0) = π2(0)p22 + π1(0)p12,

π1(0) + π2(0) = 0.

Solving the system defined above the expressions for πi(0), i = 1, 2 are written
in the form of:

π1(0) =
p21

p12 + p21
, π2(0) =

p12
p12 + p21

. (4)

Because τ is an undefined time moment, then the transition probability pij
that the process λ(t) moves from the state λi to the state λj during a time
interval between the moment τ = 0 and the moment of the next flow event
occurence, should be written as follows:

pij =

∞∫
0

pij(τ)Δτ.

Inserting the formulas 2 into integral for pij , i, j = 1, 2 the folowing expressions
are derived:

p11 = λ1(1−p)(λ2+α2)+λ2qα1

z1z2
,

p12 = λ1p(λ2+α2)+λ2(1−q)α1

z1z2
,

p21 = λ2q(λ1+α1)+λ1(1−p)α2

z1z2
,

p12 = λ2(1−q)(λ1+α1)+λ1pα2

z1z2
,

(5)

where z1z2 is defined in 2.
Therefore, inserting formulas 5 into 4 the following expressions for probability

πi(0), i = 1, 2 are obtained:

π1(0) =
qλ2(λ1+α1)+(1−p)λ1α2

(p+q)λ1λ2+λ2α1+λ1α2
,

π2(0) =
pλ1(λ2+α2)+(1−q)λ2α1

(p+q)λ1λ2+λ2α1+λ1α2
.

(6)

Inserting 2 into 3, then inserting 3 and 6 into 1 we derive the explicit form of
a probability density function p(τ):

p(τ) = γz1e
−z1τ + (1− γ)z2e

−z2τ , (7)

where γ = 1
z2−z1

(z2 − π1(0)λ1 − π2(0)λ2), 1 − γ = 1
z2−z1

(−z1 + π1(0)λ1 +

π2(0)λ2), z1,2 = 1
2 (λ1 + α1 + λ2 + α2)∓

√
(λ1 + α1 − λ2 − α2)2 + 4α1α2.
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4 Joint Probability Density Function of Modulated
Synchronous Flow Interval Duration

Let τ1, τ2 are a values of the random variable of duration of two complemen-
tary intervals between the moments of two adjacent flow events. Then a joint
probability density function p(τ1, τ2) is written in the form of:

p(τ1, τ2) =

2∑
i=1

πi(0)

2∑
j=1

p̃ij(τ1)

2∑
k=1

p̃jk(τ2).

Besides, according to the formula 1 p(τi) =
∑2

i=1 πi(0)
∑2

j=1 p̃ij(τi), i = 1, 2.
Then a difference p(τ1, τ2)− p(τ1)p(τ2) is of the form:

p(τ1, τ2)− p(τ1)p(τ2) =

= π1(0)
∑2

j=1 p̃1j(τ1)
∑2

k=1 p̃jk(τ2) + π2(0)
∑2

j=1 p̃2j(τ1)
∑2

k=1 p̃jk(τ2)−
−(π1(0)

∑2
j=1 p̃1j(τ1) + π2(0)

∑2
j=1 p̃2j(τ1))×

×(π1(0)
∑2

j=1 p̃1j(τ2) + π2(0)
∑2

j=1 p̃2j(τ2)).

Making a difficult enough manupulations the difference p(τ1, τ2)− p(τ1)p(τ2)
is written as follows:

p(τ1, τ2)− p(τ1)p(τ2) =

=
∑2

k=1(p̃1k(τ2)− p̃2k(τ2))×
× [

π1(0)π2(0)(p̃11(τ1)− p̃22(τ1))− π2
1(0)p̃12(τ1) + π2

2(0)p̃21(τ1)
] (8)

The first multiplier from 8 is written out as follows:
2∑

k=1

(p̃1k(τ2)− p̃2k(τ2)) = (λ2 − λ1)(z1e
−z1τ2 − z2e

−z2τ2)/(z2 − z1), (9)

where z1, z2 are defined in 7.
The second multiplier from 8 is written out as follows:

π1(0)π2(0)((p̃11(τ1)− (p̃22(τ1)) − π2
1(0)p̃12(τ1) + π2

2(0)p̃21(τ1) =
= −λ1(p− π2(0))(π1(0)p11(τ1) + π2(0)p21(τ1))+
+λ2(q − π1(0))(π1(0)p12(τ1) + π2(0)p22(τ1)).

(10)

Inserting pij(τ), i, j = 1, 2 from 2 into 10 we get:

π1(0)π2(0)((p̃11(τ1)− (p̃22(τ1))− π2
1(0)p̃12(τ1) + π2

2(0)p̃21(τ1) =
= (z1e

−z1τ1 − z2e
−z2τ1) [λ1(p− π2(0))π1(0)− λ2(q − π1(0))π2(0)] /(z2 − z1).

(11)
Inserting 9 and 11 into 8 and making a difficult enough manupulations we

obtain:
p(τ1, τ2) = p(τ1)p(τ2) + γ(1− γ)λ1λ2(1−p−q)

z1z2
×

×(z1e−z1τ1 − z2e
−z2τ1)(z1e

−z1τ2 − z2e
−z2τ2),

(12)

where z1, z2, γ, 1−γ are defined in 7, π1(0), π2(0) are defined in 6; γ(1−γ) =
(λ1−λ2)((λ1p+α1)π1(0)−(λ2q+α2)π2(0))

(p+q)λ1λ2+λ2α1+λ1α2
.

From the formula 12, it follows that modulated synchronous flow is a corre-
lated flow in the general case.
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5 Recurrence Conditions for Modulated Synchronous
Flow

From the formula 12, it follows that for the joint probability density function
p(τ1, τ2) there are two conditions of modulated synchronous flow recurrence:

1. The flow is recurrent if p+q = 1. In this case the probability density function
p(τ) is of the form:

p(τ) = γz1e
−z1τ + (1− γ)z2e

−z2τ ,
γ = 1

z2−z1
(z2 − λ1 + p(λ1 − λ2)),

1− γ = 1
z2−z1

(−z1 + λ1 − p(λ1 − λ2)),

where z1, z2 are defined in 7.
2. The flow is recurrent if (λ1p + α1)π1(0) = (λ2q + α2)π2(0). In this case the

probability density function p(τ) is of the form:

p(τ) = γz1e
−z1τ + (1− γ)z2e

−z2τ ,

γ = 1
z2−z1

(z2 − π1(0)(λ1 + λ2
λ1p+α1

λ2q+α2)
)),

1− γ = 1
z2−z1

(−z1 + π(0)(λ1 + λ2
λ1p+α1

λ2q+α2)
)),

where z1, z2 are defined in 7, π1(0), π2(0) are defined in 6.

6 Conclusion and Future Research

During this research the explicit form of the probability density function p(τ)
was derived as well as the explicit form of the joint probability density func-
tion p(τ1, τ2). The formulas obtained allow us to carry out an estimation of
flow parameters using the maximum likelihood method or method of matching
moments.
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Abstract. The article highlights some lesser known issues related to the
study of the atomic structure of liquid and amorphous metals, semicon-
ductors, alloys and with the processes occurring in them at the atomic
level at the thermal and stress effects. Features of implementation of
event-driven molecular dynamics algorithm in sequential and parallel
variants to study the atomic structure of amorphous metals are pre-
sented. The stages and the basic problems of computer simulation of
atomic structure of metals, as well as an analysis of the results of com-
putational experiments to study the atomic structure of amorphous alu-
minum at different speeds its superfast cooling liquid melt are discussed.

Keywords: computer simulation, event-driven molecular dynamics
method, atomic structure, amorphous metal, calculable block, unit cell,
interaction potential function.

1 Introduction

Great contribution to science of metals was made by the discovery of amorphous
metals with unusual properties: they are very strong and at the same time have
plastic properties. They have soft magnetic material properties, corrosion resis-
tance, which leads to broad prospects of their application in industry. The basic
method of producing amorphous metal is extremely fast cooling of the liquid
melt. In this way there were obtained amorphous alloys named as metallic glass
(cooling rate is very high and is in the range 1010–1013K/s). Microstructure
of amorphous metals is a metastable state of structure with local atomic order
and this structure is not a polycrystalline structure. There are several models
to explain the nature of such a structural organization in amorphous metals:
crystal, a dislocation model, a model of random close packing of hard spheres
and a cluster model.

Currently there are not fully resolved issues related to the study of the atomic
structure of liquid and amorphous metals, semiconductors, alloys and with the
processes occurring in them at the atomic level at the thermal and stress effects.
These issues, for example, include correctness and the limits of applicability of
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different structural models of amorphous metals. For example, in various amor-
phous structures for the cluster model, you need to figure out the dimensions,
stability and conditions of cluster formation of an ordered structure (of conjugate
tetrahedra or Frank-Kasper polyhedra). Also of interest is the question concern-
ing the structure in the interface of the clusters, as well as the mechanisms of
their transformation at the thermal and stress effects. Insufficiently explored is
the process of crystallization of amorphous metals. Limited possibilities of direct
experimental methods are due to the specific properties of the studied medium,
in particular, the lack of long-range order in the arrangement of atoms, for exam-
ple, when trying to create a structural model of liquid, including molten metal.
In liquids the kinetic energy of atoms is comparable to their potential energy, so
in relation to such medium it is impossible to find an effective small parameter.

To solve these issues the most effective computer simulation method is a
method of molecular dynamics, in particular, its kind – event-driven molecular
dynamics method [1], which allows with sufficient accuracy in the model to
take into consideration and control the parameters of the phenomenon under
investigation, to study the dynamics of the processes flowing on the atomic level
using a variety of realistic visualizers of structure.

2 Event-Driven Molecular Dynamics Method and Its
Parallelization

In classical method of molecular dynamics system is represented as a set of par-
ticles with interaction, which is described by the interaction potential function,
and the evolution of the system is simulated by numerical integration of the
equations of motion using a time step [2].

For a closed system the force acting on the i-th atom:

Fi = −
N∑
j �=i

dφij (|ri − rj |)
d (ri − rj)

, (1)

where φij (|ri − rj |) – the interaction potential function between i-th and j-th
atoms; ri, rj – radius-vectors of atoms. Equations of motion are

dri
dt

= vi , mi
dvi

dt
= Fi , (2)

where mi and vi - mass and velocity vector of i-th atom; t – temporary variable.
Positions and velocities of all N atoms of calculable system characterized

by 2 · J · N coordinates (J – dimension of the calculable system): the coordi-
nates xj,i (t) describe a position in space (j - number of coordinate axis), values
vj,i (t) = ẋj,i (t) describe a j-component of velocity vector of i-th atom. To solve
(2) can apply a numerical method for the integration of differential equations, for
example, the Runge-Kutta method of 4th order accuracy or commonly known
half-step Euler method:

vj,i (t+Δt/2) = vj,i (t−Δt/2) +Δt · Fj,i (t) /mi ,
xj,i (t+Δt) = xj,i (t) +Δt · vj,i (t+Δt/2) ,

(3)
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where Δt - integration step (time step), which is chosen by criterion: the fluc-
tuations of total energy of the system must not exceed the fluctuations of the
potential energy. Step Δt should be less than 1/4 of the smallest period of atomic
vibrations (about 10−13–10−15 s). Otherwise the vibrations of the atoms become
aperiodic (increasing energy of the system). Temperature of calculable system of
atoms is given by means of set of initial velocities of atoms the according to the
Maxwell distribution (the velocities have identical modulus but have random di-
rections). The total kinetic energy must correspond to the desired temperature,
and the total momentum must equal zero [2]:

|vi| =
√
2vsq =

√
2JkT/mi ,

N∑
i=1

mivi = 0 , T = 2E/ (J ·N · k) , (4)

where k - Boltzmann constant, T - temperature of calculable system at each
iteration of the numerical experiment, vsq – root-mean-square (rms) velocity of
the atom, E – kinetic energy of calculable atom system.

Integration of the equations of motion, which requires a sufficiently high accu-
racy by using non-smooth potentials, compel to significantly reduce the global
time step. Since this affects on the performance of computing, into modeling
algorithm requires to include effective analysis of the need the estimation of var-
ious atom interactions. Idea of the algorithm based on the sequential control of
events [1], ranked by time, is that in the time of the next event is processed
only one pair of interacting atoms for which this event (collision between them)
immediately comes. After all processing of all remaining pairwise interactions
between atoms is delayed until the following time points, but in each succes-
sive time again handled the interaction of only one relevant to this event a pair
of atoms [1]. Using of this event-driven dynamics algorithm allowed effectively
take into account non-smooth potentials and accurately satisfy the modeling
constraints [3]. I.e., between the events in accordance with the known analyt-
ical formulas the changes in position of the atoms are taken into account as
motions of atoms under the influence of force, which is constant on the time
step. So is achieved the considerable savings of calculations volume and accel-
eration of calculations. An additional effect of accelerating the calculations can
be achieved through parallelization because in the sequence of events satisfied
the condition of their independence. The following is an informal description
of the event-driven molecular dynamics algorithm in serial form (non-parallel
algorithm):

1. Calculation of interaction forces between the atoms
2. Initialization of current time t in the interval (0, T ): t = 0
3. Definition and addition to the queue of events for all atoms
4. Determining the next i-th event with the minimum time ti
5. If ti is greater than T (end time of simulation interval), then:

(a) Setting the current time t to the end of the interval: t = T
(b) Go to step 11

6. Setting the current time t to the time of event: t = ti



156 V. Jordan and T. Belov

7. Changing of states of participants of the event in accordance with the changed
time

8. Processing of event, directly corresponding to the moment ti
9. Defining and adding to the queue new events with the participants from

processed event
10. Go to step 4
11. Changing of states of all atoms in accordance with the current time t
12. Go to step 1

In the described algorithmic diagram the end of the action interval constant
interaction force can be considered as another kind of regular event, in which
take part all atoms. It allows you to simulate the presence in the system of
different potentials, integrating them with various steps.

Taking between the sufficiently remote atoms the interaction strength equal to
zero, a high computational efficiency is achieved by calculating the interaction
forces only for atoms in the same block or in adjacent blocks (by means of
the coordinate space decomposition on the parallelepiped elements). I.e., using
the limitedness of the interaction radius between the atoms, we can achieve
almost complete parallelization of processes occurring in contiguous blocks and
significant acceleration of calculations. Take into account the interaction of the
atom with the other atoms in the same cell and cell entourage of 26 cells (cell
block with size 3x3x3 contains 27 cells). Due to the symmetry of the commonly
used potentials the amount of computation is reduced 2-fold. Then for each cell
having at the average n atoms, the number of verifiable interactions will be
defined as n (n− 1) /2 + 13n2.

For event-driven molecular dynamics algorithm the global queue of events
makes it difficult to parallelize, but keeping of the local time for each atom cre-
ates the possibility of a controlled parallel processing of spatially distant events.
Namely, processing can last as long as the time elapsed in the absolute frame
of reference, is not suitable to the nearest event in the bordering cells. After
processing this event the parallel processes exchange messages [4]. If at the time
of detection of the new event on the border two cells one process has already
moved to the processing of later events, appear the probability of error (the lost
interaction), which corrects by the recovery procedure, using a reverse pass in
turn saved processed events. However, despite the cost of calculations in the case
of detecting inconsistencies-errors, the possibility of acceleration of paralleliza-
tion is largely preserved, since the number of events in the boundary layer is
considerably lower than in cells. Since event management algorithm is applied
only within a certain time step, the parallelization of periodic operations (such
as the calculation of the interaction forces) can be performed with relatively high
efficiency.

3 Basic Problems of Computer Simulation

Molecular dynamic experiment comprises the following stages. Primarily built
the initial structure of calculable system (calculable block): are given the block
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size (103–106 atoms) and the initial coordinates of the atoms. At this stage the
temperature is usually defined by setting appropriate initial velocities by (4) or
atomic displacements. The next main stage is to calculate the trajectories of each
atom in the calculable block. For this are calculated the displacements of atoms
from (3), using the short time step (10−13–10−15 s – integration step). To deter-
mine the velocity and displacement of atoms, it is necessary to know the force of
interaction between them. Forces are defined by (1) using the model selected for
the potential functions of the interatomic interaction. When calculating the in-
teractions of atoms at the borders of the block it is necessary to define different,
depending on the task, the boundary conditions (periodic, rigid, flexible, highly
viscous or free). In the computer simulation process is performed monitoring of
different characteristics (temperature, free volume, the coefficient of diffusion,
pressure, etc.), as well as when it is required to explore the dynamics of atomic
structure, at certain intervals of time the structures of calculable block are mem-
orized. Study using different sub-modules of a computer program, responsible
for structure visualization, charting, calculating the required parameters can be
attributed to the third stage of the molecular dynamics simulation.

At the quest for a more reliable study using molecular dynamics simulations
have to deal with problems that can be reduced to four basic: adequacy of
interatomic interaction potential, the count rate (the speed of the experiment
performance on the computer), the calculation errors, the variety of visualizers
to display the structure of calculable block [5].

The correct description of the interatomic interaction is achieved by selecting
an adequate potential function of interaction between atoms. There are theo-
retical methods based on the approximate solution of the quantum-mechanical
problem of calculating the energy of the crystal: the empirical and semi-empirical
methods, in which the potential is given as a function (Born-Mayer, Lennard-
Jones, Morse, Mi-Gruneisen various power functions, etc.) with a set of parame-
ters, which is chosen according to the reference values for given material. There
are also a combination of first-principles (ab initio) and of potential (density
functional method) approaches, or many-body potentials of Finnis-Sinclair type
and the potentials obtained by embedded atom method (EAM). Accuracy of
potential usually associated with its complexity and with execution speed of the
computer experiment. Therefore, the question of finding an optimal potential
function remains opened, the select of potential type in each case depends on
the method of computer simulation and task. In applying the semiempirical po-
tentials using their fitting by a three types of empirical parameters (structural
parameter – lattice period, energy parameters – energy of sublimation and the
energy of defect formation and etc., power parameters – elastic modules) can
be investigated with high accuracy the structural and power changes occurring
in the material. Should be used cautiously the energy parameters, take into
account in the computer experiment only their relative changes in the study
of structural-phase transitions, especially in the case of nanocrystals and low-
dimensional systems.
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Another major problem of molecular dynamics simulation is the count rate on
the computer. High count rate allows to execute the longer experiments, increase
the size of the calculable block, use a more complex and realistic interatomic
potentials. Count rate indirectly affects the accuracy of computer experiments.
There are several ways to increase the count rate:

1. Decrease of size of calculable block (effect – decreased reality of model, in-
creases error at calculation of various structural-energy characteristics)

2. increase of time step of integration (effect – significantly increases the cal-
culation error of trajectories of atoms)

3. Simplification of the potential function, tabulation of potential function, the
introduction of so-called ”cutoff radius” of potential (effect – strength of
the interaction decreases rapidly with the distance between the atoms, so
the interaction with remote atoms must be null)

4. Optimization of code – getting rid of extra functions in the main loop of a
computer program (looping through all the atoms in the calculation of their
interactions and displacements)

5. In the case of pair potentials calculation of force between two atoms occurs
only once (the forces between atoms equal in magnitude and opposite in
direction)

6. Partition of calculable block on the cells with assigning them numbers – in
the calculation of interaction forces it is sufficient to consider only the atoms
in neighboring cells and in compliance with ”cutoff radius”

7. Acceleration of processing by means multiprocessor parallel calculations

The third problem of molecular dynamics simulation – errors that arise in
calculating of the trajectories of motion of the atoms during the experiment –
calculation errors, relating to the numerical method used to solve the equations
of motion, or to the fact that the variables are rounded in the computer pro-
gram. Errors, relating to the digitization step of the grid schemes in the solving
process of the motion equations, can be reduced by using numerical methods
of higher order than the Euler method, for example, the Runge-Kutta method.
Furthermore, errors can be reduced by reducing the integration time step, but
this leads to an increase in the duration of computer simulations, amount of
experiments, or size of calculable block.

Another problem is the realistic visualization for the study of the atomic
structure dynamics of the calculable block – you need a diverse set of visualizers
for display of structures. There are three main types of visualization:

1. Using charts and graphs that reflect structurally dependent parameters (ra-
dial distribution diagrams, phase composition diagrams, crystallographic ori-
entation diagrams, the intensity distribution of diffusion, etc.)

2. Two-dimensional sections of three-dimensional models, the visualizers of
two-dimensional structure (areas of tensile and compression, the potential
energy distribution, the phase distribution, the pattern of high-packed atomic
series, trajectories and displacements of atoms in two-dimensional models,
etc.)
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3. Three-dimensional visualizations (atomic displacements, visualization of de-
fect regions, fill of areas of particular phase composition, etc.)

Molecular dynamics method allows us to consider the block comprising about
a billion atoms. Thus, almost any nanostructures can be modeled with a high
degree of accuracy on multiprocessor computers.

4 Analysis of the Results of Computer Simulation of
the Atomic Structure of Amorphous Aluminum by
Event-Driven Molecular Dynamics Method

To study the structure of some metals, obtained by ultrafast cooling of the melt,
in computer simulations it is necessary to change the speed of quenching. Process
of simulation, in this case, comprises two stages:

1. Melting of the initial crystalline block
2. Quenching of the melt at a given rate

For example, to simulate the liquid Al structure, the temperature of initial
block in crystalline state was set to 4400K and sustainment was performed for
10−11 s (no more than 0.5% of all atoms evaporated - compensation wasn’t been
made for these atoms). Phase transition from solid to liquid state was determined
by radial distribution functions, angular distribution functions, an abrupt change
in the specific volume (expansion of metal) or decrease in the temperature of
simulation block. The initial temperature and sustainment time were selected to
minimize the time of complete destruction of the crystal structure and to prevent
the evaporation of particles from simulation block, as the initial temperature is
higher than the condensation temperature of aluminum (2792K).

Simulation of amorphous aluminum by ultrafast cooling of liquid Al, obtained
in the first stage, was performed in the second stage by lowering the temperature
with linear decrease in velocities of atoms (it is closer to the real picture). Atoms’
initial directions of velocity were assigned randomly, so the results of repeated
computer experiments differed from each other. Simulation block comprised a
different number of atoms (up to 20000) and represents a portion of a thin
film. The interaction of atoms at a distance r was described by a paired Morse
potential

U (r) = D · (exp (−2α (r − σ))− 2 exp (−α (r − σ))) (5)

with parameters taken from [6]: α = 1.1646
(
Å
)−1

, σ = 3.253 Å, D = 0.2703 eV.
Along two axes boundary conditions were periodic, along the third – free. The
initial temperature was 4400K. Such a high temperature is chosen to minimize
the time of producing the melt. The time step was 0.01 ps = 10−14 s.

Judging from experience of calculations performed by different authors, at the
start it is sufficient to place the atoms as a regular lattice of Al (fcc crystal),
and choose the initial impulses of the same modulo (subject to compliance with
a given temperature) with a random distribution of their directions so that the
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total momentum of the simulation block was zero. Due to instability of the
trajectories of individual atoms (according to Lyapunov) initially some atomic
structure containing individual atoms and clusters of atoms, as well as pores,
are formed randomly in the melt. The first coordination sphere of those atoms
corresponds to one or another well-known ordered structure. The structural units
of the melt inside the simulation block occur chaotically. The melting in this
model was conducted for 10 picoseconds.

Numerical calculations show that the structural chaos in the liquid state is
largely inherited in the solid amorphous state in the case of rapid cooling, as the
melt viscosity becomes so large that structural units of the melt come to a stop
and retain only internal degrees of freedom. The crystallization process becomes
impossible, since in a very short time, the atoms do not have time to move to a
distance that would allow them to form a crystal lattice. This metastable state
is not the lowest energy state, and the energy of the formed amorphous metal is
determined by the arisen atomic structure. These atomic structures are largely
random and varied depending on the initial conditions and the cooling rate.

Content analysis of fcc, hcp phases and Frank-Kasper polyhedra was con-
ducted. For each atom of the simulation block the positions of nearest neighbors
was evaluated, and then comparison with the reference samples was performed
(results in Table 1).

Table 1. Percentages of the fcc, hcp and Frank-Kasper unit cells for three different
cooling rates and simulation block of 20000 atoms. Percentage – the ratio of the number
of atoms that are the ”center” of cells to the total number of atoms in the system.

Cooling rate Unit cells Fcc / all unit cells Hcp / all unit cells F-K / all unit cells

1013 K/s 48± 15% 59± 24% 21± 15% 37± 32%

1014 K/s 42± 2% 43± 3% 25± 3% 31± 3%

1015 K/s 37± 2% 46± 3% 26± 3% 27± 3%

As expected from the distribution of the number of atoms in the first co-
ordination sphere, in all cases, 16-vertex Frank-Kasper figures were not found.
Among the figures of Frank-Kasper there were found more icosahedra than any
others. Based on the data given in the Table 1, for cooling rate of 1014 and
1015K/s discrepancy in the results is of only a few percent, while for the rate of
1013K/s, the scatter of results is very significant (defined statistical regularity is
possible in simulation blocks hardened at high speeds). Large scatter in the data
for the cells obtained at the slowest cooling may be due to the random nature
of solidification centers, and the fcc, hcp and Frank-Kasper elementary cells of
these systems are randomly scattered in volume and do not form a conjugate
ordered structures (amorphous-nanocrystalline structure is formed).

As is well known, the choice of the interaction potential of atoms plays an
important role in the application of molecular dynamics method [7]. If with this
results change qualitatively, then the collection of atoms considered under con-
ditions of cooling to be regarded as structurally unstable system (according to
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Pontryagin), that is more likely in the neighborhood of the critical cooling rate.
Complete theoretical analysis of the structural stability of systems of molecular
dynamics is currently appear to be difficult to implement. However, the qualita-
tive picture of the structural stability can be obtained by numerical analysis with
the variation of empirical constants in the interparticle interaction potential [8].

5 Conclusions

Thus, it is necessary to use the concepts and methods of the modern theory
of nonlinear dynamical systems in the study of atomic structure of liquids and
amorphous metals. In addition, our calculations using molecular dynamics sug-
gest that a particular atomic structure of amorphous metal is fundamentally
unpredictable and irreproducible at the level of the model, as well as in a real
experiment.
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Abstract. This article reviews the important aspects of creation of an
adequate mathematical model of the propagation of the flame front at the
SH-synthesis in the “mesocells” of heterogeneous powder mixture. The
model takes into account the phase formation processes in accordance
with the phase diagram of the system components and in assumption
of staging of interphase chemical transformations (formation and decay)
according to the scheme of metal-chemical reactions. The chemical reac-
tion rate is determined by taking into account the function of the source
of the exothermic heat generation in chemical reaction and the solutions
of problems of the diffusion kinetics and balance ratios on the moving
interfacial borders in reactionary “mesocell”.

Keywords: mathematical modeling, self-propagation high-temperature
synthesis (SHS), diffusion kinetics, interphase transformations, mesocell,
heterogeneous powder mixture.

1 Introduction

Basic researches allow to study the different aspects, related to the update of the
physicochemical and mathematical models for the various structural and phase
transformations in SH-synthesis of new materials. The results of such studies play
an important role in solving the problem of optimization of technological condi-
tions for SH-synthesis of materials that meet the set of required functional and
performance properties. For example, the intermetallic compounds, i.e. chem-
ical compounds of metals with each other, are formed in many systems. The
complexity of their study is associated with the staging and with complex mech-
anism of formation and the structure of distribution of intermetallic phases in
the volume of the resulting material. Composition of the final reaction products
of SHS and therefore, the mechanism of component interaction are dependent
on many parameters: the initial temperature of the mixture and porosity, the
degree of dilution, the heat loss, dispersion of the reagents and their ratio, scale
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parameter and etc. Metal-chemical analysis typically considers two main types
of interaction of metal elements: the formation of solid solutions of metals and
formation of intermetallic compounds, based on the diagram of the equilibrium
states of physicochemical system, depending on the chemical composition and
environmental conditions – temperature and pressure (external pressure has no
significant effect on the condensed state system where no gaseous phase). Mech-
anism of the “reaction diffusion” in solid-phase interaction in bimetallic compact
specimens is fairly well studied [1]. Kinetics of the “reaction diffusion” of gasless
combustion in such systems (including its stationary) sufficiently obey certain
laws (linear, parabolic, cubic, exponential), which are expressed by relevant “ki-
netic” functions. But not so good is the case in the study of solid-phase chemical
reactions in heterogeneous powder systems [1], particle size distribution and pore
structure significantly affects on the kinetics of formation of the “diffusion lay-
ers” on the borders of contacting particles. The thickness of the diffusion layer
interacting particles increases with time due to continuing of diffusion process
through the diffusion layer of the metal component that supports solid phase
chemical reaction (topochemical reaction in diffusion mode, [1]). The variety of
defects in the particle packing structure of SHS-sample does not provide isother-
mal interaction and stationary diffusion kinetics at the microlevel of powder sys-
tem of particles. Furthermore, in a heterogeneous mixture of powders in result of
reaction across the reaction space occurs significant heat generation with nonuni-
form distribution on the contact surfaces of the particles, leading to self-heating
and ignition of heated layers with further propagation of the combustion wave.
Therefore to describe the diffusion kinetics in heterogeneous powder mixtures
(significantly different from the homogeneous kinetics), considering nonisother-
mality and unsteady diffusion interaction, on the micro-and mesolevel instead of
using the kinetic functions more appropriate is approach, which should be based
on the solution of the diffusion equations of the form, that have identity with a
heat equation [1].

For the simulation of chemical reactions of various compositions of the pow-
der mixture in long samples of small cross section can be used as in [2] – [7]
approach. In these studies, the initial heterogeneous composition is modeled as
periodic cellular structure, which is assumed homogeneous in the case of a ther-
mal process (temperature quickly aligned in the cell) and heterogeneous in the
case of a chemical process. Heat transfer process is modeled on a macro level,
taking into account the local dynamics of heat generation in each elementary
reaction cell (mesocell of the particulate mixture). At high-temperature phase
changes, in which occur the processes of growth and decay of the new phases, the
particles often have a shape close to spherical [7], i.e. diffusion flow is spherically
symmetric. Therefore, we understand under mesocells the averaged elements of
the heterogeneous structure in the form of powder mixture of face-centered cu-
bic (fcc) lattices, the centers of which are spherical particles of one kind and
surrounded by a layer of particles of another kind. We can assume that the
final mixture of particles as “mesoparticle” is shaped as an equivalent sphere
with a certain radius RS. Thus, the sample volume by means of the planes of fcc
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symmetry is divided into discrete mesocells. The mutual influence of neighboring
mesocells in which there is growth and decay of new phases in spherical mesopar-
ticles, reflected in the fact that the total diffusion flux through the boundary
of mesocells or through the plane of fcc symmetry equal zero. More precisely,
through the surface of the equivalent sphere of radius Rs the total diffusion flux
equal zero.

2 Mathematical Formulation of the Problem

For example, considering a mixture, in which the radii of the aluminum par-
ticles substantially smaller than the radii of nickel particles, and the number
of particles of aluminum significantly more number of nickel particles, we can
assume that the nickel particles are the centers of mesocells and local sources
of production of intermetallic phases, which are formed in layers around nickel
particles [4].

Assuming staging of chemical transformations (formation and decay) of inter-
mediate phases and scheme metal-chemical reactions corresponding to diagram
of phase states, reaction between aluminum and nickel begins upon reaching
the melting point of aluminum with instantaneous formation of the product
layer consisting of one or more layers of all sorts of equally intermetallic phases
simultaneously [4], forming a thin diffusion layer. Considering only regions of
single-phase intermediate products in the solid state and eliminating regions
of two-phase transient products, the distribution of nickel concentration in the
diffusion layer present itself as the function with discontinuity points at the in-
terfaces. Two-phase regions are excluded by the assumption of the smallness of
their linear dimensions [4].

Consequently, the mathematical formulation of the problem, taking into ac-
count the above stated and model representations, according to [4], [5], consists
of heat equation, diffusion equation and balance sheet ratios on the moving
interphase boundaries. Heat equation for long sample can be written as a one-
dimensional equation.

cρ
∂T

∂t
= λ

∂2T

∂x2
+Q · Φ(T (x, t)) . (1)

The initial and boundary conditions for temperature:

T (x, 0) = T0 , T (0, t) = Tα ,
∂T (∞, t)

∂t
= 0 . (2)

In equation (1) introduced the following notation: t – temporary variable,
x – coordinate, c – specific heat of the mixture, ρ – the mixture density, T
– temperature, λ – thermal conductivity coefficient of the mixture, Q – heat
effect of reaction, Φ(T (x, t)) - the chemical reaction rate, T0 - initial value of
temperature, Tα - the ignition temperature of the sample on the border x = 0 .

To estimate the rate of a chemical reaction Φ(T (x, t)) , it is necessary at each
point previously to solve the problem of chemical reaction in the reaction cell.
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Namely:
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ri(t) ≤ r ≤ ri+1(t) . (6)

In formulas (3) – (6), the index i denotes the order number of the phase layer
(i = 1 ÷ 6) in a reaction cell: 1 - Ni, 2 - ε(Ni3Al), 3 - δ(NiAl), 4 - γ(Ni2Al3),
5 - β(NiAl3), 6 - Al. Indices A and B relate, respectively, to the particles of nickel
and aluminum. Value E(i) - the activation energy of a chemical reaction for the
i-th phase in the Arrhenius law (k0 - pre-exponential factor in the required

scale, R - universal gas constant); E
(i)
d,A and E

(i)
d,B - values of the activation

energy of diffusion through layer of i-th phase for atoms, respectively, Ni and

Al; D
(i)
A,0 and D

(i)
B,0 - corresponding diffusion constants of Ni and Al for the

diffusion coefficients D
(i)
A (T ) and D

(i)
B (T ) . Values C

(i)
A and C

(i)
B represent the

mass concentrations in i-th phase layer for atoms, respectively, Ni and Al. Radii
ri+1(t) and ri(t) represent, respectively, the initial and final radii of spherical
surfaces bounding the i-th phase layer.

To solve the equations (3) and (4) can use the balance sheet ratios on the
moving interphase boundaries [4]:

r = r1(t) :
(
1− C

(2)
A (T )

) ∂r1
∂t

= D
(2)
A (T )

∂C
(2)
A (T )

∂r
|r=r1+0 , (7)

r = r2(t) :
(
C

(2)
A (T )− C

(3)
A (T )

)
∂r2
∂t =

−D
(2)
A (T )

∂C
(2)
A (T )

∂r |r=r2−0 +D
(3)
A (T )

∂C
(3)
A (T )

∂r |r=r2+0 ,
(8)

r = r3(t) :
(
C

(3)
A (T )− C

(4)
A (T )

)
∂r3
∂t =

−D
(3)
A (T )

∂C
(3)
A (T )

∂r |r=r3−0 +D
(4)
A (T )

∂C
(4)
A (T )

∂r |r=r3+0 ,
(9)

r = r4(t) :
(
C

(4)
A (T )− C

(5)
A (T )

)
∂r4
∂t =

−D
(4)
A (T )

∂C
(4)
A (T )

∂r |r=r4−0 +D
(5)
A (T )

∂C
(5)
A (T )

∂r |r=r4+0 ,
(10)

r = r5(t) : C
(5)
A (T )

∂r5
∂t

= −D
(5)
A (T )

∂C
(5)
A (T )

∂r
|r=r5−0 . (11)

A similar system of balance sheet ratios on the moving interphase bound-

aries for the concentration of aluminum C
(i)
B in the phase interlayers too can be

determined.
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We can assume that over time the rate of phase formation is proportional to
change of its mass. Since the nickel particles are local centers of formation of
intermetallic compounds, then the rate of production or consumption of the i-th
phase can be written:

Ji = mNiρi
∂

∂t

(
y3i − y3i−1

)
, yi =

ri
Rs

, i = 2÷ 5 . (12)

It should be noted that at the temperature between the melting points (TAl ≤
T ≤ Ti ) the reaction rate is positive (Ji > 0 – layer increases), and when T > Ti

– is negative (Ji < 0 - layer splits).

3 Approximate Task Solution

In conditions where the temperature is slowly increased over time or when it is
constant (the so-called diffusion annealing mixture), assumed to be valid a state
of local thermodynamic equilibrium temperature. The solution of equations (3)
– (11) in the unsteady problem definition with so many matching conditions
at the interfaces, moving with the times, it is extremely difficult. Therefore,
to obtain approximate solution use the method [4], which assumes that the
distribution of concentrations within each sub-layer is not very different from the

stationary: C
(i)
A = Ai/r+Bi. ConstantsAi and Bi determined from the condition

that the function C
(i)
A (T ) equal to equilibrium concentration at the interfaces.

Substitution of the stationary solutions C
(i)
A = Ai/r +Bi in formulas (7) – (11)

give a system of ordinary differential equations which is solved numerically, for
example, by method of the Runge-Kutta of 4-th order accuracy [4]. I.e., the
solution of this system is the trajectories of interfaces (the functions ) which

allow to translate the concentrations C
(i)
A and C

(i)
B .

The chemical reaction rate Φ(T (x, t)) is defined as the average speed of a
chemical reaction in volume of the cell:

Φ(T (x, t)) =

5∑
i=2

∫ ri

ri−1

C
(i)
A C

(i)
B k0exp

(
− E(i)

RT (x, t)

)
r2dr . (13)

The average speed of a chemical reaction depends on the temperature, used
in equation (1). Practical solution to the problem (1) – (13) is best done in
the traditional (for combustion theory) dimensionless variables and parameters
[5], taking into account the initial and boundary conditions using the effective
difference schemes.

4 Conclusions

Thus, the work developed and proved important aspects of creation of an ade-
quate mathematical model of a propagation of the flame front in the SH-synthesis
on the level of mesocells of heterogeneous powder mixture. The model takes into
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account the phase formation processes in accordance with the phase diagram
of the system components and in assumption of staging of interphase chemi-
cal transformations (formation and decay) according to the scheme of metal-
chemical reactions. The chemical reaction rate is determined by taking into
account the function of the source of the exothermic heat generation in chemical
reaction, the solutions of problems the diffusion kinetics and balance ratios on
the moving interfacial borders in reactionary “mesocell”. This model will more
accurately study the different modes of propagation of the combustion front
and more accurately define the boundaries of the transition from one regime to
another.
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Abstract. In the article integral representations of the solutions de-
scribing the displacements in the medium and on the surface are ob-
tained, allowing the investigation of patterns of the forming displacement
field, excited by the surface load and vertically oriented inclusions in an
elastic medium. Computational experiments that allow making conclu-
sions about the impact of vertically oriented inclusions on the interference
pattern of the total wave field are completed.

Keywords: elastic medium, steady oscillations, system of vertical in-
clusions, surface load, wave field.

Modern methods of studying the stability of structures and buildings, the calcu-
lation of their durability include a variety of approaches [1–6, etc.]. Problems of
the evaluation criteria formation concerning condition of surface structures, in
particular – the base-foundation complex are closely associated with problems
of the development of rational construction schemes of foundation. Data on the
spatial and temporal stress distribution in the base and on the nature of the wave
energy outflow from the load zone may be useful in engineering practice. The
paper describes a research method of results of vibration influence on plate-pile
foundations.

The problem of steady-state (with frequency ω) of an elastic layer under
the influence of surface and vertically oriented internal loads is considered as a
model of the foundation-base system. Set of deepening vertical sources forms a
cylindrical surface: r = r0 (r0 > a), −h0 ≤ z ≤ 0. The displacement of points
of the medium are described in a cylindrical coordinate system by vector of
displacement amplitudes u = {ur, uz}, which corresponds to Lame equations.
Load’s distribution in depth is modeled by components of the body force – Xr,
Xz. Vertical axisymmetric load is applied on the surface of an elastic medium
(z = 0) in a circular area (r ≤ a). It’s described by the function Re

[
p(r)e−iωt

]
(p – a given function of amplitude, r – radius vector of the point of the plane,
ω – frequency, t – time). The problem is solved in the class of generalized func-
tions. Load distributed along the length of the inclusions is modeled by Dirac
delta function Xr = Re

[
fr(z)δ(r − r0)e

−iωt
]
, Xz = Re

[
fz(z)δ(r − r0) e

−iωt
]
.

Since we are considering a steady process, all task functions are represented as
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ψ1 (r, z, t) = ψ (r, z) e−iωt. Below the time factor is omitted. Statement of the
problem can be written as follows:

(λ+ 2μ)

[
1

r

∂

∂

(
r
∂ur

∂r

)
− ur

r2

]
+ (λ+ μ)

∂

∂r

[
∂uz

∂z

]
+ μ

∂2ur

∂z2
+ ω2ρur

= fr(z) δ(r − r0),

(λ+ 2μ)
∂2ũz

∂z2
+

μ

r

∂

∂r

(
r
∂uz

∂r

)
+ (λ+ μ)

∂

∂z

[
1

r

∂

∂r
(rur)

]
+ ω2ρuz

= fz(z) δ(r − r0),

where λ, μ – Lame parameters of the elastic medium, ρ – density.
Boundary conditions on the surface of the medium (z = 0) have the form

μ

[
∂uz

∂r
+

∂ur

∂z

]
= 0, (λ+ 2μ)

∂uz

∂z
+

λ

r

∂

∂r
(rur) =

{
p (r) , r ≤ a,

0, r > a.

For an elastic layer of thickness h (0 < r < +∞; −h ≤ z ≤ 0), on the lower
boundary in conditions of rigid linkage with non-deformable base

ur(r,−h) = uz(r,−h) = 0.

As the radiation conditions at infinity, we use the limiting absorption principle.
Using Bessel transformation the task is reduced to a system of ordinary differ-

ential equations [7, 8]. Solution of the latter is constructed as a superposition of
general and private solutions. By applying inverse transform to the components
of the obtained vector-valued function, we obtain the solution of the original
problem in integral form

ur(r, z) =

∞∫
0

(D1(α)P (α, z) +D2(α)M(α, z) +K1(α, z))αJ1(αr) dα,

uz(r, z) =

∞∫
0

(D1(α)R(α, z) +D2(α)S(α, z) +K2(α, z))αJ0(αr) dα,

where

D1(α) =

(
p (α)

ρc21
− 2C2

21

[
s
(
g+1 (−h0) + g−1 (−h0)

)
− ασ2

(
g+2 (−h0)− g−2 (−h0)

) ])
,

D2 (α) = 2ρc22
[
ασ1

(
g+1 (−h0)− g−1 (−h0)

)− s
(
g+2 (−h0) + g−2 (−h0)

)]
,
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P (α, z) =
[
αeσ1zΔ11 + αe−σ1zΔ12 − σ2e

σ2zΔ13 + σ2e
−σ2zΔ14

]
Δ−1 (α) ,

R (α, z) =
[
αe−σ2zΔ14 − σ1e

σ1zΔ11 + σ1e
−σ1zΔ12 + αeσ2zΔ13

]
Δ−1 (α) ,

M (α, z) =
[
αeσ1zΔ21 + αe−σ1zΔ22 − σ2e

σ2zΔ23 + σ2e
−σ2zΔ24

]
Δ−1 (α) ,

S (α, z) =
[−σ1e

σ1zΔ21 + σ1e
−σ1zΔ22 + αeσ2zΔ23 + αe−σ2zΔ24

]
Δ−1 (α) ,

Δ = 16C2
21ρc

2
2

[
σ1σ2

(
s2 + α4

)
ch (σ1h) ch (σ2h)

− α2
(
s2 + σ2

1σ
2
2

)
sh (σ1h) sh (σ2h)− 2sα2σ1σ2

]
,

Δ11 = 4ρc22
[
α2σ1σ2 − seσ1hχ−

2

]
, Δ12 = 4ρc22

[
α2σ1σ2 − se−σ1hχ+

2

]
,

Δ13 = −4ρc22ασ1

[
eσ2hϕ−

1 + s
]
, Δ14 = 4ρc22ασ1

[
s− e−σ2hϕ+

1

]
,

Δ21 = −4C2
21ασ2

[
eσ1hϕ−

2 + s
]
, Δ22 = 4C2

21ασ2

[
s− e−σ1hϕ+

2

]
,

Δ23 = 4C2
21

[
α2σ1σ2 − seσ2hχ−

1

]
, Δ24 = 4C2

21

[
α2σ1σ2 − se−σ2hχ+

1

]
,

χ±
j = σ1σ2 ch (σjh)±α2 sh (σjh) , ϕ±

j = σ1σ2 sh (σjh)±α2 ch (σjh) , j = 1, 2;

K1 (α, z) = α
[
g+1 (z)− g+1 (−h0)

]
eσ1z + α

[
g−1 (z)− g−1 (−h0)

]
e−σ1z

− σ2

[
g+2 (z)− g+2 (−h0)

]
eσ2z + σ2

[
g−2 (z)− g−2 (−h0)

]
e−σ2z ,

K2 (α, z) = −σ1

[
g+1 (z)− g+1 (−h0)

]
eσ1z + σ1

[
g−1 (z)− g−1 (−h0)

]
e−σ1z

+ α
[
g+2 (z)− g+2 (−h0)

]
eσ2z + α

[
g−2 (z)− g−2 (−h0)

]
e−σ2z ,

K1 (α, z) = α
[
g+1 (z)− g+1 (−h0)

]
eσ1z + α

[
g−1 (z)− g−1 (−h0)

]
e−σ1z

− σ2

[
g+2 (z)− g+2 (−h0)

]
eσ2z + σ2

[
g−2 (z)− g−2 (−h0)

]
e−σ2z ,

K2 (α, z) = −σ1

[
g+1 (z)− g+1 (−h0)

]
eσ1z + σ1

[
g−1 (z)− g−1 (−h0)

]
e−σ1z

+ α
[
g+2 (z)− g+2 (−h0)

]
eσ2z + α

[
g−2 (z)− g−2 (−h0)

]
e−σ2z ,

g±1 (z) =
r0

2ρω2σ1

(±αJ1 (αr0)φ
∓
r1 (z) + σ1J0 (αr0)φ

∓
z1 (z)

)
,

g±2 (z) =
r0

2ρω2σ2

(
σ2J1 (αr0)φ

∓
r2 (z)± αJ0 (αr0)φ

∓
z2 (z)

)
;

φ∓
rk (z) =

z∫
0

fr (ζ) e
∓σkζdζ , φ∓

zk(z) =

z∫
0

fz (ζ) e
∓σkζdζ (k = 1, 2) ;

p (α) =

∞∫
0

p (r) rJ0(αr)dr, Δ (α) = 2C2
21

(
α2σ1σ2 − s2

)
, s = α2 − 0.5κ2

2,
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κ2
j = (ω/cj)

2, C2
21 = (c2/c1)

2,

c1 =
√
(λ+ 2μ)/ρ, c2 =

√
μ/ρ, σj =

√
α2 − κ2

j , (j = 1, 2).

Where κj are respectively the wave numbers of longitudinal and transverse
waves; Jn(αr) (n = 0, 1) – Bessel functions of the first order.

Using integral representations for displacement amplitudes on the surface of
the elastic layer (z = 0) at r → ∞, using the procedure of closing the contour,
the analytical expressions for the amplitudes of Rayleigh wave are obtained at
r →∞

uβ(r, 0) = i

√
2πζ

r

Qβ1 (ζ) −Qβ2(ζ)

2ρc22Δ̄(ζ)
ei(ζr−

3π
4 ) +O

(
r−3/2

)
, β = r, z,

where

Qr1(α) = p(α)α
(
σ1σ2(α

2 + s) (1− ch(σ1h) ch(σ2h))

+
(
α2s+ σ2

1σ
2
2

)
sh(σ1h) sh(σ2h)

)
,

Qr2(α) = ρc22κ
2
2σ2

(
g+1 (−h0)ασ1

(
s− e−σ1hϕ+

2

)
+ g−1 (−h0)ασ1

(
s+ eσ1hϕ−

2

)
+ g+2 (−h0)

(
α2σ1σ2 − se−σ2hχ+

1

)− g−2 (−h0)
(
α2σ1σ2 − seσ2hχ−

1

) )
,

Qz1(α) = p(α)κ2
2

(
α2 ch(σ1h) sh(σ2h)− σ1σ2 sh(σ1h) ch(σ2h)

)
,

Qz2(α) = 2ρc22κ
2
2σ1

(
g+1 (−h0)

(
α2σ1σ2 − se−σ1hχ+

2

)
− g−1 (−h0)

(
α2σ1σ2 − seσ1hχ−

2

)
+ g+2 (−h0)ασ2

(
s− e−σ2hϕ+

1

)
+ g−2 (−h0)ασ2

(
s+ eσ2hϕ−

1

) )
,

Δ̄(α) = α
( ((

σ2
1 + σ2

2

)
σ−1
1 σ−1

2 (s2 + α4) + 4σ1σ2(s+ α2)
)
ch(σ1h) ch(σ2h)

+ h
(
σ1(s

2 + α4)− α2σ−1
1

(
s2 + σ2

1σ
2
2

))
ch(σ1h) sh(σ2h)

+ h
(
σ2(s

2 + α4)− α2σ−1
2

(
s2 + σ2

1σ
2
2

))
sh(σ1h) ch(σ2h)− 4σ1σ2(s+ α2)

−2 (s2+σ2
1σ

2
2 + 2sα2 + α2

(
σ2
1 + σ2

2

))
sh(σ1h) sh(σ2h)−2sα2σ−1

1 σ−1
2

(
σ2
1 + σ2

2

) )
.

Below are the results for vertical loads. Surface forces
∫∫
Ω

p(r, φ)dΩ and loads

on vertical inclusions
0∫

−h0

f(z)dz were considered to have opposite directions

and equal magnitudes. Linear function used to describe the distribution of the
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load on the inclusions f(z) = kz + b, where k = b(1 − ε1)h
−1
0 , b = 2h−1

0 (1 +
ε1)

−1, z ∈ [0,−h0], and the function describing the stress on the rigid inclusion,
corresponding to the solution of integral equation of the contact problem, in
form

f(z) = ε2(h0 + z) + ez−h0 +
1√−z

+
1√

z + h0

, z ∈ (0,−h0).

Performed calculations allow to draw conclusions about the effect of vertically
oriented inclusions on the interference pattern of general wave field. The obtained
results indicate that the effect of vertically oriented inclusions on general wave
field depends on the length and frequency of their oscillation. The graph shows
uz – the coefficient with r−1/2 for the amplitude of the Rayleigh wave vertical
component. The following values were taken as characteristics of the elastic layer:
ρ = 1.4 · 103 kg/m3, 1 = 0.2 · 103 m/s, 2 = 0.12 · 103 m/s. Reduced frequency
determined by formula ω = 2πνl0/c0, where ν – frequency (Hz), l0 = 1 m,
c0 = 103 m/s.

a) b)

Fig. 1. h = 20 m; 1 – a = 2 m; 2 – a = 3 m; 3 – a = 4 m: (a) – mode 1, (b) – mode 2

Increasing the size of the surface load will cause an increase in the amplitude
of the Rayleigh wave vertical component (Fig. 1). Increasing the location radius
of the vertical inclusions with increasing frequency complicates the interference
pattern of the wave field also increasing the number of “locking” frequencies and
changes their values (Fig. 2).

Variation of the load distribution function along the generatrix inclusions also
complicates the interference pattern of the wave field, this increases the number
of “Locking” frequencies and change their values.

The obtained results allow to investigate the features of the displacement field
generated by using vertically oriented inclusions and surface load. The given
approach can be used in case of the base with parallel planar defects [9, 10].
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a) b)

Fig. 2. h = 20 m; h0 = 10 m, ε2 = 1.0, 1 – r0 = 3 m; 2 – r0 = 4 m; 3 – r0 = 5 m:
(a) – mode 1, (b) – mode 2
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by a Three-Dimensional Magnetodielectric Body
in the Presence of Closely Adjacent Thin Wires
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Abstract. This paper presents a version of auxiliary sources method
generalized for the case of the presence of thin wires in the vicinity of
a magnetodielectric body. A mathematical formulation of this version
and a brief description of the created computer code are given. Some
numerical results concerning the influence of thin wires on the bistatic
cross-section of a dielectric body and the influence of a dielectric body
on current distribution are presented.

Keywords: numerical method, electromagnetic scattering, magnetodi-
electric body, thin wire, scattering cross-section.

1 Introduction

The study of electromagnetic-wave scattering by a three-dimensional magne-
todielectric body in the presence of closely adjacent thin wires is of considerable
interest. This is explained by the need for solving important applied problems of
electromagnetic compatibility and radar detectability, designing multi-element
antenna systems, etc. If the distance between a magnetodielectric body and thin
wires is less or comparable with the wavelength, the correct formulation of such
problems requires solving boundary-value problems of scattering taking into ac-
count the electromagnetic interaction between the scatteres. The latter problems
can be solved numerically by using, for example, finite-element methods [1]-[3]
or integral-equation methods[4]-[6], but the algorithms yielded by them require
considerable computer resources. In the recent years, the method of auxiliary
sources[7]-[8] has been applied to solving the problems of electromagnetic-wave
scattering by structures composed of a finite number of three-dimensional per-
fectly conducting bodies [9] and structures composed of a finite number of per-
fectly conducting bodies and thin wires [10]. In this paper, we solve the problem
of electromagnetic-wave scattering by structures composed of a magnetodielec-
tric body and thin wires using a version of the auxiliary sources method.

2 Mathematical Formulation

The geometry of the problem is shown in Fig. 1. We consider the stationary prob-
lem of diffraction of an electromagnetic field {E0,H0} by a structure comprising

A. Dudin et al. (Eds.): ITMM 2014, CCIS 487, pp. 174–180, 2014.
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magnetodielectric body Di with permittivity εi and magnetic permeability μi

bounded by the surface S and U thin conductors (wires) bounded by the sur-
faces S

′
u (u = 1, 2, . . . , U)and located arbitrarily with respect to the body Di. A

time dependence of the form exp{−iωt}) is assumed. The body and wires are
disjoint. By a thin wires we mean a perfect conductor of a circular cross-section
whose diameter is finite but is much less than the wavelength. The structure
considered is located in a homogeneous unbounded medium De with dielectric
permittivity εe and magnetic permeability μe. We take a Cartesian coordinate
system whose origin is located inside the magnetodielectric body. Let us find the
scattered field {Ee,He} in the domain De.

Fig. 1. Geometry of the problem

The mathematical formulation of the problem is as follows:

∇×Ee = iωμeHe

∇×He = −iωεeEe

∣∣∣∣
De

,
∇×Ei = iωμiHi

∇×Hi = −iωεiEi

∣∣∣∣
Di

, (1)

n× (Ei −Ee) = n×E0

n× (Hi −He) = n×H0

∣∣∣∣
S

,nu × Ee = −nu × E0

∣∣∣
S′
u

, u = 1, U, (2)

{√εeEe;
√

μeHe} ×R/R + {√μeHe;−√εeEe} = O(R−1), R −→∞. (3)

Here, Ee, He and Ei, Hi are the fields in domains De and Di, n and nu(u =
1, 2, . . . , U), respectively, are the unit vectors normal to the surface S of the body
Di and to the surfaces S

′
u of the thin wires, R = (x2 + y2 + z2)1/2 and a× b is

vector product.
The gist of the suggested method is the following. We introduce two auxiliary

surfaces Si and Se which are homothetic, with the center at the point O, to the
surface S of magnetodielectric body. The surface Se = KeS is located inside



176 Y. Keller

of the body Di and is characterized by homothety coefficient Ke smaller than
unity; the surface Si = KiS lies outside of the body Di and is characterized by
the similarity coefficient Ki greater than unity. If Ke = Ki = 1 the auxiliary
surfaces Se and Si coincide with S.

Let us choose a finite set of points {Mn,e}Ne
n=1 on the auxiliary surface Se

and place of each point Mn,e a pair of independent auxiliary elementary electric
dipoles with momenta pn,e

τ1 =pn,eτ1 en,eτ1 and pn,e
τ2 =pn,eτ2 en,eτ2 . Analogously, on the

auxiliary surface Si we choose a set of points {Mn,i}Ni
n=1 and place at each

point {Mn,i a pair of independent auxiliary elementary electric dipoles with
momenta pn,i

τ1 =pn,iτ1 e
n,i
τ1 and pn,i

τ2 =pn,iτ2 e
n,i
τ2 . Unit vectors en,eτ1 and en,eτ2 lie in the

plane tangential to Se at the point Mn,e and unit vectors en,iτ1 , e
n,i
τ2 lie in the

plane tangential to Si at the point Mn,i. It is assumed that dipoles placed on
Se radiate into the homogeneous medium with parameters εe, μe and dipoles
placed on Si radiate into the homogeneous with parameters εi, μi.

We also introduce a continuously distributed auxiliary current Ju on the axis
of each thin wire.

Now we represent the unknown scattered field {Ee,He} in De as a sum of the
auxiliary dipoles located on Se and auxiliary currents:

Ee(M) =
iω

k2
e

{
Ne∑
n=1

∇× (∇×Πn,e) +

U∑
u=1

∇× (∇×Πu)},

He(M) =
1

μe
{

Ne∑
n=1

∇×Πn,e +

U∑
u=1

∇×Πu},Πn,e = Ψe(M,Mn,e)p
n,e
τ , (4)

pn,e
τ = pn,eτ1 en,eτ1 + pn,eτ2 en,eτ2 ,Πu =

∫
lu

Ψe(M,Ml,u)Judl,M ∈ De,

and express field Ei, Hi in Di as a sum of fields of auxiliary dipoles placed on
the auxiliary surface Si

Ei(M) =
iω

k2
i

{
Ni∑
n=1

∇× (∇×Πn,i)},Hi(M) =
1

μi

Ni∑
n=1

∇×Πn,i, (5)

Πn,i = Ψi(M,Mn,i)p
n,i
τ ,pn,i

τ = pn,iτ1 e
n,i
τ1 + pn,iτ2 e

n,i
τ2 ,M ∈ Di.

Here, ke=ω
√

εeμe and ki=ω
√

εiμi, Ψe(M,Mn,e)=exp(ikeRMMn,e)/4πRMMn,e ,
Ψe(M,Ml,u)=exp(ikeRMMl,u

)/4πRMMl,u
, Ψi(M,Mn,i)=exp(ikiRMMn,i)/

4πRMMn,i ; RMMn,e and RMMl,u
, respectively, are the distances from the points

Mn,e inside the body Di and the points Ml,u on the wire axes to the observation
point M in the region De, RMMn,i is the distance from points Mn,i on Si to
the point M in Di; Ne and Ni are the numbers of dipoles placed on Se and
Si, respectively; p

n,e
τ1 , pn,eτ2 (n = 1, 2, . . . , Ne) and pn,iτ1 , p

n,i
τ2 (n = 1, 2, . . . , Ni) are

unknown dipole moments; Ju (u = 1, 2, . . . , U) are unknown auxiliary currents.
The integration is performed along axes of the wires lu.



Electromagnetic Scattering of a Wave 177

Fields (4)-(5) satisfy Maxwell’s equations (1) and radiation conditions (3), we
should properly select the dipole moments pn,eτ1 , pn,eτ2 (n = 1, 2, . . . , Ne) and pn,iτ1 ,
pn,iτ2 (n = 1, 2, . . . , Ni), and the axial-current distributions Ju (u = 1, 2, . . . , U).

Let us use the piecewise-constant approximation for the axial currents. We
divide the line lu of each current Ju in Nusmall intervals in which the current
can be considered constant. Then the formula for Πu in equation (4) can be
represented in the following approximate form:

Πu =

Nu∑
i=1

Ju,ieu,i

li,u∫
li−1,u

Ψe(M,Ml,u)dl, (6)

where Ju,i is the current in the i-th interval of the wire with number u and
eu,i is the unit vector directed along the tangent to the central point of the
considered interval. Within the framework of such an approach, the problem
of determination of the unknown axial-current distributions is reduced to the

problem of finding
U∑

u=1
Nu current elements.

To find the dipole moments and the current elements, we use boundary con-
ditions (2) which are satisfied according to the following method. Let Mj, where

(j = 1, 2, . . . , L) and M
′
j , where (j = 1, 2, . . . , Lu), be the collocation points

on the surfaces S and S
′
u, respectively. Note that within the framework of the

conventional approach to an analysis of thin conductors, the azimuthal compo-
nent of the surface current is neglected compared with the longitudinal compo-
nent. Then the unknown quantities pn,eτ1 , pn,eτ2 (n = 1, 2, . . . , Ne) and pn,iτ1 , pn,iτ2
(n = 1, 2, . . . , Ni) and Ju,i (u = 1, 2, . . . , U, i = 1, 2, . . . , Nu) can be found from
the following system of linear algebraic equations:

nj × (Ej
i −Ej

e) = nj ×Ej
0,n

j × (Hj
i −Hj

e) = nj ×Hj
0, j = 1, 2, . . . , L, (7)

Ej
e,u,l = −Ej

0,u,l, u = 1, 2, . . . , U, j = 1, 2, . . . , Lu,

where nj is the unit normal vector to the point Mj on the surface of dielectric

body; Ej
e, H

j
e and Ej

i , H
j
i are the vectors of scattered fields (4) and (5), respec-

tively, at the collocation point Mj ; E
j
0 and Hj

0 are the vectors of exciding field
at Mj ; Ee,u,l and E0,u,l are components of scattered and incident fields directed
along the axis of u-th wire at collocation points on it’s surface.

The solution of system (7) is found by minimizing the functional

Φ =

L∑
j=1

{|nj × (Ej
i −Ej

e)−nj ×Ej
0|2 +

μe

εe
|nj × (Hj

i −Hj
e)−nj ×Hj

0|2}+ (8)

+

U∑
u=1

Lu∑
j=1

|Ej
e,u,l + Ej

0,u,l|2.

After solving the minimization problem by conjugate gradients method, we
determine from eq. (4) the required parameters of the scattered field.
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The accuracy of the solution is controlled by calculating the relative norm of
the discrepancy of boundary conditions on the surfaces of the dielectric body
and thin wires determined by the expression

Δ = (Φ
′
/Φ0)

1/2, Φ0 =

L
′∑

j=1

{|nj ×Ej
0|2 +

μe

εe
|nj ×Hj

0|2}+
U∑

u=1

L
′
u∑

j=1

|Ej
0,u,l|2, (9)

where Φ
′
is value of functional (8) provided that a grid of intermediate points is

chosen instead of collocation points j, L
′
is the number of intermediate points

on the surface of a dielectric body, and L
′
u is the number of intermediate points

on the surface of a wire with number u.

3 Numerical Results

Based on the method described in section 2, we developed a code for calculat-
ing the scattered-field components and controlling the accuracy of the obtained
solution. Using this code we obtained the characteristics of scattering by certain
structures and the distributions of currents along thin wires in the presence of
nearly three-dimensional magnetodielectric body. Some of the obtained results
are presented below.

Fig. 2. The effect of thin wires with length l = 1, 6λ and radius r0 = 0, 02λ on bistatic
cross-section σ for the ellipsoid with semiaxes a = b = 0, 64λ; c = 0, 8λ and parameters
εi/εe = 4, μi/μe = 1. Curve 1 corresponds to the case where thin wire is absent, curve
2 - to the case where the distance Δl between the ellipsoid and the wire is equal to
0, 05λ and curve 3 - to the case where the distance Δl between the ellipsoid and the
wire is equal to 0, 5λ.
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Fig. 3. The current distribution along the wire for the same distances between ellipsoid
and the wire are shown. Curve 1 corresponds to the case where the ellipsoid is absent,
curve 2 - to Δl = 0, 05λ and curve 3 - to Δl = 0, 5λ.

Figure 2 illustrated the effect of thin wires with length l = 1, 6λ and radius
r0 = 0, 02λ on bistatic cross-section σ for the ellipsoid with semiaxes a = b =
0, 64λ; c = 0, 8λ and parameters εi/εe = 4, μi/μe = 1. The semiaxes a, b and c
were directed along the x, y and z-axes of the Cartesian system of coordinates,
and the wire was directed along the x-axes. A linearly polarizated plane wave
exciting the ellipsoid and the wire was propagated along z-axes, and the vector
E0 was directed along the x-axes. The angle θ (see Fig. 1) is plotted on the
abscissa in Fig. 2, and the quantity σ/λ2 , in dB is plotted on the ordinate.
Curve 1 corresponds to the case where thin wire is absent, curve 2 - to the
case where the distance Δl between the ellipsoid and the wire is equal to 0, 05λ
and curve 3 - to the case where the distance Δl between the ellipsoid and the
wire is equal to 0, 5λ. The results are given in the E–plane (the plane in which
vectors E0 and ke lie). In Figure 3 the current distribution along the wire for the
same distances between ellipsoid and the wire are shown. Curve 1 corresponds
to the case where the ellipsoid is absent, curve 2 - to Δl = 0, 05λ and curve 3
- to Δl = 0, 5λ. For results presented in figures 2 and 3 the parameters of the
method were chosen: Ke = 0, 6,Ki = 4, Ne = Ni = 484, Nu = 64, Lu = 256.

The conclusions can be drawn from the results presented in Fig.2 and Fig.3.
The presence of the thin wire changes the bistatic cross-section of the magnetodi-
electric body. The maximum effect of the thin wire is observed in the directions
100 < θ < 160. Bistatic cross-section of the structure depends on distance be-
tween the magnetodielectric body and the thin wire.
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Abstract. The paper deals with Model Predictive Control synthesis
based on the system output tracking with control and state delays. In-
put and state constraints are taken into account when solving the MPC
problem for systems with unknown input. A prediction is carried out on
the base of object states estimates that is obtained by the Kalman filter.
The criteria function is assumed to be convex quadratic. The proposed
algorithm allows to get around the state space extension.

Keywords: Model Predictive Control, discrete systems, state delay,
input delay, unknown input, Kalman filter.

1 Introduction

One of the modern formalized approaches to the system control synthesis based
on mathematical methods of optimizadtion is Dynamic object control theory
with predictive models - Model Predictive Control (MPC).

This approach began to develop in the early 1960s. It was destined for the
process control in petrochemical and energy industries for which the application
of traditional synthesis methods was extremely complicated according to math-
ematical models complication. For the last years, field of MPC application has
been considerably extended covering technologic fields for object with time delay
[1-6], inventory control [7-8]; and portfolio control and optimization [9].

The paper is devoted to Model Predictive Control synthesis based on the
system output tracking allowing for input and state delays. It has been suggested
to make a synthesis of predictive control using estimates of unknown input that
can be evaluated on the base of modified LSM [10-12].

A new algorithm proposed in the paper allows to include control and state
delays into the model getting around the state space extension. This reduces the
dimension of the block matrices used in the algorithm significantly.
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2 Problem Statement

Suppose the object can be described by the following system of linear-difference
equations:

xt+1 = Axt +
∑s

i=1 Aixt−i +But−h + Irt + wt,

xk = x̄k, (k = −s, 0), ui = ūi, (i = −h,−1), (1)

ψt = Hxt + vt, (2)

yt = Gxt. (3)

Here xt ∈ Rn is the object state (xk = x̄k, k = −s, . . . ,−1, 0, x̄k is considered
to be given), uk ∈ Rm is the control input (uk = ūk, k = −h, . . . ,−1, ūk is
given), rt ∈ Rq is the unknown input, yt ∈ Rp is the output (to be controlled),
ψt ∈ Rl is the observation (measured output), s, h are the state and conrol input
delay values respectively. Further, the state noise wt and measurement noise vt
are assumed to be Gaussian distributed with zero mean and covariances W and
V respectively, i.e. M{wtw

T
k } = Wδt,k, M{vtvTk } = V δt,k , where δt,k is the

Kronecker delta.
In the simple case, when rt is a zero-mean random vector with the known

variance, the optimal filtering problem for the model (1)-(3) comes to the Kalman
filtering algorithm. If the input rt is a deterministic component and its evolution
in time is governed by the known linear system, the optimal estimates of rt and
xt can be obtained using the extended state Kalman filter. In this paper we
consider the case when prior knowledge about the time evolution of rt is not
available. Vector rt is supposed to be completely unknown.

The model under consideration is used to make predictions about the plant
behavior over the prediction horizon denoted by N using information (measure-
ments of inputs and outputs) up to and including the current time t. The plant
is supposed to operate under the constrained conditions:

a1 ≤ S1xt ≤ a2, (4)

φ1(xt−h) ≤ S2ut−h ≤ φ2(xt−h). (5)

Here S1 and S2 are structural matrices that are composed of zeros and units,
identifying constrained components of vectors xt and ut ; a1, a2, φ1(xt), φ2(xt)
are given constant vectors and vector-functions. The problem is to determine
an acting strategy on the base of the observation ψt according to which the
output vector of the system yt will be close to the reference taking into account
constraints on the state and control input.

3 Prediction

With the Gaussian assumptions on the state and the measurement noise it is
possible to make optimal (in the minimum variance sense) predictions of state
and output using a Kalman filter, see e.g. [13].
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Let x̂i|j and ŷi|j to be estimates of the state and the output at time i giving
information up to and including time j where j ≤ i. Then

x̂t+1|t = Ax̂t|t−1 +
∑s

i=1 Aix̂t−i|t−i−1 +But−h + Ir̂t +Kt(ψt −Hx̂t|t−1),

x̂t|t−1 = x̄k, k = −s, 0,

ŷt+1|t = Gx̂t+1|t,
Kt = APtH

T(HPtH
T + V )−1,

Pt+1 = W +APtA
T +APtH

T(HPtH
T + V )−1HPtA

T, P0 = Px0 , (6)

where Px0 is the given initial value of the variance matrix. Equation (6) for Pt

is known as the discrete-time Riccati-equation.
Evaluate estimates of the unknown input using LSM [10] in order to develop

a pedictive model. In this case there is no need to know a behavioral model of
the unknown input. Let evaluate state predictions as a result of solving a new
optimal control problem where by ”control” we will mean the unknown input
r̂t. The following quadratic function is proposed to use as an optimal criterion:

J(r̂t−1) =

t∑
i=1

{‖ψt −Hx̂i|i−1‖2CR
+ ‖r̂i−1‖2DR

}, (7)

where CR and DR are symmetric positive definite matrices.
Optimization of the criterion (7) up to the current time t comes to the criterion

minimization in each time i = 1, t.

J(r̂t−1) = min
r̂0

min
r̂1

. . .min
r̂t−1

t∑
i=1

{‖ψt −Hx̂i|i−1‖2CR
+ ‖r̂i−1‖2DR

}.

An optimal estimate of the unknown input at the first step (t = 1):

J(r̂0) = min
r̂0
{‖ψ1 −Hx̂1|0‖2CR

+ ‖r̂0‖2DR
}.

Taking into account x̂1|0 = Ax0 +Bu0 + Ir̂0, we get the following:

J(r̂0) = min
r̂0
{‖ψ1 −HAx0 −HBu0 −HIr̂0‖2CR

+ ‖r̂0‖2DR
}. (8)

After some manipulations, we have:

J(r̂0) = min
r̂0
{r̂T0 (ITHTCRHI +DR)r̂0 −

−2r̂T0 ITHTCR(ψ1 −HAx0 −HBu0) + α0},
where α0 - variable independent of r̂0.

An optimal estimate of the unknown input at the 1st instant can be found
from the following condition

∂J(r̂0)

∂r̂0
= 2(ITHTCRHI +DR)r̂0 − 2ITHTCR(ψ1 −HAx0 −HBu0) = 0,



184 M. Kiseleva and V. Smagin

and have the following expression:

r̂0 = SR(ψ1 −HAx0 −HBu0),

where SR = (ITHTCRHI+DR)
−1ITHTCR. We can get criterion’s value at the

instant t = 1 using the obtained expression for r̂0 in (8), ,

J(r̂0) = (ψ1 −HAx0 −HBu0)
TMR(ψ1 −HAx0 −HBu0),

where MR = CR − 2CRHISR + ST
R(I

THTCRHI +DR)SR.
At the instant t = 2 an optimal estimate of the unknown input is found by

optimizing the following function:

J(r̂1) = minr̂0 minr̂1{‖ψ2 −Hx̂2|1‖2CR
+ ‖r̂1‖2DR

+ ‖ψ1 −Hx̂1|0‖2CR
+ ‖r̂0‖2DR

}.

Expression for J(r̂1) can be rearranged in the following way using the Bellman’s
optimality principle,

J(r̂1) = minr̂1{‖ψ2 −Hx̂2|1‖2CR
+ ‖r̂1‖2DR

+ J(r̂0)} =

= minr̂1{‖ψ2 −HAx̂1|0 −HBu1 −HIr̂1‖2CR
+

+‖r̂1‖2DR
+ ‖ψ1 −HAx0 −HBu0‖2MR

} =

= minr̂1{r̂T1 (ITHTCRHI +DR)r̂1 − 2r̂T1 I
THTCR(ψ2 −HAx̂1|0 −HBu1) + α1},

where α0 - variable independent of r̂1. Differentiate with respect to r̂1 like in the
first step and get the following:

r̂1 = SR(ψ2 −HAx̂1|0 −HBu1),

J(r̂1) = (ψ2 −HAx̂1|0 −HBu1)
TMR(ψ2 −HAx̂1|0 −HBu1).

Applying the Bellman’s optimality principle for the next steps and using a
method of mathematical induction, we get r̂t:

r̂t = SR(ψt + 1−HAx̂t|t−1 −HBut). (9)

So, taking into account expressions for unknow input estimates, state and
output prediction can be performed in accordance with the following formulas

x̂t+i|t = Ai−1x̂t+1|t +
∑i−1

k=1 Ai−k−1But+k−h +
∑i−1

k=1 Ai−k−1Ir̂t+k,

ŷt+i|t = Gx̂t+i|t, i = 1, N, (10)

where ut+k|t - the control input used for prediction, r̂t+k - predicted unknown in-
put estimates that can be obtained on the base of time series forecasting methods
[14].

MPC usually requires estimates of the state and/or output over the entire
prediction horizon N from time t + 1 until time t + N , and can only make
these predictions based on information up to and including the current time
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t. Equations (6) can be used to obtain x̂t+1|t, ŷt+1|t . Optimal state/output
estimates from instant t+ 2 tot+N can be obtained as follows

x̂t+i+1|t = Ax̂t+i|t +
∑s

j=1 Aj x̂t+i−j|t−j−1 +But−h+i|t + Ir̂t+i, (11)

ŷt+i|t = Gx̂t+i|t, i = 1, N. (12)

In the above the notation ut−h+i|t is used to distinguish the actual input at the
instant t + i, namely ut−h+i, from that used for prediction purposes, namely
ut−h+i|t.

Equation (11) can be expanded in terms of the initial state x̂t+1|t and future
control actions ut−h+i|t as follows

x̂t+i|t = Ai−1x̂t+1|t +
∑i−1

k=1 Ai−k−1
∑s

j=1 Aj x̂t+k−j|t−j−1 +

+
∑i−1

k=1 Ai−k−1But−h+k|t +
∑i−1

k=1 Ai−k−1Ir̂t+k, i = 1, N. (13)

Now in terms of predicting the output, equation (12) can be expanded in
terms of the above expression for x̂t+i|t, which results in series of equations that
provide optimal output predictions. The key point to note is that each output
prediction is a function of the initial state x̂t+1|t and future inputs uth+i|t only:

ŷt+i|t = GAi−1x̂t+1|t +G
∑i−1

k=1 Ai−k−1
∑s

j=1 Aj x̂t+k−j|t−j−1 +

+G
∑i−1

k=1 Ai−k−1But−h+k|t +G
∑i−1

k=1 Ai−k−1Ir̂t+k, i = 1, N. (14)

These series of prediction equations can be stated in an equivalent manner
using matrix vector notation. Denote

X̂t =

⎡⎢⎣ x̂t+1|t
...

x̂t+N |t

⎤⎥⎦ , X̂0
i =

⎡⎢⎣ x̂t+1−i|t−i

...
x̂t+N−i|t−i

⎤⎥⎦ , i = 1, s, Ŷt =

⎡⎢⎣ ŷt+1|t
...

ŷt+N |t

⎤⎥⎦ , R̂t =

⎡⎢⎣ r̂t+1

...
r̂t+N

⎤⎥⎦ ,

Ut−h =

⎡⎢⎣ ut−h+1|t
...

ut−h+N |t

⎤⎥⎦ ,Ψ =

⎡⎢⎢⎢⎢⎢⎣
En

A
A2

...
AN−1

⎤⎥⎥⎥⎥⎥⎦ ,Λ =

⎡⎢⎢⎢⎢⎢⎣
G
GA
GA2

...
GAN−1

⎤⎥⎥⎥⎥⎥⎦ ,

Ψ0
i =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 . . . 0
Ai 0 0 . . . 0
AAi Ai 0 . . . 0
...

...
...

. . .
...

AN−2Ai AN−3Ai . . . Ai 0

⎤⎥⎥⎥⎥⎥⎦ ,Λ0
i =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 . . . 0

GAi 0 0 . . . 0
GAAi GAi 0 . . . 0

...
...

...
. . .

...
GAN−2Ai GAN−3Ai . . . GAi 0

⎤⎥⎥⎥⎥⎥⎦ ,

P =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 . . . 0
B 0 0 . . . 0
AB B 0 . . . 0
...

...
...

. . .
...

AN−2B AN−3B . . . B 0

⎤⎥⎥⎥⎥⎥⎦ ,Φ =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 . . . 0

GB 0 0 . . . 0
GAB GB 0 . . . 0

...
...

...
. . .

...
GAN−2B GAN−3B . . . GB 0

⎤⎥⎥⎥⎥⎥⎦ ,
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S =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 . . . 0
I 0 0 . . . 0
AI I 0 . . . 0
...

...
...

. . .
...

AN−2I AN−3I . . . I 0

⎤⎥⎥⎥⎥⎥⎦ , Q =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 . . . 0
GI 0 0 . . . 0
GAI GI 0 . . . 0
...

...
...

. . .
...

GAN−2I GAN−3I . . . GI 0

⎤⎥⎥⎥⎥⎥⎦ . (15)

Here En is the n-by-n identity matrix.
The predictive model (13)-(14) in matrix notation is as follows

X̂t = Ψx̂t+1|t +
s∑

i=1

Ψ0
i X̂

0
i + PUt−h + SR̂t,

Ŷt = Λx̂t+1|t +
s∑

i=1

Λ0
i X̂

0
i +ΦUt−h +QR̂t. (16)

4 Model Predictive Control Synthesis

It is proposed to use the following criterion in order to solve the posed problem

J(t) =
1

2

N∑
k=1

{‖ŷt+k|t − ȳt‖2C + ‖ut−h+k|t − ut−h+k−1|t‖2D}, (17)

where weighing matrices C and D are assumed to be symmetric and positive
definite.

In case when the reference trajectory ȳt+k is unknown for k ≥ 0 it is reasonable
to assume that ȳt+k = ŷt , i.e. the same reference point is held throughout the
entire prediction horizon.

The summation terms in (17) can be expanded to offer a quadratic objective
function in terms of x̄t+1|t and Ut−h. Let

Ȳt =

⎡⎢⎣ ȳt+1

...
ȳt+N

⎤⎥⎦ .

Then using (16) we can get the following expression

1
2

∑N
k=1 ‖ŷt+k|t − ȳt‖2C = 1

2‖Ŷt − Ȳt‖2C̄ = 1
2U

T
t−hΦ

TC̄ΦUt−h +

+UT
t−h[Φ

TC̄Λx̂t+1|t +ΦTC̄
∑s

i=1 Λ
0
i X̂

0
i − ΦTC̄Ȳt] + c1, (18)

where c1 is a constant term that does not depend either on Ut−h or x̂t+1|t; and
C̄ is given by

C̄ =

⎡⎢⎢⎢⎣
C 0 . . . 0
0 C . . . 0
...

...
. . .

...
0 0 . . . C

⎤⎥⎥⎥⎦ .
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In a similar manner rearrange the second term of sum in (17)

1

2

N∑
k=1

‖ut−h+k|t − ut−h+k−1|t‖2D =
1

2
UT
t−hD̄Ut−h − uT

t−h+1|tDut−h + c2, (19)

where c2 is a constant term that does not depend on ut−h+k (k = 1, N); and D̄
is given by

D̄ =

⎡⎢⎢⎢⎢⎢⎣
2D −D 0 . . . 0
−D 2D −D . . . 0
...

. . .
. . .

. . .
...

0 . . . −D 2D −D
0 0 . . . −D 2D

⎤⎥⎥⎥⎥⎥⎦ .

Combining the above, the criteria function can be expressed as

J(t) =
1

2
UT
t−hFUt−h + UT

t−hf + c3. (20)

Here c3 is the combination of previous constant terms c1 and c2 and may be
safely ignored. The terms F and f are given by

F = ΦTC̄Φ + D̄, f = Γ

⎡⎣ x̂t+1|t∑s
i=1 Λ0

i X̂
0
i

Ȳt

⎤⎦−
⎡⎢⎢⎢⎣
Dut−h

0
...
0

⎤⎥⎥⎥⎦ ,Γ =
[
ΦTC̄ ΛC̄Q −ΦTC̄

]
.

In the absence of constraints an analytical solution of the posed problem can
be obtained from the condition dJ

dUt−h
= 0 using vector derivative formulas, see

e.g. [15]:

∂J
∂Ut−h

= ∂J
∂Ut−h

[
1
2U

T
t−hFUt−h + UT

t−hf + c3
]
=

= 1
2
∂(trFUt−hUt−hT)

∂Ut−h
+ ∂(Ut−hTf)

∂Ut−h
= 1

2 [F
TUt−h + FUt−h] + f = 0. (21)

As the matrix F is symmetric, the equation (21) can be expressed as follows

FUth + f = 0.

So, the criteria function can be rearranged as

U∗
t−h = −(ΦTC̄Φ + D̄)−1(ΦTC̄Λx̂t+1|t +ΦTC̄QR̂t − ΦTC̄Ȳt)−

⎡⎢⎢⎢⎣
Dut−h

0
...
0

⎤⎥⎥⎥⎦ ,

and the optimal predictive control has the form:

u∗
t−h+1|t =

[
En 0 . . . 0

]
U∗
t−h.

Optimization of the model with constraints (4), (5) can be performed numer-
ically using Matlab function quadprog.
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5 Conclusion

The Model Predictive Control of the system allowing to state and input delays
with unknown input is solved, guaranteeing constraints satisfaction and feasi-
bility. The problem of the MPC synthesis is solved without the extension of the
state space. The extrapolator is offered to use in order to obtain predicted values
of the system output.
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Abstract. Single-product inventory management model with both ran-
dom and controllable demand and continuous input product flow with
fixed uncontrolled rate under finite storage capacity is considered. We
consider the stock level process as asymptotically diffusion process and
obtain its stationary distribution. An application of the approximation
to on/off inventory control is considered and simulation results are given.

Keywords: Stochastic demand, diffusion approximation, inventory
management, on/off control.

1 The Problem Statement

Diffusion methods have been applied in a variety of domains, see Janssen, Manca,
and Manca [1]; as to application to inventory models, see, for example, Bather [2],
Harrison [3], and Puterman [4]. Nowadays a set of stochastic models are available
to solve the inventory control problem under various conditions encountered in
practice, for example, see Chopra and Meindl [5], and Beyer, Cheng, Sethi, and
Taksar [6].

We consider the following stochastic inventory model. Let the product flow be
continuous with fixed rate ν0, the demands be a Poisson process with constant
intensity λ, the values of purchases be i.i.d. random variables having a distri-
bution F (·) with finite the first and second moments equals respectively a1 and
a2. Under certain conditions (for example, a threat of overflow) the product is
delivered to outlets and the output flow is assumed to be continuous with a rate
ν1(Q).

Let Q(t) denotes the level of inventory at time t. We consider the diffusion
approximation of Marcovian process Q(·).

The paper consists of three parts: the first part is devoted to the approxima-
tion, in the second part we solve the optimization problem using the approxi-
mation, and in the third part the results of simulation are given.
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2 The Diffusion Appoximation

Let the density exists P (Q, t) =
Pr [Q ≤ Q(t) < Q+ dQ]

dQ
, and the rate of the

products movement due to non-random factors ν0 − ν1(Q) = ν(Q).

Theorem 1. Let P (Q, t) be a differentiable function of t, ν(Q)P (Q, t) be a dif-

ferentiable function of Q, and
∞∫
0

P (Q, t)dF (u) <∞.

Then the Kolmogorov forward equation holds

∂P (Q, t)

∂t
= −∂ {ν(Q)P (Q, t)}

∂Q
− λP (Q, t) + λ

∞∫
0

P (Q+ u, t)dF (u). (1)

Proof. Derive the Kolmogorov backward equation for a functional of Markov
process Q(t)

ϕ(Q, t) = E
{
H (Q(τ)) |Q(t) = Q

}
,

and write the adjoint equation, which is the Kolmogorov forward equation for
density function P (Q, t), see Barucha-Reid [7].

Consider

ϕ(Q, t−Δt) = E
{
H
(
Q(τ)

)
|Q(t−Δt) = Q

}
=

= (1− λΔt)E
{
H (Q(τ)) |Q(t) = Q + ν(Q)Δt

}
+

+λΔt

Q∫
0

E
{
H (Q(τ)) |Q(t) = Q− u

}
dF (u) + o(Δt) =

= (1 − λΔt)ϕ (Q+ ν(Q)Δt, t) + λΔt

Q∫
0

ϕ (Q− u, t) dF (u) + o(Δt) =

= ϕ (Q+ ν(Q)Δt, t)− λΔtϕ(Q, t) + λΔt

Q∫
0

ϕ (Q− u, t)dF (u) + o(Δt) =

= ϕ(Q, t) + ν(Q)Δt
∂ϕ(Q, t)

∂Q
− λΔtϕ(Q, t) + λΔt

Q∫
0

ϕ (Q− u, t) dF (u) + o(Δt),

which implies

−∂ϕ(Q, t)

∂Q
= ν(Q)

∂ϕ(Q, t)

∂Q
− λϕ(Q, t) + λ

Q∫
0

ϕ (Q− u, t)dF (u).
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So the adjoint equation is

∂P (Q, t)

∂t
= −∂ {ν(Q)P (Q, t)}

∂Q
− λP (Q, t) + λ

∞∫
0

P (Q+ u, t) dF (u).

The theorem is proved.
Suppose the values of Q(·) are large enough. The idea is to consider some

infinitesimal parameter ε so that the process ε2Q(·) is not degenerate.
Denote

ν1(Q) = v
(
ε2Q

)
, tε2 = τ,Qε2 = x(τ) + εy, P (Q, t) = εΠ(y, τ, ε), (2)

where x(·) is a differentiable function, and substitute (2) in (1).
Let lim

ε→0
Π(y, τ, ε) = Π(y, τ) exists.

Let ν1(·) be a differentiable function, Π(y, τ) be a differentiable function with
respect to τ and twice differentiable with respect to y.

We obtain the equation

ε2
∂Π(y, τ, ε)

∂τ
− εx′(τ)

∂Π(y, τ, ε)

∂y
= −ε

∂

∂y

{
ν1 (x(τ) + εy)Π(y, τ, ε)

}
−

−λΠ(y, τ, ε) + λ
∞∫
0

Π(y + εu, τ, ε)dF (u).
(3)

Rewrite (3)

ε2
∂Π(y, τ, ε)

∂τ
− εx′(τ)

∂Π(y, τ, ε)

∂y
=

= −ε
∂

∂y

{[
ν (x(τ)) + εyν1

′ (x(τ))
]
Π(y, τ, ε)

}
− λΠ(y, τ, ε)+

+λ

∞∫
0

[
Π(y, τ, ε) + εu

∂Π(y, τ, ε)

∂y
+

ε2u2

2

∂2Π(y, τ, ε)

∂y2

]
dF (u) + o(ε2).

It follows

ε2
∂Π(y, τ, ε)

∂τ
= ε

[
x′(τ) − ν1(x(τ)) + λa1

]∂Π(y, τ, ε)

∂y
−

−ε2ν1
′(x(τ))

∂
{
yΠ(y, τ, ε)

}
∂y

+ ε2
λa2
2

∂2Π(y, τ, ε)

∂y2
+ o(ε2).

(4)

Let function x(·) be a solution of the equation

dx(τ)

dτ
= ν1(x(τ)) − λa1. (5)
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Then it follows that function Π(·, ·) satisfies the Fokker-Planck equation

∂Π(y, τ)

∂τ
= −ν1

′(x(τ))
∂
{
yΠ(y, τ)

}
∂y

+
λa2
2

∂2Π(y, τ)

∂y2
.

Consequently process y(τ, ε) =
ε2Q(t)− x(τ)

ε
converges in distribution to

the OrnsteinUhlenbeck process y(·) as ε → 0 satisfying the following stochastic
differential equation

dy(τ) = ν1
′(x(τ))ydτ +

√
λa2dw(τ), (6)

where w(·) is a standard Brownian motion.
Let ν1(·) be a twice differentiable function. From (5) and (6) we get that the

process

z(τ) = x(τ) + εy(τ), (7)

satisfies

dz(τ) = (ν1(z)− λa1)dτ + ε
√

λa2dw(τ) +
ε2

2
R2dτ, (8)

where R2 = −y2ν′′(εyθ), 0 ≤ θ ≤ 1.
Indeed it is clear

dz(τ) = x′(τ)+εdy(τ) =
(
ν1(x(τ))−λa1

)
dτ +ε

[
ν1

′(x(τ))ydτ +
√

λa2dw(τ)
]
=

=
(
ν1(x(τ)) + εyν1

′(x(τ)) − λa1

)
dτ + ε

√
λa2dw(τ). (9)

By Taylor expansion with Lagrange remainder we get

ν1(z) = ν1(x+ εy) = ν1(x) + εyν1
′(x) +

ε2

2
y2ν1

′′(x + θεy).

So, the equation holds

ν1(x) + εyν′
1 = ν1(z)− ε2

2
y2ν1

′′(x+ θεy).

From (9) we get

dz(τ) =
(
ν1(z(τ))− λa1

)
dτ + ε

√
λa2dw(τ) − ε2

2
y2ν1

′′(x + θεy)dτ.

We obtain (8) by taking into account Lagrange remainders properties.
We use (2) and (7) to get asymptotic equation

ε2Q(t) = x(τ) + εy(τ) = z(τ).
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From (9) we get

ε2dQ(t) =
(
ν1(ε

2Q)− λa1

)
dτ + ε

√
λa2dw(τ) − ε2

2
R2dτ,

which implies

dQ(t) =
(
ν1(Q(t))− λa1

)dτ

ε2
+

√
λa2

dw(τ)

ε
− 1

2
R2dτ

taking into account ν(Q) = ν1(ε
2Q).

Since tε2 = τ , we have dw(τ)/ε = dw(t) and

dQ(t) =
(
ν1(Q(t))− λa1

)
dτ +

√
λa2dw(τ) − 1

2
R2dτ.

So approximately

dQ(t) =
(
ν(Q)− λa1

)
dτ +

√
λa2dw(τ).

Because of the boundedness of Q(·) the stationary distribution exists

p(s) = C · exp
(

2

a2λ

∫
(ν(s) − a1λ)ds

)
, (10)

where C is the normalization constant.

3 On/Off Control

The storage capacity let be bounded by Qmax. To illustrate the application of
the approximation consider the following control of the inventory level: if Q(·) is
above a base-stock levelQmax−Q0 we begin to deliver the product to outlets with
a rate ν1 > ν0 − a1λ to prevent the stocks overflow, otherwise ν(Q) = ν0 > a1λ.
The condition ν0 > a1λ means that if the inventory level is below the base-
stock level, then the stock level is replenished in the mean, i.e., the resources are
accumulated.

We use (10) to get the probability density function

p(x) = C · exp
(

2

a2λ
(ν0 − a1λ)

(
x− (Qmax −Q0)

))
, if x < Qmax −Q0,

p(x) = C · exp
(
− 2

a2λ
(a1λ− ν0 + ν1)

(
x− (Qmax −Q0)

))
, if x > Qmax −Q0,

where

C =
2(a1λ− ν0 + ν1)(ν0 − a1λ)

a2λν1
.
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The probability of the overflow is

α = P (Q(t) > Qmax) =

= C

∞∫
Qmax

exp

(
− 2

a2λ
(a1λ− ν0 + ν1)

(
x− (Qmax −Q0)

))
dx =

=
ν0 − a1λ

ν1
exp

(
− 2

a2λ
(a1λ− ν0 + ν1)Q0

)
. (11)

The probability of the stock-out (the warehouse is empty) is

γ = P{Q < 0} = C

0∫
−∞

exp

(
2

a2λ
(ν0 − a1λ)

(
x− (Qmax −Q0)

))
dx =

=
a1λ− ν0 + ν1

ν1
exp

(
− 2(ν0 − a1λ)

a2λ
(Qmax −Q0)

)
. (12)

Parameters of control Q0 and ν1 can be found from (11) and (12) if α and γ
are fixed.

In Kitaeva [8] the on/off control when the rate of the output flow is propor-
tional to the difference Q− (Qmax −Q0), that is

ν(Q) =

{
ν0, if Q < Qmax −Q0,

ν0 − β
(
x− (Qmax −Q0)

)
, if Q > Qmax −Q0,

where ν0 > a1λ, β > 0, is considered. In this case it follows from (10)

p(x) = C · exp
(
2d

(
x− (Qmax −Q0)

))
, if x < Qmax −Q0,

p(x) = C·exp
(
2d

(
x−(Qmax−Q0)

))
−β

(
x− (Qmax −Q0)

)2

a2λ
, if x > Qmax−Q0,

C−1 =
1− 2bΦ(b)exp(b2)

2d
, d =

ν0 − a1λ

a2λ
> 0, b = −d

√
a2λ

β
< 0,

Φ(b) =

∞∫
b

exp(−t2)dt.

The system of equations analogous to (11) and (12) has the form

α =
2bΦ

(
b− d

b
Q0

)
exp(b2)

2bΦ(b)exp(b2)− 1
, γ =

exp
(
− 2d(Qmax −Q0)

)
1− 2bΦ(b)exp(b2)

. (13)
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We need to solve (13) with respect to b and Q0.
In [8] another approach have been used: the variances of the stock level process

and the rate of delivering the product to outlets given the probability of the
base-stock level exceeding are minimized for continuous and discontinuous linear
on/off control respectively.

4 Simulation

Consider the model with constant rate of the output flow.
Ten replications are performed with the model.
The storage capacity is bounded by 3 conventional units. Random demand

has beta distribution with shape parameters α = 0.429 and β = 0.286. It follows
that a1 = 0.6 and a2 = 0.5. The intensity λ equals 1. The rate of the input
product flow ν0 equals also 1.

For three sets of the probabilities (α, γ) we numerically solve equations (11)
and (12) and get the values of the control parameters Q0 and ν1, that are using
in simulation.

The mean of the stock level process derived from the diffusion approximation
is

Q = Qmax −Q0 +
a2λ

2ν1

(
ν0 − a1λ

a1λ+ ν1 − ν0
− a1λ+ ν1 − ν0

ν0 − a1λ

)
. (14)

We estimate the mean Q̂ and compare the estimates with the theoretical
results.

The numerical results are shown in Table 1. In the last column of the table
the corresponding relative mean absolute error (RMAE) is given.

In Figure 1 three realizations of Q(t) are shown for α = 0.15, γ = 0.10.
The results of the numerical simulation are consistent with the approximate

analytical results, so the diffusion approximation is suitable for the system under
consideration.

Fig. 1. Stock level process
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Table 1. The numerical results

Q0 ν1 Q Q̂ RMAE

α = 0.01, γ = 0.10 1.933 0.892 0.950 0.956 0.096

α = 0.10, γ = 0.05 1.705 0.663 1.620 1.690 0.059

α = 0.15, γ = 0.10 2.326 0.566 1.555 1.582 0.118
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1 Introduction

Modern onboard digital computing systems (ODCS) of perspective aircraft are
[1-12] complex integrated computing devices consisting of different purpose con-
structive functional modules (CFM).

ODCS of an aircraft perform functional tasks of determining the parameters
of flight and navigation modes:

– takeoff, horizontal flight, landing maneuvers;
– monitoring the technical condition of avionics;
– coordination of onboard avionics subsystems;
– collection, storage, processing and delivery to the pilot of data received from

the information-measuring system and control field of the cockpit, etc.

To meet the set parameters of fault-tolerance ODCS redundancy is implemented
in the computer system:instrumental, functional, informative, etc. In practice,
the instrumental redundancy is most often realized (by reservation of CFM),
thereby mass and dimensions of avionics increase. Implementing of reservation
on ODCS level generally means that in case of one of computing systems CPM
failure, whole ODCS is considered as faulty.

Performing ODCS reconfiguration on board of an aircraft in a situation of
failure allows to move from the computing system redundancy scheme at ODCS
level generally to the computing system redundancy scheme at CFM level, which
significantly reduces the mass and dimensions of the avionics hardware.

A. Dudin et al. (Eds.): ITMM 2014, CCIS 487, pp. 197–204, 2014.
c© Springer International Publishing Switzerland 2014
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2 ODCS Functional Diagram

ODCS consists of a set of CPM different in their function: computing module
(CM), graphical module (GM), mass storage module (MSM), switch module
(SM), input-output module (IOM) and voltage module (VM). Presented module
nomenclature is sufficient to build onboard computers for various purposes:

– onboard digital computer system (ODCS);
– onboard digital mapping system (ODMS);

– onboard interface station (OIS);
– onboard graphics station (OGS).

Functional circuits examples are shown in fig. 1. Further, the structure and
operation of computing systems are shown for ODCS, reconfiguration of ODMS,
OIS, OGS are applied in a similar manner.

MSM in ODCS is the master module, which performs the arbitrator function.
Other CFM act as slave units.

The system functions as described further. When power is applied CFM per-
forms the initialization of each of its components field-programmable gate array,
microcontrollers, microprocessors, onboard SpaceWire link switches, etc. After
initialization, each CFM receives functional software from MSM memory and
puts it into a cell of its internal random access memory (RAM). Further CFM
operation as a part of ODCS is determined by functional software algorithm.
Next, the MSM initiates functional software starting algorithm for each CFM.

During ODCS operation MSM analyzes test result data of built-in control of
each module and in case of detection of failure it initiates the ODCS reconfigu-
ration procedure excluding failed unit from onboard exchange with its blackout
and including a serviceable reserved unit from cold or hot standby.

Equivalent reservation circuit of ODCS on ODSC level as a whole is shown in
fig. 2, on CFM level in fig. 3.

3 ODCS Work Algorithm

ODCS operation algorithm is presented in fig.4. After the power is supplied the
initial test is performed on the four CFM of both subsystems. The initial test
includes:

– RAM test of CFM (performed by writing, reading and comparing read and
written words);

– ROM test (performed by calculating checksum for memory as a whole or for
ROM sector and comparing the obtained values with the previously recorded
value);

– Input-output test (performed by software controlled CFM transceivers loop
control switching and transmission of test data words through formed
channels).
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Fig. 1. Composition and internal structure of onboard computing systems

The test result of each CFM is passed into MSM, where it is stored in a ded-
icated memory sector. If the test result reports the CFM failure, MSM initiates
ODCS reconfiguration procedure within available (serviceable, available for use)
hardware resources.

If there is not any serviceable resources id ODCS, integral signal computing
system serviceability is off and ODCS considered faulty. If completion of all test
components is successful, each CFM set serviceability signal on. Then, MSM
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Fig. 2. Equivalent circuit of ODCS reservation on subsystem level
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Fig. 3. Equivalent circuit of ODCS reservation on CFM level

distributes functional software, which consist executable task in ODCS, among
serviceable CFM. After booting functional software from MSM a command to
initialize the execution of functional software is on. At each functional software
execution cycle there is test conducted functional CFM operation. Test performs
as background task onboard. Node of the test depends of the status of a sin-
gle command automatic control, which is an external signal for ODCS. If the
signal is on, the test performs in advanced mode, if the signal is off, the test
performs in standard mode. In advanced mode, the contextual data (data about
the current flight parameters) of each CFM enter into a non-volatile ROM and
test performs. It is believed that the test time is negligible compared with the
significant change in the navigation parameters during the flight. The test in-
cludes: a full test of RAM, a checksum ROM test, CPU test (simple task of
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Fig. 4. ODCS operation algorithm

calculation with known result), the interrupt system test and input/output test
(loop control). In standard mode, the test includes: a RAM test (only selected
unused during task area), a checksum ROM test and processor command system
test. After the test is completed the test result is passed in MSM, where it is
stored in a dedicated memory sector. If test completed with success the integral
serviceability signal forms. If test completed with CFM failure, the reconfigura-
tion procedure begins. The operation algorithm during reconfiguration procedure
depends on how functional tasks are distributed between CFM. Possible options
are presented in fig. 5:
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– appointment one functional tasks on one CFM (fig.5,a);
– appointment several functional tasks on several CFM (fig.5,b);
– appointment one functional task on several CFM (fig.5,c,d).
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Fig. 5. Example of assignment functional tasks to CPM: a) each of the tasks performs
on its own CFM; b) each CFM executes multiple tasks; c, d) several tasks are performed
by individual CFM

Assignment supplication on CFM realizes by ODCS hardware and software
by organization logical interaction protocols between CFM by internal links
SpaceWire. Reconfiguration procedure with situation in fig.5,a (one task is on
one CFM) is available when there is some CFM in reserve. If a CFM is available,
MSM transmit functional software of failure CFM in its RAM. At same time
functional software of other CFM is modified by changing ODCS configuration
and device addresses. Then ODCS returns to the its original problem. If there is
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not any CFM in reserve, ODCS is considered faulty and integral serviceability
signal is off. Reconfiguration procedure with situation in fig.5,b (several tasks are
on several CFM) is available not only when there is a CFM in reserve, but also
when there are additional (unused) resources to perform some additional tasks
on used CFM. In this case, tasks of failed CFM can be distributed between
serviceable and partially loaded modules. Any other case of assignment tasks
(fig.5,c,d) ability of reconfiguration procedure depends on what CFM failed. If
it is CFM, which performed one big task, then reconfiguration can be when
there is a CFM in reserve, like with fig.5,a. If it is CFM, which performed many
small tasks, then reconfiguration can be performed when there are available ad-
ditional resources on CFM, which are already used. Then the failed CFM task is
distributed between these CFM. According to the practice in aviation industry
functional software algorithm includes calculation at fast and slow cycles. Math-
ematical calculation of parameters, which have rate of change comparable to the
rate calculation, performs by quick calculation cycle. Calculation of parameters,
which are not critical to the aircraft flight dynamics, performs by slow calcula-
tion cycle. The ODCS testing performs at slow cycle. Moreover, the developers
provide 10-20% margin of time and resources that can be used for software mod-
ernization for the purpose to complicating the algorithm or to do reconfiguration
procedure. After reconfiguration procedure operation ODCS algorithm is next:
if the result of reconfiguration is positive, then serviceability signal generates,
CFMs functional software updates and ODCS returns to performing functional
software; if the result of reconfiguration is negative, then serviceability signal is
off and ODCS is considered as faulty.

4 Conclusion

ODCS operation algorithm in case of reconfiguration depends of assignment
tasks on CFMs computing resources during flight. Reconfiguration procedure is
possible only if there are additional computing resources in ODCS by introduc-
tion instrumental redundancy. For example, in the initial moment only three of
four CFM are used, then the fourth CFM is in reserve and in case in CFM failure
this CFM begins to perform tasks of failure module.
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Abstract. Analysis of congestion window size distribution for TCP
Reno sender is presented. The data for analysis are gathered from numer-
ical results of an analytical model of Reno congestion control procedure
based on Discrete-Time Markov Chain. The model was presented in [1]
and as it is shown in this paper it provides a way to estimate congestion
window distribution as a function of round trip time and loss rate for
bulk transfer TCP flow. Presented results consider slow start, conges-
tion avoidance and fast recovery phases, and fast retransmit, cumulative
and selective acknowledgments, timeouts with exponential back-off and
appropriate byte counting features of TCP. This paper also presents
comparison of congestion window size distribution for selective and cu-
mulative acknowledgments.
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1 Introduction

TCP is the most widely used transport layer protocol in the Internet [2] and Reno
is the most widely implemented congestion control procedure [3]. TCP Reno and
NewReno are only congestion control algorithms that reached Standard Track
category in RFC series [4, 5]. Reno is a part of TCP/IP stack of modern operating
systems and networking equipment. Thus the speed and performance of many
Internet services and applications are influenced by TCP characteristics.

RFC793 [6] defines window as a flow control mechanism of a transport con-
nection. Receiver advertises a window size and guarantees that it has enough
buffer space to accept the full window of data. This gives a receiver the ability
to influence throughput of TCP connection. But there is no guarantee that the
network has enough resources to serve offered data rate. As a result a series of
congestion collapses had happened in 80s which led to development of congestion
control procedures for TCP.

Congestion control is a feature of TCP which helps to avoid network over-
loading by excessive traffic. The main idea of congestion control procedures is

� This work is performed under the state order No. 1.511.2014/K of the Ministry of
Education and Science of the Russian Federation.

A. Dudin et al. (Eds.): ITMM 2014, CCIS 487, pp. 205–213, 2014.
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to change sending rate depending on network conditions. Congestion control
bases decisions on different types of feedback received from a network such as
loss rate, propagation delay or explicit congestion signaling. A lot of conges-
tion control algorithms were developed to address different network types and
conditions: Tahoe, Reno, NewReno, Vegas, Hybla, CTCP, Illinois, BIC, CU-
BIC, Westwood+, H-TCP, High Speed TCP, Scalable TCP, Veno, YeAH, FAST,
Woodside, CHD, CDG, FIT, LP, MulTCP and others.

Each congestion control algorithm has unique footprint of window manage-
ment strategy. A lot of researches have been made to model and estimate aver-
age TCP connection throughput of different congestion control procedures. But
congestion window distribution was rarely analyzed. Though average through-
put estimation can be referenced as the main goal of modeling, congestion win-
dow distribution is also important metric as it shows connection throughput
variation.

In this paper, we present an extended analysis of congestion window distri-
bution for TCP Reno sender. The analysis is based on a Discrete-Time Markov
Chain analytical model of Reno congestion control procedure presented in [1].
The model implements slow start, congestion avoidance and fast recovery TCP
phases, and covers fast retransmit, timeouts with exponential back-off, appropri-
ate byte counting, cumulative and selective acknowledgments features of TCP.
Analysis is based on numerical results of the analytical model. Comparison of
congestion window distribution for selective and cumulative acknowledgments is
also shown.

2 The Reno Protocol

Reno is most widely used congestion control procedure. It is based on three con-
gestion window (CWND) management phases [3, 4]: Slow Start (SS), Congestion
Avoidance (CA) and Fast Recovery (FR).

TCP increases congestion window by one for each positive acknowledgment
received when SS phase is active. As a result CWND doubles each round trip
time (RTT) cycle. Slow start threshold variable (SSTHRESH) defines when to
switch from SS to CA mode. Protocol acts in SS mode if CWND is less than
SSTHRESH.

Protocol switches into CA when CWND reaches or exceeds SSTHRESH value.
Being in CA state, TCP sender increments congestion window by 1/CWND for
each positive acknowledgment received. A window size of CWND segments will
generate at most CWND acknowledgments in one RTT, so therefore CWND will
be increased by at most one segment in one RTT [7].

TCP Reno uses two loss detection mechanisms. Timeout (TO) based loss de-
tection can be counted as conservative option and duplicate acknowledgment
(DupACK) based analysis in context of Reno congestion control can be refer-
enced as liberal loss detection method.

Sender resets the already running retransmission timer and starts a new one
each time a new segment is transmitted. The timer is set for the retransmission
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timeout (RTO) value supplied by the RTT estimation procedure. All unacknowl-
edged segments are counted as lost if this timer expires. In response to RTO timer
expiration TCP performs several actions:

– SSTHRESH parameter is set to CWND/2,
– CWND variable is set to 1,
– the protocol performs retransmission,
– slow start is re-initiated.

The other option to detect losses is to analyze incoming acknowledgments and
track number of DupACKs. When the number of consecutive duplicate acknowl-
edgments reaches value of 3 the closest unacknowledged segment is counted as
lost. When a loss is detected by DupACKs TCP takes remediation actions:

– the protocol performs immediate retransmission, which is also called Fast
Retransmission,

– SSTHRESH variable is set to CWND/2,
– CWND variable is set to (CWND/2 + 3),
– the protocol switches to fast recovery mode.

Being in FR mode, TCP temporary increases CWND by one segment for
each duplicate acknowledgment received and transmits new segment if general
rules allow [3, 4]. When acknowledgment for the retransmitted segment arrives,
CWND is deflated back to SSTHRESH, and protocol switches from FR to CA
mode.

Most TCP implementations in Windows, Linux, FreeBSD operating systems
and different networking equipment in addition to modes and features specified
above use Karn algorithm [8, 9], selective acknowledgments [10–12], appropriate
byte counting [13] and other advanced techniques.

1. Karn algorithm suggests RTO exponential back-off in case of retransmission
timer expiration. The back-off is canceled when acknowledgment for retrans-
mitted data arrives. This measure improves TCP adaptation to sudden RTT
changes.

2. Traditional TCP uses cumulative acknowledgments. As a result TCP may
experience poor performance in case of multiple losses in single window of
data [10]. Selective acknowledgments (SACK) allow the receiver to acknowl-
edge discontinuous blocks of segments that were received correctly.

3. TCP increases congestion window based on the number of bytes acknowl-
edged by the arriving ACK when Appropriate Byte Counting (ABC) is used
[13]. The algorithm mitigates the impact of delayed acknowledgments feature
on connection throughput.

3 Analytical Models of TCP Reno

Reno algorithm is frequently referenced as Standard TCP, and it is the most
widely implemented congestion control method [3]. A lot of analytical models of
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Reno protocol were proposed in past twenty years ([1, 14–22] and many others).
These researches differ in methods: some of them use renewal theory [15, 16]
or Markov chains to model TCP sender behavior [1, 17, 19, 20, 22], others are
based on fixed-point method [19–21] or other theories.

Though every mentioned model provides estimates of average TCP connection
throughput, rare researches offer estimates for congestion window size distribu-
tion. Models [19, 20, 22] theoretically allow to obtain probabilities for differ-
ent CWND values, and in [18, 21] congestion window distribution is explicitly
analyzed.

The challenge of obtaining congestion window size distribution properly lies
in complexity of CWND management strategy. Therefore in order to succeed
one should use a method that theoretically allows to create precise models of
complex TCP behavior. As it was mentioned in [23] Markov chains allow to
create complex models of TCP sender and mimic CWND dynamics.

This research uses DTMC-based model proposed in [1] to get CWND size dis-
tribution. The model counts all Reno phases and several additional features. As
it was shown in [1] the model produces accurate estimates for average connection
throughput and closely matches with real TCP traces.

As it is not a trivial task to compare gathered results with models proposed
in [18, 21] we present limited comparison only.

4 TCP Reno Analytical Model

We use two-dimensional Discrete-Time Markov Chain based analytical model
proposed in [1] to model TCP sender behavior. It is assumed that statistical
cycle duration is equal to one round trip time. We suggest that RTT is constant
and each segment has the same size. It is also suggested that time required to
send the whole receiver’s advertised window (W ) is less than RTT.

The first dimension of DTMC is used for CWND variable tracking, and the
second dimension tracks SSTHRESH value changes.

The model doesn’t count losses in reverse direction. Thus it is assumed that
TCP ACKs are never lost. We denote the probability to transfer a segment
successfully from sender to receiver as F . The model suggests uncorrelated losses.

In order to model timeout phase we use S as a value of retransmission timeout
expressed in cycles. S is calculated as floored ratio of RTO and RTT values
expressed in seconds:

S =

⌊
RTO

RTT

⌋
, (1)

We use additional parameter MK to model Karn exponential back-off and
additional parameter ML to model selective acknowledgments. MK denotes
the upper limit for RTO exponential back-off, so the maximum timeout value is
2MKS. ML denotes the maximum number of losses that can be detected during
SS and CA phases and recovered in FR.

Further details and transition probabilities (πjm
in ) for the DTMC are presented

in [1].
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Suggested Markov Chain is too complex to get analytical solution for state
probabilities Pij , but it is possible to solve a system of linear equations (2)
numerically.⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Pjm =
W+2MK∑

i=1

�W/2�+2MKS∑
n=2

Pinπ
jm
in , j = 1,W + 2MK;

m = 2, �W/2�+ 2MKS

W+2MK∑
j=1

�W/2�+2MKS∑
m=2

Pjm = 1

(2)

Pcwnd0 denotes the probability of timeout phase when protocol doesn’t send
new data and awaits timeout expiration or acknowledgment arrival:

Pcwnd0 =

W+2MK∑
i=1

�W/2�+2MKS∑
n=�W/2�+1

Pin. (3)

Technically protocol has other than zero CWND value in case when full win-
dow of data has been sent and ACKs haven’t been received yet. But it is con-
venient to use Pcwnd0 to denote a protocol state when no data is sent and zero
throughput in produced.

We denote the probability of congestion window size equal to i as Pcwndi
where i = 1,W :

Pcwndi =

�W/2�∑
n=1

Pin. (4)

5 Numerical Results and Analysis

Congestion window size distributions (Pcwndi) gathered numerically are shown
in figure 1. The figure presents results for cumulative acknowledgments in differ-
ent network conditions: W = 12/23/45, S = 5 (RTO = 1000 msec, RTT = 200
msec), F = 0, 9/0, 95/0, 97/0, 99.

Analysis of numerical results shows several noticeable facts which can also be
observed in figure 1.

1. Higher packet loss leads to higher time spent in timeout phase when protocol
does not send new data and simply waits timeout expiration or acknowledg-
ment arrival. Thus Pcwnd0 is greater for higher packet loss environments.

2. Interval of CWND values 1, 3 has multiple inflection points. This is espe-
cially visible for high packet loss environments, i.e. F = 0, 90. In cases when
congestion window is small enough to trigger packet loss detection by Du-
pACKs, fast retransmit and fast recovery options are not available for TCP
sender. This behavior differs from what is defined for CWND values 4,W ,
so therefore CWND distribution looks different too.
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(a) Pcwndi for W = 12

(b) Pcwndi for W = 23

(c) Pcwndi for W = 45

Fig. 1. Congestion window size distribution Pcwndi: cumulative acknowledgments,
S = 5 (RTO=1000 msec, RTT=200 msec)
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3. Congestion window distribution may have a jump in a point where sender’s
congestion window size value equal to receiver’s advertised window
(CWND = W ). This is visible on figure 1(b) and especially visible on fig-
ure 1(a). In situation with infinite advertised window size there are no any
jumps. But when the W is limited PcwndW stores the weight of the whole
tail of the distribution. Also in this case congestion window distribution has
a jump in the point where CWND = �W/2�. This additional jump is caused
by the previously mentioned jump and the nature of fast recovery phase: the
protocol halves CWND after successful retransmission.

Figure 2 presents congestion window distribution for S = 20. Obviously
Pcwnd0|S=20 > Pcwnd0|S=5. Analysis of numerical results for different values
of S shows that if sender follows RFC6298 [9] recommendations and sets timeout
value not less than 1000 msec it will spent a lot of time awaiting timeout in cases
of relatively low RTT.

Fig. 2. Congestion window size distribution Pcwndi: cumulative acknowledgments,
S = 20 (RTO=1000 msec, RTT=50 msec)

Comparative analysis of selective and cumulative acknowledgments is shown
on the figure 3.

Model predicts that SACK provides potential for TCP throughput increase
of up to 6-7.5%. It can be concluded that networks with higher loss rate and
lower round-trip time benefit from SACK more[1]. SACK allows to detect losses
more effectively, less timeout events mean less slow start re-initiations and more
loss recoveries in FR mode. Thus congestion window distribution for selective
acknowledgments has lower probabilities for CWND = 1, 3 and higher proba-
bilities for CWND = 4,W in comparison to cumulative ACKs.
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Fig. 3. Congestion window distribution comparison for selective and cumulative ac-
knowledgements. S = 5, F = 0, 9/0, 97.

6 Conclusions

In this paper we presented the analysis of congestion window distribution for
Reno congestion control procedure. Results shown in this paper have correlation
with results presented in [21]. It was shown that congestion window distribution
has inflection points and jump points caused by the behavior of Reno TCP
sender. Presented results can be used to estimate TCP connection throughput
variation as throughput derives from the size of congestion window. In this paper
we also showed comparison of congestion window size distribution for selective
and cumulative acknowledgments.
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Abstract. An urban passenger transportation problem is researched.
Municipal authorities and passengers are regarded as participants in the
transportation system. The municipal authorities have to optimize road
capacity and public transport frequency. Passengers travel mode choice
is based on logit model. Traffic congestion is described by Greenshields
equation. The existence of Nash equilibrium between municipal authori-
ties and passengers is proved. The numerical example characterizing the
influence of the parameters on the problem solution is given.

Keywords: Game theory, bus corridor, travel mode choice, traffic
congestion.

1 Introduction

Most of cities in the developing nations are facing with the transport problems.
The traffic is getting heavier, but the infrastructure is not developing so fast.
Municipal authorities have to develop public transport and road infrastructure
for private vehicles. But usually authorities decision based on current demand.
Thus public transportation is under pressure in this situation: round trip time
increases, expenditure grows and passenger flow declines. The optimal solution
must be based on Transportation Demand Management (municipal authorities
create conditions for optimal travel mode choice).

Decisions of passengers and authorities mutually influence each other (Fig. 1),
therefore the game theory is used as a model. In the review [3] a lot of papers were
considered in which game theoretic models of transport system were classified
according to the set of participants (private company and travelers, authorities
and travelers, private company and authorities, authorities between themselves,
and private companies among themselves). The paper [6] takes into consideration
the dependence between the traffic and the travel time.

A. Dudin et al. (Eds.): ITMM 2014, CCIS 487, pp. 214–222, 2014.
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Fig. 1. Public transport management system

But this classification is not enough for the solution of traffic problems. On the
other hand, many researchers of traffic [9] used either a set of participants: trav-
eler, node and arc, which presented a road user, an intersection and a roadway
segment.

The peculiarity of this paper is construction of the conflict model between
the authorities and passengers with the traffic congestion taken into account.
In this paper the traffic congestion is modeled by the well-known Greenshields
equation [7].

Municipal authorities have to optimize road capacity and public transport
frequency (or intervals) which are both depending on passengers travel mode
choice (Fig.1). The authorities solution has to determine the travel time by
car and by public transport. This very information is required for passengers
decision-making. So vice versa the information about passengers travel mode
choice passes to authorities.

The given article is about mathematical modeling with concern as to how
municipal authorities make their decisions in conditions of passengers travel
mode choice. This complicated problem is being solved on the game theory
basis.

2 Passenger Flow

Nowadays the travel mode choice (TMC) is researched well enough [4]. There are
two main modes of traveling for long distance: a private car and public transport.
The passengers look for a better proportion between using a private car and the
public transportation.

Travel mode choice theory describes passengers decision-making which de-
pends on a lot of parameters. Passengers decision model may be based on ob-
jective function (total spending of time and money) [5]. But logit and probit
distributions are usually used for TMC models [4], which are taken to represent
solution without objective function.

The model passenger decision-making consists of the following parameters:
tt – average travel time on public transport;
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t – average travel time by car (not including driving time);
ct – fare on public transport;
c – car travel costs (c > ct);
p – probability that the travelers choose a car.
Simple logit model calculates probability of car using as follows

pc =
exp{ a0 + at(tt − t) + ac(ct − c) }

1 + exp{ a0 + at(tt − t) + ac(ct − c) } , (1)

where parameters a0, at, ac defined of influence of travel time and travel cost
on passenger decision. The parameters of logit function (a0 = −1.88, at = 0.86,
ac = −0.6) were calculated in [8].

The logit models describe decisions made by the passengers in accordance
with survey data, but these models dont directly describe objective functions.
Therefore we offer to use criterion, that based on quadratic deviation of passenger
decision from optimal.

G(p) = (p− pc)
2 =

(
p− exp{ a0 + at(tt − t) + ac(ct − c) }

1 + exp{ a0 + at(tt − t) + ac(ct − c) }
)2

→ min
p

(2)

Evidently, that solution of (1) is p = pc . Function G(p) is convex upward in
the parameter t, because the second derivative is

G′′(p) = 2 > 0. (3)

3 Municipal Authorities

For optimal city development its necessary to save two components: time of
passengers [1] (value of time) and costs of transportation. Costs of transportation
include not only direct expenditures but also road maintenance expenditures and
ecological damage from transport operation.

The number of lanes (or road capacity) must be optimized, as the road ca-
pacity influences velocity. The basic Greenshields model [7] determines velocity
as

ν = ν0

(
1− λ0ρj

νn

)
, (4)

where n the number of lanes, l – length of the road, ν0 – free speed, ρj jam
density per lane, λ0 – average rate of flow of vehicles. Note that the total flow
of personal and public transport can be expressed as follows

λ0 = λρ +
1

2tω
. (5)

The first summand of (5) is car flow intensity and the second summand is
public transport frequency (or intensity of flow) with average passenger waiting
time tω.
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The travel time t = l
ν is used as variable, so we express the number of lanes

n, depending on the variable t

n =

(
λρ + 1

2tω

)
ρjt

2ν0

l(ν0t− l)
. (6)

Function (6) is convex downward in the parameter t, because the second
derivative of (6) is as follows

2λ0ρjν0l

(ν0t− l)3
> 0. (7)

The function of municipal losses of the consists of several components:
1) time losses of passengers connected with travelling by public transport and

cars;
2) road costs;
3) transportation expenditures.
Passengers losses consist of travel time on cars and the public transport

pλtγ + (1− p)λttγ = pλtγ + (1− p)λ(t +Δt+ tω)γ, (8)

where γ – average value of time; tω – average waiting time for public transport,
and Δt time loss in bus stops and travel time from origin to transit station and
travel time from station exit to final destination.

The road cost (construction and maintenance) depends on the number of
lanes, the road length and the coefficient cr

nlcr. (9)

Interval between buses is 2tω. Public transportation frequency is inversely
related to bus interval. Therefore all spending on public transport is

cp
1

(2tω)
, (10)

where cp – spending on public transportation (per trip).
Then the losses of the city will be as follows

F = λγpt+cλp+λγ(1−p)[tω+t+Δt]+
cp
2tω

+

(
λp+ 1

2tω

)
crρjt

2ν0

(ν0t− l)
→ min

tω ,ν
. (11)

Its simple to proof that (13) is convex downward in the parameters t, tω.

4 Statement of the Problem

First of all we must describe the set of strategies. For the passengers its proba-
bility of car using P = [0, 1] . For the municipal authorities waiting time tω and
travel time t must be less then the upper bound t̄ (T = �0, t̄�).
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4.1 First Statement of the Problem (Equilibrium between Interests
of Passengers and Municipal Authorities)

Passenger minimizes quadratic deviation of decision from logit model. The mu-
nicipal authorities minimize total losses (11) by variation of the travel time and
the public transport frequency.

The decision of municipal authorities depends on passengers decisions. Also
passengers use the authorities decision (public transport interval and car travel
time) for their own decision-making. The interference between decision-making of
passengers and authorities leads to game theoretical formulation of the statement
of the problem.

G→ min
p

; (12)

F → min
tω ,t

. (13)

Its simple to proof that the game 〈P, T 2,−G,−F 〉 has a Nash equilibrium,
therefore all conditions of theorem [2] about set of strategies and objective func-
tions are performed.

4.2 Second Statement of the Problem (Optimal Solution for
Municipal Authorities)

We can use passengers solution p = pc in (11). Therefore single-criterion (non-
game) statement of the problem follows:

F0 =
(λγt + cλ)exp{a0 + at(tt − t) + ac(ct − c)}

1 + exp{a0 + at(tt − t) + ac(ct − c)} +

+
λγ(tω + t+Δt)

1 + exp{a0 + at(tt − t) + ac(ct − c)} +
cp
2tω

+ (14)

+

(
λ

exp{a0 + at(tt − t) + ac(ct − c)}
1 + exp{a0 + at(tt − t) + ac(ct − c)} +

1

2tω

)
crρjt

2ν0
ν0t− l

→ min
tω ,t

.

Objective function F0 is not convex on t, tω. But numerical methods allow to
solve for two variables.

5 Numerical Example

In this part of paper the solutions of two tasks are being compared. Values of
input parameters were ν0 = 60 kilometers per hour; Δt = 0.12h; c = 40 roubles;
ct = 12 roubles; λ = 5000 travelers; ρj = 20 meters per car; cr = 50000 roubles
per lane; γ = 150 roubles per hour; cp = 500 roubles per trip.

Thus we have two statements of the problem: game statement (solution is
equilibrium) and single-criterion one (optimal for municipal authorities).
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a)

b)

Fig. 2. Influence of the fare at public transport on the equilibrium situation a) number
of lanes, b) frequency of public transport

Fig. 2a shows that number of lanes must be increased simultaneously with
fare at the public transport. On the other hand public transport frequency (Fig.
2b) for game statement of the problem more stable than optimal solution (for
some fare municipal authorities try to keep passengers on public transport, but
for big fare its useless).

Fig. 3b shows that the growth of passenger flow intensity leads to the growth
of frequency of public transport. But optimal solution needs of minimal number
of lanes (Fig. 3a).

Under a very low level of life (value of time depends on income level) pas-
sengers have practically no choice (one lane is enough). On the other hand, under
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a)

b)

Fig. 3. Influence of the intensity of passenger flow on the equilibrium situation a)
number of lanes, b) frequency of public transport
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a)

b)

Fig. 4. Influence of the value of time on the equilibrium situation a) number of lanes,
b) frequency of public transport
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a high income level of population its more difficult to attract passengers to
public transport and it degrades (Fig. 4b). Deference between game and non-
game models increases when value of time varied from 300 to 800, but results
for extreme values are similar.

6 Conclusion

In the paper the game theoretic model of transportation system is represented.
The model has Nash equilibrium between interests of passengers and municipal
authorities. The present research will be developed for real-sized road network.
All road segments and passengers flows (between each origin and destination)
will be included in the model as players. Thus model will allow to find optimal
capacity of road segments and public transportation frequency for each route,
because existence of Nash equilibrium will be accordingly proved.
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Abstract. The nonparametric estimators of net premiums in collective
models of insurance for the different statuses of collective life insurance
are proposed. The asymptotic normality and mean square convergence of
the proposed estimates are proved. The main parts of asymptotic mean
square errors (MSEs) for estimators of net premiums are found. The
results of simulations show that the nonparametric estimates are just as
good in practice.

Keywords: net premium, survival function, collective life insurance, k-
survivor status, mixed status, nonparametric estimate.

1 Introduction

One of the main problem in actuarial mathematics is to find the “right” ratio
between premiums and benefits. In this case, the calculation of net premiums
allows to cover damages and to give the zero average income of the insurance
company. Note that in the section, devoted to this area in the known book
“Actuarial Mathematics” [1], is used the calculation of net premiums on the base
of mortality tables. Interesting results by this approach have been presented in
[2]-[8]. At present, the theory and practice of insurance is strongly required the
using complex mathematical models and processes. Such results are obtained in
[9]-[15]. In this paper, we develop the ideas from [16]-[20]. The nonparametric
estimators of the net premium functionals for the different statuses of collective
life insurance are constructed, and the asymptotic properties of the proposed
estimators are studied.

� Supported by Russian Foundation for Basic Research, projects 13-08-00744,
Tomsk State University Competitiveness Improvement Program, and the project
“Goszadanie Minobrnauki Rossii”.

A. Dudin et al. (Eds.): ITMM 2014, CCIS 487, pp. 223–233, 2014.
c© Springer International Publishing Switzerland 2014



224 G. Koshkin and Y. Lopukhin

2 The Whole Life Insurance

In the long-term insurance the calculations of tariff rates take into account
change of money value because the sum of S dollars after t years turns to the
sum S eδt dollars, where δ is instantaneous interest rate.

The whole life insurance is example of the long-term insurance; in this situa-
tion the person pays p dollars to the insurance company, and the company pays
b dollars to successors of the insured after his death. Though the premium p is
less, than b, the company will receive the necessary sum b, since the premium is
paid at the moment of the conclusion of the contract, and the payment is done
great later.

We will use designations of actuarial mathematics later on. Let a random
variable X denote the future lifetime, x be the age of the insured at the moment
of policy issue, T (x) = X − x denote the residual time of life. In time T (x)
premium, p, will turn in the sum, p eδT (x), and in this case the income of the
company will be equal to

p eδT (x) − b.

To have the required sum b dollars at the moment of client death, the in-
surance company must receive b e−δT (x) dollars at the time of policy issue. In
economic terms, the sum b e−δT (x) expresses discounted value of the future in-
surance payment. As the above mentioned, this sum is a random variable, so it
is natural to take as a net premium its average value

bE{e−δT (x)},

where E is the symbol of the expectation. In actuarial science, the benefit b is
accepted as a unit payment, that is, b = 1, and the net premium of the whole
life insurance Ax is equal to E{e−δT (x)} :

Ax = E{e−δT (x)} =
∫ ∞

0

e−δtfx(t)dt =

=
1

S(x)

∫ ∞

0

e−δt f(x+ t)dt =
1

S(x)

∫ ∞

0

e−δtdF (x+ t) , (1)

where F (x) = P (X ≤ x) is the distribution function of a random variable
X, S(x) = 1 − F (x) = P (X > x) is the survival function, f(x) = −S′(x) =
F ′(x) is the curve of death or probability density function of random variable
X.

Changing variables in the last integral of the formula (1), we have

Ax =
1

S(x)

∫ ∞

x

e−δ (u−x)dF (u) =
Φ(x, δ)

S(x)
, (2)

where Φ(x, δ) =

∫ ∞

x

e−δ(u−x)dF (u) =

∫ ∞

0

e−δ(u−x) I(x < u)dF (u), I(A) is the

indicator of a set A [1].
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3 Collective Life Insurance

According to [1], the concept of status is the useful abstraction in the collective
life insurance. Consider m members of ages (x1, x2, . . . , xm) who desire to buy
insurance policy. Let us denote the future lifetime of the k-th individual by
T (xk) = X − xk. Let us put in a correspondence a status U with its future
lifetime T (U) and a set of numbers T (x1), T (x2), . . . , T (xm) [16].

In [17]-[20], there were considered the cases of the joint-life status and the
last-survivor status. In this paper, we consider the general case of the k-survivor
status, which is denoted

U :=
k

x1 : x2 : . . . : xm

and exists as long as at least alive a k among the m individuals (x1), (x2), . . . ,
(xm), i.e., it is considered destroyed upon the occurrence of the (m − k + 1)
death. It is clear that the joint-life status and last-survivor status are the special
cases of the k-survivor status.

Also, separately consider the case of the [k]-deferred survivor status

U :=
[k]

x1 : x2 : . . . : xm
.

Here, if a k of the m individuals (x1), (x2), . . . , (xm) are exactly alive, i.e., the
status starts at the (m − k)-th death and lasts until the (m − k + 1)-th death.
This status is widely used in the calculation of sequences payments of limited
duration [16].

Note that a new status can be also combined from the above base statuses.
For example, the mixed status is a condition in which basis is a combination of
statuses, and at least one of them asked for more than one individual.

Consider the following mixed statuses:
Case a: ((x1 : x2 : x3 : x4) ; the condition of this status persists if there are

alive at least one of (x1) and (x2) and at least one of (x3) and (x4). The de-
struction moment of status (x1 : x2 : x3 : x4) is defined as

T (U) = min{max{T (x1), T (x2)}, max{T (x3), T (x4)}}.
Case b:

(
x1 : x2 : (x3 : x4)

)
; here the condition persists if there are alive at least

two of four, namely, (x3) and (x4), or when only one alive, and that either (x1),

or (x2). The destruction moment of status
(
x1 : x2 : (x3 : x4)

)
is defined as

T (U) = max{max{T (x1), T (x2)}, min{T (x3), T (x4)}}.
Case c: (x1 : x2 : x3 : x4) . In this case, the condition persists if there are alive
(x1), (x2) and when one is alive, and it is either (x3), or (x4). The destruction
moment of status (x1 : x2 : x3 : x4) is defined as

T (U) = min{T (x1), T (x2), max{T (x3), T (x4)}}.
Similarly, the fracture point may be found for a combination of statuses.



226 G. Koshkin and Y. Lopukhin

4 Functionals of Net Premiums in Collective Life
Insurance

Consider the random variables Zi = Xi−xi, i = 1,m. Order them in ascending
and obtain the order statistics Z(i), i = 1,m. Then

Ax1:x2:...:xm =

∫∞
0

e−δ tdP{Z(1) < t}
P{Z(1) > 0}

and

Ax1:x2:...:xm
=

∫∞
0

e−δ tdP{Z(m) < t}
P{Z(1) > 0} .

By analogy with the individual cases (formula (1) and (2), we have

A k
x1:x2:...:xm

=

∫∞
0 e−δ tdP{T (U) < t}
S(x1, x2, . . . , xm)

=

∫∞
0 e−δ tdP{Z(m−k+1) < t}

P{Z(1) > 0} =

=
Φ(x1, x2, . . . , xm, δ, k)

S(x1, x2, . . . , xm)
. (3)

In the case of the [k]-deferred survivor status

P
{
Z(m−k) ≤ t < Z(m−k+1)

}
= P

{
t < Z(m−k+1)

}−P
{
t < Z(m−k)

}
=

= 1−P
{
Z(m−k+1) < t

}− 1 +P
{
Z(m−k) < t

}
=

= P
{
Z(m−k) < t

}−P
{
Z(m−k+1) < t

}
,

and the net premium

A [k]
x1:x2:...:xm

=

∫∞
0

e−δ tdP
{
Z(m−k) < t

}− ∫∞
0

e−δ tdP
{
Z(m−k+1) < t

}
P{Z(1) > 0} =

=
Φ(x1, x2, . . . , xm, δ, k − 1)− Φ(x1, x2, . . . , xm, δ, k)

S(x1, x2, . . . , xm)
=

= A k−1
x1:x2:...:xm

−A k
x1:x2:...:xm

.

Similarly, the net premiums functionals for mixed cases can be written as

Ax1:x2:x3:x4 =
1

S(x1, x2, x3, x4)

∫ ∞

0

e−δ t×

×dP {min {max(X1 − x1, X2 − x2), max(X3 − x3, X4 − x4)} ≤ t} ,

Ax1:x2:(x3:x4)
=

1

S(x1, x2, x3, x4)

∫ ∞

0

e−δ t×

×dP {max {max(X1 − x1, X2 − x2), min(X3 − x3, X4 − x4)} ≤ t} ,

Ax1:x2:x3:x4
=

1

S(x1, x2, x3, x4)

∫ ∞

0

e−δ t×

×dP {min {X1 − x1, X2 − x2, max(X3 − x3, X4 − x4)} ≤ t} .
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5 Nonparametric Estimates of Net Premiums in
Collective Life Insurance

Let (Z11, . . . , Zm1), (Z12, . . . , Zm2), . . . , (Z1n, . . . , Zmn) be an m-dimensional
random sample of a size n. Denote the corresponding ordered set as

(Z(1)1, . . . , Z(m)1), (Z(1)2, . . . , Z(m)2), . . . , (Z(1)n, . . . , Z(m)n).

Estimate the distribution function P
{
Z(m−k+1) < t

}
and the survival func-

tion P
{
Z(1) > 0

}
by the simple nonparametric estimates

1

n

∑n

i=1
I
(
Z(m−k+1)i < t

)
and 1

n

∑n
i=1 I

(
Z(1)i > 0

)
.

Then nonparametric estimate of (3) is equal to

Â k
x1:x2:...:xm

=
Φn(x1, x2, . . . , xm, δ, k)

Sn(x1, x2, . . . , xm)
=

=
1

Sn(x1, x2, . . . , xm)

∫ ∞

0

e−δ t

(
1

n

n∑
i=1

I(Z(m−k+1)i ≤ t)

)
′dt =

=
1

Sn(x1, x2, . . . , xm)

1

n

n∑
i=1

∫ ∞

0

e−δ t δ(t− Z(m−k+1)i)dt =

=

1
n

n∑
i=1

e−δ (Z(m−k+1))I(Z(m−k+1) > 0)

1
n

n∑
i=1

I(Z(1) > 0)
, (4)

where δ(u) is the Dirac delta-function. Obtaining the formula (4), we used the

filtering property of the delta-function:

∫ +∞

−∞
ϕ(x)δ(x − a)dx = ϕ(a) .

In the case of the [k]-deferred survivor status, the nonparametric plug-in es-
timate of net premium is defined as

Â [k]
x1:x2:...:xm

= Â k−1
x1:x2:...:xm

− Â k
x1:x2:...:xm

=

=
Φn(x1, x2, . . . , xm, δ, k − 1)− Φn(x1, x2, . . . , xm, δ, k)

Sn(x1, x2, . . . , xm)
.

Similarly, the nonparametric estimates of the net premiums functionals for mixed
cases can be found. For the status x1 : x2 : x3 : x4, we have

Âx1:x2:x3:x4
=

1

nSn(x1, x2, x3, x4)
·

·
n∑

i=1

e−δ min{max(X1i−x1,X2i−x2),max(X3i−x3,X4i−x4)}×

×min {max(X1i − x1, X2i − x2), max(X3i − x3, X4i − x4)} ,
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Âx1:x2:(x3:x4)
=

1

nSn(x1, x2, x3, x4)
·

·
n∑

i=1

e−δ max{max(X1i−x1,X2i−x2),min(X3i−x3,X4i−x4)}×

×max {max(X1i − x1, X2i − x2), min(X3i − x3, X4i − x4)} ,

Âx1:x2:x3:x4
=

1

nSn(x1, x2, x3, x4)
·

·
n∑

i=1

e−δ min{X1i−x1,X2i−x2,max(X3i−x3,X4i−x4)}×

×min {X1i − x1, X2i − x2, max(X3i − x3, X4i − x4)} .

6 Asymptotic Properties of Functions of Statistics

Present the auxiliary results, which will be used below.
Let the function H(φ) : Rs → R1, and φ = φ(x) = (φ1(x), . . . , φs(x)) be

an s-dimensional bounded function; Hj(φ) = ∂H(φ)
∂φj

, j = 1, s, ∇H(φ) =

(H1(φ), . . . , Hs(φ)); the symbol T denote the transpose; tn = (t1n, . . . , tsn) be an
s-dimensional statistic, tjn = tjn(x) = tjn(x,X1, . . . , Xn), j = 1, s; ‖tn‖ =√

t21n + t22n + . . . + t2sn be the Euclidean norm of tn; t= t(x) = (t1(x), . . . , ts(x))
be an s-dimensional bounded function. Denote by⇒ N {μ, σ} the symbol of weak
convergence of sequence of random variables to the s-dimensional normal ran-
dom variable with mean μ = (μ1, μ2, . . . , μs) and symmetric covariance matrix
σ = ||σij ||, 0 < σjj = σjj(x) < ∞, j = 1, s. Also, let N and N+ be sets of
integers and even integers, accordingly.

Definition. Function H(·) ∈ Nν,s(t) if H(z) : Rs → R1 and function t = t(x) at
a point x has an ε-neighborhood {z : |zi − ti| < ε; i = 1, s}, in which H(z) and

its derivatives ∂H(z)
∂zj

up to the order ν are continuous and bounded.

Theorem 1. [21]. Let: 1)H(z), {H(tn)} ∈ N2,s(t), 2)E||tn − t||i = O
(
d
−i/2
n

)
.

Then for any k ∈ N∣∣∣E [H(tn)−H(t)]
k −E

[∇H(t)(tn − t)T
]k∣∣∣ = O

(
d−(k+1)/2
n

)
. (5)

Theorem 2. [21]. If a random vector qn(tn − φ)⇒ Ns{μ, σ} for some number
sequence qn ↑ ∞, the function H(t) ∈ N1,s(φ),∇H(φ) �= 0, then the random
variable

qn (H(tn)−H(t))⇒ N1{∇H(φ)μT , ∇H(φ)σ∇HT (φ)} . (6)
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7 Asymptotic Properties of Estimates of Net Premiums

Formulate the result on asymptotic properties of nonparametric estimate (4).

Theorem 3. If the survival function S(x1, x2, . . . , xm) �= 0, then

√
n[Â k

x1:x2:...:xm
−A k

x1:x2:...:xm
]⇒

⇒ N1

{
0.

Φ(x1, x2, . . . , xm, 2δ, k)S(x1, x2, . . . , xm)− Φ2(x1, x2, . . . , xm, δ, k)

nS3(x1, x2, . . . , xm)

}
,

and the MSE of nonparametric estimate (4) is equal to

u2(Â k
x1:x2:...:xm

) =

=
Φ(x1, x2, . . . , xm, 2δ, k)S(x1, x2, . . . , xm)− Φ2(x1, x2, . . . , xm, δ, k)

nS3(x1, x2, . . . , xm)
+

+O

(
1

n3/2

)
.

Proof. In the notation of Theorem 1, we have: s = 2, tn = (t1n, t2n), t1n =
Φn(x1, x2, . . . , xm, δ, k), t2n = Sn(x1, x2, . . . , xm),

H(tn) =
t1n
t2n

=
Φn(x1, x2, . . . , xm, δ, k)

Sn(x1, x2, . . . , xm)
= Â k

x1:x2:...:xm
,

t = (t1, t2) = (Φn(x1, x2, . . . , xm, δ, k), S(x1, x2), . . . , xm),

H(t) =
t1
t2

= A k
x1:x2:...:xm

, dn = n.

Then, by Lemma 3.1 from [22], the following expressions are hold:

E|Φn(x1, x2, . . . , xm, δ, k)− Φ(x1, x2, . . . , xm, δ, k)|i = O
(
n− i

2

)
,

E|Sn(x1, x2, . . . , xm)− Sn(x1, x2, . . . , xm)|i = O
(
n− i

2

)
.

If in formula (5) k = 1, then

E{Â k
x1:x2:...:xm

} = A k
x1:x2:...:xm

+
1

t2
E{t1n − t1} − t1

t22
E{t2n − t2}+O

(
1

n

)
.

As functions t1 = t1(x1, x2, . . . , xm), t2 = t2(x1, x2, . . . , xm) are continuous, then

E{t1n} = t1, E{t2n} = t2, and E{Â k
x1:x2:...:xm

} = A k
x1:x2:...:xm

+ O
(
1
n

)
, i.e.,

Â k
x1:x2:...:xm

is asymptotically unbised estimate.
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Now, putting k = 2 and taking into account unbiasedness t1n, t2n, we have

u2(Â
x1:x2:...:xm

) =
1

t22
D{t1n}+ t21

t42
D{t2n}− 2

t1
t32

cov{t1n, t2n}+O

(
1

n3/2

)
. (7)

Taking into account the randomness of sample
(Z11, . . . , Zm1), (Z12, . . . , Zm2), . . . , (Z1n, . . . , Zmn),
we find the corresponding variances and covariance:

D{t1n} = D

{
1

n

n∑
i=1

ϕi(x1, x2, . . . , xm, δ, k)

}
=

1

n
D {ϕ1(x1, x2, . . . , xm, δ, k)} =

=
1

n

(
E {ϕ1(x1, x2, . . . , xm, 2δ, k)} −E2 {ϕ1(x1, x2, . . . , xm, δ, k)}) =
=

1

n

(
Φ(x1, x2, . . . , xm, 2δ, k)− Φ2(x1, x2, . . . , xm, δ, k)

)
,

D{t2n} = D

{
1
n

n∑
i=1

si(x1, x2, . . . , xm)

}
=

= 1
n S(x1, x2, . . . , xm) (1− S(x1, x2, . . . , xm)) ,

cov{t1n, t2n} = 1

n
cov {ϕ1(x1, x2, . . . , xm, δ, k), s1(x1, x2, . . . , xm))} =

=
1

n
Φ(x1, x2, . . . , xm, δ, k) (1− S(x1, x2, . . . , xm)) .

Substituting the found expressions in (7), we obtain the second assertion of
Theorem 3.

In the notation of Theorem 2 we have:

∇H(ϕ) = (H1, H2), H1 =
1

S(x1, x2, , xm)
,

H2 = −Φ(x1,x2,,xm,δ,k)
S2(x1,x2,,xm) , qn =

√
n. As S(x1, x2, , xm) �= 0,

function H(t) ∈ N1,2(t).
And so,

E{Sn(x1, x2, , xm)} = S(x1, x2, , xm),
E{Φn(x1, x2, , xm, δ, k)} = Φ(x1, x2, , xm, δ, k),

i.e., μT = 0; σ11 = Φ(x1, x2, , xm, 2δ, k)− Φ2(x1, x2, , xm, δ, k),

σ12 = σ21 = Φ(x1, x2, , xm, δ, k)(1− S(x1, x2, , xm)),
σ22 = S(x1, x2, , xm)(1 − S(x1, x2, , xm)).

That is why substituting the found expressions in (6), we obtain the first asser-
tion of Theorem 3:

∇H(t)μT = 0,

∇H(t)σ∇H(t)T = S−3(x1, x2, . . . , xm)·
· (Φ(x1, x2, . . . , xm, 2δ, k)S(x1, x2, . . . , xm)− Φ2(x1, x2, . . . , xm, δ, k)

)
.

Theorem 3 is proved.
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8 Synthesis of Nonparametric Estimators of Net
Premiums in Collective Life Insurance for Other Forms
of Insurance

The above considered estimates of net premiums were constructed for the whole
insurance; here we consider other forms of insurance.

8.1 The p-Years Term Life Insurance

In this case, the benefit to pay if the insured will die during of the contract
validity. The company does not pay the benefit if the insured has lived the p
years. Then

Â [k]
x1:x2:...:xm

:p]
=

Φn(x1, x2, . . . , xm, δ, k, p)

Sn(x1, x2, . . . , xm)
=

=

1
n

n∑
i=1

e−δ (Z(m−k+1))I(0 < Z(m−k+1) ≤ p)

1
n

n∑
i=1

I(Z(1) > 0)
.

8.2 The p-Years Endowment Life Insurance

Such form of insurance provides for a payment either following the death of the
insured or upon his survival to the end of the p-years term. The given form of
insurance accumulates the client’s capital. The nonparametric estimate of net
premium is expressed by the formula

ˆ
A

s
[k]

x1:x2:...:xm
:p]

=
Sn(x1, x2, . . . , xm)− Sn(x1 + p, x2 + p, . . . , xm + p)

Sn(x1, x2, . . . , xm)
×

×Â [k]
x1:x2:...:xm

:p]
+

Sn(x1 + p, x2 + p, . . . , xm + p)

Sn(x1, x2, . . . , xm)
e−δ p.

8.3 The r Years Deferred Life Insurance

This form of insurance provides for a benefit following the death of the insured
when he dies at least r years following policy issue. The net premium is expressed
in the form

r|Â [k]
x1:x2:...:xm

=
Φn(x1, x2, . . . , xm, δ, k, r)

Sn(x1, x2, . . . , xm)
=

1
n

n∑
i=1

e−δ (Z(m−k+1))I(r < Z(m−k+1))

1
n

n∑
i=1

I(Z(1) > 0)
.

The properties of these nonparametric estimators are similar to the properties
of (4).
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9 Conclusion

The nonparametric estimates show their adaptability if the distribution is
changed and exceed parametric estimates, oriented on the best result only for
its own distributions. Often, the MSEs of nonparametric estimates are less than
the MSEs of parametric estimates in 2-3 times. The main simulations results are
obtained by making use of data from the Makeham and the de Moivre distribu-
tions.
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Abstract. Using of tasks with different types of answers in intelligent
teaching-testing systems based on mixed diagnostic tests is discussed.
Tasks with formula-type answers are discussed in detail. A simple, intu-
itive language for writing formulae is described. A technology to verify
answer formula compliance with a formula prepared in advance by the
test developer is proposed. Description of a checking algorithm using
LL(1)-parser, Reverse Polish Notation string generator and an inter-
preter to calculate the answer formula value for a prearranged set of
input data is provided.

Keywords: teaching-testing system, mixed diagnostic tests, context-
free language, LL(1)-parser, Reverse Polish Notation.

1 Introduction

Implementing mixed diagnostic tests [1] at different steps of testing usually re-
quires using test tasks with different forms of answers in order to increase tests’
efficiency. Traditional tests assume the presence of tasks with answers belonging
to one of the following types [2]:

– answer in closed form, requiring a choice of one option, either correct or
incorrect one;

– answer in form of multiple choice, requiring a choice of several options from
some list;

– answer that requires establishing correspondence between two sequences;
– answer that requires establishing the correct sequence;
– answer in open form that can be represented as a number, a word or a text

in the arbitrary form.

When the computer is used to check the answers it is easy to implement test-
ing programs intended to check the answers automatically for almost all types
of answers. The only exception is an open-form answer tasks that have to accept
a wide variety of possible variations of a correct answer. As a rule, an answer
in open form has to be written in some strict form (e.g. a numerical value in a
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predefined format), but such a requirement can significantly lower test applica-
bility. To overcome this difficulty, some computer systems for testing students’
knowledge [3] allow answers in open form described by regular expression. Such
an answer is considered to be correct if it corresponds to some regular expression
defined by the test developer in advance. However, this way is rather specific and
doesn’t cover all the variants of tasks with open answer.

Another kind of answers in open form is an answer in the form of essay. Such
an answer can be processed, for example, by using Automated Essay Scoring
and Calibrated Peer Review, both described in [4].

A usage of a new kind of tasks requiring an answer in the form of algebraic
formula is proposed in this paper. Such tasks can be effectively used in tests
for different subjects. Let’s assume that such a formula answer includes values
specified in the task itself, as long as common constant values and operations. In
order to automate the checkup of such an answer one has to solve a problem of
establishing equality of two formulae: the formula given by test developers and
the formula provided as an answer. However, there exists no uniform method to
solve this problem. For that reason, a particular method for solving this problem
that can be convenient in use and effective in practice is suggested in this paper.

This paper describes a simple language for writing formulae, an analyzer for
that language and Reverse Polish Notation (RPN) generator. Unlike most well-
known translators, an RPN generator described in this paper has simple tabular
structure and can be easily implemented in a testing system.

2 General Principles of Formula Type Answer Check Up

The algebraic formulae involving the calculation of one or several variables are
to be considered. In general, a programming language can be used for formulae
notation, however, the learner is supposed not just to know the language as it is,
but also to be able to program in it. If the knowledge of the subject other than
Computer Science is tested, such a requirement is definitely excessive. For that
reason we introduce an intuitively understandable simplified language for the
formulae notation, in which only the variables that are defined in the task itself
are allowed. The formulae given in this language should be written in one or
several lines with all the operations clearly signified. The notation of variables
and constants is restricted by one or several Latin letters as well as Arabic
numbers.

The algorithm of answer checkup is executed as follows:

1. Formula-answer (or a set of formulae) written by the learner is sent to the
testing system and then analyzed. After that it is translated into a RPN. If
some formal (syntactic) errors in the notation are found, the testing system
must immediately inform the student that he has to correct the errors and
give the right answer. This is of great importance since the testing is aimed
at the knowledge checkup in the particular field rather than the language of
formulae notation.
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2. If there are no errors in the formula notation, RPN received by the testing
system is transferred to the interpreter that makes the appropriate compu-
tation, giving the input data prepared in advance to its input. Matching of
the results obtained is made using set of values prepared by the developers.
If they are in full agreement, the formula is considered to be right. If ap-
proximate numbers are involved, matching should be made in terms of the
computational error.

Therefore, in developing the test of this kind it is necessary not only to state
the task distinctly but also to provide several sets of input data and the relevant
results which the learner must get when applying the appropriate formula.

3 Formula Notation Language

The simple language of formulae is proposed. In a formula, variables predefined
in the task, variables defined by the formula and numerical constants, are used.
The variables are written according to the rules worked out in programming
languages, i.e. they can consist in several Latin (lower- and upper-case) letters
and numbers and they are to begin with the letter. The constants are written
in numerical values, they can be integers and real numbers, fixed-point numbers
and/or decimal exponent, either signed or unsigned. In the latter case, the letter
e goes before the exponent. For some mathematical constants various alphabet-
ical characters, e.g. pi, can be reserved. If one must use specific constants (for
example, the physical ones), their notation should be given in the task.

Each formula notation is restricted by one line, if there is more than one
formula, a semicolon and/or a new line should be used. The notation starts with
the variable that must be computed, after that goes the equal mark, then the
expression with variables, constants and round brackets. Operations are grouped
by their priorities. Of highest priority is raising to the power operation (sign ∧).
Next are unary operations requiring only one operand. Among them are unary
plus and minus, as well as operations which define the standard mathematical
functions: square root (sqrt), sinus (sin), cosinus (cos), and so on. After that
go multiplication (sign *) and division (sign /) operations. Of lowest priority
are addition and subtraction operations (with two operands). Any part of the
expression can be restricted with round brackets either on the right or on the
left so as to change the order of the execution of operations.

The syntax of the language like this one can be written as the set of pro-
ductions of context-free grammar [5]. For brevity sake, nonterminals (syntactic
notions) are to be written with upper case Latin letters. Right and left parts of
the production will be divided by the arrow, and terminals (by groups) written
in the following way: raising to the power operation - sign ∧, unary operations
(apart from plus and minus) letter s, multiplication and division operations -
sign *, plus and minus - sign +, variables letter a, constants letter k, brackets
round brackets, formula separator (semicolon or new line) sign;.

Strictly speaking, the notation of variables and constants and operation des-
ignations, which require more than one character are not grammar terminals.
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However, at the preliminary processing of the formula being analyzed the lexer
[5] can be of use. It recognizes such grammar structures (lexical units) and at
the output translates them into terminals. Lexer makes it possible to facilitate
and speed up the further analysis.

The productions of the formulae language, with vertical line dividing different
right parts for the group of rules, whose left parts are the same, are given below.

P → P ;A|A|A;

A→ a = S

S → S + T |T
T → T ∗ F |F

F →W |+ F |sF
W →W ∧G|G
G→ (S)|a|k

(1)

In these productions the initial nonterminal symbol is P.

4 LL(1)-Parsing of Formulae

One of the most effective methods of the analysis of character strings produced
by context- free grammar is LL(1)-parsing [6]. In order to apply this method of
parsing it is necessary to transform it to Greibach normal form when the right
parts can be either empty or start with terminal character in all the productions.
The grammar of this kind admits determinative LL(1)- parsing if for each group
of productions with the same nonterminal in the left part, the right parts will
be distinguishable by the first terminal.

Let entry string of characters be always completed with the boundary charac-
ter ⊥. In order the LL(1)-analyzer to work, it is necessary to draw a table whose
columns are designated with terminals, the boundary character ⊥ included, and
strings are nonterminal of the transformed grammar. For all productions of gram-
mar given as

A→ αγ,

where A is a nonterminal, α – a terminal, γ – a string of both terminals and
nonterminals, the right part of the rule αγ is placed on the intersection of the
line marked with nonterminal A with the column designated as terminal a. If
the production is in the form of

A→ λ,

where λ is the empty string, all the cells designated with nonterminal A and free
of the other rules are written as λ. Before the work starts, first the boundary
character ⊥ is put into the stack of the parser, then goes the initial nonterminal
symbol. At each stage the parser gets yet another terminal from the lexer and
executes one of the two actions:
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1. if there is a nonterminal on top of the stack, depending on what another
entry terminal is, this nonterminal is changed in the stack by the right part
characters of the corresponding production, with the characters written in
the reverse order. If for another entry terminal character, written in the table
is , a non-terminal is re-moved from the stack. If there is an empty cell in
the table, the parser fixes the error in the input string;

2. if there is a terminal on top of the stack, it is compared with the another
entry character. If there is a match, a terminal is removed from the stack
and the transition to the following character in the input string is made.
Lack of match gets the parser to fix the error.

The work of the parser ends when the entry string of characters turns out to
be looked over. If, in this case, the stack is empty, the entry string of characters
is considered correct, if it is not empty, the string is erroneous.

RPN generation is carried out while LL(1)-parser is at work. It is done in
the following way. The second stack is necessary for RPN generator, its work
being done simultaneously with that of the recognizer with its stack. Written in
the second stack is the sequence of semantic characters that denote the actions
generated by RPN elements. The actions on RPN generation will be done when
the characters are removed from the second stack.

For the implementation of RPN generator together with the main table of
LL(1)-parser it is necessary to give a semantic table. Its size fits with that of the
main table. Moreover, for each non-empty cell of the main table, where there is
a right part of any production, put into the semantic table is the sequence of
operations, the number of which is equal to the length of the right part of this
production.

Since terminal characters in the context free grammar are, indeed, lexical
units, recognized by the lexer, such lexical units as variables names and constants
contain additional semantic information links to tables of variables or tables of
constants , i.e. the same terminals can be different semantically in the context
free grammar.

RPN generation also involves forming the two tables: the table of constants
and the table of variables. Besides, the constants and the variables that are
required for the computations to be made in accordance with the conditions
must be written in the table prior to the action of the LL(1) parser. Those
constants and variables should be given by the test developer.

Let’s consider the semantic actions on RPN generation for the formula gram-
mar. Included in the sequence are the actions indicated by the following charac-
ters:

• a — writing in a RPN variable;
• k — writing in a RPN constant;
• = — writing in a RPN assignment operation ;
• + — writing in a RPN binary addition operation;
• — writing in a RPN binary subtraction operation ;
• * — writing in a RPN multiplication operation ;
• / — writing in a RPN division operation ;
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— writing in a RPN unary subtraction operation;
• s — writing in a RPN standard function operation , for example, sqrt;
• ˆ — writing in a RPN raising to power operation;
• � — empty action.

While a variable is entered into RPN, search is made in the table of variables.
If there is a variable with the same name in the table, the link to it is entered
into RPN. Otherwise, a new variable is put into the table of constants and the
link to it is written in RPN. The actions indicated by the characters given above
will be executed simultaneously with the pop of corresponding characters from
the second stack.

In Table 1 one can find the parser’s table which overlaps with the semantic
table of RPN generator where there is only one column marked with terminal s.
In the actual table for each operation computing a standard function there must
be a column like that. Productions put into the table are derived from grammar
rules (1) by their transformation to Greibach normal form.

Table 1. Integrated table of Parser and RPN Generator

+ - * / ∧ s ( ) a k = ; ⊥
P λ λ λ λ λ λ λ λ a = SB

a�� =
λ λ ;P

��
λ

B λ λ λ λ λ λ λ λ λ λ λ ;P
��

λ

S +FVU
����

-FVU
����

sFVU
�s��

(S)WVU
������

aWVU
a����

kWVU
k����

U +TU
��+

λ λ λ λ λ λ λ λ λ λ λ λ

T +FV
���

-FV
��[−]

sFV
�s�

(S)WV
�����

aWV
a��

kWV
k��

V λ λ *FV
��∗

/FV
��/

λ λ λ λ λ λ λ λ λ

F +F
��

-F �
��[−]

sF�
��s

(S)W
����

aW
a �

kW
k�

W λ λ λ λ ∧GW
��∧

λ λ λ λ λ λ λ λ

G (S)
���

a
a

k
k

Consider the work of parser and RPN generator. Let the input formula with
a, b, c variables and numerical constants be as follows:

a = − (b+ c) ∗ b∧3/ (b− 2.5) (2)

Formed at the output are the table of (a, b, c), variables and the table of (3,
2.5) constants and RPN in which the links to the table of variables are in curly
brackets while the links to the table of constants are in square brackets.

{1}{2}{3}+ [−] {b} [1]∧ ∗ {2} [2]− / (3)
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5 Formula Computation Using Reverse Polish Notation

Computation with predefined RPN can be made by the interpreter that uses a
additional stack [6]. For the formulae language under consideration the structure
of the stack is as follows. The stack consists in cells, each cell having two parts:
1) content type, 2) content that can serve either as a link to the variable in the
table or a numerical value. Besides, for each variable in the table there must be
space to store the current value as well as the tolerated error of computation
since in the general case numerical values can be approximated.

For each input variable the test developers should predefine numerical values
and put them into additional table where input data are presented as sets. More-
over, for each input variable, which must be defined by formulae, the tolerated
error must be given.

Algorithm for computation is usually executed recursively in the following
way. The number of loop iterations is the same as the number of sets of input
data. Loop execution starts with writing the input values of the current set of
data into the table and the tolerated error for the output variables. From here
on, sequential scanning of generated RPN and actions with the stack are made
according to the following rules:

– if the current element of RPN is a variable, the link to it is copied from RPN
to the stack, the type of cell in the stack being defined in ”link”:

– if the current element of RPN is a constant, by the link the value of that
constant is copied from the table of constants to the stack, the type of cell
being defined in ”value”; if the current element of RPN is a unary operation,
the top element is removed from the stack, if

– it is of ”link” type, the value by that link is read in the table of variables and
if it is of ”value” type, it is used, after that the unary operation is executed
and its result is put into the stack, the type of cell being defined in ”value”;

– if the current element of RPN is a binary operation (apart from operation =),
then , like in the case of unary operation, only one value is removed either
from the stack or the table of variables and (unlike the unary operation)
the other value is removed either from the stack or the table of variables
whereupon the unary operation is executed and its result is put into the
stack again;

– if the current element of RPN is operation =, like in the case of the unary
operation, the value is removed from the stack or from the table of variables,
then the link is removed from the stack, after that the retrieved value is put
into the table of variables by the link.

After the computation has ended for the current set of input data matching
of the values of input data put into the table is made using prepared by the
developers true values in terms of the computational error. If for each set of
data matching is successful, the formula type answer is considered correct.
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6 Conclusion

Use of tasks with algebraic formula type answer improves the quality of testing in
different subjects especially when the mixed diagnostic tests are implemented.
The proposed method makes it possible to computerize the checkup of those
answers, the knowledge of complicated programming languages is not required.
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1 Introduction

By a non-profit fund we understand an organization created for the only purpose
of collecting and distributing funds without making any profit. Among examples
of non-profit funds are, in particular, state non-budget funds of the Russian
Federation. Construction of non-profit fund models and related analysis can be
found, for example, in [1]-[4] . In the articles the mentioned funds’ features are
analyzed under assumption of either threshold or combined threshold-hysteresis
surplus control. In our work, we generalize the results of [4] and consider a
general case of arbitrary hysteresis surplus control.

2 Mathematical Model for Fund’s Surplus Change over
Time

The main characteristic of the fund’s state is its surplus S(t) at time t. In the
following we assume that the surplus can change due to several reasons:

1. The fund receives financial resourses. We assume that inflow times comprise
a Poisson process with intensity λ. The financial resourses inflows (premiums)
ξ are independent and identically distributed random variables with probability
density ϕ(x), mean M {ξ} = a and second moment M

{
ξ2
}
= a2.

2. The fund spends premiums. We assume that premiums are expensed con-
tinuously at the rate b (S), so that in time Δt a total of b (S)Δt is paid out. We
also assume that the spending process is controlled in a following fashion. Two

A. Dudin et al. (Eds.): ITMM 2014, CCIS 487, pp. 242–250, 2014.
c© Springer International Publishing Switzerland 2014
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boundary values S1 and S2 are set, with S1 < S2. For S (t) < S1 b (S) = bl,
while for S (t) > S2 b (S) = bu. Since the fund’s goals do not include earning
profit, it is natural to assume that

bl < λa, bu > λa . (1)

Thus, for S < S0 the fund on average spends less than it collects, while for
S > S0 it spends on average more than it collects.

For surplus values S1 ≤ S ≤ S2 the expense rate is set at b (S) = b0(S) or
b (S) = b1(S) depending on how the surplus process S(t) entered this domain.
If the process crossed the lower bound S1 up, then b (S) = b0(S), if it crossed
the upper bound S2 down, then b (S) = b1(S). It is assumed that functions b0(s)
and b1(s) are continuous, monotonous and satisfy the following conditions:

b0(S1) = b1(S1) = bl; b0(S2) = b1(S2) = bu; b0(S) < b1(S) . (2)

The domain S1 ≤ S ≤ S2 is in fact what we call the domain of hysteresis surplus
control.

Finally, we assume that when S < 0 the fund continues its activities, but
enters the state of insolvency, and its obligations are met as premiums flow in.
This assumption defines the main distinction of our model from various dual risk
models [5], [6], [7], [8].

3 Fund’s Surplus Probability Density Function

We now present the equations that define the surplus probability density function
P (S) in each of the abovementioned domains in a steady state. Since the sum
of the received premiums is a compound Poisson process [9], the surplus process
in each domain is the sum of its nonstochastic component and its compound-
Poisson component. Thus probability density function P (S) exists and can only
be non-continuous in S1 and S2. For convenience, let us move the reference point
to S = S1 and denote S0 = S2 − S1. The lower bound will now be S1 = 0.

We start with the domain where S < 0. Here we denote the probability density
function P (S) as P0 (S). Consider two close points in time t and t+Δt. During
time interval Δt the fund’s surplus can be subject to the following changes. With
probability 1 − λΔt + o (Δt) the fund did not receive any premiums and hence
its surplus decreased by blΔt. With probability λΔt + o (Δt) the fund received
a random premium x and its surplus increased by x − blΔt. Other events have
probability of order o (Δt). Using the total probability formula, we get:

P0 (S) = (1− λΔt)P0 (S + blΔt) + λΔt

∫ ∞

0

P0 (S − x)ϕ (x) dx+ o (Δt) .

As Δt→ 0 we arrive at the following equation:

blṖ0 (S) = λP0 (S)− λ

∫ ∞

0

P0 (S − x)ϕ (x) dx . (3)
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The solution for (3) must satisfy the following boundary condition: P0 (−∞) = 0.
We now consider the domain 0 ≤ S ≤ S0. There are two possibilities in this

case: b (s) = b0(s) and b (s) = b1(s).
We first consider the case of b (s) = b0(s). Denote as

g0 (S) = P{S < S (t) ≤ S + dS, b (S) = b0(S)}/dS .

There are two possible ways to arrive at surplus value S at time t+Δt. Either
at time t the surplus was equal to S+ b0(S)Δt and during time Δt no premiums
arrived. Or at time t the surplus was equal to S + b0(S)Δt− x and during time
Δt a random premium x arrived. Writing down the probabilities of respective
events and using the total probability formula we have:

g0 (S) = (1− λΔt) g0 (S + b0(S)Δt) + λΔt
∫ S

0 g0 (S − x)ϕ (x) dx+
+λΔt

∫∞
S

P0 (S − x)ϕ (x) dx+ o (Δt) .
(4)

As Δt→ 0 we get

b0(S)ġ0 (S) = λg0 (S)− λ

∫ S

0

g0 (S − x)ϕ (x) dx− λ

∫ ∞

S

P0 (S − x)ϕ (x) dx .

(5)
The solution for (5) must satisfy the boundary condition g0 (S0) = 0, which

follows from the fact that when b (s) = b0(s) this bound can only be crossed
from below and hence, when S = S0 the first term on the right hand side of
equation (4) is absent.

Now denote

g1 (S) = P{S < S (t) ≤ S + dS, b (S) = b1(S)}/dS .

Similar to the above we get that the function g1 (S) satisfies equation

b1(S)ġ1 (S) = λg1 (S)− λ

∫ S

0

g1 (S − x)ϕ (x) dx . (6)

Finally, we consider the domain S > S0. Denote the probability density func-
tion P (S) as P2 (S). Function P2 (S) satisfies equation

buṖ2 (S) = λP2 (S)− λ
∫ S−S0

0
P2 (S − x)ϕ (x) dx−

−λ
∫ S

S−S0
[g0 (S − x) + g1 (S − x)]ϕ(x)dx − λ

∫∞
S

P0 (S − x)ϕ (x) dx
(7)

with boundary conditions P2 (S0) = g1 (S0) and P2 (∞) = 0.
The solution of (3), (5)–(7) must satisfy normalizing condition∫ 0

−∞
P0 (S)dS +

∫ S0

0

[g0 (S) + g1 (S)]dS +

∫ ∞

S0

P2 (S)dS = 1 (8)

and an additional condition

Ṗ2(S0) = ġ1(S0) + ġ0(S0) , (9)

which can be derived by comparing expressions (5)–(7) at S0.
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4 Probability Density Function of Fund’s Surplus for
Small Values of Premium Loading

It is impossible to derive the exact solution for the system (3), (5)–(7) in a general
case of arbitrary premium distribution ϕ (x). However, one can arrive at an
approximate solution under some additional assumptions. Introduce parameter
θ, where 0 < θ < 1, and assume that

bl = (1− θ)λa, bu = (1 + θ)λa . (10)

Parameter θ is similar to insurance premium safety loading in modeling in-
surance risk processes [10]. We further consider an asymptotic case when θ � 1.
In practice, it means that for any value of surplus S the fund spends almost
the same amount it receives in premiums. It is natural to assume that bounds
S1 and S2, which define the domain of hysteresis surplus control, depend on
safety loading θ. More strictly, we assume that for θ → 0 the difference between
bounds S0 (θ) = S2 (θ) − S1 (θ) → ∞, but there is a finite z0 = lim

θ→0
θS0 (θ).

Finally, we represent spending rates in the form bi(s) = bi(θs, θ) and assume
that the following limit exists:

ci(z) = lim
θ→0

bi(z, θ)− λa

θ
. (11)

This assumption is natural and follows from the following. Let b0(s) for example
be linearly dependent on s, i.e.

b0(s) = bl + (bu − bl)
s− S1

S2 − S1
.

By moving the reference point into s = S1 and accounting for (10), we get

b0(s) = λa− θλa(1 − θs

θS0
) .

Wherefrom
c0(z) = −λa(1− z

z0
) .

Consider first the case of S < 0. In this domain we will be looking for the
solution of (3) in the following form:

P0 (S) = θf0 (θS, θ) , (12)

wheref0 (z, θ) is some function. Substituting (12) into (3) and changing variables
θS = z, we get an equation with respect to f0 (z, θ)

θblḟ (z, θ) = λf (z, θ)− λ

∫ ∞

0

f0 (z − θx, θ)ϕ (x) dx . (13)

Assuming that f0 (z, θ) is twice differentiable in z and is uniformly continuous
in θ, and taking Taylor expansion of the integrand with respect to the first
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argument and considering the first three terms of the sum, we get, accounting
for (10), that

f̈0 (z, θ)− ω0ḟ0 (z, θ) +
o
(
θ2
)

θ2
= 0 ,

where

ω0 =
2a

a2
.

Denote

f0 (z) = lim
θ→0

f0 (z, θ) .

As θ → 0 we get the following equation with respect to f0 (z)

f̈0 (z)− ω0ḟ0 (z) = 0 .

Wherefrom

f0 (z) = A1 +A2e
ω0z .

Since the boundary condition is P0 (−∞) = 0 we have that

f0 (z) = Aeω0z , (14)

where the constantA is defined by matching conditions.
Consider now the case of 0 ≤ S ≤ S0. We will look for the solution of (5) in

this domain in the following form:

g0 (s) = θψ0 (θs, θ) , (15)

where ψ0 (z, θ) is assume to be twice continuously differentiable with respect to
z and uniformly continuous with respect to θ. Substituting (12) and (15) into
(5), we get, after substituting variables θS = z

θb0(z, θ)ψ̇0 (z, θ) = λψ0 (z, θ)− λ

∞∫
0

ψ0 (z − θx, θ)ϕ (x) dx+

+λ

∞∫
z
θ

ψ0 (z − θx, θ)ϕ (x) dx− λ

∞∫
z
θ

f0 (z − θx, θ)ϕ (x) dx .

Taking Taylor expansion of ψ0 (z − θx, θ) with respect to the first argument
and considering the first three terms we get

λa2

2 ψ̈0 (z, θ) +
b0(z,θ)−λa

θ ψ̇0 (z, θ)− λ
θ2

∞∫
z
θ

ψ0 (z − θx, θ)ϕ (x) dx+

+ λ
θ2

∞∫
z
θ

f0 (z − θx, θ)ϕ (x) dx+
o(θ2)
θ2 = 0 .

(16)
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Function ψ0 (z, θ) is differentiable and hence bounded. Thus

1

θ2

∞∫
z
θ

ψ0 (z − θx)ϕ (x) dx ≤ maxyψ0 (y, θ)
1

z2
z2

θ2

∞∫
z
θ

ϕ (x) dx ≤

≤ maxyψ0 (y, θ)
1

z2

∞∫
z
θ

x2ϕ (x) dx→ 0θ→0,

since the second moment M
{
ξ2
}
= a2 exists by the model setup. The second

integral in (16) can be evaluated similarly.
Denote

ψ0 (z) = lim
θ→0

ψ0 (z, θ) . (17)

By taking the limit as θ → 0 in (18) we arrive at equations for ψ0 (z)

λa2
2

ψ̈0 (z) + c0(z)ψ̇0 (z) = 0 . (18)

Wherefrom ψ0(z) = B1 +B2

∫ z

0 π0(x)dx,
where

π0(x) = exp(− 2

λa2

x∫
0

c0(y)dy) . (19)

Boundary condition g0 (S0) = 0 now yields ψ0 (z0) = 0. Hence

ψ0 (z) = B

z0∫
z

π0(x)dx . (20)

In derivation of (20) we implicitly assumed that S �= 0. Let now S = 0. Then
from (5) we have

θb0(0, θ)ψ̇0 (0, θ) = λψ0 (0, θ)− λ

∞∫
0

f0 (−θx, θ)ϕ (x) dx .

As θ → 0, we see that ψ0 (0) = f0 (0). From this we obtain the relationship
between constants A and B:

A = B

z0∫
0

π0(x)dx . (21)

We will look for the solution of (6) relative to g1 (s) in the form

g1 (s) = θψ1 (θs, θ) . (22)
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Function ψ1 (z, θ) satisfies the following equation

θb1(z, θ)ψ̇1 (z, θ) = λψ1 (z, θ)− λ

z
θ∫

0

ψ1 (z − θx, θ)ϕ (x) dx .

By once again assuming that ψ1 (z, θ) is twice continuously differentiable with
respect to z and uniformly continuous in θ and taking the Taylor expansion of
the integrand with respect to the first argument, and denoting

ψ1 (z) = lim
θ→0

ψ1 (z, θ) ,

we obtain after taking the limit as θ → 0 the equation relative to ψ1 (z)

λa2
2

ψ̈1 (z) + c1(z)ψ̇1 (z) = 0 ,

the solution of which has the following form

ψ1 (z) = C1 + C2

z∫
0

π1(x)dx ,

where

π1 (z) = exp

⎛⎝− 2

λa2

x∫
0

c1(y)dy

⎞⎠ . (23)

On the lower bound S = 0 from (6) we have

θb1(0, θ)ψ̇1(0, θ) = λψ1(0, θ) .

Hence, as θ → 0, we arrive atψ1 (0) = 0. From this C1 = 0 and

ψ1 (z) = C

z∫
0

π1(x)dx . (24)

Consider the domain S > S0. The surplus probability density function must
now satisfy (7). The solution for (7) takes the form

P2 (S) = θf2 (θS, θ) , (25)

and it is easy to see that f2 (z, θ) satisfies

θbuḟ2 (z, θ) = λf2 (z, θ)− λ

z−z0
θ∫
0

f2 (z − θx, θ)ϕ (x) dx−

−λ

z
θ∫

z−z0
θ

[ψ0 (z − θx, θ) + ψ1 (z − θx, θ)]ϕ (x) dx− λ
∞∫
z
θ

f0 (z − θx, θ)ϕ (x) dx .
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Assuming that f2 (z, θ) is twice continuously differentiable with respect to z
and uniformly continuous in θ, taking Taylor expansion of the integrand with
respect to the first argument and imposing θ → 0 we ultimately obtain the
equation relative to

f2 (z) = lim
θ→0

f2 (z, θ)

for z > z0:

f̈2 (z) + ω0ḟ2 (z) = 0 .

Thus

f2 (z) = D1 +De−ω0z .

Boundary conditions P2 (+∞) = 0 and P2 (S0) = g1 (S0) now yield f2 (+∞) = 0
and f2 (z0) = ψ1 (z0). Hence D1 = 0,

D = Ceω0z0

z0∫
0

π1(x)dx

and

f2 (z) = C

z0∫
0

π1(x)dxe
−ω0(z−z0) . (26)

To obtain the relationship between constants B and C we look at equation
(9), which for θ → 0 yields

ḟ2 (z0) = ψ̇1 (z0) + ψ̇2 (z0) .

It follows from this that

Bπ0(z0) = C(π1(z0) + ω0

z0∫
0

π1(x)dx) . (27)

Finally from normalizing condition (8) as θ → 0 we have

0∫
−∞

f0 (z)dz +

z0∫
0

[ψ0 (z) + ψ1 (z)]dz +

+∞∫
z0

f2 (z)dz = 1 .

Wherefrom

B

z0∫
0

(1 + ω0x)π0(x)dx + C

z0∫
0

(1 + ω0(z0 − x))π1(x)dx = ω0 . (28)

Taking into consideration relations (12), (14), (22), (25), we have that for
θ � 1 the fund’s surplus probability density function P (S) is given by



250 K. Livshits, A. Shkurkin, and K. Yakimovich

P (S) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

θB
θS0∫
0

π0(x)dx eθω0S + o (θ) , S < 0 ,

θ(B
θS0∫
θS

π0(x)dx + C
θS∫
0

π1(x)dx) + o (θ) , 0 ≤ S ≤ S0 ,

θC
θS0∫
0

π1(x)dx e−θω0(S−S0) + o (θ) , S > S0 ,

(29)

where B and C are defined by equations (27) and (28).
The approximation (29) for the solution of the system (3), (5)–(7) can be im-

proved by considering higher-order terms in the expansions of functions fi (z, θ)
and ψi (z, θ) with respect to θ.

5 Conclusion

In this article we have found the probability density function of a non-profit
fund surplus under arbitrary hysteresis surplus control and under additional
assumption of small premium loading. The proposed method can be used to
analyze other non-profit fund models where the premium loading is assumed to
be small.
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Abstract. The goal of this paper is to estimate the probability of ruin
and the moment-generating function of time to ruin an insurance com-
pany in a setting with insurance claims and premiums governed by com-
pound Poisson processes and in the presence of continuous non-insurance
costs.

Keywords: probability of ruin, moment-generating function of time to
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1 Introduction

The article considers a mathematical model of an insurance company in a setting
with insurance premiums that the company receives and claims that the company
pays out both governed by independent compound Poisson processes. The main
difference of the model in question from the well-known Cramér-Lundberg model
with stochastic premiums [1],[2] is that in our model we additionally account for
operating costs that the company bears in order to function.

2 Equation for Probability of Ruin

We assume that the flow of insurance premiums is a Poisson process with inten-
sity λ, premiums ξ are independent and identically distributed random vari-
ables with probability density function ϕ(x) and moments M {ξ} = a and
M

{
ξi
}

= ai, i = 2, 3. Insurance claims η are assumed to be governed by a
Poisson process with intensityμ, claims are also assumed to be i.i.d. random
variables with probability density function ψ(x) and moments M {η} = b and
M

{
ηi
}
= bi, i = 2, 3. The company bears some additional costs that are not

linked to claims. We further assume that these costs are incurred continuously
so that for a time interval t the company incurs costs of ct.

Let S̄(t) be the insurer’s mean surplus at time t. In the model considered
mean surplus at time t will be given by the following expression:

S̄(t) = S(0) + (λa− μb− c)t . (1)

A. Dudin et al. (Eds.): ITMM 2014, CCIS 487, pp. 251–260, 2014.
c© Springer International Publishing Switzerland 2014
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From (1) it follows that the insurer’s surplus is monotonically increasing if

λa = (1 + θ) (μb+ c) , (2)

where θ > 0. If θ < 0 the company becomes bankrupt. The parameter θ is the
insurance premium safety loading.

Let T = inf {t : t ≥ 0, S(t) < 0} and T =∞ if S(t) ≥ 0 ∀t. Random variable
T is the time of ruin [3]. Denote P (S) = Pr {T <∞} as the infinite time ruin
probability with initial surplus S. It can be shown that the ruin probability P (S)
satisfies the following equation

(λ+ μ)P (S) = −cP ′(S) + λ
∞∫
0

P (S + x)ϕ(x)dx+

+μ
S∫
0

P (S − x)ψ(x)dx + μ
∞∫
S

ψ(x)dx .
(3)

The solution for (3) must satisfy the boundary conditions:

P (∞) = 0, P (0) = 1 . (4)

Accordingly, in the model considered the ruin probability does not depend on
the safety loading in case of zero initial surplus unlike in the classical model
[3],[4], Cramér-Lundberg model with stochastic premiums [1],[2] and Markovian
arrival risk model [5], [6], [7].

It is impossible to derive the exact solution of equation (3) in general case.
Hence, it is useful to provide estimates of the ruin probability P (S) under some
additional conditions.

3 Upper Bound for Ruin Probability

We further show that under certain conditions we can arrive at the following
inequality for the probability of ruin that is similar to Cramér inequality [1],[2].

Theorem 1. Let θ > 0 and let equation

λ

∞∫
0

e−kxϕ(x)dx + μ

∞∫
0

ekxψ(x)dx = λ+ μ− kc (5)

have a root k > 0. Then equation (3) has a solution P (S) that satisfies the
following conditions:

1)

P (S) ≤ e−kS ; (6)

2) P (S) is monotonically decreasing continuous function.
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This solution can be obtained as a limit of a sequence of functions Pn(S), n =
1, 2 . . ., defined recursively by

Pn+1(S) =
1
c

S∫
0

e−
(λ+μ)

c (S−u)[λ
∞∫
0

Pn(u+ x)ϕ(x)dx + μ
u∫
0

Pn(u− x)ψ(x)dx+

+μ
∞∫
u

ψ(x)dx]du + e−
(λ+μ)S

c ,

(7)
and the initial approximation P0(S) satisfies conditions 1 – 2.

Proof. Equation (3) can be represented as follows:

P (S) = 1
c

S∫
0

e−
(λ+μ)

c (S−u)[λ
∞∫
0

P (u+ x)ϕ(x)dx + μ
u∫
0

P (u− x)ψ(x)dx+

+μ
∞∫
u

ψ(x)dx]du + e−
(λ+μ)S

c .

(8)

We solve equation (8) by using successive approximations according to (7) and
by letting Pn(S) ≤ e−kS , where k is defined by equation (5). Then

Pn+1(S) ≤ 1
c

S∫
0

e−
(λ+μ)

c (S−u)[λe−ku
∞∫
0

e−kxϕ(x)dx + μe−ku
u∫
0

ekxψ(x)dx+

+μe−ku
∞∫
u

e−kuψ(x)dx]du + e−
(λ+μ)

c S ≤

≤ 1
c

S∫
0

e−
(λ+μ)

c (S−u)e−ku(λ+ μ− kc)du+ e−
(λ+μ)

c S = e−kS .

We will now show that when Pn(S) is monotonically decreasing and continu-
ous, Pn+1(S) is also monotonically decreasing and continuous. We first consider
function

fn(u) = λ

∞∫
0

Pn(u + x)ϕ(x)dx + μ

u∫
0

Pn(u− x)dx + μ

∞∫
u

ψ(x)dx . (9)

For u2 > u1

fn(u2)− fn(u1) =
∞∫
0

(Pn(u2 + x) − Pn(u1 + x))ϕ(x)dx+

+μ
u1∫
0

(Pn(u2 − x)− Pn(u1 − x))ψ(x)dx+

+ μ
u2∫
u1

Pn(u2 − x)ψ(x)dx − μ
u2∫
u1

ψ(x)dx ≤ μ
u2∫
u1

(e−k(u2−x) − 1)ψ(x)dx ≤ 0 ,

since the first two terms are non-positive and due to monotonicity of Pn(S).
Further, for S2 > S1

Pn+1(S2) − Pn+1(S1) =
1
c

S1∫
0

e−
λ+μ

c u(fn(S2 − u)− fn(S1 − u))du+

+ 1
c

S2∫
S1

e−
λ+μ

c ufn(S2 − u)du− (e−
λ+μ

c S1 − e−
λ+μ

c S2) .
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First term is non-positive. According to integral mean-value theorem

1

c

S2∫
S1

fn(S2 − u)e−
λ+μ

c udu = fn(S2 − u0)
1

λ+ μ
(e−

λ+μ
c S1 − e−

λ+μ
c S2) ,

where u0 ∈ (S1, S2). From equalities (9) and (5) it follows that

fn(S2 − u0) ≤ e−k(S2−u0)(λ
∞∫
0

e−kxϕ(x)dx + μ
∞∫
0

ekxψ(x)dx)

= (λ+ μ− kc)e−k(S2−u0) ≤ λ+ μ− kc .

Thus

Pn+1(S2)− Pn+1(S1) ≤ − kc

λ+ μ
(e−

λ+μ
c S1 − e−

λ+μ
c S2) ≤ 0 .

It follows from the above that operator (7) maps the domain of metric space
defined by conditions 1-2 into itself. Let us prove that transformation (7) is a
contraction mapping. Consider a function

F (v) = λ

∞∫
0

e−vxϕ(x)dx + μ

∞∫
0

evxψ(x)dx .

Function F (v) has the following properties: F (0) = λ+ μ;
F ′(0) = −(λa − μb) < 0, as it is assumed that (2) holds, and, hence, is

some neighborhood of v = 0 function F (v)is decreasing. Further, F ′′(v) > 0
and F (v) → ∞ as v → ∞ . Thus, F (v) has a minimum at some point v = k0.
Moreover,

F (k0) < λ+ μ− k0c = γ(λ+ μ− k0c), 0 < γ < 1 ,

and, since k0 < k, then Pn(S) ≤ e−kS ≤ e−k0S .
Consider the following sequence of differences

|Pn+1(S)− Pn(S)|ek0S =

= 1
c |

S∫
0

e−
λ+μ

c (S−u)+k0(S−u)[λ
∞∫
0

(Pn(u+ x)− Pn−1(u+ x))ek0(u+x)e−k0xϕ(x)dx+

+μ
u∫
0

(Pn(u− x)− Pn−1(u− x))ek0(u−x)ek0xψ(x)dx]du| ≤

≤ 1
c

S∫
0

e−
λ+μ

c (S−u)+k0(S−u)λ
∞∫
0

e−k0xϕ(x)dx+

μ
∞∫
0

ek0xψ(x)dx]dumaxs|Pn(S)− Pn−1(S)|ek0S .

From this,

|Pn+1(S)− Pn(S)|ek0S ≤
≤ γ λ+μ−k0c

c

S∫
0

e
λ+μ−k0c

c udu ·maxs|Pn(S)− Pn−1(S)|ek0S ≤
≤ γmaxs|Pn(S)− Pn−1(S)|ek0S .
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Because of the above as n → ∞ |Pn+1(S) − Pn(S)| → 0. According to
contraction mapping principle the sequence Pn(S) converges to the solution of
equation (8), which satisfies conditions 1–2.

Example 1. Consider for illustrative purposes the simplest case of exponentially-
distributed claims and premiums

ϕ(s) =
1

a
exp(− s

a
), ψ(s) =

1

b
exp(−s

b
) . (10)

Solving (3) and accounting for (4) and (10), we arrive in case of θ > 0 at

P (S) =
z2(1 + bz1)

z2 − z1
ez1S +

z1(1 + bz2)

z1 − z2
ez2S , (11)

where

z1,2 = − (λ+ μ)ab+ c(a− b)

2abc
±

√
((λ+ μ)ab + c(a− b))2

4a2b2c2
− θ(bμ + c)

abc
. (12)

For k < 1/b equation (10) can be expressed as follows

λ

1 + ka
+

μ

1− kb
= λ+ μ− kc .

If condition (2) holds, the positive root of this equation satisfying k < 1/b is
defined by the following expression

k =
(λ+ μ)ab + c(a− b)

2abc
−

√
((λ+ μ)ab+ c(a− b))2

4a2b2c2
− (λa− μb− c) .

Figure 1 shows the dependence of ruin probability P (S)(solid lines) on initial
surplus calculated according to expressions (11) and (12), and the dependence
of its upper boundary P̂ (S) (dashed line), calculated according to expression
(11). Parameter values area = 1, λ = 10, b = 10. Parameters μ = (1− ε)λa/(1+
θ)b, c = ελa/(1 + θ). Parameter ε = 0.1. As suggested by Fig. 1 the accuracy
of approximation increases for larger values of initial surplus S and lower values
of safety loading θ.

For small values of safety loading θ an approximate explicit expression can be
derived for root k of equation (5). From expression (2) the equation (5) can be
rewritten as follows

Φ(k, θ) = λ

∞∫
0

e−kxϕ(x)dx + μ

∞∫
0

ekxψ(x)dx + (
λa

1 + θ
− μb)k − (λ+ μ) = 0 .

If θ = 0 equation Φ(k, 0) = 0 has a single root k = 0. Representing function
Φ(k, θ) as a Taylor series centered at k = θ = 0 and considering only first three
terms we will get the following approximation

Φ(k, θ) = (λa2 + μb2)k
2 − 2λaθk = 0 .

Hence when θ is small

k =
2λaθ

λa2 + μb2
+ o(θ) =

2(μb+ c)θ

λa2 + μb2
+ o(θ) . (13)
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Fig. 1. Dependence of the ruin probability and its approximation on initial surplus

4 Ruin Probability for Small Values of Insurance
Premium Safety Loading

The approximation of the ruin probability (6) can be improved when the safety
loading θ is small. Define function

f(S, θ) = P (
(1 − θ)κ

θ
S) , (14)

where κ ≥ 0. Function f(S, θ) satisfies the equation

(λ+ μ)f(S, θ) = −c θ
(1−θ)κ f ′(S, θ) + λ

∞∫
0

f(S + θ
(1−θ)κx, θ)ϕ(x)dx+

+μ
∞∫
0

f(S − θ
(1−θ)κ x, θ)ψ(x)dx +R(S, θ) ,

(15)

where

R(S, θ) = μ

∞∫
S(1−θ)κ

θ

ψ(x)dx − μ

∞∫
S(1−θ)κ

θ

f(S − θ

(1− θ)κ
x, θ)ψ(x)dx

with boundary conditions

f(0, θ) = 1, lim
S→∞

f(S, θ) = 0 . (16)

Theorem 2. If function f (S, θ) is at least three times differentiable in S and
uniformly continuous in θ, then as θ � 1

f(S, θ) = (1− 2(μb+ c)

(λa2 + μb2)
(
2(μb+ c)(λa3 − μb3)

3(λa2 + μb2)2
− κ)θS)e−

2(μb+c)
λa2+μb2

S + o(θ) .

(17)
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Proof. In can be shown that R (S, θ) = o(θ3) when θ � 1.
Hence we will omit the last term in (15) in our further calculations.
Computing Taylor expansion of f(S± θ

(1−θ)κ x, θ) with respect to the first ar-

gument and considering first three terms we will arrive from (15) at the following
equation:

λa2 + μb2
2

f ′′
S (S, θ) + (μb+ c)f ′

S(S, θ) +
o(θ2)

θ2
= 0 . (18)

Denote
f (S) = lim

θ→0
f (S, θ) . (19)

As θ → 0 in (18) we have the following equation with respect to f(S)

λa2 + μb2
2

f ′′
s (s) + (μb + c)f ′

s(s) = 0 . (20)

Its solution, subject to boundary conditions (16), takes the form

f (S) = e
− 2(μb+c)

λa2+μb2
S

. (21)

Let us rewrite f (S, θ) as

f(S, θ) = f(S) + θf1(S, θ) . (22)

Substituting (22) into (15), taking Taylor expansions of f(S ± θ
(1−θ)κx) and

f1(S± θ
(1−θ)κx, θ) and considering terms of order θ3 we have, taking into account

(20), that

λa2+μb2
2 f ′′

1S(S, θ) + (μb+ c)f ′
1S(S, θ) + λa3−μb3

6 f (3)(S)+

+κλa2+μb2
2 f (2)(S) + o(θ3)

θ3 = 0 .
(23)

Denote
f1 (S) = lim

θ→0
f1 (S, θ) . (24)

As θ → 0 in (23) we arrive at the following equation with respect to f1(S)

f ′′
1 (S)+

2(μb+ c)

λa2 + μb2
f ′
1(S) =

4(μb+ c)2

(λa2 + μb2)2
(
2(μb+ c)(λa3 − μb3)

3(λa2 + μb2)2
−κ)e−

2(μb+c)
λa2+μb2

S .

(25)
Its solution satisfies conditions f1(0) = 0, f1(∞) = 0, which follow from (16),
and takes the form

f1(S) = − 2(μb+ c)

(λa2 + μb2)
(
2(μb+ c)(λa3 − μb3)

3(λa2 + μb2)2
− κ)Se−

2(μb+c)
λa2+μb2

S .

Hence the relation (17) is fulfiled.

Thus, we arrive at the following approximation for ruin probability P (S)

P (S) =

= (1− 2(μb+c)
(λa2+μb2)

(2(μb+c)(λa3−μb3)
3(λa2+μb2)2

− κ) θ2

(1−θ)κ S)e
− 2(μb+c)θ

(λa2+μb2)(1−θ)κ
S
+ o(θ) .
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5 Generating Function of Time of Ruin for Small Values
of Premium Safety Loading

Let (Ω,F, P ) be the probability space where trajectories of the insurer’s capital
process S (t) are defined. Let the insurer’s initial surplus at time zero be S. We
distinguish two classes of the surplus process trajectories starting in this point:
define trajectories leading to ruin as {Sω (t) , ω ∈ Ω (S)}and define trajectories
leading to survival as

{
Sω (t) , ω ∈ Ω (S)

}
. Denote t (s, ω) as time to ruin on a

trajectory leading to ruin. Denote

Φ (s, u) =

∫
Ω(S)

e−ut(S,ω)P (dω ). (26)

Since

P (S) =

∫
Ω(S)

P (dω ), (27)

it follows that

ϕ (S, u) =
Φ (S, u)

P (S)
(28)

is the generating function of the conditional time to ruin for initial surplus value
S.

Function Φ (S, u) must satisfy the following boundary conditions:

Φ (S, 0) = P (S) , lim
S→∞

Φ (S, u) = 0, Φ(0, u) = 1 . (29)

The second condition follows from the fact that as S → ∞ the integration
domain in (26) becomes Ω (S)→ ∅.

It can be shown that the function Φ(S, u) satisfies the following equation

(λ+ μ+ u)Φ (S, u) = −c∂Φ(S,u)
∂S + λ

∞∫
0

Φ (S + x, u)ϕ (x) dx+

+μ
S∫
0

Φ(S − x, u)ψ(x)dx+μ
∞∫
S

ψ (x) dx .
(30)

An explicit solution for (30) cannot be obtained. Let us further consider an
asymptotic case when insurance premium safety loading is θ � 1.

Define function

f (S, u, θ) = Φ(
S

θ
, θ2u) . (31)

Theorem 3. If function f (S, u, θ) is at least twice differentiable with respect to
S and uniformly continuous with respect to u and θ then as θ � 1

f (S, u, θ) = eχ1(u)S +O(θ) , (32)
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where

χ1(u) = − μb+ c

λa2 + μb2
−

√
(μb + c)2

(λa2 + μb2)2
+

2u

λa2 + μb2
. (33)

The proof of theorem 3 is analogous to the proof of theorem 2. Thus,

Φ (S, u) = ex1( u
θ2
)θS +O (θ) . (34)

Moments of conditional time to ruin are given by expressions

Tk (S) = (−1)k ∂kΦ (S, u)

∂uk
|u=0 /P (S) .

Therefore, given (2), for θ � 1the mean of time to ruin is given by

t1 (s) =
S

λaθ
+O (1) . (35)

and the variance of time to ruin is

D (S) =
S(λa2 + μb2)

θ3λ3a3
+O

(
1

θ2

)
. (36)

Probability density function of time to ruin for initial surplus S would be
given by

g(t, S) =
S√

2π(λa2 + μb2)t
√

t
exp

{
− (S − λaθt)2

2(λa2 + μb2)

}
+O(θ) . (37)

Assume that as θ → 0 the insurer’s initial surplus S →∞. Denote

m =
1

λaθ
, σ =

√
λa2 + μb2
θ3λ3a3

.

Theorem 4. If θS(θ)→∞ as θ → 0 then the random variable z = t−mS
σ
√
S

has a standard normal distribution.

Proof. Generating function of z is

ϕz (S, u) = e
m
σ

√
Suϕ

(
S, u

σ
√
S

)
=

= exp
{
γu
√

θS + γ2θS(1−
√
1 + 2u

γ
√
θS

}
+O (θ) ,

where γ =
√

λa
λa2+μb2

. Since for x� 1
√
1 + αx = 1+ αx

2 − α2x2

8 + α3x3

16 +o(x3) ,

it follows that

ϕz(S, u) = exp

{
u2

2
− u3

2γ
√

θS
+ o(

1√
θS

}
+O(θ).

As θ → 0 and as θs→∞, we have that lim
θ→0

ϕz (S, jω) = e−
ω2

2 .

Thus for θ � 1 and θs  1 random variable z is asymptotically normally
distributed.



260 K. Livshits and K. Yakimovich

6 Conclusion

In this article, we calculate the main characteristics of the insurance company
in a Cramér-Lundberg model with stochastic premiums and continuous costs
required for insurer to function. We find the ruin probability and the distribution
of time of ruin under additional assumption of small insurance premium safety
loading. The proposed method can be used to analyze other insurance models
where the safety loading is assumed to be small.
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Abstract. In the paper, a non-Markov adaptive retrial queue system
with the incoming MMPP-flow of requests on the condition of a highly-
loaded RQ-system is considered. A system of equations for finding
throughput capacity S, the γ-value, state probability distribution of a
service device and the values of Markov chain managing the incoming
MMPP-flow, is obtained.

Keywords: retrial queue system, highly-loaded RQ-system, throughput
capacity.

1 Introduction

Retrial Queueing Systems (RQ-systems) have been widely used to model tele-
phone networks, local area networks with random multiple access protocols,
broadcasting and cellular radio networks, technological and transport systems
and many other things.

Different RQ-systems have been investigated by J. R. Artalejo [1], [2], B. D.
Choi [3], G. I. Falin [4], [5], I. I. Khomichkov, A. N. Dudin [6], [7], A. A. Nazarov
[8], [9] and others. In RQ-systems the requests entering the system and finding
the service device busy, do not leave the system but join the orbit to retry to
occupy the service device later.

In the article, we study a non-Markov RQ-system with the incoming Markov
Modulate Poisson Process (MMPP-flow) [10], managed by the adaptive access
protocol.

2 Mathematical Model

The input process is MarkovModulate Poisson Process defined by a scalar matrix
ρΛ of arbitrary intensity ρλn and matrix Q of infinitesimal characteristics qνn
of a Markov chain n(t), managing the MMPP-flow. If the service device is free
at the time of a request arrival the request occupies it to be served for some

A. Dudin et al. (Eds.): ITMM 2014, CCIS 487, pp. 261–268, 2014.
c© Springer International Publishing Switzerland 2014
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random amount of time having an arbitrary distribution function B(x). Having
been successfully served the request leaves the service device. If at the time of a
request being served one more request arrives this new request joins the orbit.
From the orbit after some random delay the request with the intensity 1/T (t),
where T (t) is the adapter condition at the current time, retries for service. If the
service device is free the request is served, if the service device is occupied the
request comes back to the orbit.

The task is to find the throughput capacity, stationary state probability dis-
tribution and the values of a Markov chain managing the incoming MMPP-flow
of requests [11].

The system state at the time t is defined by a Markov process

{k(t), z(t), n(t), i(t), T (t)} ,

where k(t) defines the service device state as follows: k(t) = 0 if the service
device is free, and k(t) = 1 if the service device is busy servicing the request;
z(t) – the remaining service time for the request at the service device at the time
t; n(t) – the value of Markov chain, managing MMPP-flow; i(t) – the number
of requests in the orbit; the adapter during the time t changes its states T (t) as
follows:

T (t+Δt) =

{
T (t)− αΔt, if k(t) = 0,
T (t) + βΔt, if k(t) = 1 ,

where α > 0, β > 0 are the adapter parameters, which values are given.
Let us denote probability distributions

P0(n, i, T, t) =
∂P {k(t) = 0, n(t) = n, i(t) = i, T (t) < T}

∂T
,

P1(z, n, i, T, t) =
∂P {k(t) = 1, z(t) < z, n(t) = n, i(t) = i, T (t) < T}

∂T
,

which satisfy the following system of Kolmogorov equations for stationary prob-
ability distribution P0(n, i, T, t) = P0(n, i, T ) and P1(z, n, i, T, t) = P1(z, n, i, T ):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−α
∂P0 (n, i, T )

∂T
= −

(
ρλn +

i

T

)
P0 (n, i, T ) +

∂P1 (0, n, i, T )

∂z
+

+
∑
ν

qνnP0 (ν, i, T ),

β
∂P1(z, n, i, T )

∂T
=

∂P1 (z, n, i, T)

∂z
− ∂P1 (0, n, i, T )

∂z
− ρλnP1 (z, n, i, T) +

+
i+ 1

T
B(z)P0 (n, i+ 1, T ) + ρλnB(z)P0(n, i, T )+

+ρλnP1(z, n, i− 1, T ) +
∑
ν

qνnP1 (z, ν, i, T ) .

(1)
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Let us denote the vectors

P0(i, T ) = {P0 (1, i, T ) , P0 (2, i, T ) , ..., P0 (N, i, T )} ,
P1(z, i, T ) = {P1 (z, 1, i, T) , P1 (z, 2, i, T) , ..., P1 (z,N, i, T)} ,

(2)

and define partial characteristic functions

H0(u1, u2) =
∑
i

e−u1i

∞∫
0

e−u2TP0(i, T )dT ,

H1(z, u1, u2) =
∑
i

e−u1i

∞∫
0

e−u2TP1(z, i, T )dT . (3)

Taking into account (2) and (3) we can rewrite the system (1) as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H0 (u1, u2) (Q− ρΛ+ αu2I) +

∞∫
u2

∂H0 (u1, x)

∂u1
dx+

∂H1 (0, u1, u2)

∂z
= 0 ,

H0 (u1, u2)B(z)ρΛ− eu1

∞∫
u2

∂H0 (u1, x)

∂u1
dxB(z)+

+H1 (z, u1, u2)
(
Q− (

1− e−u1
)
ρΛ− βu2I

)
+

+
∂H1 (z, u1, u2)

∂z
− ∂H1 (0, u1, u2)

∂z
= 0 .

(4)
We assume that for the parameters ρΛ,Q and b of the adaptive RQ-system there

works the condition (R Λ E) b = 1, where b =
∞∫
0

xdB(x) is the mean service time

value.

3 Studying a RQ-System under a Heavy Load Condition

We will study the system (4) under a heavy load condition [12], defining the
throughput capacity S of an adaptive RQ-system as a supremum of those ρ-
values for which there exist stationary function regimes of an adaptive RQ-
system, and considering the boundary condition ρ ↑ S fulfilled. The system (4)
will be studied on the condition that ε = S − ρ and ε→ 0.

Substituting
ρ = S − ε, u1 = εw1, u2 = εw2 ,

H0(u1, u2) = F0(w1, w2, ε), H1(z, u1, u2) = F1(z, w1, w2, ε) ,



264 T. Lyubina and I. Garayshina

we get the system (4) in the form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F0 (w1, w2, ε) (Q− (S − ε)Λ+ αεw2I)+

+

∞∫
w2

∂F0 (w1, x, ε)

∂w1
dx+

∂F1 (0, w1, w2, ε)

∂z
= 0,

F0 (w1, w2, ε) (S − ε)B(z)Λ− eεw1

∞∫
u2

∂F0 (w1, x, ε)

∂w1
dxB(z)+

+
∂F1 (z, w1, w2, ε)

∂z
+

+F1 (z, w1, w2, ε)
(
Q− (

1− e−εw1
)
(S − ε)Λ− βεw2I

)−
−∂F1 (0, w1, w2, ε)

∂z
= 0 .

(5)

Theorem 1. The γ-value and the throughput capacity S of a non-Markov adap-
tive RQ-system with incoming MMPP-flow of requests is defined by a system of
equations {

γR0 (S, γ)E− SR1 (S, γ)ΛE = 0 ,
αR0 (S, γ)E− βR1 (S, γ)E = 0 ,

(6)

where an adapter parameters α, β are given, Rk (S, γ) – state probability distri-
bution of the service device and values of a Markov chain managing the incoming
MMPP-flow, is defined by the equations

R0 (S, γ) {(SΛ+ γI) b + I}E = 1 ,
R0 (S, γ) +R1 (S, γ) = R ,

(7)

where b =
∞∫
0

xdB(x) – is the mean service time value, R – stationary probability

distribution of Markov chain values n(t), defined by the system RQ = 0 and
RE = 1.

Proof. There are two stages of proving.
Stage 1:

Let lim
ε→0

F0(w1, w2, ε) = F0(w1, w2), lim
ε→0

F1(z, w1, w2, ε) = F1(z, w1, w2),

fulfilling this limiting transition in (5) we obtain a system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F0 (w1, w2) (Q− SΛ) +

∞∫
w2

∂F0 (w1, x)

∂w1
dx+

∂F1 (0, w1, w2)

∂z
= 0,

F0 (w1, w2)B(z)SΛ−
∞∫

u2

∂F0 (w1, x)

∂w1
dxB(z) + F1 (z, w1, w2)Q+

+
∂F1 (z, w1, w2)

∂z
− ∂F1 (0, w1, w2)

∂z
= 0 .

(8)
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We will seek for the solution of the system F0(w1, w2) and F1(z, w1, w2) as

F0(w1, w2) = R0 (S, γ)Φ(w1, w2) = R0 (S, γ)φ(w2 + w1γ) ,
F1(z, w1, w2) = R1(z, S, γ)Φ(w1, w2) = R1(z, S, γ)φ(w2 + w1γ) ,

(9)

where γ – some positive constant, its value will be defined later, and a function
φ(w) at infinity is equal 0, then

∞∫
w2

∂F0(w1, x)

∂w1
dx =

∞∫
w2

R0 (S, γ)
∂φ(x+ w1γ)

∂w1
dx =

= γR0 (S, γ)

∞∫
w2

φ′(x+ γw1)dx = −γR0 (S, γ)φ(w2 + γw1) ,

so the system (8) will be written in the form⎧⎪⎨⎪⎩
R0 (S, γ) (Q− SΛ− γI) +

∂R1(0, S, γ)

∂z
= 0,

R0 (S, γ) (SΛ+ γI)B(z) +R1(z, S, γ)Q+
∂R1(z, S, γ)

∂z
− ∂R1(0, S, γ)

∂z
= 0 .

(10)
By applying the Laplace-Stieltjes transform to the system (10) we have

B∗(η) =

∞∫
0

e−ηzdB(z),

∞∫
0

e−ηzdR1(z, S, γ) = R∗
1(η, S, γ) ,

∞∫
0

e−ηzd
∂R1(z, S, γ)

∂z
= −∂R1(0, S, γ)

∂z
+ ηR∗

1(η, S, γ) ,

then the system(10) has the form⎧⎪⎨⎪⎩
R0 (S, γ) (Q− SΛ− γI) +

∂R1(0, S, γ)

∂z
= 0,

R0 (S, γ) (SΛ+ γI)B∗(η) +R∗
1(η, S, γ)Q+ ηR∗

1(η, S, γ)− ∂R1(0, S, γ)

∂z
= 0 .

Thus it is not difficult to get the following equation:

R∗
1(η, S, γ) (ηI+Q) = R0 (S, γ) {(SΛ+ γI) (1−B∗(η))−Q} . (11)

With η = 0, denoting R∗
1 (0, S, γ) = R1 (S, γ), we can rewrite the equation as:

(R0 (S, γ) +R1 (S, γ))Q = 0 ,
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which means RQ = 0, where

R = R0 (S, γ) +R1 (S, γ) (12)

satisfies the condition of normalizing RE = 1.
According to the equation (12) to find the vectors R0 (S, γ) and R1 (S, γ) it

is enough to find one of them. We can rewrite the equation (11) as

R∗
1(η, S, γ) = R0 (S, γ) {(SΛ+ γI) (1−B∗(η))−Q} (ηI+Q)−1 . (13)

As
R1 (S, γ) = lim

η→0
R∗

1(η, S, γ) =

= R0 (S, γ) lim
η→0
{(SΛ+ γI) (1−B∗(η))−Q} (ηI+Q)

−1
,

(14)

we can define the value of the limit (14), which is not equal to the product of

limits, as there is no limit of the matrix (ηI+Q)−1. We shall expand the matrix

(ηI+Q)
−1

in the form of

(ηI+Q)−1 =
1

η
A+B+O(η) , (15)

where the matrices A and B will be defined below.
The equation (15) can be rewritten as

I = (ηI+Q)

(
1

η
A+B+O(η)

)
=

1

η
QA+QB+A+O(η) ,

or

I =

(
1

η
A+B+O(η)

)
(ηI+Q) =

1

η
AQ+BQ+A+O(η) ,

according to it for the matrix A we get the equation AQ = QA = 0, with its
solution

A = ER . (16)

Matrix B is the solution of the equation QB = BQ = I−A = I−ER .
Let us consider the limit in (14). Because of (16) we have

lim
η→0
{(SΛ+ γI) (1−B∗(η))−Q} (ηI+Q)

−1
=

= lim
η→0
{(SΛ+ γI) (1−B∗(η))−Q}

(
1

η
A+B+O(η)

)
=

= lim
η→0

{
(SΛ+ γI)

1−B∗(η)
η

A− 1

η
QA+

+ (SΛ+ γI) (1−B∗(η))B−QB+O(η)} =
= (SΛ+ γI) bA−QB = (SΛ+ γI) ba+A− I ,

where b = lim
η→0

1−B∗(η)
η

= lim
η→0

(−B∗′(η)) = −B∗′(0) =

∞∫
0

xdB(x) = b .

It follows that we get the equation

R1 (S, γ) = R0 (S, γ) {(SΛ+ γI) bA+A− I} ,
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because of (16) it can be rewritten as

R1 (S, γ) +R0 (S, γ) = R0 (S, γ) [(SΛ+ γI) b+ I]A =
= R0 (S, γ) [(SΛ+ γI) b+ I]ER .

As R0 (S, γ) +R1 (S, γ) = R, the equality of the vectors

R = {R0 (S, γ) [(SΛ+ γI) b+ I]E}R
results in that for the first multiplier in the right-hand member of this equation
the following equality is satisfied

R0 (S, γ) [(SΛ+ γI) b+ I]E = 1 ,

which defines the components of the vector R0 (S, γ) and is the same as (7).
Let us find one more condition which defines the components of the vector

R0 (S, γ). The Laplace-Stieltjes transform R∗
1(η, S, γ) exists for all η with posi-

tive real parts, but because of the equality of (13) and

(ηI+Q)−1 =
1

|ηI+Q|D(η),

where D(η) is the transpose to the matrix, composed of algebraic cofactors to
the matrix elements, ηI+Q, we may have R∗

1(η, S, γ) in the form

R∗
1(η, S, γ) = R0 (S, γ) {(SΛ+ γI) (1−B∗(η))−Q} D(η)

|ηI+Q| . (17)

With η = ηl, where ηl is roots of an equation, the denominator in (17) turns
into zero, but the numerator is also zero, so for all ηl we have the equations

R0 (S, γ) {(SΛ+ γI) (1−B∗(ηl))−Q}D(ηl) = 0 ,

defining the vector components R0 (S, γ) .
Stage 2. To find S and γ we sum up all the equations of the system (5) over

k and n. With B(z =∞) = B(∞) = 1 and sending ε→ 0, we have:

F0 (w1, w2)αw2E−w1

∞∫
w2

∂F0 (w1, x)

∂w1
Edx−F1 (z, w1, w2) (w1SΛ+ βw2I)E = 0.

(18)
By applying solutions (9) to (18) we get the following equation

αw2R0 (S, γ)E+ γw1R0 (S, γ)E−R1 (S, γ) (w1SΛ+ βw2I)E = 0 . (19)

We rewrite the equation (19) as follows:

w1 {γR0 (S, γ)E− SR1 (S, γ)ΛE}+ w2 {αR0 (S, γ)E− βR1 (S, γ)E} = 0 ,

To turn it into an identity over w1 and w2 it is enough to have the following{
γR0 (S, γ)E− SR1 (S, γ)ΛE = 0 ,
αR0 (S, γ)E− βR1 (S, γ)E = 0 ,

which coincides with (6), and because of (7) they set an equation system for two
indeterminates S and γ, defined by the system. The theorem is proved.
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4 Conclusions

Thus, an adaptive RQ-system MMPP|GI|1 under heavy load condition is inves-
tigated. As a result a system of equations (6)-(7) to find throughput capacity
S and the γ-value, and also the probability distribution Rk (S, γ) of a service
device state and values of a Markov chain managing the incoming MMPP-flow,
is obtained.
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Abstract. A new access scheme in integrated wireless networks which is
based on virtual partition of channels among voice and data calls is pro-
posed. In this scheme a voice call occupies a free channel in its own zone
and if there is no available channel in the given zone a handover voice
call searches for an idle channel in another zone. A threshold for number
of handover voice calls in zone of channels for data calls is defined. To
determine the access scheme of new data calls a state-dependent thresh-
old based rule is introduced. An effective method to calculate the QoS
metrics of the defined access scheme is developed. Some sample results
illustrating the numerical experiments are collected and analyzed.

Keywords: integrated networks, voice and data calls, partition of chan-
nels, quality of service metrics, calculation method.

1 Introduction

In the last few decades the teletraffic theory has become a very important and
effective scientific discipline representing a set of probabilistic methods to solve
problems of designing and optimization of telecommunication systems. Informa-
tion technology solutions require analytical, numerical, approximate, simulation
and hybrid techniques. The current state of mathematical theory of the teletraffic
problems has been collected in a detailed review [1]. That paper and other ones
justify that performance evaluation of wireless networks plays a central role, see
for example [2], [4], [5], [8], [13]. Developing effective methods to calculate QoS
metrics of integrated cellular networks under various Call Admission Control
(CAC) schemes are important, see [10], [12].

Main goals of any CAC when determining the rules is to use the scarce re-
sources (frequencies, time slots, codes and their combinations). These rules are
necessary to prevent (or minimization) the conflict situations due to employment
of specified resources as well as to satisfy the desired QoS level for heterogeneous
calls.

A. Dudin et al. (Eds.): ITMM 2014, CCIS 487, pp. 269–276, 2014.
c© Springer International Publishing Switzerland 2014
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In an integrated cellular network calls of real-times (e.g. voice calls) and non-
real times (e.g. data calls) are distinguished. In such networks either CAC based
on guard channels scheme or CAC based on cut-off scheme are used. In both
schemes all channels are available for calls of any type.

To reduce the possibility of conflict situations the schemes which are based
on the partition of pool of channels between heterogeneous calls are more useful.
Literature review shows that models of integrated cellular networks with such
kind of access schemes are insufficiently investigated.

Note that fixed (rigid or isolated) partition of channels is not effective one as
noted by [6] and thus other schemes are required. It should be underlined that
non-isolated schemes of partition of channels in networks with single traffic (a
network of the second generation) have been offered in [9] and in Chapter 1 of
the book [11] (pp. 18 and 19). The main contribution is that in these schemes the
partition of channels is not rigid, i.e. the scheme of virtual partition of channels
(Virtual Partitioning, VP) is suggested.

In the present paper a multi-parametric VP-scheme for partition of channels
in integrated cellular networks is proposed. Exact formulas to calculate QoS
metrics of such CAC scheme are developed. Figures generated by results of
several sample numerical experiments are shown and analyzed.

2 VP-scheme of Partition

A base station of integrated cellular network contains of N > 1 radio channels.
These channels are divided into two parts: a number of Nv channels is assigned
for voice calls only and the remaining Nvd = N − Nv channels are used by
both voice and data calls. In other words, the pool of channels is divided into
individual zone with Nv channels (for voice calls only) and common one with
Nvd channels (both for voice and data calls).

Virtual partition means the following: on termination of processing of the
v-call in a v-zone, the released channel is transferred into the vd-zone if there is
a v-call in that zone and simultaneously the channel in a vd-zone which process
a v-call, is transferred into the v-zone.

In this network four types of Poisson-type arrival traffics, i.e. new (ov-calls)
and handover voice calls (hv-calls), furthermore new (od-calls) and handover
data calls (hd-calls) are assumed. Intensity of x-calls is λx, x ∈ {ov, hv, od, hd},
respectively.

Distribution function of channel holding time for both kind of calls is supposed
to be exponential the mean for voice calls (new or handover) is 1/μv , and the
corresponding parameter for data calls (new or handover) is 1/μd . Identity of
channel holding times for new and handover calls of both types is explained by
the memoryless property of the exponential distribution.

Access of v-calls is specified by the following rules:

– If upon arrival an ov-call, there is free channel in v-zone, then it is accepted;
otherwise, it is rejected.
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– If upon arrival an hv-call, there is free channel in v-zone, then it is accepted;
otherwise, free channel is searched in vd-zone. At that limit to maximum
number of hv-calls in vd-zone is defined, i.e. maximum number of hv-calls
in vd-zone is Rhv, 1 ≤ Rhv ≤ Nvd. If at the moment of arriving an hv-call,
number of hv-calls in vd-zone is equal Rhv, then it is rejected. Note that the
average channel holding time for hv-calls in vd-zone is 1/μv, too.

Access of d-calls is specified by the following rules:

– If upon arrival an hd-call, there is free channel in vd-zone, then it is accepted;
otherwise, it is rejected.

– If upon arrival an od-call, the number of d-calls in vd-zone is less than
Rod, 1 ≤ Rod ≤ Nvd − 1, then it is accepted; otherwise, it is rejected.

The primary goal of our investigation is to find the main QoS metrics of this
system, namely, the loss probabilities of calls for each type.

3 Method to Solve the Problem

The state of a cell is described by a two-dimensional vector n = (nd, nv) where
nd and nv denote the total number of data calls and voice calls, respectively.
Then the state space of the corresponding two-dimensional Markov chain (2-D
MC) is defined as follows:

S = {n : nd = 0, 1, . . . , Nvd; nv = 0, 1, . . . , Nv +Rhv; nd + nv ≤ N}. (1)

According to the introduced access scheme, non-negative elements of generating
matrix (Q-matrix) are determined from the following relationships:

q(n,n′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

λd if nd < Rod, n′ = n+ e1,
λhd if nd ≥ Rod, n′ = n+ e1,
λv if nv < Nv, n′ = n+ e2,
λhv if Nv ≤ nv < Nv +Rhv, n′ = n+ e2,
ndμd if n′ = n− e1,
nvμv if n′ = n− e2,
0 in other cases,

(2)

where λv = λov + λhv, λd = λod + λhd, e1 = (1, 0), e2 = (0, 1).
It is easy to show that given finite 2-D is irreducible, so in this chain equilib-

rium regime exists. Let p(n) denote the stationary probability of state n ∈ S.
The above-mentioned QoS metrics are determined as appropriate marginal

distributions of the defined 2-D MC.
Let Px be the loss probability of x-calls, x ∈ {hv, ov, hd, od}. Taking into

account described above rules for accepting of heterogeneous calls and by us-
ing PASTA-theorem [14] we obtain the following formulas to calculate the QoS
metrics of the network:
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Pov =
∑
n∈S

p(n)I(nv ≥ Nv); (3)

Pod =
∑
n∈S

p(n)I(nd ≥ Rod); (4)

Phd =
∑
n∈S

p(n)δ(nd + nv, Nvd); (5)

Phv =
∑
n∈S

p(n)
(
δ(nv, Rhv)

(
1− δ(nd + nv, Nvd)

)
+

+
(
1− δ(nv, Rhv

)
δ(nd + nv, Nvd)

)
; (6)

where δ(i, j) are Kronecker’s symbols, I(A) is the indicator function of event A.
Thus, to calculate these QoS metrics, as usual the solution of system of global
balance equations (SGBE) is required. In general, due to the large state space we
face to the state space explosion problem. However, in this case the considered
SGBE has analytical solution in multiplicative form. Namely, we have

Proposition. The stationary distribution has the following multiplicative form:
Case Rod ≤ Nvd −Rhv :

p(i, j)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

vi
d

i!
vj
v

j! p(0, 0) if 0 ≤ i ≤ Rod, 0 ≤ j ≤ Nv,(
vd
vhd

)Rod vi
hd

i!
vj
v

j! p(0, 0) if Rod + 1 ≤ i ≤ Nvd, 0 ≤ j ≤ Nv,(
vv
vhv

)Nv vi
d

i!

vj
hv

j! p(0, 0) if 0 ≤ i ≤ Rod, Nv + 1 ≤ j ≤ Nv +Rhv,(
vd
vhd

)Rod
(

vv
vhv

)Nv vi
hd

i!

vj
hv

j! p(0, 0)
if Rod + 1 ≤ i ≤ Nvd − 1,

Nv + 1 ≤ j ≤ min(Nv +Rhv, N − i);

(7)

Case Rod > Nvd −Rhv :

p(i, j)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

vi
d

i!
vj
v

j! p(0, 0) if 0 ≤ i ≤ Rod, 0 ≤ j ≤ Nv,(
vd
vhd

)Rod vi
hd

i!
vj
v

j! p(0, 0) if Rod + 1 ≤ i ≤ Nvd, 0 ≤ j ≤ Nv,(
vv
vhv

)Nv vi
d

i!

vj
hv

j! p(0, 0)
if 0 ≤ i ≤ Rod, Nv + 1 ≤ j ≤

min(Nv +Rhv, N − i),(
vd
vhd

)Rod
(

vv
vhv

)Nv vi
hd

i!

vj
hv

j! p(0, 0)
if Rod + 1 ≤ i ≤ Nvd − 1,

Nv + 1 ≤ j ≤ N − i;

(8)

In both formulas as usual p(0, 0) is determined by the normalizing condition.
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Proof of this fact is based on Kolmogorov’s theorem about reversibility of 2-D
MC, see for example [7]. Indeed, it is easily shown that there is no circulation
between states n,n+e1,n+e2,n+e1+e2 of the state diagram of the underlying
2-D MC. Indeed, in both cases Rod ≤ Nvd−Rhv and Rod > Nvd−Rhv circulation
flow among the indicated four states in both directions (clockwise and counter
clockwise) is equals λdλv(nd + 1)μd(nv + 1)μv. In other words, system of local
balance equations (SLBE) is fulfilled, i.e. there is a general solution of the SLBE
for state probabilities. Thus by choosing the path (0, 0), (1, 0), , (i, 0), (i, 1), , (i, j)
from state (0, 0) to state (i, j) we find that multiplicative solution (7) (or (8)) is
hold. Note that in this proof scheme it is required take into account four cases
in formulas (7) and (8) which are indicated in the right sides of the indicated
formulas.

Now we are ready to obtain the respective loss probabilities in the following
explicit formulas

Pov =

Nvd−Rhv∑
i=0

Nv−Rhv∑
j=Nv

p(i, j) +

Nvd∑
i=Nvd−Rhv+1

N−i∑
j=Nv

p(i, j); (9)

Phv =

Nvd−Rhv∑
i=0

p(i, Nv +Rhv) +

Nvd∑
i=Nvd−Rhv+1

p(i, N − i); (10)

Pod =

Nvd∑
i=Rod

min(Nv+RhvN−i)∑
j=0

p(i, j); (11)

Phd =

Nv−1∑
i=0

p(Nvd, i) +

Nvd∑
i=Nvd−Rhv

p(i, N − i). (12)

4 Numerical Results

The developed above explicit formulas allow us to investigate behavior of QoS
metrics of the proposed partition scheme over any range of change of values of
loading parameters of heterogeneous calls and number of channels. First of all,
here it is assumed that allocation of entire pool of channels between zones is fixed
and only regulated parameters are Rhv and Rod. It is clear that the increase in
value of one of the parameters Rhv and Rod (in an admissible area) favorably
influences the QoS metric of calls of the corresponding type only.

The initial data for total number of channels and loading parameters of het-
erogeneous calls are as in [3], i.e.

N = 30, λo + λh = 0.15, λod + λhd = 0.3, μ−1
v = 2, μ−1

d = 120.

Below assume that Nv = 12, Nvd = 18 and 30 % of the total intensity of voice
calls are handover voice calls and 80 % of the total intensity of data calls are
new data calls.
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Fig. 1. Pv vs Rhv; 1− Phv , 2− Pov

Consider the results of numerical experiments for the model with VP-scheme
for partition of channels. In Fig. 1 the dependency of QoS metrics on the pa-
rameter Rhv is shown. It is seen from Fig. 1 that function Phv decreases in small
values of parameter Rhv with high speed, thereafter it becomes almost constant;
function Pov increases with insignificant speed in small values of indicated pa-
rameter, thereafter it becomes almost constant also. Almost constants are both
functions Pod and Phd versus Rhv (see Fig. 2). Such behavior of functions Pod

and Phd is explained via small intensity of handover voice calls.
Dependency of QoS metrics on the parameter Rod are shown in Figs. 3 and

4. Here both functions Pov and Phv increases with insignificant speed in small
values of indicated parameter, thereafter it becomes almost constant (see Fig. 3).
However, function Pod decreases with significant speed versus Rod while function
Phd is almost constant one (see Fig. 4).

Fig. 2. Pd vs Rhv ; 1− Phd, 2− Pod

Fig. 3. Pv vs Rod; 1− Phv, 2− Pov
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It should be noted that as these numerical results show that all QoS metrics
have monotony property. These facts allow us to develop the algorithms to find
the set of effective values in order to satisfy the given QoS level.

Fig. 4. Pd vs Rod; 1− Pod, 2− Phd

5 Conclusions

In this paper, a virtual scheme to partition of entire pool of channels of isolated
cell in integrated wireless networks was proposed. In accordance to this scheme
all channels are virtually distributed between voice and data calls and there
are limits to the number of handover voice calls and new data calls in zone of
channels for data calls. The indicated limits are state-dependent parameters.

Explicit formulas to calculate loss probabilities of the network under given
partition scheme were developed. The obtained formulas allow us to solve the
problems related to satisfy desired QoS level of heterogeneous calls. These prob-
lems are subject of future research.
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Abstract. This paper describes a model of transit node of network for
data transmission, which distributes an input flow in several outgoing di-
rections. In addition the paper presents investigations of quality influence
of communication channels, distribution of incoming traffic in outgoing
directions and strategy of limited buffer memory sharing of transit node
between communication channel queue on the throughput of network
segments with various speed of incoming and outgoing interfaces.

Keywords: star network, memory lock, throughput, mathematical
model, Markov chain, buffer memory sharing strategy, traffic split.

1 Introduction

One of the main factors characterizing operational parameters of network are lim-
ited buffer memory locks of the switching (2nd level of network architecture) [1]
and routing nodes (3rd level of network architecture) [2]. The throughput of the
network fragment is mainly defined by the capacity of buffer memory of transit
node. When distributing incoming traffic for transit node in the outgoing direc-
tions, the volume of the missed flow considerably depends on strategy of limited
buffer memory sharing between output interfaces. The main problem for the ar-
chitects to solve is how to divide the shared buffer space for storing transit data
packages between output communication channels [3–5]. One of the first buffer
memory sharing research was performed in [6]. Originally the classification of
various schemes of buffer memory division was offered in [7]. As the operation of
computer networks has a significantly discrete character [8, 9], ref. [10] describes
studying the effect of buffer memory locks on speed of network fragments using
queuing systems with finite storage and discrete time. The research results were
developed and reviewed by author: the comparative analysis for the three strate-
gies of limited buffer memory division in terms of queuing systems with discrete
time of the served load index was performed. This paper is further development
of this research. Effect of buffer memory locks of transit node on the share of the
served loading by a star-like network fragment with various speed of incoming
and outgoing interfaces is analyzed.

� This work is performed under the state order No. 1.511.2014/K of the Ministry of
Education and Science of the Russian Federation.

A. Dudin et al. (Eds.): ITMM 2014, CCIS 487, pp. 277–286, 2014.
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2 Discrete Model of Star-Like Network Segment with
Traffic Distribution

Consider a star-like network segment, including M + 1 links of data transmis-
sion where the information flow arrives into the central transit node through the
one incoming communication channel and is distributed along the M outgoing
directions. Assuming that all incoming communication channels have identical
physical speeds for data transmission, and data transmission speed in the incom-
ing channel is S times higher. Besides, consider that time of package processing
during receiving and sending in sending and receiving nodes is the same. Then
time of the full transfer cycle of package t will be identical for all incoming links
of the considered fragment, and the time for an incoming link is t/S. Let us
consider that the package which arrived in transit node in the current cycle t,
will be transferred through the output channel only in the next cycle. Note that
during the time t — S packages can arrive into the transit node through incom-
ing channel whereas only one package can leave through each of the outgoing
directions. Assume that error-free transfer of data package in the incoming and
outgoing channel is defined by F and Fm, m = 1,M probabilities, respectively.
All packet flow entering the transit node is distributed in m-th output channel
with Bm,

∑M
m=1 Bm = 1 probability. Bm values can be determined as the shares

of incoming flow sent to m-th outgoing channel. It is not difficult to see that
the time of error-free packet transfer through the each internodal connection is
a random value. This value has the geometrical distribution law with parameter
F and Fm, m = 1,M in incoming and outgoing channels, respectively.

The pool of shared buffer memory of volume K for packet storing in queues
to output interfaces of transit node. The queue size qm to each m-th outgoing
channel is limited by the limiting value of Nm ≤ K determined by strategy of
division of buffer memory between outgoing channels. For each incoming packet
sent to the certain incoming channel the buffer is allocated if the output queue
qm for the given direction do not exceed the maximum size of qm < Nm. Besides,
queues to outgoing communication channels restricted by

∑M
m=1 qm < K. Ob-

viously, that in each case for division of buffer pool between outgoing directions
the queue size to m-th channel qm does not exceed the value of Qm which meets
the following conditions: Qm ≤ Nm and

∑M
m=1 Qm = K.

Generally there are five strategies for division of buffer memory between
outgoing communication channels [7]. Two of them are extreme: full-accessible
and full division strategies. The other three strategies are intermediate and al-
low various implementations [7]. Let us analyze three strategies: full-accessible
(Nm = K), full division (Nm = K/M) and one intermediate (K/M < Nm < K,∑M

m=1 Qm = K).
Behavior of the considered network fragment is represented as the Markov

queuing system with discrete time, finite storage and the M servers [11]. The
incoming flow is defined by the quality of the incoming channel F and parameter
of incoming connection speed S, and service time is defined by the quality of
m-th incoming channel Fm. Distribution of incoming requests of queuing system
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along M servers is set by probabilities Bm, m = 1,M . Queue dynamics to output
communication channels of this queuing system under stationary conditions is
described by Markov chain in the M -dimensional space. The set of possible
conditions of Markov chain is determined by division of buffer memory strategy
between incoming channels and does not exceed the value of Nm + 1.

In Markov discrete chain with finite number of states describing considered
queuing system in the established mode, we will define transitional probabilities
πJ
I from state I to state J . Here I and J — M -bit numbers according to initial

and changed states with value ranges of each bit from 0 to Nm: I = i1, . . . , iM ;
im = 0, Nm; J = j1, . . . , jM ; jm = 0, Nm; m = 1,M .

Denote state probabilities of M -dimensional Markov chain by Pi1,...,iM , im =
0, Qm, m = 1,M . It is obvious that the record Pi1,...,iM is equivalent to the
record PI . One of the main characteristics of storage-limited queuing system is
throughput [11]:

Z(M,K,F,F ,B) =

M∑
m=1

Fm

Q1∑
i1=0

· · ·
Qm−1∑
im−1=0

Qm∑
im=1

Qm+1∑
im+1=0

· · ·
QM∑
iM=0

Pi1,...,iM , (1)

where F = {F1, . . . , FM} is vector of values Fm, m = 1,M . In case of uniformity
of all outgoing directions this vector is denoted as F∗. B = {B1, . . . , BM} — is
vector of values Bm, m = 1,M .

3 Full-Accessible Buffer Memory Sharing Strategy

Full-accessible buffer memory sharing strategy provides full availability of the
whole buffer pool for any outgoing direction of transit node. In this case the
package queue for any outgoing channels can occupy all buffer memory of transit
node.

Consider the operation of star-like network fragment at full-accessible buffer
memory sharing as the fragment with the following parameters: two outgoing
channels (M = 2) divide the buffer pool of transit node with volume K = 2,
speed parameter of incoming channel is S = 2. In this case Nm = 2. Table 1
shows transition probabilities grouped by identity of changed status J .

The equilibrium equations describing employment of buffer space of transit
node by packets to various outgoing communication channels under stationary
conditions can be written as follows:

P00F (2− F ) = P10F1(1− F )2 + P01F2(1− F )2 + P11F1F2(1− F )2;

P10

[
F (2− F ) + F1(1 − F )2 − 2F1FB1(1− F )

]
= 2P00FB1(1− F ) + 2P01F2×

×FB1(1− F ) + P11

[
F2(1 − F1)(1 − F )2+ 2F2F1FB1(1− F )

]
+ P20F1(1− F )2;

P01

[
F (2− F ) + F2(1 − F )2 − 2F2FB2(1− F )

]
= 2P00FB2(1− F ) + 2P10F1×

×FB2(1− F ) + P11

[
F1(1 − F2)(1 − F )2+ 2F1F2FB2(1− F )

]
+ P02F2(1− F )2;
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P11

[
F1 + F2 − F (2− F )(F1B1 + F2B2)− F1F2(1− F )2 − 2F 2F1F2B1B2

]
=

= 2P00F
2B1B2 + P10

[
(1 − F1)FB2(2− F ) + 2F1F

2B1B2

]
+ P01

[
(1− F2)F×

×B1(2− F ) + 2F2F
2B1B2

]
+ P20F1FB2(2− F ) + P02F2FB1(2− F );

P20

[
F1 − F1FB1(2− F )

]
= P00F

2B2
1 + P10

[
(1− F1)FB1(2− F ) + F1F

2B2
1

]
+

+P01F2F
2B2

1 + P11

[
F2(1 − F1)FB1(2− F ) + F2F1F

2B2
1

]
;

P02

[
F2 − F2FB2(2− F )

]
= P00F

2B2
2 + P01

[
(1− F2)FB2(2− F ) + F2F

2B2
2

]
+

+P10F1F
2B2

2 + P11

[
F1(1 − F2)FB2(2− F ) + F1F2F

2B2
2

]
.

Table 1. Transition probabilities

πj1j2
i1i2

i1 i2 j1 j2
(1− F )2 0 0 0 0

F1(1− F )2 1 0 0 0

F2(1− F )2 0 1 0 0

F1F2(1− F )2 1 1 0 0

2FB1(1− F ) 0 0 1 0

(1− F1)(1− F )2 + 2F1FB1(1− F ) 1 0 1 0

2F2FB1(1− F ) 0 1 1 0

F2(1− F1)(1− F )2 + 2F2F1FB1(1− F ) 1 1 1 0

F1(1− F )2 2 0 1 0

2FB2(1− F ) 0 0 0 1

2F1FB2(1− F ) 1 0 0 1

(1− F2)(1− F )2 + 2F2FB2(1− F ) 0 1 0 1

F1(1− F2)(1− F )2 + 2F1F2FB2(1− F ) 1 1 0 1

F2(1− F )2 0 2 0 1

2F 2B1B2 0 0 1 1

(1− F1)FB2(2− F ) + 2F1F
2B1B2 1 0 1 1

(1− F2)FB1(2− F ) + 2F2F
2B1B2 0 1 1 1

(1− F1)(1− F2) + F1(1− F2)FB1(2− F )+
+F2(1− F1)FB2(2− F ) + 2F1F2F

2B1B2
1 1 1 1

F1FB2(2− F ) 2 0 1 1

F2FB1(2− F ) 0 2 1 1

F 2B2
1 0 0 2 0

(1− F1)FB1(2− F ) + F1F
2B2

1 1 0 2 0

F2F
2B2

1 0 1 2 0

F2(1− F1)FB1(2− F ) + F2F1F
2B2

1 1 1 2 0

1− F1 + F1FB1(2− F ) 2 0 2 0

F 2B2
2 0 0 0 2

F1F
2B2

2 1 0 0 2

(1− F2)FB2(2− F ) + F2F
2B2

2 0 1 0 2

F1(1− F2)FB2(2− F ) + F1F2F
2B2

2 1 1 0 2

1− F2 + F2FB2(2− F ) 0 2 0 2
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The solution of the simultaneous equations for arbitrary F, F1, F2, B1, B2 is
rather complex, that is why the values of probability state and throughput
(1) for reliable input channel (F = 1) are given here: P00 = P10 = P01 =
0; P11 = EF1F2B1B2; P20 = EF 2

2 B
2
1(1 − F1B2); P02 = EF 2

1 B
2
2(1 − F2B1);

Z(2, 2, 1,F ,B) = E(F1F
2
2 B1 + F2F

2
1 B2 − F 2

1 F 2
2 B1B2); E =

[
F1F2B1B2(1 −

F2B1 − F1B2) + F 2
1 B

2
2 + F 2

2 B
2
1

]−1
.

Fig. 1,a and 1,b illustrate effects of the missed flow on the traffic distribution
structure for network fragment with parameters S = 2, M = 2, K = 2, and
S = 2, M = 2, K = 4 respectively. Fig. 1 shows that the throughput considerably
is determined by structure of traffic distribution on outgoing channels and has
optimal parameter set Bm, m = 1,M . As capacity of the buffer memory becomes
higher, the throughput increases and its value becomes more sensitive to optimal
parameter set Bm, m = 1,M . It should be noted that maximum throughput is
reached at uniform traffic distribution (Bm = 1/M , m = 1,M) with statistically
uniform communication channels Fm = F∗, m = 1,M .
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F2 = 1 F2 = 0.8 F2 = 0.7 F2 = 0.5 F2 = 0.2

a) K = 2 b) K = 4

Fig. 1. Throughput of full-accessible buffer memory sharing strategy

4 Full Memory Sharing Strategy

Full memory sharing strategy allocates a certain amount of buffer memory to
each of the outgoing directions. In this case directions are not locked in case of
buffer overfilling for one of the directions. Inefficient use of memory of transit
node at low loading of one of the directions is possible.
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Consider the previous network segment (S = 2, M = 2, K = 2) using full
memory sharing strategy (Nm = 1). Transition probabilities for this case are
presented in Table 2. The equilibrium equations describing employment of buffer

Table 2. Transition probabilities

πj1j2
i1i2

i1 i2 j1 j2
(1− F )2 0 0 0 0

F1(1− F )2 1 0 0 0

F2(1− F )2 0 1 0 0

F1F2(1− F )2 1 1 0 0

FB1(2− F − FB2) 0 0 1 0

(1− F1)(1− FB2)
2 + F1FB1(2− F − FB2) 1 0 1 0

F2FB1(2− F − FB2) 0 1 1 0

F2(1− F1)(1− FB2)
2 + F2F1FB1(2− F − FB2) 1 1 1 0

FB2(2− F − FB1) 0 0 0 1

F1FB2(2− F − FB1) 1 0 0 1

(1− F2)(1− FB1)
2 + F2FB2(2− F − FB1) 0 1 0 1

F1(1− F2)(1− FB1)
2 + F1F2FB2(2− F − FB1) 1 1 0 1

2F 2B1B2 0 0 1 1

(1− F1)FB2(2− FB2) + 2F1F
2B1B2 1 0 1 1

(1− F2)FB1(2− FB1) + 2F2F
2B1B2 0 1 1 1

(1− F1)(1− F2) + F1(1− F2)FB1(2− FB1)+
+F2(1− F1)FB2(2− FB2) + 2F1F2F

2B1B2
1 1 1 1

space of transit node by packets to various outgoing communication channels
under stationary conditions can be written as follows:

P00F (2− F ) = P10F1(1− F )2 + P01F2(1− F )2 + P11F1F2(1− F )2;

P10

[
2FB2 − F 2B2

2 + F1(1− F )2
]
= P00FB1(2 − F − FB2)+

+P01F2FB1(2 − F − FB2) + P11F2

[
(1− FB2)

2 − F1(1− F )2
]
;

P01

[
2FB1 − F 2B2

1 + F2(1− F )2
]
= P00FB2(2 − F − FB1)+

+P10F1FB2(2 − F − FB1) + P11F1

[
(1− FB1)

2 − F2(1− F )2
]
;

P11

[
F1(1− FB1)

2 + F2(1 − FB2)
2 − F1F2(1− F )2

]
= 2P00F

2B1B2+

+P10

[
(1− F1)FB2(2− FB2) + 2F1F

2B1B2

]
+

+P01

[
(1 − F2)FB1(2− FB1) + 2F2F

2B1B2

]
.
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Taking into account the normalization condition we find relations for finite prob-
abilities of Markov chain:

P00 =
F1F2(1− F )2(1−X1X2X3)

A
;

P10 = P00

FB1(2 − FB1)X2

[
1−X3(1− F )2

]
+ F1

[
X1X2 − (1− F )2

]
F1(1− F )2(1−X1X2X3)

;

P01 = P00

FB2(2 − FB2)X1

[
1−X3(1− F )2

]
+ F2

[
X1X2 − (1− F )2

]
F2(1− F )2(1−X1X2X3)

;

P11 = P00

{
2F 2B1B2(3− 2F + F 2B1B2)

[
1−X3(1 − F )2

]− (F1 + F2+

+ F (2− F )X3)
[
X1X2 − (1− F )2

]}/
F1F2(1− F )2(1−X1X2X3);

X1 = (1− FB1)
2; X2 = (1− FB2)

2; X3 = (1− F1)(1 − F2);

A = F1F2(1 − F )2(1−X1X2X3) +
[
F2FB1(2− FB1)X2 + F1FB2×

× (2− FB2)X1 + 2F 2B1B2(3− 2F + F 2B1B2)
][
1−X3(1 − F )2

]
+

+
[
2F1F2 − F1 − F2 − F (2− F )X3

][
X1X2 − (1− F )2

]
.

The throughput (1) for random levels of data transmission validity of the con-
sidered fragment is written as follows:

Z(2, 2, F,F ,B) =
{[

F1F2FB1(2− FB1)X2 + F1F2FB2(2 − FB2)X1+

+2F 2B1B2(F1 + F2)(3 − 2F + F 2B1B2)
][
1−X3(1− F )2

]
+ (F1+F2)×

× [
F1F2 − F1 − F2 − F (2− F )X3

][
X1X2 − (1 − F )2

]}/
A. (2)

Fig. 2,a and Fig. 2,b show the dependences of the throughput from traffic
distribution of network fragment with parameters S = 2, M = 2, K = 2, and
S = 2, M = 2, K = 4, respectively. Curves in Fig. 2 demonstrate that when
using full division or full-accessible strategies the throughput has a maximum by
parameters of traffic distribution Bm, m = 1,M , but in this case the insignificant
deviation from an optimum parameter set of distribution slightly reduces the
value of the throughput.

5 Intermediate Strategy for Buffer Memory Division

Both full-accessible and full buffer memory division strategies are two contrasts
in division of buffer memory of the transit node between queues to the outgoing
directions. The point of intermediate strategy is to allocate the part of buffer
memory for individual needs of each outgoing interface and to make other mem-
ory equally accessible for all outgoing directions. Fig. 3 presents the results of
numerical research of network segment with parameters S = 2, M = 2, K = 4
and intermediate strategy of buffer memory sharing of the transit node between
the outgoing directions (one individual buffer for each direction and two common
buffers). In this case Nm = 3.
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Fig. 2. Throughput of full memory sharing strategy
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Fig. 3. Throughput of intermediate strategy
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6 Comparative Analysis of the Strategies for Buffer
Memory Division

The dependence of the throughput for considered strategies of buffer memory di-
vision from reliability of data transmission in uniform incoming channels is given
in fig. 4. The presented curves show that there are parametric areas of network

Z(2, 4, F, F∗, 1/2)

F∗0 0.2 0.4 0.6 0.8

0.4

0.8

1.2

1.6

2.0

1

F = 1

F = 0.8

F = 0.5

Nm = 2
Nm = 3
Nm = 4

Fig. 4. Throughput of full memory sharing (Nm = 2), full-accessible (Nm = 4) and
intermediate (Nm = 3) strategies for M = 2, K = 4

fragment for which each considered strategy is more preferable than competing
strategy. As the speed parameter S is increased the equivalence point of full
memory sharing and full-accessible memory sharing strategies shifts towards (to
the right) reduction of error level of communication channels. For S = 2 strategy
equivalence is reached in F1 = F2 = F (see fig. 4), while for S = 1 equality of
throughput for full-accessible and full memory division strategies is reached in
F1 = F2 = F/2. Thus the advantage of full memory division strategy is increases,
and this advantage is rather essential. For example, in case of S = 2, M = 2,
K = 2, F = 1, F1 = F2 = 0.5 at B1 = B2 full division strategy increases level of
the throughput by 22% in comparison with full-accessible strategy of memory
division. At the same time the intermediate strategy slightly concedes to strategy
of full memory division at high error level in outgoing channels, and provides the
best indicators of the throughput (fig. 4) when increasing the quality of outgoing
channels. The similar case takes place for three outgoing channels.

Numerical research of fragments with two and three outgoing channels show
that the throughput is considerably defined by traffic distribution along the
outgoing channels and has the optimum parameter set of Bm, m = 1,M for all
memory division strategies (see fig. 1–3). It is easy to see that at significantly
non-uniform quality of outgoing communication channels the missed flow has
a pronounced maximum from distribution B1. It is also noted that as volume
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of buffer memory increases the maximum of throughput is displaced in area
of traffic distribution with an increasing share of the flow sent to the outgoing
channel of low quality. The maximum of the throughput is reached at uniform
traffic distribution for outgoing communication channels uniform in quality.

7 Conclusion

This paper presents the model of transit node of the data transmission, distribut-
ing incoming information flow in several incoming directions. Various strategies
of buffer memory division of transit node between queues to outgoing commu-
nication channels are analyzed. The router model with uniform speed of service
of incoming and outgoing interfaces is postponed for a case when the speed of
incoming channel surpasses the outgoing directions of data transmission. The
analysis of numerical results demonstrates that for buffer memory of volume
K ≥ M throughput has a maximum traffic distribution in outgoing communi-
cation channels Bm, m = 1,M for any of the considered strategy of division.
In general extreme nature of dependence of the missed flow from traffic distri-
bution needs to be considered when implementing of routing algorithms with
information flow distribution between the set couple of corresponding nodes on
several various routes.
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The First Jump Separation Technique

for the Tandem Queueing System GI/(GI/∞)K�
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Abstract. Application of the first jump separation technique for anal-
ysis of the tandem queueing system with high-intensive renewal arrival
process, infinite number of servers and general service time distribution
is presented in the paper. An equation for characteristic function of the
multi-dimensional joint distribution of the number of customers at the
system stages is derived. The equation is solved under an asymptotic
condition of the infinite growth of the arrival rate. It is shown that the
distribution under study can be approximated by the multi-dimensional
Gaussian distribution. Numerical example shows the range of the ap-
proximation applicability.

Keywords: tandem queueing system, high-intensive arrival process, re-
newal process.

1 Introduction

Tandem queueing systems [1] are important to study of processes in the data
processing systems [2], manufacturing and other practical fields [3]. They also
are applicable for queueing network decomposition [4]. Usually, the researches in
this filed are devoted to solve some concrete practical problems or consider the
tandem systems of special configuration (e.g.,[5,6]). In this paper, we provide
the analysis of the tandem model of quite general form.

In section 3, we have obtained the integral equation for the characteristic
function of the number of customers at the system stages and solve it under an
asymptotic condition of infinite growth of the arrivals’ rate. This condition can be
considered as one of the well-known heavy-traffic conditions [7]. A solution of the
equation under this condition (see section 5) allows to build an approximation
for the multi-dimensional distribution of the system states. In the section 6, we
consider a concrete numerical example and draw a conclusions about the range
of the approximation applicability.
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2 Mathematical Model

Let’s consider a tandem (multi-stage) queueing system with K stages, renewal
arrival process, an infinite number of servers at each stage and i.i.d. service times.
Let A(x) be a cumulative distribution function of the inter-arrival intervals,
Bk(x) be a cumulative distribution function of the service time at the k-th stage
(k = 1, . . . ,K). After a service is completed for some customer at one stage,
this customer moves to the next stage for the further service until service will
be completed at the final, K-th, stage.

Let ik(t) be a number of customers at the k-th service stage at the moment
t. Denote a vector iT(t) = {i1(t), . . . , iK(t)}. The goal of the research is to ob-
tain the characteristics of the K-dimensional stochastic process i(t) at arbitrary
moment t.

3 The First Jump Equations

Denote by P (i, t) the probability P (i, t) = P{i(t) = i}. To obtain the equations
for probabilities P (i, t), we use a first jump separation technique which was
presented in the works [8], [9]. We adapt this method for the tandem queues as
follows.

Let a customer come to the empty system at the moment t0 = 0. This cus-
tomer will be special for us and we call it as the first customer. Denote by Sk(t)
a probability that at the moment t > 0 the first customer is serviced at the k-th

stage. It is obvious that the value S0(t) = 1−
K∑

k=1

Sk(t) is a probability that the

first customer has left the system before the moment t. Let’s suggest here that
the probabilities Sk(t) are known. We will calculate them later, in the section 4.

Applying a technique by [8], [9], we obtain the following equations for proba-
bilities P (i, t):

P (0, t) = S0(t)

t∫
0

P (0, t− x) dA(x) + S0(t) [1−A(t)] , (1)

P (ek, t) = S0(t)

t∫
0

P (ek, t− x) dA(x)+

+ Sk(t) [1−A(t)] + Sk(t)

t∫
0

P (0, t− x) dA(x) for k = 1, . . . ,K . (2)

Here 0 is a zero vector, ek is a vector with all zero entries except an entry number
k which is equal to 1.
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For each vector i, which is not equal to 0 or to ek (k = 1, . . . ,K), we can
write the set of equations:

P (i, t) = S0(t)

t∫
0

P (i, t− x) dA(x) +
K∑

k=1

Sk(t)

t∫
0

P (i− ek, t− x) dA(x) (3)

where entries of the vector i are running from 0 to ∞. We call the system of
equations (1)–(3) as the first jump equations for probability distribution P (i, t)
of the process i(t).

Consider a characteristic function H(u, t) of the distribution of the K-
dimensional stochastic process i(t) at the moment t

H(u, t) =

∞∑
i1=0

. . .

∞∑
iK=0

eju1i1+...+juK iKP (i1, . . . , iK , t) =

∞∑
i=0

eju
T·iP (i, t) . (4)

Here j =
√−1 is an imaginary unit. The function H(u, t) has vector argument

uT = {u1, . . . , uK}.

Theorem 1. The characteristic function H(u, t) satisfies the first jump equa-
tion as follows:

H(u, t) =

[
S0(t) +

K∑
k=1

Sk(t)e
juk

]⎡⎣1−A(t) +

t∫
0

H(u, t− x) dA(x)

⎤⎦ . (5)

Proof. From (1)–(4), we obtain the expression

H(u, t) = S0(t)

t∫
0

eju
T·0P (0, t− x) dA(x) + S0(t)e

juT·0 [1−A(t)] +

+

K∑
k=1

S0(t)

t∫
0

eju
T·ekP (ek, t− x) dA(x) +

K∑
k=1

Sk(t)e
juT·ek [1−A(t)]+

+

K∑
k=1

Sk(t)

t∫
0

eju
T·ekP (0, t− x) dA(x) +

∑
i>ek

S0(t)

t∫
0

eju
T·iP (i, t− x) dA(x)+

+
∑
i>ek

K∑
k=1

Sk(t)

t∫
0

eju
T·iP (i− ek, t− x) dA(x) .

Suggesting that P (i, t) = 0 for vectors i with negative entries, we can reduce
this formula to the form (5).
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4 Calculation of the Probabilities Sk(t)

Let’s obtain the probabilities Sk(t) that the first customer is serviced at the
stage k at the moment t (k = 1, . . . ,K).

It is obvious that for the first stage

S1(t) = 1−B1(t) .

Next, denote by τk the service time of the first customer at the k-th stage
under the condition that the first customer was moved to this stage. So, we can
write the following expression for k = 2:

S2(t) = P{τ1 < t < τ1 + τ2} =
t∫

0

P{τ1 < t < τ1 + τ2|τ1 = x} dB1(x) =

=

t∫
0

P{t < x+ τ2} dB1(x) =

t∫
0

P{τ2 > t− x} dB1(x) =

=

t∫
0

[1−B2(t− x)] dB1(x) = B1(t)−
t∫

0

B2(t− x) dB1(x) =

= B1(t)− (B1 ∗B2)(t) . (6)

Here (B1 ∗ B2)(x) is a convolution of the functions B1(x) and B2(x). Using
denotations B∗

k(t) = (B1 ∗ . . . ∗ Bk)(t) for k > 1 and B∗
1(t) = B1(t), we can

reduce expression (6) to the following form:

S2(t) = B∗
1(t)−B∗

2(t) . (7)

For every value k from 3 to K we can write:

Sk(t) = P

{
k−1∑
ν=1

τν < t <

k∑
ν=1

τν

}
.

Using denotation ξk =
k−1∑
ν=1

τν , we can reduce this expression to the form

Sk(t) = P{ξk < t < ξk + τk} .

Performing for this expression the same transforms as in the formulas (6)–(7)
and taking into account that P{ξk < t} = B∗

k−1(t), we obtain the following
expression for the probabilities Sk(t):

Sk(t) = B∗
k−1(t)−B∗

k(t) (8)

for k ≥ 2. Using the denotation B∗
0(t) = 1, we can extend this formula to be

right for every value of the number k from 1 up to K.
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5 Investigation of the Stochastic Characteristics for the
Tandem Queue under a Condition of the High Arrival
Rate

Equation (5) and the formulas (8) provide a tool for analysis of the tandem
queueing systems of the type GI/(GI/∞)K . Here we consider an asymptotic
[10] analysis for this system under a condition of the high arrival rate.

Let’s obtain asymptotic expressions for function H(u, t) under a condition of
an infinite growth of arrival rate [11]. Rate of the arrival process is represented in
a form Nλ, where N > 0 is a parameter which gets large values (asymptotically
N →∞), and value of λ is defined as

λ =
1

∞∫
0

[1−A(x)] dx

=
1

a
.

Here a is an expected value of the random variable defined by distribution func-
tion A(x).

In the paper [11] we have considered the renewal process with the rate Nλ.
Because a value of the parameter N is large, such process were named as High-
Intensive (or HI-processes). It was shown that inter-arrival intervals of the re-
newal process with the rate Nλ are independent random variables distributed
accordingly the distribution function A(Nx). So, for the tandem queueing system
GI/(GI/∞)K with high arrival rate equation (5) gets a form

H(u, t) =

[
S0(t) +

K∑
k=1

Sk(t)e
juk

]⎡⎣1−A(Nt) +

t∫
0

H(u, t− x) dA(Nx)

⎤⎦ .

(9)

In the following subsections we will obtain an approximation for the multi-
dimensional law of the distribution of the number of customers at the system
stages.

5.1 The First-Order Asymptotic Form

Performing the following changes of variables in the equation (9)

1

N
= ε, u = εw, H(u, t) = F (w, t, ε) , (10)

we obtain the equation

F (w, t, ε) =

[
S0(t)+

K∑
k=1

Sk(t)e
jwkε

]⎡⎣1−A

(
t

ε

)
+

t∫
0

F (w, t− x, ε) dA
(x

ε

)⎤⎦ .

(11)

Let’s prove the following statement for an asymptotic approximationF (w, t) =
lim
ε→0

F (w, t, ε).
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Theorem 2. The expression for the function F (w, t) has the following form:

F (w, t) = exp

⎧⎨⎩λjwT

t∫
0

S(τ) dτ

⎫⎬⎭ (12)

where S(τ) = {S1(t), . . . , SK(t)}T.

Proof. Making a substitution z = x/ε in the subintegral expression at formula
(11) we obtain the equation

F (w, t, ε) =

[
S0(t) +

K∑
k=1

Sk(t)e
jwkε

]⎡⎢⎣1−A

(
t

ε

)
+

t
ε∫

0

F (w, t− zε, ε) dA(z)

⎤⎥⎦ .

Let’s use the following expansions:

ejwkε = 1 + jwkε +O
(
ε2
)

,

F (w, t− zε, ε) = F (w, t, ε)− zε
∂F (w, t, ε)

∂t
+O

(
ε2
)

where O
(
ε2
)
is infinitesimal which has order of ε2. We obtain the following

equation

F (w, t, ε) =

[
S0(t) +

K∑
k=1

Sk(t) (1 + jwkε)

]
×

×

⎡⎢⎣1−A

(
t

ε

)
+

t
ε∫

0

{
F (w, t, ε)− zε

∂F (w, t, ε)

∂t

}
dA(z)

⎤⎥⎦+O
(
ε2
)

.

Performing here an asymptotic transition ε → 0, we reduce this formula to the
form

F (w, t) = lim
ε→0

F (w, t, ε) =

= lim
ε→0

⎧⎨⎩
[
1+

K∑
k=1

Sk(t)jwkε

]⎡⎣ ∞∫
0

F (w, t, ε) dA(z)−
∞∫
0

zε
∂F (w, t, ε)

∂t
dA(z)

⎤⎦+
+O

(
ε2
)}

= lim
ε→0

{[
1+

K∑
k=1

Sk(t)jwkε

] [
F (w, t, ε)− ε

∂F (w, t, ε)

∂t
a

]
+O

(
ε2
)}

.

As a result, we obtain the following differential equation:

∂F (w, t, ε)

∂t
= λF (w, t)

K∑
k=1

Sk(t)jwk .
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Solving it with an initial condition F (w, 0) = 1, we obtain the following expres-
sion for the function F (w, t):

F (w, t) = exp

⎧⎨⎩λ
K∑

k=1

jwk

t∫
0

Sk(τ) dτ

⎫⎬⎭ = exp

⎧⎨⎩λjwT

t∫
0

S(τ) dτ

⎫⎬⎭ .

The theorem is proved. !"
Let’s implement the inverse changes of variables for expressions (10) in the for-

mula (12). We obtain the following approximation of the characteristic function
H(u, t):

H(u, t) ≈ exp

⎧⎨⎩λjNuT

t∫
0

S(τ) dτ

⎫⎬⎭
when N has large value. So, the average numbers of customers at the k-th stage
of the considering tandem system at the moment t can be approximated by

values λN
t∫
0

Sk(τ) dτ for k = 1, . . . ,K where Sk(t) is defined by expressions (8).

5.2 Second-Order Asymptotic Form

Denote by H2(u, t) the function which is determined by the following formula

H(u, t) = H2(u, t) exp

⎧⎨⎩λN

K∑
k=1

juk

t∫
0

Sk(τ) dτ

⎫⎬⎭ . (13)

Substituting this expression into equation (9), we obtain the following equation

H2(u, t) exp

⎧⎨⎩λN

K∑
k=1

juk

t∫
0

Sk(τ) dτ

⎫⎬⎭ =

[
S0(t) +

K∑
k=1

Sk(t)e
juk

]
×

×
⎡⎣1−A(Nt) +

t∫
0

H2(u, t− x) exp

⎧⎨⎩λN

K∑
k=1

juk

t−x∫
0

Sk(τ) dτ

⎫⎬⎭ dA(Nx)

⎤⎦ .

(14)
Performing here the following changes of variables

1

N
= ε2, u = εw, H2(u, t) = F2(w, t, ε) , (15)

we obtain the equation

F2(w, t, ε) exp

⎧⎨⎩ λ

ε2

K∑
k=1

jεwk

t∫
0

Sk(τ) dτ

⎫⎬⎭ =

[
S0(t) +

K∑
k=1

Sk(t)e
jεwk

]
×
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×
⎡⎣1−A

(
t

ε2

)
+

t∫
0

F2(w, t− x, ε) exp

⎧⎨⎩ λ

ε2

K∑
k=1

jεwk

t−x∫
0

Sk(τ) dτ

⎫⎬⎭ dA
( x

ε2

)⎤⎦ .

(16)
Let’s prove the following statement for the asymptotic approximation F2(w, t)

= lim
ε→0

F2(w, t, ε).

Theorem 3. The expression for the function F2(w, t) has the following form:

F2(w, t) = exp

⎧⎨⎩λ

K∑
k=1

(jwk)
2

2

t∫
0

Sk(τ) dτ +
κ

2

K∑
k=1

K∑
ν=1

jwkjwν

t∫
0

Sk(τ)Sν(τ) dτ

⎫⎬⎭
(17)

where κ = λ3
(
σ2 − a2

)
and σ2 is a variance of the random variable with distri-

bution function A(x).

Proof. Performing the substitution z = x/ε2 in the integral on dA(·) in the
equation (16), we reduce this equation to the form:

F2(w, t, ε) =

[
S0(t) +

K∑
k=1

Sk(t)e
jεwk

]
×

×
⎡⎣{1−A

(
t

ε2

)}
exp

⎧⎨⎩−λ

ε

K∑
k=1

jwk

t∫
0

Sk(τ) dτ

⎫⎬⎭+

+

t
ε2∫
0

F2(w, t− zε2, ε) exp

⎧⎨⎩−λ

ε

K∑
k=1

jwk

t∫
t−zε2

Sk(τ) dτ

⎫⎬⎭ dA(z)

⎤⎥⎦ . (18)

Using an expansion
t∫

t−zε2
Sk(τ) dτ = zε2Sk(t) + O

(
ε4
)
, we get the relation

exp

⎧⎨⎩−λ

ε

K∑
k=1

jwk

t∫
t−zε2

Sk(τ) dτ

⎫⎬⎭ = exp

{
−λ

ε

K∑
k=1

jwk

[
zε2Sk(t) + O

(
ε4
)]}

=

= exp

{
−zλ

K∑
k=1

jεwkSk(t) + O
(
ε3
)}

=

= 1− zλ

K∑
k=1

jεwkSk(t) +
z2λ2

2

[
K∑

k=1

jεwkSk(t)

]2

+O
(
ε3
)

. (19)

Further we consider a case when the functions F2(w, t, ε) and A(x) have the
following features:

∞∫
t
ε2

F2(w, t− zε2, ε) dA(z) = o
(
ε2
)

,
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{
1−A

(
t

ε2

)}
exp

⎧⎨⎩−λ

ε

K∑
k=1

jwk

t∫
0

Sk(τ) dτ

⎫⎬⎭ = o
(
ε2
)

(20)

where o
(
ε2
)
is an infinitesimal of the order greater than ε2. Substituting expres-

sions (20) and (19) into equation (18) and using the expansions

ejεwk = 1 + jεwk +
(jεwk)

2

2
+ O

(
ε3
)

,

F2(w, t− zε2, ε) = F2(w, t, ε)− zε2
∂F2(w, t, ε)

∂t
+ o

(
ε2
)

,

we obtain the following formula

F2(w, t, ε) =

[
S0(t) +

K∑
k=1

Sk(t) +

K∑
k=1

Sk(t)jεwk +

K∑
k=1

Sk(t)
(jεwk)

2

2

]
×

×
∞∫
0

{[
F2(w, t, ε)− zε2

∂F2(w, t, ε)

∂t

]
×

×
⎡⎣1− zλ

K∑
k=1

jεwkSk(t) +
z2λ2

2

{
K∑

k=1

jεwkSk(t)

}2
⎤⎦ dA(z)

⎫⎬⎭+ o
(
ε2
)
=

=

[
1+

K∑
k=1

Sk(t)jεwk+

K∑
k=1

Sk(t)
(jεwk)

2

2

][
F2(w, t, ε)− F2(w, t, ε)λa

K∑
k=1

jεwkSk(t)+

+F2(w, t, ε)
λ2a2

2

⎛⎝{
K∑

k=1

jεwkSk(t)

}2

− ε2
∂F2(w, t, ε)

∂t
a

⎞⎠⎤⎦+ o
(
ε2
)

.

Here a2 is the second initial moment of the random variable with distribution
function A(x). As a result, we obtain the equation

ε2
∂F2(w, t, ε)

∂t
a=F2(w, t, ε)

⎡
⎣ K∑
k=1

Sk(t)
(jεwk)

2

2
+

{
λ2a2

2
− 1

}{
K∑

k=1

jεwkSk(t)

}2
⎤
⎦+o

(
ε2

)
.

Dividing each part of this equation by ε2 and performing an asymptotic tran-
sition ε → 0, we obtain the following differential equation for the function
F2(w, t) = lim

ε→0
F2(w, t, ε):

∂F2(w, t)

∂t
= F2(w, t)

[
λ

K∑
k=1

(jwk)
2

2
Sk(t) +

κ

2

K∑
k=1

K∑
ν=1

jwkjwνSk(t)Sν(t)

]

where κ = λ3
(
a2 − 2a2

)
= λ3

(
σ2 − a2

)
. Solving this equation with the ini-

tial condition F2(w, 0) = 1 we obtain the following expression for the function
F2(w, t):
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F2(w, t)=exp

⎧⎨⎩λ

K∑
k=1

(jwk)
2

2

t∫
0

Sk(τ) dτ+
κ

2

K∑
k=1

K∑
ν=1

jwkjwν

t∫
0

Sk(τ)Sν (τ) dτ

⎫⎬⎭ .

The theorem is proved. !"

5.3 Multidimensional Gaussian Approximation

Let’s perform the inverse substitutions for expressions (15) and (13) in the for-
mula (17). Supposing that N is large enough, we obtain the following approxi-
mation

H(u, t) ≈ exp

{
λN

K∑
k=1

juksk(t) + λN
K∑

k=1

(juk)
2

2
sk(t) + κN

K∑
k=1

K∑
ν=1

jukjuν

2
Vkν(t)

}
.

Here we use denotations sk(t) =
t∫
0

Sk(τ) dτ and Vkν(t) =
t∫
0

Sk(τ)Sν (τ) dτ for k

and ν running from 1 up to K.
Using matrix denotations S(t) = diag{s1(t), . . . , sK(t)}, V (t) = {Vkν}k,ν=1,K

and e = {1, 1, . . . , 1}T, we can write the following expression for the approxima-
tion h(u, t) of the characteristic function H(u, t):

h(u, t) = exp

{
λNjuTS(t)e+

1

2
NjuT [λS(t) + κV (t)] ju

}
. (21)

So, under a condition of the high arrival rate, the multi-dimensional distribu-
tion of the number of customers at the stages of the tandem queueing system
GI/(GI/∞)K at the moment t can be approximated by the multi-dimensional
normal distribution with a vector of the means λNS(t)e and a covariance matrix
N [λS(t) + κV (t)].

To obtain the approximation h(u) = lim
t→∞h(u, t) for a characteristic function

of the stationary distribution, we perform in the expression (21) the asymptotic
transition t→∞. The result is as follows

h(u) = exp

{
λNjuTSe+

1

2
NjuT [λS + κV ] ju

}
. (22)

Here S = S(∞) and V = V (∞). It is not difficult to show that the diagonal
entries of the vector S are equal to the means of the service times at the stages
of the system.

So, under the condition when N is large enough, the stationary joint distri-
bution of the number of customers at the stages of the tandem system can be
approximated by the multi-dimensional Gaussian distribution with a vector of
the means λNSe and a covariance matrix N [λS + κV ].
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6 Numerical Results and Applicability of the
Approximation

Simulations of the system evolution for various numerical examples demonstrate
a good accuracy of the obtained Gaussian approximation for the state distribu-
tion of the tandem systems GI/(GI/∞)K in both the cases of stationary and
non-stationary regimes (see expressions (22) and (21)) when a value of the ar-
rival rate is large enough. Here we present one of the examples and we consider
it only for the stationary distribution approximation. Parameters of the model
are the following:

– for arrival process – distribution of the inter-arrival intervals is gamma distri-
bution with the shape parameter α = 0.5 and the rate parameter β = 0.5 ·N ;

– the number of stages is 4;
– service time distributions are gamma distributions with the following pa-

rameters:
for the first stage: α1 = 2, β1 = 1;
for the second stage: α2 = 2, β2 = 2;
for the third stage: α3 = 1.5, β3 = 1;
for the fourth stage: α4 = 0.5, β4 = 1.

Means of the service times at the stages are equal to 2, 1, 1.5, 0.5.We can consider
that the average service time at the stages is about 1. The mean of the inter-
arrival intervals is equal to 1/N and, therefore, the rate of the arrival process
is equal to N . So, the value of parameter N characterizes how much the arrival
rate is large.

Simulations of the system were performed for the values of parameter N
equal to 1, 10, 30, 60, 100 and 1000. To estimate the accuracy of the Gaussian
approximation, we will use the Kolmogorov distances [12]

dk = sup
x
|Fk(x)−Gk(x)|

for the marginal state distributions of each stage of the system. Here Fk(x) is
the cumulative distribution function of the Gaussian distribution and Gk(x) is
the empiric cumulative distribution function constructed based on results of the
system evolution simulation, k is the number of the stage: k = 1, 2, 3, 4. For
the purpose of more relevant estimation of the accuracy, we should consider
the Kolmogorov distance between the multi-dimensional distributions. But the
calculation of this distance is very hard computing procedure, e.g. for the value
N = 1000 it is necessary to process about 1012 points. So, here we restrict
ourselves to the considering the one-dimensional distributions.

Values of the distances are presented in the Table 1 for various values of
the parameter N . The Figure 1 demonstrates the dynamics of the Kolmogorov
distances when a value of N grows. It is easy to see that the growth of the arrival
rate (parameter N) implies that the Gaussian approximation (22) becomes more
accurate. Basing on our numerical experiments, we can draw a conclusion that
this approximation is applicable when the value of the parameter N (ratio of the
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Table 1. The Kolmogorov distances between the one-dimensional Gaussian approxi-
mations and the empiric cumulative distribution functions for each stage of the system
and various values of the parameter N

N d1 d2 d3 d4
1 0.1729 0.2320 0.2143 0.3691

10 0.0578 0.0815 0.0690 0.1150

30 0.0331 0.0475 0.0384 0.0677

60 0.0224 0.0339 0.0280 0.0488

100 0.0160 0.0288 0.0213 0.0395

1000 0.0121 0.0148 0.0128 0.0214

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

1 10 100 1000

N

dk

d1

d2

d3

d4

Fig. 1. Dynamics of the Kolmogorov distances dk for each system stage when value of
the parameter N (logarithmic scale) grows

arrivals rate to servicing rate) is about 30 or more. In this case the Kolmogorov
distance is less than 0.05.

Marginal distributions of the number of customers at the stage 2 of the system
are presented at the Figure 2 for the values of parameter N equal to 1, 10, 30,
100. These figures demonstrate the general trend of the approximation character.
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Fig. 2. Comparison of the analytical approximation (dashed line) and simulation re-
sults (solid line) of the probability distributions of the customers number at the second
stage of the system for values of the parameter N equal to 1, 10, 30, 100

7 Conclusions

In the paper we have obtained the multi-dimensional Gaussian approximation for
the stationary probability distribution of the number of customers at the stages
of the tandem queueing system with high-intensive renewal arrival process.

The approximation is obtained under an asymptotic condition of the arrivals’
rate growth. Numerical results show that this approximation for the tandem
system under study is quite accurate when the rate of input is greater than the
rate of service by 30 times or more.

The investigation was performed by means of the first jump separation tech-
nique. The results coincide with ones obtained by means of the original method
of screened process [13].
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Abstract. The problem of locally optimal control for discrete time delay
systems with interval parameters based on the probabilistic method is
considered. The goal of control: systems output must track a reference
input. Control is defined as a function of the measured variables and the
reference input. The asymptotic behavior of the system is investigated.
Example is given to illustrate the usefulness of the proposed approach.
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1 Introduction

Locally optimal discrete control systems are a special case of the discrete model
predictive control (MPC) with a forecast for 1 cycle. The main advantage of
the method of locally optimal control is a significant simplification of the syn-
thesis procedure. For last years field of MPC application and, accordingly, the
method of locally optimal control has been considerably extended covering the
problems of control for technical systems, production systems, inventory control
and portfolio optimisation [1–7].

In this paper the problem of synthesis of locally optimal control on the track-
ing output for discrete systems with interval parameters and time delay is con-
sidered. This paper is a generalization of [8, 9] to the case of presence interval
parameters in the model [10]. These parameters reflect the situation when the
exact values of parameters are not defined and only intervals for parameters are
known. In this situation, one of the most important tasks is to construct such a
control that ensures desirable requirements needed for the system on the whole
range of variable parameters of the object. To solve these problems with interval
parameters methods interval the Cochran arithmetic, the theory of fuzzy sets
[11, 12], the methods of linear matrix inequalities [13] and probabilistic methods
are applied [14].
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We propose to realize synthesis of tracking system control on output with
indirect measurements for discrete systems with interval parameters and time
delay based on the probabilistic method [14]. Control is defined as a function of
the measured variables and the reference input. Proposed tracking control has
the property of robustness.

2 Problem Statement

Consider the following discrete-time system with time delay and interval param-
eters:

x(k + 1) = (A+
∑r

i=1 Aiθi)x(k) + (A′ +
∑r

i=1 A′
iθi)x(k − h) +

+(B +
∑r

i=1 Biθi)u(k) + q(k),

x(τ) = γ(τ), τ = −h, 1− h, 2− h, . . . , 0; k = 0, 1, 2, . . . , (1)

y(k) = Sx(k) + ν(k). (2)

In (1), (2) x(k) ∈ Rn is state vector, h > 0 is positive integer time delay,
u(k) ∈ Rm is control input, y(k) ∈ Rl is observations vector, A,Ai, A

′, A′
i, B,

Bi, i = 1, r are constant matrices of appropriate dimensions, S is matrix of ob-
servations channel, matrix B and S are of full rank, pairs of matrices (A,B) and
(A′, B) are controllable, pairs of matrices (S,A) and (S,A′) are observable, x0 are
initial conditions (M{ x0x

T
0 } = Px0), q(k) is Gaussian random sequence of input

disturbances, ν(k) is Gaussian random sequence of observations errors with char-
acteristics: M{ q(k) } = 0,M{ ν(k) } = 0,M{ q(k)νT(j) } = 0,M{ q(k)qT(j) } =
Q(k)δkj,M{ ν(k)νT(j) } = V (k)δk,j (δk,j is Kronecker delta, Q(k) = QT(k) ≥
0, V (k) = V T(k) ≥ 0 are nonnegative definite matrices), θi are uncertain param-
eters interval type (−1 ≤ θi ≤ 1).

Local criterion has the form:

I(k) = M{ (w(k + 1)− z(k))TC(w(k + 1)− z(k)) + uT(k)Du(k) }, (3)

where w(k) = Hx(k) is controlled output of the system (H is matrix of the
output of the system), C = CT, D = DT ≥ 0 are weighting matrices, z(k) ∈ Rn

is the reference input which described by the equation:

z(k) = Fz(k) + qz(k), z(0) = z0, k = 0, 1, 2, . . . . (4)

In (4) qz(k) is Gaussian random sequence with characteristics M{ qz(k) } = 0,
M{ qz(k)qT(j) } = 0, M{ qz(k)νT(j) } = 0, M{ qz(k)qTz (j) } = Qz(k)δk,j , z0 are
initial conditions (M{ z0zT0 } = Pz0 , M{ z0xT

0 } = Pz0x0 , M{ x0z
T
0 } = Px0z0), F

is matrix of the dynamics model of the reference input.
It is required to construct a control of system (1), using observations (2) and

minimizing the criterion (3).
The essence of the probabilistic approach is that the uncertain interval pa-

rameters are replaced by independent random sequences θ(k), with uniform dis-
tribution law on the interval [-1, 1].
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3 Locally Criterion Optimization

Let the control law of system (1) under observations (2) is defined as:

u(k) = K1(k)y(k) +K2(k)y(k − h) +K3(k)z(k), (5)

where transfer coefficients are K1(k),K2(k),K3(k) to be determined.
Solution of the problem locally criterion optimization is given in the following

theorem.

Theorem 1. If for system (1), observations (2) and local criterion (3) matrices

C = (BTHTCHB +D +
1

3

r∑
i=1

BT
i HT

i CHBi) > 0,

P (k) =

⎛⎝SPx(k)S
T + V (k) SPx(k − h, k)ST Pzx(k)S

T

SPx(k, k − h)ST SPx(k − h)ST + V (k − h) Pzx(k, k − h)ST

SPxz(k) SPxz(k − h, k) Pz(k)

⎞⎠ (6)

are positive definite for all k = 1, 2, . . ., then optimal in the sense of minimum
criteria (3) transfer coefficients for control (5) are determined by the formulas:

K∗
1 (k) = aK2(k) + bK3(k) + c, (7)

K∗
2 (k) = [K3(k)(bd + e) + cd + f ][E − ad], (8)

K∗
3 (k) = [(cd + f)(E − ad)−1(ag + n) + cg +m][(1 − bg)

−(bd− e)(E − ad)−1(ag + n)]−1, (9)

where E is the identity matrix,

a = −SPx(k − h, k)ST[SPx(k)S
T + V (k)]−1,

b = −Pzx(k)S
T[SPx(k)S

T + V (k)]−1,

c = −C
−1

[ 13
∑r

i=1 BT
i HTC(HA′

iPx(k − h, k) +HAiPx(k))S
T

+BTHTC(HAPx(k) +HA′Px(k − h, k)

−Pzx(k))S
T][SPx(k)S

T + V (k)]−1,

d = −SPx(k, k − h)ST[SPx(k − h)ST + V (k − h)]−1,

e = −Pzx(k, k − h)ST[SPx(k − h)ST + V (k − h)]−1,

f = −C
−1

[ 13
∑r

i=1 BT
i HTC(HA′

iPx(k − h) +HAiPx(k, k − h))ST

+BTHTC(HAPx(k, k − h) +HA′Px(k − h)

−Pzx(k, k − h))ST][SPx(k − h)ST + V (k − h)]−1,

g = −SPxz(k)P
−1
z (k), n = −SPxz(k − h, k)P−1

z (k),

m = −C
−1

[ 13
∑r

i=1 BT
i HTC(HA′

iPxz(k − h, k) +HAiPxz(k))

+BTHTC(HAPxz(k) +HA′Pxz(k − h, k) + Pz(k))S
T]P−1

z (k). (10)

In (10) introduced the notation: Pz(k) = M{ z(k)zT(k) }, Px(k) = M{ x(k)×
xT(k) }, Pzx(k, r) = PT

xz(r, k) = M{ z(k)xT(r) }, Pxz(k, r) = PT
zx(r, k)
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= M{ x(k)zT(r) }, Px(k, r) = M{ x(k)xT(r) }, Pxz(k) = PT
zx(k) = M{ x(k)×

zT(k) }, Pzx(k) = PT
xz(k) = M{ z(k)xT(k) }, which are determined by a system

of difference matrix equations with delays.

Proof. To calculate the local criterion we obtain the equation of state by sub-
stituting (5) in (1):

x(k + 1) = (A+
∑r

i=1 Aiθi)x(k) + (A′ +
∑r

i=1 A′
iθi)x(k − h)

+(B +
∑r

i=1 Biθi)u(k) + q(k)

= (A+
∑r

i=1 Aiθi)x(k) + (A′ +
∑r

i=1 A′
iθi)x(k − h)

+(B +
∑r

i=1 Biθi)K1(k)Sx(k) + (B +
∑r

i=1 Biθi)K1(k)ν(k)

+(B +
∑r

i=1 Biθi)K2(k)Sx(k − h) + (B +
∑r

i=1 Biθi)K1(k)ν(k − h)

+(B +
∑r

i=1 Biθi)K3(k)z(k) + q(k). (11)

Taking into account (1), (2), (4), (5), (6), characteristics of random sequences
q(k) and ν(k) we can calculate the value of the local criterion (3):

I(k) = M{ (w(k + 1)− z(k))TC(w(k + 1)− z(k)) + uT(k)Du(k) }
= tr(HA+HBK1(k)S)

TC(HA+HBK1(k)S)Px(k)

+ 1
3 tr

∑r
i=1(HAi +HBiK1(k)S)

TC(HAi +HBiK1(k)S)Px(k)

+trSTKT
1 (k)DK1(k)SPx(k) + tr(HA+HBK1(k)S)

TC(HA′

+HBK2(k)S)Px(k − h, k) + 1
3 tr

∑r
i=1(HAi +HBiK1(k)S)

TC(HAi

+HBiK2(k)S)Px(k − h, k) + trSTKT
1 (k)DK2(k)SPx(k − h, k)

+tr(HA+BK1(k)S)
TC(HBK3(k)− E)Pzx(k) +

1
3 tr

∑r
i=1(HAi

+HBiK1(k)S)
TCHBiK3(k)Pzx(k) + trSTKT

1 (k)DK3(k)Pzx(k)

+tr(HA′ +HBK2(k)S)
TC(HA+HBK1(k)S)Px(k, k − h)

+ 1
3 tr

∑r
i=1(HA′

i +HBiK2(k)S)
TC(HAi +HBiK1(k)S)Px(k, k − h)

+trSTKT
2 (k)DK1(k)SPx(k, k − h) + tr(HA′ +BK2(k)S)

TC(HA′

+HBK2(k)S)Px(k − h) + 1
3 tr

∑r
i=1(HA′

i +HBiK2(k)S)
TC(HA′

i

+HBiK2(k)S)Px(k − h) + trSTKT
2 (k)DK2(k)SPx(k − h) + tr(HA′

+HBK2(k)S)
TC(HBK3(k)− E)Pzx(k, k − h) + tr(HBK3(k)− E)T

×C(HA+HBK1(k)S)Pxz(k) +
1
3 tr

∑r
i=1 KT

3 (k)B
T
i HTC(HAi

+HBiK1(k)S)Pxz(k) + trSKT
3 (k)DK1(k)SPxz(k) + tr(HBK3(k)− E)T

×C(HA′ +HBK2(k)S)Pxz(k − h, k)

+ 1
3 tr

∑r
i=1 KT

3 (k)B
T
i HTC(HA′

i +HBiK2(k)S)Pxz(k − h, k)

+trSKT
3 (k)DK2(k)SPxz(k − h, k)

+tr(HBK3(k)− E)TC(HBK3(k)− E)Pz(k)

+ 1
3 tr

∑r
i=1 KT

3 (k)B
T
i HTCHBiK3(k)Pz(k) + trKT

3 (k)DK3(k)Pz(k)

+trKT
1 (k)(B

THTCHB +D + 1
3 tr

∑r
i=1 BT

i HTCHBi)K1(k)V (k)

+trKT
2 (k)(B

THTCHB +D + 1
3 tr

∑r
i=1 BT

i HTCHBi)K2(k)V (k − h)

+trCHQ(k). (12)
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The moments Px(k, j), Pz(k, j), Pxz(k, j), Pzx(k, j) in (12) are defined by the
following formulas:

Px(k + 1, j + 1) = M{ x(k + 1)x(j + 1)T }
= ξ(i)Px(k, j)ξ

T(j) + ξ(i)Px(k − h, j)ξT2 (j) +
1
3

∑r
i=1 ξi(k)Px(k, j)ξ

T
i (j)

+ 1
3

∑r
i=1 ξi(k)Px(k, j − h)ξT2i(j) + ξ2(k)Px(k − h, j)ξT(j)

+ξ2(k)Px(k − h, j − h)ξT2 (j) +
1
3

∑r
i=1 ξ2i(k)Px(k − h, j)ξTi (j)

+ 1
3

∑r
i=1 ξ2i(k)Px(k − h, j − h)ξT2i(j) +Q1(k, j), Px(0) = Px0 . (13)

Pz(k + 1, j + 1) = M{ z(k + 1)z(j + 1)T }
= FPz(k, j)F

T +Qz(k, j)δk,j , Pz(0) = Pz0 . (14)

Pzx(k + 1, j + 1) = M{ z(k + 1)x(j + 1)T } = FPzx(k, j)ξ
T(j)

+FPzx(k, j − h)ξT2 (j) + FPz(k, j)K
T
3 (j)B

T, Pzx(0) = Pz0x0 . (15)

Pxz(k + 1, j + 1) = M{ x(k + 1)z(j + 1)T } = ξ(k)Pxz(k, j)F
T

+ξ2(k)Pxz(k − h, j)FT +BK3(k)Pz(k, j)F
T, Pxz(0) = Px0z0 , (16)

where:

ξ(k) = A+BK∗
1 (k)S, ξ2(k) = A′ + BK∗

2 (k)S, ξ3(k) = BK∗
3 (k)− E,

ξi(k) = Ai +BiK
∗
1 (k)S, ξ2i (k) = A′

i +BiK
∗
2 (k)S,

Q1(k, j) = Q(k, j)δk,j + ξ(k)Pxz(k, j)K
∗
3
T(j)BT

+ 1
3

∑r
i=1 ξi(k)Pxz(k, j)K

∗
3
T(j)BT

i + ξ2(k)Pxz(k − h, j)K∗
3
TBT

+ 1
3

∑r
i=1 ξi(k)Pxz(k − h, j)K∗

3
T(j)BT

i +BK∗
3 (k)Pzx(k, j)ξ

T(j)

+BK∗
3 (k)Pzx(k, j − h)ξT2 (j) +BK∗

3 (k)Pz(k, j)K
∗
3
T(j)BT

+ 1
3

∑r
i=1 BiK

∗
3 (k)Pz(k, j)K

∗
3
T(j)BT

i + 1
3

∑r
i=1 BiK

∗
3 (k)Pzx(k, j)ξ

T
i (j)

+ 1
3

∑r
i=1 BiK

∗
3 (k)Pzx(k, j − h)ξT2i(j) +

1
3

∑r
i=1 BiK

∗
3 (k)Pzx(k, j)ξ

T
i (j)

+BK∗
1 (k)V (k, j)δk,jK

∗
1
T(j)BT +BK∗

2 (k)V (k − h, j − h)δk−h,j−hK
∗
2
T(j)BT

+ 1
3

∑r
i=1 BiK

∗
1
T(k)V (k, j)δk,jK

∗
1
T(j)BT

i

+ 1
3

∑r
i=1 BiK

∗
2 (k)V (k − h, j − h)δk−h,j−hK

∗
2
T(j)BT

i . (17)

We calculate the values of the gradients of the criterion (12) by K1(k), K2(k) and
K3(k). Using rules for differentiating functions tr from product of the matrices
by matrix argument [15], and equating them to zero, we obtain the formulas:

K1(k) = −C
−1

[CK2(k)SPx(k − h, k)ST + CK3(k)Pzx(k)S
T

+ 1
3

∑r
i=1 BT

i HTCH(AiPx(k) +A′
iPx(k − h, k))ST

+BTHTC(HAPx(k) +HA′Px(k − h, k)

−Pzx(k))S
T][SPx(k)S

T + V (k)]−1, (18)

K2(k) = −C
−1

[CK1(k)SPx(k, k − h)ST + CK3(k)Pzx(k, k − h)ST

+ 1
3

∑r
i=1 BT

i HTCH(AiPx(k, k − h) +A′
iPx(k − h))ST

+BTHTC(HAPx(k, k − h) +HA′Px(k − h)
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−Pzx(k, k − h))ST][SPx(k − h)ST + V (k − h)]−1, (19)

K3(k) = −C
−1

[CK1(k)SPxz(k) + CK2(k)SPxz(k − h, k)

+ 1
3

∑r
i=1 BT

i HTCH(AiPxz(k) +A′
iPxz(k − h, k))

+BTHTC(HAPxz(k) +HA′Pxz(k − h, k) + Pz(k))]Pz(k)
−1. (20)

After calculating K1(k), K2(k), K3(k), we rewrite (18)–(20) in the form of:

C[K1(k)(SPx(k)S
T + V (k)) +K2(k)SPx(k − h, k)ST

+K3(k)Pzx(k)S
T] = −BTHTC[HAPx(k) +HA′Px(k − h, k)

−Pzx(k)]S
T − 1

3

∑r
i=1 BT

i HTCH [AiPx(k) +A′
iPx(k − h, k)], (21)

C[K1(k)SPx(k, k − h)ST +K2(k)(SPx(k − h)ST + V (k − h))

+K3(k)Pzx(k, k − h)ST] = −BTHTC[HAPx(k, k − h) +HA′Px(k − h)

−Pzx(k, k − h)]ST − 1
3

∑r
i=1 BT

i HTCH [AiPx(k, k − h) +A′
iPx(k − h)], (22)

C[K1(k)SPxz(k) +K2(k)SPxz(k − h, k) + Pz(k)] =

−BTHTC[HAPxz(k) +HA′Pxz(k − h, k)− Pz(k)]

− 1
3

∑r
i=1 BT

i HTCH [AiPxz(k) +A′
iPxz(k − h, k)]. (23)

We obtain system of matrix equations (21)–(23) in the following form:

C[K1(k)|K2(k)|K3(k)]P (k) =

−[BTHTC(HAPx(k) +HA′Px(k − h, k)− Pzx(k))S
T

− 1
3

∑r
i=1 BT

i HTCH(AiPx(k) +A′
iPx(k − h, k))|

BTHTC(HAPx(k, k − h) +HA′Px(k − h)− Pzx(k, k − h))ST

− 1
3

∑r
i=1 BT

i HTCH(AiPx(k, k − h) +A′
iPx(k − h))|

BTHTC(HAPxz(k) +HA′Pxz(k − h, k)− Pz(k))

− 1
3

∑r
i=1 BT

i HTCH(AiPxz(k) +A′
iPxz(k − h, k))]. (24)

Taking into account (6), matrices C and P (k) are nonsingular for all k =
0, 1, 2, . . ., consequently, the equation (24) is solvable relative to block matrix
[K1(k)|K2(k)|K3(k)] and has the unique solution (7)–(9).

4 Asymptotic Behavior

Theorem 2. Let in description of system (1), observations (2), criterion (3)
and model of reference input (4) matrices A, Ai, A

′, A′
i, B, Bi, Q, S, V , C, D,

i = 1, r are constant, F = E, qz(k) = 0. Then, if the condition (6) of theorem 1 is
satisfied, there exist steady-state solution of equations (13), (15), (16), matrices
Px = limk→∞ Px(k) ≥ 0, Q1 = limk→∞ Q1(k) ≥ 0, pair of matrix (A,

√
Q1)

is stabilizable, matrix of the dynamics of a closed-loop system ξ = A + BK∗
1S

asymptotically stable for K∗
1 = limk→∞ K∗

1 (k).

Proof. If matrix Px ≥ 0, then from lemma 12.2 [16] on conditions that pair
of matrices (A,

√
Q1) is stabilized it follows that matrix ξ is asymptotically
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stable. Applying theorem 3.6 [16], we obtain that if pair of matrices (A,
√

Q1)
is stabilized, then pair of matrices (ξ,

√
Q1) is also stabilized. This proves the

justice of theorem 2.
Asymptotic tracking accuracy is defined by criterion:

J = limk→∞ M{ ‖x(k)− z‖2 }, (25)

where ‖.‖ is Euclidean norm of vector, z is constant reference input. First con-
struct evaluation for criterion J = M{ ‖x(k) − z‖2 }. Then define condition
k → ∞ and find evaluation for criterion (25). At the same time assume that
the conditions of theorem 2 are satisfied and ‖ξ‖s = α1, ‖ξ2‖s = α2, ‖ϕ‖s =
φ1, ‖ϕ2‖s = φ2 (here ‖.‖ is spectral norm of matrix, K∗

1 = limk→∞ K∗
1 (k),K

∗
2 =

limk→∞ K∗
2 (k),K

∗
3 = limk→∞ K∗

3 (k)). Suppose α2
1 + φ2 < 1. We note that sat-

isfaction of this condition ensures the asymptotic stability of the closed-loop
system with state delay [17]. Taking into account (1), (2), (5) by transfer coeffi-
cients K∗

1 ,K
∗
2 ,K

∗
3 , we calculate value of criterion (25) for k+1 step:

J = M{ xT(k)ξTξx(k) + xT(k)ξTξ2x(k − h) + xT(k)ξTξ3z

+xT(k − h)ξT2 ξx(k) + xT(k − h)ξT2 ξ2x(k − h) + xT(k − h)ξT2 ξ3z

+zT(k)ξT3 ξx(k) + zT(k)ξT3 ξ2x(k − h) + xT(k)ϕTϕx(k)

+xT(k)ϕTϕ2x(k − h) + xT(k − h)ϕT
2 ϕx(k) + xT(k − h)ϕT

2 ϕ2x(k − h)

+xT(k)ϕT 1
3

∑r
i=1 BiθiK

∗
3z + xT(k − h)ϕT

2
1
3

∑r
i=1 BiθiK

∗
3z

+
∑r

i=1 zTK∗
3
TθTBTϕx(k) + 1

3

∑r
i=1 zTK∗

3
TθTBTBiθiK

∗
3z

+ 1
3

∑r
i=1 zTK∗

3
TθTBTϕ2x(k − h) }+ zTξT3 ξ3z + trQ̃, (26)

where ϕ =
∑r

i=1(Aiθi + BiθiK
∗
1S), ϕ2 =

∑r
i=1(A

′
iθi + BiθiK

∗
2S), Q̃ = Q +

BK∗
1V K∗

1
TBT+ 1

3

∑r
i=1 BiK

∗
1V K∗

1
TBT

i +BK∗
2V K∗

1
TBT+ 1

3

∑r
i=1 BiK

∗
2V K∗

1
T×

BT
i .
From (26) by virtue Cauchy–Schwarz inequality we obtain the estimate:

J(k + 1) ≤ (α2
1 + φ2)J1(k) + (α1α2 + φφ2)J2(k, k − h)

+2(α1r1 + φR)J3(k) + (α1α2 + φφ2)J2(k − h, k) + (α2
2 + φ2

2)J1(k − h)

+2(α2r1 + φ2R)J3(k − h) + r21 +R2 + trQ̃, (27)

where J1(k) = M{ ‖x(k)‖2 }, J2(k, k − h) = M{ ‖x(k)‖‖x(k − h)‖ }, J3(k) =
M{ ‖x(k)‖ }, r1 = ‖ξ3z‖, R = ‖∑r

i=1 BiθiK
∗
3z‖, Q̃ = limk→∞ Q̃(k)

= limk→∞ Q̃(k − 1).
Then, considering that the trajectory of the closed-loop system is described

by the equation:

x(k) = (ξ + φ)x(k − 1) + (ξ2 + φ2)x(k − h− 1)

+(B +
∑r

i=1 Biθi)K
∗
1ν(k − 1) + (B +

∑r
i=1 Biθi)K

∗
2ν(k − h− 1)

+(B +
∑r

i=1 Biθi)K
∗
3z + q(k − 1), (28)
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we calculate recurrence relations for criteria J1(k), J2(k, k−h), J3(k) which are
part of (27):

J1(k) ≤ (α2
1 + φ2)kJ1(0) + (α1α2 + φφ2)

∑r
i=1 (α

2
1 + φ2)

k−j

×J2(j − 1, j − h− 1) + 2(α1r2 + φR)
∑r

i=1 (α
2
1 + φ2)

k−j
J3(j − 1)

+(α1α2 + φφ2)
∑r

i=1 (α
2
1 + φ2)

k−j
J2(j − h− 1, j − 1)

+(α2
2 + φ2

2)
∑r

i=1 (α
2
1 + φ2)

k−j
J1(j − h− 1)

+2(α2r2 + φ2R)
∑r

i=1 (α
2
1 + φ2)

k−j
J3(j − h− 1)

+
(α2

1+φ2)k−1

(α2
1+φ2)−1

(r22 +R2 + trQ̃), (29)

where r2 = ‖BK∗
3z‖. Recurrence relation for J2(k, k − h) takes the form:

J2(k, k − h) ≤ (α2
1 + φ2)kJ2(0,−h)

+(α1α2 + φφ2)
∑r

i=1 (α
2
1 + φ2)

k−j
J2(j − 1, j − h− 1)

+(α1r2 + φR)
∑r

i=1 (α
2
1 + φ2)

k−j
J3(j − 1)

+(α1α2 + φφ2)
∑r

i=1 (α
2
1 + φ2)

k−j
J1(j − h− 1)

+(α2
2 + φ2

2)
∑r

i=1 (α
2
1 + φ2)

k−j
J2(j − h− 1, j − 2h− 1)

+r2(α1 + α2)
∑r

i=1 (α
2
1 + φ2)

k−j
J3(j − h− 1)

+R(φ+ φ2)
∑r

i=1 (α
2
1 + φ2)

k−j
J3(j − h− 1)

+(r2α2 +Rφ2)
∑r

i=1 (α
2
1 + φ2)

k−j
J3(j − 2h− 1)

+
(α2

1+φ2)k−1

(α2
1+φ2)−1

(r22 +R2 + trQ̃1), (30)

where Q̃1 = BK∗
1V K∗

2
TBT + 1

3

∑r
i=1 BiK

∗
1V K∗

2
TBT

i , Q̃1 = limk→∞ Q̃1(k) =

limk→∞ Q̃1(k − 1).
Recurrence relation for J3(k) is:

J3(k) ≤ αk
1J3(0) + α2

∑r
i=1 αk−j

1 J3(j − h− 1) +
αk

1−1
α1−1 (r2 +R). (31)

Taking into account inequality (28)–(30) we construct the value of the criterion
(25). Then in k →∞ from (27) we obtain:

J ≤ [ (α1+α2)
2+(φ2+φ2)

2

1−(α2
1+φ2

2)
](r22 +R2) + [

α2
1+α2

2+φ2+φ2
2

1−(α2
1+φ2

2)
]trQ̃

+2[ r1(α1+α2)+R(φ+φ2)
1−α1

](r2 +R) +R2 + r21 + 2[α1α2+φ1φ2

1−(α2
1+φ2)

]trQ̃1. (32)

From the equation (31) it is evident, that in almost natural restrictions on the
class of dynamic systems the method of locally optimal tracking under indirect
measurements with errors provides asymptotic tracking with accuracy deter-
mined by the intensity of additive disturbances and errors in the observations,
dynamic characteristics of a closed-loop system, values of the parameters of the
object and the transmission coefficients tracking control system.
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5 Illustrative Example

Let the system (1) and local criterion (3) be described by the following matrices
and vectors:

A =

(
0.05 1
−0.025 1

)
, A′ =

(
0 0

0.03 0

)
, B =

(
0.1
1

)
, A1 =

(
0.05 0
0 0

)
,

A2 =

(
0 0

0.005 0

)
, A3 =

(
0 0.1
0 0

)
, A4 =

(
0 0
0 0.1

)
, A5 = A6 =

(
0 0
0 0

)
,

A′
1 =

(
0.03 0
0 0

)
, A′

2 =

(
0 0

0.005 0

)
, A′

3 =

(
0 0.01
0 0

)
, A′

4 =

(
0 0
0 0.002

)
,

A′
5=A′

6 =

(
0 0
0 0

)
, B1 = B2 = B3 = B4 =

(
0
0

)
, B5 =

(
0.05
0

)
, B6 =

(
0

0.25

)
,

Q =

(
0.02 0
0 0.02

)
, S =

(
0 1

)
, H =

(
1 0

)
, D = 0.2, F = 1, h = 1, z =

(
10
10

)
.

The quality of two control systems was compared. The first control system was
simulated by optimum transmission coefficients with interval parameters. The
second control system was simulated by optimum transmission coefficients which
were calculated using the nominal values of the parameters.

One can see from the graphs that the optimal control system has the property
of robustness and accuracy of tracking in such a control system is higher than in
the system synthesized by nominal values of the parameters. As a criterion for
assessing the quality of the convergence of the state vector x(k) to the reference
input z(k) calculated the average estimation error:

ei =

∑N
k=1 |x(k)− z(k)|

N
,

where z(k) is the reference input. In the table the value of quality criteria for
the convergence of two algorithms (N = 100) for 5 different sets of interval
parameters θi is cited:

algorithm 1 is the proposed algorithm,
algorithm 2 is the control calculated using nominal values of the parameters [8].

Average error

Algorithm e1 e2 e3 e4 e5
1 0.261 0.829 1.599 0.666 0.488
2 0.407 0.994 2.106 1.004 0.697

We note that in the simulation, interval on which the criterion is calculated is
shifted on the value of the transient process (15 steps).

The table shows, that average error deviation of the state vector x(k) from
tracking vector z(k) by proposed algorithm is smaller than control using algo-
rithm 2.
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6 Conclusion

The problem of controlling the output of a discrete systems with interval pa-
rameters and time delay based on the synthesis of locally optimal linear tracking
control system of discrete systems with indirect observations using the proba-
bilistic method has been solved. The asymptotic behavior of the system has been
analyzed. It is shown that the optimal control system with constant transfer co-
efficients has the property of robustness and provides better tracking accuracy
than the control system, which was synthesized using the nominal parameter
values.
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Abstract. Infinite-server queues are often used to approximate the be-
havior of systems with sufficiently large number of servers such as banks,
call-centers, supermarkets or digital distribution platforms. Such systems
often become subjects to external influences which affect their perfor-
mance, particularly their arrival rate and service-time distribution. In
this article we consider a mathematical model of such a situation as an
M/G/∞ queue operating in a “random environment”, for which the un-
derlying process is a continuous-time Markov chain with finite number
of states. The arrival rate and service-time distribution change randomly
according to the environment state. Note that distribution of service-time
of customers, which are currently being served, does not change until the
service-time is finished. The approximate probability distribution of the
number of customers under certain conditions is obtained.

Keywords: queueing theory, infinite-server queue, random environment,
general service-time, method of screened flow, method of asymptotic
analysis.

1 Introduction

Infinite-server queues are often used to approximate the behavior of systems with
sufficiently large number of servers, such as banks, call-centers, supermarkets or
digital distribution platforms. Such systems often become subjects to external
influences which affect their performance, particularly, their arrival rate and
service-time distribution. For instance, the change of bank rate set by the Central
bank affects the conditions under which commercial banks give loans to their
clients. These, in turn, significantly influence the intensity of clients’ arrival. In
this article we consider a mathematical model of such situation as an M/G/∞
queue operating in a “random environment”, for which the underlying process is a
continuous-time Markov chain with finite number of states. The arrival rate and
service-time distribution change randomly according to the environment state.
Note that distribution of service-time customers which are currently being served
does not change until the service-time is finished. Say the bank provided a credit
to the client on certain conditions and during the repayment period there was a
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change of bank rate. The client will continue to repay his debt on those initial
conditions — as mentioned in a loan agreement.

Queues in a random environment have been intensively studied in the lit-
erature. In particular, a lot of research is conducted on infinite-sever queues
operating in a random environment, either Markovian [1,2,3] or semi-Markovian
[4,5,6]. In [7] stochastic decomposition formula is obtained for the number of
customers in an M/G/∞ system with service speeds depending on general er-
godic process. In one of the oldest paper on random environment [8] the problem,
very similar to ours, is studied. Three cases of service behavior at environment
transition epochs are covered. The first one is considered in the present paper —
service-time distribution stays the same while customer is in the system. In the
second case when a change in environment occurs all customers in service are
discharged from the system immediately. This situation is also covered in [9].
The last case considers customers in service moving to a secondary queue which
is an infinite-server system with bulk arrivals. As a result, the steady-state mean
number of customers in the secondary queue is obtained.

2 Problem Statement

We consider an M/G/∞ queue operating in a “random environment”, i.e. de-
pending on the state of a continuous-time Markov chain s(t). That is, when the
process is in state s = 1,K, the queue operates as an M(λs)/G(Bs(x))/∞ with
arrival rate λs and service-time is distributed according to the probability dis-
tribution function Bs(x) on each server. We study the case when service-time
distribution of a customer which is currently being served does not change un-
til the service is finished. As a model of such a system we use a 2-dimensional
stochastic process {i(t), s(t)}, where i(t) is a number of customers in the sys-
tem. Apparently the process {i(t), s(t)} is not a Markovian one. Let us denote
as P (i, s, t) the probability of system state:

P (i, s, t) = P{i(t) = i, s(t) = s}, i ≥ 0, s = 1,K. (1)

The objective of our research is to obtain the distribution of probabilities (1)
as well as numerical characteristics such as expected value and variance of the
number of customers in the system [10]. In this paper, we apply the original
methods for queueing systems, such as method of screened flow and method of
asymptotic analysis [11].

3 Method of Screened Flow

3.1 Method Description

We pick a moment T and mark on the time axis (−∞, T ) the moments of event
occurrences in the arrival flow. The customer will be referred to as “screened”,
with probability

Ss(t) = 1−Bs(T − t), s = 1,K, (2)
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if it arrived in the system at time t < T and was not fully serviced until the
moment T . Thus, the customers of screened flow at time T will be in the system
taking up its servers.

Let us denote as n(t) the number of events of the screened flow which occurred
until the moment t. If at some initial time t0 < T the system is empty, i.e. there
are no customers under service, then for the time T the following equality holds:

i(T ) = n(T ). (3)

Next, choose the initial time t0 so that at all times t < t0 events of screened
flow do not occur, i.e.

Ss(t) = 1−Bs(T − t) = 0, s = 1,K, t < t0. (4)

Since Bs(x) is the distribution function, it is obvious enough to put t0 = −∞.
Equation (3) allows us to reduce the research problem of non-Markovian queue

with infinite number of servers to the problem of non-stationary screened flow
analysis which is defined by the process n(t). Characteristics of the process n(t)
at time T coincide with the characteristics of value i(T ).

This “screening” method can also be used for the analysis of queueing net-
works. For example, the dynamic screening method is applied for GI−(GI|∞)K

queueing network in [12].

3.2 System of Kolmogorov Differential Equations

As stated above, it is legit to consider the process {s(t), n(t)} in order to study
our system. This two-dimensional process is a Markovian one. We write the
possible transitions to the states of n(t) and their probabilities assuming n(t) = n
as follows:

n(t+Δt) =

{
n + 1, with probability λsΔtSs(t) + o(Δt), s = 1,K,

n, with probability 1− λsΔtSs(t) + o(Δt), s = 1,K.

Similarly to (1), we define the probabilities

P (s, n, t) = P{s(t) = s, n(t) = n}, s = 1,K, n ≥ 0, (5)

and according to the law of total probability [13] we write

P (s, n, t+Δt) = {1 + qssΔt}{[1− λsΔtSs(t)]P (s, n, t)+

+λsΔtSs(t)P (s, n− 1, t)}+
∑
ν �=s

qνsΔtP (ν, n, t) + o(Δt),

n ≥ 0, s = 1,K.

(6)

Performing simple operations on (6), we obtain the direct system of Kolmogorov
differential equations:

∂P (s, n, t)

∂t
= λsSs(t){P (s, n− 1, t)− P (s, n, t)}+

K∑
ν=1

qνsP (ν, n, t),

n ≥ 0, s = 1,K.

(7)
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The initial condition for the solution P (s, n, t) of this system of equations at
time t0 we define as

P (s, n, t0) =

{
r(s), if n = 0,

0, if n > 0,
(8)

where r(s) are steady-state probabilities of the environment states.

3.3 Characteristic Functions

We introduce partial characteristic functions as follows

H(s, u, t) =

∞∑
n=0

ejunP (s, n, t), s = 1,K, (9)

where j =
√−1. We multiply the equations of the system (7) by ejun and sum

all the equations over n from 0 to ∞ and obtain the system of Kolmogorov
differential equations which defines partial characteristic functions:

∂H(s, u, t)

∂t
= λsSs(t)(e

ju − 1)H(s, u, t) +

K∑
ν=1

qνsH(ν, u, t),

s = 1,K.

(10)

We rewrite this system as a vector-matrix equation, denoting

Λ =

⎡⎢⎢⎢⎢⎣
λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λK

⎤⎥⎥⎥⎥⎦ ,S(t) =

⎡⎢⎢⎢⎢⎣
S1(t) 0 · · · 0

0 S2(t) · · · 0
...

...
. . .

...
0 0 · · · SK(t)

⎤⎥⎥⎥⎥⎦ ,

Q =

⎡⎢⎢⎢⎢⎣
q11 q12 · · · q1K

q21 q22 · · · q2K
...

...
. . .

...
qK1 qK2 · · · qKK

⎤⎥⎥⎥⎥⎦ ,H(u, t) =
[
H(1, u, t) H(2, u, t) · · · H(K,u, t)

]
.

Here Λ, S(t) are diagonal matrices containing the conditional intensities λs of the
arrival flow and the probabilities Ss(t) of the screened flow’s event occurrences
at time t, respectively, Q is the transition rate matrix of the environment and
H(u, t) is a vector characteristic function. Now the system (10) can be rewritten
as

∂H(u, t)

∂t
= H(u, t){(eju − 1)ΛS(t) +Q}. (11)

It is obvious that obtaining an explicit solution to the equation above is quite
uneasy. We apply the method of asymptotic analysis to the equation (11) in
order to obtain the explicit distribution under limiting conditions of high arrival
intensity and frequent change of the environment states.
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4 Method of Asymptotic Analysis

4.1 Method Description

Method of asymptotic analysis for queueing systems consists of analysis of the
equations defining any characteristics of the system and allows to obtain the
explicit distribution and numerical characteristics under some asymptotic con-
dition. Returning to our problem we set

Λ̃ = ΛN, Q̃ = QN. (12)

Then the asymptotic condition is given as follows:

N →∞. (13)

Thus, our goal is to solve the following equation:

1

N

∂H(u, t)

∂t
= H(u, t){(eju − 1)ΛS(t) +Q} (14)

with the initial condition derived from (8), as (13) takes place.

4.2 First Degree Asymptotic

In the equation (14), we denote ε = 1
N and make substitutions

u = εw,H(u, t) = F1(w, t, ε),

and then it can be rewritten as

ε
∂F1(w, t, ε)

∂t
= F1(w, t, ε){(ejεw − 1)ΛS(t) +Q}. (15)

Here w has the meaning of a scaled argument of the vector characteristic func-
tion.

In (15), we set ε→ 0 and denote

lim
ε→0

F1(w, t, ε) = F1(w, t). (16)

This yields:
F1(w, t)Q = 0. (17)

Row-vector 0 above contains zeros. It then follows that F1(w, t) can be repre-
sented as a product

F1(w, t) = rΦ1(w, t). (18)

Here Φ1(w, t) is a scalar function, which will be defined below, and r is a row-
vector of steady-state probability distribution of environment states:{

rQ = 0,

re = 1,
(19)
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where e is a column-vector containing units. We post-multiply (15) by e and
divide by ε:

∂F1(w, t, ε)

∂t
e =

ejεw − 1

ε
F1(w, t, ε)ΛS(t)e. (20)

In (20) we set ε → 0 and substitute F1(w, t) with product (18). This gives the
following equation:

∂Φ1(w, t)

∂t
= jwΦ1(w, t)rΛS(t)e, (21)

which is an ordinary differential equation separable in Φ1(w) and w. Its solution
considering (8) is given as follows:

Φ1(w, t) = exp{jw
∫ t

−∞
rΛS(τ)edτ}. (22)

Denote

κ1(t) =

∫ t

−∞
rΛS(τ)edτ. (23)

Finally,

H(u, t) = F1(w, t, ε) ≈ F1(w, t) = rΦ1(w, t) = rexp{jwκ1(t)}, (24)

where w = Nu. It follows that

M{ejun(t)} = H(u, t)e ≈ h1(u, t) = exp{juκ1(t)N}. (25)

Since (3) takes place, we can finally conclude:

M{ejui(T )} = M{ejun(T )} = H(u, T )e ≈ h1(u, T ) = exp{juκ1(T )N}. (26)

We calculate the value κ1(T ):

κ1(T ) =

∫ T

−∞
rΛS(t)edt =

∫ T

−∞

K∑
s=1

r(s)λsSs(t)dt =

=

K∑
s=1

r(s)λs

∫ T

−∞
{1−Bs(T − t)}dt.

(27)

In the integral we make a substitution τ = T − t, then (27) can be rewritten as:

K∑
s=1

r(s)λs

∫ T

−∞
{1−Bs(T − t)}dt =

=

K∑
s=1

r(s)λs

∫ ∞

0

{1−Bs(τ)}dτ =

K∑
s=1

r(s)λsbs,

(28)
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where bs is the mean of the service time. Thus

κ1(T ) =
K∑
s=1

r(s)λs

∞∫
0

{1−Bs(τ)}dτ =
K∑
s=1

r(s)λsbs = rΛBe, (29)

where B is a diagonal matrix containing service time means:

B =

⎡⎢⎢⎢⎢⎣
b1 0 · · · 0

0 b2 · · · 0
...

...
. . .

...
0 0 · · · bK

⎤⎥⎥⎥⎥⎦ .

4.3 Second Degree Asymptotic

In the equation (14) we make a substitution

H(u, t) = H2(u, t)exp{juκ1(t)N}. (30)

The function H2(u, t) here has a meaning of centered characteristic function as
the following relation takes place:

H2(u, t)e = H(u, t)e−juκ1(t)Ne = M{exp[ju(n(t)− κ1(t)N)]}. (31)

The substitution (30) yields an equation which defines function H2(u, t):

1

N

∂H2(u, t)

∂t
= H2(u, t){(eju − 1)ΛS(t) +Q− ju(rΛS(t)e)I}. (32)

The matrix I here is the identity matrix.
We define ε2 = 1

N and make the following denotations:

u = εw,H2(u, t) = F2(w, t, ε).

We then rewrite (32) as:

ε2
∂F2(w, t, ε)

∂t
= F2(w, t, ε){(ejεw − 1)ΛS(t) +Q− jεw(rΛS(t)e)I}. (33)

As ε→ 0, denoting
lim
ε→0

F2(w, t, ε) = F2(w, t), (34)

we obtain
F2(w, t)Q = 0. (35)

It follows that
F2(w, t) = rΦ2(w, t), (36)
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where Φ2(w, t) is a scalar function which will be defined later. The solution
F2(w, t, ε) for the equation (33) we rewrite as follows

F2(w, t, ε) = Φ2(w, t){r+ jεwf2(t)}+O(ε2), (37)

where f2(t) is a row-vector, which will be defined below.
In the equation (33) we represent the function ejεw as a first degree Taylor

polynomial. This yields the following expression:

F2(w, t, ε){jεw[ΛS(t)− (rΛS(t)e)I] +Q} = O(ε2) (38)

In (38) we substitute F2(w, t, ε) with approximation (37) and obtain the follow-
ing system:

jεwΦ2(w, t){rΛS(t)[I− er] + f2(t)Q} = O(ε2). (39)

We divide both sides of it by ε and set ε→ 0. We then have:

Φ2(w, t){rΛS(t)[I− er] + f2(t)Q} = 0. (40)

Given Φ2(w, t) �= 0, the following identity takes place:

f2(t)Q = rΛS(t){er− I}. (41)

Hence, the vector f2(t) is defined by the inhomogeneous underdetermined linear
system.

The solution f2(t) of the system (41) we write as

f2(t) = c(t)r+ g(t), (42)

where c(t) is an arbitrary scalar function and the row vector g(t) is any specific
solution to the system (41) satisfying a certain condition, for example:

g(t)e = 0. (43)

A solution g(t) to the system (41), (43) we write as

g(t) = rΛS(t)G, (44)

where G is a matrix solving the following system:{
GQ = er− I,

Ge = 0T .
(45)

Thus, the function f2(t) is written as follows:

f2(t) = c(t)r+ rΛS(t)G. (46)

Let us now derive the explicit expression for the function Φ2(w, t). To do this,
we approximate the exponential function in (33) with the second degree Taylor
polynomial and make a substitution (37). This yields the equation:

ε2
∂Φ2(w, t)

∂t
r = Φ2(w,t){jεw[rΛS(t)(I − er) + f2(t)Q]+

+
(jεw)2

2
[rΛS(t) + 2f2(t)ΛS(t)− 2(rΛS(t)e)f2(t)]} +O(ε3).

(47)
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We then post-multiply both parts of the system (47) by vector e. Due to (41),
the equation can be rewritten as:

ε2
∂Φ2(w, t)

∂t
=

(jεw)2

2
Φ2(w, t){r+ 2f2(t)[I− er]}ΛS(t)e+O(ε3). (48)

We divide both sides of (48) by ε2 and set ε→ 0. This gives:

∂Φ2(w, t)

∂t
=

(jw)2

2
Φ2(w, t){r+ 2f2(t)[I − er]}ΛS(t)e. (49)

A solution for this ordinary differential equation, considering the initial condition
derived from (8), is written as follows:

Φ2(w, t) = exp{ (jw)2

2
κ2(t)}, (50)

where κ2(t) denotes the following expression:

κ2(t) =

t∫
−∞
{r+ 2f2(τ)[I − er]}ΛS(τ)edτ. (51)

Thus, the expression for the centered characteristic function H2(u, t) is ob-
tained and is written as follows:

H2(u, t) = F2(w, t, ε) ≈ F2(w, t) = rΦ2(w, t) =

= rexp{ (jw)2

2
κ2(t)} = rexp{ (ju)

2

2
κ2(t)N}.

(52)

It follows that

H(u, t) = H2(u, t)e
juκ1(t)N ≈ rexp{juκ1(t)N +

(ju)2

2
κ2(t)N}, (53)

M{ejun(t)} = H(u, t)e ≈ h2(u, t) = exp{juκ1(t)N +
(ju)2

2
κ2(t)N}. (54)

Considering (3), the following identities are true:

H(u, T ) ≈ rexp{juκ1(T )N +
(ju)2

2
κ2(T )N},

M{ejui(T )} = M{ejun(T )} = H(u, T )e ≈ h2(u, T ) =

= exp{juκ1(T )N +
(ju)2

2
κ2(T )N}.

(55)
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Let us specify the expression for κ2(T ), considering (46) and the system (45):

κ2(T ) =

T∫
−∞
{r+ 2f2(t)[I − er]}ΛS(t)edτ =

=

T∫
−∞

rΛS(t)edt + 2

T∫
−∞
{c(t)r+ rΛS(t)G}{I− er}ΛS(t)edt =

= κ1(T ) + 2

T∫
−∞

rΛS(t)GΛS(t)edt =

= rΛBe+ 2

K∑
s=1

K∑
s′=1

r(s)λsλs′Gss′

T∫
−∞

Ss(t)Ss′ (t)dt =

= rΛBe+ 2rΛBGΛe− 2rΛ(M×G)Λe.

The symbol × here denotes the Hadamard product for matrices. Note that

T∫
−∞

Ss(t)Ss′ (t)dt =

∞∫
0

(1−Bs(x))(1 −Bs′(x))xdx =

= M{min(τs,τs′)}, s, s′ = 1,K.

(56)

The matrix M is defined as follows:

M =
[
M{min(τs, τs′)}

]
, s, s′ = 1,K.

Finally we can write

κ2(T ) = rΛBe+ 2rΛBGΛe− 2rΛ(M×G)Λe. (57)

It follows from the last equality that κ2(T ) does not depend on the arbitrary
function c(t), which is present in (46).

After obtaining (55) it is clear that the probability distribution of the number
of customers in the system is asymptotic normal and κ1(t)N and κ2(t)N are,
respectively, the first and the second cumulants. It is known that

M{i(T )} ≈ κ1(T )N,D{i(T )} ≈ κ2(T )N. (58)

Inverse Fourier transform of (55) gives the probability density function of the
normally distributed random variable:

p(x) =
1√

2πκ2(T )N
exp

{
− (x− κ1(T )N)2

2κ2(T )N

}
. (59)

It is necessary to switch from this continuous distribution to discrete as follows:

P (i) = Cp(i), i ≥ 0, (60)
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where the constant value C is defined considering the normalizing condition:

∞∑
i=0

P (i) = C

∞∑
i=0

p(i) = 1. (61)

Due to (61), C is given as follows:

C = 1/

∞∑
i=0

p(i) (62)

Thus the asymptotic probability distribution of the number of customers in
the system M(λs)/G(Bs(x))/∞ is obtained using the methods of screened flow
and asymptotic analysis. Given the concrete distribution Bs(x) we can calculate
the exact values for κ1(t)N and κ2(t)N .

5 Example

In conclusion we apply derived formulas to a concrete example. Let us set the
transition-rate matrix Q and diagonal matrix Λ as follows:

Q =

⎡⎢⎣−5 2 3

0 −3 3

2 1 −3

⎤⎥⎦ ,Λ =

⎡⎢⎣4 0 0

0 3 0

0 0 5

⎤⎥⎦ .

Given these values, row-vector r and matrix G are defined as:

r =
[
0.2 0.3 0.5

]
,G =

⎡⎢⎣ 0.127 −0.043 −0.083
−0.073 0.157 −0.083
−0.006 −0.077 0.083

⎤⎥⎦ .

Let service-time be gamma-distributed with shape parameter αs and rate pa-
rameter βs. Given the expression for the gamma-distribution mean, the matrix
B can be specified as follows:

B =

⎡⎢⎣
α1

β1
0 0

0 α2

β2
0

0 0 α3

β3

⎤⎥⎦ =

⎡⎢⎣2 0 0

0 0.375 0

0 0 0.500

⎤⎥⎦ .

Finally, we specify the matrix M and its general term M{min(τs, τs′)} =
= αsαs′

βs+βs′
:

M =

⎡⎢⎣ 2 0.667 0.667

0.667 0.562 0.300

0.667 0.300 0.250

⎤⎥⎦ .
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We now may calculate the values κ1(T ) and κ2(T ):

κ1(T ) = 2.275,

κ2(T ) = 1.185.

Using these parameters we can plot the probability distribution of the num-
ber of customers in the system, as N is reasonably large. The probabilities of
i customers being serviced are defined by expression (60). Let N = 10. The
asymptotic probability distribution graph is given in Figure 1.

Fig. 1. Asymptotic probability distribution graph of the number of customers in the
system

6 Conclusion

In this paper the research was conducted on the M/G/∞ queue, operating
in a Markovian random environment. Thus, it is necessary to analyze the 2-
dimensional stochastic process, which is non-Markovian. We studied the case
when the service-time distribution of customers which are currently being served
does not change until the customer is fully serviced, even if the environment has
jumped to another state. Using the method of screened flow we reduced the men-
tioned problem to the analysis of a 2-dimensional Markovian process. We then
used the method of asymptotic analysis to find the limiting probability distri-
bution of the number of clients in the system, which turned out to be Gaussian.
We as well derived the expressions for its parameters — mean and variance.

Previously the work was done on analyzing the M/M/∞ queue in random
environment in case the arrival and service rate vary along with the environment
state [14]. The solution to such a problem, namely approximate probability dis-
tribution of the queue length and exact formulas for the mean and variance,
is obtained quite easily. On the other hand, if the service rate stays the same
until the client is present in the system the complications arise as the service-time
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distribution is different at the infinite number of servers. Thus we obtain the
solution for the more general problem as we have the proper tools to perform it.

In the future it is planned to build a simulation model for the queueing system
in question and compare simulated results to the calculated using formulas (29)
and (57). We will also consider the case when the random environment is semi-
Markovian.
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Abstract. In this paper, we study retrial queueing system with priority
of new customers. We consider the weighted sum of exponential distribu-
tion and gamma distribution as an example of the numerical realization.
Distribution of probabilities of the number of customers in the orbit is
obtain with the aid of numerical algorithm. Two Gaussian approxima-
tions are constructed using both the moments of obtained distribution
and the asymptotic semi-invariants. The third order approximation is
presented. This approximation is more accurate than Gaussian approxi-
mation based on the moments of distribution.
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1 Introduction

Retrial queueing systems are characterized by the feature that arrivals who find
the server unavailable are obliged to leave the service area and to try again
for their customers in random order and at random intervals. Between trials a
customer is called to be in “orbit”. This feature plays a special role in several
computer and communications networks. Queues with repeated attempts have
been widely used to model many problems in telephone switching systems, com-
munication systems and local area network problems. For recent bibliographies
on retrial queues, see [1], [2]. Artalejo also provided extensive surveys of retrial
queues.

Priority mechanism is an invaluable scheduling method that allows customers
to receive different quality of service. Service priority is clearly today a main
feature of the operation of any manufacturing system. Several authors including
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Cobham [3], Phipps [4], Schrage [5], Jaiswal [6], Madan [7], Simon [8], Takagi
[9], Choi and Chang [10], [11] have studied priority queues.

In this paper we study retrial queuing system M/G/1 with priority as primary
customers and customers in the orbit.

2 Mathematical Model

Let us consider retrial queueing system M/G/1 with priority of the new cus-
tomers. Structure of the system is depicted in Figure 1. We assume that arrival

B(x)�λ

� � · · ·

�

σ

�

σ

Orbit

Fig. 1. Mathematical model

flow to the system is described by the stationary Poisson process with intensity
λ. Customer, which finds the server be free, occupies it for service during a ran-
dom time with distribution function B(x). If the server is busy, then an arrived
customer replaces the customer, which is in service, and occupies the server. The
customer, which was in service, moves to a so customer’s orbit where it performs
a random delay with duration determined by exponential distribution with pa-
rameter σ. From the orbit, after the random delay, the customer occupies the
device again. If the device is free then the customer occupies it for a random
service time. If the server is busy then the customer from the orbit replaces the
customer on service and occupies the server, while the customer which was on
service goes to the orbit. After each service interruption, new service time also
is characterized by distribution function B(x). Let

B∗(α) =
∞∫
0

exp(−αx) dB(x)

be Laplace-Stieltjes transform of the distribution function B(x). Let i(t) be the
number of customers in the orbit, k(t) define S the server state in the following
way:
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k(t) =

{
0, if server is free at moment t,
1, if server is busy at moment t.

We would like to solve a problem of computation of stationary distribution of
probabilities of the number of customers in the orbit and server state.

Since the process {k(t), i(t)} is not Markovian then we analyze the process
{k(t), i(t), z(t)}, where z(t) is the residual service time of a customer in service,
if any.

3 Kolmogorov’s Equations

Let us denote by P{k(t) = 0, i(t) = i} = P0(i, t) a probability that, at the
moment t, the server is in the state 0 and i customers stay in the orbit. Let
P{k(t) = 1, i(t) = i, z(t) < z} = P1(i, z, t) is a probability that, at the moment
t the server is in the state 1, residual service time is less than z and the number
of customers in the orbit is equal to i.

Let us assume that the system is operating in a stationary mode, i.e. P0(i, t) ≡
P0(i), P1(i, z, t) ≡ P1(i, z).

Let us write the system of equations for stationary distribution:⎧⎪⎪⎪⎨⎪⎪⎪⎩
−∂P1(i, z)

∂z
+

∂P1(i, 0)

∂z
= λB(z)P0(i)− (λ+ iσ)P1(i, z)+

iσB(z)P1(i,∞) + λB(z)P1(i − 1,∞) + (i+ 1)σB(z)P0(i+ 1),
∂P1(i, 0)

∂z
= (λ+ iσ)P0(i), i ≥ 0, z > 0.

(1)

where we mean that

∂P1(i, 0, t)

∂z
=

∂P1(i, z, t)

∂z

∣∣∣∣
z=0

.

4 Numerical Realization

We got numerical algorithm, following which you can obtain a distribution of
probability P (i), where P (i) = P0(i) + P1(i). This algorithm consists of the
following steps:

1. Temporarily assume that P1(0) = 1;
2. Select sufficiently large integer number N , and P1(i), i = 1, N compute

probabilities by

P1(i) =
[λ+ iσ − λB∗(λ+ iσ)] λ

iσ − λB∗(λ+ iσ)

(λ+ iσ)B∗(λ+ iσ)
· P1(i − 1), i ≥ 1;

3. Using formulas

P0(0) =
σ

λ
· B∗(λ)
1−B∗(λ)

P0(1)
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and

P0(i+ 1) =
λ

(i+ 1)σ
· P1(i), i ≥ 0,

find the value of P0(0);
4. Using relation

P0(i+ 1) =
λ

(i+ 1)σ
· P1(i), i ≥ 0,

compute the values of P0(i) for all i = 1, N ;

5. Compute the sum d =
N∑
i=0

(P0(i) + P1(i));

6. Assume that probabilities P0(i), P1(i), i ≥ 0 are equal to
1

d
Pk(i), i ≥ 0,

k = 0, 1;
7. Stop algorithm if the computed value of P0(N)+P1(N) is sufficiently small,

for instance is equal to computer zero. Otherwise, increase value N and
return to Step 2 of algorithm.

In particular, we analyze the weighted sum of gamma distribution and expo-
nential distribution

B∗(u) = q

(
1 +

u

β

)−α

+ (1 − q)

(
1 +

u

γ

)−1

, (2)

where α, β, γ and 0 ≤ q ≤ 1 are positive parameters.
Note that density function B′(u) of distribution having Laplace-Stieltjes trans-

form (2) is given by

B′(u) = q
βα

Γ (α)
uα−1e−βu + (1 − q)γe−γu. (3)

For various parameter values in the range that α > 1, q < 1, we compute
distributions Pk(i), k = 0, 1 and P (i), i ≥ 0 by means of the algorithm described
above. Using distribution P (i), i ≥ 0, we compute the first three moments of this
distribution as:

a1 =

N∑
i=0

iP (i), a2 =

N∑
i=0

(i − a1)
2P (i), a3 =

N∑
i=0

(i− a1)
3P (i), (4)

E. g., if the parameters of distribution (3) are fixed as follow is:

q = 0.5; α = 2; β = 5; γ = 5. (5)
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Fig. 2. Graph of distribution P (i) for σ = 0.02

Graph of distribution P (i), i ≥ 0 computed by means of the numerical algo-
rithm for parameters of servicing time distribution, which is given by (5), λ = 1.5
for σ = 0.02 is given in figure 2.

Looking at the graphs of distribution P (i) it seems appropriate to compare
them to density function of Gaussian distribution, which is defined by the same
moments of a1 and a2 as distribution P (i), i ≥ 0.

Let us denote normal distribution function with moments a1 and a2 by F (x),
P2(i) be discrete distribution of nonnegative quantity which is defined by

P2(i) = [F (i + 1)− F (i)](1− F (0))−1, i ≥ 0. (6)

We will call distribution P2(i), i ≥ 0, as Gaussian’s approximation or second-
order approximation of distribution P (i), which is was computed by means of
the developed above numerical algorithm.

Fig. 3. Graphs of distribution P (i) and Gaussian distribution for σ = 0.02
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To estimate the accuracy of this approximation we will take the following
value

Δ2 = max
0≤i≤N

|
i∑

n=0

(P (n)− P2(n)) |, (7)

which is called as Kolmogorov’s distance between distributions.
As shown in Table 1 this approximation is quite accurate for σ ≤ 0.2 since

Δ2 < 0.05.
Now, let us try to construct even more accurate approximation.
Note that characteristic function h2(u) of normal distribution is given by

h2(u) = exp

{
jua1 +

(ju)2

2
a2

}
(8)

and it accounts the average value a1 and variance a2. But it does not account
quite meaningful asymmetry of the graphs of distribution P (i), i ≥ 0. The
coefficient of asymmetry of any distribution accounts the third moment, a3, of
distribution. So let us consider the function

h3(u) = exp

{
jua1 +

(ju)2

2
a2 +

(ju)3

6
a3

}
, (9)

which is not a characteristic function, but allows to construct the following dis-
crete distribution.

The inverse Fourier transformation for function given by (9) by is defined

h4(i) =
1

2π

∞∫
−∞

e−juih3(u)du.

Next in h4(i) we reduce imaginary components and real parts in the following
manner

h3(i) =
1

4

{
h4(i) + h4(i)+ | h4(i) + h4(i) |

}
.

where h4(i) is conjugate number to h4(i) and | h4(i) + h4(i) | stands for the
module of complex number.

We fix some integer N and find the normalizing constant d =
n∑

i=0

h3(i).

Let us write the following discrete probability distribution

P3(i) =
1

d
h3(i), 0 ≤ i ≤ N,

which we call as third-order approximation of distribution P (i), i ≥ 0.
Analogously to (7), to estimate the accuracy of this new approximation we

find the value of Δ3, substituting instead of P3(n) in (7).
Values of Δ2 and Δ3 with various values λ of intensity for some values of

intensity σ are listed in the Table 1.
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Table 1. Numerical result for values Δ2 and Δ3

σ 0.5 0.1 0.05 0.02 0.01 0.005

λ = 1
Δ2 0.1773 0.0796 0.0436 0.0226 0.0160 0.0113
Δ3 0.0264 0.0173 0.0174 0.0042 0.0020 0.0010

λ = 1.5
Δ2 0.1026 0.0441 0.0278 0.0175 0.0124 0.0088
Δ3 0.0831 0.0209 0.0068 0.0027 0.0013 0.0006

λ = 2
Δ2 0.1291 0.0363 0.0256 0.0163 0.0115 0.0082
Δ3 0.0627 0.0123 0.0063 0.0024 0.0012 0.0006

λ = 2.25
Δ2 0.1236 0.0385 0.0274 0.0337 0.0163 0.0060
Δ3 0.0501 0.0143 0.0074 0.0226 0.0142 0.0050

As is seen from table 1 it is divided into three parts:
In the first, right one, approximation it is not recommended to apply distri-

butions P (i) by the distributions of the second and third order, because Δ2 and
Δ3 exceed permissible error of 0.03.

In the second part approximation by distributions by the distributions of
the third order is accepted, but approximation by Gaussian distribution is not
recommended.

In the right low part both approximation are accepted, and also approxima-
tion of the distribution by distribution of the third order is more correct than
approximation by Gaussian distribution, because Δ3 is 8-15 less than Δ2.

To distribution (3) let’s find three moments of asymptotic semi-invariants κ1,
κ2 and κ3:

aas1 =
κ1

σ
, aas2 =

κ2

σ
, aas3 =

κ3

σ
.

Now let’s compare the graph of distribution P (i) with Gaussian distribution
that is defined by the moments aas1 and aas2 .

Let us denote normal distribution function with moments aas1 and aas2 by
F as(x), P as(i) be discrete distribution of non-negative quantity which is defined
by

P as
2 (i) = [F as(i+ 1)− F as(i)](1− F as(0))−1, i ≥ 1. (10)

We will call distribution P as
2 (i), i ≥ 1, as Gaussian’s approximation or second-

order approximation of distribution P (i), which is was computed by asymptotic
semi-invariants.

To estimate the accuracy of this approximation we will take the following
value

Δas
2 = max

0≤i≤N
|∑i

n=0 (P (n)− P as
2 (n)) |.

Note that characteristic function has
2 (u) of normal distribution is given by

has
2 (u) = exp

{
juaas1 + (ju)2

2 aas2

}
.
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Fig. 4. Graphs of distribution P (i) and Gaussian distribution with moments aas
1 and

aas
2 for σ = 0.02

So let us consider the function

has
3 (u) = exp

{
juaas1 + (ju)2

2 aas2 + (ju)3

6 aas3

}
,

which is not a characteristic function, but allows to construct the following dis-
crete distribution

P as
3 (i) =

1

d
has
3 (i), 0 ≤ i ≤ N.

We will call distribution P as
3 (i), i ≥ 0, as third-order approximation of distribu-

tion P (i), which is was computed by asymptotic semi-invariants.
Analogously to (7), to estimate the accuracy of this new approximation we

find the value of Δas
3 . Values of Δas

2 and Δas
3 with various values λ of intensity

for some values of intensity σ are listed in the Table 2.

Table 2. Numerical result for values Δas
2 and Δas

3

σ 0.5 0.1 0.05 0.02 0.01 0.005

λ = 1
Δas

2 0.0947 0.0639 0.0277 0.0139 0.0096 0.0067
Δas

3 0.0954 0.0175 0.0287 0.0120 0.0081 0.0056

λ = 1.5
Δas

2 0.0599 0.0252 0.0212 0.0133 0.0094 0.0066
Δas

3 0.1049 0.0485 0.0288 0.0182 0.0128 0.0091

λ = 2
Δas

2 0.0693 0.0411 0.0291 0.0182 0.0128 0.0090
Δas

3 0.0703 0.0638 0.0459 0.0293 0.0207 0.0147

λ = 2.25
Δas

2 0.0731 0.0571 0.0401 0.0251 0.0273 0.0112
Δas

3 0.1353 0.0860 0.0623 0.0399 0.0321 0.0176

Analysing the second table it is possible to conclude that it is divided into 3
parts:

In the left part, the values Δas
2 and Δas

3 are greater than 0.03 that is an intol-
erable error. That means that it is highly impossible to use the approximations
of the second and third orders.
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In the second part it is not recommended to use the approximations of the
third order. The approximations of the second order is quite possible.

In the right upper part, the values of the quantities Δas
2 are not greater that

0.03. That means that it is possible to use the asymptotic of the second and
third order, where asymptotic of the second order is better that the one of the
third order.

5 Conclusion

In this paper we considered the weighted sum of gamma distribution and expo-
nential distribution. Distribution of probabilities of the number of customers in
the orbit was obtained with the aid of numerical algorithm. Approximation with
the aim of Gaussian distribution with the moments that were found by this dis-
tribution and with the moments, that were found by asymptotic semi-invariants
was carried on. The third order approximation was described. It was stated that
approximation of the third order is more accurate than Gaussian approxima-
tion based on the moments of distribution P (i). And also it was established
that approximation of the third order are less appropriate that approximation
of Gaussian distribution with the moments that were found with the aim of the
asymptotic semi-invariants.
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Abstract. We consider a closed retrial queuing system M/M/1//N with
collision of the customers. We assume that sources can be in two states:
generating a primary customers and waiting for the end of successful ser-
vice. Source which sends the customer for service, moves into the waiting
state and stays in this state till the end of the service of this customer.
This system is solved using the asymptotic method under conditions of
infinitely increasing number of sources. We establish formulas for com-
puting the prelimit distribution of the number of sources in “waiting”
state. Also, we determine the range of applicability of the asymptotic
results in prelimiting situation.

Keywords: closed queueing system, retrial queue, collision, asymptotic
analysis.

1 Introduction

Retrial queue is a queuing system [1–3] characterized by the following feature:
customers, who find server busy goes to the orbit and after random time repeat
their demand. It is assumed that the orbit is infinitely large and every call retry
its attempts until it is satisfied. The field of practical application of such system
is very extensive. RQ-system can be applied for researching telecommunication
and computer system, for engineering cellular mobile networks, computer net-
works, ets. For a detailed overviews of main results about retrial queues, we refer
the reader to the excellent book of Falin and Templeton [4]. For an extensive
bibliography, see [5]. As regards the closed retrial queuing with finite number of
source, it is elaborately discussed by Almási B. et al [6, 7], Artalejo J.R. [8], and
Dragieva V.I. [9, 10]. In this paper, we consider the M/M/1//N retrial queue
with collision. In the papers Nazarov A.A., Lyubina T.V. are considered the
various open retrial queuing systems with collision [11, 12].

2 Model Description

We consider a closed retrial queuing system of type M/M/1//N in Kendals
notation with collision of the customers. This mean that the system has one

A. Dudin et al. (Eds.): ITMM 2014, CCIS 487, pp. 334–341, 2014.
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server and N sources. Each one of them generated a primary customers according
to a Poisson flow with rate λ/N . We assume that sources can be in two states:
generating a primary customers and waiting for the end of successful service.
Source which send the customer for service, moves into the “waiting” state and
stays in this state till the end of the service of this customer. If a primary
customer finds server idle, he enters into service immediately, during service
time, which distributed exponentially with parameter μ. Otherwise, if server is
busy, arriving customer involves into collision with servicing customer and they
both moves into the orbit. Retrial customer repeat his demand for service with
an exponential distribution with rate σ/N . We assume that primary customers,
retrial customers and service time are mutually independent.

At time t let i(t) be the number of sources locating in “waiting” state and
k(t) determines the server state

k(t) =

{
0, if the server is free,
1, if the server is busy.

Let us denote by P{k(t) = k, i(t) = i} = Pk(i, t) the joint probability that at the
time t there are i sources in “waiting” state and the server is in the ”k” state.
Under the above assumption the process {k(t), i(t)} is a 2-dimentional Markov
process with state space {0, 1, . . . , N} × {0, 1}

The differential Kolmogorov equations for probabilities Pk(i, t) are

∂P0(0, t)

∂t
= −λP0(0, t) + μP1(1, t) ,

∂P1(1, t)

∂t
= −

(
λ
N − 1

N
+ μ

)
P1(1, t) + λP0(0, t) +

σ

N
P0(1, t) ,

∂P0(i, t)

∂t
= −

(
λ
N − i

N
+ σ

i

N

)
P0(i, t) + μP1(i + 1, t)+

+ λ
N − i+ 1

N
P1(i− 1, t) + σ

i − 1

N
P1(i, t) ,

∂P1(i, t)

∂t
= −

(
λ
N − i

N
+ σ

i− 1

N
+ μ

)
P1(i, t)+

+ λ
N − i+ 1

N
P0(i− 1, t) + σ

i

N
P0(i, t) .

Note this system in steady state

−λP0(0) + μP1(1) = 0 ,

−
(
λ
N − 1

N
+ μ

)
P1(1) + λP0(0) +

σ

N
P0(1) = 0 ,

−
(
λ
N − i

N
+ σ

i

N

)
P0(i) + μP1(i+ 1) + λ

N − i+ 1

N
P1(i − 1)+

+ σ
i− 1

N
P1(i) = 0 ,

−
(
λ
N − i

N
+ σ

i − 1

N
+ μ

)
P1(i) + λ

N − i+ 1

N
P0(i − 1)+

+ σ
i

N
P0(i) = 0 .

(1)
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The partial characteristic functions are denoted by

Hk(u) =

N∑
i=0

ejuiPk(i) .

Then system (1) corresponds as

j

N
(σ − λ)

dH0(u)

du
+

j

N

(
λeju − σ

) dH1(u)

du
− λH0(u)+

+
(
λeju + μe−ju − σ

N

)
H1(u) = 0 ,

j

N

(
λeju − σ

) dH0(u)

du
+

j

N
(σ − λ)

dH1(u)

du
+ λejuH0(u)+

+
( σ

N
− λ− μ

)
H1(u) = 0 .

(2)

In order to solve this system, we use method of asymptotic analysis [13] under
conditions of infinitely increasing number of sources (N →∞).

3 Asymptotic of the First Order

Let us denote
1

N
= ε .

Introducing following substitute

u = εw, Hk(u) = Fk(w, ε) ,

we can transform system (2) to the form:

j (σ − λ)
∂F0(w, ε)

∂w
+ j

(
λejεw − σ

) ∂F1(w, ε)

∂w
− λF0(w, ε)+

+
(
λejεw + μe−jεw − εσ

)
F1(w, ε) = 0,

j
(
λejεw − σ

) ∂F0(w, ε)

∂w
+ j (σ − λ)

∂F1(w, ε)

∂w
+ λejεwF0(w, ε)+

+ (εσ − λ− μ)F1(w, ε) = 0.

(3)

Theorem 1. The limiting value F0(w), F1(w) of function F0(w, ε), F1(w, ε)(the
solutions of the system (3)), are given by the formulas

F0(w) = R0e
jwκ1 , F1(w) = R1e

jwκ1 ,

where Rk the stationary distributions of probabilities of the service state are
defined as follows

R1 =
σ(2λ+ μ)−√

σ2(2λ− μ)2 + 8σμλ2

4μ(σ − λ)
,

R0 = 1−
σ(2λ+ μ)−√

σ2(2λ− μ)2 + 8σμλ2

4μ(σ − λ)
,

(4)
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and κ1 is

κ1 =
2μR2

1

σ(1 − 2R1)
.

4 Asymptotic of the Second Order

To find the asymptotic of the second order we must execute following substitute
at system (2):

Hk(u) = H
(2)
k (u) exp {juκ1N}.

By putting
1

N
= ε2, u = εw, H

(2)
k (u) = F

(2)
k (w, ε), we get

jε (σ − λ)
∂F

(2)
0 (w, ε)

∂w
+ jε

(
λejεw − σ

) ∂F
(2)
1 (w, ε)

∂w
−

− [λ+ (σ − λ)κ1]F
(2)
0 (w, ε)+

+
[
λejεw(1− κ1) + μe−jεw + σκ1 − ε2σ

]
F

(2)
1 (w, ε) = 0,

jε
(
λejεw − σ

) ∂F
(2)
0 (w, ε)

∂w
+ jε (σ − λ)

∂F
(2)
1 (w, ε)

∂w

+
[
λejεw(1− κ1) + σκ1

]
F

(2)
0 (w, ε)−

− [
λ(1 − κ1) + μ + σκ1 − ε2σ

]
F

(2)
1 (w, ε) = 0.

(5)

Theorem 2. The limiting value F
(2)
0 (w) , F

(2)
1 (w) of function F

(2)
0 (w, ε) ,

F
(2)
1 (w, ε) (the solutions of the system (5)), are given by the formulas

F
(2)
k (w) = RkΦ

(2)(w),

where

Φ(2)(w) = exp

{
(jw)2

2
κ2

}
,

κ2 = μR1 · 1 + (R1 −R0)R0

λ− (λ− σ)(R1 −R0)2
.

5 Asymptotic of the Third Order

To find the asymptotic of the third order we must execute following substitute
at system (2):

Hk(u) = H
(3)
k (u) exp

{
juκ1N +

(ju)2

2
κ2N

}
. (6)
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At system (2) make substitutions

1

N
= ε3, u = εw, H

(3)
k (u) = F

(3)
k (w, ε), (7)

and we obtain

jε2 (σ − λ)
∂F

(3)
0 (w, ε)

∂w
+ jε2

(
λejεw − σ

) ∂F
(3)
1 (w, ε)

∂w
+

+ [(λ− σ) (κ1 + jεwκ2)− λ]F
(3)
0 (w, ε)+

+
[(

σ − λejεw
)
(κ1 + jεwκ2) + λejεw + μe−jεw − ε3σ

]
F

(3)
1 (w, ε) = 0,

jε2
(
λejεw − σ

) ∂F
(3)
0 (w, ε)

∂w
+ jε2 (σ − λ)

∂F
(3)
1 (w, ε)

∂w
+

+
[
(σ − λejεw) (κ1 + jεwκ2) + λejεw

]
F

(3)
0 (w, ε)+

+
[
(λ− σ) (κ1 + jεwκ2)− λ− μ+ ε3σ

]
F

(3)
1 (w, ε) = 0.

(8)

Theorem 3. The limiting value F
(3)
0 (w) , F

(3)
1 (w) of function F

(3)
0 (w, ε) ,

F
(3)
1 (w, ε) (the solutions of the system (8)), are given by the formulas

F
(3)
k (w) = RkΦ

(3)(w),

where

Φ(3)(w) = exp

{
(jw)3

3!
κ3

}
,

κ3 = 2 ·

⎧⎪⎪⎨⎪⎪⎩
[
(λ− σ) (R0 −R1)

2
κ2 + μa

]
·
[
1

2
− ((R0 −R1) (σ − λ) + λ)

κ2

μR1

]
λ+ (σ − λ) (R0 −R1)

2 +

+

λκ2 ·
[

a

R0
+

1

2

]
+ μ

[
1

R0
− a

2

]
λ+ (σ − λ) (R0 −R1)

2

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
,

a = R0R1 (R1 −R0) .

We can find the characteristic function h(u) of the number of sources is in
“waiting” state. Using a substitution, reversing to the (7), and, considering (6),
we get

h(u) =
(
H

(3)
0 (u) +H

(3)
1 (u)

)
exp

{
juκ1N +

(ju)2

2
κ2N

}
,
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where

H
(3)
0 (u) = R0 exp

{
(ju)3

3!
κ3N

}
, H

(3)
1 (u) = R1 exp

{
(ju)3

3!
κ3N

}
.

Thus

h(u) = exp

{
juκ1N +

(ju)2

2
κ2N +

(ju)3

3!
κ3N

}
.

6 Computing Procedure

Consider now system M/M/1//N in prelimiting situation.

Theorem 4. The joint distribution of the service and source state can be com-
puted from the following steps:

1. Choose the model parameters λ, μ, σ,N .
2. Put P1(0) = 0.

3. For i = 0 compute quantity
P1(1)

P0(0)
from (1).

4. For 1 ≤ i ≤ N − 1 compute recursively
P0(i)

P0(0)
and

P1(i)

P0(0)
from the following

formulas

P0(i)

P0(0)
=

N

iσ

{(
λ
N − i

N
+ σ

i − 1

N
+ μ

)
P1(i)

P0(0)
− λ

(
N − i+ 1

N

)
P0(i − 1)

P0(0)

}
,

P1(i+ 1)

P0(0)
=

1

μ

{
λ
N − i

N
+ σ

i

N

}
P0(i)

P0(0)
−λ

(N − i+ 1)

N

P1(i− 1)

P0(0)
−σ

(i− 1)

N

P1(i)

P0(0)
,

which are obtain from (1).

5. For i = N compute quantity
P0(N)

P0(0)

P0(N)

P0(0)
=

1

σ

{(
σ
N − 1

N
+ μ

)
P1(N)

P0(0)
− λ

N
· P0(N − 1)

P0(0)

}
.

6. The quantity P0(0) may be found with the help of the normalizing conditions

P0(0) = 1

/
N∑
i=0

(
P0(i)

P0(0)
+

P1(i)

P0(0)

)
.

7. Compute Pk(i) from

Pk(i) =
Pk(i)

P0(0)
· P0(0).

Now we can get one-dimensional distribution of the number of sources in
“waiting” state

P (i) = P0(i) + P1(i).
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7 Numerical Results

We assume that prelimit distribution P (i) can be approximated by asymptotic
distribution Pν(i) of the ν-th order (ν = 2, 3) in some domains of the system
parameters. In order to compare distributions, we use the Kolmogorov distance:

Δν = max
0≤k≤N

∣∣∣∣∣
k∑

i=0

Pν(i)−
k∑

i=0

P (i)

∣∣∣∣∣.
In numerical computation the model parameters λ, μ, σ are fixed, λ = 5,

μ = 10, σ = 20 and the number of sources N takes values 5, 10, 18, 25, 100.
The results are reported in Table 1.

Table 1. Kolmogorov distance between prelimit distribution P (i) and asymptotic dis-
tribution Pν(i) of the ν-th order (ν = 2, 3)

λ = 5, μ = 10, σ = 20

N 5 10 18 25 100

Δ2 0,184 0,091 0,039 0,028 0,012

Δ3 0,165 0,080 0,029 0,019 0,008

Table 1 show that asymptotic approximation of the second order with a good
degree of accuracy approximates prelimit distribution P (i) for N ≥ 25. At the
same time, the Kolmogorov distance between distributions P (i) and P3(i) be-
comes less then 0, 03 for N ≥ 18. Let us note, that accuracy of all approximations
generally improves as N increases.

Our numerical experiment show, that accuracy increase with the growth of the
order of approximation and determine the range of applicability of the asymp-
totic results in prelimiting situation.

8 Conclusion

In this paper, we research a closed retrial queuing system M/M/1//N with colli-
sion of the customers. Using the method of asymptotic analysis under conditions
of infinitely increasing number of sources, we obtain a distribution of the num-
ber of sources in “waiting” state. Also, we obtain the probability distribution
with help of numerical algorithm in prelimiting situation. Comparing there dis-
tributions we can conclude, that prelimit distribution can be approximated by
asymptotic distribution for N ≥ 25 (the second order approximation) and for
N ≥ 18 (the third order approximation). Therefore, those approximations have
a high level of accuracy and can be used on practical engineering application
where the relative error does not represent a severe constrain.



Closed Markov Retrial Queuing System with Collision 341

References

1. Nazarov, A.A., Terpugov, A.F.: The queuing theory. “NTL” Publishing House,
Tomsk (2004) (in Russian)

2. Gnedenko, B.V., Kovalenko, I.N.: Introduction to queuing theory. “KomKniga”
Publishing House, Moscow (2007) (in Russian)

3. Koening, D., Shtoyan, D.: Methods of the queuing theory. “Radio and Communi-
cations” Publishing House, Moscow (1981) (in Russian)

4. Falin, G.I., Templeton, J.G.C.: Retrial queues, p. 328. Chapman & Hall, London
(1997)

5. Artalejo, J.R., Gomez-Corral, A.: Retrial Queueing Systems: A Computational
Approach, p. 309. Springer (2008)

6. Almási, B., Roszik, J., Sztrik, J.: Homogeneous Finite-Source Retrial Queues with
Server Subject to Breakdowns and Repairs. Mathematical and Computer Model-
ing 42, 673–682 (2005)

7. Sztrik, J., Almási, B., Roszik, J.: Heterogeneous finite-source retrial queues with
server subject to breakdowns and repairs. Journal of Mathematical Sciences 132,
677–685 (2006)

8. Artalejo, J.R.: Retrial queues with a finite number of sources. J. Korean Math.
Soc. 35, 503–525 (1998)

9. Dragieva, V.I.: Single-line queue with finite source and repeated calls. Problems of
Information Transmission 30, 283–289 (1994)

10. Dragieva, V.I.: System State Distributions In One Finite Source Unreliable Retrial
Queue, http://elib.bsu.by/handle/123456789/35903

11. Lyubina, T.V., Nazarov, A.A.: Research of the Markov dynamic retrial queue sys-
tem with collision. Herald of Tomsk State University. Journal of Control and Com-
puter Science 3(12), 73–84 (2010) (in Russian)

12. Lyubina, T.V., Nazarov, A.A.: Research of the non-Markov dynamic retrial queue
system with collision. Herald of Kemerovo State University 1(49), 38–44 (2012) (in
Russian)

13. Nazarov, A.A., Moiseeva, S.P.: Methods of asymptotic analysis in a queuing theory.
“NTL” Publishing House, Tomsk (2006) (in Russian)

http://elib.bsu.by/handle/123456789/35903


Optimal State Estimation in Modulated MAP

Event Flows with Unextendable Dead Time

Luydmila Nezhelskaya

National Research Tomsk State University, Tomsk, Russia
ludne@mail.ru

Abstract. We consider the optimal estimation problem for the states
of a modulated MAP event flow with two states; it is one of the math-
ematical models for an incoming stream of claims (events) in digital
integral servicing networks. The observation conditions for this flow are
such that each event generates a period of dead time during which other
events from the flow are inaccessible for observation and do not extend
the dead time period (unextendable dead time). We find an explicit form
for posterior probabilities of the flow states. The decision about the flow
state is made with the maximal a posteriori criterion.

Keywords: modulated, MAP event flows, unextendable dead time, op-
timal state estimation.

1 Introduction

Mathematical models of queueing theory are widely used to describe real physi-
cal, technical, and other systems and processes. Thanks to the fast development
of computer hardware and information technologies, another important field of
queueing theory applications has arisen, namely the design and creation of in-
formational and computational networks, computer communication networks,
satellite networks, telecommunication networks, etc.

In practice, parameters that determine the incoming flow of events change in
time, and the changes are often random; the latter has led researchers to consider
doubly stochastic flows of events. One of the first works in this direction was
probably the paper [1] in which a doubly stochastic flow is defined as a flow
whose intensity is a random process. Doubly stochastic flows can be divided
into two classes: flows whose intensity is a continuous random process and flows
whose intensity is a piecewise constant random process with a finite number of
states. We emphasize that flows of the second class were introduced virtually at
the same time in 1979, in [2]-[4]. In [2],[3], these flows were called MC (Markov
Chain) flows; in [4], MVP (Markov Versatile Processes) flows. Starting from the
end of the 1980s, the latter, especially after [5], have usually been called MAP
(Markovian Arrival Process) event flows. We note that MAP-flows of events are
especially characteristic for real telecommunication networks [6].

In the studies of event flows, we can distinguish two classes of problems: (1)
estimating the states of an event flow; (2) estimating flow parameters.

A. Dudin et al. (Eds.): ITMM 2014, CCIS 487, pp. 342–350, 2014.
c© Springer International Publishing Switzerland 2014
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One of the distorting factors in our estimates of event flow states and pa-
rameters is the dead time of sensing devices [7] which results from a detected
event. Other events that occur during a dead time period are inaccessible for
observation (simply speaking, they are lost). We can assume that this period
lasts for some fixed time (unextendable dead time). One example of such flows
is given by the CSMA/CD protocol, a random multiple access protocol with
conflict detection which is widely used in computer networks. At the moment
a conflict is registered (detected) on the input of a certain network node, the
“stub” (“plug”) signal is broadcast in the network; while the “stub” signal is
being sent out, claims arriving to this network node are refused service and are
forwarded to callback source. Here the time during which the network node is
closed for servicing claims that arrive there after a conflict is found can be treated
as the dead time of the device that registers conflicts in the network node.

In the present work we solve the optimal state estimation problem for a mod-
ulated MAP flow under incomplete observability conditions (in our case, unex-
tendable dead time).We propose an optimal state estimation algorithm in which
the decision about a MAP flow state is made by maximizing the posterior dis-
tribution, which is the most complete characteristic of the flow state that we
can get from a sample of observations. The criterion itself minimizes the total
probability of error in making the decision [8].

2 Problem Setting

We consider a modulated MAP flow of events with intensity represented by a
piecewise constant random process λ (t) with two states: λ (t) = λ1 or λ (t) = λ2

(λ1 > λ2). The time during which process λ (t) remains at the ith, i = 1, 2,
state depends on two random values: 1) the first random value has exponential

distribution function F
(1)
i (t) = 1 − e−αit, i = 1, 2; when the ith state ends

process λ (t) transits with probability equal one from the ith state to the jth,
i, j = 1, 2 (i �= j); 2) the second random value has exponential distribution

function F
(2)
i (t) = 1 − e−λit, i = 1, 2; when the ith state ends process λ (t)

transits with probability P1 (λj |λi) from the ith state to the jth (i �= j) and a
flow event occurs or process λ (t) transits with probability P0 (λj |λi) from the
ith state to the jth (i �= j), but the flow event does not occur, or process λ (t)
transits from the ith state to the ith with probability P1 (λi|λi) and a flow event
occurs. Here P1 (λj |λi) + P0 (λj |λi) + P1 (λi|λi) = 1; i, j = 1, 2; i �= j.

The first and the second random values are independent from each other. Un-
der these assumptions, λ (t) is a Markov process. The infinitesimal characteristics
matrices for the process λ (t) are as follows [6]:

D0 =

∥∥∥∥− (α1 + λ1) α1 + λ1P0 (λ2|λ1)
α2 + λ2P0 (λ1|λ2) − (α2 + λ2)

∥∥∥∥ ,

D1 =

∥∥∥∥λ1P1 (λ1|λ1) λ1P1 (λ2|λ1)
λ2P1 (λ1|λ2) λ2P1 (λ2|λ2)

∥∥∥∥ ; (1)
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here matrix D0 describes the situation when on the semiinterval [t, t+Δt),
where Δt (here and in what follows) is a sufficiently small value, there is no flow
event; matrix D1, when on the semiinterval [t, t +Δt) a flow event occurs.

Note that the modulated MAP flow definition does not explicitly say in which
process state λ (t) flow event occurs when the process λ (t) transits from the ith
state to the jth (i, j = 1, 2; i �= j). This is inconsequential for state estimation
since flow events and transitions of the process λ (t) from the ith state to the
jth (i, j = 1, 2; i �= j) occur instantaneously.

After each event registered at time tk, there begins a time of fixed duration T
(dead time) during which other events from the original modulated MAP flow
are inaccessible for observation. When dead time is over, the first new event
again gives rise to a period of dead time of duration T and so on. One possible
scenario of the resulting situation is shown on Fig. 1, where t1, t2, ... denote the
moments when events occur in the observed flow; 1 and 2 are states of the random
process λ (t); black circles denote modulated MAP flow events inaccessible for
observation; dashed lines denote dead time durations.

Fig. 1. Forming the observed flow

Since the process λ (t) is unobservable in principle, and we can only observe
time moments when events in the observed flow t1, t2, . . . occur, we have to esti-
mate the state of the process λ (t) (modulated MAP flow) when the observations
stop.



Optimal State Estimation in Modulated MAP Event Flows 345

We consider the stationary operation mode for the observed flow, so we dis-
regard transition processes on the observation interval (t0, t), where t0 denotes
the beginning of observations and t denotes the end of observations (decision
making time). Then we can let t0 = 0 without loss of generality. To make the
decision regarding the state of the process λ (t) at time moment t, we have to
find posterior probabilities w (λi|t) = w (λi|t1, . . . , tm, t), i = 1, 2, of the fact
that at time moment t, the value of the process λ (t) = λi (where m is the
number of observed events in time t), here w (λ1|t) +w (λ2|t) = 1. The decision
regarding the state of the process λ (t) is made by comparing the probabilities:

if w (λi|t) ≥ w (λj |t), i, j = 1, 2; i �= j, then we decide that λ̂ (t) = λi.

3 Optimal Estimation Algorithm for the States of the
Modulated MAP Event Flow

We will consider a decision making moment t in the interval (tk, tk+1) , k =
1, 2, . . ., between neighboring events in the observed flow. For an initial interval
(t0, t1), the time flow t lies between the beginning of observation t0 and the
first observed event in the flow. Consider the interval (tk, tk+1) with duration
value τk = tk+1 − tk, k = 0, 1, . . .. On the other hand, since the event observed
at time moment tk gives rise to a dead time period of duration T , we get that
τk = T+θk, where θk is the duration value of the interval between the end of dead
time tk + T and the moment tk+1, i.e., the interval (tk, tk+1) breaks down into
two adjacent intervals, the first semiinterval (tk, tk + T ] and the second interval
(tk + T, tk+1). We emphasize that conditions of finding the posterior probability
w (λ1|t) on the semiinterval (tk, tk + T ] and interval (tk + T, tk+1) are different
in principle. Here we assume that the value of T is known exactly.

Lemma 1. On time intervals (t0, t1) and (tk + T, tk+1), k = 1, 2, . . ., when a
modulated MAP event flow is observed, the posterior probability w (λ1|t) satisfies
the differential equation

w′ (λ1|t) = [λ1 − λ2 − λ1P0 (λ2|λ1) + λ2P0 (λ1|λ2)]w
2 (λ1|t)−

− [α1 + α2 + λ1 − λ2 + 2λ2P0 (λ1|λ2)]w (λ1|t) + [α2 + λ2P0 (λ1|λ2)] ,
(2)

t0 < t < t1, tk + T < t < tk+1, k = 1, 2, . . . .

Proof. To derive the formulas for posterior probability w (λ1|t) we use a well-
known method [8]: we first consider discrete observations divided by sufficiently
small time intervals Δt and then make the limit transition as Δt tends to zero.
First we suppose that the time is discrete and changes with step Δt: t = nΔt,
n = 0, 1, . . .. We introduce a two-dimensional process

(
λ(n), rn

)
, where λ(n) =

λ (nΔt) is the value of process λ (t) at time moment nΔt (λ(n) = λi,i = 1, 2),
and rn = rn (Δt) = r (nΔt) − r ((n− 1)Δt) is the number of events in the flow
observed on the interval ((n− 1)Δt, nΔt) of length Δt, rn = 0, 1, . . .. We denote
by rm = (r0, r1, . . . , rm) the sequence of the numbers of events in time from zero
to mΔt on intervals ((n− 1)Δt, nΔt) of length Δt (n = 0,m). Here r0 is the
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number of events observed on the interval (−Δt, 0). This number is undefined
since there are no observations during this period, so we can set an arbitrary
value to it, say r0 = 0. We denote by λ(m) =

(
λ(0), λ(1), . . . , λ(m)

)
the sequence

of unknown (unobservable) values of the process λ (nΔt) at time moments nΔt
(n = 0,m); λ(0) = λ (0) = λi, i = 1, 2. We denote by w

(
λ(m)|rm

)
the condi-

tional probability of the value λ(m) given that we have observed a realization
rm. Similarly w

(
λ(m+1)|rm+1

)
. For the Markov random process

(
λ(m), rm

)
, a

recurrent relation is proved in [9] for the posterior probabilities w
(
λ(m)|rm

)
and

w
(
λ(m+1)|rm+1

)
:

w
(
λ(m+1)|rm+1

)
=

λ2∑
λ(m)=λ1

w
(
λ(m)|rm

)
p
(
λ(m+1), rm+1|λ(m), rm

)
λ2∑

λ(m+1)=λ1

λ2∑
λ(m)=λ1

w
(
λ(m)|rm

)
p
(
λ(m+1), rm+1|λ(m), rm

) ,
(3)

where p
(
λ(m+1), rm+1|λ(m), rm

)
is the transition probability for the process(

λ(n), rn
)
in one step Δt from state

(
λ(m), rm

)
to state

(
λ(m+1), rm+1

)
.

In the considered case of a modulatedMAP flow, the random process
(
λ(n), rn

)
,

by our assumptions and by its constructions, will be a Markov process, so formula
(3) holds.

The transition probability p
(
λ(m+1), rm+1|λ(m), rm

)
for the modulated MAP

flow in (3) can be written as

p
(
λ(m+1), rm+1|λ(m), rm

)
=

= p
(
λ(m+1)|λ(m)

)
p
(
rm+1|λ(m), λ(m+1)

) ; λ(m), λ(m+1) = λ1, λ2. (4)

Taking into account that w
(
λ(m)|rm

)
= w

(
λ(m)|rm (t)

)
= w

(
λ(m)|t),

w
(
λ(m+1)|rm+1

)
= w

(
λ(m+1)|t+Δt

)
and also (4) and letting in (3) λ(m+1) =

λ1, we can rewrite (3) as

w (λ1|t+ Δt) =

2∑
s=1

w (λs|t)p (λ1|λs) p (rm+1|λs, λ1)

2∑
j=1

2∑
s=1

w (λs|t)p (λj |λs) p (rm+1|λs, λj)

. (5)

By the definition of the modulated MAP flow, the value rm+1 in (5) takes only
two values: rm+1 = 0 or rm+1 = 1. Here we consider the behavior of probability
w (λ1|t) on the interval (tk + T, tk+1) between the end of dead time tk + T
and the moment tk+1 when the next event in the observed flow occurs, i.e.,
tk+T < t < tk+1, tk +T < t+Δt < tk+1. Then in (5) rm+1 = 0 and taking into
account the matrix D0 in (1) the transition probabilities (4) on the subinterval
[t, t+Δt) = [mΔt, (m+ 1)Δt) take the following form:

p (λs|λs) p (rm+1 = 0|λs, λs) = 1− (αs + λs)Δt + o (Δt) , s = 1, 2,
p (λj |λs) p (rm+1 = 0|λs, λj) =

= [αs + λsP0 (λj |λs)]Δt + o (Δt) , s, j = 1, 2, s �= j.
(6)
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Substituting (6) into (5), we find the numerator A1 and denominator B1 in (5):

A1 = [1− (α1 + λ1)Δt]w (λ1|t) + [α2 + λ2P0 (λ1|λ2)]Δtw (λ2|t) + o (Δt) ,

B1 = 1−Δt {λ1 [1− P0 (λ2|λ1)]w (λ1|t) + λ2 [1− P0 (λ1|λ2)]w (λ2|t)}+ o (Δt) .

Substituting A1 and B1 into (5) and taking into account that

B−1
1 = 1+Δt {λ1 [1− P0 (λ2|λ1)]w (λ1|t) + λ2 [1− P0 (λ1|λ2)]w (λ2|t)}+o (Δt)

(since (1− x)
−1

= 1 + x+ o (x) for x > 0 sufficiently small), we get:

w (λ1|t +Δt)− w (λ1|t) = Δt {− (α1 + λ1) w (λ1|t)+
+λ1 [1− P0 (λ2|λ1)]w

2 (λ1|t)+
λ2 [1− P0 (λ1|λ2)]w (λ1|t)w (λ2|t) + [α2 + λ2P0 (λ1|λ2)]w (λ2|t)}+ o (Δt) .

Dividing the left- and the right-hand side by Δt, taking into account that
w (λ2|t) = 1 − w (λ1|t), and passing to the limit for Δt → 0, we find (2). This
completes the proof of Lemma 1.

Lemma 2. The posterior probability w (λ1|t) at the time a modulated MAP flow
event tk, k = 1, 2, . . ., occurs is given by the following formula:

w (λ1|tk + 0) =
λ2P1(λ1|λ2)+[λ1P1(λ1|λ1)−λ2P1(λ1|λ2)]w(λ1|tk−0)

λ2[1−P0(λ1|λ2)]+[λ1−λ2−λ1P0(λ2|λ1)+λ2P0(λ1|λ2)]w(λ1|tk−0) ,
(7)

k = 1, 2, . . . .

Proof. Suppose that on the interval (t, t +Δt) at time moment tk (t < tk <
t + Δt) there occurs a flow event (rm+1 = 1). We have two adjacent intervals
(t, tk) and (tk, t+Δt). The duration of the first interval is Δt′ = tk − t; the
duration of the second is Δt′′ = t + Δt − tk. Then w (λs|t) = w (λs|tk −Δt′),
s = 1, 2; w (λ1|t+Δt) = w (λ1|tk +Δt′′), and (5) becomes

w (λ1|tk +Δt′′) =

2∑
s=1

w (λs|tk −Δt′)p (λ1|λs) p (rm+1 = 1|λs, λ1)

2∑
j=1

2∑
s=1

w (λs|tk −Δt′)p (λj |λs) p (rm+1 = 1|λs, λj)

. (8)

Taking into account the matrix D1 in (1) on the interval (t, t+Δt) =
= (mΔt, (m+ 1)Δt), we can rewrite transition probabilities (4) as

p (λs|λs) p (rm+1 = 1|λs, λs) = λsΔtP1 (λs|λs) + o (Δt) , s = 1, 2;
p (λj |λs) p (rm+1 = 1|λs, λj) = λsΔtP1 (λj |λs) + o (Δt) , s, j = 1, 2, s �= j.

(9)
Substituting (9) into (8), we get the numerator A2 and the denominator B2 in
(8):

A2 = Δt [λ1P1 (λ1|λ1)w (λ1|tk −Δt′) + λ2P1 (λ1|λ2)w (λ2|tk −Δt′)] + o (Δt) ,
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B2 = Δt {λ1 [1− P0 (λ2|λ1)]w (λ1|tk −Δt′)+
+ λ2 [1− P0 (λ1|λ2)]w (λ2|tk −Δt′)}+ o (Δt) .

Substituting A2 and B2 into (8), dividing the numerator and denominator by
Δt, taking into account that w (λ2|tk −Δt′) = 1− w (λ1|tk −Δt′), and passing
to the limit for Δt → 0 (Δt′ and Δt′′ tend to zero simultaneously), we get (7).
This completes the proof of Lemma 2.

Remark. At point tk the probability w (λ1|t) is discontinuous (there is a fi-
nite jump at this point). The probability w (λ1|tk + 0) depends on the value
w (λ1|tk − 0), i.e., on the value of probability w (λ1|t) at time moment tk when
w (λ1|t) defined in (2) changes on the interval (tk−1 + T, tk) adjacent to the
semiinterval (tk, tk + T ], k = 2, 3, . . . . Thus, the value w (λ1|tk + 0) “com-
bines” the entire prehistory of our modulated MAP flow observations starting
from the time moment t0 = 0 until the moment tk. As in initial condition
w (λ1|t0 + 0) = w (λ1|t0 = 0) on the semiinterval [t0, t1) we take the prior final
probability of the first state of the process λ (t):

π1 =
α2 + λ2 [1− P1 (λ2|λ2)]

α1 + α2 + λ1 [1− P1 (λ1|λ1)] + λ2 [1− P1 (λ2|λ2)]
, (10)

which is the decision of the differential equation

π′
1 (t|t0) = [−α1 − α2 − λ1 − λ2 + λ1P1 (λ1|λ1) + λ2P1 (λ2|λ2)]π1 (t|t0)+

+ [α2 + λ2 − λ2P1 (λ2|λ2)]

for t0 → −∞.
Lemmas 1 and 2 yield the following theorem.

Theorem 1. On time intervals (t0, t1) and (tk + T, tk+1) , k = 1, 2, ..., the pos-
terior probability w(λ1|t) follows the following explicit formula:

w (λ1|t) =
= w1[w2−w(λ1|tk+T )]−w2[w1−w(λ1|tk+T )]e−a(w2−w1)(t−tk−T)

w2−w(λ1|tk+T )−[w1−w[λ1|tk+T ]]e−a(w2−w1)(t−tk−T) ,
(11)

w1,2 = 1
2a

(
α1 + α2 + λ1 − λ2 + 2λ2P0 (λ1|λ2)∓

√
D
)
,

a = λ1 − λ2 − λ1P0 (λ2|λ1) + λ2P (λ1|λ2) , a �= 0,

D = [(λ1 − λ2)− (α1 + α2)]
2
+ 4α1 (λ1 − λ2) + 4 [α1λ2P0 (λ1|λ2)+

α2λ1P0 (λ2|λ1)] + 4λ1λ2P0 (λ1|λ2)P0 (λ2|λ1) ,

where tk + T < t < tk+1 (k = 0, 1, ...); w (λ1|tk + T ) is defined further in
assertion by formula (12), k = 1, 2, ...; w (λ1|t0 + 0) = w (λ1|t0 = 0) = π1,
where π1 is defined in (10).

Let us consider semiinterval (tk, tk + T ], k = 1, 2, ... . On this semiinterval,
the event takes place at the boundary point tk, and there are no events on the
semiinterval itself.
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Assertion. The posterior probability w (λ1|t) on time semiinterval (tk, tk + T ],
k = 1, 2, ..., is given by the following explicit formula:

w (λ1|t) = π1 + [w (λ1|tk + 0)− π1] e
−b(t−tk), (12)

tk < t ≤ tk + T, k = 1, 2, ...; w (λ1|tk + 0) is given by formula (7), k =
1, 2, ...; π1 defined in (10); b = α1+α2+λ1 [1− P1 (λ1|λ1)]+λ2 [1− P1 (λ2|λ2)] .

This formulas let us construct the algorithm to compute the probability
w (λ1|t) (w (λ2|t) = 1− w (λ1|t)) and the algorithm to make a decision regard-
ing the state of process λ (t) at any time moment t:

(1) at time moment t0 = 0, specify w (λ1|t0 + 0) = w (λ1|t0 = 0) = π1;
(2) according to formula (11), for k = 0 compute the probability w (λ1|t) at

any time moment t (0 < t < t1) where t1 is the moment when the first event
in the observed flow occurs;

(3) according to formula (11), for k = 0 compute the probability w (λ1|t1) =
w (λ1|t1 − 0);

(4) increment k by one, and according to formula (7), for k = 1, compute the
probability w (λ1|t1 + 0) which is the initial value for w (λ1|t) in formula (12);

(5) according to formula (12), for k = 1 compute w (λ1|t) at any time moment
t (t1 < t ≤ t1 + T ) and the probability w (λ1|t1 + T ) is the initial value for
w (λ1|t) on the next step of the algorithm;

(6) according to formula (11), for k = 1 compute w (λ1|t) ay any time moment
t (t1 + T < t < t2), where t2 is the observation moment for the second event;

(7) according to formula (11), for k = 1 compute the probability w (λ1|t2) =
w (λ1|t2 − 0);

(8) go to step (4), repeat steps (4) – (8) for k = 2 and so on.
As we compute w (λ1|t), at any time moment t we can make a decision regard-

ing the state of process λ (t): if w (λ1|t) ≥ w (λ2|t) then we estimate λ̂ (t) = λ1,

otherwise λ̂ (t) = λ2.
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Abstract. Objective methods and metrics for assessing image quality
are more convenient, less expensive and time-consuming than subjec-
tive methods. There are a number of reference objective metrics that
provide a good correlation with perceived image quality, such as SSIM,
MS-SSIM, CW-SSIM, IW-SSIM, but they are slow and have sufficient
computational complexity. In this paper we proposed a simple modifica-
tion for SSIM algorithms, in particular SSIM and MS-SSIM, which, for
a small deterioration in quality of results, can significantly reduce the
time of calculations.

Keywords: structural similarity (SSIM), multi-scale structural similar-
ity (MS-SSIM), image quality assessment, perceptual quality, error sen-
sitivity, image processing, experiment.

1 Introduction

Mathematical algorithms for assessing the quality of images are widely used in
development, testing and modification of various image processing algorithms:
lossy compression, separation and removal of noise, digitization and restoration
of old videotapes, lighting, etc. In such applications images are viewed by hu-
man beings and the correct method of quantifying image quality is through the
subjective evaluation. In practice subjective evaluation is usually too inconve-
nient, expensive and time-consuming. An objective image quality assessment, in
contrast to subjective evaluation, can greatly simplify and expedite the process
of evaluation. There are a number of reference algorithms (metrics) for image
quality assessment [2,7]. Reference metric in image processing is a function that
determines the distance from the distorted image to the reference, an original or
perfect image in the image space [2]. Some of these metrics are simple and easily
computed, such as PSNR, MSE, MSAD, but they do not provide a good corre-
lation with perceived image quality and don’t reflect the way that human beings
perceive images. Other metrics, like well known SSIM, MS-SSIM, CW-SSIM,
IW-SSIM allow to get more reliable and adequate results in the image assess-
ment, but they are slow and have sufficient computational complexity [2–7, 9].
However it is possible to solve the problem of high computational complexity
without significant loss in correlation with the subjective human quality assess-
ment. We proposed a simple modification to some SSIM algorithms, in particular

A. Dudin et al. (Eds.): ITMM 2014, CCIS 487, pp. 351–355, 2014.
c© Springer International Publishing Switzerland 2014
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SSIM and MS-SSIM, which, for a small deterioration in quality of results, can
significantly reduce the time of calculations.

2 SSIM and MS-SSIM

2.1 SSIM

According to work [5] SSIM metric is calculated as a degree of similarity of the
corresponding square areas (windows) reference and distorted images:

Luminance L(x, y) =
2μxμy + C1

μ2
x + μ2

y + C1
(1)

Contrast C(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2
(2)

Structure S(x, y) =
σx,y + C3

σxσy + C3
, (3)

where x - reference (original) image, y - distorted image, μ2
x - weighted mean for

a sliding window of M pixels of reference image μ2
x = 1

M

∑M
i=1 ωixi, σ

2
x - standard

deviation for reference image, calculated as follows σ2
x = 1

M

∑M
i=1 ωi(xi − μx)

2,
σx,y - correlation coefficient between reference and distorted images σx,y =
1
M

∑M
i=1 ωi(xi−μx)(yi−μy), w={ωi i=1,2,...,M} - normalized circular-symmetric

Gaussian weighting coefficients with standard deviation σ=1.5, K1 = 0.01,
K2 = 0.0.3, R=255, C1 = (K1R)2, C2 = (K2R)2, C3 = C2/2, size of the sliding
window is 11 pixels (M=121).

Local SSIML for a window is calculated using (1), (2) and (3):

SSIML(x, y) = L(x, y)C(x, y)S(x, y) (4)

In practice, more required a single overall quality measure of the entire image,
so the final SSIM index is calculated as a mean of (4):

SSIM(x, y) =
1

N

N∑
i=1

SSIML(x, y) (5)

where N - number of sliding windows that cover the image with step 1 pix.

2.2 MS-SSIM

Metric MS-SSIM [2,4] is a kind of multi-scale SSIM metric and is calculated as
a weighted mean of ratings SSIM, obtained for different scales of the reference
and distorted images. Algorithm for calculate MS-SSIM can be formulated as
follows:

1. at the current size (scale) of the images SSIM is computed using (5) and
stored;
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2. images are scaled down by 4;
3. Steps 1,2 repeated up to 6 times unless the size of scaled images is small-

erthan the sliding window over each of the dimensions (height, width);
4. MS-SSIM is calculated as weighted average SSIM, saved on Step 1.

More details about MS-SSIM are in work [4].
It should be noted that due to the higher sensitivity of the human visual

system to a slight change in brightness than in color, all quality assessments are
typically calculated only in the luminance space (component) of images [7, 8].

During the implementation of SSIM and MS-SSIM metrics and testing we
found that the requirement for the step of the sliding window in one pixel is not
strict and can be changed. We expect that the increase of the sliding window
step up to the it size (11 pix.) would have little impact on the quality assessment
and will significantly reduce time for calculations. To confirm this we make a
computer experiment.

3 Experiment

The goal of experiment is to determinate the adequacy (level of correlation with
the MOS) and relative gain in time for quality assessment by modified and
original metrics SSIM and MS-SSIM.

Input:

– TID2008 contains 25 reference images and 1700 distorted images (25 refer-
ence images x 17 types of distortions x 4 levels of distortions) [1];

– MOS for TID2008 as the results of 838 subjective experiments [1];
– implemented according to [4, 5] algorithms SSIM, MS-SSIM in C language

with the ability to specify the step of sliding window (project compiled with-
out use of any parallel calculations);

– step of the sliding window for the modified metrics 11 pix. (chosen by the
authors), 1 pix. for the original metrics;

– ranking metrics in accordance with Spearman and Kendall correlation with
MOS.

Hardware:

– CPU Intel Core i5-2500 (3,3 GHz);
– memory DDR III 10600 MB/s, 8 Gb;
– device for time measurement - integrated timer (measurement error is less

than 10 ms).

Software:

– OS Microsoft Windows 7 SP1 (64-bit);
– Visual Studio 2010 compiler without code optimizations (default settings for

C++ console project).
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Boundary value of the sliding window step (11 pix.) was chosen by the authors
due to the fact that the further increase of step will give more gain in speed but
with completely poor quality assessments. Assessments generated by modified
metrics begin to degrade and fluctuate within a small range (0.970,0.999), which
shows no difference in the type and strength of distortions in the images.

The experimental results on TID2008 are shown in table 1.

Table 1. The experimental results for modified and original metrics SSIM and MS-
SSIM

Metric Step (pix.) Spearman Kendall Calc. time (s.)

SSIM
1 0.795 0.595 75.222

11 0.792 0.594 24.298

Relative change in % -0.377 -0.168 -67.698

MS-SSIM
1 0.843 0.641 86.894

11 0.839 0.637 27.464

Relative change in % -0.474 -0.624 -68.393

According to results, the proposed modification for metrics SSIM and MS-
SSIM based on the change of step of sliding window allows, without losing the
quality assessments, to gain three or more times in reducing computation time.

4 Conclusion

Authors proposed a modification for metrics SSIM and MS-SSIM that can be
successfully applied in the development, testing and configuring various image
processing algorithms and methods. This modification provides the same level of
image quality assessment as the original algorithm and allows to get a significant
gain (more than a three times) in the rate calculation.
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Abstract. The research of the queueing system with incoming MAP,
n types of customers, infinite number of servers and exponential service
time is proposed. Investigation of n-dimensional stochastic process that
characterizes the number of busy servers for different types of customers
is held by the method of initial moments. There are expressions for the
characteristic function of the number of busy servers for different types
of customers in the system MAP/M/∞ under the asymptotic condition
that service time infinitely grows equivalently to each type of customers.

Keywords: queueing system, Markovian arrival process, different types
of customers, method of initial moments, asymptotic analysis.

1 Introduction

The research of the queuing system with infinite number of servers can be found
in articles of A.V. Pechinkin [1–3], A.A. Nazarov, P. Abaev, R. Razumchik [4], B.
D’Auria [5], D. Baum and L. Breuer [6, 7], J. Bojarovich L. Marchenko [8], E.A.
van Doorn A.A Jagers [9], N.G. Duffield [10], C. Fricker and M. R. Jäıbi [11],
E. Girlich [12], A. K. Jayawardene and O. Kella [13], M. Parulekar and A. M.
Makowski [14] and others. Numerous studies of real flows in various subject areas,
in particular, telecommunication flows and flows in economic systems led to the
conclusion about the inadequacy of the classic models of substantial flows of
random events to real data. There is an interest in investigation of flows, in which
the customers are not identical and therefore require fundamentally different
services. The queuing systems with heterogeneous devices include systems of
parallel service, which can be found in articles of G.P. Basharin, K.E. Samuylov
[15], A. Movaghar [16], M. Kargahi [17], J.A. Morrisson, C. Knessl [18], D.G.
Down [19], N. Bambos, G. Michalidis [20] and others. In these works, all systems
have a Poisson input and exponential service time. In the papers [21, 22], systems
with parallel service of MMPP and renewal arrivals with paired customers are
investigated. In this paper, we study a queueing system with MAP arrivals and

� This work is performed under the state order No. 1.511.2014/K of the Ministry of
Education and Science of the Russian Federation.
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heterogeneous service. The main difference between the system in the paper from
the previously considered ones is that when the customer comes in the system
it is marked by i-th(i = 1, . . . , n) type in order to given probabilities. Service
times for customers of different types has different stochastic parameters.

2 Statement of the Problem

Consider the queuing system with infinite number of servers of n different types
and exponential service time. Incoming flow is a Markovian Arrival Process
(MAP) with n types of customers. The underlying Markov chain k(t) has a
finite number of states K. k(t) is determined by the matrix of infinitesimal char-
acteristics Q, the set of non-negative integers λk and probabilities dνk. At the
time of occurrence of the event in this stream only one customer comes in the
system. The type of incoming customer is defined as i-type with probability
pi (i = 1, . . . , n). It goes to the servers with appropriate type where it is ser-
vicing during a random time having an exponential distribution function with
parameter μi corresponding to the type of the customer.

Set the problem of analysis of n-dimensional stochastic process
{i1(t), i2(t), . . . , in(t)} of the number of busy servers of each type at the mo-
ment t. Incoming stream is not Poisson, therefore the n-dimensional process
{i1(t), i2(t), . . . , in(t)} is non-Markov. Consider a (n + 1)-dimensional Markov
process {k(t), i1(t), i2(t), . . . , in(t)} for which we can write the joint probability
distribution P{k, i1, i2, . . . , in, t} = P{k(t) = k, i1(t) = i1, i2(t) = i2, . . . , in(t) =
= in}. Here k(t) – the state of management Markov chain. The system of
Kolmogorov differential equations for the probability distribution P{k, i1, i2, . . . ,
in, t} is the following:

∂P (k, i1, i2, . . . , in, t)

∂t
=

(
−λk −

n∑
l=1

ilμl

)
P (k, i1, i2, . . . , in, t)+

+ λkp1P (k, i1 − 1, i2, . . . , in, t) + . . . + λkpnP (k, i1, i2, . . . , in − 1, t) + (1)

+(i1 + 1)μ1P (k, i1 + 1, i2, . . . , in, t) + . . . + (in + 1)μnP (k, i1, i2, . . . , in + 1, t)+

+
∑
ν �=k

{(1 − dνk)P (ν, i1, i2, . . . , in, t) + dνk (p1P (ν, i1 − 1, i2, . . . , in, t) + . . .

+pnP (ν, i1, i2, . . . , in − 1, t))} qνk, k = 1, . . . , n.

The initial conditions have the form P (k, 0, 0, . . . , 0, t) = R(k), where R(k)
- stationary probability distribution of the Markov chain k(t). We will find the
solution of the system (1) during stationary operation of the system.

Introduce the characteristic function of the form:

H(k, u1, . . . , un) =

∞∑
i1=0

. . .

∞∑
in=0

eju1i1 × . . .× ejuninP (k, i1, . . . , in),

where j =
√−1 – imaginary unit.
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Using (1) write the system of differential equations for the characteristic func-
tion H(k, u1, . . . , un)

n∑
l=1

μlj
(
e−jul − 1

) ∂H(k, u1, . . . , un)

∂ul
= λk

(
n∑

l=1

ple
jul − 1

)
H(k, u1, . . . , un)+

+

K∑
ν=1,ν �=k

H(ν, u1, . . . , un)

[
1 +

(
n∑

l=1

ple
jul − 1

)
dνk

]
qνk, (2)

H(k, 0, . . . , 0) = R(k), k = 1, . . . , n.

Denote
• H(u1, . . . , un) = [H(1, u1, . . . , un), H(2, u1, . . . , un), . . . , H(K,u1, . . . , un)]

– row vector consisting of the characteristic functions of the random process
{k(t), i1(t), . . . , in(t)} for each state of the management Markov chain k(t);
• Q – the matrix of infinitesimal characteristics with elements qνk,

ν = 1, . . . , n, k = 1, . . . , n;

• Λ – the diagonal matrix with elements λk (k = 1, . . . ,K) on the main
diagonal;
• A – Hadamard product of matrix D and Q, that is the matrix of the

elements dνkqνk, ν = 1, . . . ,K, k = 1, . . . ,K;
• B = Λ+A.
Taking into account (2), write vector-matrix equation for the vector of the

characteristic function H(u1, . . . , un):

n∑
l=1

μlj
(
e−jul − 1

) ∂H(u1, . . . , un)

∂ul
= H(u1, . . . , un)

[
Q +

(
n∑

l=1

ple
jul − 1

)
B

]
,

H(0, . . . , 0) = r = [R(1), R(2), . . . , R(K)]. (3)

The equation (3) will be considered as the basis for further research.

3 Method of Initial Moments

Theorem 1. In the system MAP |M |∞ with heterogeneous service, the average
number fml of busy servers of the l-th type (l = 1, . . . , n) has the form:

fml =
pl
μl

rBe, (4)

where e – an identity column vector.

Theorem 2. In the system MAP |M |∞ with heterogeneous service, the second
order moment of numbers sml of busy servers of the l-th type (l = 1, . . . , n) have
the form:

sml = plrB
{
I+ [μlI−Q]

−1
[μlI+ 2plB]

}
{2μlI−Q}−1

e, (5)

where I – an identity matrix.
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Theorem 3. Correlation moment cmlg of busy the l-th and the g-th type de-
vices’ number (l = 1, . . . , n, g = 1, . . . , n, l �= g) in system MAP |M |∞ with
heterogeneous service has the form:

cmlg = (pgfml + plfmg)B [(μl + μg)I−Q]
−1

e. (6)

Then correlation coefficient has the form:

r(il, ig) =
cov(il, ig)√

DilDig
=

cmlg − fmlfmg√
DilDig

, (l = 1, . . . , n, g = 1, . . . , n, l �= g).

4 Method of the Asymptotic Analysis

4.1 Asymptotics of the First Order

We will solve the basis equation for the characteristic function (3) in the asymp-
totic condition that service time on appliances growths equivalently to each other
(μl → 0,l = 1, . . . , n).

Denote

μ1 = ε, μ2 = qε, . . . , μn = qn−1ε, u1 = εx1, u2 = qεx2, . . . , un = qn−1εxn,

H(u1, u2, . . . , un) = F1(x1, x2, . . . , xn, ε). (7)

Taking into account (7) we can write (3) as

n∑
l=1

j
(
e−jql−1xlε − 1

) ∂F1(x1, . . . , xn, ε)

∂xl
= (8)

= F1(x1, . . . , xn, ε)

[
Q+

(
n∑

l=1

ple
jql−1xlε − 1

)
B

]
.

Lemma 1

lim
ε→0

F1(x1, . . . , xn, ε) = F1(x1, . . . , xn) = r exp

{
jκ

n∑
l=1

plxl

}
, (9)

κ = rBe, e – an identity column vector.

Proof. If ε→ 0 in (8), then obtain:

F1(x1, . . . , xn) = lim
ε→0

F1(x1, . . . , xn, ε).

Since rQ = 0, then we look for F1(x1, . . . , xn) as

F1(x1, . . . , xn) = rΦ1(x1, . . . , xn), (10)

where Φ1(x1, . . . , xn) - the desired scalar function.
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Let’s multiply (8) on the identity vector-column e:

n∑
l=1

j
(
e−jql−1xlε − 1

) ∂F1(x1, . . . , xn, ε)

∂xl
e =

= F1(x1, . . . , xn, ε)

(
n∑

l=1

ple
jql−1xlε − 1

)
Be.

Expand exponents in the received equation into a Taylor series, substitute
into it the vector-function F1(x1, . . . , xn) in the form (10) and let ε→ 0:

n∑
l=1

ql−1xl
∂Φ1(x1, . . . , xn)

∂xl
= Φ1(x1, . . . , xn)

(
n∑

l=1

pljq
l−1xl

)
rBe.

Denote κ = rBe and obtain the partial differential equation for the function
Φ1(x1, . . . , xn):

n∑
l=1

ql−1xl
∂Φ1(x1, . . . , xn)

∂xl
= Φ1(x1, . . . , xn)

(
n∑

l=1

pljq
l−1xl

)
κ.

Taking into account the initial condition Φ1(0, . . . , 0) = 1 we obtain the following
expression

Φ1(x1, . . . , xn) = exp

{
jκ

n∑
l=1

plxl

}
.

Thus,

F1(x1, . . . , xn) = r exp

{
jκ

n∑
l=1

plxl

}
.

!"
Taking into account (10) and substitutions (7) we can write the asymptotic

approximate equality (ε→ 0):

H(u1, . . . , un) = F1(x1, . . . , xn, ε) ≈ F1(x1, . . . , xn) = r exp

{
jκ

n∑
l=1

plxl

}
.

For the characteristic function of process {i1(t), i2(t), . . . , in(t)} denote

h1(u1, . . . , un) = Me
j

n∑
l=1

ulil(t)
= H(u1, . . . , un)e = exp

{
jrBe

n∑
l=1

pl
μl

ul

}
.

The h1(u1, . . . , un) will be called the asymptotics of the first order for the
system MAP |M |∞ with heterogeneous service.

Defenition 1. The functions

h1
(l)(ul) = Mejulil(t) = h1(0, . . . , ul, . . . , 0) = exp

{
jrBepl

ul

μl

}
, l = 1, . . . , n,

(11)
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will be called the asymptotics of the first order for the characteristic function of
the busy servers of any type in system MAP |M |∞ with heterogeneous service.

Consider the asymtotics of the second order for more accurate approximation.

4.2 Asymptotics of the Second Order

Consider function H(u1, . . . , un):

H(u1, . . . , un) = H2(u1, . . . , un)exp

{
jrBe

n∑
l=1

pl
ul

μl

}
. (12)

Using (12) in (3) obtain the expression for H2(u1, . . . , un):

n∑
l=1

μlj(e
−jul − 1)

∂H2(u1, . . . , un)

∂ul
= (13)

= H2(u1, . . . , un)

[
Q+

(
n∑

l=1

ple
jul − 1

)
B+ κ

n∑
l=1

pl(e
−jul − 1)I

]
, (14)

where κ = rBe, e – the identity vector-column, I - the identity matrix.
Substitute the folliwing in (13):

μ1 = ε2, μ2 = qε2, . . . , μn = qn−1ε2, (15)

u1 = εx1, u2 = εqx2, . . . , un = εqn−1xn,H2(u1, . . . , un) = F2(x1, . . . , xn, ε)

and obtain:
n∑

l=1

jε(e−jεql−1xl − 1)
∂F2(x1, . . . , xn, ε)

∂xl
= (16)

= F2(x1, . . . , xn, ε)

[
Q+

(
n∑

l=1

ple
jεql−1xl − 1

)
B+ κ

n∑
l=1

pl

(
e−jεql−1xl − 1

)
I

]
.

Theorem 4

lim
ε→0

F2(x1, . . . , xn, ε) = F2(x1, . . . , xn) = r exp

{
κ

n∑
l=1

plq
l−1 xl

2

2
+ (17)

+

n∑
l=1

n∑
s−1

plps
xlxs

ql−1 + qs−1
fl[B− κI]e

}
,

where κ = rBe, e – the identity vector-column, and functions fl, l = 1, . . . , n are
defined by the following system of equations

flQ+ r [B− κI] = 0, l = 1, . . . , n. (18)
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Proof. Desirable solution of the equation (16) should be like the following:

F2(x1, . . . , xn, ε) = Φ2(x1, . . . , xn)

{
r+ jε

n∑
l=1

plq
l−1xlfl

}
+O(ε2). (19)

Using (19) in (16), obtain:

n∑
l=1

jε
(
e−jεql−1xl − 1

)[
∂Φ2(x1, . . . , xn)

∂xl

(
r+ jε

n∑
s=1

psxsfsq
s−1

)
+

+ Φ2(x1, . . . , xn)jεplflq
l−1

]
=

= Φ2(x1, . . . , xn)

[
r+ jε

n∑
l=1

plxlflq
l−1

][
Q+

(
n∑

l=1

ple
jεql−1xl − 1

)
B+

+ κ

n∑
l=1

pl

(
e−jεql−1xl − 1

)
I

]
+O(ε2),

hence taking into account rQ = 0 may earn the following system of equations
for the functions fl, l = 1, . . . , n when ε→ 0:

flQ+ r [B− κI] = 0, l = 1, . . . , n, (20)

which coincides with (18).
To get the form of the function Φ2(x1, . . . , xn) sum all equations of the system

(16) and expand exponents into a Taylor series:

ε2
n∑

l=1

ql−1xl
∂F2(x1, . . . , xn, ε)

∂xl
e = F2(x1, . . . , xn, ε)

{
jε

n∑
l=1

plq
l−1xl [B− κI] e+

+ (jε2)
n∑

l=1

pl
(ql−1xl)

2

2
[B+ κI] e

}
+O(ε3).

Substitute into received expression (19):

ε2
n∑

l=1

ql−1xl
∂Φ2(x1, . . . , xn)

∂xl
re = Φ2(x1, . . . , xn)jε

n∑
l=1

plq
l−1xlr[B− κI]e+

+ Φ2(x1, . . . , xn)(jε)
2

{
n∑

l=1

pl
(ql−1xl)

2

2
r[B+ κI]e+ (21)

+

n∑
l=1

n∑
s=1

plq
l−1xlpsq

s−1xsfl[B− κI]e

}
+O(ε3).
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Since rBe = κ that r[B − κI]e = 0 and r[B + κI]e = 2κ. Then taking into
account re = 0, divide both sides of the expression (21) by ε2 and pass to the
limit provided ε→ 0:

n∑
l=1

ql−1xl
∂Φ2(x1, . . . , xn)

∂xl
= (22)

= Φ2(x1, . . . , xn)j
2

{
κ

n∑
l=1

pl(q
l−1xl)

2 +

n∑
l=1

n∑
s=1

plq
l−1xlpsq

s−1xsfl[B− κI]e

}
.

Solution of the differential equation (22) corresponding to the initial condition
Φ2(0, ..., 0) = 1 is the function Φ2(x1, ..., xn) of the form:

Φ2(x1, ..., xn) = (23)

= exp

{
κ

n∑
l=1

plq
l−1 (jxl)

2

2
+

n∑
l=1

n∑
s=1

plps
jxljxs

ql−1 + qs−1
fl[B− κI]e

}
.

!"

Taking into account the approximate equations of the form H2(u1, . . . , un) =
F2(x1, . . . , xn, ε) ≈ F2(x1, . . . , xn) = rΦ2(x1, . . . , xn) and (15) write expression
for the function H2(u1, ..., un):

H2(u1, . . . , un) = r · exp
{
κ

n∑
l=1

pl
(jul)

2

2μl
+

n∑
l=1

n∑
s=1

plps
juljus

μl + μs
fl[B− κI]e

}
.

Then using (12) obtain:

H(u1, . . . , un) = r · exp
{
jκ

n∑
l=1

pl
ul

μl
+ κ

n∑
l=1

pl
(jul)

2

2μl
+

+

n∑
l=1

n∑
s=1

plps
juljus

μl + μs
fl[B− κI]e

}
,

therefore, for the characteristic function of the random process {i1(t), i2(t), . . . ,
in(t)} obtain:

Me
j

n∑
l=1

ulil(t)
= H(u1, . . . , un)e = (24)

= exp

{
jκ

n∑
l=1

pl
ul

μl
+ κ

n∑
l=1

pl
(jul)

2

2μl
+

n∑
l=1

n∑
s=1

plps
juljus

μl + μs
fl[B− κI]e

}
.

The expression (24) will be called the asymptotics of the second order for the
system MAP |M |∞ with heterogeneous service.
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5 Numerical Analysis

Consider the particular case: n = 2. Let

Q =

(−0.1 0.1
0.9 −0.9

)
, Λ =

(
1 0
0 100

)
,

dνk = 0, (ν, k = 1, 2), p1 = 0.4, p2 = 0.6 .

Table 1. Analysis of the range of applicability of asymptotic algorithms

μ1 0.1 0.05 0.01 0.001

D1 1326.640 2775.474 14409.703 145353.41

AD1 1454.944 2909.888 14549.44 145494.4

Δ = |D1−AD1
D1

|100% 9% 4.8% 1% 0.1%

If we assume that the allowable relative error Δ should be less than 5%, the
good convergence occurs when μ ≤ 0.05.

6 Conclusion

In this paper, we construct and investigate the mathematical model of the queu-
ing system with the MAP arrivals and heterogeneous service. The main prob-
abilistic characteristics are found. In particular, the first and the second order
initial moments of the number of busy servers of different types are obtained.
The system under consideration are studied using asymptotic analysis. Namely,
the expression for the asymptotic of the first and the second order are obtained
for the characteristic function of the busy servers of each type. The numerical
analysis of the convergence of the main probabilistic asymptotic characteristics
to exact ones is carried out.
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Abstract. A continuous stochastic dynamic model for the evolution
of polysemy and semantic volume of natural language signs is offered.
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1 Introduction and Basic Assumptions of the Model

It is believed that the frequency-rank distribution of signs of the natural language
obeys to Zipf’s law [1], [2], [3]. This law is expressed by the inverse power (i.e.
hyperbolic) function of the Pareto distribution [4]. The graph of this function
in the log-log coordinates is a straight line with a negative slope coefficient.
However, the graph of the empirical distribution function of words of the natural
language in the same coordinate system deviates from a straight line and is a
concave function. It forces researchers to introduce amendments to the Zipf law,
leading to its modifications in the form of Zipf–Mandelbrot law [5], [6]. Attempt
at a theoretical justification of the Zipf–Mandelbrot law was undertaken by Yu.
K. Krylov [7], M. A. Montemurro [8]. We propose an alternative approach to the
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theoretical conclusion of the frequency-rank distribution of signs of the natural
language based on the stochastic dynamic model of the polysemic evolution of
signs ensembles.

The proposed mathematical model is based on the assumption of the dissipa-
tive nature of the linguistic sign polysemy development [9], [10]. In these investi-
gations, we based on a discrete version of this model using simulation methods.
In this paper, we present a continuous version of this model, using analytical
methods. On this basis we undertake an attempt for theoretical derivation laws
for polysemy, age-polysemy, frequency and age-frequency distributions for signs’
ensembles.

The basic assumption of the model is that each linguistic sign at the moment
of its birth has an individual limit of G – ability of a sign to generate (to acquire)
some certain number of meanings through its life time. This ability called asso-
ciative semantic potential (ASP) is gradually being implemented (wasted) in the
course of use and corresponding development of any sign polysemy. At the same
time the rate of generation for new meanings (usually the more abstract than
later they are formed) assumed to be proportional still unspent part of ASP,
whereby the rate of new meanings generation is gradually slowing down. At the
same time, but with a delay of time τ0, starts to flow a similar to signs generation
process – the process of losses of some previously generated meanings. Because
of relatively more specific nature of more initial meanings they are relatively less
stable than the subsequent meanings. That is why the process of losses also is
gradually slowing down.

Current polysemy of a sign at any time t of its life-cycle is expressed by the
difference x(t) = x1(t)−x2(t) between processes of new meanings gain x1(t) and
loss of the previously acquired meanings x2(t). Continuous model suggests that
these processes are continuous and subject to linear differential equations of the
form:

dx1(t)

dt
=

1

τ1
(G− x1(t)), x1(t0) = 1, t ≥ t0; (1)

dx2(t)

dt
=

1

τ2
(G− x2(t)), x2(t0 + τ0) = 0, t ≥ t0 + τ0, (2)

where τ1 = a1/G, τ2 = a2/G are inversely proportional to the ASP time con-
stants of growth and decline of polysemy with coefficients of proportionality a1
and a2 respectively, and τ1 � τ2. Inequality τ1 < τ2 is required to ensure non-
negative values of polysemy x(t). Value of x1(t) characterizes the maximum level
of implementation of the sign’s ASP, which is reached at a moment of time t.
Correspondingly, value x2(t) characterizes respectively the minimum level of the
sign’s ASP, which is still remained unspent at time t.

The model suggests further that individual values of G and delay τ0 – in a sign
ensemble – should be independent exponentially distributed random variables
with parameters (mathematical expectations) 〈G〉 and 〈τ0〉 respectively.

Flood of signs birthes assumed to be stationary Poisson process with the in-
tensity λ = 1/〈τ〉, so that the time intervals between neighboring occurrences
of adjacent signs in the stream are assumed to be independent exponentially
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distributed random variables with parameter (expectation) 〈τ〉. Moments of oc-
currence of events in a stationary Poisson flow have a uniform distribution.

Individual curve for the development of sign’s polysemy x in time t (which
is a curve for the polysemic life cycle of a sign) depending on G and τ0 can be
obtained by solving the above equations (1)-(2):

x(t) = (G− (G− 1) exp(−G(t− t0)/a1)) · 1(t ≥ t0)−
−G(1− exp(−G(t− t0 − τ0)/a2)) · 1(t ≥ t0 + τ0), x(t) ≤ G, (3)

where 1(·) is an indicator for the fulfillment of the condition in brackets (this
indicator takes the value 1, if the condition is satisfied, and the value 0, if oth-
erwise). A typical course of the polysemy curve development for a particular
linguistic sign is shown in Fig. 1. Number of meanings usually starts from 1,
since each sign usually appears in a language having at least 1 meaning. Sum of
lost meanings begins from 0, because we use continuous model for the polysemy
development.
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Fig. 1. Typical curve for an individual sign polysemy development (G = 7, τ0 = 20,
a1 = 280, a2 = 1260), T is longevity of sign’s life

As it can be seen, the curve of the polysemy development of a sign is a
unimodal curve with a maximum of it located closer to the beginning of the
evolution trajectory of a sign. So, polysemy of a sign first increases very fast,
but with constant deceleration and then (after the beginning of the process of
loosing of sign’s initial meanings), reaches a maximum at some point. After that
polysemy decreases until it reaches a value of 1 (it means a sign has the last
meaning). Polysemy reduction to a level lower than 1 meaning means that a
sign looses its last meaning and goes out of use. This occurs at the time point
t = t0+T where T is the longevity of a sign (T ≥ τ0). If t ≤ t0+T , the difference
t − t0 determines the age of a sign at time t. To find analytically longevity T
of an individual linguistic sign is still difficult. It obeys analytically irresolvable
transcendental equation:

(G− 1) exp(−GT/a1)−G exp(−G(T − τ0)/a2) = 1.
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In the continuous model it is possible to suggest that, when linguistic signs
reach a level of polysemy below 1, they do not extinct immediately, but remain
in the language and live with exponentially decreasing level of polysemy up to 0
during increasing of length of age noticeably above T . This assumption has no
significant impact on the results obtained, but greatly simplifies the procedures
of theoretical drawing of polysemic and age-polysemic distributions. Therefore,
then we shall not impose severe restrictions on the duration of the life of signs.

For the beginning point of time it is convenient to take the observation point,
putting t = 0. For this reason we need to count the occurrence moments of
linguistic signs in the stream in the opposite direction. As a result, we have
t ≤ 0, and the age of the sign will be equal −t0 ≥ 0. Now we denote by t the age
of a sign. Formula (3) takes a simpler form, which expresses the dependence of
the quantity sign’s meanings of age t from its determinative values G and τ0:

x(t) = (G− (G− 1) exp(−Gt/a1)) · 1(t ≥ 0)−
−G(1− exp(−G(t− τ0)/a2)) · 1(t ≥ τ0) = x(t, G, τ0) ≤ G. (4)

Since signs which conform to a higher level of implementation of the ASP
have relatively more abstract meanings, each of them cover a wider sense area
of meaning (have a greater sense volume) as compared to signs of lower level of
ASP. And signs, having a large amount of meanings, should be used more often
in the language of communication. Moreover, it can be assumed that the growth
of frequency of use of the sign shall be directly proportional to its sense width
(to the sum of sense volumes) of all signs’ meanings. This, in particular, should
be manifested in the fact that the overall semantic volume of the linguistic sign
must be associated with its rank in the rank-frequency distribution of signs’
textual use.

Natural to assume that the semantic scope of each of new meanings of each of
next levels of implementation of ASP increases monotonically with the increasing
level of it. This dependence can be represented by a power function of this level
with an exponent μ − 1 > 0. Then the total sense amount v of the interval
from x1 to x2 for levels of implementation of the ASP to be expressed in the
continuous model by the integral:

v = μ

∫ x2

x1

xμ−1dx = xμ
2 − xμ

1 , μ > 1.

Consequently, with regard to the expression (4), the linguistic sign of the age t
having an actual polysemy defined by the difference between ”plus” and ”minus”
semantic derivation x1(t) and x2(t), is characterized by semantic volume

v(t) = (G− (G− 1) exp(−Gt/a1))
μ · 1(t ≥ 0)−

−(G(1− exp(−G(t− τ0)/a2)))
μ · 1(t ≥ τ0) = v(t, G, τ0) ≤ Gμ, μ > 1. (5)

When μ = 1, this formula coincides with the formula (4) for polysemy x(t).
Therefore, formula (5) can be used as a universal formula describing sign poly-
semy (with μ = 1), as well as its semantic volume (at μ > 1). And, consequently,
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the formula (5) can be used also for describing the frequency features of the
linguistic sign – taking into account that its sense volume should be directly
related to the frequency of its use in the process of communication.

2 Theoretical Conclusion on Age-Polysemy, Polysemy,
Age-Sense-Volume, Age-Frequency, Frequency and
Rank-Frequency Distributions of Units in Sign
Ensembles

Conditional density distribution of the sense volume v for an individual sign
depending on the time t, associative semantic potential G and delay τ0 for fixed
values of these parameters is represented by Dirac delta function:

p(v|t, G, τ0) = δ(v − v(t, G, τ0)) · 1(v ≤ G). (6)

With regard to (5), the expression (6) takes the following form:

p(v|t, G, τ0) = δ(v − (G− (G− 1) exp(−Gt/a1))
μ · 1(t ≥ 0) +

+(G−G exp(−G(t− τ0)/a2))
μ · 1(t ≥ τ0)) · 1(v ≤ G). (7)

Averaging this distribution according to τ0 and G distributions, one can get
the conditional distribution density p(v|t) for the sense volume (and for the
polysemy) of signs of the same age. Integrating polysemy according v ranging
from k to k + 1, it is possible to obtain the probability distribution P (k|t) for
integer values of the sense volume (and the polysemy) k = 1, 2, . . . of signs
of the same age. More convenient, however, to calculate not the density dis-
tribution, but the cumulative distribution function F (v|t), using it further to
calculate P (k|t). Averaging p(v|t, G, τ0) according to an exponential distribu-
tion p(τ0) = exp(−τ0/〈τ0〉) of the delay within the range 0 ≤ τ0 <∞ is carried
out without difficulty and leads to the formula:

p(v|t, G) = e−t/〈τ0〉δ(v − v1) +
a2e

−t/〈τ0〉

G2〈τ0〉μ ·

· 1(v1 − v2 ≤ v ≤ v1)

(v1 − v)1−1/μ(1− (v1 − v)1/μ/G)
a2

G〈τ0〉+1
, (8)

where indicated:

v1 = (G− (G− 1) exp(−Gt/a1))
μ, v2 = (G−G exp(−Gt/a2))

μ. (9)

Conditional cumulative distribution function can also be calculated easily:

F (v|t, G) =

∫ v

0

p(θ|t, G)dθ = 1(v ≥ v1 − v2)−

−e−t/〈τ0〉 1(v1 − v2 ≤ v ≤ v1)

(1− (v1 − v)1/μ/G)
a2

G〈τ0〉
, (10)
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It is easy to see that F (v|t, G) = 0, if v < v1 − v2, and F (v|t, G) = 1, if
v > v1. And in the interval between these values the function F (v|t, G) increases
monotonically from 0 to 1 with increasing of v.

Formula (10) has a relatively simple form due to the fact that the integration
is being done from 0, but not from 1, i.e. on the assumption that a sign may
have polysemy lesser than 1, but not being formally out of use. However, the
interpretation of the probability distribution of the polysemy for an ensemble of
signs is necessary to consider that reducing polysemy to a value less than 1, the
sign actually means going out of use.

Unfortunately, this averaging accordingG of the conditional distribution func-
tion fails to be carried out analytically. The distribution function F (v|t) remains
in an integral form:

F (v|t) = 1−
∫ ∞

1

1(v ≥ v1 − v2) exp(−(G− 1)/〈G〉)dG/〈G〉 −

−e−t/〈τ0〉
∫ ∞

1

1(v1 − v2 ≤ v ≤ v1) exp(−(G− 1)/〈G〉)dG/〈G〉
(1− (v1 − v)1/μ/G)

a2
G〈τ0〉

, (11)

and can be calculated only numerically.
The difference P (k|t) = F (k + 1|t)− F (k|t), k = 1, 2, . . ., at μ = 1 determines

the theoretical age-polysemic distribution for values of polysemy, but at μ > 1
determines sense-volume distribution of units in a signs’ ensemble.

We assume Poisson nature for the flow of words births in language life. Inter-
vals of time τi between adjacent signs in the flow of them are thus statistically
independent exponentially distributed random variables with mathematical ex-
pectation 〈τ〉. The moment of occurrence t0i =

∑i
j=1 τj of each next sign in the

flow is determined by the Erlang distribution, corresponding with an order num-
ber of signs in the flow. It is possible to show that the arithmetic mean of Erlang
distributions – with an infinite increase of the number of words in the language –
tends to an uniform distribution at each time interval length 〈τ〉. Thus, the time
of occurrence t0i of linguistic signs can be regarded as realizations of uniformly
distributed random variables within any desired finite time interval.

The density distribution of polysemy at any time in an ensemble of n signs can
be expressed by the arithmetic average of density for the distributions of terms
involved in the averaging. For the received zero observation time, the above is
equivalent to averaging of the distribution F (v|t) within the uniform distribution
of t on the whole semiaxis of ages:

F (v) = lim
T→∞

∫ T

0

F (v|t)dt. (12)

The difference P (k) = F (k + 1)− F (k), k = 1, 2, . . ., at μ = 1 determines the
theoretical distribution of integer values of polysemy in an ensemble of linguistic
signs, regardless of their age. While the difference at μ > 1 determines theoretical
distribution of their sense volumes. Distribution (12) is an irrespectable one for
the age of signs.
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In the assumption adopted here, the frequencies of use of signs in acts of com-
munication (including, for example, a specific set of texts) are proportional to
their sense volumes. Moreover, integer values of semantic volumes for signs may
simply be identified with the absolute frequencies of use of signs in a communi-
cations field, taking the proportionality factor equal to 1. Then the theoretical
distribution P (k) of integer values of k for sense volume of a sign (at μ > 1)
expresses the share of signs in some language dictionary with absolute frequency
k of their use in acts of communication. Thus, P (k) (at μ > 1) becomes the the-
oretical frequency distribution for the ensemble of signs (distribution of shares
for signs with the frequency of use k).

3 Identification of the Model

To compare the empirical and theoretical distributions (obtained by the use of
the proposed evolutionary model), it is necessary to identify the mathematical
model with the real empirical data obtained from representative explanatory,
frequency and historical dictionaries of a language under consideration. The
proposed model is characterized by six parameters: 〈G〉, 〈τ〉, 〈τ0〉, a1, a2, μ.
However, the parameter 〈τ〉 is not explicitly included in the theoretical distri-
bution, and the parameter 〈τ0〉 can be set equal to 1, selecting it as the unit of
time, and therefore – the unit of sign age. There are remained three parameters
that define the shape of the probability distribution of polysemy: 〈G〉, a1, a2.
These parameters can be determined according to the test of language dictio-
naries, using the least squares method for suitably chosen criterion. Parameter
μ can then also be determined by use of the least squares method comparing
theoretically drawn frequency distributions with the empirical one obtained from
reliable frequency dictionaries. But someone can define all four parameters 〈G〉,
a1, a2, μ at once, using the least squares method, comparing theoretical and
empirical frequency distributions. In this case, the model identification is per-
formed using only the frequency as the most objective kind of data for basing
on it. One can also use a weighted criterion that assigns all available theoretical
and empirical distributions – the frequency of signs’ use as well as polysemic
distribution. Finally, if necessary, one can associate a model unit of time with a
real time, using empirical data on the age distribution of signs in language.

For the comparison of the theoretical and empirical polysemy and frequency
distributions, changing in a very wide range (up to several orders of magnitude),
it is convenient to choose the mean square deviation of their logarithms ratio
from 1 as the criterion of their proximity:

ε2(q) =

kmax∑
k=1

(
lnPe(k)

lnP (k|q) − 1)2, q∗ = argmin
q

ε2(q), (13)

where q∗ is an estimation of the parameter vector q = (〈G〉, a1, a2), q = μ or
q = (〈G〉, a1, a2, μ), obtained by the least squares method (13), P (k|q) is the
theoretical distribution, depending on the parameter vector q, Pe(k) is some
empirical distribution obtained from the corresponding dictionary.
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For identification and comparison of theoretical models with empirical distri-
butions we used representative dictionaries of Russian and English languages.
Russian is presented by ”Dictionary of Pushkin’s Language” (1958-1961) (ex-
planatory and frequency) and English – by the explanatory dictionary Webster’s
Collegiate (9th ed.) After the identification of the model there were obtained val-
ues of the parameters, as it is shown in Table. 1 (accepted value 〈τ0〉 = 1). During
the procedure we used a sequence identification – first, using the parameters 〈G〉,
a1, a2, and then – the parameter μ.

Table 1. Model Parameters

Dictionaries 〈G〉 a1 a2 μ (for x) μ (for v)
Pushkin 2.18 0.122 36.5 1 2.86
Webster’s 3.28 6.12 183 1 –

4 Comparative Analysis of Theoretical and Empirical
Polysemy and Age-Polysemy Distributions

Fig. 2 shows diagrams calculated using the formula (11) of the conditional dis-
tribution P (k|t) of polysemy and of sense volumes for an ensemble of signs,
depending on their age at the parameters corresponding to the Pushkin dictio-
nary. Age t of signs is present in units 〈τ0〉.
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Fig. 2. Theoretical a) age-polysemy distribution and b) age-sense-volumes distribution
with parameters of the Pushkin dictionary

It is seen from Fig. 2a) that the most of lexical signs in the theoretical distri-
bution are nonpolysemic (having a polysemy ”1” – see ”far wall” on the chart).
This group includes most of the signs (majority of them are rather young, but
some of them are long-living). It is evident that signs of old ages are leaving
language (signs of age, exceeding 35 units in the accepted system of measuring
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time are practically nonexistent, their probability is close to zero). Much less
longevity is typical for signs with a polysemy 2. Relatively higher polysemy is
inherent for signs which are not too young and not too old. Maximum polysemy
falls on signs of some ”ripe age” – in the region of several units of simulated
time.

Fig. 2b) demonstrates quite curious behavior of the semantic volumes of signs
distribution, depending on their age.

Fig. 3 presents theoretical and empirical distributions for the polysemy pa-
rameters of Pushkin and Webster dictionaries.
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Fig. 3. Theoretical and empirical polysemy distributions with parameters a) of the
Pushkin dictionary and b) that of Webster’s dictionary

One can see a good agreement between the calculated theoretical and empir-
ical polysemy distributions for two dictionaries.
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Fig. 4 presents the theoretical distribution of word frequencies (functionally
equal to the distribution of their sense volumes) and the empirical frequency and
frequency-rank distributions of words from the dictionary of Pushkin.

It is seen that theoretically obtained frequency distribution of words (which is
the same – the sense volume of words) agrees well with the empirical frequency
and frequency-rank distributions.

This allows theoretically calculate and investigate not only the frequency and
frequency-rank distributions of sign ensembles, but also their polysemy distri-
butions.
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Abstract. One of the most important, complex and significant tasks
for science in general and for specific areas of application of probability,
such as economics and statistics, is to develop methods for the determi-
nation, study and statistical evaluation of the dependency structure of
complex distributions of large dimension. In the paper a new approach of
the description of probabilistic distributions of random sets of events by
means of the device of associative functions is offered. The feature of this
approach is that for definition of probabilistic distribution of a random
set of events it is enough to know N probabilities of events and a type of
associative function, whereas for definitions of probabilistic distribution
of any random set of events it is necessary to set 2N of probabilities.

Keywords: Random set of events (RSE), probabilistic distribution, as-
sociative function.

1 Introduction

Each set of N events is characterized by a set of probabilities 2N which play the
same role for a random set of events and which the probability distribution plays
for a random variable with a finite set of values. Distribution of a random set of
events is a convenient mathematical tool to describe all variants of interaction
between elements. It is obvious that the more events have been contained in the
selected set of events, the more complex structures of probabilistic dependence
of events it possesses. Nowadays a collection of probabilistic (eventological) dis-
tributions which completely the define structure of dependence of a random set
of events has been studied and described [1]. The most complete study of the
distributions is written in [1].

The key role is played by three basic structures of dependences such as em-
bedded, least intersecting and independently-pointwise [1], [2], [3].

In this work the new approach of formation of probabilistic distributions of
random sets of events by means of the device of associative functions is offered.
The feature of this approach is that for definition of probabilistic distribution
of a random set from N events it is enough to know only N probabilities of
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events and a type of associative function, whereas for definitions of probabilistic
distribution of any random set of events it is necessary to set 2N of probabilities.

1.1 Random Set of Events

Consider a probability space (Ω,F ,P). Let X ⊂ F be a finite set of events chosen
from algebra F of that space. Let designate N = |X|.
Definition 1. Random set of events1 (RSE) on a set of the chosen events X is
decided on probability space as a random element of

K : Ω → 2X

on values from measurable space
(
2X, 22

X
)
, where 2X is power set X, 22

X

is

algebra of all its subsets.

The random set of K maps any ω ∈ Ω in 2X, i.e K(ω ∈ Ω) ∈ 2X. And this

mapping is measurable, it means that for any A ∈ 22
X

there is a preimage of
K−1(A) ∈ F such that P(A) = P(K−1(A)).

Definition 2. Probabilistic distribution of RSE of K which has been set on a
finite set of the chosen events X ⊆ F can be presented several equivalent
distributions of the probabilities generated by a set of events X [1]:

– probabilistic distribution of the I-st sort is an array from 2N probabilities of
a type{

p(X) = P(K = X) = P

(( ⋂
x∈X

x

)⋂( ⋂
x∈Xc

xc

))
, X ⊆ X

}
;

– probabilistic distribution of the II-nd sort is an array from 2N probabilities
of a type {

pX = P(X ⊆ K) = P

( ⋂
x∈X

x

)
, X ⊆ X

}
.

Probabilistic distribution of RSE contains the comprehensive information
about all types of probabilistic dependencies of events from this set. The struc-
ture of probabilistic dependencies includes types of dependence between events,
which make couples of events, the three of events and more powerful subsets of
events of this set. If the power of a considered set of events is equal to N , it is
possible to imagine 2N as classical types of dependencies between events of this
set, i.e. it is exactly equal to number of set’s subsets.

Probabilistic distributions of the I-st and the II-nd sorts are connected with
a help of the Möbius inversion formulas[1].

pX =
∑

Y ∈2X: X⊆Y

p(Y ), p(X) =
∑

Y ∈2X: X⊆Y

(−1)|Y |−|X|pY . (1)

1 Further, the abbreviation RSE will be used for the convenience.
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Further, let formulate necessary and sufficient conditions of legitimacy of prob-
abilistic distribution of RSE.

Necessary and Sufficient Conditions of Legitimacy of Probabilistic
Distribution of RSE. Let say that the random set of events of K possesses
legitimate probabilistic distribution if for probabilistic distribution of the I-st sort
the following conditions are satisfied :

– 0 ≤ p(X) ≤ 1, X ⊆ X,

–
∑

X⊆X

p(X) = 1.

Necessary Condition of Legitimacy of Probabilistic Distribution of the
II-nd Sort. Legitimate probabilistic distribution of the II-nd sort {pX , X ⊆ X}
of RSE of K on X satisfies to system from 2N inequalities of Frechet:

p−X ≤ pX ≤ p+X ,

where

p−X = max

{
0, 1−

∑
x∈X

(1− px)

}
— Frechet’s lower bound,

p+X = min
x∈X

px

— Frechet’s upper bound.

Notice that only probabilistic distribution of the I-st sort satisfies to a ratio
of a probabilistic normalization. This results from the fact that probabilities

of events of the I-st sort P

(( ⋂
x∈X

x

)
∩
( ⋂

x∈Xc

xc

))
unlike to probability of

events of the II-nd sort P

( ⋂
x∈X

x

)
are not crossed and form a partition the

spaces of elementary outcomes. In other words, if the distribution of the I-st
sort is defined, a legitimate distribution of the II-nd sort by Möbius inversion
formulas will be always received. Vice versa is not always truly, for example, the
set from 2N numbers P(X), X ⊆ X from [0, 1] satisfying to Frechet’s bounds,
does not always define legitimate distribution of RSE. It demands additional
research in each case.

In work [1] the convenient tool of the analysis of structures of event depen-
dence – covariance – was offered. Covariance of two events x, y ∈ X is defined
as the variable

Kovxy = P (x ∩ y)−P(x)P(y),

which is equal zero when these events are independent; it is greater than zero
when they occur together more frequently (are statistically attracted), and it is
less than zero when they occur together more rarely (are statistically repelled)
than in independent situations. Covariance of events serves as a measure of an
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additive deviation of events from an independent situation. For a set of events
X ⊆ X ary covariance is determined by a formula [1]:

KovX = P

( ⋂
x∈X

)
−

∏
x∈X

P(x), X ⊆ X. (2)

1.2 Associative Functions

Classes of associative functions [4], in particular, triangular norms [5], [6], [7]
and copulas [8], [9] are widely used in contemporary theories of uncertainty.

In this paper the following definition of associative functions is used.

Definition 3. Associative function in the theory of RSE

AF : [0, 1]2 → [0, 1]

is defined as a two-place function satisfying to the following properties:

A1. Boundary conditions

AF(a, 0) = AF(0, a) = 0,

AF(a, 1) = AF(1, a) = a,
(3)

a ∈ [0, 1].

A2. Monotonicity

AF(a1, b1) ≤ AF(a2, b2), (4)

when a1 ≤ a2, b1 ≤ b2.

A3. Commutativity, i.e. for all a, b ∈ [0, 1]

AF(a, b) = AF(b, a).

A4. Associativity, i.e. for all a, b, c ∈ [0, 1]

AF(AF(a, b), c) = AF(a,AF(b, c)). (5)

A5. condition of Lipschitz’s continuity

AF(c, b)− AF(a, b) ≤ c− a, a ≤ c, a, b, c ∈ [0, 1]. (6)

Note that the properties A1-A4 corresponds to the definition t-norm [6]. Thus,
under the associative function it is understood as a continuous t-norm satisfying
the Lipschitz’s condition or, equivalently, associative, commutative copula[4], [8].
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2 Recurrent Approach of Constructing of Probabilistic
Distributions of Random Sets of Events by Associative
Functions

Calculation methods of copulas and triangular norms [4], [6], [7], [8] are applica-
ble to probabilistic distributions of RSE. It is offered to consider probabilities of
events (their number coincides with a power of a basic set) as arguments of asso-
ciative function. Properties of associative function allow to receive probabilistic
distributions with the set structure of dependence. Let proceed to describe the
method.

Input:

– set of events X, |X| = N ;
– N probabilities of events px, x ∈ X;
– associative function of AFα(a, b), where α is vector of parameters of function.

Output: probabilistic distribution of the II-nd sort {pX , X ⊆ X}, of a set of
events X.

Main Idea: probabilities of the intersection of sets of events pX are defined by
a recurrence relation at known probabilities of events px = P(x), x ∈ X

pxy = P
(
x
⋂

y
)
= AF (px, py) ,

pxyz = P
(
x
⋂

y
⋂

z
)
= AF (px,AF(py, pz)) = AF

(
px,P

(
y
⋂

z
))

,

pX = P

( ⋂
x∈X

x

)
= AF

⎛⎝px,P

⎛⎝ ⋂
y∈X\{x}

y

⎞⎠⎞⎠ , X ⊆ X.

The offered recurrent approach allows to define a RSE through probabilistic
distribution of the II-nd sort. Probabilities of events and a type of associative
function act as input parameters. In works [4], [5], [6], [8] it is shown that asso-
ciative function satisfies to Frechet’s bounds. Thus, this method allows to receive
(2N − N − 1) probabilities of the II-nd sort which satisfy to Frechet’s bounds
and which do not suffice to a totality of probabilities of the II-nd sort. However,
these distributions can turn out illegitimate. Therefore, for each family of as-
sociative functions it is necessary to define sufficient conditions of legitimacy of
probabilistic distribution.

2.1 Families of Associative Random Sets of Events

Let X be a set of the chosen events and let probabilities of events px = P(x) be
fixed. A general view of probabilities of the II-nd sort pX is received by the recur-
rent method and sufficient conditions of legitimacy of probabilistic distribution
of the random set determined by the following functions AF are found:
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– AF(a, b) = a · b;
– AF(a, b) = min{a, b};
– AF(a, b) = max{a+ b− 1, 0};
– AF(a, b) =

ab

a+ b − ab
.

Notice that the first three functions define basic structures of dependences [2],
[3] RSE, namely independently-pointwise, embedded and least intersecting sets
of events.

Further, results of work of a recurrent approach in the form of theorems will
be formulated for the listed above associative functions.

Theorem 1. Associative function AF(a, b) = a · b defines an associative RSE
with a legitimate probabilistic distribution of the II-nd sort

pX =
∏
x∈X

px, X ⊆ X.

An associative random set of events with the function of the type AF(a, b) = a · b
is an independently-pointwise RSE with a probabilistic distribution of the I-st
sort

p(X) = P(K = X) =
∏
x∈X

P(x)
∏

x∈Xc

P(xc), X ∈ 2X.

Theorem 2. Associative function AF = min{a, b} defines an associative RSE
with a legitimate probabilistic distribution of the II-nd sort

pX = min
x∈X

px.

An associative RSE with the function of the type AF = min{a, b} is random set
of embedded events2.

Theorem 3. Associative function AF(a, b) = max{a+ b− 1, 0} defines

1. a random set with nonintersecting structure of dependency with a legitimate
probabilistic distribution if the probabilities of the events px = P(x) > 0,
x ∈ X satisfy the inequality ∑

x∈X

px ≤ 1;

2. a RSE with a legitimate probabilistic distribution if the probabilities of the
events px = P(x) > 0, x ∈ X satisfy the inequalities

|X| − 1 ≤
∑
x∈X

px ≤ |X|.

2 If every two events from X are embedded, then X is called as a set embedded events
[1], or the set of random events with embedded structure [1].
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Theorem 4. Let the probabilities of events px = P(x) > 0, x ∈ X be given.

Then associative function AF(a, b) =
ab

a+ b− ab
defines an associative RSE

with a legitimate probabilistic distribution of the II-nd sort:

pX =

∏
x∈X

px

∑
Y⊆C

|X|−1
X

[ ∏
x∈Y

px

]
− (|X | − 1) · ∏

x∈X

px

, |X | > 1, X ∈ X,

where C
|X|−1
X = {Y : Y ⊆ X, |Y | = |X | − 1}.

Theorem 5. For associative RSE which is defined by the function

AF(a, b) =
ab

a+ b − ab
,

all ary covariance KovX are non-negative and have the form

KovX =
∏
x∈X

px ·

⎡⎢⎢⎢⎢⎣ 1∑
Y⊆C

|X|−1
X

[ ∏
x∈Y

px

]
− (|X | − 1) · ∏

x∈X

px

− 1

⎤⎥⎥⎥⎥⎦ ,

for all X ⊆ X, |X | > 1.

In these theorems the families of associative RSE were considered which prob-
abilistic distribution of the II-nd sort is completely defined by probabilities of
events and a type of associative functions.

2.2 Associative RSE of Frank and Ali-Mikhail-Haq

In the theory of associative functions [4], [6] an one-parameter function has been
well researched and studied. Further, in the paper let consider the one-parameter
family of Frank and the one-parameter family of Ali-Mikhail-Haq.

Family of Ali-Mikhail-Haq. In the paper the family of Ali-Mikhail-Haq is
considered and the general formula of probability of the II-nd sort is received.
Proven following theorem allows to obtain always legitimate probabilistic dis-
tributions of RSE by narrowing the area of constraints on the values of the
parameter α.

Theorem 6. Let the probability of events px = P(x), x ∈ X satisfy the inequal-
ities 0 < px < 1. Then associative function

AFα(a, b) =
ab

1− α(1 − a)(1− b)
, α ∈ [0, 1]
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defines family of associative random sets of Ali-Mikhail-Haq with probabilistic
distribution of the II-nd sort for all X ⊆ X, |X | > 1

pX =

∏
x∈X

px

(1− α)|X|−1 +
|X|−1∑
k=1

αk ·
[ ∑
Y⊆Ck

X

[
(−1)k−|Y | · δk(Y ) · ∏

x∈Y

px

]
− ∏

x∈X

px

] ,

where Ck
X = {Y : Y ⊆ X, |Y | = k},

δk(Y ) =

{
1, k = 1, k = |X | − 1;
k − |Y |+ 1, 1 < k < |X | − 1.

Consequence. For associative distribution of Ali-Mikhail-Haq

– for α = 1 obtain a random set defined associative function

AF(a, b) =
ab

a+ b− ab
;

– for α = 0 obtain an independently-pointwise random set which is determined
by the associative function

AF(a, b) = a · b.

For a family of Ali-Mikhail-Haq α ∈ [0, 1], respectively, the covariance is
always positive. Thus, the distribution of Ali-Mikhail-Haq allows to model events
which are statistically attracted.

Family of Frank. In 1979 was introduced in [10] the one-parameter family of
functions of Frank that are associative.

Frank(x1, ..., xn, α) = − 1

α
ln

(
1 +

(e−x1·α − 1) · ... · (e−xn·α − 1)

(e−α − 1)n−1

)
,

(x1, · · · , xn) ∈ [0, 1]n, α ∈ (−∞,+∞) \ {0}.
In this paper it is proposed to introduce an associative family of Frank of

random sets of events. Theorem about the form of probabilistic distributions of
the I-st and II-nd sorts for the family of Frank has been formulated and proved.

Theorem 7. Let the probability of events is px = P(x) > 0, x ∈ X, then the
associative function

AFα(a, b) = Frank(a, b, α) = − 1

α
ln

(
1 +

(e−α·a − 1)(e−α·b − 1)

(e−α − 1)

)
,

where α ∈ (−∞;∞) \ {0}, defines an associative random set of Frank
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– with the probabilistic distribution of the II-nd sort:

pX = − 1

α
ln

⎛⎝1 +

∏
x∈X

(e−αpx − 1)

(e−α − 1)|X|−1

⎞⎠ , X ⊆ X,

– with the probabilistic distribution of the I-st sort:

p(X) = ln
∏
Y⊇X

⎛⎝1 +

∏
x∈Y

(e−αpx − 1)

(e−α − 1)|Y |−1

⎞⎠
(−1)|Y |−|X|+1

α

.

Associative random set of Frank will have a legitimate probability distribution,
if all probabilities px, x ∈ X and parameter α �= 0 satisfy the following system
from 2|X| inequalities

1 ≤
∏

Y ⊇X

⎛⎝1 +

∏
x∈Y

(e−αpx − 1)

(e−α − 1)|Y |−1

⎞⎠
(−1)|Y |−|X|+1

α

≤ e, X ⊆ X.

Theorem 8. For an associative random set of Frank all ary covariance KovX ,
X ⊆ X, |X | > 1, have the form

KovX = − 1

α
ln

⎛⎝⎛⎝1 +

∏
x∈X

(e−α·px − 1)

(e−α − 1)|X|−1

⎞⎠ · eα ∏
x∈X

px

⎞⎠ , X ⊆ X.

The sign of the parameter α ∈ (− ∞ ; + ∞) \ {0} determines the sign of
covariance.

3 Conclusion

One of the most important, complex and significant tasks for science in general
and for specific areas of application of probability, such as economics and statis-
tics, is to develop methods for determination, study and statistical evaluation of
the dependency structure of complex distributions of large dimension.

Distribution of a RSE is a convenient mathematical tool to describe all vari-
ants of interaction between elements. It should be noted that probabilistic dis-
tribution of a RSE is defined by 2|X| a set of parameters.

According to statistical data only probabilities of monoplet of events px =
P(x ∈ K), x ∈ X (|X| parameters), as a rule, are available to us in practice. In
the paper the new approach of modeling of probabilistic distributions of a RSE
by means of the device of associative functions is offered. This approach allows
to reduce the dimensionality of the problem from 2|X| to |X| parameters.

In work two new families of random sets of events Frank and Ali-Mikhail-Haq
are entered by means of the device of associative functions. For these families
the following theorems are proved:
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– about a probabilistic distribution of the RSE of II-nd sort;
– about the form of the ary covariances;
– about the sufficient condition for the legitimacy of a probabilistic distribution

of II-nd sort.

The offered method does not apply for universality, however, it allows to
obtain input data in the form of probabilistic distributions of a RSE and their
characteristics for a number of models of the statistical systems which possess a
complex structure of dependences and interrelations.
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Abstract. A method of reducing of a multi-dimensional model of the
complex non-linear heat exchange system (HES) with delay based on
structural changes in equilibrium points and approximation of delay func-
tion by the end of inertial units is presented. Simulation results confirm-
ing the adequacy of the process of reduced and original models, as well
as their compliance with the real data of the experimental control object
are demonstrated.

Keywords: complex heat-exchange system, equilibrium state, struc-
tural transformation, reduction of multidimensional models.

1 Introduction

In modern systems of intelligent management of complex equipment there are
often used optimal control algorithms providing real-time management of pro-
duction processes. One of the well-approved approaches for the synthesis of such
algorithms is the theory of linear systems, which assumes a description of non-
linear processes and objects in terms of linearized models [1]. The main obstacle
to the use of these methods is a significant degree of differential equations de-
scribing the behavior of a complex multi-dimensional control object with the
necessary range of accuracy. The most preferred variant of priori mathematical
models allowing to record the control laws in an analytical form, and submit the
results of the analysis of dynamic processes in a convenient form, is second order
differential equations. For example, in the relay control systems in sliding mode
control methods for nonlinear second-order systems are well-developed [2], [3].

There are several approaches to reduction of dimensional models of high di-
mension [4]: the use of linearized matrix properties when converting to block
matrix according to division into independent blocks ; the use of the coefficients
properties of low interconnection; aggregating the matrix elements; the models
selection according to the frequency hierarchy of submatrices; separation in time
or frequency.

1.1 Problem Formulation

We will consider the problem of reduction of non-linear mathematical model of
a distributed heat-exchange system with maximum accounting its features. We

A. Dudin et al. (Eds.): ITMM 2014, CCIS 487, pp. 387–396, 2014.
c© Springer International Publishing Switzerland 2014
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assume interval stationary of HES element parameters and determinate nature
of interrelated thermal processes. It is appropriate to present the approximation
procedure in several stages [4]: decomposition of the original model [5]; formation
of several reduced models [6]; structural transformation in equilibrium state
points and leading to a simpler form; checking the approximate model for the
adequacy of the complete model or the real process of high order.

2 The Original Non-linear Model in the Space of State
Variables

As an illustrative example here is the heat exchange system (Fig. 1), charac-
terized by significant non-linear properties [7]. Notation: 1 heat exchanger, 2
circulating pumps, 3 control valve with AC motor 4, 5 temperature sensors and
a microprocessor controller (MC).

Fig. 1. The technological scheme structure of the heat exchange system

Salient features of HES with high-performance heat exchangers are not only
the non-linearity of the three-point relay control, but also the delay in the for-
mation channels of control actions and the flow of heat transfer in a distributed
pipe network of the secondary circuit. In addition, significant disturbance on
the characteristics and parameters of the heat exchange system is made by a
periodic flow of cold water into the secondary loop of the HES to compensate
for the irreplaceable HES discharge.

Arbitrary arrangement of risers-of couplers of the HES secondary circuit and
their different distances from the heat exchanger causes a variable delay which
makes a significant impact on the dynamics of thermal processes in the primary
circuit.

Under certain admissions for thermal processes taking place in contours of
HES, the original non-linear model of the system in the space of state variables
can be represented by the following differential equations:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dKmix(t)
dt = (kmx −Kmix(t)) · kh

Tvlv
· u(t)

dT◦
to1(t)
dt =

(T◦
1 −T◦

bk1(t))·Kmix(t)+T◦
bk1(t)−T◦

to1(t)
Tmix

dT◦
to2(t)
dt =

kexc·T◦
to1(t)+(1−kexc)·T◦

bk2(t)−T◦
to2(t)

Texc
dT◦

bk1(t)
dt =

kexc·T◦
bk2(t)+(1−kexc)·T◦

to1(t)−T◦
bk1(t)

Texc
dT◦

to3(t)
dt =

T◦
to2(t)−T◦

to3(t)
Tcp

∀i = 1..n→
{
∀j = 1..m→

{
dT◦

bkz(i,j)(t)

dt =
T◦
bkz(i,j−1)(t)−T◦

bkz(i,j)(t)

τz(i)/m

}}
dT◦

bk2(t)
dt =

kcw ·T◦
cw+(1−kcw)·T◦

bk3(t)−T◦
bk2(t)

Tcw

(1)

∀i = 1..n→ T ◦
bkz(i,0)(t) = (1− kcl) · T ◦

to3(t) + kcl · T ◦
rm

T ◦
bk3(t) =

n∑
i=1

(
kzi · T ◦

bkz(i,m)(t)
)
,

n∑
i=1

kzi = 1

where Kmix(t) - the coefficient of coolant mixing in the external circuit to the
mixing unit; kmx and kh - coefficient characterizing the nonlinear properties of
the mixing process; Tvlv - the time constant of the electric control valve; u(t)
- electric valve control action that takes one of discrete values u ∈ (−1, 0,+1);
T ◦
to1 - the coolant temperature at the inlet HES in the external circuit; T ◦

1 - the
coolant temperature coming out of the backbone network; Tmix, Texc, Tcp, Tcw -
respectively, constants mixing time of the valve in the heat exchanger, in the
intermediate storage device, in the input node of cold water; T ◦

bk1 - the coolant
temperature at the outlet of the external circuit of HES; T ◦

to2 - the coolant
temperature at the outlet of the internal circuit of HES; T ◦

bk2 - the coolant tem-
perature at the inlet of the internal circuit of HES; kexc - the coefficient of heat
exchange efficiency; T ◦

to3 - the coolant temperature at the outlet of the interme-
diate storage, which is located in the internal circuit; T ◦

bk3 - return temperature
before unit mixing with cold water; τz(i) - the time delay of the transport carrier
in the secondary circuit (i riser-branch); T ◦

bkz(i,j) - the equivalent temperature
in inertial units to be used for the approximation of the transport delay; kcw -
the coefficient of cold water influence on the coolant in the internal circuit; kcl
- the coefficient of the coolant cooling in the internal circuit; n - the number
of secondary circuits (riser-branch) in HES; m - the number of inertial units
approximating transport delay.

Obviously, the order of the system of differential equations (1) will be de-
termined by (6 + n ·m). For example, for a system with two risers n = 2 and
branches of inertial delay line units equal to m = 5 the number of equations of
the system will be 16. The coefficient kzi means relative proportion of the i-th
heat flow throughout the entire volume of the coolant flow q2, and characterizes
the distribution of the i-th flow on risers-branches.
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3 The Reduction of the Original Non-linear
Multidimensional Model

The procedure of the original nonlinear model HES converting assumes finding
the equilibrium points, which can be calculated by solving the system (1) with
priori known parameters of the object and control u(t) = 0 .

As a result of this calculation with the required accuracy we can find steady
values of the following variables state of the heat exchange system:[

K0
mix, T

◦0
to1, T

◦0
to2, T

◦0
bk1, T

◦0
to3, ∀i = 1..n→

{
∀j = 1..m→

{
T ◦0
bkz(i,j)

}}
, T ◦0

bk3

]
(2)

where the superscript “0” denotes the state variables belong to the fields of
steady state. Further, using the calculated values (2) we write equations that
reflect dynamic processes in a neighborhood of steady state:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(t) = Kmix(t)−K0
mix

x2(t) = T ◦
to1(t)− T ◦0

to1

x3(t) = T ◦
to2(t)− T ◦0

to2

x4(t) = T ◦
bk1(t)− T ◦0

bk1

x5(t) = T ◦
to3(t)− T ◦0

to3

∀i = 1..n→
{
∀j = 1..m→

{
x5+(i−1)·m+j(t) = T ◦

bkz(i,j)(t)− T ◦0
bkz(i,j)

}}
x6+n·m(t) = T ◦

bk3(t)− T ◦0
bk3

(3)

Defining the x(t) = [x1(t), x2(t), .., x6+n·m]
T
, the linearized model can be written

in a vector-matrix form:

ẋ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0 0 0 · 0 0
a2,1 a2,2 0 a2,4 0 0 · 0 0
0 a3,2 a3,3 0 0 0 · 0 a3,6+nm

0 a4,2 0 a4,4 0 0 · 0 a4,6+nm

0 0 a5,3 0 a5,5 0 · 0 0
0 0 0 0 Ain1 A1 · 0 0
· · · · · · · · ·
0 0 0 0 Ainn 0 · An 0
0 0 0 0 0 Aout1 · Aoutn a6+nm,6+nm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
· x+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b1
0
0
0
0
0
·
0
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
· u (4)

where the matrices A1, A2, .., An represent an approximation of the transport
delay of the coolant in riser-branches by inertial units:

∀i = 1..n→ Ai =

∣∣∣∣∣∣
ai1,1 0 · 0
ai2,1 ai2,2 · 0
0 0 · aim,m

∣∣∣∣∣∣ ;
where ∀j = 1..m → aij,j = −m/τzi, aij,j−1 = m/τzi the input vectors-columns
AT

ini of dimension m are calculated as follows:

∀i = 1..n→ AT
ini = [(1 − kcl) ·m/τzi, 0, .., 0]
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the output vectors-lines Aouti of the dimension m are defined by the expression:

∀i = 1..n→ Aouti = [0, .., 0, (1− kcw) · kci/Tcw, ]

where
n∑

i=1

kci = 1; the coefficient b1 =
(
kmx −K0

mix

) · kh

Tvlv
.

Let us consider in more details the peculiarities of a heat exchange system
as a control object. As it is known from the description of the object its non-
linear properties are reflected in the coefficients a2,1, a2,4, b1. The remaining ele-
ments of the matrix HES parameters are stationary coefficients, the components
A1, A2, .., An are determined by transport delay with different values within cer-
tain limits.

The traditional problem of regulating in heat exchange systems is to stabilize
the temperature T ◦

to3(t) of the coolant at the outlet of the intermediate tank,
which in terms of the taken denotation corresponds to a state variable x5(t).
Further, assuming that the a2,1, a2,4, b1 coefficients of the linearized model are
stationary points in the equilibrium state, the transfer functions can be used
for structural analysis of the object mathematical model. In addition, note the
assumption that is made on the analysis of the functioning of the control object.
This assumption is as following: the minimum time of transport delay in heat
exchange systems is next larger than the mixing time constant, therefore the
impact of the return coolant in the HES is considered as an external disturbance
on the closed loop control. In the absence of the influence of cold water on the
coolant in the inner-loop heating systems, i.e. kcw = 0, this disturbance will be
stationary and it can be used in the mathematical model (4) in the form of a
fixed coefficient.

In case of significant effect of cold water on the heat exchange system, which
leads to the inequality coefficient kcw > 0, the disturbance takes the form of
time-dependent function, which in the mathematical model (4) is appropriate to
distinguish as a separate term. Denoting the disturbance as a symbol v(t), we
can reduce the dimension of the mathematical model to the fifth order:

ẋ =

∣∣∣∣∣∣∣∣∣∣
0 0 0 0 0

a2,1 a2,2 0 a2,4 0
0 a3,2 a3,3 0 0
0 a4,2 0 a4,4 0
0 0 a5,3 0 a5,5

∣∣∣∣∣∣∣∣∣∣
· x+

∣∣∣∣∣∣∣∣∣∣
b1
0
0
0
0

∣∣∣∣∣∣∣∣∣∣
· u+

∣∣∣∣∣∣∣∣
0
q3
q4
0

∣∣∣∣∣∣∣∣ · v(t) (5)

where q3 = a3,6+nm, q4 = a4,6+nm

Next, using the Laplace transformation in the point of the equilibrium state,
we will write the linearized model:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

X1(s) =
b1·U
s

X2(s) =
a2,1·X1+a2,4·X4

s−a2,2

X3(s) =
a3,2·X2+q3·V3

s−a3,3

X4(s) =
a4,2·X2+q4·V4

s−a4,4

X5(s) =
a5,3·X3

s−a5,5

(6)
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With the notation of the functional blocks

W1(s) =
−a2,1·b1·a−1

2,2

s ,W2(s) =
−a3,2·a−1

3,3

1−a−1
2,2·s

,W3(s) =
1

1−a−1
3,3·s

,

W4(s) =
−a2,4·a−1

4,4

1−a−1
4,4·s

,W5(s) =
−a5,3·a−1

5,5

1−a−1
5,5·s

,

Kv3 = − q3
a3,3

,Kv4 = − q4
a4,4

,K2,4 =
a4,2·a3,3

a3,2·a4,4
;

(7)

the mathematical model (6) can be represented as a block diagram (Fig. 2):
After conversion (dotted line marked shifts directions of adders) we obtain the

Fig. 2. The block diagram of the linearized model (7)

system shown in Figure 3.

Fig. 3. The converted block diagram of the linearized model (7)

Under the conditions of HES functioning let us consider some assumptions
that allow quite adequately to convert a block diagram (Fig. 3) in order to
get an equivalent transfer function. Thus the equivalent element with transfer
function W2,4(s) is assumed to be stable, because the static open-loop transfer
coefficient is less than one:
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W2(0) · k2,4 ·W4(0) =
a4,2 · a2,4
a4,4 · a2,2 = (1 −K0

mix) · (1− kexc) < 0.2 (8)

where the coefficient kexc = 0.9 (based on the practical experience of heat ex-
change systems maintenance). In addition, using Vieta theorem, we can write
the following approximation:

(1− T2 · s)
(1− T2 · s) · (1 − T1 · s)− 0.2

≈ (1− 0.2)−1

(1− T1 · s) (9)

This assumption is transformed to the ratio of the roots of the characteristic
equation, which allows to write the conditions:

Tmin < T1 < Tmax,
Tmax

Tmin
≈

(
1 + 2

√
1− 4 · T1 · T2 · 0.8

(T1 + T2)2

)
< 2 (10)

Execution of the inequalities (10) presents the measure of inaccuracy of log-
magnitude of the open loop not more than 6 dB.

Thus, the transfer function unit W2,4 with a positive feedback, with the as-
sumptions noted above, can be written as:

W2,4(s) =
(−a3,2/a3,3)·(1−(a4,2·a2,4)/(a4,4·a2,2)

−1)

1+(−a2,2·ktt(K0
mix)·s) ,

∀K0
mix ∈ (0..1) ∨ (kexc > 0.9)→ ktt(K

0
mix) ∈

(
(
√
2)−1..

√
2
) (11)

where ktt(K
0
mix) - the function that characterizes the change in the time constant

of the object.
Next, the object is divided into the following parts: the unit of control sig-

nal delay Wz(s), the integrating part which is a unit of the equivalent transfer
function Wi(s) of the electric control valve, the inertial part which is an ape-
riodic link Wo(s) of the first-order transfer function of the thermal object, the
transfer function Wv(s) of the disturbance signal V (s). As a result of transfor-
mations, we obtain the final block diagram (Fig. 4), representing the linearized
model graphically (6). The corresponding transfer functions are defined by the
following equations:

Wz(s) ·Wi(s) ·Wo(s) = W1(s) ·W2,4(s) ·W3(s) ·W5(s),
Wv(s) = (Kv3 +Kv4 ·W4(s) ·W2,4(s)) ·W3(s) ·W5(s)

(12)

Fig. 4. The final block diagram
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The blocks are distributed in such a way that the inertial link with a maximum
time constant to be present in the unit Wo(s), the other two units are replaced
by the delay link (Fig. 3).

As a result of the transformation we obtain more convenient for the synthesis
of closed-loop control transfer function of the electric control valve, including
the main parameters of the heat exchanger system:

Wi(s) =

(
b1 · a3,2 · a2,1 · a5,3
a3,3 · a2,2 · a5,5

)
·
(
1− a4,2 · a2,4

a4,4 · a2,2

)−1

· s (13)

After the substitution of physical quantities, which are the parameters of HES,
this expression takes on the following form:

Wi(s) =
kh · kexc · (kmx −K0

mix) · (T ◦
1 − T ◦0

bk1(kcw))

(1− (1 − kexc) · (1−K0
mix)) · (Tvlv · s) (14)

In the research of complex objects with delay a very important requirement is
a preliminary assessment of the main parameters that have a significant impact
on the stability of the closed-loop control system. A valid transfer coefficient and
time constants in the inner loop heat exchange systems that define the retarded
reaction of control to the disturbance can be such parameters for the object in
question.

For the specific HES performance with known interval values of the con-
stituents parameters, in particular, the transfer coefficient kg of the control valve,
the coefficient kcw of cold water influence on the coolant in the internal contour
of the heat exchange system we can rather accurately estimate the range of
variation of the static coefficient of the actuator transfer function Wi(s).

The determining factor in assessing of the delay in the HES control channel
is the ratio of the time constant Tcp of the fluid mixing in the storage container
(if it exists in the HES) and time constant Tmix of the fluid mixing at the valve
of the system. It is clear that in the absence of the storage container the delay
duration in the control channel will be determined only by the time constant
Tmix. Let us write the transfer functions Wo(s) and Wz(s) the coefficients of
which are largely determined by the ratio of the time constants data:

Tcp > Tmix

⎧⎪⎨⎪⎩
Wo(s) =

1
1−a−1

5,5·s
= 1

1+Texc·s ,

Wz(s) = exp((ktt(K
0
mix) · a−1

2,2 + a−1
3,3) · s)

= exp((ktt(K
0
mix) · Tmix + Texc) · s)

Tcp < Tmix

{
Wo(s) =

1
1−ktt(K0

mix)·a−1
2,2·s

= 1
1+ktt(K0

mix)·Tmix·s ,

Wz(s) = exp((a−1
5,5 + a−1

3,3) · s) = exp((Tcp + Texc) · s)

(15)

To solve the tasks of HES research we can use the following fact: in the inequality
Tcp > Tmix there is nonstationary delay time for control, which varies not more
than two fold and corresponds to (ktt(K

0
mix) · Tmix + Texc). Similarly, when

performing inequality Tcp < Tmix nonstationary time constant of the object
(ktt(K

0
mix) · Tmix) also changes not more than two fold.
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4 The Nonlinear HES Model of the Second Order with
Delay in Controlling

Using the equations (15) without disturbance, with the notation y1(t) = x5(t),
y2(t) - output unit with the transfer function Wi(s)

kg(s) =
kh·kexc·(kmx−K0

mix)·(T◦
1 −T◦0

bk1(kcw))

(1−(1−kexc)·(1−K0
mix))·Tvlv

Tcp > Tmix

{
To = Tcp, τz = (ktt(K

0
mix) · Tmix + Texc)

Tcp < Tmix

{
To = ktt(K

0
mix) · Tmix, τz = (Tcp + Texc)

(16)

we can write the system of differential equations of the second order{
ẏ1(t) =

y2(t)−y1(t)
To(t,y)

,

ẏ2(t) = kg(t, y) · u(t− τz)
(17)

The canonical representation of the system of differential equations in Frobe-
nius form after changing variables z1(t) = y1(t), z2(t) = ẏ1(t) becomes:{

ż1(t) = z2(t),
ż2(t) = (kg(t, z)/To(t, z)) · u(t− τz)− T−1

o (t, z) · z2(t) (18)

4.1 The Results of the Simulation

The adequacy of the resulting model (18) is confirmed by comparing the s-
shaped curves of the speed-up after the numerical simulation of the transition
process which conforms to conditions of the experiment [8]. The experiment was
performed in the same conditions for each model, the parameters of the model
(18) were calculated by the formula (16) on the base of the parameters of the
initial model (1). The simulation was performed in the C language; the source
code is available on the web resource. [9]

Fig. (5a) illustrates transients: full red line T ◦
to3 for the model (1); green dotted

line y1(t) = z1(t) for the model (18), and curve T ◦
sto3 from the sensor output of

the current heat exchange system - the blue dotted line. Some difference between

Fig. 5. Comparison of the modeling and experiment outcomes
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the models at the beginning of the transition process can be explained by the
fact that in the system of equations (18) several inertial links are replaced by a
single delay element.

Fig. 5b shows the laws T ◦
to3 and y1(t) = z1(t) for both models. They corre-

spond to the same conditions and values of the parameters in the control valve
stem position h = 0.7. The results of modeling and experimental research imply
a high degree of adequacy of the reduced model to the real object.

Conclusion

A solution to the problem of approximation of a complex nonlinear mathematical
model of heat transfer delay system to a nonlinear system of differential equations
of the second order allows us to use modern methods of relay control. For the di-
mensional model reduction we used the method of decomposition of the linearized
model at the steady state point, where the basic coefficients are given in a general
form which allows us to get the non-linear law of the reduced model coefficients
at an arbitrary point of equilibrium. The results of numerical simulations confirm
the adequacy of the reduced model and real heat exchange system.
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Abstract. The paper deals with the new semiparametric regression es-
timates for the different level of a priori data. The estimates are based
on the weighted maximum likelihood method. The investigations show
the estimates are effective for symmetrical and asymmetrical outliers and
adaptive to outliers and distribution type.

Keywords: regression, semiparametric, robust, adaptive.

1 Problem Formulation

Let us consider a classical problem of regression of the form

y = r(x,Θ) + ε, (1)

whereX is a randomvariable with distribution function F1 and density f1; r(x,Θ)
is the regression function defined to within the parameter Θ = (θ1, . . . , θk); ε is a
random variable independent of X with distribution function F2 and symmetric
density f2. Let Z = (X,Y ) be a random variable with distribution function G
and density g. Consider that G is unknown and belongs to a certain class Γ of
supermodels. It is required to estimate the vector of the parameters Θ on the
sample (xi, yi), i = 1 . . .N .

As is well known, the least squares method (LSM), and the maximum likeli-
hood method (MLM) are conventionally used to solve this problem. In case of
presence of outliers along the x and y axes, various method of truncation and fit-
ting of robust regression algorithms [1]-[5] are used. Unfortunately, many robust
regression estimates, being robust on supermodels, can have very low efficiency
in different concrete situations G. As is well known, the robustness and efficiency
are inconsistent [4]. In this regard, various adaptive estimates are applied. One
of the approaches that allows efficient adaptive estimates to be obtained is the
weighed maximum likelihood method (WMLM) [6].

2 Weighted Maximum Likelihood Method

Estimates of the coefficients of the regression function by the weighted maximum
likelihood method for problem (1) are found from estimation equations of the
form

A. Dudin et al. (Eds.): ITMM 2014, CCIS 487, pp. 397–405, 2014.
c© Springer International Publishing Switzerland 2014
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N∑
i=1

ψj(xi, yi) = 0, j = 1, . . . , k, (2)

ψj(x, y) =
∂

∂θj
logf2(ε)f

l1
1 (x)f l2

2 (ε)

ε = y − r(x,ΘN )

where Ψ = (ψ1, . . . , ψk) is the estimation vector function, l = (l1, l2) is the vector
of radical parameters defining the robustness and efficiency of the estimates It is
easy to note that at l1 = l2 = 0, we obtain maximum likelihood estimate (MLE),
at l1 = l2 = 0.5, we obtain the radical estimates (RE) [4], and at l1 = l2 = 1,
we obtain estimates with maximum stability [4]. The radical parameter l1 is
responsible for the degree of soft truncation in x and the radical parameter l2
is responsible for the degree of soft truncation in y. It can be shown [6] that
for the generalized Tukey error model, the equation of type (2) corresponds to
the weighted maximum likelihood equations. By minimization of the integral
quadratic regression error with respect to the vector of radical parameters, we
derive the regression estimate adaptive with respect to outliers both along the
and y axes. Effective regression algorithms are largely determined by a priori
data on the form of distributions F1 and F2. For adaptation to a given uncer-
tainty type, nonparametric methods based on Rosenblatt-Parzen estimates are
used in the present work.

Bellow we consider efficient regression estimates for the following semipara-
metric models:

1. The form of distribution F1(x, θ1) is known to within the vector θ1 of the
parameters to be estimated (parametric level), and the form of distribution
F2(ε) is unknown (nonparametric level). As an estimate of the distribution
density f2, we take advantage of the symmetrized Rosenblatt-Parzen esti-
mate of the form

f2N (ε) =
1

2Nh2N

N∑
i=1

(
K

(
ε− εi
h2N

)
+K

(
ε+ εi
h2N

))
, (3)

where K(x) is the kernel function, h2N is the bandwidth parameter, N is
the sample size. According to Eqs. (2) and (3), the semiparametric estimate
of regression coefficients is defined by the system of equations of the form

N∑
i=1

∂r(x,Θ)

∂θt

∣∣∣
Θ=ΘN

f l2−1
2N (εi)f

l1
1 (xi)

N∑
j=1

φ

(
εi + εj
h2N

)
K

(
εi + εj
h2N

)
= 0 (4)

εi = yi − r(xi, ΘN )

φ(x) =
1

K(x)

dK(x)

dx

As a result, we obtain the semiparametric regression estimate independent
of the from of distribution F2.
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2. The form of distribution F1(x) is unknown (nonparametric level), and the
form of distribution F2(ε, θ2) is known to within the vector θ2 of the param-
eters to be estimated (parametric level). As an estimate of density f1(x), we
take advantage of the classical Rosenblatt-Parzen estimate:

f1N (x) =
1

Nh1N
=

N∑
i=1

K1

(
x− xi

h1N

)
, (5)

where K1(x) is the kernel function, h1N is the bandwidth parameter. Sub-
stitution Eq. (5) into Eq. (2) we derive the system of equations of the form

N∑
i=1

∂

∂θj
logf2(εi)f

l1
1N (xi)f

l2
2 (εi),= 0, j = 1, . . . , k. (6)

Let us now derive estimates of the regression parameters for typical distri-
butions of residuals with different degree of tail stretching:

(a) Let the random variable ε obey the generalized normal distribution of
the fourth degree f2(ε); then estimation equations assume the following
form:

N∑
i=1

∂r(x,Θ)

∂θj

∣∣∣
Θ=ΘN

ε3i f
l1
1N(xi)f

l2
2 (εi),= 0, j = 1, . . . , k.

(b) Let the random variable ε be a random variable with normal distribution
f2(ε); then estimation equations assume the following form

N∑
i=1

∂r(x,Θ)

∂θj

∣∣∣
Θ=ΘN

εif
l1
1N (xi)f

l2
2 (εi),= 0, j = 1, . . . , k.

(c) Let ε obey the Laplace distribution f2(ε); then estimation equations
assume the following form

N∑
i=1

∂r(x,Θ)

∂θj

∣∣∣
Θ=ΘN

Sign(εi)f
l1
1N (xi)f

l2
2 (εi),= 0, j = 1, . . . , k.

(d) Let ε obey the Cauchy distribution f2(ε); then estimation equations
assume the following form

N∑
i=1

∂r(x,Θ)

∂θj

∣∣∣
Θ=ΘN

εif
l1
1N (xi)f

l2+1
2 (εi),= 0, j = 1, . . . , k.

3. The form of distributions F1 and F2 are unknown. As estimates of the dis-
tribution density we take advantage of the Rosenblatt-Parzen estimates de-
scribed by Eqs. (3) and (5). As a result, we derive semiparametric estimates
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of the regression parameters independent of distributions of random variable
X and ε of the form

N∑
i=1

∂r(x,Θ)

∂θt

∣∣∣
Θ=ΘN

f l2−1
2N (εi)f

l1
1N (xi)

N∑
j=1

φ

(
εi + εj
h2N

)
K

(
εi + εj
h2N

)
=0(7)

εi = yi − r(xi, ΘN )

φ(x) =
1

K(x)

dK(x)

dx

Equations (4), (6), and (7) describe algorithms of finding the semiparametric
estimates of the regression parameters for problem (1) with different levels of a
priori data on distributions.

Algorithms (4), (6), and (7) can be investigated theoretically based on a study
of properties of conditional functional [7]. This is an independent problem.

3 Modeling

The efficiency of adaptive semiparametric WMLM regression estimates (4) and
(7) was investigated on the class of symmetric distributions of residues consisting
of generalized normal distribution of the fourth degree, normal distribution,
Laplace distribution, and Cauchy distribution. The following outlier models were
used:

– Model of outliers asymmetric in y:

f2(ε) = (1− p)g2(ε) + pg2(ε− α);

– Model of outliers symmetric in y:

f2(ε) = (1 − p)g2(ε) + pg2(ε/λ);

– Model of outliers asymmetric in x:

f1(x) = (1 − p)g1(x) + pg1(x− b).

Semiparametric regression estimates (4) and (7) were compared with esti-
mates by the maximum likelihood estimates (MLE), the radical estimates (RE),
the estimates with maximum stability (EMS), the least squares estimates (LSE)
and the least modules estimates (LME).

The relative efficiency of estimation was defined as

ε =
V

V opt
,

where V is the integral variation of the estimate and Vopt is the minimum integral
variation of the estimate among considered estimates.
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To estimate the integral variance of the regression estimate and the radical
parameters, the naive bootstrap method [8] was used.

Investigations were performed for the linear model of the regression function

y = x+ 3.

Let us introduce following designations: SM is the supermodel; ASPE1 is the
adaptive semiparametric regression estimate (4); ASPE2 is the adaptive semi-
parametric regression estimate (7).

3.1 Generalized Normal Distributions of the Fourth Degree

The efficiency of the adaptive semiparametric regression estimates by WMLM
was evaluated for the following supermodels:

1. Pure sample:
f(x, ε) = N(x, 0, 1)GND4(ε, 0, 1.767). (8)

2. Outliers symmetric in y:

f(x, ε) = N(x, 0, 1)(0.9GND4(ε, 0, 1.767) + 0.1GND4(ε, 0, 5.391)). (9)

3. Outliers asymmetric in y:

f(x, ε) = N(x, 0, 1)(0.9GND4(ε, 0, 1.767) + 0.1GND4(ε, 8, 1.767)). (10)

4. Outliers asymmetric in x:

f(x, ε) = (0.9N(x, 0, 1) + 0.1N(x, 8, 1))GND4(ε, 0, 1.767). (11)

Table 1. Efficiency of estimates on distributions (8)-(11)

Estimates MLE LSE LME EMS RE ASPE1 ASPE2

SM (8) 1.000 0.645 0.339 0.556 0.690 0.741 0.741
SM (9) 0.264 0.679 0.535 0.691 0.809 1.000 1.000
SM (10) 0.005 0.036 0.188 0.493 0.654 1.000 1.000
SM (11) 0.045 0.029 0.034 0.755 0.954 1.000 0.770

3.2 Normal Distribution

The efficiency of adaptive semiparametric WMLM regression estimates was eval-
uated on the following supermodels:
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1. Pure sample:
f(x, ε) = N(x, 0, 1)N(ε, 0, 1). (12)

2. Outliers symmetric in y:

f(x, ε) = N(x, 0, 1)(0.9N(ε, 0, 1) + 0.1N(ε, 0, 3)). (13)

3. Outliers asymmetric in y:

f(x, ε) = N(x, 0, 1)(0.9N(ε, 0, 1) + 0.1N(ε, 8, 1)). (14)

4. Outliers asymmetric in x:

f(x, ε) = (0.9N(x, 0, 1) + 0.1N(x, 8, 1))N(ε, 0, 1). (15)

Table 2. Efficiency of estimates on distributions (12)-(15)

Estimates MLE LSE LME EMS RE ASPE1 ASPE2

SM (12) 1.000 1.000 0.700 0.369 0.647 0.983 0.983
SM (13) 0.730 0.730 0.701 0.437 0.753 1.000 1.000
SM (14) 0.015 0.015 0.143 0.352 0.629 1.000 1.000
SM (15) 0.014 0.014 0.014 0.317 0.644 1.000 0.867

3.3 Laplace Distribution

The efficiency of adaptive semiparametric WMLM regression estimates was eval-
uated on the following supermodels

1. Pure sample:
f(x, ε) = N(x, 0, 1)L(ε, 0, 0.7144). (16)

2. Outliers symmetric in y:

f(x, ε) = N(x, 0, 1)(0.9L(ε, 0, 0.7144)+ 0.1L(ε, 0, 2.1432)). (17)

3. Outliers asymmetric in y:

f(x, ε) = N(x, 0, 1)(0.9L(ε, 0, 0.7144)+ 0.1L(ε, 8, 0.7144)). (18)

4. Outliers asymmetric in x:

f(x, ε) = (0.9N(x, 0, 1) + 0.1N(x, 8, 1))L(ε, 0, 0.7144). (19)
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Table 3. Efficiency of estimates on distributions (16)-(19)

Estimates MLE LSE LME EMS RE ASPE1 ASPE2

SM (16) 1.000 0.680 1.000 0.732 0.907 0.893 0.893
SM (17) 1.000 0.600 1.000 0.707 0.916 0.837 0.837
SM (18) 0.322 0.012 0.322 0.166 0.362 1.000 1.000
SM (19) 0.011 0.009 0.011 0.628 1.000 0.928 0.879

3.4 Cauchy Distribution

The efficiency of adaptive semiparametric WMLM regression estimates was eval-
uated on the following supermodels:

1. Pure sample:
f(x, ε) = N(x, 0, 1)C(ε, 0, 0.2605). (20)

2. Outliers symmetric in y:

f(x, ε) = N(x, 0, 1)(0.9C(ε, 0, 0.2605)+ 0.1C(ε, 0, 7815)). (21)

3. Outliers asymmetric in y:

f(x, ε) = N(x, 0, 1)(0.9C(ε, 0, 0.2605)+ 0.1C(ε, 8, 0.2605)). (22)

4. Outliers asymmetric in x:

f(x, ε) = (0.9N(x, 0, 1) + 0.1N(x, 8, 1))C(ε, 0, 0.2605). (23)

Table 4. Efficiency of estimates on distributions (20)-(23)

Estimates MLE LSE LME EMS RE ASPE1 ASPE2

SM (20) 1.000 0.040 0.377 0.235 0.595 0.974 0.974
SM (21) 1.000 0.036 0.379 0.291 0.658 0.835 0.835
SM (22) 1.000 0.002 0.099 0.254 0.605 0.873 0.873
SM (23) 0.324 0.0001 0.001 0.115 0.414 1.000 0.939

3.5 Discussion of the Results of Modeling

Figures 1-4 show some results of implementation of the algorithms considered
above on an example of a linear regression function with outliers of different
types. The linear regression function of the form y = x+ 3 on supermodels (12)
- (15) was considered for p = 0.1, α = 8, λ = 3, b = 7, N = 30;X and ε obeyed
standard normal distribution). In Figs. 1- 4, we have used following designations:

1 is the least squares estimate;
2 is the least modules estimate;
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Fig. 1. Plot of regression estimates on
distribution (12)

Fig. 2. Plots of regression estimates on
distribution (13)

Fig. 3. Plots of regression estimates on
distribution (14)

Fig. 4. Plots of regression estimates on
distribution (15)

3 is the estimate with maximum stability;
4 is the adaptive parametrical estimate by WMLM [6];
5 is the adaptive semiparametric estimate (4).

Figure 1 shows that without outliers, all methods do not lead to biases of the
regression estimates. In Figs. 1-3, the LSE have significant biases of unknown
nature, and as demonstrated Tables (1)-(4), low efficiency. Figure 4 shows that
in the presence of outliers along the x axis, the LSM estimates are almost inoper-
ative, and the recommended robust EMS and LME estimates have considerable
biases and low efficiency (see Table 2). Regression estimates (4) proposed in this
work effectively cope with outliers along the and y axes.

Our analysis of Tables 1-4 allows us to conclude the following:

1. In the presence of outliers, the recommended robust EMS and LME estimates
have low efficiency practically on all distributions.

2. In the presence of outliers, the LSE and MLE estimates have low efficiency
on all distributions and are even inoperative on some distributions.
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3. Radical estimates corresponding to estimates at the Hellinger distance have
intermediate efficiency.

4. Results of modeling demonstrated that the WMLM estimates have highest
efficiency for different distribution and outlier types.

Conclusions

The regression problem has a long history, and methods of its solving (LSE and
LME) are traditional. Since the 70s of the XX century, considerable attention
has been paid to a search for robust (stable) regression algorithms [1]-[5]. In-
vestigations have demonstrated that these approaches provide robust (rough by
efficiency) algorithms. The approach based on WMLM allows new effective al-
gorithms (4), (6), and (7) of solving the classical regression problem based on a
priori data on all elements of the mathematical model of problem formulation
to be considered. The conjunction of all a priori data sets yields a final efficient
algorithm for finding regressions.
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Abstract. Relevant problem of modern oil transportation is being
solved by automatic control systems. In the article an algorithm of pres-
sure control is described. Application of bypass pipeline with valve can
improve quality of regulation system. Simulation of research is given in
the article.
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1 Introduction

Main pipeline pumps are difficult technical constructions and play crucial part in
oil pipeline transportation. Some of them are intended for oil supply form buster
pumps to main pipeline. And others are used for energy losses replenishment
during pressure control and also for pipeline hydrodynamic separation on given
in draft sectors to provide pumping and hydra impact effects localization in the
main pipeline. The main problem of oil transportation is pressure maintenance
set by regulatory requirements. The recent time tendency of pressure regulation
is controlling pressure by pump rotating speed changing.

To provide desired operating mode main pump stations include serially con-
nected pumps which are controlled with frequency adjustable motors with high
power consuming. This power depends on an oil supply volume in pipeline Q
and value of pressure H:

Pp =
QHgρ

ηpηelηfc
, (1)

where g and ρ - acceleration of gravity and oil density;
ηp,ηel,ηfc - efficiency of a pump, power suppliers and frequency converter;

And it can reach up to megawatt of consuming.
The main aim of this work is automatic pressure control system (APCS) in-

creasing which can decrease main pump energy consumption in dynamic and
stabilization mode. Stationary or trigger modes are being considered in compar-
ative calculations of energy consuming in frequency adjustable main pumps. But
it is not counted that pump is in a control loop and therefore the actuator of this
loop will consume power to overcome internal resistance caused by huge weight
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of motor shaft. Because of bad quality regulation (oscillations and overshooting)
that losses may be significant. This fact follows from pump motion equation:

ns =
GD2

375

dω

dt
= Mp −Ms, (2)

where GD2 - the turning moment of the pump;

Mp=
3I2R2

s - moment of a pump motor;
ns - synchronous speed of rotating;
I - loop current;
R - loop active resistance;
s - slipping;
Ms - moment of resistance on motor shaft.

Internal losses caused by continuous pump acceleration and deceleration are
proportional to motor acceleration during transient, turing and motor moment.
The last one is significant for huge pumps.

At the same time energy losses in dynamic mode in a valve are less than in a
pump. This fact is caused by lower lag of valves during moving from the point.

That is why simultaneous use of frequency controlled pump and throttling
component is an attractive solution of pressure control problem. In this way it
is possible to implement power economic consumption system.

For decreasing of internal moment value it is necessary to provide smooth fre-
quency changing of pump power and fast regulation of valve motor. But eigen-
frequency of fast loop must be higher than pump loop. To find a solution it is
possible to use Splint-technology of oil supply from the pump with two pipelines:
general and bypass. On both pipelines there should be installed two controlled
valves with different purposes. A low diameter bypass valve has high speed. And
a general pipeline valve has normal and typical (at the moment) characteristics.
It has a lower speed.

And in this case a bypass valve loop can suppress high frequency influences of
ACS dynamic and release pump loop from that influence regulation. But pump
loop should suppress low frequency parts of dynamic. And in steady and quasi-
steady modes the opening degree of a general pipeline valve should be maximum.

In real pressure control system lag of pump and valve differ by an order. Big
currents supplying provide relatively small pump acceleration time. The special
system of smooth frequency changing is used for excluding hydra impacts during
acceleration. At the same time it is impractical to use that system during pressure
stabilization in main oil pipeline. Generally valve lag is around 200-300 seconds.
And this values of eigenfrequency must be changed appropriately.

It may be solved by adding low frequency filter in pump loop and choosing
quite fast valve moving. Filter is an aperiodic link which can be written as:

Wf (s) =
kf

Tf + 1
, (3)

where kf - direct transfer coefficient;
Tf - time constant(lag).
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If big value of a pump filter lag will be chosen it will be possible to provide (by
an algorithm) smooth speed changing of a pump. This way the necessity of big
currents using for switching pumpmode will disappear and as a result unnecessary
power losses will be excluded.

The typical scheme of a system Pump Station - Pipeline is shown in Figure 1.

Fig. 1. Typical oil transport scheme

Fig. 1 shows that the scheme involves the presence of at least two loops ACS
(including possible variations). Will continue to be considered a combination of
control algorithms: Split range control and Parallel control.

The main goal is to choose an algorithm (scheme) under control optimality
criterion relative to a functional energy intensity (the choice of the type of control
depending on the amount of energy used).

Described earlier technology of pressure regulation with help of valves in gen-
eral and bypass pipelines can be presented in Fig. 2.

Fig. 2. Bypass pressure regulation scheme

2 Modeling

Research model valve and pump was developed in MatLAB Simulink. Block
diagram of the general valve is shown in Fig. 3.

Figure 4 shows the second valve in bypass pipeline.
It is clear that valves (Fig. 3, 4) have different value of time lag an as a result

different operating time. In Fig. 5 pump model is presented.
Block diagram of the pipeline is shown in Figure 6.
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Fig. 3. General pipeline valve

Fig. 4. Bypass pipeline valve

Fig. 5. Model of a main pump

Fig. 6. Pipeline model
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Fig. 7. Principal structure of a control algorithm

The proposed algorithm for controlling the pressure of the structure is pre-
sented in Fig. 7.

Suppose that in the initial state general pipeline valve is opened (opening
degree %op=0,9) and bypass valve is closed (opening degree %cl=0,1). In this
case pump operating point matches to set value of an oil supply (Fig 8).

In this scheme in the high-frequency influence pressure stabilization loop (by-
pass valve) counteracts initially. Simultaneously pump regulation loop changes
oil supply to return movement of general valve to initial conditional. This recov-
ery is provided by set point in pump loop opening degree of general valve.

3 Research

Figure 9 represents a model of a set of the system in Simulink. Transients chats
of described models during step influence at 15th second of pump acceleration
up to 15,6 MPa are shown on Figures 10-13. There is a moment of disturbance
appearing and its neutralization by a APCS with help of two valves an pump[1].
Both valves starts fast that is why pressure changing trend has smooth bend
which exclude abrupt rotating speed and big power consuming. Moreover it is
clear that pump is helping control during pressure falls. It is clear that influence
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Fig. 8. Pump operating point during control

Fig. 9. Pump operating point during control
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Fig. 10. Pressure trend during simulation

Fig. 11. Trend of a bypass valve opening degree

Fig. 12. Opening degree trend of a general valve
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Fig. 13. Changing of an oil supply by a pump

is appearing on 14th second (as it set) when setpoint (15,6 MPa) is being reached.
Main valve tends to change opening degree to set required oil supply on condi-
tion pressure stabilization. At the same time fast bypass valve starts to change
supply value. After transient oil pressure in pipeline is 15,6 MPa. During counter-
influence minor changes of pump supply are being observed and it makes pump
control more effective in terms of energy consumption.

4 Conclusion

During modeling the fact that bypass valve application can reduce energy losses
in pump control of pressure was obtained. Figure 13 shows significant result
of regulation. It is possible to recognize the deflection of a pump operating
characteristic from the straight line. According to this fact energy losses may
be reduced. Moreover we obtained transient operating without oscillation and
overshoot. The inertia torque component of the actuator shaft can be readily
reduced by controlling pressure with help of two valves: general and bypass.

The structure of oil supply APCS was proposed. It includes main and fast
valves. It provides reaction to fast and slow pressure disturbances in a main
oil pipeline. Reducing power losses of a frequency controlled pump in dynamic
modes for pressure stabilization is being reached by smooth rotating speed
change by slow frequency restructuring. The pump control loop of an oil supply
allows continuously monitor pump operating point in static mode. The loops
of valve opening degree recovery (appropriate to setpoints of OD) provide main
pipeline opening and necessary bypass line closing after transient. Made paramet-
ric reconfigures during modeling show APCS tuning ease on transients without
oscillations and overshooting.
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Abstract. An innovative approach for analysis of “network society”
with its large- scale and multicomponent features has been proposed.
A new network model - a model of so-called aggregate networks has
been developed as a key tool for such analysis. These aggregate struc-
tures topologically are not identical in their global and local scales, and
thus distinguished from canonical large-scale networks. It was elicited
that aggregate network entities have significant features in their topo-
logical vulnerability in comparison with canonical ones. This is crucial for
building resilient constructions of the network society. Also some addi-
tional distinctions for the concepts of “network” and “graph” have been
formulated.

Keywords: network society, complex networks, ontologies, aggregate
structures, topological vulnerability.

1 Introduction

A predominant way of organizing a network of modern society, is reflected in the
phenomenon, which is called network society. This means that society, although
composed of many separate individuals, groups, and communities becomes orga-
nized and linked together increasingly, forming a large-scale networks. It should
be noted that a common definition of network society does not exist. A number
of researchers focuse their interest on political components of the society, others
pay attention to social or technological constituents of the society [1-3]. However,
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defining network society all recognize the Internet as a valuable communication
tool that covers the planet, enabling individuals and groups to establish links,
surpassing interaction environments and systems that had been used before.
Currently, the theory of complex networks, which is associated with the name
of A.L.Barabashi have been used successfully to analyze a variety of complex
systems.

The last two years a specific scientific interest have been paid to complex
networks in their interdependent [4], multiplex [5], composite [6] and large-scale
interpretations [7]. Nevertheless, it has been typical that most famous publi-
cations demonstare results of studying networks without thorough attention to
their scale, assuming that their topology does not change significantly with the
size of the network. The paper [8] gave a suggestion that a network while having
become a large-scale acquires other topological characteristics than it had be-
fore. Naturally , the size of such networks is the matter of discussion to clarify
what the critical size of such networks is .

Meanwhile, methods of mathematics with its highly specific language and
even significant results remain inaccessible to researchers from other domains
and a wide range of users. Going beyond graph theory as a branch of discrete
mathematics, the complex networks approach with its substantive part, real-
istic models, effective calculation tools and impressive visualization might be
considered as a solid platform to further interdisciplinary practice.

In general, it is of sense to set a problem of clarification of the “network soci-
ety” phenomenon through construction and study of adequate network models
with taking into account huge sizes and special topological properties character-
istic of contemporary social formations.

2 Methods

Authors approach that we called a Comprehensive Network Lace , CNL (see, [9])
has been applied as a basic method to study the problem. This approach enables
thorough and many-sided description and analysis of complex systems. Related
to this approach, necessary network models are constructed on the basis of spe-
cific ontologies [10] to promote cross-cutting seamless solutions. At the same
time our approach provides a platform for international and interdisciplinary
cooperation in development of a network society

3 Findings

The authors of this work disclose that a common narrow perception of a “network
society” concept, focusing on social and media entities only, is somewhat apart
from many modern infrastructures, which provide material and humanitarian life
of citizens (energy, transport, food supply, water supply and sewage, educational,
scientific, medical, and other technological and organizational networks).

The current study of “network society” has been based on a general concept
of network model construction for complicated systems by means of ontologies.
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We define the term ontology as most complete formal description with specifica-
tions of a network society. CNL composed by its complex networks as a method
contrary to graphs has no many pathologies , that make difficulties to work
with. Here, it is of sense to declare explicitly the distinctions between theory
of complex networks theory and that of graphs . First, in defining a network,
which we formulate as a set of homogeneous elements and their homogeneous
relations of elements, thus that there not few connections but many, and besides
the set evolves and has its own ontogeny. Second, graph theory is just only one
of the tools for complex networks (might be most effective) along with other
math ones: as linear algebra, probability theory, fractal geometry and engineer-
ing: as high-performance computing, optimal control, etc., as well as economic
and humanitarian means.

Along with the development of the mathematical formalism for CNL, in this
paper we investigate network models, reflecting the network society phenomenon.
These structures have not only millions of nodes, but otherwise inhomogeneous
topologies which are different to small structure topologies. It is reasonable to call
the networks with such properties not large-scale (or massive), but aggregate. A
rendering of aggregate network made by means of graph-tool [11] is presented
by Figure 1.

Fig. 1. Aggregate network

Sample aggregate network of a society is modeled on the following algorithm:

1. It has been generated a Barabasi network having NG= 17,000 nodes with
an indicator γG , which is equal to 1 and with a connectivity which is a
random chosen uniformly on the range from 3 to 24 for each newly created
node of the network (the coefficient m ∼ U (3,24)).
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2. For all the nodes of the network it has been created a community of size NL
= 100nodes , according to Barabasi model, but with a random γL, chosen
uniformly on the interval from 1 to 3 for the community L. The coefficient
m ∼ U (3, 15) for each community.

3. For the resulting network of N = 1,700,000 nodes it has been calculated an
integer I = (0.03 * N). Then it has been created I links between randomly
selected nodes. Thus, the aggregate network in contrast to a large-scale one
not only brings together a huge number of nodes (typically millions), but
the topology of its inter-cluster links (global) is different from the connection
topology of nodes within a cluster (local).

Choosing an adequate NL value was in line with that which is lower than a
certain number of Dunbar [12], NG must be one that a total number of nodes
N corresponds to the sizes of real well-known networks skitter [13] and flickr
[14], which allow an adequate comparison of all these networks. Additionally,
as comparison it has been generated a synthetic traditional large-scale network
(synthetic) with uniform Barabasi topology ( γL=γG=1.04, m ∼ U(2,3)).

To generate a network and perform calculations a network analysis tool igraph
[15] has been used . Some key characteristics of the networks are shown in the
Table1.

Table 1. Key characteristics of the networks

Network Node Number Link Number Maximal
Connectivity

Average Con-
nectivity

Giant Cluster
Size

aggregate 1,700,000 13,952,907 4438 16 1,700,000

skitter 1,696,415 11,095,298 35450 13 1,694,616

flickr 1,715,255 15,555,042 18137 18 1,624,992

syntetic 1,700,000 3,399,997 118001 4 1,700,000

Some differences are noticeable not only in the maximum and average connec-
tivities but also in the distribution of this parameter for the aggregate network
and the canonical (syntetic) one, (see Figure 2.). All the plots were performed
with matplotlib pyplot [16]

One of the most important properties of network structures is their topological
robustness. In order to identify features of the sample aggregate network that
models a network society the prepared structures - aggregate and synthetic, as
well as the structures skitter and flickr have been tested with the removal of
nodes. Relative size of giant cluster G has been considered as a sensitive network
vulnerability metrics.

The results of calculations of changes in relative size of giant cluster G versus
number of removed nodes (proportion to the initial number of nodes in the
networks) are shown in Figure 3 and 4 has been revealed the following. Firstly
changes in G for the aggregate network and homogeneous canonical (synthetic)
one differ sharply. Really observed networks skitter and flickr demonstrate an
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Fig. 2. Connectivity distribution

Fig. 3. Error vulnerability
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Fig. 4. Attack vulnerability

intermediate position. In case of errors such notable differences in the changes
of G was not found.

Secondly, exploring the tails of the vulnerability curves for errors , it is notice-
able that in the case of huge removal of nodes (> 60%), the aggregate network
is considerably weaker than the others in robustness.

The following selection strategy for node removal has been applied : a) random
and b) connectivity-based in descending order, which corresponds to errors and
targeted attacks, respectively.

4 Conclusions

A new approach for analysis of “network society” with its large- scale and mul-
ticomponent features that has been proposed in the work promotes to prepare
a new network model - a model of so-called aggregate network. These aggregate
networks topologically are not identical in their global and local scales, and thus
distinguished from canonical large-scale networks. It was found that aggregate
network structures have significant features in their topological vulnerability in
comparison with canonical ones and the fact might be useful in building resilient
structures of the network society.
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Abstract. In this paper, we develop methods of nonlinear filtering and
interpolation of an unobservable Markov chain with a finite set of states.
This Markov chain controls coefficients of AR(p) model. Using observa-
tions generated by AR(p) model we have to estimate the state of Markov
chain in the case of an unknown probability transition matrix. To solve
this problem we construct a system of equations with respect to the pos-
terior probability of Markov states. According to the idea of empirical
Bayes approach we represent these equations in the form independent of
the unknown transition matrix. The resulting equations are solved using
nonparametric kernel procedures by dependent observations. Compari-
son of proposed non-parametric algorithms with the optimal methods in
the case of the known transition matrix is carried out by simulating.

Keywords: hidden Markov chain, autoregressive model, nonlinear fil-
tering and interpolation, multivariate kernel density estimation.

Introduction

In practice it is often required to know the state of the system described by
some stochastic differential or difference equation with a given set of values of
coefficients. Each given set of equation coefficients values corresponds to some
system state. The problem arises to estimate the system state at the specified
time from observations of the system output. Switching of states is convenient
to describe by Markov chain (ϑn) with a finite set of states. In this case, usually
say that the coefficients of the observed random process equation is governed by
the Markov chain.

There is the well known optimal procedure (maximization of posterior proba-
bilities) for estimating these states by observations of the random process. How-
ever, in applications there exists a great number of examples (such as radio and
sonar) where it is impossible to construct the transition probability matrix and
hence use a standard methods of posterior analysis. In this paper, we propose
methods of estimation of these states when transition matrix is unknown. These
methods are founded on nonlinear optimal filtering and interpolation equations.
These equations can be represented in the form independent of the unknown
transition probability matrix. Such representation is a consequence of applying
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of empirical Bayes approach to the problem under consideration. The resulting
equations contain some unknown statistics which are restored by using non-
parametric kernel estimation techniques by dependent observations. Empirical
Bayes approach with the nonparametric estimation was widespread in solving
problems under uncertainty (see, for instance, [1–4]). However, authors had not
come across with a case where this approach would be applied to a sequence of
dependent random variables, i.e. to processes. Application of this approach to
stationary processes reveals broad opportunities for solving filtering, interpola-
tion and prediction problems under unknown distributions of the desired signal.
The theoretical description of such approach can be found in [5]. In this paper,
it is proposed a more effective modifications of algorithms developed in [5] which
lead to more accurate results.

In the first section, system model is represented. In the second section, we
consider optimal filtering in the case of known transition matrix and propose
non-parametric filtering under unknown one. The third section is devoted to
multivariate kernel density estimation. Interpolation methods of state estimation
with unknown probability characteristics are developed in the fourth section. The
comparison of optimal and non-parametric procedures are performed in the last
section.

1 System Model

Let (ϑn, Xn) be a two-component process, where (ϑn) is unobservable process
and (Xn) is observable one, n ∈ 1, N , N ∈ N; (ϑn) controls coefficients of (Xn).
Let (ϑn) be a stationary Markov chain with M discrete states and transition
matrix ‖pi,j‖, pi,j = P{ϑn = j | ϑn−1 = i}. The process (Xn) is described by
the autoregressive model of order p:

Xn = μ(ϑn) +

p∑
i=1

ai(ϑn)(Xn−i − μ(ϑn)) + b(ϑn)ξn , (1)

where {ξn} are i.i.d. random variables with the standard normal distribution,
μ, ai, b ∈ R are coefficients controlled by the process (ϑn).

As a quality measure for the proposed methods we use mean risk with a simple
loss function L:

L(ϑn, ϑ̂n) =

{
1, ϑn �= ϑ̂n ,

0, ϑn = ϑ̂n ,
(2)

where ϑ̂n = ϑ̂n(X
n
1 ) is an estimator of ϑn and Xn

1 = X1, X2, . . . , Xn.
For the risk function with the loss function (2) the optimal estimator is

ϑ̂n = argmax
m

P{ϑn = m | Xn
1 } , (3)

where P{ϑn = m | Xn
1 } is a posterior probability with respect to a σ-algebra,

generated by r.v. Xn
1 . Its realization will be denoted by

P{ϑn = m | Xn
1 = xn

1 } = wn(m | xn
1 ) = wn(m) . (4)
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2 Filtering

2.1 Optimal Filtering

In filtering we estimate the value of unobservable ϑn using observable values xn
1 .

Probability wn(m) satisfies the recurrent Stratonovich’s equation [5]

wn(m) =
fm(xn)

f(xn | xn−1
1 )

M∑
j=1

pj,mwn−1(j) , (5)

fm,n = fm(xn) = f(xn | xn−1
n−p, ϑn = m) . (6)

Using (1) the conditional density function fm(xn) is calculated as:

fm(xn) = N
(
xn, μ(m) +

p∑
i=1

ai(m)(xn−i − μ(m)), b2(m)

)
. (7)

Conditional density f(xn | xn−1
1 ) is obtained by summing of (5) over m:

f(xn | xn−1
1 ) =

M∑
m=1

⎛⎝fm(xn)
M∑
j=1

pj,mwn−1(j)

⎞⎠ . (8)

If transition matrix ‖pi,j‖ is known, then all elements in (5) are defined and the
solution of the problem is found, otherwise we offer methods in the next section.

2.2 Non-parametric Filtering

In this method we overcome uncertainty in the ‖pi,j‖. For that we analyse
f(xn | xn−1

1 ). We assume that process (ϑn, Xn) is α-mixing, then instead of
f(xn | xn−1

1 ) we use ”truncated” approximation f(xn | xn−1
n−τ ), τ ∈ 1, n− 1.

Then (5) can be rewritten as

wn(m) ≈ fm(xn)f(x
n−1
n−τ )

f(xn
n−τ )

M∑
j=1

pj,mwn−1(j) , (9)

wn(m) =
fm(xn)

f(xn
n−τ )

un(m) , (10)

where the introduced variable un(m) does not depend on xn. Then we sum
of (10) over m and get:

f(xn
n−τ ) =

M∑
m=1

fm(xn)un(m) . (11)

To calculate un(m) it is necessary to find M − 1 more equations, which we can
obtain by differentiating and integrating (11) with respect to xn.
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Therefore obtained system of equations in matrix form is

Fnun = bn , (12)

where

Fn =

⎛⎜⎜⎜⎜⎜⎜⎝
1 1 · · · 1

f1,n f2,n · · · fM,n

f
(1)
1,n f

(1)
2,n · · · f

(1)
M,n

...
...

. . .
...

f
(M−2)
1,n f

(M−2)
2,n · · · f (M−2)

M,n

⎞⎟⎟⎟⎟⎟⎟⎠ , (13)

un =
(
un(1) un(2) un(3) . . . un(M)

)T
, (14)

bn =
(
f(xn−1

n−τ ) f (0)(xn
n−τ ) . . . f (M−2)(xn

n−τ )
)T

. (15)

We estimate unknown elements of bn by using multivariate kernel density esti-
mators from Sect. 4.

2.3 Adaptive Non-parametric Filtering

Note that solution of (12) is dependent on the properties of the matrix F. If the
matrix F is near singular then the solution is diverged. This difficulty could be
overcome using following method.

Consider system of equations (12) for M = 2:{
un(1) + un(2) = f(xn−1

n−τ )
f1,nun(1) + f2,nun(2) = f(xn

n−τ )
. (16)

We add another compatible equation obtained by differentiating with respect to
xn the second equation:

f ′
1,nun(1) + f ′

2,nun(2) = f ′(xn
n−τ ) . (17)

To find un we solve one of the 3 systems

Fn,1un = bn,1 :

(
1 1

f1,n f2,n

)
·
(
un(1)
un(2)

)
=

(
f(xn−1

n−τ )
f(xn

n−τ )

)
, (18)

Fn,2un = bn,2 :

(
f1,n f2,n
f ′
1,n f ′

2,n

)
·
(
un(1)
un(2)

)
=

(
f(xn

n−τ )
f ′(xn

n−τ )

)
, (19)

Fn,3un = bn,3 :

(
1 1

f ′
1,n f ′

2,n

)
·
(
un(1)
un(2)

)
=

(
f(xn−1

n−τ )
f ′(xn

n−τ )

)
. (20)

For solving we propose to choose the system with the best-conditioned matrix
for each un using the following test

In = arg min
i=1,2,3

κ(Fn,i) , (21)

where κ(A) = ‖A‖ · ‖A−1‖ is a condition number, ‖A‖ = supx �=0
‖Ax̄‖2

‖x̄‖2
.

Choosing of necessary matrix is represented in Fig. 1.
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Fig. 1. From top to bottom: 1 – densities f1,n(solid) and f2,n(dashed); 2 – derivatives
f ′
1,n(solid) and f ′

2,n(dashed); 3 – index In

3 Multivariate Kernel Density Estimation

Let us introduce partial density derivatives

f (r)(y) =
∂rf(y)

∂yr11 ∂yr22 . . . ∂yrdd
, (22)

where y = (y1, y2, . . . , yd) ∈ R
d, d ∈ N; r1, r2, . . . , rd are orders of partial deriva-

tives and r = r1 + r2 + . . . + rd.
Let us introduce sample vector Yi = (Yi1, Yi2, . . . , Yid), i = 1, 2, . . . , N ′ drawn

from f(y). Then nonparametric estimator of f (r)(y) is

f̂ (r)(y) =
1

N ′

N ′∑
i=1

d∏
j=1

1

h
1+rj
j,N ′

K(rj)

(
yj − Yij

hj,N ′

)
, (23)

where K(·) is a kernel, hj,N is called the bandwidth. Properties and choosing
kernel and bandwidth see in [6], [7]. We use Gaussian kernel

K(u) =
1√
2π

e−
1
2u

2

, u ∈ R , (24)



On Evaluation of Discrete States of Hidden Markov Chain 427

with corresponding derivative with respect to u

K ′(u) = − u√
2π

e−
1
2u

2

= −u ·K(u) . (25)

For bandwidth hj,N we use estimator ”Rule of thumb” proposed in [7]:

ĥj,N =

(
4

d + 2rj + 2

)1/(d+2rj+4)

σ̂jN
−1/(d+2rj+4) , (26)

where σ̂j is a sample standard deviation of realization y1j , y2j , . . . , yNj .
The sample vector Yi = (Yi1, Yi2, . . . , Yid) is constructed using process real-

ization X1, X2, . . . XN according the following rule:

(Yi1, Yi2, . . . , Yid) = (Xi, Xi+1, . . .Xi+d−1) . (27)

Then the resulting vector sequence is (Xi, Xi+1, . . .Xi+d−1)
N ′
i=1, N ′ = N−d+1.

To estimate value of a density f(xn+b
n+a) = f(xn+a, xn+a+1, . . . xn+b), n ∈ 1, N ′,

a, b ∈ Z, a ≤ b, d = b − a + 1 we use sample sequence (xi, xi+1, . . . xi+d−1)
N ′
i=1

without vector xn+b
n+a. Then the resulting sequence (xi, xi+1, . . . xi+d−1)

N−d+1
i=1,i�=n+a

has N − d elements. Therefore, estimator of density f(xn+b
n+a) has the form

f̂(xn+b
n+a) =

1

N − d

N−b∑
k=1−a,
k �=n

b∏
j=a

1

hn+j,N−d
K

(
xn+j − xk+j

hn+j,N−d

)
, (28)

hn+j,N−d =

(
4

d + 2

)1/(d+4)

σ̂j(N − d)−1/(d+4) . (29)

In this case (rn+a, rn+a+1, . . . , rn+b) = (0, 0, . . . 0).
For example, the estimator of f(xn

n−τ ) is

f̂(xn
n−τ ) =

1

n− τ − 1

n∑
k=1+τ,
i�=n

0∏
j=−τ

1

hn+j,n−τ−1
K

(
xn+j − xk+j

hn+j,n−τ−1

)
(30)

with (rn−τ , rn−τ+1, . . . rn) = (0, 0, . . . , 0).
The estimator of the derivative f (1)(xn

n−τ ) is

f̂ (1)(xn
n−τ ) =

1

n− τ − 1

n∑
k=1+τ,
k �=n

0∏
j=−τ

1

h
1+rn+j

n+j,n−τ−1

K(rn+j)

(
xn+j − xk+j

hn+j,n−τ−1

)
,

(31)

where (rn−τ , rn−τ+1, . . . rn) = (0, 0, . . . , 1).
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4 Interpolation

4.1 Optimal Interpolation

In interpolation we estimate the value of unobservable ϑn, n ∈ 1, N using observ-
able values xN

1 . To get optimal interpolation estimator one need to use markov
property of sequence (ϑn, Xn)

f(θN1 , xN
1 ) = f(θ1, x1)

N∏
n=2

g(θn, xn | θn−1, xn−1) , (32)

where (θn, xn) is a realization of (ϑn, Xn) and g(· | ·) is a transition density of
process (ϑn, Xn). We use the formula (32) to calculate a posterior probability
πn(θn | xN

1 ):

πk(θn | xN
1 ) =

1

f(xN
1 )

f(θn, x
N
1 ) =

1

f(xN
1 )

f(θn, x
n
1 , x

n
n+1) = (33)

=
1

f(xN
1 )

f(xn
1 )wn(θn | xn

1 )f(x
N
n+1 | θn, xn

1 ) = (34)

=
1

f(xN
1 )

f(xn
1 )wn(θn | xn

1 )f(x
N
n+1 | θn, xn) . (35)

It is necessary to find all elements in latter equation, which depend on xn.
According to total probability formula

f(xn
1 )wn(θn | xn

1 ) =

M∑
θn−1=1

f(θn−1, x
n−1
1 )g(θn, xn | θn−1, xn−1) . (36)

For dynamical model AR(1)

g(θn, xn | θn−1, xn−1) = p(θn | θn−1)f(xn | xn−1, θn) (37)

holds, thus we get

f(xn
1 )wn(θn | xn

1 ) = f(xn | xn−1, θn)

M∑
θn−1=1

p(θn | θn−1)f(θn−1, x
n−1
1 ) = (38)

= f(xn−1
1 )f(xn | xn−1, θn)p(θn | xn−1

1 ) , (39)

where only the second factor depends on xn. Then we consider the third factor
of (35):

f(xN
n+1 | θn, xn) =

M∑
θn+1=1

f(xN
n+2 | θn+1, xn+1)g(θn+1, xn+1|θn, xn) = (40)

=

M∑
θn+1=1

f(xN
n+2 | θn+1, xn+1)p(θn+1 | θn)f(xn+1 | xn, θn+1) = (41)

=

M∑
θn+1=1

f(xN
n+2, θn+1, xn+1)

p(θn+1 | θn)
p(θn+1)

f(xn+1 | xn, θn+1)

f(xn+1 | θn+1)
(42)



On Evaluation of Discrete States of Hidden Markov Chain 429

Here only f(xn+1 | xn, θn+1)/f(xn+1 | θn+1) depends on xn. Because of this
dependence we can not find equations for optimal interpolation estimator in
the case of dynamical systems. However, if model of observations is static, i.e.
Xn = ϕ(ϑn, ξn) with ϕ is known Borel function and ξn is independent noise,
then conditional density f(xn+1 | xn, θn+1) = f(xn+1 | θn+1) does not depend
on xn. Using last assumption we present the formula (35) to

π(ϑn = m | xN
1 ) = πn(m) =

1

f(xN
1 )

f(xn
1 )wn(m | xn

1 )f(x
N
n+1 | m,xn) = (43)

=
f(xn−1

1 )

f(xN
1 )

f(xn | m)p(m | xn−1
1 )

M∑
θn+1=1

f(xN
n+2, θn+1, xn+1)

p(θn+1|m)
p(θn+1)

= (44)

=
f(xn−1

1 )f(xN
n+1)

f(xN
1 )

· fm(xn)vn(m)ṽn(m)

pn(m)
, (45)

where

vn(m) =

M∑
j=1

pj,mwn−1(j) , ṽn(m) =

M∑
j=1

p+j,mw̃n+1(j) , (46)

p+j,m = P{ϑn = m | ϑn+1 = j} , pn(m) = P{ϑn = m} . (47)

Filtering probability wn is defined in (5) and w̃n comply with recurrent equation

w̃n(m) =
fm(xn)

f(xn | xN
n+1)

M∑
j=1

p+j,mŵn+1(j) . (48)

If ‖pi,j‖ is known then all variables in (45) could be calculated and the problem
could be solved.

4.2 Non-parametric Interpolation

As in non-parametric filtering we overcome the uncertainty in ‖pi,j‖ by intro-
ducing new variable zn(m) that does not depend on xn and includes unknown
pi,j . Then (45) can be represented like

πn(m) =
fm(xn)zn(m)

f(xn+τ
n−τ )

. (49)

If we sum of latter equation over m, we get:

f(xn+τ
n−τ ) =

M∑
m=1

fm(xn)zn(m) . (50)

To calculate zn(m) it is necessary to find M − 1 more equations, which we can
obtain by differentiating and integrating (50) with respect to xn. The resuliting
system of linear equations in zn(m) can be represented as

Fnzn = cn , (51)
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Fig. 2. From top to bottom: 1 – unobservable θn; 2 – observable xn; 3, 4 – estimator
ϑ̂n by optimal filtering and interpolation; 5, 6 – estimator ϑ̂n by non-parametric fil-
tering and interpolation; 7, 8 – estimator ϑ̂n by adaptive non-parametric filtering and
interpolation

where Fn is defined in (13) and

zn =
(
zn(1) zn(2) zn(3) . . . zn(M)

)T
, (52)

cn =
(
f(xn−1

n−τ , x
n+τ
n+1) f (0)(xn+τ

n−τ ) . . . f (M−2)(xn+τ
n−τ )

)T
. (53)

To estimate unknown multivariate densities and its derivatives of column cn
we use kernel estimator (23). Convergence condition of kernel estimators by
dependent observations one can find in [5].

4.3 Adaptive Non-parametric Interpolation

This method is similar to the adaptive non-parametric filtering. For solving we
propose to choose the system with the best-conditioned matrix for each zn.
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5 Example

Let the Markov chain (ϑn) have two states (M = 2) and the transition matrix

‖pi,j‖ =
(
0.98 0.02
0.02 0.98

)
. (54)

Consider the AR(1) model with coefficients μ ∈ {0, 1.5}, a1 ∈ {0.3, 0.2},
b ∈ {0.9539, 0.9797}. Coefficients b are calculated using Yule-Walker [8].

The volume of generated sample is 700. Results are presented in Fig. 2 and
sample mean errors after 50 repeated experiments in Table 1.

Table 1. Sample mean errors

Filtering Interpolation

Optimal 0.0838 0.0738
Non-parametric 0.1510 0.1454

Adaptive non-parametric 0.1338 0.1090

Conclusion

Developed nonparametric methods for nonlinear estimation of the hidden Markov
chain states with the unknown transition probability matrix belong to a class
of unsupervised stochastic algorithms. To obtain more accurate results in the
future we suppose to choose the unconstrained matrix bandwidth for kernel
nonparametric estimates of multivariate densities entering in the algorithms.
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Abstract. We introduce a model of random graphs that follows a non-
linear preferential attachment rule and give a recursive formula to de-
termine the vertex degree distribution for the graphs of this model. We
demonstrate how the nonlinear preferential attachment model can be
calibrated so that the generated graphs will require vertex degree distri-
butions.

Keywords: networks, random graphs, nonlinear preferential attachment
rule, structural properties.

1 Introduction

At present the Barabasi-Albert (BA) model for generating random graphs [1] is
widely spread when modeling large network structures like social networks, web
networks and the Internet [2–4]. The BA model starts with a small ”seed” graph
and increases by subsequent addition of new vertices one at a time, each with
m = const incident edges. A new vertex with its incident edges that is added to
the graph will be named a graph differential (GD). When growing the BA graph,
free ends of the GD edges attach to any vertices of the graph. The probability
pi of attaching to vertex i depends on degree ki:

pi =
ki∑
j

kj
. (1)

The infinite addition of new GDs leads to growing the infinite BA graph, which
is scale-free because its vertex degree distribution is asymptotically power-law
(a scale-free distribution). The exact expression for stationary vertex degree
distribution of the infinite BA graph was first given in [5]:

Qk =
2m(m+ 1)

k(k + 1)(k + 2)
, k = m,m+ 1, ..., (2)

where Qk is the probability that a randomly chosen vertex has degree k. From
Eq. (2) it follows that Qk ∼ 2m(m + 1)k−3, and Qk ∝ k−3 as k → ∞. By the
construction of the BA graph, the average degree of the graph is 〈k〉 = 2m.

A. Dudin et al. (Eds.): ITMM 2014, CCIS 487, pp. 432–439, 2014.
c© Springer International Publishing Switzerland 2014
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It can also be derived from Eq. (2). Asymptotic power-law vertex degree dis-
tribution of the BA graph is only consistent with node degree distribution of
some real networks [4]. And in cases when node degree distributions of networks
are close to power-law, other characteristics such as clustering coefficient or net-
work diameter can differ from the corresponding characteristics of the BA graphs
[2, 3].

2 Structural Characteristics of the BA Graphs

Consider such structural properties of the BA graphs as vertex degree correlation
and clustering coefficient [6, 7]. Let the BA graph be realized as a directed graph.
This modification helps us to focus on the difference in the characteristics of the
two ends of edges. This difference occurs while attaching an edge of a GD because
only one end of the edge chooses a vertex to attach to it. A GD of the directed
BA graph is a vertex with m outgoing directed edges. The ends of these edges
attach to the existing vertices according to the preferential attachment rule (1).

The stationary joint probability distribution {Ql,k} of vertex degrees l and k
of a random directed edge of the BA graph can be represented in the general
case as a recursive equation [8]:

Ql,k =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, l ≥ m, k = m,

2
(m+2)(2m+3) , l = m, k = m + 1,
2(m+1)+k(k2−1)
k(k+1)(k+m+2) Ql,k−1, l = m, k ≥ m+ 2,
(k−1)Ql,k−1+(l−1)Ql−1,k

(l+k+2) , l ≥ m + 1, k ≥ m + 1.

(3)

The calculation of matrix Q =‖ Ql,k ‖ starts with the completion of its
leftmost column (column k = m) by zero values and calculation of the upper line
(line l = m): firstly, element Qm,m+1 of this line is calculated by the formula (3),
then elements Qm,k such that k ≥ m + 2 are calculated. After completing the
upper line, elements of the following lines are calculated left to right line by line.
As a special case, result (3) contains the following solution derived in [6] for the
BA model with m = 1 in the closed form:

Qlk =
4(k − 1)

l(l + 1)(l + k)(l + k + 1)(l + k + 2)
+ (4)

+
12(k − 1)

l(l + k − 1)(l + k)(l + k + 1)(l + k + 2)
, l, k � 1.

The marginal distributions for the degrees of vertices incident to directed
edges are found in [8]:

Qk,∗ =
2m(m+ 1)

k(k + 1)(k + 2)
, Q∗,k =

2(k −m)(m + 1)

k(k + 1)(k + 2)
, l, k � m, (5)

where Qk,∗(Q∗,k) is the probability that the initial vertex of the edge (the termi-
nal vertex of the edge) has the degree k. From Eq. (5) it follows that the average
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degree of the initial vertex is 2m and the average degree of the terminal ver-
tex is infinite. The degrees of vertices incident to directed edges are dependent
variables.

We also find the following expression for the clustering coefficient C of the
finite BA graph:

C ∼ (m− 1)

8

(lnN)2

N
+ (m− 1)cm

lnN

N
, (6)

where N is the number of vertices in the graph, cm is a coefficient that can be
evaluated when the large BA graph is generating. So, for m = 2, 3, ..., 8 values cm
are approximately 0.5, 0.35, 0.275, 0.18, 0.12, 0.10 and 0.07 respectively. Found in
[7] the shifted for m estimate

C ∼ m

8

(lnN)2

N

is close to our estimation (6).

3 Nonlinear Preferential Attachment Graphs

By analogy with the BA model, we study a more general model for generating
nonlinear preferential attachment graphs (the NPA graphs). To grow the NPA
graph we use the weight function f = f(k) (preference function, weight) defined
for integer k where g ≤ k ≤ M , (g ≥ 1,M ≤ ∞). The weights fk = f(k) must
be non-negative values. The probability pi of attaching to vertex i depends on
the degree ki of this vertex such that

pi =
f(ki)∑
j

f(kj)
. (7)

In addition, the NPA graphs have stochastic GDs, i.e. each GD is a vertex
with a random number x of incident edges. The random variable x has discrete
probability distribution {rk}, where the probability rk = P{x = k} ≥ 0, g ≤
k ≤ h (g ≥ 1, h ≤ M) and

∑h
k=g rk = 1. The average number of GD edges is

m = 〈x〉 = ∑h
k=g krk <∞. Thus, the NPA model can be calibrated by varying

f and {rk} parameters.
In [9] the existence condition of a stationary NPA graph where M + 1 ≥ 2m

is found. If M + 1 = 2m, then a pseudo-lattice is generated, which is an infinite
random graph where the vertex degree is 2m = M + 1 with probability one.

We propose the following modification of the NPA model. When an attach-
ment to the next vertex is unrealizable (due to a possible lack of vacant positions
when M is finite), the GD is queued, and the next GD is generated.

The vertex degree distribution for the NPA graph is expressed recursively:

Qg =
rg〈f〉

〈f〉+mfg
, Qk =

rk〈f〉+mfk−1Qk−1

〈f〉+mfk
, k ≥ g + 1, (8)
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where 〈f〉 = ∑
fkQk is the average preference of a vertex. The reasoning used

in [9] in the derivation of Eq. (8) is similar to the reasoning used in [8] in the
derivation of Eq. (3). If x ≡ m = g (i.e. rg = 1), then a stochastic GD reduces to
a constant GD (a vertex with m incident edges). In addition, if fk = k, then the
NPA graph reduces to the BA graph, and in Eq. (7) we have 〈f〉 = 〈k〉 = 2m,
fg = g = m,

Qg =
2

2 +m
, Qk =

k − 1

2 + k
Qk−1, k ≥ g + 1.

From here, the formula (2) is derived easily by induction on k for the BA graph.
The direct use of recursion (8) for the numerical calculation of probabilities

Qk is generally complicated by the fact that if m, rk and fk are given, then the
average weight 〈f〉 is unknown. However, it can be derived from the equation
that is obtained by substitution of Eq. (8) in equation 〈k〉 = ∑

k�g kQk = 2m.
Such calculation of 〈f〉 is easily implemented in a spreadsheet environment by
the following procedure.

1. Form columns of values k, fk, rk and cell m.
2. Enter any value a > 0 as the initial approximation of 〈f〉 in a separate cell.
3. Form a column of probabilities Qk (initial approximation {Qk}) with the

reference to the cell a as a parameter 〈f〉 by recursive formulas (8).
4. Enter in separate cells:
– the formula that calculates 〈f〉 as the sum of productions of the columns k

and Qk,
– the formula that calculates 〈f〉 as the sum of productions of the columns fk

and Qk.
5. With the help of the service Goal Seek, find the required a for which cell

〈k〉 equals 2m. There exists a unique value of a [9]. With the value of a given,
cell 〈f〉 will automatically be equal to the value of a. As a result, we obtain the
required values 〈f〉 and Qk.

We can also solve the inverse task that is synthesis (or calibration) of the model
by the formulas (8). If distribution {Q̃k} = Q̃g,...,Q̃M+1 > 0, (

∑
Qk = 1) and

the average degree 〈k〉 = 2m ≥ 2g are given, then we can find parameters {rk}
= rg ,...,rh and {fk} such that graph with the required vertex degree distribution

{Qk} = {Q̃k} is generated. From Eq. (7) it follows that the preference function
f for the NPA model can be determined with an accuracy to a multiplicative
factor. That allows to impose the condition 〈f〉 = m and to determine {fk} from
Eq. (8) as:

fk =

⎧⎪⎨⎪⎩
rg
Q̃g
− 1, k = g,

Q̃k−1

Q̃k
fk−1 +

rk
Q̃k
− 1, k = g + 1, ...,M,

0, k = M + 1 (where M <∞).

(9)

If Q̃k are empirical estimates, which accuracy decreases with increasing k, the
calculation of a few values fk at a small k by the formulas (9) is recommended.
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For the remained k, it is necessary either to smooth the sequence fk derived
with the use of the estimated Q̃k, or to replace estimates Q̃k in Eq. (9) by their
smoothed estimates. Distribution of {rk} in Eq. (9) can be chosen arbitrarily
from the constraint region defined by the following conditions:

0 � ri � 1 , i = g, h, (10)

h∑
i=g

ri = 1, (11)

h∑
i=g

iri = m, (12)

k∑
i=g

ri �
k∑

i=g

Q̃i, k = g, h . (13)

Conditions (10) and (11) characterize the properties of probabilities rk, condition
(12) follows from 〈x〉 = m, which provides the required average degree 〈k〉 =
2m, condition (13) provides non-negative preferences {fk} and is calculated by
Eq. (9).

Let FQ(t) denote the cumulative distribution function (DF) of vertex degree
k: FQ(t) =

∑
k≤ t Qk. Let Fr(t) denote the DF of number x of the edges in

a stochastic GD: Fr(t) =
∑

i≤ t ri. Functions FQ(t) and Fr(t) are determined
uniquely by their values at the points t ∈ {g, g+1, ...}. Conditions (11) and (12)
in terms of DF take the form of Fr(h) = 1 and Fr(t) ≥ FQ(t). For the chosen h
these conditions generally satisfy many different functions Fr(t). But the values
of h can also be changed. A lower bound for h is derived from condition (12)

given in the form of Sr =
∑h−1

i=0 [1− Fr(i)] = m and condition (13) in the form
of Fr(t) ≥ FQ(t):

SQ =

h−1∑
i=0

[1− FQ(i)] � m. (14)

Based on the above, we propose a method to find the distributions {ri} that
satisfy the constraint region (10)-(13). This method is illustrated in Figure 1
and may be described by the following sequence of steps.

Step 1. Determine the smallest integer h satisfying inequation (14).
Step 2. Assume Fr(i) = FQ(i), i = g, ..., h− 1; Fr(h) = 1.
Step 3. Calculate SQ from Eq. (14) and Δ = SQ – m. If Δ = 0, then go to

Step 5.
Step 4. SeparatingΔ on supplements to the values Fr(g), ..., Fr(h−1), increase

them so that equality Sr = m is true for resulting DF Fr(t).
Step 5. Assume ri = Fr(i)− Fr(i− 1), i = g, ..., h.

The Step 4 can be completed in different ways. One of the examples is to
increase Fr(h − 1) by Δ = SQ − m and assume Fr(h) = 1 (Fig. 1). In that
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Fig. 1. The proposed method to build DF Fr(t) (dashed line) based on the DF FQ(t)
(solid line). When g ≤ t < h − 1 assume Fr(t) ≡ FQ(t). Let SQ denote the area of
the region bounded by the plot DF Fq(t), straight F = 1 and vertical lines t = 0 and
t = h. According to expression (14) SQ ≥ m. The height and the area of the shaded
rectangle is Δ = SQ − m. Since h is the smallest integer satisfying in equation (14),
then Δ ≤ 1− FQ(h− 1). And since Δ = SQ −m, then SQ −Δ = m, i.e. that part of
the area SQ, this part is located above the plot of DF Fr(t) is equal to m. Therefore
〈x〉 = m, and all the conditions (10)–(13) are satisfied.

case, Step 5 gives rg = Qg, ..., rh−2 = Qh−2 and rh−1 = Qh−1 + Δ, rh =
1−FQ(h− 1)−Δ. Another possible way to complete Step 4 is to increase Fr(g)
so that Sr = m, which can be obtained by increasing Fr(g + 1), Fr(g + 2),
..., Fr(g) so that DF Fr(t) is non-decreasing. In this case, several consequent
probabilities rg+1, rg+2, ... can become equal to zero. If the model is calibrated

on the basis of nonnegative weights (9), which are calculated by {Q̃k} (for the
given rk), and conditions M +1 ≥ 2m and 〈k〉 ≡ 2m ≥ 2g are satisfied, then the
NPA model has the required distribution {Q̃k}= {Qk} and also 〈f〉 = m.

A ”seed” graph can be a fully connected graph where vertex degrees equal g.
The calibration of the model by empirical node degree distribution of a network
can be considered as a solution of a network identification task. Fig. 2 reflects
the quality of the solution of an identification task for the Internet autonomous
systems network based on data [10], which describe 22, 961 nodes and 48, 436
edges. The calibrated model parameters are r1 = 0.342, r2 = 0.432, r3 = 0.096,
r4 = 0.13, m = r1 + 2r2 + 3r3 + 4r4 = 2.014; f1, ..., f4 = 0.0017, 0.0245, 0.0999,
2.5303, and fk = 0.8603k for k ≥ 5. Analogically, vertex degree distribution of
the NPA graph is presented in Fig. 3 (solid line), where the model of the graph
was calibrated by the empirical degree distribution of the network of movie actors
(markers). We used the published on the Internet data [11] about the network
with 511,416 non-isolated nodes and 1,463,331 edges. Nodes of this network are
actors, and two nodes have a common edge if the corresponding actors have
acted in a movie together. The calibrated model parameters r1, ..., r8 > 0, f1, ...,
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Fig. 2. Vertex degree distribution {Q̃k}
of the calibrated NPA graph (markers)
and node degree distribution {Qk} of
the Internet structure at the level of au-
tonomous systems (solid line)

Fig. 3. Vertex degree distribution of the
calibrated NPA graph and nodes degree
distribution of the collaboration network
of movie actors

f10 are established, and if k > 10, the general weight function takes the form
of fk = 4.429 ln(k). The fact that the preference function in this model is
logarithmical can be explained by human subjective sensation (in this case – the
actor’s fame), which is proportional to the logarithm of the stimulus intensity.

The required vertex degree distribution can be obtained by the NPA model
in which GDs have a constant number of edges m = const. We give detailed
recommendations on the calibration of the NPA model with examples in [9].
For example, the general formula for the implementation of a triangular degree
distribution is derived for a GD with a constant number of edges (x ≡ g = m).
In particular, for m = 3 the model with weigths f3, ..., f8 = 15, 13

2 , 10
3 , 3

2 , 1,
1
2

(and fk = 0 for k < 3 and k > 8) implements the graph with triangular de-
gree distribution Q3, ..., Q9 = 1

16 ,
2
16 ,

3
16 ,

4
16 ,

3
16 ,

2
16 ,

1
16 . There we also give useful

examples and accurate theoretical relations.

Fig. 4. Node degree distributions of Pennsylvania (left) and Omsk (right) transport
network
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4 Conclusions

Thus, we have described new results of the analysis of the BA graphs and a
nonlinear preferential attachment model to research large network structures.
The NPA model allows to grow graphs so that the probability that GD edges
attach to nodes is not necessarily in the proportion to the degrees of the nodes.
Fig. 4 shows the node degree distributions of transport networks (horizontal
hatching) of Pennsylvania and Omsk city. The vertex degree distributions of the
random graphs of size 100 thousand vertices grown by calibrated generators are
marked by diagonal hatching.

The exact formula of the degree distribution found for the NPA graphs con-
firms previously obtained results and presents them as a special case. The
proposed methods for calibration of the NPA models are simple in practical
application. The use of the accelerated methods [9] of generating preferential
attachment graphs allows to generate the NPA graphs that contain hundreds
of thousands of vertices. The above results allow solving the task of structural
identification, modeling, and optimization of large networks effectively. The cal-
ibrated NPA models can be used for simulation, forecasting and optimization of
processes occurring or planned to be implemented in the networks, or for testing
different algorithms and programs dealing with large graphs.

The authors would like to thank the Omsk State Technical University and
O.A. Saveleva for help with translating the article in English. This work is sup-
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Abstract. We investigate a time-sharing queueing process with read-
justments. Conflicting input flows are formed in a random external en-
vironment with two states. The input flows are Poisson with intensities
dependent on environment’s states. There are two parallel homogeneous
servers in the system. Service and readjustment durations have expo-
nential laws of probability distribution. A continuous-time denumerable
multidimensional Markov chain is defined to describe the dynamics of
the servers, the sizes of the queues and the environment state. The cus-
tomers sojourn cost during the period of reduction of the number of
customers in the system is chosen as a performance metric. Numerical
study in case of two input flows and a class of priority and threshold
service algorithms is conducted.

Keywords: Time-sharing queueing system with readjustments, parallel
servers, random environment, continuous-time Markov chain ergodicity
condition, Chung functionals, cost of unloading a queueing system.

1 Introduction

The service of conflicting input flows in the class of time-sharing algorithms is
a well-known problem in queueing theory [1–12]. The algorithms perform di-
viding the total service time of a customer into small quanta, while between
quanta the customers are sent back to waiting queues. In the first place the
interest in such systems was caused by modeling certain information processing
operations in computer control systems. As a rule, there are multiple classes of
customers present in real-world queueing systems. Customers of different classes
have different probability distribution functions for service duration. In a paper
by G.P. Klimov [2] concerning the optimal control of multi-class customers ac-
cording to the criterion of minimal expected sojourn cost per time unit it was
established for the first time that priority indices should be assigned to customer
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classes. Moreover, an algorithm to compute the indices was given. Other works
cited above allowed readjustments (setup times, orientations, etc.) of the server,
as well as branching input flows of secondary customers generated by customers
just serviced. At the same time in the majority of researches the input flows
were assumed stationary with no after-effect. In [9–12] a time-sharing queueing
system was studied whose input flows were modulated by a random external
environment synchronized with the server. After each service cycle a readjust-
ment cycle occurred. The objective of control was the expected sojourn cost per
work cycle or readjustment cycle for all customers present in the system during
this cycle.

Study of time-sharing algorithms in parallel servers was started by several
authors (see [7, 8, 13] for references there). The treatment there is in discrete
time. A heuristic priority-index rule, based on Klimov’s solution to the single-
server model was applied to control a network of a finite number of parallel
homogeneous servers in [7, 8]. In [13] a mathematical model for a double-server
queueing system with input flows modulated by an external random environment
with control within a class of time-sharing algorithms with readjustments of the
servers was considered. The model took form of a multi-dimensional discrete-
time Markov chain with several denumerable components. Using an iterative-
dominating method a sufficient condition for stationarity was found. The method
has already been used by a number of authors to study discrete-time Markov
queueing models [4, 5, 11, 14].

The aim of this article is to establish a continuous-time model for the ex-
ponential time-sharing dual-server system in random environment and then to
formulate an optimization problem of unloading the system at smallest cost
and to report conclusions based on numerical experiments. We also extend the
iterative-dominating method in order to obtain a sufficient condition for the
ergodicity of the continuous-time Markov process.

2 The Markov Process and Its Ergodicity Condition

The following controlled queueing system is studied. A finite number m <∞ of
input flows Π1, Π2, . . . , Πm enter. The flows are formed in a random external
environment with two states e(1), e(2). In the state e(k), k = 1, 2, the flow Πj ,

j = 1, 2, . . . , m, is Poisson with intensity λ
(k)
j > 0. In each state of the external

environment the input flows are independent. Customers of the flow Πj are kept
in a queue Oj of infinite capacity. Customers are chosen for service in order of
arrivals. There are two homogeneous servers in the system, Σ1 and Σ2. Each
server has n = 2m + 1 states named Γ (0), Γ (1), . . . , Γ (2m). A server is in the
state Γ (r), 1 � r � m if it serves a customer from Or. After the state Γ (r)

the server switches to the state Γ (m+r). In the state Γ (m+r) no customers are
serviced by the server and a cycle of server readjustment and control takes place.
When a server readjustment terminates the server either chooses next customer
to service if there are any, according to the following rule. Let h(·) be a fixed
mapping of the nonnegative integer lattice X = {0, 1, . . .}m onto {0, 1, . . . ,m}
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with constraints: h(x) = j, x ∈ X implies xj > 0 and only the zero vector
y(0) = (0, 0, . . . , 0) ∈ X is mapped into 0. Then, given that upon a readjustment
cycle termination the sizes of queues are described with a nonzero vector x ∈ X ,
the service starts for a customer from the queue Oj where j = h(x). The cus-
tomer is taken out from the queue to the server. When the queues are empty
upon the readjustment cycle termination, the server switches to the state Γ (0)

waiting for a new arrival. Upon arrival the service of the new customer starts
by the idle server, and the state of the server becomes Γ (j) if the first arrival
occurred from Πj . If upon arrival both servers are in the state Γ (0) then the
server Σ1 begins service. Durations of service cycles and readjustment cycles are
independent with exponential probability distributions. The expected duration
of the state Γ (r) equals βr > 0, 1 � r � 2m. External random environment is
synchronized with the servers. Changes in the environmental state may occur
only at cycle termination epochs. The probability of transition from the state
e(k) to the state e(l) equals ak,l ∈ (0, 1), k, l = 1, 2. So the continuous-time ran-
dom process describing the changes in the random environment is not a Markov
process. After service the customer is either redirected into the queue Or for
repeated service with probability pj,r or leaves the queueing system with proba-
bility pj,0 = 1−∑m

r=1 pj,r. We assume that every customer leaves the queueing
system after a finite number of service cycles with positive probability. Thus,
besides the primary input flows there are input flows of secondary customers
and the resulting input flows have complex probabilistic structure. Finally, the
sojourn cost per unit time for single customer in Oj is given and it equals cj .

All random objects are considered on a probability space (Ω,F,P) where
Ω is a set of elementary outcomes, F is a σ-algebra of events A ⊂ Ω, P is
a probability on F. We shall need random variables χ(ω, t) ∈ {e(1), e(2)} —
the state of the random external environment at time t � 0, Γ (ω, t) ∈ Γ 2 =
{Γ (0), Γ (1), . . . , Γ (2m)} × {Γ (0), Γ (1), . . . , Γ (2m)} — the servers’ states at time t,
κj(t) — the number in Oj at time t, and random vector

κ(ω, t) = (κ1(ω, t), κ2(ω, t), . . . , κm(ω, t)), t � 0.

As usual in probability theory, the argument ω of random objects will be omitted.
Since the future of the process

{(Γ (t), κ(t), χ(t)); t � 0} (1)

after time t is determined only by its state at time t, the termination moments
of the cycles taking place at time t, future arrivals after time t and future states
of the external environment after time t, random process (1) is a Markov process
given an initial distribution, with the state space

S = {(Γ (0), Γ (0), y(0), e(k)) : k = 1, 2}
∪{(Γ (r), Γ (0), y(0), e(k)) : r = 1, 2, . . . , 2m; k = 1, 2}
∪{(Γ (0), Γ (r), y(0), e(k)) : r = 1, 2, . . . , 2m; k = 1, 2}

∪{(Γ (r), Γ (r′), x, e(k)) : r, r′ = 1, 2, . . . , 2m;x ∈ X ; k = 1, 2}.
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Markov process (1) is time-homogeneous. Denote by q(r1, r2, x, k; r
′
1, r

′
2, w, l),

(Γ (r1), Γ (r2), x, e(k)) ∈ S, (Γ (r′1), Γ (r′2), w, e(l)) ∈ S, the transition rates for Markov
process (1). Put q(r1, r2, x, k) = −q(r1, r2, x, k; r1, r2, x, k). Finally, let δs,s′ be
the Kronecker’s delta and set y(s) = (δ1,s, δ2,s, . . . , δm,s) ∈ X , s = 1, 2, . . . , m.

The proof of the next theorem follows the usual technique of considering the
process state changes over small amounts of time, Δt and obtaining Chapman –

Kolmogorov differential equations. Set λ
(k)
+ = λ

(k)
1 + λ

(k)
2 + . . .+ λ

(k)
m , k = 1, 2.

Theorem 1. Let r, r′ = 1, 2, . . . , 2m, s, s′ = 0, 1, . . . , m, x ∈ X, j = 1, 2,
. . . , m, k, l = 1, 2. The transition rates for Markov process (1) are

q(0, 0, y(0), k) = λ
(k)
+ ,

q(r, 0, y(0), k) = q(0, r, y(0), k) = β−1
r + λ

(k)
+ ,

q(r, r′, x, k) = β−1
r + β−1

r′ + λ
(k)
+ ,

q(0, 0, y(0), k; j, 0, y(0), k) = q(r, 0, y(0), k; r, j, y(0), k)

= q(0, r, y(0), k; j, r, y(0), k) = q(r, r′, x, k; r, r′, x+ y(j), k) = λ
(k)
j ,

q(r, 0, y(0), k;m+ r, s, y(0), l) = q(0, r, y(0), k; s,m+ r, y(0), l)

= q(r, r′, x, k;m + r, r′, x+ y(s), l) = q(r′, r, x, k; r′,m + r, x+ y(s), l)

= ak,lβ
−1
r pr,s, 1 � r � m,

q(r, 0, y(0), k; 0, 0, y(0), l) = q(0, r, y(0), k; 0, 0, y(0), l)

= q(r, r′, x, k; j, r′, x, l) = q(r′, r, x, k; r′, j, x, l)

= ak,lβ
−1
r h(x) = j, m+ 1 � r � 2m.

The remaining transition rates equal zero.

It follows from the form of the transition intensities that Markov process (1)
has only stable non-absorbing states and a conservative infinitesimal matrix.

When x = (x1, x2, . . . , xm) ∈ X and v = (v1, v2, . . . , vm) is a real or complex
vector we write vx = vw1

1 ·vw2
2 · · · vxm

m for short, assuming 00 = 1. In the remaining
of this section we assume that for r, r′ = 1, 2, . . . , 2m, j = 1, 2, . . . , m, k = 1,
2, and x ∈ X , the series

βr + βr′

βr + βr′ + λ
(k)
+ βrβr′

×
∑
w∈X

h(w)=j

vw−x (x1 + x2 + · · ·+ xm)!

x1!x2! · · ·xn!

m∏
s=1

( λ
(k)
s βrβr′

βr + βr′ + λ
(k)
+ βrβr′

)ws−xs

depends on x in a finite number of forms. For example, this is the case for priority
algorithms. Let ϑ1, ϑ2, . . . , ϑm be the solution to the system

ϑj =

m∑
r=1

pj,rϑr + βj , j = 1, 2, . . . ,m.
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It can be shown that the solution exists since every customer leaves the queue-
ing system after a finite number of services. Since βj > 0 we have ϑj > 0,
j = 1, 2, . . . , m. Set β− = min{β1, . . . , βm}, β+ = max{β1, , . . . , βm}, β̄− =
min{βm+1, . . . , β2m}, β̄+ = max{βm+1, . . . , β2m}, ϑ− = min{ϑ1, . . . , ϑm},
ϑ+ = max{ϑ1, . . . , ϑm}, ϑ̄ = max{ϑ1 − β1, . . . , ϑm − βm}, β = (β1, . . . , βm),

λ(k) = (λ
(k)
1 , . . . , λ

(k)
m )T , Q = (pj,r)j,r=1,m, ρ(k) = β(Im − QT )−1λ(k), k = 1, 2,

Im is the size m identity matrix.

Theorem 2. Inequality

max
{
ρ(l)β+β̄+ + (al,1ρ

(1) + al,2ρ
(2))

β3
+ + β̄3

+

β− + β̄−
: l = 1, 2

}
< ϑ− − ϑ̄. (2)

is sufficient for the existence of the stationary probability distribution of Markov
process (1).

Proof. Under the assumptions on Markov process (1) its trajectories are piece-
wise constant and have only discontinuities of the first kind. Let τ0 = 0 and τ1,
τ2, . . . be the jump instants of (1). Consider the embedded Markov chain

{(Γi, κi, χi); i = 0, 1, . . .} (3)

where Γi = Γ (τi + 0), κi = κ(τi + 0), χi = χ(τi + 0). Observe that

sup
r,r′,x,k

q(r, r′, x, k) <∞. (4)

By virtue of Theorems 5.4.4, 5.4.4 in [15], inequality (4) and positive recurrence
of all states of Markov chain (3) imply positive recurrence of Markov process (1)
as well as existence of its unique stationary probability distribution. Let us prove
that all the states of Markov chain (3) are positive recurrent. The jump instants
{τi; i = 0, 1, . . .} are generated both by new arrivals or by server operation
terminations. Set Γ̂0 = Γ0, κ̂0 = κ0, χ̂0 = χ0 and let

{(Γ̂i, κ̂i, χ̂i); i = 0, 1, . . .} (5)

be Markov chain (3) sampled at an operation termination by either server. An
operation termination instant θi ∈ {0, 1, . . .} can be identified from the past and
present values of Γi component of (3). Then Strong Markov property ensures
that stochastic sequence (5) is a Markov chain. Denote by

σ = inf{i � 1: Γi = (Γ (0), Γ (0)), κi = y(0), χi = e(1)},
σ̂ = inf{i � 1: Γ̂i = (Γ (0), Γ (0)), κ̂i = y(0), χ̂i = e(1)}

the steps when the first return to the state (Γ (0), Γ (0), y(0), e(1)) occurs for Markov
chains (3) and (5) correspondingly. Obviously, σ � θσ̂. Consider an event

{ω : Γ̂0 = (Γ (0), Γ (0)), κ̂0 = y(0), χ̂0 = e(1), σ̂ = 2i0}
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which occurs if and only if i0 service cycles and i0 readjustment cycles have ter-
minated. In this case no more than i0 primary customers may have entered the
queueing system. Each primary customer invokes exactly three jumps (its ar-
rival, service termination and readjustment termination), while each secondary
customer brings only two jumps (service termination and readjustment termina-
tion). Hence θσ̂ � 3i0. So, on the event {ω : Γ̂0 = (Γ (0), Γ (0)), κ̂0 = y(0), χ̂0 = e(1)}
the inequality σ � 3σ̂ is established. By virtue of Theorem 3 in [13], Markov
chain (5) is positive recurrent, hence

E(σ̂|{ω : Γ̂0 = (Γ (0), Γ (0)), κ̂0 = y(0), χ̂0 = e(1)}) <∞.

By definition, Γ0 = Γ̂0, κ0 = κ̂0, χ0 = χ̂0. Therefore

E(σ|{ω : Γ0 = (Γ (0), Γ (0)), κ0 = y(0), χ0 = e(1)})
� E(3σ̂|{ω : Γ̂0 = (Γ (0), Γ (0)), κ̂0 = y(0), χ̂0 = e(1)}) <∞.

The state (Γ (0), Γ (0), y(0), χ(1)) turns out to be positive recurrent with respect to
Markov chain (3) as well. The theorem is proven.

3 Chung Functionals for Computation of Unloading Cost

Let S = S̃− ∪ S̃0 ∪ S̃+ be a partition of S into nonempty disjoint sets. We call
S̃+ a final set and S̃− a taboo set. Let c(γ, x, e(k)) = c(Γ (r), Γ (r′), x, e(k)) � 0,
γ = (Γ (r), Γ (r′)), be a sojourn cost for Markov process (1) per unit time. Let

η(ω) = inf{t � 0: (Γ (ω, t′), κ(ω, t′), χ(ω, t′)) �∈ S̃−, 0 � t′ � t,

(Γ (ω, t), κ(ω, t), χ(ω, t)) ∈ S̃+}

be the first passage time of the final set S̃+ with taboo set S̃−. Put Ω(r, r′, x, k) =
{ω : Γ (0) = (Γ (r), Γ (r′)), κ(0) = x, χ(0) = e(k)}. Then the cost ζ(ω) of taboo first
passage is defined as

ζ(ω) =

∫ η(ω)

0

c(Γ (ω, t), κ(ω, t), χ(ω, t)) dt.

The mean cost of taboo first passage from the state (Γ (r), Γ (r′), x, e(k)) ∈ S̃0

is defined as E(ζ|Ω(r, r′, x, k) ∩ {ω : η < ∞}). The probability f(r, r′, x, k) =
P({ω : η <∞}|Ω(r, r′, x, k)) is called a taboo-probability (of taboo first passage)
[16]. Numerical evaluation of taboo probabilities and mean costs of taboo first
passage can be carried out by the solving two sets of linear equations. Proofs are
similar to those in [17].
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Theorem 3. Taboo-probabilities {f(r, r′, x, k) : (Γ (r), Γ (r′), x, e(k)) ∈ S̃0} are a
solution of the linear algebraic system

q(r, r′, x, k)f(r, r′, x, k)=
∑

(Γ (s),Γ (s′),w,e(l))∈S̃+

q(r, r′x, k; s, s′, w, l)

+
∑

(Γ (s),Γ (s′),w,e(l))∈S̃0

(s,s′,w,l) �=(r,r′,x,k)

f(s, s′, w, l)q(r, r′, x, k; s, s′, w, l), (Γ (r), Γ (r′), x, e(k)) ∈ S̃0,

(6)

obtained by successive approximations with zero initial conditions. The condi-
tional expected costs of taboo first passage have the form

E(ζ|Ω(r, x, k) ∩ {ω : η <∞})
= G(r, r′, x, k)(f(r, r′, x, k))−1 for f(r, r′, x, k) �= 0, (7)

where the numbers G(r, r′, x, k), (Γ (r), Γ (r′), x, e(k)) ∈ S̃0, are solutions of the
linear algebraic system

q(r, r′, x, k)G(r, r′, x, k) = c(Γ (r), Γ (r′), x, e(k))f(r, r′, x, k)

+
∑

(Γ (s),Γ (s′),w,e(l))∈S̃0

(s,s′,w,l) �=(r,r′,x,k)

G(s, s′, w, l)q(r, r′, x, k; s, s′, w, l), (Γ (r), Γ (r′), x, e(k)) ∈ S̃0,

(8)

obtained by successive approximations with zero initial conditions.

We are interested in computation of the unloading cost for the time-sharing
dual-server queueing system. Let us define the sojourn cost per time unit in the
state (Γ (r), Γ (r′), x, e(k)) by

c(Γ (r), Γ (r′), x, e(k)) = x1c1 + x2c2 + . . .+ xmcm.

Thus defined, the sojourn cost is independent either of the external environment
state or of the server state, and it depends on the sizes of the queues only.
Further, let the state spaceX of the queues be partitioned into disjoint nonempty
subsets X0, X+, X−, X0 ∪X+ ∪X− = 0. The sets are interpreted as the set of
permissible sizes of the queues, as the set of desirable sizes of the queues, and the
set of prohibited (taboo) sizes of the queues correspondingly. The representation
X = X− ∪ X0 ∪ X+ of the queues sizes state space leads to a partition S =
S̃− ∪ S̃0 ∪ S̃+ of the state space of random process (1) with

S̃− = {(γ, x, e(k)) : x ∈ X−}, S̃0 = {(γ, x, e(k)) : x ∈ X0},
S̃+ = {(γ, x, e(k)) : x ∈ X+}.
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For instance, the partition of the state space S can be generated by sets

X+ = {x : xj � Nj , j = 1, . . . ,m}, X− = {x : xj > N ′
j for some j = 1, . . . ,m},

(9)
with some positive integers Nj, N ′

j , j = 1, 2, . . . , m. A switching function
h(·) given, the conditional expected cost of taboo first passage for any initial
state in S̃0 can be computed by means of equations (6), (8), and (7). Choice
between switching functions h1(·) and h2(·) for a partition of the state space S
of process (1) can be carried out by comparison of corresponding values in (7).
A single objective function can be obtained, for instance, by a convolution

J(h, S̃+, S̃0, S̃−) =
1

|S̃0|
∑

(Γ (r),Γ (r′),x,e(k))∈S̃0

G(r, r′, x, k)(f(r, r′, x, k))−1 (10)

of objective functions (7). Now the problem can be stated as follows: given a
partition S = S̃− ∪ S̃0 ∪ S̃+ solve the minimization problem

J(h0, S̃−, S̃0, S̃+) = inf
h(·)

J(h, S̃+, S̃0, S̃−). (11)

For numerical experiments a queueing system with m = 2 input flows was
considered. A program in Octave programming language [18] was developed to
generate and solve systems of linear equations (6), (8). The program uses sparse
representation for big matrices and the default Octave solver. We consider a more
narrow class of switching functions h(·) than that in (11). We chose the following
switching functions for the study. If (x1, x2) �= (0, 0) let hmax(x1, x2) = 1 for
x1 � x2 and hmax(x1, x2) = 2 for x1 < x2, hthr,1(x1, x2) = 1 for x2 = 0 or
x1 � a and hthr,1(x1, x2) = 2 for x2 > 0 and x1 < a, hthr,2(x1, x2) = 2 for
x1 = 0 or x2 � a and hthr,2(x1, x2) = 1 for x1 > 0 and x2 < a. The switching
function hmax performs the “fair” service of the longest queue, hthr,j corresponds
to the threshold policy with the threshold value a > 0 for the queue Oj . When
a = 1 the switching function hthr,j implements a priority service and assigns the
higher priority to the queue Oj .

Lemma 1. For a partition of type (9) and any of the switching functions hmax,
hthr,1, and hthr,2 the taboo-probabilities in (6) are strictly positive.

Proof. It is sufficient to find for every state in S̃0 a path with positive probability
which leads to S̃+ without visiting S̃−. It follows from Theorem 1 that process (1)
can leave each state in S̃0 due to a change in a server state. Assuming that only
this kind of jumps of process (1) takes place, any path in S̃0 leading to S̃+ can
be depicted by a path in X0 leading to X+ if one considers only the changes in
the sizes of the queues. If h(x1, x2) = 1 then the path may have a segment only
from (x1, x2) to (x1 − 1, x2). If h(x1, x2) = 2 then the path may have a segment
only from (x1, x2) to (x1, x2 − 1). Typical paths for different positions of the
point (x1, x2) and different switching functions are shown in Fig. 1. From this
geometric interpretation we may conclude that there is a path from any point in
X0 to X+ for the switching functions under consideration. The claim is proven.
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2x

x 1

X−X0X+

2x

x 1

X−X0X+

Fig. 1. Switching functions: hthr,1 for a = 5 (on the left) and hmax (on the right). A
white circle means switching to service of O1, a black circle means switching to service
of O2.

In our numerical experiments we observed that smaller values of the objective
functions (10) were obtained for hthr,j for some a � Nj , j = 1, 2, and never for
hmax. As an example, see Table 1. We searched for a quasi-optimal switching
function amongst hmax, hthr,1 (1 � a � N ′

1), and hthr,2 (1 � a � N ′
2). The

parameters for the example are: a1,1 = 0.5, a2,2 = 0.8, λ
(1)
1 = 0.3, λ

(2)
1 = 0.6,

λ
(1)
2 = 0.45, λ

(2)
2 = 0.15, p1,1 = 0, p1,2 = 0.05, p2,1 = 0.02, p2,2 = 0.01, β1 =

0.375, β2 = 0.5, β3 = 0.125, β4 = 0.25, c1 = c2 = 1, N1 = 3, N ′
1 = 7, N2 = 2,

N ′
2 = 7. For these parameters condition in Theorem 2 is fulfilled.

Table 1. Average unloading cost Jh = J(h; S̃+, S̃0, S̃−) for different switching functions
(see parameters in the text). The smallest value is in bold face.

hmax
hthr,1 hthr,2

a = 1 a = 2 a = 3 a = 4 a = 5 a = 7 a = 1 a = 2 a = 3 a = 4 a = 5 a = 7

8.745 7.556 7.505 7.527 7.831 12.129 12.831 12.690 10.427 8.617 10.070 9.482 8.443
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