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Abstract. Recently the parametric representation using cochlea behavior has 
been used in different studies related with Automatic Speech Recognition 
(ASR). That is because this hearing organ in mammalians is the most  
important element used to make a transduction of the sound pressure that is re-
ceived by the outer ear. This paper shows how the macro and micro mechanical 
model is used in ASR tasks. The values that Neely, Elliot and Ku founded in 
their works, related with the macro and micro mechanical model such as Neely 
were used to set the central frequencies of a bank filter to obtain parameters 
from the speech in a similar form as MFCC (Mel Frequency Cepstrum Coeffi-
cients) has been constructed.  

An approach that considers a new form to distribute the bank filter in our pa-
rametric representation is proposed. Then this distribution of the bank filter to 
have a different representation of the speech in frequency domain compared 
with MFCC is applied. The response of these three values mentioned above into 
macro and micro mechanical model to create the central frequencies of the bank 
filter were used, then the Mel scale function substituted by a representation 
based in the cochlear response based on the Neely model. This model was used 
with a set of different parameters of the cochlea, used by Nelly, Elliot and Ku in 
their works, such as mass, damping and stiffness; among others. A performance 
of 98 to 100% was reached for a task that uses Spanish isolated digits pro-
nounced by 5 different speakers. Corpus SUSAS with neutral sound records 
with some advantages in comparison with MFCC was applied. 
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1 Introduction 

For a long time Automatic Speech Recognition Systems (ASRs) have used parameters 
related with Cepstrum and Homomorphic Analysis of Speech [1], Linear Prediction 
Coefficient (LPC) [2], Mel Frequency Cepstrum Coefficients (MFCC) [3], and Per-
ceptual Linear Prediction (PLP) [4], these last two being the most important. In each 
of these representations, the principal objective is to have a representation to com-
press speech data without irrelevant information not pertinent to the phonetic analysis 
of the data and to enhance aspects of the signal that contribute significantly to the 
detection of phonetic differences. MFCC and PLP coefficients employ Mel and Bark 



 Using Values of the Human Cochlea in the Macro and Micro Mechanical Model 243 

scales respectively. These consider perceptual aspects to obtain a set of coefficients 
that represent the speech signal. 

On the other hand, the most important organ in human hearing is the cochlea and 
various physiological models have been proposed [5] and [6]. Recently works related 
with the application of the cochlea behavior in ASR systems can be found, that is 
because in recent years the researchers have emphasized “human engineering”, that is, 
to adopt the processing strategies of the human auditory perception. The application 
of such a human perceptual feature may improve ASR performance which has been 
established in literature [7][8][9][10][11][12]. In [12] an extraordinarily precise audi-
tory model was used extracting the excitation dependent shapes of the delay trajecto-
ries and then a set of features were used without any other spectral information to 
carry out speech recognition task under different noise conditions on the TIMIT data-
base. However, average recognition rates do not reach that of the MFCC features 
(except for very low noise SNRs), but the system behaves very stable under different 
noise conditions. In [11] they proposed a feature extraction method for ASR based on 
the differential processing strategy of the AVCN, PVCN and the DCN of the nucleus 
cochlear. The method utilized a zero-crossing with peak amplitudes (ZCPA) auditory 
model as synchrony detector to discriminate the low frequency formants. They used 
HMM recognition using isolated digits that showed better recognition rates in clean 
and non- stationary noise conditions than the existing auditory model. In [10] they 
employed a counterpart of the next physiological processing step in comparison with 
frequency decomposition and compression of amplitudes concepts. A simplified 
model of short-term adaptation was incorporated into MFCC feature extraction. They 
compared the proposal mentioned above with that structurally related to RASTA, 
CMS and Wiener filtering which performs well in combination with Wiener filtering. 
Compared with the structurally related RASTA, the adaptation model provides supe-
rior performance on AURORA 2, and, if Wiener filtering is used prior to both ap-
proaches, on AURORA 3 as well. 

2 Characteristics and Generalities 

The cochlea is a long, narrow, fluid-filled tunnel which spirals through the temporal 
bone. This tunnel is divided along its length by a cochlear partition into an upper 
compartment called scala vestibuli (SV) and lower compartment called scala timpani 
(ST). At the apex of the cochlea, SV and ST are connected to each other by the heli-
cotrema [13]. A set of models to represent the operation of the cochlea has been pro-
posed [14][15][16][17]; among others. In mammals, vibrations of the stapes set up a 
wave with a particular shape on the basilar membrane. The amplitude envelope of the 
wave is first increasing and then decreasing, and the position at the peak of the 
envelope is dependent on the frequency of the stimulus [18]. The amplitude of the 
envelope is a two-dimensional function of distance from the stapes and frequency of 
stimulation. The curve shown in Fig. 1 is a cross-section of the function for fixed 
frequency. If low frequencies excite the cochlea, the envelope is nearest to the apex, 
but if high frequencies excite it the envelope is nearest to the base.  

This paper proposes an equation extracted from the fluid mechanical model to  
find a relationship between these frequencies and the place of the excitation into the 
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cochlea. With that value a new distribution of the bank filter to extract parameters for 
ASR tasks is proposed. 

In the micromechanical the anatomical structure of a radial cross-section (RCS) of 
the cochlear partition (CP) is illustrated in the following figure 2. In the model, the 
basilar membrane (BM) and tectorial membrane (TM) are each represented as a 
lumped mass with both stiffness and damping in their attachment to the surrounding 
bone. When the cochlea determines the frequency of the incoming signal from the 
place on the basilar membrane of maximum amplitude, the organ of Corti is excited, 
in conjunction with the movement of tectorial membrane; the inner and outer hair 
cells are excited obtaining an electrical pulse that travels by auditory nerve. 

 

 
 

Fig. 1. Wave displacement inside cochlea 

 
 
 

   

(a)                                                                                (b) 

Fig. 2. Anatomical structure of the cochlear partition (a). The outer hair cells, micro mechanical 
representation (b). 
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Now the modeling cochlear will be divided in two ways of study. The first is the 
hydrodynamic movement that produced a movement on the basilar membrane and the 
second is the movement of the outer hair cells. This is named as the model of Macro 
and Micro Mechanical Cochlear [17]. The equations that describe the Macro Mechan-
ical Cochlear are [17]: 

                                                                                              
(1) 

                                               
(2)

 

                                              
(3) 

The equations (1), (2) and (3) were solved by finite difference, using central differ-
ences for (1), forward differences for the (2) and backward difference for (3), generat-
ing a tri-diagonal Matrix system[16] which we solved using the Thomas algorithm. It 
represents the Micro mechanical, because it uses the organ of Corti values. 

 

 

 

 

(4) 

 
The solution for Pd obtains the maximum amplitude on the basilar membrane 

shown in Figure 3. For these experiments the cochlear distance pattern is obtained 
manually. As can be seen, to solve equation 4 a set of variables related with the phy-
siology of the cochlea is needed and some of these variables are described in table 1. 
These values are immersed into Zp and Zm; for example in [17]. 

Figures 3, and 4; show the behavior of the basilar membrane with the values shown 
in table 1. As is seen, before 300 Hz the behavior of the micro and macro mechanical 
model is not adequate, independently of the parameters used. This result is a conse-
quence of the characteristics of the model proposed by [17]. Proposing our analysis 
from this frequency to 4.5 KHz was decided. Also, the response obtained has a beha-
vior logarithmic. This is an important indication because the Mel function is related 
with a similar mathematical function. 
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Table 1. Values used in equation 

 

 

 
 

Fig. 3. Neely´s model using his parameters 
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Fig. 4. Neely´s model using Elliot parameters 

As mentioned above, the Neely model and later works have considered putting a 
number of these micro-mechanisms along the cochlea at the same distance between 
them. For that, this principle to establish the following relation between a minimal 
and maximal distance was used. 

                           (5) 

Where dmin and dmax are obtained from Figure 3 and 4, considering that Fmin=300 
Hz and Fmax=4.5 KHz. This paper proposed a space equidistant between different 
points to analyze the cochlea. After that, for each distance one specifically frequency 
of excitation to the Basilar Membrane was obtained. 

3 Experiments and Results 

From the last analysis a computational model to obtain the distance where the maxi-
mum displacement of the basilar membrane occurs to a specific excitation frequency 
of the system was developed, which depends of the physical characteristics of the 
basilar membrane. The following procedure describes the computational model of the 
cochlea using this propose [20]. It is important to mention that the maximum response 
of the pressure curve used in [19] was obtained. 
 

1. Obtain speech signal, realize preprocessing (It 
includes pre-emphasis, segmentation, window-
ing and feature extraction), for each sentence. 

2. In the feature extraction, the same procedure as 
MFCC was used but the filter bank is con-
structed following the next steps. 

2.4 Determine the frequency related with 
these distances, this represents the cen-
ter of the filter bank.  

2.5 Construct filter bank with frequency 
center obtained from the analysis of the 
Neely model using values in table 1. 
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2.1 Take the minimal and maximal frequency 
where filter bank are going to be con-
structed. 

2.2 Calculate maximal and minimal distance 
from the stapes of the cochlea, nearer to 
start implies high frequencies, farthest 
implies low frequencies. 

2.3 Determine a set of distances equally 
spaced 

3. Follow the same steps to obtain MFCC, 
multiply spectral representation from 
Fourier Transform with filter bank, calcu-
late energy by bands using logarithm, and 
finally, apply discrete cosine transform. 

4. Obtain a new set of coefficients for each 
speech signal. 

5. Train the ASR and proceed with recogni-
tion task using the new parameters.  

 

A database with 5 speakers that pronounced Spanish isolated digits, from 0 to 9  
was applied as workbench that is “cero, uno, dos, tres, cuatro, cinco, seis, siete, ocho 
and nueve”. LPC, MFCC, CLPC were used and our coefficients named EPCC (Earing 
Perception Cepstrum Coefficients) obtaining better percent correct recognition in 
some tasks using them in comparison with others representations mentioned above. 
HTK Hidden Markov Model Toolkit was used as training and recognition software; 
our new parameters were added into HSigp.c file, contained inside HTK 
http://htk.eng.cam.ac.uk, and were used in tasks of ASR employing HTK.  

 This first experimental used a database that contains only digits in the Spanish 
language and the characteristics of the samples were frequency sample 11025, 8 bits 
per sample, PCM coding, mono-stereo. The evaluation of the experiment proposed 
involved 5 people (3 men and 2 women) with 300 speech sentences to recognize for 
each one ( 100 for training task and 200 for recognition task). 1500 speech sentences 
extracted from 5 speakers individually were taken, and the Automatic Speech Recog-
nition trained using Hidden Markov Models with 6 states (4 states with information 
and 2 dummies to connection with another chain). Also, 3 Gaussian Mixture for each 
state in the Markov chain were employed. The parameters extracted from the speech 
signal were 39 (13 MFCC, 13 delta and 13 energy coefficients) when using MFCC or 
our proposal, and used to train the Hidden Markov Model. Table 1 contains results 
obtained in percentages when using LPC, CLPC, MFCC and our parametric represen-
tation to train as parameters. Table 2 shows results using Delta and Acceleration coef-
ficients. It is important to mention that HTK give us results in two forms: by sentence 
and by words http://htk.eng.cam.ac.uk. We show both for reasons of consistency. 
Table 3 contains results obtained in percentage when using LPC, CLPC and MFCC, 
DELTA, ACCELERATION AND THIRD DIFFERENTIAL.  

Table 2. LPC, CLPC and MFCC coefficients 

SENTENCES WORDS 

PARAMETERS/# 

STATES 

4 5 6 PARAMETERS/# 

STATES 

4 5 6 

LPC 87.5 94 94 LPC 87.94 94.47 94.47 

CLPC 90 97.5 98.5 CLPC 90.45 97.99 98.99 

MFCC 97.5 97 99 MFCC 97.99 97.49 99.5 

EPCC KU 98 99 99.5 EPCC KU 98.45 99.5 99.8 
EPCC ELLIOT 98.5 98.5 99 EPCC ELLIOT 98.75 98.75 99.5 
EPCC NEELY 98.7 99 99.5 EPCC NEELY 98.5 99.5 99.75 
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Table 3. LPC, CLPC, MFCC, DELTA AND ACCELERATION coefficient 

SENTENCES WORDS 

PARAMETERS/# 

STATES 

4 5 6 PARAMETERS/# 

STATES 

4 5 6 

LPC 79 90.5 91.5 LPC 79.4 99.4 91.96 

CLPC 93 99 99 CLPC 93.47 99.5 99.5 

MFCC 99 99 99 MFCC 99.5 99.5 99.5 

EPCC KU 100 100 100 EPCC KU 100 100 100 
EPCC ELLIOT 100 100 100 EPCC ELLIOT 100 100 100 
EPCC NEELY 100 100 100 EPCC NEELY 100 100 100 

 

Table 4. LPC, CLPC, MFCC AND DELTA, ACCELERATION, DELTA, AND THIRD 
DIFFERENTIAL coefficients 

SENTENCES WORDS 

PARAMETERS/# 

STATES 

4 5 6 PARAMETERS/# 

STATES 

4 5 6 

LPC 77 89.5 89 LPC 77.39 89.95 89.45 

CLPC 89.5 99 99 CLPC 89.95 99.5 99.5 

MFCC 98.5 99 99 MFCC 98.99 99.5 99.5 

EPCC KU 100 100 100 EPCC KU 100 100 100 
EPCC ELLIOT 100 100 100 EPCC ELLIOT 100 100 100 
EPCC NEELY 100 100 100 EPCC NEELY 100 100 100 

 
In the second experiment, a corpus elaborated by J. Hansen at the University of 

Colorado Boulder was used. He has constructed database SUSAS (Speech Under 
Simulated and Actual Stress) http://catalog.ldc.upenn.edu/LDC99S78.Only 9 speakers  
 

Table 5. Results obtained using HTK, SUSAS Corpus and manual labeling 

 MFCC EPCC Using 

Neely values 

EPCC Using Ku 

values 

EPCC Using 

Elliot values 

sen-

tence 

word sen-

tence 

word sen-

tence 

word sen-

tence 

word 

boston1 91.84 92.06 90.61 90.87 90.2 90.48 89.39 89.68 

boston2 95.51 95.63 93.47 93.65 93.47 93.65 93.06 93.25 

boston3 96.73 96.83 93.88 94.05 95.92 96.03 96.33 96.43 

general1 96.73 96.83 92.24 92.46 93.88 94.05 93.88 94.05 

general2 94.29 94.44 90.61 90.87 90.61 90.87 89.39 89.68 

general3 93.47 93.65 88.16 88.49 93.47 93.65 93.06 93.25 

nyc1 91.84 92.06 91.84 91.67 87.35 87.3 96.33 96.43 

nyc2 91.02 91.27 91.84 92.06 86.53 86.9 93.88 94.05 

nyc3 95.92 96.03 92.65 92.86 90.61 90.87 89.39 89.68 
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with ages ranging from 22 to 76 were used and we applied normal corpus not under 
Stress sentences contained into corpus. The words were “brake, change, degree, desti-
nation, east, eight, eighty, enter, fifty, fix, freeze, gain, go, hello, help, histogram, hot, 
mark, nav, no, oh, on, out, point, six, south, stand, steer, strafe, ten, thirty, three, 
white, wide, & zero”. A total of 4410 files of speech were processed. Finally, Tables 
4 and 5 show results when using our proposal (Earing Perceptual Cepstrum Coeffi-
cients –EPCC-) the best representations used in the state of the art and in the last 
experiment versus MFCC in SUSAS corpus. 

4 Conclusions and Future Works 

This paper describes new parameters for ASRs tasks. They employ the functionality 
of the cochlea, the most important hearing organ of humans and mammalians. At this 
moment, the parameters used for the MFCC analysis have been demonstrated to be 
the most important parameters and the most used for this task. For many years a great 
diversity of models that attempt describing the functionality of the ear have been 
proposed and are implicit that this phenomenon has been used for ASR based on 
phenomenological models. Another alternative was employed using a physiological 
model based in macro and micro mechanical proposed by Neely. This article demon-
strated that the Neely cochlea model can be used to obtain speech signal parameters 
for Automatic Speech Recognition. In conclusion, the cochlea behavior can be used to 
obtain these parameters and the results are adequate. 
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