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Preface

The Mexican International Conference on Artificial Intelligence (MICAI) is a
yearly international conference series organized by the Mexican Society of Arti-
ficial Intelligence (SMIA) since 2000. MICALI is a major international artificial
intelligence forum and the main event in the academic life of the country’s grow-
ing artificial intelligence community.

MICALI conferences publish high-quality papers in all areas of artificial in-
telligence and its applications. The proceedings of the previous MICAT events
have been published by Springer in its Lecture Notes in Artificial Intelligence
series, vols. 1793, 2313, 2972, 3789, 4293, 4827, 5317, 5845, 6437, 6438, 7094,
7095, 7629, 7630, 8265, and 8266. Since its foundation in 2000, the conference
has been growing in popularity and improving in quality.

According to two main areas of artificial intelligence—modeling human men-
tal abilities on the one hand and optimization and classification on the other
hand—the proceedings of MICAI 2014 have been published in two volumes.
The first volume, Human-Inspired Computing and Its Applications, contains 44
papers structured into seven sections:

Natural Language Processing

— Natural Language Processing Applications

Opinion Mining, Sentiment Analysis, and Social Network Applications
— Computer Vision

Image Processing

Logic, Reasoning, and Multi-agent Systems

— Intelligent Tutoring Systems

The second volume, Nature-Inspired Computation and Machine Learning,
contains 44 papers structured into eight sections:

— Genetic and Evolutionary Algorithms

— Neural Networks

— Machine Learning

— Machine Learning Applications to Audio and Text
— Data Mining

— Fuzzy Logic

— Robotics, Planning, and Scheduling

— Biomedical Applications

This two-volume set will be of interest to researchers in all areas of artificial
intelligence, students specializing in related topics, and to the general public
interested in recent developments in artificial intelligence.

The conference received for evaluation 350 submissions by 823 authors from
a record high number of 46 countries: Algeria, Argentina, Australia, Austria,
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Brazil, Bulgaria, Canada, Chile, China, Colombia, Cuba, Czech Republic,
Ecuador, Egypt, France, Germany, India, Iran, Ireland, Israel, Italy, Jordan,
Kazakhstan, Lithuania, Malaysia, Mexico, Morocco, Nepal, Norway, Pakistan,
Panama, Paraguay, Peru, Poland, Portugal, Russia, Singapore, Slovakia, South
Africa, Spain, Sweden, Turkey, UK, Ukraine, USA, and Virgin Islands (USA);
the distribution of papers by tracks is shown in Table 1. Of these submissions, 87
papers were selected for publication in these two volumes after a peer-reviewing
process carried out by the international Program Committee. The acceptance
rate was 24.8%.

In addition to regular papers, the second volume contains an invited paper
by Oscar Castillo, Patricia Melin, and Fevrier Valdez: “Nature-Inspired Opti-
mization of Type-2 Fuzzy Systems.”

The international Program Committee consisted of 201 experts from 34 coun-
tries: Australia, Austria, Azerbaijan, Belgium, Brazil, Canada, China, Colombia,
Czech Republic, Denmark, Finland, France, Germany, Greece, India, Israel, Italy,
Japan, Mexico, The Netherlands, New Zealand, Norway, Poland, Portugal, Rus-
sia, Singapore, Slovenia, Spain, Sweden, Switzerland, Tunisia, Turkey, UK, and
USA.

Table 1. Distribution of papers by tracks

Track Submissions Accepted Rate
Natural Language Processing 59 19 32%
Machine Learning and Pattern Recognition 42 12 29%
Logic, Knowledge-Based Systems, Multi-Agent 40 ] 20%
Systems and Distributed Al 0
Computer Vision and Image Processing 38 13 34%
Evolutionary and Nature-Inspired Metaheuristic 33 6 18%
Algorithms
Data Mining 29 7 24%
Neural Networks and Hybrid Intelligent Systems 28 7 25%
Robotics, Planning and Scheduling 24 5 21%
Fuzzy Systems and Probabilistic Models in
Decision Making 23 4 17%
Bioinformatics and Medical Applications 18 3 17%
Intelligent Tutoring Systems 16 3 19%

MICAT 2014 was honored by the presence of such renowned experts as Hojjat
Adeli of The Ohio State University, USA, Oscar Castillo of Instituto Tecnoldgico
de Tijuana, Mexico, Bonnie E. John of IBM T.J. Watson Research Center, USA,
Bing Liu of the University of Illinois, USA, John Sowa of VivoMind Research,
USA, and Vladimir Vapnik of the NEC Laboratories, USA, who gave excellent
keynote lectures. The technical program of the conference also featured tutori-
als presented by Roman Bartak of Charles University, Czech Republic; Oscar
Castillo of Tijuana Institute of Technology, Mexico; Héctor G. Ceballos of Clark
& Parsia LLC, USA, and Héctor Pérez Urbina of Tecnolégico de Monterrey,
Mexico; Sanjoy Das of Kansas State University, USA; Alexander Gelbukh of
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Instituto Politécnico Nacional, Mexico; Bonnie E. John of IBM T. J. Watson
Research Center, USA; Bing Liu of University of Illinois, USA; Rail Monroy of
Tecnoldgico de Monterrey, Mexico; John Sowa of VivoMind Research, USA; and
Luis Martin Torres Trevino of Universidad Auténoma de Nuevo Leén, Mexico,
among others. Three workshops were held jointly with the conference: the 7th
International Workshop on Hybrid Intelligent Systems, HIS 2014; the 7th Inter-
national Workshop on Intelligent Learning Environments, WILE 2014, and the
First International Workshop on Recognizing Textual Entailment and Question
Answering, RTE-QA 2014.

The authors of the following papers received the Best Paper Award on the
basis of the paper’s overall quality, significance, and originality of the reported
results:

1" place: “The Best Neural Network Architecture,” by Angel Kuri-Morales
(Mexico)

2" place: “Multisensor-Based Obstacles Detection in Challenging Scenes,” by Yong
Fang, Cindy Cappelle, and Yassine Ruichek (France)

“Intelligent Control of Induction Motor-Based Comparative Study:
Analysis of Two Topologies,” by Moulay Rachid Douiri, El Batoul
Mabrouki, Ouissam Belghazi, Mohamed Ferfra, and Mohamed Cherkaoui
(Morocco)

3" place: “A Fast Scheduling Algorithm for Detection and Localization of Hidden
Objects Based on Data Gathering in Wireless Sensor Networks,” by
Eugene Levner, Boris Kriheli, Amir Elalouf, and Dmitry Tsadikovich
(Israel)

The authors of the following papers selected among all papers of which the
first author was a full-time student, excluding the papers listed above, received
the Best Student Paper Award:

1* place: “Solving Binary Cutting Stock with Matheuristics,” by Ivan Adrian Lopez
Sanchez, Jaime Mora Vargas, Cipriano A. Santos, and Miguel Gonzalez
Mendoza (Mexico)

“Novel Unsupervised Features for Czech Multi-label Document
Classification,” by Tomas Brychcin and Pavel Krdl (Czech Republic)

We want to thank everyone involved in the organization of this conference.
In the first place, these are the authors of the papers published in this book: It is
their research work that gives value to the book and to the work of the organizers.
We thank the track chairs for their hard work, the Program Committee members,
and additional reviewers for their great effort spent on reviewing the submissions.

We are grateful to the Dean of the Instituto Tecnolégico de Tuxtla Gutiér-
rez (ITTG), M.E.H. José Luis Méndez Navarro, the Dean of the Universidad
Auténoma de Chiapas (UNACH), Professor Jaime Valls Esponda, and M.C.
Francisco de Jests Sudrez Ruiz, Head of IT Department, for their instrumen-
tal support of MICAI and for providing the infrastructure for the keynote talks,
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tutorials, and workshops, and to all professors of the Engineering School of Com-
putational Systems for their warm hospitality and hard work, as well as for their
active participation in the organization of this conference. We greatly appreci-
ate the generous sponsorship provided by the Government of Chiapas via the
Conventions and Visitors Office (OCV).

We are deeply grateful to the conference staff and to all members of the Local
Committee headed by Imelda Valles Lépez. We gratefully acknowledge support
received from the project WIQ-EI (Web Information Quality Evaluation Initia-
tive, European project 269180). The entire submission, reviewing, and selection
process, as well as preparation of the proceedings, was supported for free by the
EasyChair system (www.easychair.org). Finally, yet importantly, we are very
grateful to the staff at Springer for their patience and help in the preparation of
this volume.

October 2014 Alexander Gelbukh
Félix Castro Espinoza
Sofia N. Galicia-Haro
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Performance Classification of Genetic Algorithms
on Continuous Optimization Problems

Noel E. Rodriguez-Maya, Mario Graff, and Juan J. Flores
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Av. Francisco J. Mugica S/N Ciudad Universitaria, Morelia, Michoacan, Mexico
{nrodriguez,mgraffg}@dep.fie.umich.mx,
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Abstract. Modelling the behaviour of algorithms is the realm of Evo-
lutionary Algorithm theory. From a practitioner’s point of view, theory
must provide some guidelines regarding which algorithm/parameters to
use in order to solve a particular problem. Unfortunately, most theoret-
ical models of evolutionary algorithms are difficult to apply to realistic
situations. Recently, there have been works that addressed this problem
by proposing models of performance of different Genetic Programming
Systems. In this work, we complement previous approaches by propos-
ing a scheme capable of classifying the hardness of optimization problems
based on different difficulty measures such as Negative Slope Coefficient,
Fitness Distance Correlation, Neutrality, Ruggedness, Basins of Attrac-
tion, and Epistasis. The results indicate that this procedure is able to
accurately classify the performance of the GA over a set of benchmark
problems.

Keywords: Algorithm Performance Classification, Genetic Algorithms,
Optimization Problems.

1 Introduction

Evolutionary Algorithms (EAs) are popular forms of search and optimisation
[10,5]. Their invention dates back many decades (e.g., see [3]). Consequently,
one might expect that, by now, there would be a rich set of theoretically-sound
guidelines to decide which EAs and its parameters to use in order to solve a
particular problem. The problem is that sound theoretical models of EAs and
precise mathematical results are hard to obtain. A key reason for this is that
each component of a EA requires a different theoretical model.

Perhaps, the first works that can give some sort of guidelines to a practitioner
are the works related to the problem of understanding what makes a problem
easy or hard for EAs. The notion of fitness landscape, originally proposed in [39],
underlies many recent approaches to problem difficulty. It is clear, for example,
that a smooth landscape with a single optimum will be relatively easy to search
for many algorithms, while a very rugged landscape, with many local optima,
may be more problematic [11,15]. Nonetheless, a graphical visualisation of the

A. Gelbukh et al. (Eds.): MICAI 2014, Part II, LNAI 8857, pp. 1-12, 2014.
© Springer International Publishing Switzerland 2014
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fitness landscape (FL) is rarely possible given the size and dimensions of a typical
search space.

Given the inability to depict a traditional fitness landscape and the subjective
that would be to draw conclusions from observation of fitness landscapes, there
have been proposed descriptors, i.e. hardness measures, that try to capture the char-
acteristics of the fitness landscape. Perhaps, one of the first hardness measures is
the Fitness Distance Correlation (FDC) proposed in [13]. The FDC has been suc-
cessfully applied to measure the hardness of different problems solved by GA. The
drawback is that the FDC requires to know beforehand the problem’s optimum
solution. This is unrealistic in any practical application. A measure that tries to
overcome the FDC limitation is the negative slope coefficient NSC proposed by
Vanneschi et al. [34]. NSC is based on the concept of fitness cloud which is a scatter
plot of parent /offspring fitness pairs. Different characteristics of the fitness land-
scape have been related to the hardness of the problem. In this category one can
find neutrality [17], which is related to the flatness of the landscape. On the oppo-
site site it is found ruggedness [18], which is related to the number of local optima.
Related to the smoothness of a landscape is Basins of Attraction [22,19], which de-
scribes the areas that lead the search to a local optimum. Another measure relating
the phenotype with the genotype is Epistasis [4,26].

Although, the aforementioned hardness measures have shown success in esti-
mating the difficulty of different problems, there are a number of open questions
that can be addressed. Firstly, these measures have been tested on different
classes of problems, so a direct comparison between them has not been made.
Secondly, these measures mostly have only been tested to discern between easy
and hard problems. And thirdly, to the best of our knowledge, these have not
been used together to estimate the difficulty of a particular problem solved by
a GA.

In this contribution, we start filling these research gaps by first comparing
the capacity of the aforementioned difficulty measures to estimate the hardness
of continuous optimization problems solved by a GA. Secondly, we compare
these indicators using a finer granularity of hardness, that is, these indicators
are tested on whether these are capable of categorizing the problem hardness
into three categories: easy, medium, and hard problems. Thirdly, these hardness
measures are combined in a machine learning algorithm in order to classify the
problem hardness in the three classes mentioned above. The results show that the
hardness measures are capable of correctly estimating the hardness of an unseen
problem approximately 70% to 80% of the time, and using a combination of all
the features the correct classification reaches to 96%.

This paper are organized as follow: Section 2 reviews the related work. Sec-
tion 3 defines the difficulty indicators used in this work. Section 4 describes
the proposed procedure to classify the performance of Genetic Algorithms. Sec-
tion 5 presents the experimental design, and the results. A discussion and the
conclusions of the present work are presented in Section 6.
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2 Related Work

Our work is related to estimate the performance of an EA when solving a par-
ticular problem. In the field of Genetic Programming (GP) there has been a
number of models that are able to estimate the performance of GP on different
classes of problems. Graff and Poli proposed a model of performance [20]; the
idea is that the performance of a GP system on problem can be estimated using
a set of points from the search space. Later on, Graff et. al proposed a different
model of performance [7], based on the the discrete derivative of a function, and,
consequently, it has only been tested on symbolic regression problems. These two
models have been successfully applied to different symbolic regression problems,
Boolean induction problems, and time series forecasters [6], among other classes
of problems. Continuing with estimating the performance of GP Trujillo et.
al [30,31,29] proposed different approaches to estimate the performance of GP
on classification problems.

Moving away from the evolutionary computation literature, this work is also
related to the algorithm selection problem [27] and algorithm portfolios [28]. The
algorithm selection problem is the problem of deciding which algorithm to use
to solve a particular problem from a set of available algorithms. An algorithm
portfolio is a particular way of solving the algorithm selection problem based on
choosing a collection of algorithms that are run in parallel or in sequence to solve
a particular problem. The connection between these problems and our current
work is that in order to solve the algorithm selection problem or to create an
algorithm portfolio, a model of performance is created to select the algorithm.

The methodology proposed here complements the related work by the following
facts. First, the models of performance developed for GP uses the fact that GP is
used in the context of supervised learning and consequently one has a function or
a set of cases that needs to be learned by GP. The hardness measures used in these
works rely on this assumption. Secondly, the works used to solve the algorithm se-
lection problem in general use hardness measures that are specific to the problem
being solved, for example, Xu et. al [40] used descriptors related to SAT problems.
Instead, our approach uses hardness measures that can be applied to any opti-
mization algorithm, consequently, these measures are not specific to a particular
problem neither these features rely on problems of supervised learning.

3 Difficulty Indicators

Let us start describing in more detail the different hardness measures used in
this contribution.

Fitness Distance Correlation (FDC). Deceptive problems in Evolutionary
Computation Algorithms (ECA) usually mislead the search to some local
optima rather to the global optima [2]. The more deceptive the problem
is, the harder to solve [2]. A way to measure the level of deceptiveness is
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to get the Fitness Distance Correlation (Jones and Forrest [13]). The FDC
measures the extent to which the fitness function values are correlated with
distance to a global optimum. FDC takes a sample of individuals and com-
putes the level of correlation between the set of fitnesses and distances to
the optimum [35]. The most important flaw presented by FDC it the fact
that it is not predictive; the global optima must be known beforehand; this
is unrealistic in real optimisation problems [32]. Implementation details can
be found in [13].

Negative Slope Coefficient (NSC). The Negative Slope Coefficient is a tool

that based on the concept of evolvability, gives a measure of problem diffi-
culty in ECA [36,21]. The term evolvability is the capacity of genetic oper-
ators to improve its fitness quality [34]; the most common form of study of
evolvability is to plot the fitness values of neighbours against the fitness val-
ues of individuals, where the neighbours are obtained by applying one step
of a genetic operator; the set of neighbors is called fitness cloud [24]. The
main advantage of this method is that it is predictive and it is not necessary
to know a prior an optimal solution [21]. The main disadvantages of NSC is
how to tune the bins in the fitness cloud and that there is no technique to
normalize the NSC values into a given range [33,24]. Implementation details
can be found in [36,34].

Neutrality. The lack of improvement in fitness is not due to the population

being trapped in local optima. In many real-world problems it is possible
(or even common) to have a large amount of neutrality, so the dynamics
of evolution must be seen in terms of navigating among neutral networks
that eventually lead to higher-fit neutral networks [17]. FL which include
neutrality have been conceptualized as containing neutral networks [14,23].
A neutral network is sometimes defined as a set of points in the search space
with identical fitness [23]. Implementation details can be found in [37].

Ruggedness. Ruggedness is a metric related to the number of local optima on a

FL [18]. A rugged landscape corresponds to a search space with an irregular
topography consisting of numerous peaks (local optima) [16]. In general,
search algorithms struggle to optimise very rugged landscapes, because the
algorithms can get trapped in local optima [19,38]. Implementation details
can be found in [18].

Basins of Attraction. Basins of Attraction and Smoothness are related con-

cepts; basins of attraction are areas that lead to a local optimum [22,19].
A smooth landscape is one where neighbouring points have nearly the same
fitness value. Smoothness also relates to the size of the basins of attraction.
A landscape is smooth if the number of optima is small and the optima have
large basins of attraction [19]. The number of local optima in a landscape
clearly has some bearing on the difficulty of finding the global optimum.
However, it is not the only indicator, the size of the basins of attraction of
the various optima is also an important influence [25]. Implemenation details
can be foun in [22].

Epistasis. In genetics, the term Epistasis refers to the masking (phenotype)

effects of a set of genes by another set of genes. This concept was introduced
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by Davidor [4] as a tool for the evaluation of interdependences between
genes. Epistasis can be thought of as expressing a degree of non-linearity in
the fitness function, and roughly speaking, the more epistatic the problem is,
the harder it may be for a genetic algorithm to find its optimum [1]. Analysis
of Variance (ANOVA) is usually employed to evaluate the characteristic of
model with real coded parameters [1]. Implementation details can be found
in [1].

4 Performance Classification for Genetic Algorithms

This section explains the main contribution of the paper, which is the classifica-
tion of the performance of Genetic Algorithms in the optimization of two dimen-
sions problems. To classify the hardness of a problem, we consider as problem
features a set of features that characterizes its fitness landscape.

This section formally defines the problem and provides algorithms that allows
us to perform the classification task we have in mind.

4.1 Problem Definition

The problem addressed by this contribution is to learn a function Performance
Classification PC which establishes a map from the set of problems F' to the set
of difficulty indicators DI. The mapping is defined in Equation 1.

PC:F — DI (1)

4.2 Measure of Relative Performance

It turns out that the set of measures of problem difficulty are not sufficient to
determine the hardness of a problem by themselves. To complement the informa-
tion in the training set and being able to predict the difficulty of a new problem,
we execute GA on each problem and measure its performance. The ability of GA
to solve a problem depends mainly on two parameters: precision and population
size. GA is executed on each problem for different values of those parameters and
measure its performance on each case. The performance of GA on each setting of
those parameters is then discretized and converted into a label of difficulty. Now
the problem is to determine a function that maps the complete set of problem
features to a label that indicates the difficulty of the problem. All these notions
will be formally defined in the rest of this section.

Definition 1. Function MoD computes the measures of difficulty defined in
Section 3 for a problem, specified by its objective function.

MoD : F — RS (2)
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GA may or may not be successful in determining the optimum of a given
problem. Since both the domain and range of the set of problems addressed in
this work are real-valued, it is very unlikely that any metaheuristic used for this
optimization process to get the exact optimum. Given that, we need to relax
the optimization problem and obtain a quasi-optimal value, to a given precision.
The success of GA to determine a quasi-optimal solution of a problem up to
a precision value, depends on the population size (given a constant number of
generations for all problems). Population-based metaheuristics, particularly GA,
are stochastic in nature, so we need to run the same experiment a number of
times, to determine the statistical success rate of GA on every function. Let
us call the success rate of GA on solving function f at precision €, P.(f). This
success rate is relative to the values of those parameters, therefore it will be called
relative performance; this relative performance indicator will be computed for
all the functions analyzed in this work for given sets of precision values PV and
population sizes PS. The relative performance is only a preliminary step towards
the computation of an indicator of Relative Difficulty, to measure how hard it
is for GA to solve that problem at the indicated precision level and population
size. Let us call the set of indicators of Relative Difficulty RD.

Definition 2. Given a problem f, function RD determines its Relative Diffi-
culty level at given precision level and population size.

RD:F x PV x PS— DI (3)

In this contribution, we are considering a coarse granularity for the Relative
Difficulty indicator; i.e., easy, medium, difficult. This indicator can be determined
as indicated by Equation 4.

difficult, if 0 < P(f) <3}
RD = { medium, if ;’ <P(f) < g (4)
easy, if 2 <P(f) <1.0

Once the relative performance has been computed for the set of functions
included in the training set, function RD can be determined using any machine
learning classification method (see [9]). Section 5 provides details of performance
of several classification methods used to implement RD.

5 Results

In order to test our approach, we decided to measure the performance of a gener-
ation GA with tournament selection on a set of 110 continuous optimization two
dimensional problems F (see [12]). Their short names are: F = {Ackley, Beale,
Bohachevsky, Booth, Branin, Dizonprice, Goldsteinprice, Griewank, Hump,
Michalewicz, Rastrigin, Rosenbrock, Schwefel, Shubert, Sphere, Trid, Zakharov,
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Dropwave, Eggholder, Holder, Levyl3, Styblinskitang, Randompeaks, Sumofdif-
ferentpower, Levy, Dejong, Langermann, Himmelblau, Sumsquares, Schaffer2,
Easom, Matyas, Crossintray, Bukin, Schaffer, Equalpeaks, Ackley2, Ackleys,
Ackleys4, Adjiman, Alpinel, Alpine2, Bartels, Biggexp2, Bird, Bohachevsky?2,
Bohachevsky3, Braninrcos, Braninrcos2, Brent, Brown, Bukin2, Buking, Three-
humpcamel, Sizhumpcamel, Chenbird, Chenv, Chichinadze, Chungreynolds,
Cosinemizture, Csendes, Cube, Damavandi, Deckkersaarts, Elattarvidyasagar-
dutta, Eggcrate, Fxponential, Exp2, Freudensteinroth, Giunta, Hansen, Hosaki,
Jennrichsampson, Keane, Leon, Mccormick, Mishra3, Mishra4, Mishra),
Mishra6, Mishra8, Penholder, Pathological, Periodic, Powellsum, Pricel, Price2,
Price3, Price4, Qing, Quadratic, Quartic, Quintic, Rosenbrockmodified, Rotat-
edellipse, Rotatedellipse2, Rump, Salomon, Sargan, Schaffer3, Schumersteiglitz,
Schwefel2/, Schwefel222, Schwefel236, Strechedvsinewave, Testtubeholder, Tre-
canni, Trefethen, Trigonometric, Trigonometric2}.

Table 1 shows the parameters used in the experiments. We used 10 different
values of population size (PS) and also 10 different values of precision (PV). For
each combination of parameters (PV x PS), we perform 100 independent runs
to estimate the success rate for each problem, then, the hardness of problems is
computed using Equation (4).

Table 1. GA Parameters

Parameter Value
Population Size {50, 100, . .., 500}
Precision {1x10751x1072,...,1x1071°}
Number of Generations 1000
Crossover rate 70%
Mutation rate 30%
Selection Tournament of size 10

Once the hardness of the problems is estimated, we computed the difficulty
indicators for each of the 110 problems using Equation (2). This gives us 110
different difficulty indicators, and 11,000 labels, let us remember that each prob-
lem was run with different values of population size and precision. In order to
create 11,000 difficulty indicators, we included in each of the vectors returned
by Equation (2) the values of population size and precision, i.e., each vector is
cloned 100 times for each combination of P.S and PV.

As can be seen this procedure gives us a data set of 11,000 different vectors
with 8 dimensions and 11,000 different classes. Consequently, this information
can be treated by any machine learning algorithm that performs classification.
In this contribution we decided to test four different classification algorithms:
Naive Bayes, Multilayer Perceptron, Decision Trees, and Random Forests. All
these algorithms were used with the default parameters used in WEKA [8].

In order to measure the accuracy of the different algorithms, we shuffle the
data, and, then, performed a 10-fold crossvalidation. Table 2 shows the accuracy
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of the different classification algorithms used with different difficulty indicators.
The first seven rows of the table present the accuracy when the learning algo-
rithm only uses the difficulty indicator indicated in the first column and the
different values of P.S and PV. It can be observed from the table that FDC had
the best accuracy with 84%, this is followed by Epistasis (81%) and Ruggedness
(80%) all of those results produced using decision trees.

Table 2. Accuracy results using different classification methods

Naive Bayes Multilayer Perceptron Decision Tree Random Forest

FDC 70% 73% 84% 78%

NSC 65% 68% 78% 78%
Neutrality 68% 69% 75% 68%
Ruggedness 1% 72% 80% 75%
Basins of Attraction 69% 71% 8% 71%
Epistasis 69% 1% 81% 7%

All the features 66% 80% 95% 96%
All except FDC 66% 79% 95% 96%

The last two rows of Table 2 presents the accuracy when all the difficulty indica-
tors are used, and with all these indicators except FDC. It is observed that Random
Forest obtained the best accuracy (96%) with either all the features or all except
FDC. Random forest is closely followed by decision trees. Comparing the perfor-
mance of the different configurations, it is evident that the use of all the features
with and without FDC improves the accuracy. It is very interesting that although
the FDC obtained the best accuracy over all difficulty indicators, this feature can
be removed and the accuracy is not affected when all the features are combined.
This is an important characteristic given that one needs to know the optimum in
order to apply FDC, and, clearly, this is unrealistic in any practical application.

In order to complement our analysis, Table 3 shows the confusion matrix and de-
tail of accuracy of random forest with all the features except the FDC on a 10-fold
cross validation. The table shows that the classifier is performing accurate predic-
tions where the easy and difficult problems have the best classification rates.

Table 3. Random Forest, confusion matrix using cross validation with 10 folds

Predicted
difficult medium easy Precision Recall Roc Area
difficult 2920 90 30 0.95 0.96 0.99
medium 110 391 121 0.68 0.63 0.92
easy 36 95 7207 0.98 0.98 0.99
0.96 0.96 0.99 Mean
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6 Conclusions and Future Work

This work presented a procedure to classify the performance of Genetic Algo-
rithms when solving problems with two dimensions on continuous domains.
The performance was classified in three different classes: easy, medium, and
difficult. The results showed that a Random Forest with a set of difficult in-
dicators obtained an accuracy of 96% of correct classification on a 10-fold cross
validation.

The main contributions of this work are: (1) the use of different types of
problems in two dimensions on the continuous domain, this gives us a set of
problems with distinct characteristics and complexity, (2) the use of GA real-
coded implementation to assess performance experiments, and (3) the use of a
model based on Random Forests to label the performance of GA problems. The
input data set uses a mixture of characteristics or metrics of difficulty (MoD)
and GA parameters (precision and population size). The output data set or ideal
values where obtained by measuring the success rate of GAs and then codified
into three classes: easy, medium, and difficult.

The main improvements of this work might be: (1) the use of problems in
higher dimensions; real applications are in higher dimensions, (2) the use of
another type of sampling of the search space, given that some metrics of difficulty
only give us descriptive information about the FL, which is not enough for ECA,
(3) use a larger data set to train the model, this might give us more general
features about problems.

As future work we will work on real-valued n-dimensional problems, given that
real applications are in the n-dimensional spaces. Another work is to select (add
or remove) features from the model, taking in consideration the most relevant
characteristics of the pairs metaheuristic-problem. Finally, another topic of our
interest is the integration of more optimization algorithms based on ECA.

References

1. Chan, K.Y., Aydin, M.E., Fogarty, T.C.: An epistasis measure based on the anal-
ysis of variance for the real-coded representation in genetic algorithms. In: IEEE
Congress on Evolutionary Computation, pp. 297-304. IEEE (2003)

2. Chen, Y., Hu, J., Hirasawa, K., Yu, S.: Solving deceptive problems using a
genetic algorithm with reserve selection. In: IEEE Congress on Evolutionary
Computation, CEC 2008, IEEE World Congress on Computational Intelligence,
pp. 884-889 (2008)

3. Fogel, D.B. (ed.): Evolutionary Computation. The Fossil Record. Selected Read-
ings on the History of Evolutionary Computation. IEEE Press (1998)

4. Fonlupt, C., Robilliard, D., Preux, P.: A bit-wise epistasis measure for binary
search spaces. In: Eiben, A.E., Béck, T., Schoenauer, M., Schwefel, H.-P. (eds.)
PPSN 1998. LNCS, vol. 1498, pp. 47-56. Springer, Heidelberg (1998)

5. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley (1989)



10

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

N.E. Rodriguez-Maya, M. Graff, and J.J. Flores

. Graff, M., Escalante, H.J., Cerda-Jacobo, J., Avalos Gonzalez, A.: Models of per-

formance of time series forecasters. Neurocomputing 122, 375-385 (2013) 00001

. Graff, M., Poli, R., Flores, J.J.: Models of performance of evolutionary program

induction algorithms based on indicators of problem difficulty. In: Evolutionary
Computation (November 2012)

. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.:

The weka data mining software: An update. SIGKDD Explor. Newsl. 11(1),
10-18 (2009)

. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Elsevier (2012)
. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michi-

gan Press, Ann Arbor (1975)

Horn, J., Goldberg, D.E.: Genetic algorithm difficulty and the modality of the
fitness landscapes. In: Whitley, L.D., Vose, M.D. (eds.) Foundations of Genetic
Algorithms Workshop, vol. 3, pp. 243-269. Morgan Kaufmann (1995)

Jamil, M., Yang, X.-S.: A literature survey of benchmark functions for global
optimisation problems. International Journal of Mathematical Modelling and
Numerical Optimisation 4(2), 150-194 (2013)

Jones, T., Forrest, S.: Fitness distance correlation as a measure of problem dif-
ficulty for genetic algorithms. In: Proceedings of the 6th International Confer-
ence on Genetic Algorithms, pp. 184-192. Morgan Kaufmann Publishers Inc.,
San Francisco (1995)

Katada, Y., Ohkura, K., Ueda, K.: Measuring neutrality of fitness landscapes
based on the nei’s standard genetic distance. In: Proceedings of 2003 Asia Pacific
Symposium on Intelligent and Evolutionary Systems: Technology and Applica-
tions, pp. 107-114 (2003)

Kauffman, S.A., Johnsen, S.: Coevolution to the edge of chaos: Coupled fitness
landscapes, poised states, and coevolutionary avalanches. Journal of Theoretical
Biology 149(4), 467-505 (1991)

Lobo, J., Miller, J.H., Fontana, W.: Neutrality in Technological Landscapes. Tech-
nical report, working paper, Santa Fe Institute, Santa Fe (2004)

Loépez, E.G., Poli, R., Kattan, A., O’Neill, M., Brabazon, A.: Neutrality in evo-
lutionary algorithms.. what do we know? Evolving Systems 2(3), 145-163 (2011)
Malan, K., Engelbrecht, A.P.: Quantifying ruggedness of continuous landscapes
using entropy. In: IEEE Congress on Evolutionary Computation, pp. 1440-1447.
IEEE (2009)

Malan, K.M., Engelbrecht, A.P.: A survey of techniques for characterising fitness
landscapes and some possible ways forward. Information Sciences 241, 148-163
(2013)

Graff, M., Poli, R.: Practical performance models of algorithms in evolutionary
program induction and other domains. Artificial Intelligence 174(15), 1254-1276
(2010)

Picek, S., Golub, M.: The new negative slope coefficient measure. In: Proceed-
ings of the 10th WSEAS International Conference on Evolutionary Computing,
EC 2009, pp. 96-101. World Scientific and Engineering Academy and Society
(WSEAS), Stevens Point (2009)

Pitzer, E., Affenzeller, M., Beham, A.: A closer look down the basins of attrac-
tion. In: 2010 UK Workshop on Computational Intelligence (UKCI), pp. 1-6
(September 2010)



23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Performance Classification of GA on Continuous Optimization Problems 11

Poli, R., Lépez, E.G.: The effects of constant and bit-wise neutrality on problem
hardness, fitness distance correlation and phenotypic mutation rates. IEEE Trans.
Evolutionary Computation 16(2), 279-300 (2012)

Poli, R., Vanneschi, L.: Fitness-proportional negative slope coefficient as a hard-
ness measure for genetic algorithms. In: Proceedings of the 9th Annual Conference
on Genetic and Evolutionary Computation, GECCO 2007, pp. 1335-1342. ACM,
New York (2007)

Reeves, C.: Fitness landscapes and evolutionary algorithms. In: Fonlupt, C., Hao,
J.-K., Lutton, E., Schoenauer, M., Ronald, E. (eds.) AE 1999. LNCS, vol. 1829,
pp- 3-20. Springer, Heidelberg (2000)

Reeves, C.R., Wright, C.C.: Epistasis in genetic algorithms: An experimental de-
sign perspective. In: Proc. of the 6th International Conference on Genetic Algo-
rithms, pp. 217-224. Morgan Kaufmann (1995)

Rice, J.R.: The algorithm selection problem. Advances in Computers 15, 65-118
(1976)

Smith-Miles, K.A.: Cross-disciplinary perspectives on meta-learning for algorithm
selection. ACM Comput. Surv. 41(1), 1-25 (2008)

Trujillo, L., Martinez, Y., Galvan-Lépez, E., Legrand, P.: Predicting problem
difficulty for genetic programming applied to data classification. In: Proceedings of
the 13th Annual Conference on Genetic and Evolutionary Computation, GECCO
2011, pp. 1355-1362. ACM, New York (2011)

Trujillo, L., Martinez, Y., Lépez, E.G., Legrand, P.: A comparative study
of an evolvability indicator and a predictor of expected performance for ge-
netic programming. In: Soule, T., Moore, J.H. (eds.) GECCO (Companion),
pp. 1489-1490. ACM (2012)

Trujillo, L., Martinez, Y., Melin, P.: Estimating Classifier Performance with
Genetic Programming. In: Silva, S., Foster, J.A., Nicolau, M., Machado, P.,
Giacobini, M. (eds.) EuroGP 2011. LNCS, vol. 6621, pp. 274-285. Springer,
Heidelberg (2011)

Vanneschi, L.: Genetic programming theory and practice V. In: Riolo, R.L., Soule,
T., Worzel, B. (eds.) Genetic Programming Theory and Practice V, May 17-19,
pp. 107-125. Springer, Ann Arbor (2007)

Vanneschi, L.: Investigating problem hardness of real life applications. In: Riolo,
R., Soule, T., Worzel, B. (eds.) Genetic Programming Theory and Practice V.
Genetic and Evolutionary Computation Series, pp. 107-124. Springer US (2008)
Vanneschi, L., Clergue, M., Collard, P., Tomassini, M., Vérel, S.: Fitness clouds
and problem hardness in genetic programming. In: Deb, K., Tari, Z. (eds.)
GECCO 2004. LNCS, vol. 3103, pp. 690-701. Springer, Heidelberg (2004)
Vanneschi, L., Tomassini, M.: A study on fitness distance correlation and problem
difficulty for genetic programming. In: Luke, S., Ryan, C., O'Reilly, U.-M. (eds.)
Graduate Student Workshop, New York, July 8, pp. 307-310. AAAI Press (2002)
Vanneschi, L., Tomassini, M., Collard, P., Vérel, S.: Negative Slope Coefficient: A
Measure to Characterize Genetic Programming Fitness Landscapes. In: Collet, P.,
Tomassini, M., Ebner, M., Gustafson, S., Ekdrt, A. (eds.) EuroGP 2006. LNCS,
vol. 3905, pp. 178-189. Springer, Heidelberg (2006)

Verel, S.: Fitness landscapes and graphs: multimodularity, ruggedness and
neutrality. In: Proceedings of the Fifth International Conference on Genetic
and Evolutionary Computation Conference Companion, Amsterdam, Pays-Bas,
pp. 1013-1034. ACM (2013)

Weise, T.: Global Optimization Algorithms — Theory and Application.
it-weise.de (self-published): Germany (2009)



12

39.

40.

N.E. Rodriguez-Maya, M. Graff, and J.J. Flores

Wright, S.J.: The roles of mutation, inbreeding, crossbreeding and selection in
evolution. In: Jones, F. (ed.) Proceedings of the Sixth International Congress on
Genetics, vol. 1, pp. 356-366 (1932)

Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: portfolio-based al-
gorithm selection for SAT. Journal of Artificial Intelligence Research 32, 565—606
(2008)



A Multi-objective Genetic Algorithm
for the Software Project Scheduling Problem

Abel Garcia-Ngjera and Maria del Carmen Gémez-Fuentes

Departamento de Matematicas Aplicadas y Sistemas,
Universidad Auténoma Metropolitana, Cuajimalpa
Av. Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa, 05300, México, D.F., México

{agarcian,mgomez}@correo .cua.uam.mx

Abstract. The software project scheduling problem considers the as-
signment of employees to project tasks with the aim of minimizing the
project cost and delivering the project on time. Recent research takes into
account that each employee is proficient in some development tasks only,
which requiere specific skills. However, this cannot be totally applied in
the Mexican context due to software companies do not categorize their
employees by software skills, but by their skill level instead. In this study
we propose a model that is closer to how software companies operate in
Mexico. Moreover, we propose a multi-objective genetic algorithm for
solving benchmark instances of this model. Results show that our pro-
posed genetic algorithm performs similarly to two recent approaches and
that it finds better multi-objective solutions when they are compared to
those found by a well-known multi-objective optimizer.

Keywords: Search-based software engineering, software project sched-
uling problem, genetic algorithm, multi-objective optimization.

1 Introduction

Managing a software project involves planning and monitoring the project by
using the required resources, in the shortest possible time and with a minimum
number of failures. The main objectives to be achieved are: meeting the require-
ments, and finishing the project on time and within budget [14]. The process of
managing a project consists of four phases: initiation, planning, execution and
closing. Moreover, the control phase allows to make adjustments in planning
throughout the entire process.

Project planning consists of refining the project scope, defining tasks and
activities to achieve the goals, establishing a sequence of activities to further
develop a schedule, cost estimation and budget. One of the key problems in
software project planning is the scheduling, which involves resource allocation
and scheduling activities on time, optimizing the cost and/or duration of the
project. The scheduling is a complex constrained optimization problem, because
for the optimization of resources, time and cost, it is necessary to consider a
combination of variables, rules and restrictions that cause the problem to be
NP-hard [2].
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© Springer International Publishing Switzerland 2014



14 A. Garcia-N§jera and M.C. Gémez-Fuentes

Search-based software engineering (SBSE) is an emerging area focused on
solving software engineering problems by using search-based optimization algo-
rithms. SBSE has been applied to a number of problems which arise during the
software life cycle [10]. However, as Harman states [9], in order to affirm that it is
valid to use search algorithms to solve such problems, it is necessary to continue
doing experiments to establish baseline data and more evidence. Hence, this work
demonstrates the usefulness of a metaheuristic algorithm in software project
management, particularly, in project planning. We propose a multi-objective ge-
netic algorithm which assigns the available developers to project tasks, taking
into account the time each developer dedicates to a task, and the salary and the
level of experience of each employee. Furthermore, we present a model that bet-
ter reflects the operation of some Mexican software development companies, with
the aim of bridging the gap between SBSE research and real software projects.

This study is structured as follows. Section 2 introduces the software project
scheduling problem and our model of the problem. In Section 3 we describe what
optimization problems are and how we can compare the performance of multi-
objective optimizers. Our proposed multi-objective genetic algorithm for solving
the problem under study is explained in Section 4. Section 5 summarizes the
experimental setup, our results and their analysis. Finally, Section 6 presents
our conclusions and motivates some ideas for future work.

2 The Software Project Scheduling Problem

The software project scheduling problem (SPSP) can be stated as follows. A
software project can be divided into n tasks t1, ..., t,, where each task ¢; has an
associated effort estimation t¢ and a set of skills ¢! required to carry it out. These
tasks have to be performed according to a precedence constraint, which indicate
what tasks must be completed before starting another task. With the aim of
executing all tasks, i.e. conclude the project, there is a staff available which
comprises m employees e1, ..., e,. Employee e; has a salary ej and is proficient
in a set of skills e\. The problem consists in finding a suitable assignment of
employees to tasks, such that the project can be delivered in the shortest possible
time and with the minimum cost. In principle, each employee can execute any
task which requires any of the skills the employee is competent in. Moreover,
each employee can be assigned to two or more simultaneous tasks, distributing
the workday among the assigned tasks. An assignment of employees to tasks is
feasible if: (i) each task ¢; has at least one employee assigned, (ii) the set of skills
t! required to carry out task ¢; is included in the union of the sets of skills of the
employees assigned to task ¢;, and (iii) all employees do not work overtime.
Some studies on project scheduling by means of search-based optimization is
review next. With the purpose of minimizing the length and cost of the project
and maximizing product quality, Chang et al. [2] solved the SPSP by using ge-
netic algorithms (GAs) already coded in an existing library. Chang et al. [2] based
their study on the assumption that the time for completing the project is inversely
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proportional to the number of people involved, however, this assumption is not en-
tirely realistic [14]. They found results which demonstrate the feasibility of solving
scheduling problems using GAs. In the resource-constrained project scheduling
problem resources are not limited to staff, i.e. they also take into account other
factors. For example, Alba and Chicano [1] solved the SPSP considering time,
staff skills, budget, and project complexity. They designed a GA for minimizing
a composite objective function that involves project cost and duration, and a pe-
nalization which takes into account the number of unattended tasks, the number
of missing skills and the overtime. They tested their approach on five benchmark
sets which differ in the number of tasks, number of employees, number of skills,
and task precedence. Recently, Xiao et al. [17] tackled SPSP in the same manner
as Alba and Chicano [1] and designed an ant colony optimization-based approach
for solving a number of benchmark instances.

There are other studies which consider the SPSP a bi-objective problem. For
example, Chicano et al. [4] considered five well-known multi-objective optimizers
to find solutions which minimize project cost and project duration simultane-
ously. This is an improvement on the work of Alba and Chicano [1] since cost
and duration are objectives that are in conflict, and combining them in a sin-
gle objective function is not most appropriate method to tackle the problem.
Luna et al. [12,13] continued the research of Chicano et al. [4] by studying the
scalability performance of several multi-objective optimizers.

A different formulation of the SPSP is that of Chicano et al. [3]. Here, addi-
tionally to the skills each employee is proficient in, productivity is considered,
i.e. the higher the productivity of an employee, the less time is spent by that
employee to finish a task. Furthermore, task delay is taken into consideration in
order to avoid infeasible solutions, which are those with overtime.

Although staff skills and productivity make the problem more realistic, the
skills quantification based on the ability of employees to perform different types
of activities (design, databases, programming, etc.) could not be feasible in prac-
tice, since it is difficult to imagine, for example, a person with advanced databases
skills but with basic programming skills, and vice versa. We expect that people
who are competent in one aspect of software development also have consider-
able skills in the other areas, i.e. if one person masters the high-level design,
most likely she also has good skills in programming. For example, developers
at Google understand client, web, browser, and mobile technologies, and can
program effectively in multiple languages and on a variety of platforms [16].

We propose a formulation of the problem of assigning tasks to employees, in-
spired in how some software development companies work in Mexico, our coun-
try, which implies a different way to classify the kind of tasks and the developers
skills. With this model we intend to bring closer to practice the theoretical work
that has been done on software project scheduling in SBSE.

2.1 Proposed Problem Formulation

Software life cycle standard tasks are: requirements analysis and specification,
design, coding and testing. We assume that documentation is part of each task.
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Usually, novice staff starts in the testing phase, since it is the simplest task
(beginner level). When the employee acquires some experience, he is assigned
to coding tasks (junior level). The experienced staff performs the design (se-
nior level), and it is an expert person who normally take over the requirements
analysis and specification (expert level), since an error in the requirements spec-
ification is much more expensive than errors in the later stages [15].

In order to assist the project manager with ranking of the staff skills, we
propose four levels: a person with expert level (EL) can perform any task and she
has the highest salary. An employee with senior level (SL) can design, implement
and test, and his or her salary is the second highest. Staff with junior level (JL)
is able to do good coding and testing and their salary is lower than that of SL.
Finally, employees with beginner level (BL) are only able to do testing and their
salary is the lowest.

Considering the staff classification described above, we define the SPSP as
follows. Given a list of n tasks ti,...,t,, representing the coding and testing
of the designed modules and the corresponding modules integration testing, we
denote the effort estimation of task ¢ as t. The required skill level to perform
task t; is denoted as té € {BL, JL, SL, EL }. These tasks have to be performed
according to a precedence constraint, which indicate what tasks must be com-
pleted before starting a new task. This precedence constraint can be seen as an
acyclic directed graph G{V, A}, where the vertex set V is the set of all tasks ¢;,
ie. {t1,...,tn} and the elements (¢;,t;) € A establishes which task ¢; must be
completed, with no other intervening tasks, before starting task ¢;. With the aim
of completing all tasks, there is a staff available which comprises m employees
€1,...,em. Employee i has a salary e and a skill level el € {BL, JL, SL, EL }.

A solution to the SPSP can be seen as a table with m rows, where row i
corresponds to employee e;, and n columns, where column j corresponds to task
t;. Cell (4, j) represents the time d;;, based on the workday, employee e; dedicates
to task ¢;. Once this table is filled, since we know the employee dedication to
each task, we can calculate the duration t? of task t; as

t4 = t;/ZE’;l dij . (1)

At this point we know the length of each task, hence, given that we have the
precedence restriction, we can calculate the times té’- and t;-c when each task
t; begins and finishes, respectively. Consequently, we can obtain the project
duration P; which will be the maximum finishing time of any task, that is

Py=max {t] [j=1,....,n}. (2)

We can also calculate the project cost P. as the sum of the salary paid to
each employee for their dedication to each task of the project, which is

Pe=30 Z;‘L=1 dij t? e - (3)

Furthermore, for each employee e; we define e’(7) as the working function

e;U(T):Z{jU?STStf}dij . (4)
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If e’ (1) exceeds the workday at time 7, then the scheduling incurs in overwork.
The overwork e of employee e; is

e? = fOPd ramp (e¥(7) — workday)dr . (5)

Finally, the total overwork of the project P, is the sum of the overwork done by
each employee, which is

Py =300 e (6)

In this study, we aim at minimizing Py, P. and P, simultaneously, subject to
(i) there cannot be any task left unattended and (ii) each task must be assigned
to at least one employee who has the required skill level.

3 Multi-Objective Optimization Problems

Without loss of generality, any multi-objective optimization problem can be
defined as the minimization problem

minimize f(x) = (f1(x),..., fk(x)) (7)
subject to the constraints
hj(x):()a Vi=1,...,q, )

where x € X is a solution to the problem, X is the solution space, and f; :
X — R, fori = 1,...,k, are k objective functions. The constraint functions
gi,h; : X = Rin (8) and (9) restrict x to a feasible region X" C X'.

We say that a solution x € X' dominates solution y, written as x <y, if and
only if fi(x) < fi(y), Vie {1,....k}and 3 j € {1,...,k} : f(x) < f;(y)-
Consequently, we say that a solution x € S C X is non-dominated with respect
to S if there is no solution y € S such that y < x. A solution x € X is said to be
Pareto optimal if it is non-dominated with respect to X', and the Pareto optimal
set is defined as P; = {x € X' | x is Pareto optimal}. Finally, the Pareto front is
defined as Py = {f(x) € R* | x € P,}. The aim of the optimization process is to
find the best representation of the Pareto front for the given problem instance,
called the Pareto approximation.

To measure the performance of mulit-objective optimizers, we have to use proper
multi-objective performance indicators. One of such indicators is the hypervolume
metric H (A, z) [18], which measures the size of the objective space defined by the
approximation set A of solutions and a suitable reference point z. The idea is that
a greater hypervolume indicates that the approximation set offers a closer repre-
sentation of the true Pareto front. For a two-dimensional objective space f(x) =
( f1(x), fa (X)) ,each solution x; € A delimits a rectangle defined by its coordinates
(f1(x), f2(x;)) and the reference point z = (21, 22), and the size of the union of all
such rectangles delimited by the solutions is the hypervolume H (A, z). This idea
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can be extended to any number k of dimensions to give the general hypervolume
metric:

H(A,2) = A (Uy, e a {1f1(xi), 21] x - x [fi(xi), 2] }) (10)

where A(-) is the standard Lebesgue measure [6]. When using this metric to
compare the performance of two or more algorithms, the one providing solutions
with the largest delimited hypervolume is regarded to be the best.

In this study we focus on two topics. The first is related to the ability of our
algorithm to find feasible solutions, that are those solutions with no overtime.
The second is related to compare the performance of our proposed GA with that
of a well-known multi-objective optimizer.

4 Multi-Objective GA for Solving the SPSP

As with all GAs, the basic idea is to maintain a population (set) of individuals
(solutions), and evolve them (recombine and mutate) by survival of the fittest
(natural selection). The following defines all stages of our proposal.

Our multi-objective (MO) GA uses an integer solution encoding which length
is m x m: the first n integers corresponds to the dedication time di; of employee
e1 to each task t¢;, the next n integers corresponds to the dedication time do; of
employee ey to each task t;, etc. The dedication time d;; is measured in hours
according to the workday, that is, t;; € {0,1, ..., wd}, where wd is the maximum
number of hours an employee can work per day.

The initial population is filled with feasible randomly generated solutions.
Each solution is built by randomly selecting d;; from the interval [0, wd], where
i=1,....m,and j=1,...,n.

In this study, we consider the three objective functions project cost, project
duration and project overtime to be minimized, and all individuals in the popula-
tion are evaluated with respect to them. Since we are interested in the evaluation
of all three functions, an appropriate fitness assignment is the non-dominance
sorting criterion [8], whereby the population is divided into non-dominated
fronts, and the depth of each front determines the fitness of the individuals
in it. That is, individuals that are not dominated belong to the first front, and
from the rest of the population, those non-dominated solutions belong to the
second front, and so on. Individuals belonging to the first front are the fittest,
followed by those in the second front, etc. We use the specific algorithm of Deb
et al. [5], which is used in their NSGA-IT algorithm.

In a previous study, it was demonstrated that measuring solution similarity
in the solution space and using this information to boost solution diversity leads
to a wider exploration of the search space, and, consequently, to an improved
performance of the multi-objective optimizer [7]. Following this idea, we measure
the similarity Spg of solution P with solution Q as the normalized difference
between each dedication time of employee e; to task ¢;, that is

Spo=10— Mg S0 Sy [dF — a2 (1)
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where de- and d% are the dedication times of employee e; to task t; in solutions
P and Q, respectively. Hence, if solutions P and Q consider exactly the same
dedication times d;;, Spo = 1. On the contrary, if dedication times dZ and d%
are on the opposite extremes, Spg = 0. Afterward, we compute the average
similarity Sp of solution P with all other solutions in the population P as

S’P = |p‘171 ZQ eP\P SPQ . (12)

A standard binary tournament selection method is applied for choosing two
parents for crossover. This tournament method randomly selects two individuals
from the population, and the fittest will be chosen as one of the parents. This
procedure is repeated for selecting the second parent, however, the less similar
on average is chosen.

The evolution continues with the crossover of the two selected parents. We
implemented two different crossover operators, which we will call flat crossover
(F) and simple crossover (S) [11]. Flat crossover generates an offspring in the
following manner. A random number between the dedication times d;; of each
parent is chosen and it is assigned as the dedication time d;; in the offspring.
On the other hand, simple crossover works as follows. From the first parent, a
random number of employees are selected, and their dedication times to each task
are copied into the offspring. The dedication times for the remaining employees
are copied from the second parent.

Once the offspring has been built, it is subjected to mutation with a probabil-
ity of 10%, and randomly selects and employee e; and a task ¢;, which dedication
time d;; is to be changed. Here we implemented two different mutation operators
[11], which we will call gradient mutation (G) and random mutation (R). Gra-
dient mutation randomly adds or subtracts one hour from the dedication time
d;;, while random mutation assigns a random number taken from the interval
[0, wd] as the dedication time d;;.

After the offspring has been created, it could represent an infeasible solution,
thus a repair operator is applied. This operator validates, first, that all tasks
have at least one employee assigned and, second, that the employees assigned
to each task have the aggregated skills needed to perform the task. For the first
situation, the repair operator sums all dedication times d;j,i = 1,...,m, for
each task t;. If the sum is zero, it is an infeasible solution, and an employee ¢;
with at least one of the skills required ¢] to perform task ¢; is randomly selected
and a dedication time ¢;; is randomly assigned. In the second situation, for each
task ¢;, the union of the sets of skills e is computed, i = 1,...,m. If the union
does not contain all the skills required ¢} by task ¢;, it is an infeasible solution,
and an employee e; with at least one of the skills required ¢; to perform task
t; is randomly selected and a dedication time t;; is randomly assigned. This
procedure is repeated until all the required skills are contained in the union.

The final stage of each evolutionary cycle is the selection of individuals to form
the next generation. Here, the offspring and parent populations are combined
and individual fitness determined as described above. Those solutions having the
highest fitness, i.e. falling in the outermost fronts, are taken to survive and form
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the next generation. The process of parent selection, crossover, mutation, repair
and survivor selection is repeated for a prefixed number of generations.

5 Experimental Setup and Results

The experimental study is two-fold. On the one hand, we are going to compare
our results with those obtained by two recent proposals. On the other hand,
we are interested in the performance of our algorithm when it is applied to the
problem formulated in Section 2.1.

5.1 Performance on the Original Problem Formulation

Alba and Chicano [1] and Xiao et al. [17] evaluated the performance of their
approaches by measuring the hit rate, which is the ratio of the number of runs
where the algorithm found at least one feasible solution to the total number of
runs. Hence, we are going to compare our results using the same methodology.

We used 36 benchmark instances generated by Alba and Chicano [1], which
are divided into two groups. Instances in group g are labeled as in-mgs, where n
is the number of tasks, m is the number of employees, and s is the total number
of skills required to complete the project. Here, employees have 2 or 3 skills.
Instances in group p are labeled as in-mps, where s here is 5, if employees have
4 or 5 skills, and 7 if employees have 6 or 7 skills. In these cases, the total number
of skills is 10.

Table 1 shows the hit rate from Alba and Chicano [1] (study key AC) and
from Xiao et al. [17] (study key K) compared to the results from our MO GA
when it is set with different crossover and mutation operators. The algorithm of
Xiao et al. [17] obtained a hit rate that is comparable with that of our MO GA
for the instances they tested on their approach, however they did not use all the
instances with 20 and 30 tasks, hence we cannot compare completely with their
results. The approach of Alba and Chicano [1] obtained a lower hit rate than our
GA for the instances with 10 tasks, however, their approach obtains a slightly
higher hit rate for the instances with 20 tasks. Moreover, we can observe that
no approach is able to obtain feasible solutions for the instances with 30 tasks.
We can also see that, when our MO GA is set to use the random mutation, it
obtains the highest hit rate: for instances in group g, combined with the simple
crossover, and for instances in group p, combined with the flat crossover. Overall,
we can conclude that the performance of our MO GA is comparable to that of
previous approaches.

5.2 Performance on the Proposed Problem Formulation

We used the instance generator of Alba and Chicano [1] to generate 45 bench-
mark problems with n = 10, 20,30 tasks, and m = 5,10,15 employees. We
labeled these instances as in-m-j, with j = 1,...,5. In these instances, each
task requires a minimum skill level and each employee has a certain skill level.
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Table 1. Hit rate from previous studies compared to the hit rate from our MO GA

Study MO GA Instance Study MO GA

X FG SG FR SR AC X FG SG FR SR
i10-5g5 98 100 100 100 100 100  i10-5p5 94 100 100 100 100 100
i10-5g10 61 100 100 100 100 100  i10-5p7 84 100 83 37 83 30
i10-10g5 99 95 100 100 100 100  i10-10p5 97 100 100 100 100 100
i10-10g10 85 100 100 100 100 100  i10-10p7 100 100 100 100 100 100

Instance

i10-15g5 100 96 100 100 100 100  il0-15p5 97 100 77 83 83 90
i10-15gl0 85 93 97 97 90 83 il0-15p7 97 89 100 100 100 100
i20-5gb 6 - 0 0 0 0 i20-5p5 0o - 0 0 0 O
i20-5g10 8 - 0 0 0 100 i20-5p7 0o - 0 0 0 O
i20-10g5 9 25 0 0 O O i20-10p5 6 67 0 0 0 O
i20-10glo 1 64 0 O 0 O i20-10p7 76 65 53 47 67 30
i20-15g5 12 - 90 90 83 67 i20-15p5 43 - 100 100 100 100
i20-15g10 6 - O O O O i20-15p7 O - 0 O 0 O
i30-5gb 0 - 0 0 0 0 1i30-5p5 o - 0 0 0 O
i30-5g10 0o - 0 0 0 0 1i30-5p7 0o - 0 0 0 O
i30-10g5 0 - 0 0 0 0 i30-10p5 o - 0 0 o0 O
i30-10gto o - O O O O i30-10p7 O - O O O O
i30-15g5 0 - 0 0 3 0 i30-15p5 0o - 0 0 0 O
i30-15g10 0 - O O O O i30-15p7 O - 0 O 0 O
Average 32 - 38 38 38 42  Average 39 - 40 37 42 36

Tasks can be executed by an employee with the required skill level or higher.
We assume that an employee can perform several tasks each day and that the
minimum amount of time an employee can dedicate to a task is one hour. Thus,
an employee can be assigned to wd different tasks. We believe that this situation
is not efficient, since the employee can be distracted from one task to another.
Therefore, additionally to consider the original scheme, we restrict the number
of tasks an employee can perform per day to 4,2, and 1. Results for the hit rate
is shown in Table 2. For these experiments, we set our MO GA to use simple
crossover and random mutation.

We can see that, when the employees are allowed to perform 2,4 and 8 tasks
per day, our GA is able to obtain feasible solutions for all but one instance.
On the other hand, if we restrict employees to perform only one task per day,
solutions found by our GA to the majority of the instances are infeasible. With
these results we can conclude that our MO GA do find feasible solutions to the
instances of the proposed model that is closer to real software projects.

We now analyze our MO GA multi-objective performance, specifically, we are
going to compare the hypervolume delimited by the non-dominated solutions
found by our MO GA to that covered by the non-dominated solutions found
by the popular and successful NSGA-II [5]. We decided to use NSGA-II due
to the high similarity of the algorithms, which difference resides in how parent
selection and survival are accomplished: while NSGA-II selects both parents
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Table 2. Hit rate from our MO GA to instances of the proposed model

No. of tasks No. of tasks No. of tasks

Instance Instance Instance
2 4 8 1 2 4 8 1 4 8
i10-5-1 0 100 100 100 i20-5-1 0 100 100 100 i30-5-1 0 100 100 100
110-5-2 3 100 100 100 i20-5-2 0 100 100 100 130-5-2 0 100 100 100
i10-5-3 20 100 100 100 i20-5-3 0 100 100 100 i30-5-3 0 100 100 100
i10-5-4 0 100 100 100 i20-5-4 0 100 100 100 i30-5-4 0 100 100 100
110-5-5 0 100 100 100 i20-5-5 0 100 100 100 130-5-5 0 100 100 100
i10-10-1 7 100 100 100 i20-10-1 0 100 100 100 i30-10-1 0 100 100 100
i10-10-2 0 100 100 100 i20-10-2 0 100 100 100 i30-10-2 0 100 100 100
110-10-3 100 100 100 100 i20-10-3 0 100 100 100 130-10-3 0 100 100 100
i10-10-4 0 100 100 100 i20-10-4 0 100 100 100 i30-10-4 0 0 0 O
i10-10-5 10 100 100 100 i20-10-5 0 100 100 100 i30-10-5 0 100 100 100
110-15-1 87 100 100 100 i20-15-1 0 100 100 100 130-15-1 0 100 100 100
i10-15-2 0 100 100 100 i20-15-2 0 100 100 100 i30-15-2 0 100 100 100
i10-15-3 0 100 100 100 i20-15-3 0 100 100 100 i30-15-3 0 100 100 100
110-15-4 0 100 100 100 i20-15-4 0 100 100 100 130-15-4 0 100 100 100
i10-15-5 0 100 100 100 i20-15-5 0 100 100 100 i30-15-5 0 100 100 100
Average 15 100 100 100  Average 0 100 100 100  Average 0 93 93 93

according to fitness, our MO GA selects one of the parents according to the
similarity measure. On the other hand, NSGA-IT measures solution similarity
in the objective space during the survival process, while our MO GA measures
similarity in the solution space.

In order to compute the hypervolume metric, we need to define a suitable
reference point z. For every problem instance, we extracted the maximal values
for the three objective functions from the Pareto approximations found by both
algorithms, our MO GA and NSGA-II, and these maximal values played the role
of z for each instance. Then, for each instance and repetition, the hypervolume
metric was computed for the Pareto approximation found by both, our MO
GA and NSGA-II. Finally, for each instance, a t-test was calculated in order to
know if the hypervolumes are significantly different. Table 3 shows the number
of instances in each category for which solutions from our MO GA delimited a
significantly larger hypervolume than that covered by those from NSGA-II.

We can see that, when employees are restricted to perform 2,4, and 8 tasks,
our MO GA found Pareto approximations which delimit a significantly larger
hypervolume than that covered by the Pareto approximations found by NSGA-IT
for all instances and, when the employee can perform only one task, solutions
from our MO GA still delimit a significantly larger hypervolume for some in-
stances. Remarkably, solutions from NSGA-II did not cover a significantly larger
hypervolume than that delimited by solutions from our MO GA for any instance.
We can conclude, then, that the performance of our proposed MO GA is suit-
able for finding good solutions in both perspectives, feasible solutions with no
overtime and multi-objective solutions that are closer to the true Pareto front.
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Table 3. Number of instances (out of five) for which solutions from our MO GA
delimited a significantly larger hypervolume

No. of tasks No. of tasks No. of tasks
Instance Instance Instance
2 4 8

1 2 4 8 2 4 8 1

i10-5 2 5 5 5 i20-5 5 5 5 i30-5 0 5 5 5
i10-10 0 5 5 5 i20-10 5 5 5 i30-10 0 5 5 5
i10-15 3 5 5 5 i20-15 5 5 5 i30-15 0 5 5 5
5 15 15 15 Total 0 15 15 15

[ S U R S

Total 15 15 15 Total

6 Conclusions

We have proposed a model for the software project scheduling problem that
better represents the operation of some Mexican software development firms.
This model considers the employees skill level (beginner, junior, senior, expert)
in order to assign employees to project tasks. The objectives of this problem
are the minimization of the project cost and the minimization of the project
duration. To this end, we have proposed a multi-objective genetic algorithm
that, additionally to minimizing both objetives, it also considers the overtime
as an objective to be minimized. Only solutions with no overtime are feasible
solutions.

Our proposed approach uses standard crossover and mutation operators, how-
ever, it differs from traditional genetic algorithms in the mating selection process:
while the first parent is chosen according to fitness, the second is selected ac-
cording to the average similarity of the individuals to the rest of the population.
Our approach was tested in three ways. Firstly, it was set to solve previously
proposed instances of the original problem formulation and results showed that
our algorithm is comparable to two recent approaches in the sense that they find
a similar quantity of feasible solutions. Secondly, it was set to solve instances
from our proposed model and it was able to find feasible solutions to all but
one instance. Finally, the multi-objective solutions to the vast majority of the
problem instances of the proposed problem formulation are significantly better
than those found by the popular and successful NSGA-II.

There is still work to do in this respect. For example, software development
companies regularly train their employees with the purpose to increase their
skill level. Thus, we believe that it is important to consider this training as a
further objective to be optimize, since training means additional cost. We are
also interested in studying the dynamic problem, that is, for example, when an
employee quit the job in the middle of a project.
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24 A. Garcia-N§jera and M.C. Gémez-Fuentes
References
1. Alba, E., Chicano, J.F.: Software project management with GAs. Inform.

o

10.

11.

12.

13.

14.

15.

16.

17.

18.

Sciences 177(11), 2380-2401 (2007)

Chang, C.K., Christensen, M.J., Zhang, T.: Genetic algorithms for project man-
agement. Ann. Softw. Eng. 11(1), 107-139 (2001)

Chicano, F.; Cervantes, A., Luna, F., Recio, G.: A novel multiobjective formulation
of the robust software project scheduling problem. In: Di Chio, C., et al. (eds.)
EvoApplications 2012. LNCS, vol. 7248, pp. 497-507. Springer, Heidelberg (2012)
Chicano, F., Luna, F., Nebro, A.J., Alba, E.: Using multi-objective metaheuristics
to solve the software project scheduling problem. In: Genetic and Evolutionary
Computation Conference 2011, pp. 1915-1922. ACM (2011)

Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE T. Evolut. Comput. 6(2), 182-197 (2002)
Franks, J.: A (Terse) Introduction to Lebesgue Integration. AMS (2009)
Garcia-Najera, A., Bullinaria, J.A.: An improved multi-objective evolutionary
algorithm for the vehicle routing problem with time windows. Comput. Oper.
Res. 38(1), 287-300 (2011)

Goldberg, D.E.: Genetic algorithms in search, optimization and machine learning.
Addison-Wesley (1989)

Harman, M.: The current state and future of search based software engineering. In:
2007 Future of Software Engineering, pp. 342-357. IEEE Computer Society (2007)
Harman, M., Mansouri, S.A., Zhang, Y.: Search-based software engineering:
Trends, techniques and applications. ACM Comput. Surv. 45(1), 11 (2012)
Herrera, F., Lozano, M., Verdegay, J.L.: Tackling real-coded genetic algorithms:
Operators and tools for behavioural analysis. Artif. Intell. Rev. 12(4), 265-319
(1998)

Luna, F., Gonzalez-Alvarez, D.L., Chicano, F., Vega-Rodriguez, M.: On the scala-
bility of multi-objective metaheuristics for the software scheduling problem. In:
11th International Conference on Intelligent Systems Design and Applications,
pp. 1110-1115. IEEE Press (2011)

Luna, F., Gonzélez—Alvarez, D.L., Chicano, F., Vega-Rodriguez, M.A.: The soft-
ware project scheduling problem: A scalability analysis of multi-objective meta-
heuristics. Appl. Soft Comput. 15, 136-148 (2014)

McConnell, S.: Software project survival guide. Microsoft Press (1997)

Pfleeger, S.L., Atlee, J.M.: Software engineering: Theory and practice. Prentice-
Hall (2006)

Whittaker, J., Arbon, J., Carollo, J.: How Google Tests Software. Addison-Wesley
(2012)

Xiao, J., Ao, X.T., Tang, Y.: Solving software project scheduling problems with
ant colony optimization. Comput. Oper. Res. 40(1), 33-46 (2013)

Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algo-
rithms - A comparative case study. In: Eiben, A.E., Back, T., Schoenauer, M.,
Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292-304. Springer, Heidel-
berg (1998)



An Effective Method for MOG As Initialization
to Solve the Multi-Objective Next Release
Problem

Thiago Gomes Nepomuceno Da Silva, Leonardo Sampaio Rocha,
and José Everardo Bessa Maia

Universidade Estadual do Ceard
Av. Dr. Silas Munguba, 1700, Fortaleza, Brazil
{thi.nepo,leonardo.sampaio,bessa.maia}@gmail . com

Abstract. In this work we evaluate the usefulness of a Path Relinking
based method for generating the initial population of Multi-Objective
Genetic Algorithms and evaluate its performance on the Multi-Objective
Next Release Problem.The performance of the method was evaluated
for the algorithms MoCell and NSGA-II, and the experimental results
have shown that it is consistently superior to the random initialization
method and the extreme solutions method, considering the convergence
speed and the quality of the Pareto front, that was measured using the
Spread and Hypervolume indexes.

Keywords: Search Based Software Engineering, Next Release Problem,
MOGA Initialization.

1 Introduction

A problem that is faced by companies developing complex software systems
is the one of deciding what are the software requirements that are going to
be implemented in their next release. There are many things that need to be
considered in order to make this choice including the cost of implementing the
requirements, costumers satisfaction and dependency between requirements.
Bagnall et al. [3] was the first to give a model this problem, the (mono-
objective) Next-Release Problem (NRP). In his model, there is a set of binary
variables X = {z1,22,...,2m} and Y = {y1,y2,...,yn} representing the set
of requirements and the set of costumers. For every requirement x; there is an
associated cost ¢;, and for every costumer y; there is a weight of importance to
the company w;. For a costumer y; there is an associated subset R; C R, the
requirements requested by costumer y;. The model ensures that if y; = 1, for
every r € R; we have x; = 1. In other words, if a costumer is chosen, all its
requirements must be satisfied. They use a dependency graph for the dependency
between requirements, with vertex set R and with an edge (x;,x;) for every z;
that is a prerequisite to z;. Finally, one important constraint of the model is
that there is a fixed, pre-determined budget, B € Z™, to be respected by the
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company. This is translated by the constraint Y " ; ¢;z; < B. The objective of
the problem is to maximize costumers satisfaction ZZL WY

If we eliminate the dependency constraints and consider only instances in
which no requirement is requested by more than one company, it can be show
that the problem corresponds to the classic, well-known knapsack problem, one
of the first problems to be shown NP-complete [9]. As a consequence, unless P
= NP, there is no polynomial time algorithm for solving NRP.

In the Multi-Objective Next Release Problem (MONRP) [15], the budget is no
longer a constraint, and a set of requirements is to be found that maximizes cos-
tumer satisfaction and minimizes the total cost. The multi-objective formulation
of NRP, as proposed by Zhang [15], is given by:

n n
<maximize E score; - r;, minimize E costi~ri>

=1 =1

In this formulation, R = {r1,r9,...,r,} are the binary variables correspond-
ing to the requirements, with the importance value and cost of a requirement
represented by score; and cost;, respectively. Zhang’s model is different from
Bagnall’s model in the way that costumers choices of requirements are taken
in consideration. When modelling the problem, one needs to ensure that score;
takes into account that costumers may value requirement ¢ differently, and also
that costumers have different degrees of importance to the company. This can
be done by as follows. Assume C' = {c1,co,...,Cn} is the set of costumers, and
that W = {w1, wa, ..., wn} is the degree of importance of these costumers to the
company. Then costumer c¢; assigns requirement r; a value value(r;, ¢;), which
is positive whenever requirement r; was chosen by costumer c;. Therefore the
importance given to requirement r; is:

m
score; = E w; - value(r;, ;)
Jj=1

In this multi-objective formulation, there is no longer an optimal solution, but
a set of solutions known as the Pareto optimal set. When this set of solutions is
plotted in the objective space, it is called Pareto Front. Having the Pareto Front
can be very helpful to the software engineer, since it can give a clear idea of the
trade-offs between the score and cost of requirements. Multi-Objective Genetic
algorithms (MOGA’s) like NSGA-IT [5, 8, 15], MOCell [8], Pareto GA [15] and
SPEAZ2 [5] have been used to solve the MONRP.

The effects of the initial population in the quality of the final solution has been
vastly studied [11, 14], even in the context of multi-objective approaches [13]. All
studies are consistent to demonstrate the significant impact the initial sampling
process plays in the general performance of the genetic algorithm, related both
to the convergence of the algorithm as well as to the quality of the final solution,
pointing out to the importance of employing intelligent sampling techniques to
select individuals to be added to this population.
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The main contribution of this paper is a method to generate the inital popu-
lation for MOGA’s for the MONRP. The method can be seen as an adaptation
of the Path Relinking method [4], that constructs new solutions by recombining
the features of other good solutions. In this work, Path Relinking is only ap-
plied to generate the initial population, based on some extreme solutions for the
MONRP. A detaied presentation of the method is given in Section 2. In Section
3 we study the performance of MoCell and NSGA-II with distinct initializa-
tion methods, including the proposed one, and compare their performance. The
conclusion of this work is presented in Section 4.

2 The Proposed Method

The MONRP described in the previous section is a Constrained Multi-Objective
Optimization Problem.The population-based paradigm of genetic algorithms
makes them extremely suitable for determining a representative subset of the
Pareto optimal solution set of a multi-objective optimization problem [10].

On the other hand, many constraint-handling techniques have been adopted
over the years to multi-objective genetic algorithms [12, 6]. Two of the most used
are the repair algorithms and various types of penalty functions (static, dynamic,
adaptive or death). In this work, penalty functions are used in the NSGA-II and
MoCell algorithms, while a repair algorithm is used over the infeasible solutions
to make them feasible, when generating the initial population.

Multi-Objetice Genetic Algorithms (MOGAS) are iterative optimization tech-
niques [10]. It has been observed that the convergence of population-based al-
gorithms is heavily dependent on the initial population. Furthermore, using a
random sampling for the initial population often results in infeasible solutions.

Many methods were proposed to improve the convergence and quality of the
solutions of the genetic algorithm. One of the most efficient is called Path Relink-
ing (PR) [4]. Path Relinking shares with genetic algorithms (GAs) the idea of
constructing new solutions by recombining the features of other good solutions
(parents).

The initialization method we propose initially feeds the initial population
with extreme mono-objective solutions, and then randomly generate solutions
in the path linking the first solutions. Before including these solutions on the
population, a repair algorithm is used to make sure that only feasible solutions
are included. The method is only applied to generate the initial population, what
makes it different to the Path Relinking heuristic that is applyed periodically
throughout the evolutionary process. In addition to the solutions obtained by
path linking between point solutions, the initial population is also composed of
random feasible solutions obtained by the repair algorithm.

The penalty strategy for infeasible solutions used in the NSGA-II and MoCell
algorithms ensure that, starting with a initial population of feasible solutions,
the generations in the following iterations of the genetic algorithm are feasible
even when mutations or crossover generate infeasible offspring.
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The complete pseudo-code of the proposed initial population generation algo-
rithm is presented in Algorithm 3. Some relevant points in the pseudocode are
discussed below.

Algorithm 1. fixSolution
input : A integer M that represent the quantity of requirements, a
solution to be fixed and a graph of dependences G (Where
Glu][v] says that requisite u depends of requisite v).
output: A feasible solution.

while solution is not feasibledo
for ¢+ < 1 to Mdo

if solution[i] == 1: /* The requirement { was implemented */
for j «+ 1 to Mdo
if G[i][j] == 1 and solution[j] ==0:  /* requirement i

depends of requirement j and requirement j was not
implemented */
choose x € {0,1} at random;
if  ==0: /* Implement the requirement j or not
implement the requirement ¢ */
solution[j] = 1;
else:
solution[i] = 0;
end for
end for
end while

A Linking Path (LP) is a set of feasible solutions that lie close to the line that
binds two Pareto optimal (PO) solutions in the objective space.

N stands for the total number of solutions in initial population, /Nj, stands
for the number of solutions in the LP between the extreme solutions, and N,
stands for the number of feasible random solutions in the initial population.
Thus, N =2+ N, + N,

First, a path between the solutions extremeg (solution where all the require-
ments are not implemented) and extreme; (solution where all requirements are
implemented) is created according to Algorithm 2. Then, these solutions are
added to the population that will be used as initial population of the MOGA.
Approximately IVj, solutions are created in this process.

The second loop completes the initial population with feasible solutions that
are chosen at random. The fizSolution() method described in Algorithm 1 is
used to transform the generated solutions that are infeasible into feasible ones.

In Figure 1 the initial populations of NSGA-II and MoCell are presented. It
shows the distribution in the objective space of the Pareto front of the initial
populations for Random initialzation and PathRelinking intialization methods.
In (1a) random solutions are generated and are made feasible by a repair algo-
rithm. The only difference between the Extreme Solutions initialization method
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Algorithm 2. createPath

input : A integer M that represent the quantity of requirements, a integer F
that represent the quantity of solutions that are expected to be
created, a initial solution and a guiding solution.

output: A new population.

Solution newSolution = new Solution(initial) ; /* solution became a copy of
initial */
D = distance(initial, guiding) ; /* distance(a,b) returns how many
variables solution a differ of the solution b */
step = ceil(D/(E+1));
for k < 1 to Ddo
starting = random() % M;
for i < 1 to Mdo
index = (i + starting) % M;
if newSolutionfindex] # guiding[index] and change value of
newSolutionfindez] to guiding[index] don’t break a constraint:
newSolution[index] = guiding[index];
break;
end for
if k % step == 0:
population.add(newSolution);
end for

Algorithm 3. Create Initial Population

input : A integer N that represent the quantity of solutions in initial
population.
output: A initial population that will be used in Genetic Algorithm.

N.=0; /* The quantity of solutions created */
PRser = createPath(extremeo,extremer ); /* extremeg is the solution that
don’t have any requirements implemented and extreme:; have all
requirements implemented */
for j < 1 to PRset.size()do

population.add(P Rset.get(j));

Ne++;

end for

while N, < Ndo /* Random Feasible Solutions */
individual = new Solution(problem);
problem. fitSolution (individual) ; /* Make the solution feasible */
population.add(individual);
Ne++;

end while
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and the Random method is that the first adds extreme mono-objective solutions
in the front. Therefore, the figures are very similar (And it was not included in
this paper due to space restriction). Finally, in (1b) we see the initial population

generated by the proposed method.
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Fig. 1. Feasible Initial Populations

3 Experiments and Discussion

3.1 Details of the Instances and Genetic Algorithms

The experiments were made using 24 instances of the NRP. We considered the
following choices of values for the number of requirements, costumers and edges
in the dependency graphs of the instances:

Number of requirements: {200, 300, 500, 800};

Number of costumers: {10, 20};

Percentual of edges in the dependency graph: {20%, 30%, 40%} (The number
of dependencies is indicated as a percentage of the number of requirements).

There are 24 possible settings of these parameters, and for each one, an in-
stance was generated at random. We use the nomenclature rX cY dZ to describe
the instance that is generated with a set of X requirements, Y clients and Z% of
edges in the dependency graph.

In [8] they consider that a typical instance of the NRP has a number of
costumers ranging from 15 to 100 and requirements from 40 to 140. This is in
agreement to the instances that are considered in other experimental works on
the NRP. In this work we have focused on instances that are more complex and
therefore harder to solve than in these previous works. As we will show later, the
quality of the solutions obtained by the genetic algorithms with the proposed
initialization method is superior to the ones using the common initialization
methods. The instances used to this work can be found in [1]. The tests were
run in a computer with the following specification: Windows 7 Ultimate Edition,
Processor AMD FX-8120, RAM 8Gb (1600MHz), Hard Drive Vertex 3 Max IOPs
120GB.



An Effective Method for MOGASs Initialization to Solve the MONRP 31

Every solution of the NRP consists of a set of requirements that are to be
chosen to the next release of a software. We encode the solutions (chromosome)
using an integer vector ranging in {0, 1} and of length equal to the number of
requirements from the instance. We used binary tournament for the selection
scheme. For the crossover operator we used single point crossover. The probabil-
ity of the crossover operator was set to 0.9. Random mutation was used as the
mutation operator. The probability of the mutation operator was set to 711, where
n is the number of requirements. The initial population was always set to 1024
solutions, this being also the maximum population size. The algorithms have
been implemented using jMetal [7], an object-oriented Java-based framework for
multi-objective optimization with metaheuristics.

3.2 Quality Indicators

In order to evaluate convergence and diversity of our algorithm, we use the
following quality indicators:

Spread [2]: We desire Pareto fronts with a smaller Spread. The zero value
corresponds to a perfect spread of the solutions in the Pareto front.

Hypervolume (HV) [16]: Used to measure both diversity and convergence of the
solutions. A Pareto front has a higher HV than another one either because
solutions from the second front are dominated by solutions in the first front,
or because the ones from the first front are better distributed. Therefore we
desire Pareto fronts with larger values of HV.

To calculate the spread and hypervolume of a Pareto front, we need the real
Pareto front. In our experiments we used an approximated one. The approxima-
tion was obtained by taking 50 equaly distant points in the interval [0, SUM-
COST] (SUMCOST is simply the sum of the costs from all requirements, a
trivial upper bound to the maximum cost of a valid solution) and then, for each
point value, solve the mono-objective NRP problem using the point value as the
limit value to cost constraint (We use a Linear Programming solver to do it).
We have now 50 optimal solutions in Pareto front, for each of the 50 different
cost values, we have the maximum score possible. After, Path Relinking is used
to generated interpolated solutions based on the ones that were generated first
and then is used the MoCell with 5000000 evaluations. The same process was
used with NSGA-II. Then, the two populations was put together and we got the
Pareto front of this new population.

3.3 Results

For our tests we considered MoCell and NSGA-II with the following initialization
procedures:

Random Solutions (RS): The initial population is generated at random.
Valid Solutions (VS): The initial population is generated at random and a
repair procedure is applied to ensure only valid solutions are kept.
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Extreme Solutions (EXT): In this method, we inserted the two extreme solu-
tions in the initial population, one with all requirements implemented and
another with no requirement implemented.

Extreme Solutions with Path Relinking (EPR): This is the method proposed
in this article, that behaves similarly to EXT, with the difference that now
Path Relinking is used to generate new interpolated solutions.

In Table 1, we have calculated the mean and standart deviation to HV and
Spread. The tables were made by running each instance 10 times and with 300000
evaluations. The first columns of Table 1 show that the hypervolume of the
solutions obtained by NSGA-II with the EPR initialization method is already
higher when considering the experiments with smaller instances. For the more
complex instances the difference becomes even more evident, with the HV of the
EPR algorithms being almost twice the one of the solutions using RS or VS. A
similar conclusion can be taken looking at last columns of the Table 2 where the
EPR initialization method outperforms the RS, VS and EXT methods.

We should highlight that in some instances the Pareto front of the initial
population is only the two extreme solutions and the MoCell with EXT method
have problems with that, because MoCell always make a crossover beteween a
individual that is not in the Pareto front with a individual that can or not be
in Pareto front. But when we use Path Reliking that is not a problem, since the
Pareto front is a well distributed front and MoCell can work properly. From this
we conclude that, although the proposed initialization procedure with extreme
solutions and Path Relinking increases the computational work, the impact in
the total time is low, since the initial population is only generated once.

Table 1. Hypervolume and Spread - NSGA-II (mean, (standard deviation))

Hypervolume Spread
Instance NSGA-TI  NSGA-II EXT + EPR + NSGA-TI  NSGA-II EXT + EPR +
(RS) (VS) NSGA-TI  NSGA-II (RS) (VS) NSGA-TI  NSGA-II

1200 <10 d2o 0-5961 0.5988 0.6372 0.6349 0.5358 0.5216 0.4068 0.4290
(0.0050) (0.0094) (0.0014) (0.0022) (0.0230) (0.0278) (0.0192) (0.0230)

1200 o10 d4p 0-5549 0.5593 0.6057 0.6027 0.5798 0.5766 0.4315 0.4448
(0.0068) (0.0053) (0.0034) (0.0026) (0.0264) (0.0193) (0.0318) (0.0228)

1200 <20 420 0-5820 0.5888 0.6271 0.6239 0.5454 0.5306 0.3821 0.4045
(0.0061) (0.0026) (0.0007) (0.0013) (0.0211) (0.0199) (0.0099) (0.0149)

1200 20 d4o 0-5633 0.5685 0.6141 0.6134 0.5953 0.5850 0.4129 0.4128
(0.0099) (0.0072) (0.0019) (0.0018) (0.0284) (0.0213) (0.0211) (0.0163)

1500 <10 d2o 0-4936 0.4881 0.5613 0.5914 0.7924 0.7988 0.6360 0.5108
(0.0068) (0.0101) (0.0131) (0.0021) (0.0152) (0.0108) (0.0707) (0.0189)

1500 10 a40 0-AT3T 0.4530 0.4821 0.5792 0.8208 0.8295 1.0562 0.4987
(0.0075) (0.0079) (0.0166) (0.0025) (0.0122) (0.0140) (0.0916) (0.0091)

1500 <20 d2o 0-5026 0.4935 0.5765 0.5970 0.7890 0.8052 0.5691 0.5055
(0.0035) (0.0069) (0.0122) (0.0038) (0.0099) (0.0164) (0.0716) (0.0194)

1500 20 d4o 0-4639 0.4488 0.4913 0.5750 0.8240 0.8346 0.9826 0.4979
(0.0046) (0.0094) (0.0135) (0.0020) (0.0053) (0.0173) (0.0803) (0.0195)

1800 <10 d2o 0-4375 0.4216 0.5044 0.5707 0.8691 0.8775 0.9069 0.4587
(0.0052) (0.0111) (0.0176) (0.0028) (0.0104) (0.0129) (0.1025) (0.0238)

1800 c10 d4o 0-3935 0.3769 0.4015 0.5465 0.8965 0.8905 1.3624 0.4731
(0.0093) (0.0053) (0.0082) (0.0018) (0.0073) (0.0076) (0.0372) (0.0168)

1800 <20 dao 0-4400 0.4199 0.4804 0.5734 0.8661 0.8781 1.0316 0.4664
(0.0046) (0.0117) (0.0120) (0.0029) (0.0055) (0.0093) (0.0743) (0.0225)

1800 20 qa0 0-3841 0.3783 0.4065 0.5441 0.9004 0.8870 1.3593 0.4593
’ (0.0237) (0.0042) (0.0056) (0.0029) (0.0178) (0.0090) (0.0374) (0.0292)

To give a clear idea of the behaviour of the algorithms, in all the Figures we
are considering instance r800 c20 d40, which is the largest one that was used in
the experiments.
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Table 2. Hypervolume and Spread - MoCell(mean, (standard deviation))

Hypervolume Spread

Instance MoCell (RS)MoCell (VS)  apod + BPR L MoCell (BS)MoCen (vs) XL 4 R
200 10 g0 0-6043 0,6083 0.1194 0.6326 0.5186 0,5109 0.8620 0.4407
(0.0054)  (0,0067)  (0.00003)  (0.0015)  (0.0171)  (0,0194)  (0.0022)  (0.0187)

1200 10 440 0-5601 0,5761 0.1135 0.6031 0.5541 0,5310 0.8675 0.4127
(0.0096)  (0,0042)  (0.00007)  (0.0026)  (0.0262)  (0,0234)  (0.0038)  (0.0228)

200 20 4z 0-5843 0,5949 0.2142 0.6222 0.5476 0,5324 0.8427 0.3984
(0.0056)  (0,0053)  (0.00017)  (0.0008)  (0.0198)  (0.0129)  (0.0036)  (0.0055)

1200 20 440 0-5740 0,5807 0.2270 0.6114 0.5584 0,5407 0.8472 0.4072
(0.0060)  (0,0105)  (0.00074)  (0.0018)  (0.0174)  (0,0238)  (0.0043)  (0.0199)

500 10 g 0-4985 0,5045 0.1717 0.5662 0.7837 0,7815 0.7856 0.5260
(0.0055)  (0,0072)  (0.00080)  (0.0034)  (0.0092)  (0.0106)  (0.0080)  (0.0237)

500 10 4o 0-4849 0,4764 0.2342 0.5552 0.8022 0,8102 0.8396 0.4989
(0.0079)  (0,0054)  (0.00128)  (0.0036)  (0.0157)  (0,0158)  (0.0319)  (0.0232)

500 <20 g0 0-5084 0,5133 0.4992 0.5731 0.7829 0,7764 0.6636 0.5225
(0.0042)  (0,0055)  (0.00203)  (0.0038)  (0.0094)  (0.0109)  (0.0303)  (0.0294)

500 20 a0 0-AT8S 0,4678 0.4075 0.5494 0.8013 0,8187 0.8400 0.5085
: (0.0067)  (0,0080)  (0.00261)  (0.0052)  (0.0102)  (0,0219)  (0.0439)  (0.0255)

800 10 g 0-4473 0,4454 0.1248 0.5306 0.8622 0,8601 0.8452 0.5839
(0.0273)  (0,0078)  (0.00203)  (0.0045)  (0.0185)  (0.0089)  (0.0328)  (0.0232)

0.4203 0,3936 0.2572 0.5137 0.8717 0,8883 1.1296 0.5275

1800 ¢10 d40  (575578)  (0,0061)  (0.00271)  (0.0022)  (0.0085)  (0.0146)  (0.0201)  (0.0162)
800 <20 g 0-4586 0,4415 0.4393 0.5322 0.8561 0,8617 0.8330 0.5806
(0.0047)  (0,0063)  (0.00938)  (0.0038)  (0.0083)  (0.0113)  (0.0833)  (0.0180)

1800 20 a0 0-4142 0,4037 0.4420 0.5108 0.8782 0,8741 1.1635 0.5523
(0.0286)  (0,0084)  (0.00592)  (0.0039)  (0.0176)  (0,0089)  (0.0334)  (0.0110)

In Figure 1 we can see the difference between initial populations. Where the
path relinking was not used, most of the solutions are generated at random and
stay in the center of the search space. In contrast, the use of extreme solutions
combined with path relinking provided a initial population that represented the
search space in a much better way.

The Figure 2a presents the evolution of the spread of the fronts obtained
by NSGA-II with the initialization procedures. A higher number of function
evaluations was considered. We used 1000000 function evaluations, in order to
study the behaviour of the algorithms for a large number of function evaluations.
The Spread of the algorithms with the EPR initialization method is remarkably
smaller than the other ones already in the early generations. The same can be
said about the HV indicator, as can be seen in Figure 2b.

The Figure 2c presents the evolution of the spread of the fronts obtained
by MoCell with the initialization procedures. Again, we used 1000000 function
evaluations and chose the largest instance. The Spread of the algorithms with
the EPR initialization method is remarkably smaller than the other ones already
in the early generations. The same can be said about the HV indicator, as can
be seen in Figure 2d.

Statistical evaluation of the results used the two-sample t-test with a sig-
nificance level equal to 2%. The null hypothesis for both algorithms is that
the Spread or Hypervolume distributions are independent random samples from
normal distributions with equal means and equal but unknown variances. The
alternative hypothesis is that the means are not equal. Tables 3 and 4 presents
the results for each metric to both algorithms, NSGA-IT and MoCell. Each table
entry shows three values: the mean, the standard deviation and the p-value (To
values below le-10 we used the zero value.) obtained with the t-test. For all tests
the reference sample is that one achieved by algorithm with random initializa-
tion i.e., the t-test of each column always matches with the random initialization
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Table 3. Hypervolume Statistics(mean, standard deviation, p-value)
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NSGA-II

0.5327
0.032

0.5163
0.019

0.4884
0.042

0.5556
0.028

0.5362
0.0027

0.501
0.0054

0.5472
0.004

0.5285
0.0027

0.4984
0.0038

EPR +
NSGA-II
[402]
0.587
0.06
X(1.42¢-5)
0.5969
0.11
X(1.92e-4)
0.5973
0.24
X(9.47e-3)
0.5929
0.03
X(8.86e-8)
0.5983
0.07
X(1.87e-5)
0.5977
0.019
X(0)
0.5929
0.005
X(0)
0.5958
0.001
X(0)
0.5956
0.011
X(0)

EPR +
NSGA-II
[1024]
0.592
0.13
X(9.19e-3)
0.5934
0.15
X(4.33e-3)
0.5875
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6.58¢e-2
0.6013
0.07
X(6.24e-4)
0.5989
0.14
X(1.02e-2)
0.5902
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X(0)
0.5981
0.006
X(0)
0.5943
0.005
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0.5856
0.016
X(0)
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0.034
X(1.76e-2)
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X(8.34¢-6)
0.5448
0.021
X(1.73e-2)
0.556
0.022
X(3.36¢-6)
0.5624
0.027
X(0)
0.545
0.015
X(0)
0.5553
0.017
X(0)
0.5606
0.023
X(0)

EPR +
MoCell
[1024]
0.5389
0.024
v (0.190)
0.551
0.027
X(7.86¢-5)
0.5537
0.035
X(5.55¢-9)
0.5462
0.017
X(1.70e-3)
0.5557
0.014
X(1.17¢-9)
0.5594
0.029
X(1.697e-10)
0.5437
0.01
X(0)
0.5518
0.015
X(0)
0.5573
0.019
X(0)

Spread Statistics(mean, standard deviation, p-value)

NSGA-II

0.7489
0.0823

0.7935
0.0761

0.8735
0.0892

0.6451
0.0481

0.74
0.0618

0.8536
0.0876

0.6821
0.0431

0.7791
0.0766

0.8219
0.0581

EPR +
NSGA-II
[402]
0.4169
0.736
X(9.80e-3)
0.3866
0.711
X(1.95e-3)
0.3725
0.492
X(2.55e-6)
0.3777
0.294
X(1.33e-5)
0.3502
0.21
X(0)
0.3293
0.187
X(0)
0.3306
0.15
X(0)
0.3133
0.095
X(0)
0.2858
0.085
X(0)

EPR +
NSGA-II
[1024]
0.3959
0.38
X(9.92e-6)
0.3885
0.906
X(1.03e-2)
0.4026
0.671
X(3.05e-4)
0.3427
0.472
X(7.44e-4)
0.3571
0.462
X(4.55e-5)
0.377
0.367
X(3.96e-8)
0.3193
0.231
X(8.93e-10)
0.3288
0.206
X(0)
0.4026
0.262
X(5.99e-10)

MoCell

0.
0.

0.
0

o0 o0 o0 o0 o0 OO

=3

6135
0102

6579
.0128

.7446
.0124

.6116
.0128

.6595
.0137

7435
.0116

.6618
.0118

.7059
.0115

.T573
0.01

EPR +
MoCell [402]

0.2633
0.136
x(0)
0.2456
0.17
x(0)
0.2226
0.104
x(0)
0.1889
0.127
x(0)
0.2001
0.129
x(0)
0.2107
0.135
x(0)
0.1867
0.16
x(0)
0.1897
0.162
X(0)
0.2072
0.097
x(0)

EPR +
MoCell
[1024]
0.4962
0.21
X(2.36e-3)
0.4977
0.21
X(1.23e-4)
0.5204
0.249
X(1.53e-5)
0.4673
0.19
X(1.29e-4)
0.4869
0.202
X(3.08e-5)
0.5123
0.162
X(6.38e-9)
0.4739
0.161
X(2.73e-7)
0.4982
0.135
X(1.37e-9)
0.5153
0.151
X(5.81e-10)
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algorithm result. In order to facilitate the tables comprehension, each table cell
indicates, using a symbol, if the hypothesis has been rejected ( X) or not ( v').
The Table 3 shows the statistics analise to Hypervolume metric where the null
hypothesis is not rejected in only one case. In all other cases ERP is superior
when applied to MoCell and NSGA-II, in both the configurations of population
1024 or 402 chromosomes. Also note in Table 4 for the Spread results in which
the null hypothesis is rejected in all cases tested.
In this experiment 30 different initial populations randomly chosen with the
configuration r800 ¢20 d40 were used.
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4 Conclusions

In this paper we face the problem of solving the Multi-Objective Next Release
Problem via evolutionary algorithms. Three objectives are to be sought by MO-
GAs: achieve good convergence, maintain the diversity of the population and
reducing the computational effort. The achievement of these goals is strongly
dependent on the initial population, with our experiments showing that for large
instances of the problem, evolutionary algorithms such as NSGA-II and MoCell
with random initialization do not give good results even with long processing
times, as shown in Figure 2 and 3.

We propose to use Extreme solutions and Path Relinking (EPR) to obtain a
set of interpolated solutions in the initial population. This work showed that the
proposed method has a big impact on the three above-mentioned goals, where
we used hypervolume and spread as measures for diversity and convergence.

In any future attempts to solve MONRP with this formulation, the possibility
of inserting extreme solutions should be taken into account. In case one needs to
solve complex instances, with a big quantity of requirements and dependencies,
using the EPR method should be a good choice, since it presents the best Spread
and Hypervolume in all tested instances, with little impact on the total running
time of the algorithms.
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Abstract. This work proposes a new technique for the treatment of
Multi-objective Optimization Problems (MOPs), based on the exten-
sion of a socio-cultural algorithm, the Method of Musical Composition
(MMC). The MMC uses a society of agents, called composers, who have
their own creative ability, maintain a memory of their previous artwork
and are also able to exchange information.

According to this analogy, a decomposition approach implemented
through a Tchebycheff function is adapted, assigning each composer to
the solution of a particular scalar sub-problem. Agents with similar pa-
rameterization of the original MOP may share their solutions. Further-
more, the generation of new tunes was modified, using the Differential
Evolution mutation operator. Computational experiments performed on
the ZDT and DTLZ test suite highlight the promising performances ob-
tained by the resulting MO-MMC algorithm, when compared with the
NSGA-II, MOEA/D and two swarm intelligence based techniques.

1 Introduction

The treatment of Multi-objective Optimization Problems (MOPs) has become,
in the two last decades, a main research area, particulary in Evolutionary Com-
putation. A MOP accounts for the simultaneous optimization (without lack of
generality, we will assume minimization in the remainder of this paper) of m
objectives: min { f1(x), ..., fm(x)}. The aim is therefore to determine an approx-
imation of the set P* of Pareto (or non-dominated) solutions, which represent a
trade-off between the m objectives: P* = {x € F| Az’ € F : 2’ < x}, where F is
the set of feasible solutions of the tackled problem and z’ < x (2’ dominates z)
means that Vi € {1,...,m}, fi(z') < fi(z) and 35 € {1,...,m}: f;(2') < f;(x).
The representation of P* in the objective space is commonly denoted as the
Pareto front PF*. In practice, not all the Pareto-optimal set is usually desir-
able. The aim is rather to obtain a limited number of solutions, as close as
possible and well (uniformly) distributed along the Pareto front PF™.
Redefining optimality in those terms has involved the design of adapted op-
timization methods. Furthermore, the need to obtain, in a single run, a set of

A. Gelbukh et al. (Eds.): MICAI 2014, Part II, LNAI 8857, pp. 38-49, 2014.
© Springer International Publishing Switzerland 2014
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non-dominated solutions, led to the use of population-based techniques, partic-
ularly Evolutionary Algorithms (EAs). The integration of non-dominance and
elitism concepts, as well as the design of refined techniques for diversity preserva-
tion, allowed significant advances, illustrated by the development of state-of-the
art techniques whose results are still currently reported in many applications
(see for instance the SPEA2 [1]) and NSGA-II [2] algorithms).

More recently, the weakness of dominance-based methods for solving
many-objectives problems has attracted the interest of researchers on alternative
techniques. First, the decomposition approach, introduced in the MOEA /D [3],
consists in dividing a MOP into a set of scalar subproblems, each one being
associated with a specific parameterization of the original MOP. On the other
hand, the design of different measures assessing the algorithmic performances
led to the idea of optimizing these metrics instead of directly minimizing the
problem objectives (see for instance the SMS-EMOA [4]). Finally, the extension
of other metaheuristics has also constituted a promising research line, like for
example the Particle Swarm Optimization (MOPSO, [5]).

Following these guidelines, the present work proposes the extension of a novel
socio-cultural algorithm for the solution of MOPs, namely the Method of Musi-
cal Composition (MMC, [6]). Regarding the remainder of this paper, Section 2
proposes a short outline on multi-objective socially-motivated algorithms. In
section 3, the Method of Musical Composition is briefly described, while the
proposed modifications for dealing with MOPs are provided in section 4. Com-
putational experiments and numerical results are discussed in section 5 and some
conclusions are drawn in section 6.

2 Multi-objective Socially-Motivated Algorithms

As above-mentioned, a great amount of research effort was carried out for the
extension of different kinds of metaheuristics to the treatment of MOPs. Because
of their conceptual similarity with the MMC (defined as a socio-cultutural op-
timization algorithm), the so-called “socially-motivated” techniques are of par-
ticular interest in the framework of this study: Particle Swarm Optimization
(PSO), Ant Colony Optimization (ACO) and Cultural Algorithms (CAs).

Many multi-objective PSO implementations have been proposed since 1999
(see [7] for a complete overview on this topic). Among these techniques, which are
mainly based on the Pareto dominance strategy, the most quoted one is MOPSO,
introduced in [5]. MOPSO maintains an external archive of non-dominated so-
lutions used to guide the particles’ flight, and includes a mutation operator to
promote exploration.

Also, some works based on the decomposition approach introduced in [3] were
proposed more recently. For instance, AMOPSO [8] builds a set of global best par-
ticles according to the decomposition approach and uses it to update particles’
position. Furthermore, a memory reinitialization is carried out to provide diver-
sity to the swarm. [9] and [10] are other illustrations applying decomposition and
combining it with either a crowding distance or the creation of sub-swarms in
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order to promote diversity. Note that the two former works use a Penalty Bound-
ary Intersection decomposition scheme for decomposition, while the latter one
is based on Tchebycheff approach. However, in [11], the authors propose a min-
max strategy for decomposition and a local best solution updating performed for
each sub-region associated to each sub-problem. This approach seems to clearly
outperform the dominance-based MOPSO [5] for several 2 and 3-objective con-
tinuous test functions.

Regarding multi-objective implementations of ACO, only a few approaches use
the Pareto dominance concept while a great majority rely on the metaheuristic
specific features (using, for instance, several ant colonies, or different pheromone
or heuristic matrices). Besides, due to the nature of the metaheuristic, a great
majority of studies deal with combinatorial optimization problems. However, two
recent works are based on a decomposition approach, such as [12] and [13] that
showed good performances on several instances of the multi-objective knapsack
and TSP problems.

Finally, very few multi-objective implementations of Cultural Algorithms are
reported in the specialized literature. The most relevant one is based on Evo-
lutionary Programming, uses Pareto ranking and enforces elitism through an
external archive storing the non-dominated solutions [14]. Evaluated on some
test functions, this technique is successfully compared with NSGA-II [2]. Apart
from this proposal, other works [15,16] exclusively present qualitative studies
of the CAs’ internal features. None of them propose any consistent results on
classical benchmarks. In this sense, the extension of MMC, as a socio-cultural
algorithm, is part of the contribution of the present work.

3 Description of the MMC

The MMC [6] is an algorithm based on a multiagent model that mimics a creativ-
ity system, such as musical composition. The MMC considers a social network,
composed of N, agents, called composers, and a set E of edges, that represent
relationships between composers. Note that this society is dynamic: at the end
of each iteration, the social network is updated in such a way that some edges
may be probabilistically created or removed from the associated graph.

According to the MMC model, each composer has his/her own artwork, i.e.
a set of N, “tunes” (solutions) that he/she previously created. Moreover, any
agent is able to learn tunes from other agents he/she shares a link with, within
the previously defined social network. All these tunes are stored in a matrix
denoted as the acquired knowledge. Both personal and acquired knowledge may
be used by each agent to create new tunes, by performing a crossover /mutation-
like technique. However, composers also have creative abilities, allowing them to
invent new tunes (complete solutions) or tune fragments (partial solutions) in a
completely random way.

Summarizing for a n-dimension search space, the social network is first ran-
domly initialized and a set of N, artworks is created. Each composer stores his/her
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personal knowledge in the corresponding score matriz, P; 4 (i = 1,..., N.). Then,
a complete cycle of the MMC algorithm is as follows:

1. Each composer i receives information from all the composers j he/she is
connected with.

2. Composer i accepts or rejects a tune randomly selected from composer j’s
artwork, in order to build his/her acquired knowledge matrix I.SC; . .: the
selected tune Pj se; « is accepted if composer j’s worst tune Pj yorst,+ s better
than composer i’s worst tune P yorst, «-

3. Each composer ¢ builds his/her background knowledge matrix by concate-
nating personal and acquired knowledges: KM; 4 » = P; . UISC; 4 ..

4. Each composer i probabilistically decides whether generating a new tune on
the basis of the background knowledge matrix, or in a random way (com-
poser’s inspiration).

5. If the tune is created from the background knowledge, crossover is applied

to three tunes selected from composer i’s matrix K M, , .. A normal pertur-

bation is subsequently added to the resulting child.

Composer i accepts the new tune if it is better than P; yorst «-

7. The social network is updated: every edge in E (respectively in F) is prob-
abilistically removed from (resp. added to) the social network.

&

This operation cycle is repeated until the stopping criterion is met, e.g. when
a maximum number of iterations have been computed. The MMC has been
evaluated on various test function benchmarks, including unrestricted [6] and
restricted [17] problems. The promising results reached by this novel optimiza-
tion technique make it a very effective socially motivated algorithm.

In the general framework of population-based search techniques, the MMC
can be related to Evolutionary Algorithms and Particle Swarm Optimization.
However, the fact that each agent represents a set of solutions (which can be seen
as an extended memory) and the dynamically updated topology of the artificial
society constitute its main differences with the above-mentioned algorithms.

4 A Multi-objective MMC

The MO-MMC algorithm proposed in this paper is based on the decomposition
approach, which appears as one of the best performing. This strategy involved
the design of new selection mechanisms and acceptance functions. Furthermore,
since MMC can be considered as a cultural algorithm, it has been necessary to
deal with multiple interactions between agents to update their knowledge about
the problem (as a population) and also to use information collected from the
population (as individuals).

4.1 Decomposition Approach

In this first implementation of the MO-MMC, the Tchebycheff approach was
selected for the decomposition of the global MOP into several parameterized
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scalar subproblems, which are in the form:

LRI te * *
minimize ¢*°(z|A, 2*) = 1%%);1{)\j‘fj(x) —zj|} (1)
where 2* = (27,...,25)" = min {fj(x)|x € £2} is the ideal vector, A = (Aq,...,

Am)T is a weight vector and 2 is the variable decision space. For every Pareto
optimal point z*, there exists a weight vector A such that x* is an optimal solu-
tion. In the proposed algorithm, every composer has a weight vector A assigned,
meaning that every composer solves a specific scalar problem and searches a sub-
region of the Pareto front. A consequence of this operating mode is that solutions
from different composers cannot be easily compared, since their fitness g*¢(z|\, z*)
is computed according to different weights. Note that previous MOCAs usually
rely on Pareto dominance schemes to evaluate solutions, so that the MO-MMC
represents the first decomposition-based Multi-Objective Cultural Algorithm.

4.2 Initialization

The initialization phase of the algorithm consists of building the social network
and creating a personal artwork for each composer. In this first implementation,
it has been considered (as in the MOEA/D [3]) that collaboration between com-
posers having very different weight vectors might not be useful since they are
respectively optimizing very different scalar sub-problems. Since each composer’s
weight vector is constant, the society is static and not dynamically updated as
in the original MMC. Therefore, N, weight vectors are generated uniformly over
the search direction space and assigned to the N, composers. A link between
two composers is then created only if their weight vectors are significantly close.
This configuration does not change during a run.

Besides, every composer’s artwork, consisting of Ny tunes, is initialized, mean-
ing that N, x Ny solutions should be generated. However, only one solution is
randomly created for each composer and Ny copies of this solution are assigned
to him/her. Preliminary experiments proved that this allows a slight reduction
of the number of objective evaluations, without deteriorating the technique’s
performance. These solutions are subsequently evaluated for each objective, al-
lowing the computation of a first estimation of the ideal vector: Vj € {1,...,m},
zf =min{fj(x)|lx = Pig, ¢ =1,...,Ne, k=1,..., Ns}. The tunes can then be

J
evaluated according to the composer’s weight vectors in g*¢(z|X, 2*).

4.3 Main Cycle

The main cycle consists of four steps performed by each composer.

(i) Updating the Acquired Knowledge Matrix
Each composer randomly selects exactly one tune from each of his/her neighbors
and includes it to his/her acquired knowledge matrix ISC; . ., whatever its
associated value of the Tchebycheff function.

(ii) Creating a New Tune
As in the original MMC, each composer can generate new tunes according to
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either his/her personal knowledge, the knowledge acquired from other agents
or his/her own inspiration (a flash of genius). Thus, with probability cfg, each
variable of the new solution is randomly set within its bound. Otherwise, it
is built from solutions drawn from the composer’s background knowledge (in-
cluding both personal and acquired knowledges, see section 3). In this second
case, the variable value is not computed, as in the initial MMC, through a three
parent-crossover, but rather through the classical Differential Evolution muta-
tion operator:

Yk = af + F - (af — af) (2)

where yj, is the k' variable of the mutant solution and x¢, 2%, x¢ are drawn
from KM, , e.g. the k" variable of three solutions of composer i’s back-
ground knowledge. In any case, x® is selected from composer i’s personal artwork
through a tournament technique. This tournament involves a random number
of solutions from P; , , and the winner is the solution with the best value of the
Tchebycheff fitness function. Regarding 2 and x¢, with probability ifg, these lat-
ter are randomly chosen from P, ,; otherwise, they are randomly chosen from
15C; « &, e.g. composer i’s acquired knowledge. If the resulting variable value
lies outside its bounds, it is randomly reset inside them.

(#i) Sharing the New Tune
The tune just created by composer i is subsequently proposed to his/her neigh-
bors (composers having a similar weight vector). In order to avoid convergence
to a single point, the new tune can be accepted by only one composer, in addition
to the one who created it. The new solution should logically be assigned to the
composer whose search is focused on the corresponding sub-region of the Pareto
front, i.e. the composer that most benefits him /herself from this tune. This means
that composer 7 and his/her neighbors first re-calculate the Tchebycheff fitness
function according to their own weight vector and normalized objective values.
The composer with the lowest resulting g'¢(z|), 2*) value can accept the new
tune. If he/she rejects it, the tune is then proposed to the composer with the
second lowest g'®(z|\, z*) value, who may accept it, and so on. If no composer
accepts the new tune, this one is thrown away.

(iv) Accepting the New Tune
Every time a recently created tune is proposed to a composer, this latter can
accept o reject it. The acceptance criterion is performed with respect to his/her
personal artwork. If the Tchebycheff fitness function of the new tune is lower
than that of the composer’s worst tune, P; yorst,«, then the new tune replaces
P worst,« in the composer’s artwork. Otherwise, the tune is either proposed to
another neighboring composer or thrown away.

The above-described instructions are repeated until a user-defined number of
iterations is reached. When concluding, the final number of solutions in the soci-
ety is still N, x Ng. This number must be reduced to N, in order to produce only
one solution for each search direction (weight vector). Therefore, the fast Pareto
sorting procedure from the NSGA-II technique [2] is applied. If the resulting
number of non-dominated solutions is still higher than N, it is further reduced
through a clustering procedure similar to that introduced in [1].
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Note that, in contrast with a great majority of state-of-the-art techniques,
no diversity preservation technique is included in the MO-MMC since it appears
that the weight-based decomposition approach provides by itself means for diver-
sifying the search. In the same way, no external archive maintenance nor Pareto
sorting procedure are carried out during the search process, but at the end of the
execution, which just involves a marginal increase in the run time. However, as
previously mentioned, the proposed MO-MMC represents a first version, which
might be improved including the above mentioned features if necessary.

4.4 Algorithm
Summarizing, the MO-MMC algorithm can be stated as follows:

Step 1. Initialization.

1.1 Create a set of N, uniformly distributed weight vectors, {)\1, cee )\N}.

1.2 Create an artificial society of N. composers and assign a weight vector
A* to each composer 3.

1.3 Create the social network as undirected links between each composer
and the N, X ¢y composers with closest weight vectors.

1.4 For each composer 4, randomly initialize one tune within the bounds of
each variable of the considered n-dimensional MOP. Store N, copies of
this tune in P; . .. Compute objective functions of the created tunes.

1.5 Initialize z* = (27,...,2%)" and the iteration counter ¢ = 0.

Step 2. Main cycle. While ¢ < t,,,4, do for each composer i:

2.1 Update the acquired knowledge matrix ISC; . » by randomly selecting
one tune of each of composer i’s neighbors.

2.2 Select tune z® from P, , . through a random size tournament using the
Tchebycheff function as a criterion.

2.3 If rnd < ifg, randomly select #° and ¢ in P , ,; otherwise, randomly
select z? and z¢ in 15C; « %

2.4 For each variable k = 1,...,n, if rnd < cfg create randomly a new
variable yi; otherwise, compute y; from equation 2.

2.5 Compute objective functions of the new tune and possibly update z*.

2.6 Composer i accepts the new tune if it is better that the worst one of
his/her artwork, P; worst «, i terms of the Tchebycheff function.

2.7 For each composer i’ neighbor of i, compute g*(y|\’', z*).

2.8 Propose the new tune to composer i’ in increasing order of gt (y|)\i', z*):

- if gty 2%) < gte(Rf’worst’*P\i/,z*) then y replaces Py worst «-
- otherwise, either propose y to another neighbor or throw it away.
2.9 Increment the iteration counter ¢ < ¢ 4 1.
Step 3. Conclusion.

3.1 Apply the fast Pareto sorting procedure to the N. x N, final solutions
to obtain the approximated Pareto set P.

3.2 If the number of non-dominated solutions is higher than N., apply clus-
tering to P. Output P.

In the previous description, rnd is a uniform random number generated in [0,1].



Extension of the Method of Musical Composition for the Treatment of MOPs 45

5 Computational Experiments

In order to assess the performance of the proposed MO-MMC, it is evaluated
on several test-suites commonly used in the specialized literature: five of the
two-objective ZDT test functions from [18] (ZDT5 is not considered since it is a
binary problem) and the three-objective DTLZ2 function from [19]. 30 decision
variables were used for ZDT1, ZDT2 and ZDT3, while ZDT4, ZDT6 and DTLZ2
were tested using 10 decision variables. The MO-MMC performance level is sub-
sequently compared with other techniques whose results are available in the
specialized literature. Two state-of-the-art MOEAs, namely NSGA-II [2] and
MOEA/D [3] were considered, as well as two multi-objective PSO implemen-
tations, MOPSO [5] and MOPSO-PD [11]. Note that these techniques include
different paradigms (EA and PSO), as well as different approaches for dealing
with MOPs (dominance and decomposition).

In order to compare the above-mentioned algorithms, the Inverted Genera-
tional Distance (ZGD) is used in this study. The advantage of this metric is that
it does not only account for convergence to the real Pareto front PF* but also
for the even distribution of the approximated front PF,, when a uniform sample
of PF* is known.

5.1 Experimental Settings

For each test function, 30 independent runs were performed with each algorithm.
The parameters used in MO-MMC are summarized in Table 1. In addition to
these parameters, the maximum iteration number was set in order to provide a
fair number of objective evaluations, regarding the algorithms MO-MMC is com-
pared with. Thus, 250 (resp. 500) iterations were used when comparing with the
EAs for two-objective (resp. three-objective) test functions, while 200 iterations
were used when comparing with the MOPSOs.

Regarding the EAs, they use a population size of 100 (resp. 300) solutions for
two-objective test instances (resp. three-objective test instances). They report
a 100 (resp. 300) for points approximate Pareto front after 250 generations,
therefore using 25,000 (resp. 75,000) objective evaluations [3]. Both EAs use
SBX crossover and polynomial mutation. The ZGD metric is computed with 500
points in PF* for 2-objective functions and 990 points for 3-objective functions.

With respect to the two PSO-based algorithms, the results in [11] were re-
ported for swarm sizes of 100 particles. The global archive contains 100 solutions,
obtained after 20,000 objective evaluations. However in this case, the authors do
not indicate the number of points in PF* used to compute the ZGD metric, so
the results reported here for the MO-MMC are for 100 points (which looked like
the most difficult conditions).

5.2 Results and Discussion

Figure 1 shows the final Pareto fronts obtained by the MO-MMC algorithm
for the tackled test functions. These plots show the final set of non-dominated
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Table 1. Parameters for MO-MMC

Parameter Value
N Number of composers and weight vectors 100 (2-obj.) or 150 (3-obj.)
N Tunes in artwork 3
ifg Factor for creating tunes based on own artwork 0.35
cfg Factor for creating random tunes (genius) 0.01
cfla  Proportion of neighbors in artificial society 0.1
F Parameter for DE mutation operator 0.5

solutions found for a random run out of the 30 performed for each problem. In
addition, the results obtained for the ZGD metric, compared with those of the
above-mentioned challenging algorithms, are presented in tables 2 and 3. In both
tables, the reported data are the mean value and, in parentheses, the standard
deviation, computed over the 30 runs.

From table 2, MO-MMC clearly outperforms the NSGA-II and the MOEA /D
for all test functions but ZDT3, for which the NSGA-II obtains the best re-
sults. However on this problem, the MO-MMC still provides a better ZGD value
than MOEA /D. Regarding standard deviation, the very low values of MO-MMC
confirm the robustness of the proposed algorithm.

Table 2. MO-MMC ZGD values compared with EAs

Instance NSGA-II MOEA /D MO-MMC
0.0050  0.0055 0.0040

ZDTL - (0.0002) (0.0039) (0.0000)
ZDT2 (0000 (0.0109) (0.0000)
pry S0 o o0t
ZDT4 (0003 (0.0023) (00001
ZDT6 (50028 (0:000) (0.000)
DrLzy 00417 00389 0.0373

(0.0013) (0.0001)  (0.0011)

Concerning the comparison with the two PSO-based techniques, MOPSO is
clearly outperformed for all test problems. MOPSO-PD obtains the best results
for ZDT3 and ZDT4 functions, although with a very marginal difference with
MO-MMC. This latter outperforms MOPSO-PD for all the remaining instances,
in some cases with a significant difference (particularly for ZDT2 and ZDT6). So,
the conclusions of the computational experiments are clearly in favor of the MO-
MMC algorithm. The ZGD metric confirms the quality of the proposed approach,
as well as the graphs of the obtained Pareto fronts showed in figure 1. In all cases,
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Fig. 1. Pareto fronts obtained by the MO-MMC

Table 3. MO-MMC ZGD values compared with MOPSOs

Instance MOPSO-PD MOPSO MO-MMC

ZDT1

ZDT2

ZDT3

ZDT4

7ZDT6

DTLZ2

0.0053

0.2782

0.0099

0.0040

0.0459

0.0717

0.1248

0.5530

0.5524

0.0775

0.0534

0.4079

0.0039
(0.0001)
0.0041
(0.0000)
0.0100
(0.0001)
0.0045
(0.0004)
0.0031
(0.0001)
0.0569
(0.0040)
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the convergence to the real Pareto front seems excellent and dispersion is also
satisfactory, although it might be improved for the three-objective test function.

6 Conclusions

An extension of a recent socio-cultural algorithm, the Method of Musical Com-
position, has been proposed in this work. The MMC is an algorithm based on
both creativity and social interaction concepts, whose main internal procedures
had to be modified for the solution of MOPs. The resulting MO-MMC was able
to outperform several state-of-the-art MOEAs and MOPSOs, in most of the
test problems considered, for the ZGD metric. It is worth recalling that, given
a uniformly distributed sample of the real Pareto front, this metric provides an
assessment for both convergence and uniform distribution of the points in the ap-
proximated Pareto front, justifying that it was the only one required for the MO
competition of the 2009 Congress on Evolutionary Computation. As perspective
of future works, however, additional performance metrics (such as the Pareto
compliant hypervolume) should be considered. Besides, as mentioned in this pa-
per, the present MO-MMC is the first adaptation of the MMC for solving MOPs,
and the technique might be improved considering the following guidelines: (%)
the decomposition approach might be changed to a Penalty Boundary Intersec-
tion strategy, (i7) some technique promoting the search diversification should
be integrated in order to improve results for three-objective test functions, and
(#4) more exhaustive computational experimentation should be carried out, for
instance with small populations to study regularities in the approximated front.
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Abstract. A framework for time series forecasting that integrates k-
Nearest-Neighbors (kNN) and Differential Evolution (DE) is proposed.
The methodology called NNDEF (Nearest Neighbor - Differential Evo-
lution Forecasting) is based on knowledge shared from nearest neighbors
with previous similar behaviour, which are then taken into account to
forecast. NNDEF relies on the assumption that observations in the past
similar to the present ones are also likely to have similar outcomes. The
main advantages of NNDEF are the ability to predict complex nonlinear
behavior and handling large amounts of data. Experiments have shown
that DE can optimize the parameters of kNN and improve the accuracy
of the predictions.

Keywords: Time Series Forecasting, Prediction, k-Nearest-Neighbor,
Differential Evolution.

1 Introduction

A time series is defined as a set of quantitative observations arranged in chrono-
logical order [9], where we generally assume that time is a discrete variable.
Examples of time series are commonly found in the fields of engineering, science,
sociology, and economics, among others [3]; time series are analysed to under-
stand the past and to predict the future [5]. This forecast must be as accurate
as possible, since it can be linked to activities involving marketing decisions,
product sales, stock market indices, and electricity load demand, among others.

In many occasions, it is fairly simple and straightforward to forecast the next
value of the time series. But the further we delve into the future, the more
uncertain we are and the bigger forecast errors we get.

Some statistical models such as autoregressive models [20] can be used for
time series modelling and forecasting. These traditional forecasting techniques
are based on linear models, however many of the time series encountered in
practice exhibit characteristics not shown by linear processes. If the time series is
confirmed to be nonlinear, very rich dynamic possibilities can emerge, including
sensibility to initial conditions, known as chaotic behaviour [13].

A. Gelbukh et al. (Eds.): MICAI 2014, Part II, LNAI 8857, pp. 50-60, 2014.
© Springer International Publishing Switzerland 2014
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In the past, several methods have been proposed to predict chaotic time se-
ries. One of the first methods proposed was the modeling of the system using
Nonlinear Models (NLM) [8], but the main problems of this approach are proper
model selection and data-dependency.

Another approach to solve the time series forecasting problem is Artificial
Neural Networks (ANNs) [15]. The ANNs are trained to learn the relationships
between the input variables and historical patterns, however the main disadvan-
tage of ANNSs is the required learning procedure.

More recently, classification techniques based on the nearest neighbours have
been successfully applied in different areas from the traditional pattern recogni-
tion. The k-Nearest-Neighbors (kNN) [4] is an algorithm that can be employed
in time series forecasting due to its simplicity and intuitiveness. kNN searches
for similar instances recovering them from large dimensional feature spaces and
incomplete data [8]. The kNN algorithm assumes that subsequences of the time
series that emerged in the past are likely to have a resemblance to the future
subsequences and can be used for generating kNN-based forecasts.

One significant drawback of the kNN forecasting method is the sensitivity to
changes in the input parameters, (i.e the number of nearest neighbors and the
embedding dimension). If the input parameters are not selected appropriately,
it could decrease the accuracy of the forecasts.

One way to select the best posible input parameters for the kNN method is
using an algorithm of the Evolutionary Computation (EC) family [16]. EC is a
computational technology made up of a collection of randomized global search
paradigms for finding the optimal solutions to a given problem. In particular,
Differential Evolution (DE) is a population-based search strategy that has re-
cently proven to be a valuable method for optimizing real valued multi-modal
objective functions [19,22]. It is a parallel direct search method having good
convergence properties and simplicity in implementation.

In this work, we propose a combination of two techniques: kNN, applied to
time series forecasting and DE for parameter optimization. The rest of the work
is organized as follows: a brief introduction to the kNN forecasting methods is
described in Section 2. The proposed technique is discussed in Section 3. Section
4 contains the explanation of the datasets used in this work and discusses the
results obtained using the proposed approach. Finally, Section 5 presents the
conclusions of the proposed methods and experiments.

2 k-Nearest-Neighbors Forecast

The kNN approximation method is a very simple, but powerful one. It has been
used in many different applications and particularly in classification tasks [21].
For this purpose, kNN uses the average of the forecast of the k objects, with-
out taking into account assumptions on the distribution of predicting variables
during the learning process.

The key idea behind the kNN is that similar training samples most likely
will have similar output values. One has to look for a certain number of nearest



52 E. De La Vega, J.J. Flores, and M. Graff

neighbors, according to some distance. The distance usually used to determine
the similarity metric between the objects is the Euclidean distance. However,
the method also permits the use of other distance measures like Chebyshev,
Manhattan, and Mahalanobis [1]. Once we find the neighbors, we compute an
estimation of the output simply by using the average of the outputs of the
neighbors in the neighborhood.

In contrast to statistical methods that try to identify a model from the avail-
able data, the kNN method uses the training set as the model [14]. The main
advantage of kNN is the effectiveness in situations where the training dataset is
large and contains deterministic structures.

2.1 One-Step-Ahead Forecasting

Let S = {s1,82,...,8t...,5Nn} be a time series, where s; is the recorded value of
variable s at time ¢. The forecasting problem targets the estimation of An con-
secutive future values, i.e. {SNt1,SN+2,--.SN+An}, using any of the currently
available observations from S [7].

If we choose a delay time 7 and an embedding dimension m, it is possible
to construct delay vectors of the form Sy = [s;_(;m—1)7) St—(m—2)rs- -+ St—7, 5¢],
where m > 0 and ¢t > 0. The time series is then organized in a training set by
running a sliding window Sy of size m along each delay vector. To retrieve the
k nearest neighbors of Sy we choose the parameter € and calculate the distance
to every delay vector S;, wheret=(m —1)7+1,(m—-1)7+2,...,N—1.

For all the k vectors S; that satisfy Equation (1) we look up the individual
values Si4+ An-

ISy —Sif <€ (1)
The forecast is then the average of all these individual values, expressed by
Equation (2),

k
SN+An = ]1 Zst+An (2)
Jj=1
where Sy ap is the forecasted value at time N.

In the case where we do not find any neighbors, we just pick the closest vector
to Sy . In order to forecast a sequence of future values we use real data as input,
that is, F'S(st) = 8¢4 An, where F'S is the one-step-ahead forecasting function.

Note that when An = 1, Equation (2) produces only one forecast, however in
many occasions, it is neccesary to forecast more than one value at the time. For
this purpose, two strategies have been used in the past, the iterative or recursive
scheme and the simultaneous or direct scheme [21].

2.2 TIterative Forecasting

In the iterative forecasting strategy, a single point is predicted at a time and it
is afterwards appended to S for subsequent forecasts. Iterative forecasting can
be computed by Equation (3).
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FS(St) = St+kAn ke [1,,m}

where § spif t< N (3)
£ §; otherwise

This process is repeated until the number of forecasts is reached. In this way,
we are applying a one-step-ahead forecast many times, iteratively. This scheme
presents a caveat: if the errors are non-zero and the forecasts are used as inputs
repeatedly, a cumulative prediction error is included in the forecasts. Iterative
predictions are more accurate for short horizons, but since the prediction error
accumulates, this method is not recommended for long horizons.

2.3 Simultaneous Forecasting

Compared to the iterative strategy, it is possible to forecast An from the same
input data as can be seen from Equation (4).

k

. 1
SN4rAn = stH,«An rell,...,m] (4)
=1

The simultaneous strategy always uses the real measured data as inputs. No fore-
casts are introduced to S, also, there is no cumulative error introduced through
the inputs, because only original data values are used in the forecast of future
values. Each time step only the normal prediction error is present and there is
no cumulative prediction errors.

2.4 Forecast Model Accuracy

A measure of forecast accuracy must always be evaluated as part of a model
validation effort. To evaluate the forecast performance we measure the mean
absolute percentage error (MAPE) between the real and the forecasted value.
The usage of MAPE is to measure the derivation between the predicted and
actual values, the smaller values of MAPE, the closer the predicted and real
values are. See [6] for more details.

3 Optimizing kNN with DE

As mentioned before, in order to generate an accurate output, it is necessary to
optimize the value of the parameters of kNN (m, 7, and €). For this purpose, we
use DE to minimize the prediction error on the training set.

DE was developed by Storn and Price [19,22] around 1995 as an efficient and
robust meta-heuristic to optimize functions of arbitrary complexity. Like most
algorithms in EC, DE is a population-based optimizer. Most of these methods
produce new individuals, by different heuristic techniques, as perturbations of
old ones. In this work, we focus on the classical version of DE, which applies the
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simple arithmetic operations: mutation, crossover, and selection to evolve the
population.

The kNN parameters [m,7] € Z*, while ¢ € R*. When using DE as an
optimizer, there are two considerations about these parameters: parameter types
and boundary constraints.

The optimization task of the kNN parameters is a mixed-variable problem,
because it contains both continuous and discrete parameters. DE handles this
kind of problems by representing all parameters internally as real values and
quantizing the discrete parameters values to the nearest allowed point [12]. For
m and 7 we use the quantizing function round i.e. || to transform their contin-
uous values to discrete values [18]. When working with discrete parameters, the
objective function is evaluated once DE’s continuous parameters values are quan-
tized to (but not overwritten by) their nearest allowed discrete values. Equation
(5) shows how the evaluation function of a kKNN-DE vector is proposed,

F(@@0) =kNN(|m], [7],€) ()

where 2(99) is the i-th individual of generation g.

In particular, we are trying to find 299 = [z, 2,...,2p]T, where (99 ¢
RP| to minimize the outcome of Equation (5) subject to x]L < xg»g’z) < xg-], where
L is the set that contains the lower bounds of the parameters and U is the set that
contains the upper bounds of the parameters. However, to satisfy the boundary
constraints of the kNN parameters we have to take a look at DE’s mutation
scheme. In DE, each population vector is crossed with a randomly generated
mutant vector. The mutation process is computed using Equation (6),

(@) = gloro) F(x(g’”) _ $(g,rz)) (6)
Vi € [1, Npop|

where 1, 71 and 73 are randomly chosen vectors, F' is a positive real number that
controls the rate at which the population evolves, and N, is the population
size.

Since the current population of vectors already satisfies all boundary con-
straints, only contributions from mutant vectors may violate the parameter lim-
its. Consequently, bounds need to be checked only when a mutant parameter is
selected for the trial vector.

A resseting method known as bounce-back [19], replaces a vector that has
exceeded one or more of its bounds by a valid vector that satisfies all boundary
constraints. The bounce-back strategy takes the progress toward the optimum
into account by selecting a parameter value that lies between the base parameter
value and the bound being violated.

When a mutant vector violates the parameter limits, Equations (7) and (8)
replace those parameters to satisfy both upper and lower parameter bounds
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v(gvi) (y r0) + w(x

: —a{?™) (7)

L
Ty
090 — (g o) 4 w( gJ x;g’m)) (8)
where w ~ U(0,1).
As the population moves towards its bounds, the bounce-back method gener-
ates vectors that will be located even closer to the bounds.

4 Results

This section describes the experimental results and performance evaluation of
the proposed framework. For every experiment, each time series is divided into
training and validation sets. The optimization model scheme described in Section
3 is used on the training set to obtain the best kNN parameter combination for
every dataset. Once this parameters are obtained, we use the kNN forecasting
methods described in Section 2 to produce 50 forecasts.

A comparison is made against AutoRegressive Integrated Moving Average
(ARIMA) [6], using the same conditions. Comparisons with ARIMA models
used to be problematic because some authors did not have sufficient expertise to
fit a good ARIMA model, and so comparisons were sometimes made, for exam-
ple, against a non-seasonal AR model when the data were obviously seasonal.

Table 1. ARIMA models and kNN parameters of the synthetic chaotic time series

Time series Length ARIMA  kNN-Parameters
model (p,d,q) (m,T,€)
Logistic map 50000  [0,0,0]  [1,1,3.55 x 1079
Henon map 50000  [4,0,5] [2,1,3.12 x 107
Rossler attractor 50000 [0,0,0]  [2,1,5.38 x 107%]
Lorenz attractor 50000 [4,1,4] [2,1,4.87x 107
Mackey Glass 50000 [1,0,4]  [3,1,9.47 x 1074]

Table 2. MAPE results for the synthetic chaotic time series

Time series ARIMA kNN ARIMA kNN kNN
One-step-ahead One-step-ahead Tterative Simultaneous
Logistic map 1426.5830 0.0138  1426.5830 280.6294  197.7657
Henon map 88.6130 0.0726 90.3512 111.0744  109.6362
Rossler 141.2604 5.4727 141.2604  75.3095 75.3095
Lorenz attractor 0.0007 0.3161 18.4772 1.9910 1.9910

Mackey Glass 0.0621 0.0711 17.4304 0.4734 0.1233
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This should no longer be a problem as there are now good automatic ARIMA
algorithms such as auto.arima() in the forecast package for the R language [2].

The experiments were performed in several datasets divided in two categories:
Synthetic chaotic functions and the Santa Fe competition [23]. NNDEF has been
tested with about twenty time series; we are reporting only ten of them in this
paper for conciseness.

4.1 Synthetic Chaotic Time Series

Five synthetic chaotic time series were assessed, including the logistic map, the
Henon map, the Rossler attractor, the Lorenz attractor, and the Mackey-Glass

Fig. 1. Henon map time series. Real data and forecast data using one-step-ahead kNN
and ARIMA

MAPE

- kNN Iterative

==== kNN Simultaneous
— ARIMA

0 10 20 30 40 50 An

Fig. 2. Henon map time series. Prediction error versus prediction horizon
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Table 3. ARIMA models and kNN parameters of the Santa Fe competition
Time series Length ARIMA  kNN-Parameters

model (p,d,q) (m,T,€)
Laser 1000 [4,0,2] [8,1,8.49 x 107*]
Blood Oxigen 17000 [4,1,4] [1,6,3.42 x 107°]
Exchange Rate 15000 [1,1,0]  [3,2,2.72 x 107%]
Particle 50000 [5,0,4]  [4,1,5.64 x 107]
Astrophysical 27204 [4,0,5] [1,3,2.11 x 107%]

Table 4. MAPE results of the Santa Fe competition

Time series ARIMA kNN ARIMA kNN kNN
One-step-ahead One-step-ahead Iterative Simultaneous
Laser 15.6203 6.3895 46.8827  18.1955 18.1955
Blood Oxigen 0.4903 0.5587 3.8206 3.6817 3.2346
Exchange rate 0.0298 0.0319 0.1065 0.0751 0.2293
Particle 6.4407 7.6367 38.8431  49.9560 49.9560
Astrophysical 176.7445 159.6290 137.5924 134.2523 117.2364
f(t)
7000}
6900 P\
6800}
6700} - - ARIMA
6600
6500}
0 10 20 30 40 50

Fig. 3. Blood oxigen time series. Real data and forecast data using one-step-ahead
kNN and ARIMA

delay differential equation [8,10,11,17]. The time series information (name and
length), the ARIMA models and the kNN parameters obtained by DE are shown
in Table 1. The results for one-step-ahead, iterative and simultaneous using
ARIMA and kNN are shown in Table 2, where the lowest MAPE has been
highlighted in bold. As expected, the deterministic structures found in the syn-
tethic chaotic time series can be exploited by kNN, obtaining better results than
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Fig. 4. Blood oxigen time series. Prediction error versus prediction horizon

ARIMA in three out of five time series for the one-step-ahead scheme and in four
out of five time series for the iterative and simultaneous schemes. Finally, due
to space constraints, we only present the real and forecasted values using the
one-step-ahead scheme. Figure 1 shows the forecasting results for the Henon map
data. The continuous, dotted and dashed lines represent the validation set and
forecasts produced by the kNN and ARIMA methods, respectively. Note that,
the kNN forecasts are closer to the real values than the ARIMA ones. Figure 2
shows the prediction error versus prediction horizon using the iterative and si-
multaneous schemes for the Henon map data. For this particular time series, both
kNN iterative and simultaneous outperformed ARIMA when An =1,...,48.

4.2 Santa Fe Competition

Five time series were selected from this competition: From the dataset A, the
laser oscillation data, from the dataset B, the blood oxigen concentration (col-
lected from physiological data), from the dataset C, the currency exchange rate
data, from the dataset D, the damped particle data, and from the dataset E, the
astrophysical data [23]. The time series information (name and length), ARIMA
models and the kNN parameters obtained by DE are shown in Table 3. Table
4 shows the results for one-step-ahead, iterative, and simultaneous forecasting
using kNN and ARIMA, where the lowest MAPE has been highlighted in bold.
Although ARIMA performed better in three of five time series for the one-step-
ahead scheme, the difference between those errors are insignificant. On the other
hand, for the iterative and simultaneous schemes, kNN outperformed ARIMA in
four out of five time series. Figure 3 shows the real and forecasted values using
the one-step-ahead scheme. The continuous, dotted and dashed lines represent
the validation set and forecasts produced by the kNN and ARIMA methods,
respectively. Figure 4 shows the prediction error versus prediction horizon using
the iterative and simultaneous schemes for the blood oxigen concentration data.



k-Nearest-Neighbor by Differential Evolution for Time Series Forecasting 59

For this particular time series, KNN performs as good as ARIMA in the one-
step-ahead, iterative and simultaneous schemes. It wins more time than looses
although the difference is not as much as for synthetic time series.

5 Conclusions

Time series forecasting is useful in many research areas. In this paper, we pre-
sented the solution to three time series forecasting problems: one-step-ahead, it-
erative, and simultaneous forecasting. The proposed methods to deal with these
forecasting problems are based on a combination between kNN and DE. kNN
is used to forecast values and DE is used to optimize kNN’s parameters. The
results in all three problems proved our approach to be more accurate when
implemented with DE, because we found the best parameter combination for
every time series.

All the time series used were large datasets with complex data that it becomes
dificult to process using traditional methods, however, the kNN forecasting meth-
ods proved to be efficient and consistent in their predictions, furthermore, they
only need data to work with and do not require the selection of a proper model.

The experiments results showed that for the one-step-ahead forecasting prob-
lem, kNN is more reliable than ARIMA because for some instances of time series,
ARIMA was not even capable of producing a model. On the other hand, for the
iterative and simultaneous forecasting problem, kNN outperforms ARIMA in
most cases. KNN can be very effective, especially when the prediction horizon
ranges from short to moderate.
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Abstract. This paper introduces an adaptive Binary Differential Evo-
lution (aBDE) that self adjusts two parameters of the algorithm: per-
turbation and mutation rates. The well-known 0-1 Multiple Knapsack
Problem (MKP) is addressed to validate the performance of the method.
The MKP is a NP-hard optimization problem and the aim is to maxi-
mize the total profit subjected to the total weight in each knapsack that
must be less than or equal to a given limit. Results were obtained using
11 instances of the problem with different degrees of complexity. The
results were compared using aBDE, BDE, a standard Genetic Algorithm
(GA), and its adaptive version (aGA). The results show that aBDE ob-
tained better results than the other algorithms. This indicates that the
proposed approach is an interesting and promising strategy for control
of parameters and for optimization of complex problems.

Keywords: Adaptive Parameter Control, Binary Differential Evolution,
Multiple Knapsack Problem, Evolutionary Computation.

1 Introduction

The optimization of resource allocation is one major concern in several areas of
logistics, transportation and production [8]. A well-known problem of this class
is the 0-1 Multiple Knapsack Problem (MKP). The MKP is a binary NP-hard
combinatorial optimization problem that consists in given a set of items and a
set of knapsacks, each item with a mass and a value, determine which item to
include in which knapsack. The aim is to maximize the total profit subjected
to the total weight in each knapsack that must be less than or equal to a given
limit.

Different variants of the MKP can be easily adapted to real problems, such as,
capital budgeting, cargo loading and others [15]. Hence, the search for efficient
methods to achieve such optimization aims to increase profits and reduce the
use of raw materials.

A. Gelbukh et al. (Eds.): MICAI 2014, Part II, LNAI 8857, pp. 61-71, 2014.
© Springer International Publishing Switzerland 2014
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According to the size of an instance (number of items and number of knap-
sacks) of the MKP, the search space can become too large to apply exact meth-
ods. Hence, a large number of heuristics and metaheuristics have been applied
to the MKP. Some examples are the modified binary particle swarm optimiza-
tion [4], the binary artificial fish swarm algorithm [3], and the binary fruit fly
optimization algorithm [16]. In this work, is investigated the performance of
a Differential Evolution algorithm designed for binary problems with adaptive
parameters.

The Differential Evolution (DE) algorithm is an Evolutionary Algorithm which
is inspired by the laws of Darwin where stronger and adapted individuals have
greater chances to survive and evolve [13]. In this analogy, the individuals are can-
didate solutions to optimize a given problem and the environment is the search
space. Evolutionary Algorithms simulate the evolution of individuals through the
selection, reproduction, crossover and mutation methods, stochastically produc-
ing better solutions at each generation [5]. It is well documented in the literature
that DE has a huge ability to perform well in continuous-valued search spaces [17].
However, for discrete or binary search spaces some adaptations are required [11].
Hence, this paper applies a Binary Differential Evolution (BDE) algorithm that is
able to handle binary problems, in particular the 0-1 MKP. The BDE algorithm
was first applied in [12] for the 0-1 MKP and the results obtained were promis-
ing. BDE consists in applying simple operators (crossover and bit-flip mutation)
in candidate solutions represented as binary strings. In this work several different
instances are approached.

As most metaheuristic algorithms, DE also has some control parameters to
be adjusted. It is known that the optimum values of the control parameters can
change over the optimization process, directly influencing the efficiency of the
method [6]. The parameters of an algorithm can be adjusted using one of two
approaches: on-line or off-line. The off-line control, or parameter tuning, is per-
formed prior to the execution of the algorithm. In this approach several tests are
performed with different parameter settings in order to find good configurations
for the parameters. In the on-line control, or parameter control, the values for
the parameters change throughout the execution of the algorithm. The control
of parameters during the optimization process has been used consistently by sev-
eral optimization algorithms and applied in different problem domains [2] [14]
[7] [1] [10]. In this way, a method to adapt the control parameters (crossover and
mutation rates) of DE is applied. The aim is to explore how effective the on-line
control strategy is in solving the MKP.

This paper is structured as follows. Section 2 provides an overview of the
Multiple Knapsack Problem. The Binary Differential Evolution algorithm is pre-
sented in Section 3. The adaptive control parameter mechanism is presented in
Section 3.1. The experiments and results are presented in Sections 4 and 5,
respectively. Section 6 concludes the paper with final remarks and future re-
search.
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2 Multiple Knapsack Problem

The 0-1 Multiple Knapsack Problem (MKP) is a well-known NP-hard combi-
natorial optimisation problem and its goal is to maximize the profit of items
chosen to fulfil a set of knapsacks, subjected to constraints of capacity [8]. The
MKP consists of m knapsacks of capacities C1, Ca,...Cy,, and a set of n items
I ={L,1I,...1,}. The binary variables X;(i = 1,...,n) represent selected items
to be carried in m knapsacks. The X; assumes 1 if item ¢ is in the knapsack and
0 otherwise. Each item I; has an associated profit P; > 0 and weight W;; > 0 for
each knapsack j. The goal is to find the best combination of n items by maximiz-
ing the sum of profits P; multiplied by the binary variable X;, mathematically
represented by Equation 1. Their constraints are the capacity C; > 0 of each
knapsack. Therefore, the sum of the values of X; multiplied by W;; must be less
than or equal to C, represented mathematically by Equation 2.

n
max (Z (P; x X,»)) (1)
i=1

m
> Wy x X,) <G (2)

j=1
The MKP search space depends directly on the values of n and m. A binary
exponential function with exponent n assembles all possibilities for n items re-
specting the capacity of each knapsack m. Therefore, to find the optimal solution
should be tested all 2" possibilities for each knapsack m, i.e., m x 2™ possibilities.
Thus, depending on the instance, the search space can become intractable by
exact methods. In such cases, metaheuristic algorithms are indicated. Hence, the
Binary Differential Evolution is an interesting algorithm to be applied to solve
the MKP. The algorithm was designed for binary optimization and is shown in

next section.

3 Binary Differential Evolution

The Binary Differential Evolution (BDE) [12] is a population-based metaheuris-
tic inspired by the canonical Differential Evolution (DE) [13] and is adapted to
handle binary problems. Specifically, the BDE approach is a modification of the
DE/rand/1/bin variant.

In BDE, a population of binary encoded candidate solutions with size POP
interact with each other. Each binary vector @; = [€i1, Tia...Tipra, | of dimen-
sion DIM is a candidate solution of the problem and is evaluated by an objective
function f(7;) with i = [1, ..., POP]. As well as the canonical DE, BDE com-
bines each solution of the current population with a randomly chosen solution
through the crossover operator. However, the main modification to the canoni-
cal DE, besides the binary representation, is the insertion of a bit-flip mutation
operator. This modification adds to the algorithm the capacity to improve its
global search ability, enabling diversity.
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The pseudo-code of BDE is presented in Algorithm 1. The control parameters:
the number of dimensions (DIM), the population size (POP), the maximum
number of generations or iterations (IT ER), the perturbation rate (PR) and the
mutation rate (MUT)(line 1). The algorithm begins creating a random initial
population (line 2) where each individual represents a point in the search space
and is a possible solution to the problem. The individuals are binary vectors that
are evaluated by a fitness function (line 3). An evolutive loop is performed until a
termination criteria is met (line 4). The termination criteria can be to reach the
maximum number of iterations ITER. The evolutive loop consists in creating
new individuals through the processes of perturbation (mutation and crossover)
(lines 6-17), evaluation of the objective function (line 18), and a greedy selection
(lines 19-21).

Algorithm 1. Binary Differential Evolution (BDE)

1: Parameters : DIM, POP,ITER, PR, MUT

2: Generate initial population randomly: @ ; € {0, 1}DIM

3: Evaluate initial population with the fitness function f(@;)

4: while termination criteria not met do

5  for i=1to POP do

6: Select a random individual: k < random integer(1, POP), with k # ¢
7 Select a random dimension: jrana < random integer(1, DIM)
9: for j =1 to DIM do

10: if (random double(0,100) < PR) or (j == jrana) then
11: if (random double(0,100) < MUT ) then

12: BitFlip(y;) {Mutation}

13: else

14: y; < x; {Crossover}

15: end if

16: end if

17: end for

18: Evaluate f(%)

19: if (f(7) > f(®:)) then {Greedy Selection}
20: T
21: end if
22:  end for

23:  Find current best solution @ *
24: end while
25: Report results

Inside the evolutive loop, two random indexes k and j,.qnq are selected at each
generation. k represents the index of an individual in the population and must
be different from the current index of individual ¢ (line 6). j.qnd represents the
index of any dimension of the problem (line 7).

In line 8, the individual 2’; is copied to a trial individual 7. Each dimension
of the trial individual is perturbed (or modified) accordingly to the perturbation



A Binary Differential Evolution with Adaptive Parameters 65

rate or if the index j is equal to index jqnq (line 10). The equality ensures that
at least one dimension will be perturbed. The perturbation is carried out by the
bit-flip mutation using its probability (line 11-12) or by the crossover operator
(line 14).

From the new population of individuals the best solution @™ is found (line 23)
and a new generation starts. Algorithm 1 terminates reporting the best solution
obtained 7" (line 25).

3.1 Adaptive Binary Differential Evolution

The Adaptive Binary Differential Evolution (aBDE) algorithm aims to control
two parameters: perturbation (PR) and mutation (MUT) rates. To achieve that,
a set of discrete values is introduced for each of parameter. Once defined a set of
values for each parameter, a single value is chosen at each generation through a
roulette wheel selection strategy. The probability of choosing a value is initially
defined equally which is subsequently adapted based on a criteria of success.
If a selected value for a parameter yielded at least one individual in generation
t+1 better than the best fitted individual from generation ¢, then the parameter
value has a mark of success. Hence, if at the end of generation t+1 the parameter
value was successful, its probability is increased with an « value, otherwise, it
remains the same. The « is calculated by a linear increase as shows Equation 3.

3)

. maxr —min .
o = mwn + X1

ITER

Where ITER is the number of iterations, i is the current iteration, maz is the
maximum value of a and min is the minimum value of a. After adjusting the
probabilities, the values are normalized between 0 and 1. To ensure a minimum
of chance for each value of parameters, a 3 value is established.

4 Computational Experiments

The algorithms were developed using ANSI C language and the experiments
were run on a AMD Phenom IT X4 (2.80GHz) with 4GB RAM, under Linux
operating system. For the experiments, 11 instances for the MKP were used!.
Table 1 shows the optimum value, the number of knapsacks, and the number of
items (or dimensions), respectively, for each instance.

For each instance, 100 independent runs were performed with randomly initial-
ized populations. The parameters used for the BDE algorithm are: population
size (POP = 100), number of iterations (ITER = 1,000), perturbation rate
(PR = 50%), mutation rate (MUT = 5%).

A simple Genetic Algorithm (GA) was also developed for the sake of com-
parison [5]. It uses tournament selection, uniform crossover and elitism of one

! Available at: www.cs.nott.ac.uk/~jqd/mkp/index.html
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Table 1. Benchmark Instances for the MKP

Instance Optimum Value Knapsacks Items

PB1 3090 4 27
PB2 3186 4 34
PB4 95168 2 29
PB5 2139 10 20
PB6 776 30 40
PB7 1035 30 37
PET7 16537 5 50
SENTO1 7772 30 60
SENTO2 8722 30 60
WEINGS 624319 2 105
WEISHI30 11191 5 90

individual. The parameters for the GA are: population size (POP = 100), num-
ber of iterations (ITER = 1,000), tournament size (T = 3), crossover rate
(CR = 80%), mutation rate (MUT = 5%), and elitism of one individual.

The strategy to adapt parameters is applied in both algorithms, BDE and GA,
leading to its adaptive versions aBDE and aGA, respectively. The parameters
adjusted are PR and MUT for aBDE, and CR and MUT for aGA. Thus, the
set of values for PR was defined as {20, 30,40, 50,60} to aBDE, and the set of
values for C'R was defined as {50, 60, 70,80,90} to aGA. MUT was defined as
{1,3,5,10,15} in both algorithms. A range of [0.01,0.1] was chosen for a and
the 8 parameter was set to 0.01. The number of function evaluations is the same
in all algorithms, resulting in a maximum of 100,000 function evaluations. All
choices for the values of parameters were made empirically.

In all approaches, infeasible individuals in the population are fixed by drop-
ping random items from the knapsack until feasibility is obtained. Feasibility of
individual is verified inside the objective function as proposed in [9].

5 Results and Analysis

Table 2 presents the average and the standard deviation of the best result
(Avg£Std) obtained in all runs for each algorithm, the average number of ob-
jective function evaluations (Ewal) required to achieve the optimum value, the
success rate (Success) calculated as the percentage that the algorithm reached
the optimum value, and the dominance information (P) indicating which algo-
rithms are better than the others concerning both the average best result and the
average number of function evaluations. If more than one algorithm is marked
in the same benchmark means that they are non-dominated (neither of them
are better than the other in both criteria). Also, for each algorithm, the last line
(Average) shows the average of evaluations and the average of success rate for
all benchmarks. Best results are highlighted in bold.

Analyzing the results obtained by BDE and GA we can notice that BDE
achieved better results (success rate) in all instances, except for PB2 and PB5.
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Table 2. Results obtained by all algorithms for each instance

Benchmark GA aGA
Avg+tStd Eval Success P Avg+tStd Eval Success P

PB1 3085.26+£10.78 34995.18  82.00% 3086.98+8.17 45491.35  86.00%
PB2 3131.08+40.44 89051.75  17.00% 3142.10£32.96 91786.79 15.00%
PB4 95071.014£551.51  9251.30 97.00% 94956.92+769.63 21115.21  91.00%
PB5 2138.15+3.71 29852.48 95.00% x 2136.62+5.90 33728.52  86.00%
PB6 769.574+10.49 51759.22  68.00% 770.64+10.04 46877.06  72.00%
PB7 1026.34£6.92 92079.76  17.00% 1024.3447.98 92400.93 12.00%
PET7 16428.88+47.93  100100.00 0.00% 16451.34+50.91  98634.27 6.00%
SENTO1 7640.90+50.75 100100.00 0.00% 7678.39+80.06 95481.81 14.00%
SENTO2 8620.05+37.74  100100.00 0.00% 8649.13£50.80 99942.68 1.00%

WEINGS8 566282.95+12678.93 100100.00 0.00%  583830.05+20597.21 100100.00 0.00%
WEISHI30 10824.70+92.10 100100.00 0.00% 10962.33+189.93  99851.97 3.00%

Average 73408.15  34.18% 75037.32 35.09%
Benchmark BDE aBDE

Avg+Std Eval Sucess P Avg+Std Eval Sucess P
PB1 3089.07+£4.96 14104.50  96.00% 3089.5443.52 13074.74 98.00% x
PB2 3144.55+28.43 91164.94 14.00% 3165.17424.20 78323.80 40.00% x
PB4 95168.0040.00 4672.21 100.00% x 95168.0040.00 5584.56 100.00% x
PB5 2135.60+6.80 32052.98  80.00% 2136.79+5.72 26676.96 87.00% x
PB6 775.86+1.39 7200.84 99.00% 776.00+0.00 6865.16 100.00% x
PB7 1034.12+2.57 35502.17  77.00% 1034.474+1.89 33620.13 82.00% x
PET7 16524.58+19.07  65795.81 56.00% 16529.52+15.30 64335.20 71.00% x
SENTO1 7771.44+3.53 17091.08 97.00% x 7770.66+4.61 25110.83 91.00%
SENTO2 8720.37+£3.49 50493.94  67.00% 8721.17£2.37 42285.83 78.00% x

WEING8  624062.37+770.56 55705.08  86.00% 624241.304+457.11 34517.30 95.00% x
WEISHI30 11191.00+0.00 33645.37 100.00% x 11190.84+0.78 26192.99 96.00% x
Average 37038.99 79.27% 32417.04 85.27%

In fact, the average success rate of BDE is more than two times better than
the average success rate of GA. This relation is almost the same for the average
number of function evaluations. This can be explained by the diversification
power that BDE employs in its operators.

Comparing the results obtained by BDE and its adaptive version, aBDE, we
can notice that the results (success rate) were even better when using the adap-
tive parameter control strategy for almost all instances except for SENTO1 and
WEISHI30 and equal for PB4. Also, the average number of function evalua-
tions decreased when using the parameter control strategy. This improvement
can be explained by the adaptive choices for the values of parameters during the
optimization process.

Analyzing the effectiveness of the adaptive parameter control strategy, it is
possible to notice that aBDE and aGA obtained better success rates for the ma-
jority of the instances when compared to its non-adaptive versions. The improve-
ment is boosted in aBDE which has a differentiated diversification mechanism.

Using the dominance information (P) from Table 2, it is possible to notice that
the Differential Evolution algorithm with adaptive parameter control, aBDE, is
present in the non-dominated set in 10 out of 11 instances. This indicates that
aBDE is robust concerning both criteria. The aBDE algorithm is dominated in
only one instance (SENTO1) by BDE algorithm.

In order to illustrate the behavior of the adaptive control strategy, Figures 1
and 2 show the adaptation of values for the mutation and perturbation rates,
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respectively. Also, a convergence plot is show in Figure 3. All three figures were
acquired during a successful run of aBDE algorithm using instance PET'7. For
other instances, the behavior observed was similar.

In the first generation of the algorithm, all possibilities for the values of pa-
rameters have the same probabilities to be chosen. Through generations, these
probabilities can change according to their success of creating better solutions,
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Fig. 3. Convergence graph for instance PET7

as explained in Section 3.1. From Figures 1 and 2 it is possible to notice that,
in earlier generations, the probabilities of the values for each parameter change
most often than in latter generations. This is explained by the diversity loss that
occurs during the optimization process, as can be seen in the convergence plot
(Figure 3). The adaptive method is able to better explore the values of parame-
ters in the beginning of the optimization process, favoring the best values until
its end.

6 Conclusion

In this work, a Binary Differential Evolution algorithm with adaptive parame-
ters was applied to the well-known 0-1 MKP. The Adaptive Binary Differential
Evolution (aBDE) algorithm aims to control two parameters: perturbation (PR)
and mutation (MUT) rates. To achieve that, a set of discrete values is intro-
duced for each of parameter and it is updated based on a criteria of success.
If a selected value for a parameter yielded at least one individual in generation
t+1 better than the best fitted individual from generation ¢, then the parameter
value has a mark of success. Hence, if at the end of generation t+1 the parameter
value was successful, its probability is increased, otherwise, it remains the same.

Results obtained using 11 instances of the problem strongly suggest that the
adaptive selection strategy has advantages when compared with fixed values.
This advantages can be seen in the results (average success rate and average
number of function evaluations) when comparing aBDE with the other algo-
rithms. This indicates that the proposed approach is an interesting and promis-
ing strategy for optimization of complex problems.
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As future work, we intend to apply the adaptive method in other metaheuris-

tics. Also, it is planed to investigate the performance of the aBDE in other
real-world problems.
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Abstract. When designing neural networks (NNs) one has to consider the ease
to determine the best architecture under the selected paradigm. One possible
choice is the so-called multi-layer perceptron network (MLP). MLPs have been
theoretically proven to be universal approximators. However, a central issue is
that the architecture of the MLPs, in general, is not known and has to be
determined heuristically. In the past, several such approaches have been taken
but none has been shown to be applicable in general, while others depend on
complex parameter selection and fine-tuning. In this paper we present a method
which allows us to determine the said architecture from basic theoretical
considerations: namely, the information content of the sample and the number
of variables. From these we derive a closed analytic formulation. We discuss
the theory behind our formula and illustrate its application by solving a set of
problems (both for classification and regression) from the University of
California at Irvine (UCI) data base repository.

Keywords: Neural Networks, Perceptrons, Information Theory, Genetic
Algorithms.

1 Introduction

In the original formulation of a NN a neuron gave rise to a simple analogy

corresponding to a perceptron, shown in Figure 1. In this perceptron
m,

yi=¢ j:O WX ); where xy=1; wiy=b;. The weights (w;) employed here define the
coupling strength of the respective connections and are established via a learning
process, in the course of which they are modified according to given patterns and a
learning rule. Originally, the process of learning was attempted by applying individual
perceptrons but it was shown [1] that, as individual units, they may only classify
linearly separable sets. It was later shown [2] that a feed-forward network of strongly
interconnected perceptrons may arbitrarily approximate any continuous function.

In view of this, training the neuron ensemble becomes a major issue regarding
the practical implementation of NNs. Much of the success or failure of a particular
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Fig. 1. A Perceptron

sort of NN depends on the training algorithm. In the case of MLPs its popularity was
boosted by the discovery of the back-propagation learning rule [3]. It is a simple and
efficient iterative algorithm which, by requiring a differentiable activation function,
radically speeds up and simplifies the training process. The theoretical formalization
of these basic concepts may be traced back to the original proof [4] of the Universal
Approximation Theorem (UAT) which may be stated as follows:

“Let (p() be a nonconstant, bounded, and monotonically-increasing continuous
function. Let Im, denote the mp-dimensional unit hypercube [0,1]'”0. The space of
continuous functions on Im, is denoted by C(Im,). Then, given any function and
fe€ (Im,) and & > 0, there exist an integer M and sets of real constants a;, §;, wy;, where
i=1,2,...,myand j=1,2,...,mg such that we may define:

" "o
F(x{,..,x =>|a- > Wix: (D)
(¥ gy i=1 ’wjzo’ff
as an approximate realization of the function f{"), that is,
| F(xq,....,x — f(xqy,...,x l<e 2
O X ) = [ O i ) @)
for all x,...,x,,0 in the input space.” O

The UAT is directly applicable to multilayer perceptron networks [5] and states that a
single hidden layer is sufficient for a multilayer perceptron to compute a uniform &€
approximation to a given training set of pairs represented by a) The set of inputs
X1, Xmo and b) A desired (target) output f(x;,...,Xmo)-

To take practical advantage of the UAT, data must be mapped into the [0,1]
interval. If the data set does not represent a continuous function, though, the UAT
does not generally hold. This is the main reason to include a second hidden layer. This
second layer has the purpose of mapping the original discontinuous data to a higher
dimensional space where the discontinuities are no longer present [6].

However, it is always possible to replace the original discontinuous data by a
continuous approximation with the use of a natural spline (NS) [7]. By properly using
a NS, the user may get rid of the necessity of a second hidden layer and the UAT
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becomes truly universal. A discontinuous function interpolated with NS is shown in
figure 2. On the left, an original set of 16 points; on the right 100 equi-distant
interpolated points. Notice that all the original points are preserved and the unknown
interval has been filled up with data which guarantees the minimum curvature for the
ensemble. A similar effect is achieved by including a second hidden layer in a NN.
What we are doing is relieving the network from this tacit interpolating task.

10 10
5 5
0 0

20 -20

25 -25

Fig. 2. Use of a Natural Spline to avoid discontinuities

Later studies led to alternative approaches where the architecture is rendered by the
paradigm. Among them we find the Radial-Basis Function Networks (RBFN) [8] and
the Support Vector Machines (SVM) [9]. Graphical representations of both paradigms
are shown in Figure 3. Notice that MLPs may have several output neurons.

RBFN/SVM b

Input

Output
neuron

.l . . neurons
Xm0 N |
Input L ayer FirstHidden  Secod Hidden Xm0
Layer Layer Input Layer Hidden Layer.

Fig. 3. Basic architecture of a Neural Network

RBFNs and SVMs are well understood and have been applied in a large number of
cases. They, nonetheless, exhibit some practical limitations [10]. For example, as
opposed to MLPs, RBFNs need unsupervised training of the centers; while SVMs are
unable to directly find more than two classes. For this reason, among others, MLPs
continue to be frequently used and reported in the literature.

The architecture of a MLP is completely determined by a) m, (the input neurons),
b) m, (the hidden neurons), ¢) @(-) (the activation function) and d) the w;’s. With the
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exception of my, all the values of the architecture may be readily found. m; remains to
be determined in every case and is not, in general, simple to assess. It determines 1)
The complexity of the network and, more importantly, 2) Its learning capability. The
proper and closed determination of m; is the central topic of this work. The rest of the
paper is organized as follows. In part 2 we derive a closed formulation for the lower
bound on the value of m;,. In part 3 we present some experimental results. In part 4 we
present our conclusions.

2 Determination of a Lower Bound on m;

There have been several previous approaches to determine the value of m; A
dynamic node creation algorithm for MLPs is proposed by Ash in [11], which is
different from some deterministic process. In this algorithm, a critical value is chosen
arbitrarily first. The final structure is built up through the iteration in which a new
node is created in the hidden layer when the training error is below a critical value.
On the other hand, Hirose et al in [12] propose an approach which is similar to Ash
[11] but removes nodes when small error values are reached. In [13], a model
selection procedure for neural networks based on least squares estimation and
statistical tests is developed. In [14] Yao suggests an evolutionary programming
approach where the architecture of a MLP is evolved and the actual connections may
be optimized along with the number of hidden neurons. The Bayesian Ying-Yang
learning criteria [15, 16] put forward an approach for selecting the best number of
hidden units. Their experimental studies show that the approach is able to determine
its best number with minimized generalization error, and that it outperforms the cross
validation approach in selecting the appropriate number for both clustering and
function approximation. In [17] an algorithm is developed to optimize the number of
hidden nodes by minimizing the mean-squared errors over noisy training data. In [18]
Fahlmann proposes a method dynamically increasing the number of neurons in the
hidden layer while Reed [19] reduces the number of the connections between the
neurons from a large a network and removes such connections which seem to have no
significant effect on the network's functioning. In [20] Xu and Chen propose an
approach for determining an optimal number of the hidden layer neurons for MLPs
starting from previous work by Barron [21], who reports that, using MLPs for
function approximation, the rooted mean squared (RMS) error between the well-
trained neural network and a target function fis bounded by

O(Cjzc/ml)-i- 0( mImO/N)logN) 3)

where N is the number of training pairs, and C; is the first absolute moment of the
Fourier-magnitude distribution of the target function f. Barron then mathematically
proves that, with m; ~ C¢(N/(m¢ log N) )" nodes, the order of the bound on the RMS
error is optimized to be O(Cy ((mo /N) log N)"?). We can then conclude that if the
target function f'is known then the best (leading to a minimum RMS error) value of m;
is

my = C;(Nfmg log N))" €
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However, even though fwere assumed unknown, from the UAT, we know it may be
approached with > 0. 1In this case, Xu and Chen [20] use a complexity
regularization approach to determine the constant C in

my = C (N/(mg log N))"”? )

by trying an increasing sequence of C to obtain different values of m,, train a MLP for
each myand then observe the m; which generates the smallest RMS error (and note the
value of the C). Notice that C; depends on an unknown target function f, whereas C is
a constant which does not.

2.1  Statistical Estimation of m;’s Lower Value

Instead of performing a costly series of case-by-case trial and error tests to target on
the value of m; as in [20] our aim is to obtain an algebraic expression yielding m;’s
lower bound from
dl d2 .
myp = > o> Kl,jmlONJ (6)
i=0j=0

where d; and d, are selected a priori and the Kj; are to be adequately determined for a
predefined range of values of m, and N. That is, we aim at having a simple algebraic
expression which will allow us to establish the minimum architecture of a NN given
the number of input variables and the number of training pairs. The values of m;
depend on N, m, and C. Even though are several possible values of C for every pair
(mg, N) an appropriate value of the lower bound value of C may be set by considering
values for C in a plausible range and calculating the mean (lic) and standard deviation
(oc) for every pair (mg, N). The upper value of the range of interest is given by the
fact that the maximum of m; is N/my;, the lower value of the range is, simply, 1. Thus,
we may find a statistically significant lower value of C (denoted by C,;,) and the
corresponding lower value of m; from Chebyshev’s theorem [22] which says that

Plup —kop SCSpp+kop)>1- 147 %

and makes no assumption on the form of the pdf of C. If, however, we consider that

C’s pdf'is symmetric we have that P(C > pc- \/g oc) 20.9. A very reliable and general
value of C,;, is, therefore, given by

Coin = -5 ¢ ®)

Now we propose to analyze all combinations of m, and N in a range of interest and
obtain the best regressive polynomial from these combinations. We considered the
range of m, between 2 and 82 (i.e. up to 82 input variables); likewise, we considered
N between 100 and 25,000. That is we consider up to 25,000 effective objects in the
training set. By effective we mean that they correspond to a sample devoid of
unnecessarily redundant data, as will be discussed in the sequel. The number of
combinations in this range is 81 x 25,000 (or 2,025,000 triples), which would have
demanded us to find an algebraic expression for these many objects. To reduce the
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data set to more manageable proportions we sampled the combinations of m, and N
by increasing the values of mg in steps of 5, while increasing those of N in steps of
100. The number of objects in the sample reduced to 4,250. The general procedure is
as follows:

(a) Select lower and upper experimental values of m, and N which we denote with
my, Ni, my and Ny. These are set to 2, 100, 82 and 25,000, respectively.

(b) Define step sizes D,, and Dy (these were set to 5 and 100, respectively) which
determine the values between two consecutive (mg, N) pairs. That is, my will take
consecutive values my, m;+D,,, , . . . , my. Likewise, N will take consecutive values
Ni, Ni+Dy,..., Ny.

(c) Obtain the values for all combinations of m, and N in the range between (m;,
Np) and (my ,Ny ), i.e. (m,Ny), (my, Ny +Dy),...,(my,Ng).

(d) For every pair (mg, N) calculate ¢ and 6c. Then obtain C,,;, from equation (8).

(e) For every pair (mo, N) obtain n; = C,;, (N/(mo log N))™*.

The maximum and minimum values for (mg, N, m;) are shown in Table 1.

Table 1. Values of (my,N,m;) in the range of interest

mo N my
Max 82 25,000 549
Min 2 100 0

(f) Store every triple (mg, N, m;) in a table T.

Once steps (c) to (f) have been taken, we have spanned the combinations of all
triples (mg, N, m;) in the interval of interest.

(f) From T get a numerical approximation as per equation (6), which will be
described in what follows.

The triples (mp, N, m;) were mapped into the interval [0,1]. The corresponding
scaled values are denoted with (mo*, N*, m;*).

Therefore,
mo*=(mo-my)/(my-m) > m* = (my -2)/80
N* =(N-Np)/(Ny-Np) 2> N* = (N-100)/24900
my* = (MM )/ (M- Monin) 2> my*=my /549

From the 4,250 scaled vectors we obtained the purported polynomial expression
my*=f(mo* N*) with d;=d,=7, thus:

*= % % UK. ( *)i(N*)j )
SR = =" A
19 1=12 (10)

Where Kj; denotes a coefficient and ﬂij is an associated constant which can take only

the values O or 1. Only 12 of the possible 64 combinations of (i, j) are allowed. This
number was arrived at by trying several different values and calculating the associated
RMS error, as shown in table 2.
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Table 2. Best values of RMS for different number of terms

Terms 7 g 9 10 A 12 13
RMS 0.07104 003895 0.08574 0.05589 0.04618 0.03410 0.03885

Terms 14 15 16 17 18 19 20
RMS 0.03190 0.03712 0.02715 0.02500 0.01405 0.03088 0.02345

The best RMS error corresponds to | ¢ |= 18 ; however, the simpler approximation
when | ¥ 1=12 is only marginally inferior (2%) and, for simplicity, we decided to
remain with it. The final 12 coefficients are shown in table 3.

Table 3. Coefficients for | J I=12

K1 K12 K13 K15 k22 K24 K32 K35 ka2 Kda ka2 kB3
0.9307 | -33.8966 24.5008 -3.4953 107.4970 -41.03458 -209.3930 52.8180 2056786 -32.6766 -80.8771 9.77586

The subindices denote the powers of the associated variables. Therefore, we have that

m*=KyN*+K;;mO*(N*f + K ;5mO*(N*)*+ K;smO*(N*)’ + K»y(mO*)*(N*)* +
Ko(mO*)(N*)'+ K5o(mO*) (N*) + K35(mO*) (N*) + K ;o(mO*) (N*) +
Kys(mO*) (N*) +Kso(mO*) (N*) +Ks3(mO*)° (N*)’ (12)

Finally,

my = (mL — mH)/m1*+mL > my = 549m*1 (13)

According to these results K;;=0 except for the combinations of (i,j) shown in table 3.
Two views of equation (12) are shown in Figure 4.

How were the coefficients of (12) found? As follows: we define a priori the
number | & | of desired monomials of the approximant and then select which of the p

possible ones these will be. There are C(p, | ¥ 1) combinations of monomials and

Fig. 4. Graphical representations of equation (13)
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even for modest values of p and | ¢ | an exhaustive search is out of the question. This

is an optimization problem which we tackled using the genetic algorithm (EGA)
discussed in [23] [24].

2.1.1 Determination of the Coefficients of the Approximant
Consider an approximant of the form

d;, d . .
f I e T, (14)

There are p = (d;+1)x...x(d,+1) possible monomials. We associate to this polynomial
a chromosome which is a binary string of size p. Every bit represents a monomial
ordered as per the sequence of the consecutive powers of the variables. If the bit is ‘1’
it means that the corresponding monomial is retained while if it is a ‘0’ it is discarded.
One has to ensure that the number of 1’s is equal to | #/|. Because of this, the
population of the EGA consists of a set of binary strings of length p having only | J |
I’s. For example, if y=f{v;, v, v;) and d;=1, d,=d;=2 the powers assigned to the
2x3x3 =18 positions of the genome are 000, 001, 002, 010, 011, 012, 020, 021,
022, 100, 101, 102, 110, 111, 112, 120, 121, 122. Taking | ¥ |=6 the chromosome
110000101010000001 would correspond to P(v;vyv;) = kopo+ koorvs+ koaovs +
kopava v+ kyovvs+ kiapviva'vs'. For every genome the monomials (corresponding to
the 1’s) are determined by EGA. Then the so-called Ascent Algorithm (“AA”;
discussed at length in [25]) is applied to every individual’s polynomial’s form and

yields the set of |1 coefficients which minimize eyax = max(l f; — y; 1) Vi . For

this set of coefficients the mean squared error erys is calculated. This is the fitness
function of EGA. The EGA’s 25 individuals are selected, crossed over and mutated
for 200 generations. In the end, we retain the individual whose coefficients minimize
€rms out of those which best minimize gyax (from the AA). From this procedure we
derived the coefficients of table 3.

2.2 Considerations on the Size of the Training Data

We have successfully derived an algebraic formulation of the most probable lower
bound of m; as a function of m, and N. The issue we want to discuss here is how to
determine the effective size of the training data N so as to find the best architecture.
Intuitively, the patterns that are present in the data and which the MLP
“remembers” once it has been trained are stored in the connections. In principle we
would like to have enough connections for the MLP to have sufficient storage space
for the discovered patterns; but not too much lest the network “memorize” the data
and lose its generalization capability. It is for this obvious relation between the
learning capability of the MLP and the size of the training data that equation (13) was
formulated. A formalization of these concepts was developed by Vapnik and co-
workers [26] and forms the basis of what is now known as statistical learning theory.
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Here we wish to stress the fact that the formula of (13) tacitly (but now we make it
explicit) assumes that the data is rich in information. By this we mean that it has been
expressed in the most possible compact form.

Interestingly, none of the references we surveyed ([11], [12], [13], [14], [15, 16],
[17], [18], [19], [20], [21]) makes an explicit consideration of the role that the
information in the data plays when determining my. In the SVM paradigm, for
example, this issue is considered when determining the number of support vectors and
the so-called regularization parameter which reflects a tradeoff between the
performance of the trained SVM and its allowed level of misclassification [10]. We
know that the number of weights (connections) | w | in the MLP directly depends on
the number of hidden neurons, thus

lezmoml +2ml + 1 (15)

But it is easy to see that even large amounts of data may be poor in information.
The true amount of information in a data set is exactly expressible by the Kolmogorov
Complexity (KC) which corresponds to the most compact representation of the set
under scrutiny. Unfortunately, the KC is known to be incomputable [27]. Given this
we have chosen the PPM (Prediction by Partial Matching) algorithm [28] as our
compression standard because it is considered to be the state of the art in lossless data
compression; i.e. the best practical approximation to KC. Therefore, we will assume
that the training data has been properly expressed by first finding its most compact
form. Once having done so, we are able to estimate the effective value of N.
Otherwise, (13) may yield unnecessarily high values for m; .

To illustrate this fact consider the file F1 comprised of 5,000 equal records
consisting of the next three values: “3.14159 <tab> 2.71828 <tab> 1.61803” separated
by the ASCII codes for <cr><If>. That is, mp=3; N=5,000. This yields 125,000 bytes
in 5,000 objects. A naive approach would lead us to solve equation (13) yielding m, =
97. However, when compressed with the PPM2 (PPM algorithm of order 2) the same
data may be expressed with 49 bytes, for a compression ratio of 2,551:1. That is,
every bit in the original file conveys less than 1/2,551 (i.e. =.00039) bits of
information. Thus the true value of N is, roughly, 2; for which m;=1. On the other
hand, a file F2 consisting of 5,000 lines of randomly generated bytes (the same
number of bytes as the preceding example), when compressed with the same PPM2
algorithm yields a compressed file of 123,038 bytes; a 1:1.02 ratio. Hence, from (13),
m; = 97. Therefore, for (13) to be applied it is important to, first, estimate the
effective (in the sense that it is rich in information) size of N.

3 Experiments

Now we want to ascertain that the values obtained from (13) do indeed correspond to
the lowest number of needed neurons in the hidden layer of a MLP. To exemplify this
we analyze three data sets. Two of them are from UCI’s repository. The third regards
the determination of a MLP approximating the data of Figure 3. For every one we
determine the value of m; and show that it is the one resulting in the most efficient
architecture.
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Problem 1 [29] is a regression problem with mp=6, N=209. In Figure 5 we show the
learning curves using m;=2 and m;=3. The value of m; from eq. (13) is 3. If we use a
smaller m, the RMS error is 4 times larger and the maximum absolute error is 6 times
larger.

my = 2; RMS error: 0.06811; max.: .8740 my = 3; RMS error: 0.0197; max.: .1499
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Fig. 5. Learning curve for problem 1 (m;=2 and m;=3)

Problem 2 [30] is a classification problem with my=13, N=168. The learning curves
using m;=1 and m;=2 are shown in Figure 6. It is trivial to transform a classification
problem into a regression one by assigning like values of the dependent variable to
every class. In this case the classes 1, 2 and 3 were identified by the scaled values 0,
0.5 and 1. Therefore, a maximum absolute error (MAE) smaller than 0.25 is enough
to guarantee that all classes will be successfully identified. The value of m; from eq.
(13) is 2. If we use a smaller m; the MAE is 0.6154. If we use m;=2 the MAE is
0.2289. The case where MAE>0.25 (m;=1) and MAE<0.25 (m;=2) are illustrated in
Figure 7, where horizontal lines correspond to the 3 classes. As shown, these were
poorly identified when m;=1. The case m;=2 leads to correct identification of the
classes and 100% classification accuracy.

Problem 3 has to do with the approximation of the 4,250 triples (mo, N, m;) from
which equation (12) was derived (see Figure 4). We used it to determine the
architecture of the best MLP which approximates these data. PPM2 compression finds
a 4:1 ratio between raw and compressed data. Hence, the effective value of N is 1,060,
for which m; = 20. Training the MLP for 20 hidden neurons (HN) yields a maximum
absolute error of 0.02943 and an RMS error of 0.002163; doing it for 19 HNs yields
larger corresponding errors of 0.03975 and 0.002493. If we go on to 21 HNs we get
0.03527 and 0.002488. In other words, “20” corresponds to the lowest effective
number of HNs for this problem.
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my = 1; RMS error: 0.2783; max.: 0 .6154 my = 2; RMS error: 0.0411; max.: 0 .2289
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Fig. 6. Learning curve for problem 2 (m;=1 and m=2)
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Fig. 7. Effective classification in problem 2 (m;=1 and m;=2)

4 Conclusions

We discussed the problem of finding the adequate number of neurons (m;) in the
hidden layer of a MLP network. We argued that MLPs offer advantages over
alternative paradigms if data is continuous and scaled into [0, 1]. We have seen that
approximate continuity of the training data is enough to render more than one hidden
layer unnecessary and that such characteristic may be attained in practice by using
natural splines to enrich the data. Hence, the conclusions derived from the UAT are
directly applicable to any MLP network. Furthermore, we pointed out that the correct
assessment of m; depends on the determination of the effective size of the training
data (N). The actual algorithmic information of N is incomputable but it may be
approximated by considering the data after PPM2 compaction. Thus, we have shown
that it is possible to determine a lower practical bound on the number of neurons in
the hidden layer (m;) of a MLP with only one such layer. We also showed how to
obtain a closed and compact algebraic expression from the partial enumeration of the
possible values of (mg, N and m;) based on the theoretical work of Barron [21]. To do
this, we used a GA which selects the elements of an approximation polynomial. From
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experimental runs we determined that no more than 12 terms are needed for an
adequate RMS error (= 3.40% ). The approximation polynomial directly delivers the
smallest expected value of my; with 90% reliability in the range (2<m<82) and
(100<N<25,000). Finally, we offered a few experimental examples in which the
correctness of the lower bound on my; is clearly exhibited. The purpose of the
experiments was to offer a practical illustration of the conclusions drawn from
theoretical considerations. Similar results will be obtained for any data set which
complies with the stipulated pre-conditioning. We finish our conclusions by pointing
out that the purported algebraic expression m; = f(my, N) might have been replaced
(as shown in experiment 3) by a properly trained MLP. The corresponding minimum
MLP has 81 connections as opposed to only 12 coefficients of equation (12). An
explicit algebraic expression is to be preferred if, as shown, it is accurate enough. As
opposed to the “black box” nature of a MLP, it allows us to explore the relation
between the input variables (m and N) and the dependent variable m,. For instance, a
combination of variables my*, N* of degree 9 [((mO*)°(N*)] is enough for our
approximation. Therefore, by allowing a direct determination of m; the only practical
inconvenience of the MLP paradigm has been superseded and the best architecture is
reachable without the need to resort to heuristics.
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Abstract. The dynamics of a two neuron artificial recurrent neural network de-
pends on six parameters: four synaptic weights and two external inputs. There
are complicated relationships between these parameters and the behavior of the
system. The full parameter space has not been studied yet and has been limited
to detect behaviors for specific configurations, i.e., when some parameters are
pre-set, either for two or three neurons. In this study we analyze the nature of
the fixed point at the origin in a two-neuron discrete recurrent neural network
by plotting the bifurcation manifolds in the full weights space which is a 4-
dimensinal one that gives a clear view of what the dynamics of the system can
be around this fixed point, which is a very influent point in the global dynamics
of the system. The possible bifurcations at the origin are Saddle, Period Doubl-
ing and Neimark-Sacker. We found, among other results, that the Neimark-
Sacker bifurcation is only possible when the synaptic connections between neu-
rons are one excitatory and one inhibitory.

Keywords: Discrete-time recurrent neural network dynamics, Bifurcation dia-
grams, Weight Space Structure.

1 Introduction

There is not yet a theory that fully explains the behavior of recurrent neural networks.
A general theory of neural networks dynamics would allow the classification of the
different network configurations so that it would not be necessary to make a compre-
hensive dynamic behavior analysis for each of the networks [Beer, 2006]. The dy-
namic analysis of Recurrent Neural Networks (RNN) helps in this general theory
construction because it allows determining the network behavior for each of the re-
gions in the parameter space (the connection weights and external inputs). Even small
RNN may present all kinds of dynamic behaviors with a complexity that is accen-
tuated as the number of neurons grows [Haschke & Steil, 2005].

Assuming that the same dynamical properties (and possibly more) will be present
in more complex neural networks, we analyzed the dynamic behavior of a discrete-
time RNN with two neurons. The two-neuron RNN dynamics is quite complex, and to
our best knowledge, its entire parameter space structure has not yet been determined.

A. Gelbukh et al. (Eds.): MICAI 2014, Part II, LNAI 8857, pp. 85-94, 2014.
© Springer International Publishing Switzerland 2014
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Up to date, the analysis has been limited to detect behaviors for specific configura-
tions, in which some parameters are set (see section 2).

The study of the stability and bifurcations in the space of the connection weights is an
important approach for the understanding of the complex dynamical behavior of an
RNN. “The knowledge of the bifurcation manifolds on the one hand deepens the under-
standing of RNNs and on the other hand allows to directly choose parameter sets which
cause a specific dynamical behavior” [Haschke & Steil, 2005]. This is why in this study
we analyze all the existing bifurcations for one fixed point (at the origin) in a discrete-
time RNN with two neurons for the full weights space. Knowing how the weights' varia-
tions affect the system, we can determine exactly how the neural network will behave
(locally) when the weights vary slightly in any direction. This is valuable information for
the configuration and training of RNN by means of evolutionary algorithms for instance.
This can be linked to the study of the existence of multiple local optima in the search
space of evolutionary algorithms when used to train an RNN.

It is worth mentioning that while the system dynamics do depend on the nature of
the fixed point at the origin studied here, it also depends on the existence of other
fixed points somewhere else. The scope of this study does not include this analysis
and is left for future research.

The rest of this paper is organized as follows: Section 2 resumes related work
showing how this work contributes to the existing literature. Section 3 provides the
main bifurcation analysis. Section 4 has our conclusions.

2 Background

A considerable number of mathematical analyses have been done by examining vari-
ous aspects of RNN dynamics. He & Cao (2007), Haschke & Steil (2005) and Haji-
hosseini et al. (2011) made a detailed reference to these investigations. In none of
these works has yet been done an analysis in which the nature of the fixed points is
displayed throughout the full connection weights space.

Beer (2006) made a study of the local and global bifurcation manifolds in Conti-
nuous-Time Recurrent Neural Networks (CTRNN). This study was conducted in a
three-neuron CTRNN completely interconnected using a symmetric weights matrix in
order to analyze the input space bifurcations. This analysis found that the effective di-
mension of the system dynamics depends on the number of neurons that are saturated,
and that these saturation states almost completely dominate the input space. When the
number of neurons increases, the probability of finding circuits of saturated neurons is
much greater than the probability of finding circuits where all neurons are dynamically
active. It is also intuitive from there that the bifurcation manifolds shift and bend as the
weight matrix becomes less regular. This study was carried out in the inputs domain,
with a fixed symmetric weights matrix and with a slightly modified one. CTRNN are
commonly used in neuroscience for the modeling of biological neurons. Neurons com-
monly used in artificial intelligence work in discrete time. In this paper we study a dis-
crete-time RNN in the weights space and fixing external inputs to zero.
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Haschke & Steil (2005) derived analytical expressions for bifurcation manifolds in
a Discrete-Time Recurrent Neural Network (DTRNN) using three neurons fully con-
nected in the inputs space. They obtained analytical expressions of the varieties in
which bifurcations occur at fixed points in codimension-1. These varieties divide the
input space into intricate regions and, each region has a different dynamic behaviour.
The complex partitioning that was obtained makes its practical interpretation difficult.
By practical we mean to translate this knowledge into an intuitive guide for the crea-
tion of learning algorithms for artificial RNNs. However this gave information that
lets them choose the input values so that they can control the frequency and amplitude
of the universal oscillator set by these three neurons. As in [Beer, 2006], the analysis
was made on the input space and not on the interconnection weights space.

Passeman (2002) studied chaotic neuromodules which consist of two or three neu-
rons with feedback, in discrete time. He analysed some sections of the parameter
space in order to display areas where chaotic behaviour is present. In these sections
some parameters were fixed with constant values, for example, the self connection
weight of one neuron is set to zero. The full weight space was not covered.

Hajihosseini et al. (2011) proposed a two-neuron RNN in continuous time and
showed that for a given weights configuration, there are codimension-2 bifurcations
which make the network able to learn a wider range of periodic signals. They left for
future work the study of the different qualitative system behaviours in the regions of
the full parameter space.

Haschke & Steil (2005) proposed to investigate how the bifurcation curves of the
input space are related to the weight matrix. In this direction, Cervantes et al. (2013)
analysed the behaviour of a single neuron according to its feedback weight and its
external input. They derived an analytic function of the values of the external input
range for which the system exhibits hysteresis or oscillations, depending on the feed-
back weight. The next step would be the analysis of a two-neuron RNN, for wich this
function would have 4 weights and 2 inputs, i.e., a space of dimension 6 which is
impossible to plot. If the inputs are set to zero, the bifurcation manifolds in the
weights space for each fixed point have dimension 4, so some strategy is needed to
visualize and understand the structure of bifurcations in each fixed point. In this paper
we provide part of this analysis by studying the full weight space bifurcation mani-
folds for the fixed point that exists in the origin whenever the inputs are zero. The
influence of the inputs is left for further study.

3 Weight Space Bifurcations for the Fixed Point at the Origin

We did the dynamic analysis of a discrete-time RNN with two neurons configured in
the following way (see Fig. 1): the output x; of neuron 1 is connected to itself with a
weight a, and also to neuron 2 with a weight c. The output x, of neuron 2 is connected
to itself with a weight d, and also to neuron 1 with a weight b, u; and u, are the exter-
nal inputs of each neuron respectively. So, for two neurons, the evolution equation is
then given by:
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x(t+1) tanh(axl(t) + bx,(1) +u1)

x(t+1) | | tanh(cx, (1) +dxy(6) + ) M

The use of fanh as the activation function has the advantage that whenever
u = (0,0) the state X = (0,0) is always a fixed point. This fact allows studying the
effects that changes in the connection weights have on the system dynamics without
having to solve the fixed point equation for every set of weight values and, more im-
portantly, allows us to study such effects independently of the effects from changing
the external inputs.

Fig. 1. The network configuration: x1 and x2 are the corresponding neuron outputs; a,b,c,d are
the connection weights and u1 and u2 are the external inputs

3.1 Conditions for Bifurcations

The system behavior in the vicinity of a fixed point depends on the nature of that
point. Furthermore, the nature of the fixed point changes when a curve crosses a bi-
furcation manifold. We call fto the right hand side of system (1). In order to calculate
the bifurcation manifolds, we obtain the Jacobian of f and evaluate it for the fixed
point at x = X = (0,0) with U = U, = (0,0)

Jo = Jacobian(f (%, 50)) = (¢ °) @)

c

So the fixed point X = (0,0) presents bifurcations as the 4 parameters a,b,c,d
change. With the eigenvalues of this matrix we can know if the fixed point is an at-
tractor, a saddle point, or repulsor and if it produces or not rotation around itself. Bi-
furcations from one of these to another are present for specific conditions on these
values [Kuznetsov, 2004]. The conditions for bifurcations are given by the following
expressions:

1.- For Saddle bifurcation: det(J, — 1) = 0 , at least one eigenvalue is 1. And the
equation for the bifurcation manifold is:

l—-a—d+ad—bc=0 3)
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2.- For Period Doubling: det(J, + 1) = 0, at least one eigenvalue is -1. And the
equation for the bifurcation manifold is:

l+a+d+ad—bc=0 (C))

3.- For Neimark-Sacker: det(J,) — 1 = 0 the product of the eigenvalues is 1. And the
equation for the bifurcation manifold is:

ad—bc—1=0 5)

3.2  Bifurcations at the Origin

As it is shown in equations (3), (4) and (5) the bifurcation manifolds at the origin
depend on a, d and the products ad and bc. Since the weights b and ¢ do not act inde-
pendently, we can plot the bifurcation manifolds in three dimensions (a, d, bc). Fig. 2,
shows the Saddle bifurcation in red, the Period Doubling in blue and the Neimark-
Sacker bifurcation in green. All of them have the form of a hyperbolic paraboloid
with different coordinates of its vertex. The first one has its vertex at (1, 1, 0), the
second one at (-1, -1, 0) and the third one at (0, 0, -1). All of them have the same
scale, i.e., if they are transported towards the same vertex they coincide in all their
points.

Fig. 2. Bifurcation manifolds for the fixed point (x*, y*) = (0,0) in the space (a,d,bc): Saddle
(red), Period Doubling (blue) and Neimark-Sacker (green). The plane bc=0 is in transparent
dark grey.

In order to start analyzing these bifurcations we begin with the simplest case,
where b = ¢ = 0. This is the case in which both neurons work independently. In this
case, the system behavior is simply the superposition of the individual behaviors of
each neuron.
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Fig. 3. Section of the Saddle and Period Doubling bifurcation curves of the fixed point (x*, y*)
= (0,0) at bc = 0 and the corresponding phase space behavior of the system for each of the
different regions showing two particular trajectories

Fig. 3 (center) shows a plane cut of Fig. 2 where bc = 0, i.e., when at least one of
the two neurons has no dependency on the other one. The Neimark-Sacker bifurcation
manifold is not displayed here for clarity. The horizontal axis a, represents the feed-
back weight form neuron 1 to itself, and the vertical axis d, is the feedback weight
from neuron 2 to itself. Fig. 3 also shows examples of phase diagrams for each region
in the central graph (except region a), each with the following parts: two trajectories
(green/grey and red/black) one starting at the top left and the other at the bottom left;
two null-change lines one for neuron x,; (red) and one for neuron x, (blue); and the
field of state differences of period 2 (grey arrows). In this case, the Jacobian of the
evolution function at the origin is a diagonal matrix whose eigenvalues A; and A,
match the values of a and d respectively.
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In the central region (o), the fixed point at the origin presents stability since both
eigenvalues of J,, are between -1 and 1. This means that the origin is attractive in both
directions of the eigenvectors of Jy. In region B, one of the eigenvalues of Jj is less
than -1, and the other is between -1 and 1, so the origin is attractive in one direction
and (period-2) repulsive in the other. In region y both eigenvalues are less than -1 so
the origin is (period-2) repulsive in both directions. Fig 2 shows that in y both neurons
remain oscillating, either in phase (red / black) or out of phase (green / grey) while in
B only one of the neurons remains oscillating.

In region 9§, one of the eigenvalues is greater than 1 while the other is between -1
and 1 which means the fixed point at the origin is (period-1) repulsive in one direction
and attractive in the other, i.e., an unstable fixed point. In this case one of the neurons
converges to zero and the other exhibits hysteresis with respect to its external input,
that is, it presents two (period-1) attractive fixed points when the external input is
close to zero and one of these points disappears for sufficiently positive input and the
other one disappears for sufficiently negative input. In region € both eigenvalues are
greater than 1, so both neurons present hysteresis and there are four stable fixed points
of period 1 (for null inputs) in the phase space while the origin is repulsive in both
directions of the eigenvectors of Jy. Finally in region , one eigenvalue is greater than
1 while the other is below -1. In { there is a combination of hysteresis in one neuron
and oscillation in the other. The information above is summarized in Table 1.

Table 1. Behavior around the origin when bc =0

Region a b Behavior
A -l<ax<l1 -1 <b< 1 | Stability
-l<ax<l1 b<-1 .
B A< 1 T<b<l Oscillations
T a<-1 b<-1 Double Oscillations
-l<a<1 1<b .
A l<a T<b<l Hysteresis
E l<a 1<b Double Hysteresis
l<a b<-1 . oy
V4 A<l <b Hysteresis and Oscillations

Now we turn our attention to the next case where only one of the neurons is con-
nected with the other one with a synaptic weight different from zero. For example, if
b =0 and c # 0, then x; is independent of x, and neuron 2 receives as external input
the output of neuron 1 with weight c. This external input may be constant or oscillato-
ry depending on the configuration of the independent neuron taking into account its
current external input, and it can be of any magnitude depending on the weight c. If
this input is constant and large enough (see Cervantes et al (2013)) the dependent
neuron can enter in a regime in which there is only one stable fixed point even when
the neuron’s self-feedback weight is set to oscillations or hysteresis. If the input is
oscillatory the dependent neuron will also oscillate even when it is not configured to
oscillate. In any case, this kind of configurations can be seen as a chain of single neu-



92 J. Cervantes-Ojeda and M. del Carmen Gémez-Fuentes

rons receiving an external input, so the system's behaviour is similar to the case where
neurons are independent. The complexity of the system starts when both neurons are
interconnected which we analyze next.

3.3 Bifurcations When bc is Not Zero

The product bc can be seen as a measure of the weight for the period-2 feedback that
a neuron receives via its influence on the other neuron combined with the influence
from the other neuron. So the sign of this feedback weight determines the nature of
the influence it has on both neurons either excitatory or inhibitory. Now we will see
what happens when the product bc is close to zero meaning that its influence is mi-

nimal, first when it is positive and then negative.
3

a) b)
Fig. 4. Bifurcations in the space (a,d) with a) bc =0 and b) bc = 0.1

Fig. 4a) shows the same graph section of Figure 2 (center) at bc = 0 (but including
the Neimark-Sacker bifurcation manifold in green) just as a reference to be compared
with Fig. 4b) that shows how these curves change when bc > 0 but close to zero
(bc=0.1). The existing regions in the case bc = 0 are still there but now their bounda-
ries have moved a little. As one can see, the o region (see Fig. 2 for reference) is now
smaller. Now, if @ and d are smaller than, but close, to 1, it is possible to reach region
8, where hysteresis is present. Similarly, if @ and d are greater than but close to -1 it is
possible to reach region 3, where oscillations are present. This makes the stability of
the fixed point at the origin be less probable than when bc= 0. It can also be seen that
although a and d are greater than 1, if they are close to 1, one may still be in region 6.
This means that, in order to reach region g, it is necessary for a and d to take greater
values than when bc = 0. Something similar happens when a and d are close but lower
than -1 with B and y regions respectively.

If the value of bc becomes even greater, the distance between the vertices of the
hyperbolas seen in Figure 4b) is even greater. When bc is greater than 1, the a region
disappears completely, which implies that the origin is always unstable.
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Fig. 5a) shows bifurcations in the space (a,d) when bc is negative and close to zero
(bc =-0.1). In this case there are the same regions that for the case bc = 0 plus a new
region enclosed by two gray diagonal lines. In this region the eigenvalues of the Jaco-
bian of f at the origin are complex conjugates and therefore the state of the system
follows a rotational path around the fixed point at the origin. In turn, this region is cut
by the green curves, which show the Neimark-Sacker bifurcation, dividing it in three
parts. In the part that includes the origin (a, d) = (0,0), the rotational path is a spiral
towards the fixed point which is an attractor. in the other two parts the rotational path
gets away from the fixed point which is a repulsor.

3

¥}

a) b)
Fig. 5. Bifurcations in the (a,d) space a) with bc =-0.1 and b) with bc = -1.1

In Figure 5b) we have the case where bc = -1.1. The difference with the previous
case is that the lines defining the region of the complex conjugate eigenvalues are
further apart from each other and that the green curves are in quadrants II and IV. In
this case the origin (a, d) = (0,0) is in the region where the fixed point is a repulsor.
The region where the fixed point is attractor is separated here into two regions (deli-
mited by the red, blue and green curves) in quadrants II and IV. As the value of bc
becomes more negative, this stability regions of the fixed point at origin are further
apart from the origin and are smaller but never disappear.

4 Conclusions

It is clear from the results presented in this work that the behaviour of two discrete
time neurons is affected whenever they are interconnected. The higher the weight of
these interconnections is the higher the influence they have. The origin is a fixed point
whenever the external input of the neurons is null. This fixed point can be rotationally
attractive or repulsive for specific conditions of the neuron's interconnection weights.
Precisely, these conditions are that one of the connection weights between the neurons
is positive (excitatory) and the other negative (inhibitory). The nature of this fixed
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point determines the local behaviour of the system around it but it is also very influent
on the global behaviour of the system. In the next phase of this analysis, we will work
on the analysis of entire phase space to find the existing bifurcations for all fixed
points of a DTRNN with two neurons and thus be able to characterize the global be-
haviour of the system in the full weight space. This study should show how a varia-
tion in the connection weights in a particular direction affects the system dynamics,
which would be very useful for the design of learning algorithms.
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Abstract. This article presents the theorems and lemmas of stability, based on
Lyapunov stability theory, for Modular Recurrent Trainable Neural Networks
that have been widely used by the authors for the identification and control of
mechanical systems.

Keywords: Modular Recurrent Neural Networks, System Identification, Sta-
bility of Recurrent Neural Networks, Mechanical Systems.

1 Introduction

In the last decade, the Computational Intelligence tools (CI), including Artificial
Neural Networks (ANN), became universal means for many applications. Because of
their approximation and learning capabilities, [1], the ANNs have been widely em-
ployed for dynamic process modeling, identification, prediction and control [2].
Among several possible neural network architectures the ones most widely used are
the Feedforward NN (FFNN) and the Recurrent NN (RNN).The main NN property
namely the ability to approximate complex non-linear relationships without prior
knowledge of the model structure makes them a very attractive alternative to the clas-
sical modeling and control techniques. This property has been proved for both types
of NN by the universal approximation theorem, [1].

The authors have proposed a novel recurrent neural network topology, called Mod-
ular Recurrent Trainable Neural Network (MRTNN), consisting of a modular network
which has two modules: The first module identifies the exponential part of the un-
known plant and the second one identifies the oscillatory part of the plant. The correct
operation of this topology has been successfully tested in the identification and con-
trol (direct [3] and indirect [4]), of several oscillatory plants.

Nevertheless the application of the MRTNN were successful, there is no formal
proof of stability of this MRTNN topology. This paper introduces the theorems and
lemmas of MRTNN’s stability, and performs an identification of an oscillatory plant
to show the effectiveness of this topology and its BP learning.

A. Gelbukh et al. (Eds.): MICAI 2014, Part II, LNAI 8857, pp. 95-104, 2014.
© Springer International Publishing Switzerland 2014
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2 Recurrent Trainable Neural Networks

The Recurrent Trainable Neural Network (RTNN) topology, depicted on Fig. 1, is a
hybrid one. It has one recurrent hidden layer and one feedforward output layer. This
topology is inspired from the Jordan canonical form of the state-space representation
of linear dynamic systems adding activation functions to the state and the output va-

riables, [5].

UGk 4 X(k+1) X(K)

M B q’

A

A

Fig. 1. Block-diagram of RTNN
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The RTNN topology and its Backpropagation (BP) learning algorithm are de-

scribed in vector-matrix form as:

X(k+1) = A(k)X(k) + B(k)U(k);
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where X, ¥, U are state, output, and input vectors with dimensions N, L, M, re-
spectively; Z is N-dimensional output of the hidden layer; V is L-dimensional post-
synaptic activity of the output layer; T is L-dimensional target vector, considered as a
reference for identification; A is (NxN) state weight matrix; B and C are (NXM) and
(LXN) input and output weight matrices; FJ[.], G[.] are vector-valued activation func-
tions; F’[.], G’[.] are the derivatives of these functions. The matrix W is a general
weight, denoting each weight matrix (C, A, B) to be updated; AW (4C, 4A, 4B), is the
weight correction of W;  and a are learning rate parameters; for the update 4A, there
exists two possible cases, one in which A is complete matrix, given by (9), and the
other in which A is diagonal matrix (10).

3 Modular Recurrent Trainable Neural Networks

The RTNN topology is completely parallel with respect to its states and completely
interconnected with respect to its inputs and outputs. This feature reflects on its state
feedback weight matrix which was defined as block- diagonal, having some peculiari-
ty in the case of exponential and oscillatory reaction of the RTNN output, which per-
mits to separate both parts.

The modular RTNN topology is depicted in Fig. 2. The first module represents the
real (exponential) part of the RTNN through a diagonal state weight matrix A;. The
second module represents the complex (oscillatory) part of the RTNN through a com-
plete state weight matrix A,.

A Xik+1) Xa(k) Zi(k)  aVi(k) Y:(k)
B, + q’ G(X3) Cy > F(Vq)
) #
Y,
A (k)
Uk
4 Xo(k+1) Xo(k) Zyk) 4 VoK) VoK)

v

F(Vz)

—» B> q’ G(X) C,
- fj’
Ay

Fig. 2. Block-diagram of the MRTNN

The equations of the MRTNN and its BP learning algorithm include the equations
(1) - (10) plus the following equations:

X(k) = [X,k) Xo(01" ; Z(k) = [Z(k) Zo(k)]'; V() = [V(k) Valk)]" (11)
Y(k) = [Y,(k) Y>(k)]" ; B(k) = [B,(k) B(k)]"; C(k) = [C,(k) Cx(K)] (12)
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Ay 0
a5l (13
Cl]](k) 0 0
A=l 0 0 | ayk i<l j=12,..022; (14)
0 0 aU(k)
_|a: (k) ax(k)
C i (1
Ei(k)= [En(k) Ep(®]5 Exk) =[Ex(k) Exn()]" (16)
Es(k) = [Exi(k)  Exn(b)] 17)

The diagonal blocks of the state matrix A corresponds to the exponential (A;) and the
oscillatory (A;) modules of the RTNN. The state dimensions of both exponential and
oscillatory RTNN modules are N-2 for A;and 2 for A,.The vectors X, Y, Z V, have
two sub-vectors with appropriate dimensions, corresponding to the of the exponential
and oscillatory RTNN modules. In the same way also the A, B, C, matrices are com-
posed of sub matrices associated with the oscillatory and exponential modules. The
error vectors E, El, E2, E3, have appropriate dimensions.

4 Stability of MRTNN

The MRTNN stability will be tested through a lemma which is consequence of the
stability theorem of RTNN. So first the stability theorem of RTNN is presented
below.

4.1  Stability Theorem of RTNN

Consider the RTNN, given by equations (1)-(10), for identification of a discrete non-
linear plant, as follows

x(k+1) = f[x(k),u(k)] (18)
(k)= h[x(k)]
Where x(k), y(k) and u(k), are vector variables with dimensions N, L, M, respectively;
f(.) and h(.) are nonlinear vector functions with suitable dimensions. This plant’s

model provided the input—output data for identification. Now consider a Lyapunov
function candidate as follows

V (k) =V, (k)+V,(k) (19)
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where
V(0 = VS E®K) (20)
V (k) = tr[A(k)A(k)T]+ w[ BB |+ tr[é(k)é(k)T] (21)

Where E(k) is the instantaneous identification error between the plant’s output and the
RTNN'"s output. Also are considered the parametric identification errors of the weights of
RTNN.
Ak)=A(k)— A"
B(k)=B(k)-B’
Cky=Ck)-C"

(22)

Where (A", B", C") are the ideal weights of RTNN identifier; ( A(k) ., B(k).C(k)) and

are the weight estimation of RTNN at k instant. Then, deriving in discrete time the
Lyapunov function candidate (19), is obtained

AV(k+1) =V (k+1)=V (k) (23)
AV (k+1)= AV, (k +1)+ AV, (k +1) (24)

Where the condition for AVg(k+1)<0 is that:

(1_%/5j JHX/EJ (25)

2 < nmax 2
Wmax Wmax

and for AV,;(k+1) it result:

AV (k+1)<-n

EGk+ D = e [EG[ + Bk +1) (26)

max max

Where all the unmodelled dynamics, the approximation errors and the perturbations,
are represented by the term f (k +1) . For more details, the complete proof of this

theorem is given in [6].

4.2  Stability Lemma of MRTNN

Given the above theorem, the MRTNN can be seen as two RTNN, one associated to
exponential behaviour (4;, B;, C;) and the other associated to oscillatory behavior(A,,
B;, (). In the same way as the RTNN, consider the Modular-RTNN for identification
of the discrete nonlinear plant (18). Now consider a Lyapunov function candidate as
follow:

V(k)=V,(k)+V,(k)+V,(k) 27
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Where
V, (k)= %E(k)2 (28)
V,(k) = tr[ A, (A ()" |+t [ B(k)B, (k)" | +tr[ C (k) C, (k)" ] (29)

V, (k) = tr[ A, () A, (k)" |+ tr[ B,(k)B, (k)" |+ r[ €, (k) C, (k)" | (30)

Where E(k) is the instantaneous identification error between the plant’s output and the
M-RTNN's output. Also are considered the parametric identification error of the
weights of MRTNN.

ARy=AM -4 A=A - A
B(k)=B,(k)-B,  B,(k)=B,(k)- B, &)
Co=C-¢  C=Cth-C;

Where (A, B, ,C;) and (A}, B,,C,) are the ideal weights of M-RTNN identifier;

(A(k)-B,(k).C,(k)) and (A, (k). B,(k).C,(k)) are the weight estimation of MRTNN

at k instant. Then, deriving in discrete time, the Lyapunov function candidate is ob-
tained

AV (k+1) =V (k+1)=V (k) (32)
AV(k+1D)=AV (k+1)+ AV (k+1D)+AV,(k+1) (33)
Where the condition for AVg(k+1)<0 is that:

(l‘j/ﬁ) (”j/ﬁ) -

< nmax <

l//max l//max
and for AV;(k+1), AV,(k+1) result:
AV, (k+1) < =7, |[EGk+ D[ =,y

E+D] -«

E([ + B (k+1)
E(O[ + B, (k+1)

max

(35)
AV, (k+1)<-n

max max

Where f (k+1) and f,(k+1) represent unmodelled dynamics, approximation

errors and perturbations of A;, B;, C;and A,, B, C, respectively, in the same way as
the previous theorem.
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5 Simulation Results

In this section some identification results of an oscillatory plant with MRTNN are
presented. The purpose here is to show the good performance of the MRTNN and its
BP algorithm. So, first the input-output model of the plant for identification is pre-
sented below.

5.1 Analytical Model of an Nonlinear Oscillatory Plant

An oscillatory plant, known as Flexible Joint Mechanism-FIM [7], was used as nonli-
near plant for system identification. This plant is shown in Fig.3 with parameters giv-
en on Table 1. It consists of an actuator connected to a load through a torsional spring,
which represents the joint flexibility.

Fig. 3. Sketch of the flexible joint mechanism
This mechanical system is modeled by the next equations:
qul +Ff1 +k(q1 —q2)=u

.. (36)
J2Q2+Ff2_k(Q1_Q2):0

F, = f.sign(g,) + f,q+ f, sign(g)e """ i=12 (37)
Where g, is the actuator rotor angle, ¢, is the load angle; J;, J, are the rotor and the
load inertia; Fy; y Fp, are the load friction composed of coulomb friction and viscose

friction static friction; and u is the input torque applied to the motor shaft.

Table 1. Summary of constants in the plant model

Parameter Units Value
Ja, J5 Nms*/rad  0.016
I Nm 0.006
f Nms/rad  0.003
f Nm 0.002
s rad/s 0.005

k Nm/rad 5
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5.2  System Identification Results

The system identification was performed by a MRTNN. The topology of the MRTNN
is (1, 2, 1) and (1, 2, 1) for the first and the second module, respectively. The activa-
tion functions are tanh(.) for both layers and both modules. The learning rate parame-
ters for the BP algorithm of learning are a=0, #=0.01. The input excitation signal was
a train pulses as shown in Fig. 4. The angular velocity of load inertia, g, = w, from
(36), was used as plant’s output.

0.4r b

_0.3 L L L L L L L L L
0 2 4 6 8 10 12 14 16 18 20

Time (s)

Fig. 4. Input excitation signal

0.8

0.6} B 1

05f : -, St

o, (rad/s)

04r : ,

02f : i

01f /| |

0 S I I I I I I I I
0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2

Time (s)

Fig. 5. Graphical results for the first moments of the plant identification. The solid line corres-
pond to plant's output and the dotted line corresponds to MTRNN's output.
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o, (rad/s)

0 2 4 6 8 10 12 14 16 18 20
Time (s)

Fig. 6. Graphical results for the complete identification. The solid line correspond to plant's
output and the dotted line corresponds to MTRNN's output.

The first moments of identification and the complete identification, during 20 s, are
shown in Fig. 5 and Fig. 6, respectively. In these figures can be seen that the output of
MRTNN follows the plant’s output. The final Means Square Error MSE after 20 sec.
of identification using the MRTNN is 0.0037.

6 Conclusion

This article presents the theorem and lemma for stability of Modular Recurrent Train-
able Neural Networks. This is presented as an extension of the theorem of stability of
RTNN. Also some simulation results for the identification of an oscillating mechani-
cal plant are presented. The obtained MSE of identification is 0.0037, which is very
small, confirms the good BP learning of the MRTNN. The obtained good graphical
results support the effectiveness of MRTNN architecture and the BP learning algo-
rithm for identification of nonlinear systems.
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Abstract. In this paper, two intelligent direct torque control strategies are com-
pared with the classical direct torque control (C-DTC) scheme, namely neural
network control (NNC) and neuro-fuzzy control (NFC) are introduced to re-
place the hysteresis comparators and lookup table of the C-DTC for pulse
width-modulation-inverter-fed induction motor drive, to solve the problems of
torque ripple and inconstant switch frequency of inverter in the conventional di-
rect torque control. These intelligent approaches are characterized by very fast
torque and flux response, very-low-speed operation, the switching frequency of
the inverter is constant and simple tuning capability. The proposed techniques
are verified by simulation study of the whole drive system and results are com-
pared with conventional direct torque control method.

Keywords: Neural network controller, neuro-fuzzy controller, direct torque
control, induction motor.

1 Introduction

The C-DTC employs two hysteresis controllers to regulate stator flux and developed
torque respectively, to obtain approximately decoupling of the flux and torque con-
trol. The key issue of design of the C-DTC is the strategy of how to select the proper
stator voltage vector to force stator flux and developed torque into their prescribed
band. The hysteresis controller is usually a two-value bang-bang controller, which
results in taking the same action for the big torque error and small torque error. So it
may produce big torque ripple [1], [2]. To improve the performance of the C-DTC it
is natural to divide torque error into several intervals, on which different control ac-
tion is; taken. As the C-DTC control strategy is not based on a motor mathematical
model, it is not easy to give an apparent boundary to the division of torque error [3],
[4], [5]. The above explained C-DTC limitations involve plenty of nonlinear functions
Therefore, Artificial Intelligence is suggested to overcome the C-DTC limitations.

An artificial neural network (ANN) is essentially a way to learn the relationship
between a set of input data and the corresponding output data [6]. That is, it can me-
morize data, generalize this information when given new input data, and adjust when
the relationship changes. The training is normally done with input-output examples.

A. Gelbukh et al. (Eds.): MICAI 2014, Part II, LNAI 8857, pp. 105-115, 2014.
© Springer International Publishing Switzerland 2014
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After training, ANNs have the capability of generalization [7]. That is, given pre-
viously unseen input data, they can interpolate from the previous training data [7], [8].
Inspired by the functioning of biological neurons, ANN became popular in the re-
search community when architectures were found to enable the learning of nonlinear
functions and patterns [6], [9].

The concept of a NFC has emerged in recent years, as researchers have tried to com-
bine the advantages of both FLC and artificial neural networks (ANNs). The NFC utiliz-
es the transparent linguistic representation of a fuzzy system with the learning ability of
ANNSs [10], [13]. In [11], [12], a large number of membership functions and rules are
used for designing the controller; these cause high computational burden for the conven-
tional NFC, which is the major limitation for practical industrial applications.

This paper is organized as follows: The principle of C-DTC is presented in the
second part, the NN-DTC is developed in the third section, section four presents a
NF-DTC, and the fifth part is devoted to illustrate the simulation performance of this
control strategy, a conclusion and reference list at the end.

2 Classical Direct Torque Control (C-DTC)

In a C-DTC motor drive, the machine torque and flux linkage are controlled directly
without a current control. The vector expressions of the machine in the frame of refer-
ence linked to the stator were used:

_ - dA,
V,=Ri+—, 5
dr L
— where oO©o=1——2 (1)
L dA ) = LL
A =or,—+(-jwor,)4, S
L dr

S

The electromagnetic torque is proportional to the vectorial product between the stator
and rotor flux vector:

T,=2n,
2 ! GLYLr

illi

sin & )

where a is the angle between the stator and rotor flux linkage vectors. The derivative
of (2) can be represented approximately as:

r, _3 L,
d 2 "oLlL,

4|4

S r

do
—Ccos& €))
dt

The machine voltage equation can be represented and approximated in a short in-
terval of At as:

ddﬁs =V, —R,i, =~v, implying A, =v Ar @)
!
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The magnitude of stator flux can be estimated by
S7gs

A=[Wi—Rid  and A =[(v,—Ri,)dr. 5)
0 0

The torque can be calculated using the components of the estimated flux and meas-
ured currents:

7; = np (ﬂ’dslqs - ﬂ’qslds ) (6)

List of Symbols

R, ,R, stator and rotor resistance [Q]

Isd s Isg stator current dq axis [A]

Vsd, Vsg stator voltage dg axis [V]

L, L, stator and rotor self inductance [H]

L, mutual inductance [H]

Astr g dq stator flux [Wb]

Ards 2rq dq rotor flux [Wb]

T, electromagnetic torque [N.m]

E;, electromagnetic torque error [N.m]

E;, stator flux error [Wb]

0 stator flux angle [rad]

W, rotor speed [rad/sec]

J inertia moment [Kg.mz]

n, pole pairs

o leakage coefficient

3 Neural Network Based Direct Torque Control

This section presents the outline of neural networks to emulate the table of inverter
switching states of DTC. The input signals of the table are the errors of electromagnetic
torque, stator flux and the position vector of flux. The output signals are the inverter
switching states n,, n, and n.. As the switching table depends only on the electromagnetic
torque error, stator flux angle and sector where the flux is located, and induction motor
parameters, this neural network can be trained independently of the set. With the changes
in the switching table reduces the training patterns and increases the execution speed of
training process. This has been achieved by reducing the table to convert input analog
signals to a digital bit for the flux error, two bits for the torque error and three bits for the
flux position, which has a total of six inputs and three outputs, and only sixty-four train-
ing patterns. With these modifications, the network used to simulate has the advantage
that it is independent of parameter variation of induction motor. This allows applying to
any induction motor irrespective of its power.
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From the flux space vectors A4 and 4, we can calculate the flux angle ¢ and flux
magnitude A;. The coding of the flux angle is given by &;, &, and &; according to
following equations:

A =4 +ﬂqzs , @, = tan_l%, EEE, =encoder(@,) (7

qs

1 4,20

= ‘ (8
é 0 otherwise

A, T A, T
£ = 1 ﬂ:s Z—tan(g) and A, <0 |or i<—tan(§) and A, <0 )

0 otherwise

Ay n Ay r
£ = 1 };<tan(§) and A, =0 |or ﬁ_zszm(?) and A, <0 (10)

0 otherwise

The network structure used, as shown in Fig. 1 has an input layer with five neurons, a
first hidden layer with six neurons, a second hidden layer with five neurons and an
output layer with three neurons. After training satisfactory, taking the weights and
thresholds calculated and placed into the neural network prototype replacing the
switching table. This network is incorporated as a part of the DTC.

tansig activation

. . function neuron
square activation

- fSa—
function neuron ,: \
S 4

> \

= <

3
© =
3 S . o
S 5 E. \ linear activation
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5 ZLE,

S < > n
EEA— =3 “
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g o - - T
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= s <_—_—
= 5 &

= N f—

Fig. 1. Neural-network implementation of DTC
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4 Neuro-Fuzzy Direct Torque Control

In this section, the Neuro-Fuzzy (NF) model is built using the multilayer fuzzy neural
network shown in Fig.2. The controller has a total of five layers as proposed by Lin
and Lee [13], with two inputs (stator flux error E,, electromagnetic torque error Er,)
and a single output (voltage space vector) is considered here for convenience. Conse-
quently, there are two nodes in layer 1 and one node in layer 5. Nodes in layer 1 are
input nodes that directly transmit input signals to the next layer. The layer 5 is the
output layer. The nodes in layers 2 and 4 are “term nodes” and they act as member-
ship functions to express the input/output fuzzy linguistic variables. A bell-shaped
function is adopted to represent a membership function, in which the mean value p
and the variance y are adjusted through the learning process. The two fuzzy sets of the
first and the second input variables consist of k; and k, linguistic terms, respectively.
The linguistic terms are numbered in descending order in the term nodes; hence, kr+k;
nodes and n; nodes are included in layers 2 and 4, respectively, to indicate the in-
put/output Linguistic variables.
Layer 1. Each node in this layer performs a MF:

b

2 1bi
X. —c,
Vi =My (x;)=expy- (?) (1)

i

where x; is the input of node i, A; is linguistic label associated with this node and (a;,
b;, c;) is the parameter set of the bell-shaped MF. y,’ specifies the degree to which the
given input belongs to the linguistic label A;, with maximum equal 1 and minimum
equal to 0. As the values of these parameters change, the bell-shaped function varies
accordingly, thus exhibiting various forms of membership functions. In fact, any con-
tinuous and piecewise differentiable functions, such as trapezoidal or triangular mem-
bership functions, are also qualified candidates for node functions in this layer.

Layer 2. Every node in this layer represents the firing strength of the rule. Hence,
the nodes perform the fuzzy AND operation:
2

Yi =w; = min(luAﬂS (E; ) Mgy (E7 ) lc g (@, )) (12)

Layer 3. The nodes of this layer calculate the normalized firing strength of each rule:

3 — w,
Vi=W, = — (13)

1 n

w.

i=l !

Layer 4. Output of each node in this layer is the weighted consequent part of the
rule table:

4

Yi =M7ifi :W_i (piEﬂs +qiETe tm;Q, +ni) 14
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where MTI. is the output of layer 3, and {p;, g;, m;, n;} is the parameter set. Which

determine the i component of vector desired voltage. By multiplying weight y; by
voltage continuous V side of the inverter according to (15):

Vi=yV (15)

Layer 5. The single node in this layer computes the overall output as the summa-
tion of all incoming signals:

Y= Wil (16)

Which determine the vector reference voltage vs* (see Fig. 4), from (17):
9 Lok
v =Y yVe’s a7
i=1

The angle ¢ is obtained from the actual angle of stator flux ¢, and angle increment
dp; given by this (18):
E=p +do (18)

y; (i = 1..9) are the output signals order i of the third layer respectively.

Ag Table
| |
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Fig. 2. Topology of the neuro-fuzzy model used
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Fig. 3. Triangular membership function sets

Table 1 represents the angle increment A; of reference voltage vector, where the

torque and flux errors are represented by three subsystems: value, positive (P), zero

(Z), negative (N) (Fig. 3).

Table 1. Angle increment of the reference voltage vector

Eys
P Z N
Et. P Z N P Z N P Z N
AL w3 0 —n/3 /2 /2 —n/2 2m/3 s 2m/3

The model setting is listed in Table 2.

Table 2. Parameters setting for ANFIS model

ANFIS Setting Details

Input variables Electromagnetic torque error, and stator flux error
Output response Space voltage vector

Type of input MFs  Generalized Bell MF

Number of MFs 2,3,4and 5

Type of output MFs  Linear and constant

Type inference Linear Sugeno

Optimization Method Hybrid of the least-squares and the back propagation gradient
descent method.

Number of data 520

Epochs 1000

To compare and verify the proposed techniques in this paper, a digital simulation
based on Matlab/Simulink program with a Neural Network Toolbox and ANFIS
Toolbox is used to simulate the NN-DTC and NF-DTC, as shown in Fig. 5 and Fig. 6.
The block diagram of a C-DTC/FL-DTC/NN-DTC controlled induction motor drive
fed by a 2-level inverter is shown in Fig. 4.
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Fig. 4. General configuration of C-DTC/NN-DTC/NF-DTC scheme

The induction motor used for the simulation studies has the following parameters:

Rated power = 7.5kW, Rated voltage = 220V, Rated frequency = 60Hz, R, =
0.17Q, Ry = 0.15Q, L, = 0.035H, L, = 0.035H, L,, = 0.0338H, J = 0.14kg.m".

Fig. 5 shows the starting transient performance response of electromagnetic torque
for the four control strategies: C-DTC, NN-DTC and NF-DTC. The NF-DTC has the
best transient response where the motor torque is approximately built up in less than
0.0074 s.

Figs. 6(a), 6(b) and 6(c) show the torque response of the C-DTC, NN-DTC and
NF-DTC respectively with a torque reference of [20-10-15]Nm. While Figs. 6(a’),
6(b’) and 6(c’) show the flux response of the C-DTC, NN-DTC and NF-DTC respec-
tively with a stator flux reference of 1Wb.

28

Torque {Mm)

0 0.005 0.01 0.015
Time (sec)

Fig. 5. Starting transient performance of electromagnetic torque according different control
strategies
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Fig. 6. (a), (b) and (c) torque response of C-DTC, NN-DTC and NF-DTC respectively, (a’),
(b’) and (c’) Stator flux trajectory response of C-DTC, NN-DTC and NF-DTC respectively

Table 3. Comparative study of C-DTC, FL-DTC and NF-DTC

Control strategies Torque ripple Flux ripple  Rise time  Setting time

(%) (%) (sec) (sec)

C-DTC 10.6 23 0.009 0.01
NN-DTC 29 1.6 0.006 0.0082
NF-DTC 24 1.3 0.004 0.0074

The minimum ripple for both electromagnetic torque and stator flux is obtained us-
ing NF-DTC, where the torque ripple percentage is approximately 2.4%, and 1.3% for
the flux ripple percentage, while the NN-DTC and C-DTC have a relatively large
ripple, where the torque ripple percentage was approximately 2.9%, and 10.6% re-
spectively, and approximately 1.6% and 2.3% respectively for the flux ripple percen-
tage. Further, the NF-DTC has the best transient response for the torque, where the
rise time is 0.004 s, and the setting time 0.0074 s, faster than NN-DTC and C-DTC,
where the rise time is approximately 0.006 s and 0.009 s respectively, and approx-
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imately 0.0082 s and 0.1 s respectively for the setting time. Table 3 represents the
results of this comparative study. It can be concluded that NF-DTC is more accurate
than NN-DTC and C-DTC, and promises to be the future choice for application in
industrial drives.

5 Conclusions

Two various intelligent torque control schemes worth knowing neural network direct
torque control, and neuro-fuzzy direct torque control have been evaluated for induction
motor control and which have been compared with the conventional direct torque control
technique. A better precision in the torque and flux responses was achieved with the NF-
DTC method with greatly reduces the execution time of the controller; hence the steady-
state control error is almost eliminated. The application of neural network techniques
simplifies hardware implementation of direct torque control and it is envisaged that NF-
DTC induction motor drives will gain wider acceptance in future.
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Abstract. In this paper, a new adaptive network based fuzzy-inference system
(ANFIS) architecture is proposed for rotor position and speed estimation over
wide range of speed operation for indirect field orientation controlled induction
motor drive. This intelligent approach controller incorporates Sugeno model
based fuzzy logic laws with a five-layer artificial neural networks (ANNs)
scheme. Moreover, for the proposed neuro-fuzzy controller (NFC) an im-
proved self-tuning method is developed based on the induction motor theory
and its high performance requirements. The principal task of the tuning method
is to adjust the parameters of the fuzzy logic controller (FLC) in order to mi-
nimize the square of the error between actual and reference output. The conver-
gence/divergence of the weights is discussed and investigated by simulation.

Keywords: Adaptive network based fuzzy-inference system, indirect field
oriented control, induction motor, self-tuning, speed control.

1 Introduction

The continuous information of rotor position and speed is essentially required for
vector control of induction motor to have optimal torque control. For this purpose,
generally shaft mounted speed sensors are used, resulting into additional cost and
complexity of the system. To avoid the additional sensor cost, complexity and the
other associated problems, there has been significant interest in the sensorless control
of IM [1], [2]. Moreover, the elimination of these sensors and their connecting leads
increases the mechanical robustness and reliability of overall system. All these factors
have made the sensorless control of IM more attractive. But the rotor speed and posi-
tion estimation typically requires the accurate knowledge of motor parameters, which
may not be easily available or difficult to obtain, especially under varying operating
conditions [3], [4]. This method works satisfactorily at higher speeds. However, the
speed estimation becomes very difficult at lower speeds. Some state observer methods
based on Extended Kalman Filter (EKF) [5], [6], Extended Luenberger Observer
(ELO) [7], [8], and Sliding Mode Observer (SMO) [9] etc., have also been reported.
Most of them suffer due to complex computation, sensitivity to parameter variation

A. Gelbukh et al. (Eds.): MICAI 2014, Part II, LNAI 8857, pp. 116-127, 2014.
© Springer International Publishing Switzerland 2014
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and need of accurate initial conditions. However, the EKF has the advantage of esti-
mating the parameters and speed simultaneously by considering them as state, but at
the increased cost of computational burden. The sliding mode observer is simple and
offers a limited robustness against the parameter variation. However, sliding mode,
being a discontinuous control with variable switching characteristics, has chattering
problems, which may affect the control accuracy. Recently, some more advanced
adaptive estimation techniques based on Artificial Neural Network (ANN) [10], [11],
[12] and Fuzzy Logic Control (FLC) [13], [14] have also been reported. However, the
estimation accuracy depends on number of neurons and number of fuzzy membership
functions used for rule base.

To overcome these problems, a novel ANFIS based rotor speed estimator of indi-
rect vector controlled induction motor has been proposed for wide range of speed
operation. The ANFIS architecture has well known advantages of modeling a highly
non-linear system, as it combines the capability of fuzzy reasoning in handling uncer-
tainties and capability of ANN in learning from processes. Thus, the ANFIS is used to
develop an adaptive model of variable speed IM under highly uncertain operating
conditions, which also automatically compensates any variation in parameters such as
inductance, resistance etc. An error gradient based dynamic back-propagation [15],
[16] method has been used for the online tuning of ANFIS architecture.

Nomenclature
dg direct and quadrature components
Rs R, stator and rotor resistance [€2]
lgs > lgs stator current d-g axis [A]
Bdr s Bgr rotor current d-q axis [A]

L,L,L, stator, rotor and mutual inductance [H]
Adr, Aqr d-q rotor fluxes [Wb]

T, electromagnetic torque [N.m]

w,, ., Wy  rotor speed, synchronous and slip frequency [rad/s]
T rotor time constant [s]

J inertia moment [Kg.mz]

n, motor pole number

2 Induction Motor Model for Indirect Field Oriented Control

Field oriented control provides a method of decoupling the two components of stator
currents; one producing the air gap flux and the other producing the torque. Therefore,
independent control of torque and flux, which is similar to a separately excited direct
current motor, can be achieved. The magnitude and phase of the stator currents are
controlled in such a way that flux and torque components of current remain decoupled
during transient and steady-state conditions. Since the d-g frame has been defined as
rotating with the same angular velocity as the vector quantities of the motor, any one
of these vectors can be used as a reference with which the d-g frame is to be aligned
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in order to further simplify the torque. In classical approach the d-g frame is aligned
with rotor flux vector A,. This leads to:

A, =0. )
Then the torque equation becomes:
2n, L 2n, L
Tem = 3Rp _miq.vﬂ’dr = CTﬂ’driqs where CT = 3RP —. (2)
r Tr r Tr

Hence, when 4, = Constant there is a linear relationship between current i,, and
torque. Indirect field oriented control avoids the requirement of flux estimation by
computing the appropriate motor slip frequency w,, to obtain the desired flux posi-
tion 6,:

< :I(wr+azyl)dt where a&,=L—”'R’i : 3)

e qs

T lcommand r

The rotor flux magnitude is related to the direct axis stator current by a first-order
differential equation; thus, it can be controlled by controlling the direct axis stator
current:

ﬂ’r = Lmids' (4)
Indirect vector control can be calculated as follow:
LA
lds = Z (5)
i=2LT ©6)
* 3n,L,A,
. RLi
W, =~ (7
CTLA
0. = [wdt = [ (0, + @))d1. ®)

3 Self-adaptive ANFIS Speed Controller for Induction Motor

3.1  Design of the ANFIS Speed Controller

In this paper, the neuro-fuzzy (NF) model is built using the multilayer fuzzy neural
network. The system has a total of five layers. A model with one input and a single
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output is considered here for convenience. Accordingly, there are one node in layer 1
and one node in layer 5. Node in layer 1 is input node that directly transmits input
signals to the next layer. Nodes in layers 2 and 4 are “term nodes” and they act as
membership functions to express the input/output fuzzy linguistic variables. The two
fuzzy sets of the first and the second input variables consist of n; and n, linguistic
terms, respectively. The linguistic terms, such as positive big (PB), positive medium
(PM), positive small (PS), approximate zero (AZ), negative small (NS), negative me-
dium (NM), negative big (NB), are numbered in descending order in the term nodes,
Hence, n;+n, nodes and n3 nodes are included in layers 2 and 4, respectively, to indi-
cate the input/output Linguistic variables [17].

Each node of layer 3 is a “rule node” and represents a single fuzzy control rule. In
total, there are n;xn, nodes in layer 3 to form a fuzzy rule base for two linguistic input
variables. The links of layers 3 and 4 define the preconditions and consequences of
the rule nodes, respectively [17]. For each rule node, there are two fixed links from
the input term nodes. Layer 4 links, are adjusted in response to varying control situa-
tions. By contrast, the links of layers 2 and 5 remain fixed between the input/output
nodes and their corresponding tem nodes. The NF model can adjust the fuzzy rules
and their membership functions by modifying layer 4 links and the parameters that
represent the membership functions for each node in layers 2 and 4.

An ANFIS based on Takagi-Sugeno-Kang (TSK) [18] method having

1—-6—3—3—1 architecture with one input (difference between reference speed a):
and actual speed or) and one outputs (T:m) is used to develop the dynamic model of

induction motor. The errors between the reference and actual speed e = a): — @), are

used to tune the precondition and consequent parameters.
The node functions of each layer in ANFIS architecture are as described below:
Layer 1: This layer is also known as fuzzification layer where each node is
represented by square. Here, three membership functions are assigned to each input.
The trapezoidal and triangular membership functions are used to reduce the computa-
tion burden, and their corresponding node equations are as given below [19]:

1 e<b,
U, (e)= -4 b <e<a,. ©)
T4
0 eza,
-2~ % |e-a,|<0.5b,
i, (=1 0.5b, (10)

0 le—a,|>0.5b,
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0 e<a,
U, ()=1"%5 4 <e<b,. (11
’ b, —a,
1 e=b,

where the value of parameters (a;, b;) changes with the change in error and according-
ly generates the linguistic value of each membership function. Parameters in this layer
are referred as premise parameters or precondition parameters.

Layer 2: Every node in this layer is a circle labeled as /7 which multiplies the in-
coming signals and forwards it to next layer [19].

=, (e).py (e)..., =123 (12)

But in our case there is only one input, so this layer can be ignored and the output of
first layer will directly pass to the third layer. Here, the output of each node represents
the firing strength of a rule.

Layer 3: Every node in this layer is represented as circle. This layer calculates the
normalized firing strength of each rule as given below [19]:

- H;

;= i=12,3. (13)
M+ + Uy

Layer 4: Every node in this layer is a square node with a node function [19]:

O,=[.f = (ay+aje) i=123. (14)

where the parameters (a(i), ali ) are tuned as the function of input (e). The parameters

in this layer are also referred as consequent parameters.
Layer 5: This layer is also called output layer which computes the output as given
below [19]:

Y=u.1{,+1.1, t 1.1 (15)

The output from this layer is multiplied with the normalizing factor to obtain the ref-

erence electromagnetic torque (T;n ).

4 Training of ANFIS Architecture

To minimize the error, the ANFIS structure is tuned with gradient descent technique
(usually a cost function given by the squared error) where the weights are iterated by
propagating the error from output layer to input layer. The “back-propagation” [16] is
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qualified for such a calculation. The on-line training algorithm is completed in two
stages, known as precondition parameter tuning and consequent parameter tuning,
where the objective function to be minimized is defined as:

=0 -w). (16)

The fuzzy membership functions are required to update by the precondition parame-
ters as discussed in previous section for layer 1. The change in each precondition
parameter must be proportional to the rate of change of the error function with respect
to that particular precondition parameter to minimize the error function by gradient
descent method, i.e.:

2
Aa, =7 de

’ da

i=1,23. (17)
Ai

n is the constant of proportionality defined as the learning rate. Therefore, the new
value of the consequent parameter is given as:

a,(p+D=a,(p)+Aa, i=123. (18)

or

2

de _
aA(p+1):aA(p)_77 l:1’2’3 (19)
1 1 aaAl
Now the partial derivative term in (19) can be found by the chain rule of differentia-
tion as follows:

d¢’ _d¢’ dw, 0T, OH, OH,

= e . . (20)
aaAl aa)r a’Tem aﬂl aﬂAl aaAl
where
2
9 2(0-0,) =2 @n
0w,
W
L =] . 22
o, " Y

e o JT,,
L, =t-fi + i [, + 5. fs = ,L_lgm = h- (23)

1



122 M.R. Douiri et al.

_ o+
i = Ha N ot _ (&, + 1) _ 24)
Mo THy T My My By T Hy I,
- o -1
u, = €y _ oMy _ HaT 25)

b,-a, da, b,-a,

J is Jacobean matrix, which can be taken as constant being single input single output
ANFIS architecture and can be included in learning rate. On computing all the terms

of (20) and putting in (21), we can find the updated value of parameter a 43S fol-

lows:

I,(p)+1L(p) H, (p)-1

+1)= +2n.e(p).f,(p). . . (26)
WP = PRI b (D) + 11, () By (P)—ay ()
Similarly
b, (p+1)=b, (p)+20e(p).f;(p).— LD ED) AP o)

1, (P)+ 44, (P)+ 4, (p) b, (P)—a, (p)

In the same manner, the precondition parameters for the remaining fuzzy membership
functions can be derived as follows:

A(p)+a(p) -4, (p)

b, (p+1)=b, (p)+277.(p).f,(p). ' Y
PO DAL Dt (prtaty () B ()
A(p)+15(p) #, (P)-1
D=a. ()20 _ . (29)
a, (p+D=a, (p)+2ne(p).f(p) 1, (P)+ 4, (P)+4, (P) b, (P)—a, (P)
- 7 (»)
by (p+D)=b, (p) -2 p.,(p)— DL 4D EmreRil

1, (P)+ 44, (P)+14, (P) by (P)=a, (p)

To tune the consequent parameters as discussed in layer 4, the following updated laws
are developed:

2

e’
aol_(p+1)=aol_(p)—77€.ae i=1,2,3. (31)

610[
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2

e’
ali(p+1):a1i(p)—77€.£ i=1,2,3. (32)
1.

7. 1s the learning rate for consequent parameters. The derivative terms in (31) and (32)

can be found by the chain rule as already discussed in case of precondition parameters
as follows:

em

da, dw, 0T, of da,

i

de’ _de’ dw, IT, of

i=1,2,3. (33)

de* 3¢’ dw, I,
da, Ow, 0T, of Oa

i=1,2,3. (34)

In the above (33) and (34), the first two terms are already known and the last two
terms can be derived as:

*

a7,

enm

_ H; i=1,2.3. (35)
dff My Tl U,

I
da,
o,
da.

b

=1 i=12,3. (36)

=e i=123. (37)

On substituting the terms derived in (35) and (37) in to the (33) and (34), the updated
value of consequent parameters can be derived as follows:

a, (p+D)=a, (p)+2m,e—H =123 (38)
l ‘ lLlAl +#A2 +#A3

a (p+h=a (p)+2q.e—Hi & i=123. (39)
| ’ Mo+ 1y + 1Ly,

The effectiveness of the proposed simplified ANFIS based IM drive is investigated
extensively at first in simulation. The initial values of precondition and consequent
parameters used in the simulation model are a;=0, a;=0, b;=0.1, ,=0.007, b;=0.5, and

1 1 2 2 3 3 .
a, = 0, a = 3, a, = 0, a, = 0, a, = 0, a = 3. The values of tuning rate of

precondition and consequent parameters are 2¢” and 0.09 respectively.
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The performance of the proposed ANFIS is compared to conventional tuned PI
controller. The proportional gain k, is set as 0.9303, and the integral gain ki is set as
0.04. The parameters of the IM utilized for simulations are listed as follows:

P,=3Kw, V,=230V, R=2.89Q, R,=2.39Q, L=0.225H, L=0.220H, L,=0.214H,
J=0.2Kg.m2, n,=2.

Figure 1 shows the simulated rotor speed of the proposed ANFIS and conventional
PI controller for IM drive, which are verified on loading and unloading. The drive is
accelerated to 200rad/s and full load is applied at 0.2s; then, the load completely at
0.4s. Later, after speed reversal, full load is applied at 0.8s, and, the load is fully re-
moved at 1s. It is shown from this figure that the performance for the proposed
ANFIS controller is fast and smooth, the drive can follow the command speed without
overshoot or undershoot and less settling time compared to PI controller.

180 -

Load step down Proposed ANFIS
Pl controller

1ol g - o +++--Reference rator speed

Load step up
a0

Rotor speed (rad/s)
o

=0k
Load step up

-100

Load step down

150 I L L
0 0z 04 06 0.8 1 12

Tirme ()

Fig. 1. Acceleration and reversal rotor speed for proposed ANFIS compared to PI controller
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Fig. 2. Speed starting transient performance for proposed ANFIS compared to PI controller
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Figure 2 shows the simulated starting rotor speed response of the proposed ANFIS
and conventional PI controller for IM drive at full load. It is shown from this figure
that the performance for the proposed ANFIS controller is fast and smooth, the drive
can follow the command speed without overshoot or undershoot and less settling time
compared to PI controller.

The proposed ANFIS has the best transient response where the motor speed is ap-
proximately built up in less than 0.045s without overshoot. PI has a speed overshoot
of 5% and motor speed builds in 0.6s.

Figure 3 show the zoom rotor speed when loading and unloading is applied at 0.2s
and 0.4s respectively. The rotor speed with the ANFIS strategy drops to 99.95rad/s at
0.1ms and then is adjusted back to its demanded value in 0.2s, with a steady state
error of 0.01%. This is due to the variation of the operating conditions from those
used during the off-line tuning process. While the PI controllers show speed drops to
96.36rad/s at 0.2s, and rises to 103.65rad/s at 0.4 s, but is corrected back after 0.1s,
with a steady state error of 0.03%. Due to their adaptive features, the ANFIS control
strategy show fast disturbance rejection.

Figure 4 shows the corresponding stator currents of the drive, the starting stator
current for PI controller is higher as compared to ANFIS, and the current responses
for ANFIS are sinusoidal and balanced, and its distortion is small compared with that
obtained by PI controller.

Figure 5 shows the corresponding electromagnetic torque responses of the drive.
Obviously, the PI controller needs more torque and hence more current to start the
motor. The electromagnetic torque of ANFIS reaches steady-state in a very short
amount of time (less than 0.03ms) compared to PI controller.

5 Conclusions

A novel ANFIS controller based indirect vector controlled induction motor drive has
been presented in this paper, and compared to a conventional well-tuned PI controller.
The comparisons results are the following: ANFIS performs better than PI controller
during a load torque disturbance. Has better robustness against motor parameter varia-
tion as well as better steady state performance. ANFIS also has better steady-state
performance compared to PI controller which is affected by the chattering in the
steady state. ANFIS has a better disturbance rejection capability compared to PI con-
troller and a better transient response during starting. It does require on-line tuning of
its parameters: scaling factors, membership functions and rules during drive operation
to form an adaptive fuzzy logic controller to improve its steady-state performance.
This will increase the scheme complexity and computational effort. Results obtained
from ANFIS look promising.
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Abstract. The voting algorithms model (AlVot) allows building super-
vised classification methods based in partial analogies. These algorithms
use a collection of features subsets as support to classify a new object,
which is called support set system. Each support set consists of selected
features that are intended to discriminate the class of each object in the
learning matrix. In this paper, a new model called AlVot By Class (AlVot
BC) is proposed. It is aimed to build a support set system by class, so
that each class-specific support set provides evidence of the membership
of an object to the class represented by that support set. The classi-
fication performance of the proposed algorithm is evaluated on seven
databases from the UCI Machine Learning Repository. The results show
a clear improvement over its analogous algorithm based on AlVot.

1 Introduction

In a supervised classification environment, AlVot [1] is a model to build classi-
fiers where a collection of support sets votes on the membership of a new object
in each class. Votes are then summarized and the object class is predicted. The
features of each support set are selected in a way that they are able to differen-
tiate objects of different classes in the learning matrix (LM ). Thus, this support
set is expected to provide helpful evidence on the class to which a new object
belongs. However, this general criterion could select unnecessary features to dis-
tinguish objects from a specific class. For example, Fig. 1(a) shows a LM with
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six objects, each one of them belonging to a particular class. They are described
by 25 features (see Fig. 1(b)), which should be able to separate objects of dif-
ferent classes. But, to distinguish the object @ from the rest, features x3 and xg
are sufficient (see Fig. 1(d)), as it is illustrated in Fig. 1(c).

a)
X1 [X2 X3 | X4 |Xs
EE ﬁ X6 | X7 X8 | X9 [X10]
) 0 (0)

X11| X12| X13| X14] X15

Xi6| X17] X18| X19| X20|
X21| X22| X23| X24| X25
H N

-

<) d)

E E (] e X3
= =
D 0 O

1]
+ H N

Fig. 1. a) Learning matrix of characters. b) Features that describe the characters in
(a). ¢) Learning matrix of characters using features to discriminate the character @. d)
Features that describe the characters in (c).

The idea of working with class-specific features has been present since the
90’s decade. In [2,3] the use of class-specific features to estimate probability
density functions in a Bayesian classifier is proposed. The class-specific feature
selection can be strongly linked to a particular classifier. For example, in [4] the
authors presented a method for class-specific feature selection in a hyperspher
net. Nevertheless, in [5] a framework to use any traditional feature selector to
obtain class-specific features is proposed, disregarding the classifier used.

AlVot, as known so far, builds a support set system using a traditional feature
selection method. In this paper we propose a modification of AlVot considering
a class-specific feature selection scheme to generate support set systems. From
now on, the original method will also be referred to as the classic AlVot, while
the modified version proposed in this paper will be called AlVot By Class (AlVot
BC). AlVot BC is based on class-dependent collections of feature subsets used
as support set systems by class. Experiments show a clear improvement in the
classification performance yielded by AlVot BC over that produced by the classic
AlVot.

The rest of the paper is organized as follows. Section 2 summarizes the related
work, in particular the proposal presented in [5]. In Section 3, classic AlVot as
primary background is presented, Section 4 defines rigorously AlVot BC, while
Section 5 describes a proposed algorithm based on AlVot BC. Section 6 shows
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and discusses classification results. Finally, conclusions and promising directions
for future research are given in Section 7.

2 Related Work

A classification problem requires features able to encode low intra-class differ-
ence, but also high inter-class difference. In this regard, most known classifiers
assume that features can discriminate objects in any class. However, a feature
useful to a particular class could not be suitable enough for another class. It
thus makes sense to build models by classes using different sets of features for
different classes. For instance, a method to estimate class-conditional probabil-
ity density functions (pdf) based on class-specific sets of features is proposed in
[2,3].

Another related work is the one introduced in [4], where a classifier based on
a hypersphere net is built, each hypersphere being defined on a particular feature
subspace. The selected features in each hypersphere are those that maximize a sep-
arability index, which is calculated as the ratio of inter-class distances to intra-class
distances. The radius of each hypersphere is determined as the distance between its
center and the farthest training object of the same class that belongs to this hyper-
sphere. The classification of a new object involves its projection on all hypersphere
subspaces, and to check whether the object lies within any hypersphere. If so, the
object is assigned to the class associated to the “winning” hypersphere. Otherwise,
the nearest neighbor rule is used with respect to the hypersphere centers.

Class-specific feature sets were also obtained in [5], by a framework based
on applying any traditional feature selector separately on each one-against-all
binary problem. This framework consists of the following four stages:

Class binarization. A classification problem of m classes is divided into m one-
against-all binary problems [6]. Figure 2 illustrates this practice.

Binary problem 1

AﬁéglA on nu:ﬁ:oo o .
O, 900
Original problem Aih ) \ecpatia 58

Binary problem 2

VN
oo A 00,2
o ot ) B340 %685

Binary problem 3
M
(3 [ 3
otis

Fig. 2. Example of the one-against-all binarization strategy in a three-class problem
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Class Balancing. In case of unbalanced binary problems, where the isolated class
is the minority one, authors proposed to oversample it by repeating its objects
until the balance is achieved.

Class-specific Feature Selection. It consists in eliciting features for each binary
problem, by using any traditional feature selector. Then, features selected from
a particular binary problem determined by the class ¢; are attached to this class.

Classification. Once features of the class ¢; are selected, a class-dependent clas-
sifier e; performs on the LM corresponding to the original m-class problem, but
only considering those features associated to the i-th class. To predict a class
label for a given new object Oy, each classifier e; produces a classification hy-
pothesis. Authors propose a decision rule based on the following criteria, which
are listed in order of use:

1. If only one classifier e; supports its associated class c¢;, then ¢; is given as
the predicted class.

2. If two or more classifiers e; support their associated classes ¢;, then the class
most voted by the rest of classifiers, among those supported, is given as the
predicted class.

3. When no classifier e; supports its associated class, the class most voted by
all classifiers is given as the predicted class.

4. When there is no winning class according to the above criteria (a tie), the
majority class is given as the predicted class.

3 AlVot

This section presents the classic AlVot, which is the primary foundation of the
method proposed in this paper (AlVot By Class).

The classic AlVot can be defined in terms of the six stages explained be-
low. However, to ease the method definition, a number of notations should be
previously stated:

— A, algorithm based in classic AlVot.

— 24, support set system to A.

— n, number of features for objects in LM.

— R={x1,x2,...,x,}, feature set to describe objects in the LM.
— 2 ={xp,, Tp,, ...,$p5k}, k-th support set, si < n, 2, C R and £2;, € 2.
— X, full description vector of the object O;, according to R.

- Xf, partial description vector of the object O;, according to {2y.
— xg;, value of the feature z, in the object O;.

— m, number of classes in LM.

— C ={c1,...,cm}, set of class labels.

— y;, class value of the object O;, y; € C.
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AlVot’s stages can be summarized as follows:

1. Support Set System. The first stage consists in building each support set
(2. It is expected that features in each support set can be able to discrimi-
nate to which class each object in LM belongs.

2. Partial Similarity Function. This function allows comparing object pairs
based on partial description vectors. An example could be:

— B(XF,XF) = {a; € 2|z} = 2 }|. This function computes the number
of features where the compared objects O; and O; agree.

3. Partial Evaluation Function for a Fixed Support Set at Object
Level. Each support set is used to compute similarities between the new
object Opew and the objects in LM . These values may be considered as the
primary votes. Each object in LM votes as many times as there are support
sets. Each vote is obtained considering only features in the current support
set. An example could be:

— T (XF, XE,) = p(21)B(XE, XF,.), where p(£2);) weights the relevance

new
of the support set (2.
4. Partial Evaluation Function for a Fixed Support Set at Class Level.

This function summarizes the votes given to a new object Oy,eq, by the objects
of some class, given a particular support set. An example could be:
a

- F,z (Onew) = nlj tg:l I (Xf, XPF,.,), where n; denotes the amount of ob-

jects in the class c;.
5. Total Evaluation Function for all Support Sets at Class Level. This

function summarizes the votes given to a new object O, by the objects of
some class, considering all support sets. An example could be:

- @j(Onew) = ‘QlA| Z F}z(Onew)-
2,eNA

6. Decision Rule. Thiskrule determines to which class Ope belongs. For
instance, Oye can be classified in the class ¢; if
— dji(Onew) > djj(Onew) V] =1,....m,J 7£ 7.

Figure 3 depicts an example of classifying a new object Oy by a method
A based on AlVot in a context of a three-class problem. The example shows
four support sets, 24 = {21, 25, 23,24}, while I’ 7 (Onew) denotes the average
similarity between O, and all objects in the class c;, given the support set
2. Finally, @;(Onew) summarizes the votes given to Ope, by the class ¢; over
the whole support set system.

4 AlVot By Class

This section introduces the main contribution of this paper, which consists in
an AlVot scheme based on class-specific support sets (AlVot By Class).

Unlike the classic AlVot, the new model considers a support set system where
each support set is intended to discriminate objects of a particular class. To
this end, we propose to turn the original m-class problem into m one-against-all
binary problems, and to build an independent support set system for each binary
problem. To better describe the new strategy, the notations introduced in the
previous section need to be suited as follows:
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Support sets system:
Q% (1, D, O3, Q4 }

Oy | T ey | () el
T3 Oge)! [Tl [IT3 (O
| il | 1] ]
IT3(Ohew)! | T30 | T3(Ones)!
TGt (TR0l | (Ol

bt e ed et

L it it

\v/ \v/ \v/
0'(Ones) [ ©7(Onew) | 3O |

Solution rule:

The class of Opeyy i8 ¢ if @j(Opey) is
greater than @;(Onew) for all j=i.

Fig. 3. Example of classifying a new object Opeqy in a problem of 3 classes with an
algorithm A based in classic AlVot

A, algorithm based in AlVot BC.

Qg“, support set system corresponding to the ¢-th class.

2 = {xp,, 1p,, ""xpm}’ k-th support set linked to the i-th class, s;;x < n,
2 C Rand 2! € Q4.

- X;k , partial description vector of the object O;, according to §2;.

- ' ={d,...,c,}, complementary class labels obtained from the one-against-
all transformation, where ¢} represents the union of all classes except ¢;.

The methodology of the classic AlVot also needs to be tailored to fit the require-
ments of AlVot BC. As a result, a procedure based on seven stages is shown

below:

1. Support Set Systems by Classes. An independent support set system

QZA is built for each class ¢;. It is expected that each support set in QZA be
able to discriminate objects of ¢; from objects of c}.

. Partial Similarity Function. No change with regard to the classic AlVot.
. Partial Evaluation Function for a Fixed Support Set at Object
Level. No change with regard to the classic AlVot.

. Partial Evaluation Function for a Fixed Support Set at Class Level
and at its Complement Level. Given a class ¢;, its complement c;, and a

class-specific support set Qi, this function summarizes the votes given to a

new object Opnew by the objects in ¢;, as well as by the objects in c; according

to Qi. For example:
- F]g (Onew) =1

J .
. Jk ik ) . )
n 2:1 I (X7", X7%,,), where nj denotes the size of ¢;.

1=
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new

n.
- F’f;(Onew) = nl; i ij(ka,Xjk ), where n; denotes the size of c;.

5. Total Evaluation ];"Tllnction for a Class-specific Support Set System
at Class and its Complement Level. Given a class c;, its complement c;-,
and a support set system QJ-A, this function summarizes the total votes given
to a new object Oy, separately by the objects in ¢; and c;., considering all
support sets in _Q;l. For example:

- @j(Onew) = ‘QlA| Z F}z(Onew)-

T njenp
- @lj(Onew) = ‘QlA‘ Z F/i(Onew).
Tnlenp

6. Total Evaluation Function for a Class-specific Support Set System
at Class Level. Given a class c;, its complement c;., and a support set
system _Q;l, this function combines the total votes given to a new object
Onew in terms of @;(Oyeq) and 915;- (Onew), so that the belonging of Oyeq to
c¢; can be suitably measured. For example:

- )\j (Onew) = @j (Onew) - @; (Onew)
7. Decision Rule. No change with regard to the classic AlVot.

This process is illustrated in Fig. 4. Note that an independent support set sys-
tem (23-4 is available for each class c;, and that the complement c;- is also added.

All things considered, I’ ,ﬂ (Onew) and I ?C (Onew) denote the partial similarities
over (2] between Ope, and objects in ¢; and c;-, respectively, while @;(Opew)
and (P’j (Onew) summarize the total votes given to Opew by ¢; and c;-, respec-
tively, over the class-condicional (23-4. Finally, A\;(Oneyw) estimates the overall
membership degree of Oyey to the class c;.

5 Algorithm Based in AlVot BC with Typical Testors
as Support Sets Systems

In this section, an algorithm based on AlVot BC is presented, with the main
characteristic being the use of testors as support sets. The testor concept first
appeared in works on electrical circuits [7], but since the 60’s decade it was
related to classification problems and, specifically, to feature selection tasks [8].
The simplest way of defining a testor is as a subset of features that are able to
distinguish any pair of objects from different classes in a LM. A LM can have
one or more testors. A testor T for LM is called typical if there is no T" C T,
such that T” is also a testor.

The algorithm described in this section uses class-specific typical testors as
support sets, which are drawn from the binary problems built from the one-
against-all decomposition of the original problem. The algorithm is based on the
seven steps defined for AlVot BC, as it is described next:
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Support sets systems:

Support set system of class ¢j:  Support set system of class cy:  Support set system of class c3:
A A A
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Solution rule:
‘ The class of Onew is ¢; if A(Onew) is grater than Aj(Onew) for all ji. ‘

Fig. 4. Example of classifying a new object Opew in a problem of 3 classes with an
algorithm A based in AlVot BC.

1. Support Set System by Classes
- .QA contains the typical testors elicited from LM;.

2. Partlal Slmllarlty Function
— B(XI*, X3k ) =1— HEOM(X?* Xk )

new new
where: "
— HEOM (X", X% ) = > d(xh, xpew)?
acpeﬂ
1 if x; vV ap© is missing
— d(x;,xgew) = 4 overlap(z,, : ) if  xp  is nominal

™ dsz( , ) if xp is numerical

0 if x; =z,

— overlap(zl, £p) = {

— o dif f(a), 2pe) = 2~

’r‘ange(zp)

1 in other case.

newl

— range(zy) = maz(zy) — min(x,)
3. Partial Evaluation Function for a Fixed Support Set at Object
Level
- jk(Xz’Jk X%Iéw) :B(Xjk X%Iéw)

4. Partial Evaluation Function for a Fixed Support Set at Class Level
and at its Complement Level

, 5
— I} (Opew) = L}’ Z:l Iy (X k , X7k ), where i runs over the indexes of the
1=

5 objects in class ¢; most similar to Ope. as regards Qi.
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new

. 5 . .
— I (Onew) = é > ij(ka,Xjk ), where ¢ runs over the indexes of the
i=1

5 objects in class c;- most similar to O, as regards Qi

. Total Evaluation Function for a Class-Specific Support Set System

at Class Level and at Its Complement Level
- @j(Onew) = ‘_Qlﬂ Z F}z(Onew)-

J j A
]en

- dj;'(Onew) = ‘QlA| Z F/i(Onew)-

. Total Evaluation Function for a Class-Specific Support Set System

at Class Level
= A (Onew) = D; (Onew) + (1 — glig. (Onew))
Decision Rule
— To aSSign Onew to & if )\i(Onew) > Aj(Onew)a vj = ]-a s, M, j 74‘ 1.

The pseudocode of the algorithm is shown in the Fig. 5.

Algorithm 1. Pseudocode of the proposed algorithm based on AlVot BC
Ensure: Opew, MA

1:
2
3
4:
5:
6
7
8

9:

10:
11:
12:
13:
14:

15:
16:
17:
18:
19:
20:
21:
22:
23:

for all ¢; in MA do
: Qst(onew) = ¢;(Onew) =0
MA; = getBinaryProblem(7)
02#* = getTypicalTestors(MA;)
for all 2! in 27 do
for all O in MA; do
if yr =c¢; then
vote()(7)(k) =1 — HOEM (Onew, Oy)
else
vote' (1) (§)(k) = 1 — HOEM (Onew, Oy)
end if
end for
I} (Onew) = getAverageOfBiggest5(vote(i)(5))
I"5(Onew) = get AverageOfBiggest5(vote’ (i)(5))
b; (Onew) =&; (Onew) + F;(Onew)
@; (Onew) - @; (Onew) + F/; (Onew)
end for
¢i(0new) - ¢1(Onew)/‘ng|
B} (Onew) = Pi(Onew) /|92
Ai(Onew) = ®i(Onew) + (1 = Pi(Onew))
end for
win = arg max; Ai(Onew), Vi=1,...,m
return cuyin

Fig. 5. Classification algorithm based on AlVot BC that uses typical testors by class
as class-dependent support sets
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6 Results

In this section, we present experiments to compare the classification performance
and the number of features used by the proposed algorithm, with regard to those
from its base algorithm (classic AlVot) and also from other methods frequently
used in the literature.

Experiments involve several data sets from the well-known UCI Machine
Learning repository [9]. They are briefly described in the Tab. 1.

Table 1. UCI data sets used in the experiments

Number of Number of Number of Features Missing

Data set features classes objects type values
Zoo 16 7 101 Nominal No
Wine 13 3 178 Numerical No
Iris 4 3 150 Numerical No
Yeast 8 10 1484 Numerical No
Glass 9 6 214 Numerical No
Vehicle 18 4 846 Numerical No
Anneal 38 5 898 Mixed Yes

6.1 Classification Performance

Table 2 shows the average performances achieved by the proposed algorithm
and by the classic AlVot over all data sets, using a 5x10-fold cross-validation
process. The best result for each data set (row) is indicated by a “*’.

Table 2. Classification performances of the algorithms based on AlVot BC and classic
AlVot, by averaging independent results from a 5x10-fold CV

Data set  Classic AlVot  AlVot BC

7,00 93.86 94.06*
‘Wine 97.30 97.86*
Iris 95.47 95.73*
Yeast 59.58* 59.07
Glass 69.09 70.36*
Vehicle 70.50 70.97*
Anneal 97.88 98.02*

To get insight into the generalization capabilities of the proposed algorithm, it
was also compared to three widely-used classifiers: k-Nearest Neighbors (k-NN,
with &k = 3 and k = 5), C4.5 and Naive Bayes (NB), using their implementations
available in the WEKA library [10]. Table 3 shows the average performances
achieved by the proposed algorithm and by the three aforementioned classifiers
over all data sets, using the same performance estimation technique. The best
result for each data set (row) is indicated by a ‘*’.
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Table 3. Classification performances of the algorithm based on AlVot BC and three
well-known classifiers, by averaging independent results from a 5x10-fold CV

Data sets
700
‘Wine

Iris

Yeast
Glass
Vehicle
Anneal

3NN 5NN C4.5 NB AlVot BC
(%) (%) (%) (%) (%)
9247 94.65 92.28 95.05% 94.06
96.07 96.07 92.81 97.19  97.86*
95.33 95.73* 94.67 95.60  95.73*
55.43 56.97 56.23 57.91  59.07*
70.47% 66.73 68.50 48.13  70.36
7021 70.31 7291 44.85  70.97*
97.30 97.37 98.71* 86.55  98.02

6.2 Number of Features

Figure 6 shows the mode of the number of features obtained for each classifier
in each data set, using a 10-fold cross-validation scheme. It is important to note
that classic AlVot has the same mode value in all the classes, because it has a
single support set system which is common to all classes.
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Fig. 6. Mode of the number of features in the support sets for each class, obtained by

the algorithms based on the classic AlVot and AlVot BC
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7 Conclusions

Experimental results show that the algorithm based on AlVot By Class is able
to achieve high classification accuracies with a small number of features by class.
According to these two criteria, this method clearly overcomes the algorithm de-
termined by the classic AlVot and three well-known classifiers in most data sets.
Therefore, the proposed algorithm empirically proved to be competitive against
methods that can be considered as de facto standards to deal with classification
problems. This suggests that global features could be unsuitable for some classes,
thus they might introduce noise in the classification process.

It is worth noting that this paper proposes and assesses a particular algo-
rithm designed to fit AlVot BC, which can be considered a general voting model
based on class-conditional feature subsets. As suggested above, future work may
comprehend new ways of developing the seven stages of AlVot BC. For example,
the support set systems could be built by using different feature selectors, while
the similarity functions could admit feature weighting. In addition, it could also
be possible to learn how to weight the relevance of each support set within a
voting scheme. In summary, the main focus would be to learn how to get the
model as close as possible to reality.
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Abstract. To learn any problem, many classifiers have been introduced so far.
Each of these classifiers has many strengths (positive aspects) and weaknesses
(negative aspects) that make it suitable for some specific problems. But there is no
powerful solution to indicate which classifier is the best classifier (or at least a good
one) for a special problem. Fortunately the ensemble learning provides us with a
powerful approach to prepare a near-to-optimum classifying system for any given
problem. How to create a suitable ensemble of base classifiers is the most
challenging problem in classifier ensemble. An ensemble vitally needs diversity. It
means that if a pool of classifiers wants to be successful as an ensemble, they must
be diverse enough to cover the errors of each other. So during creation of an
ensemble, we need a mechanism to guarantee the ensemble classifiers are diversity.
Sometimes this mechanism is to select/remove a subset of the produced base
classifiers with the aim of maintaining the diversity among the ensemble. This
paper proposes an innovative ensemble creation named the Classifier Selection
Based on Clustering (CSBC). The CSBC guarantees the necessary diversity among
ensemble classifiers, using the clustering of classifiers technique. It uses bagging as
generator of the base classifiers. After producing a large number of the base
classifiers, CSBC partitions them using a clustering algorithm. After that by
selecting one classifier from each cluster, CSBC produces the final ensemble. The
weighted majority vote method is taken as aggregator function of the ensemble.
Here it is probed how the cluster number affects the performance of the CSBC
method and how we can choose a good approximate value for cluster number in
any dataset adaptively. We expand our studies on a large number of real datasets of
UCI repository to reach a decisive conclusion.

Keywords: Classifier Ensembles, Bagging, AdaBoosting.

1 Introduction

In general, it is an ever-true sentence that combining diverse classifiers usually results in
a better classification [6]. The diversity is essentially important for an ensemble to be
succeeded. The diversity among the base classifiers of an ensemble assures the
undependability of those base classifiers; it means that the misclassifications of the
classifiers don't occur simultaneously. It has been shown that the ensemble of a number
of base classifiers can always reach a better performance (even can reach a perfect
accuracy) as the number of classifiers becomes greater, provided that they are
independent (diverse) [7], [14]. It has been shown that the ensemble philosophy is also
successfully applicable to Bayesian Networks [15].

A. Gelbukh et al. (Eds.): MICAI 2014, Part II, LNAI 8857, pp. 140-151, 2014.
© Springer International Publishing Switzerland 2014
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The only challenge in the creation of a classifier ensemble is to provide a general
approach to guarantee the diversity that is vital and necessary for an ensemble, can be
achieved. It means that if a pool of classifiers wants to be successful as an ensemble,
they should be diverse enough to cover the errors of each other. This is a challenging
problem how to create a number of classifiers diverse enough to be suitable to
participate in an ensemble. To reach a satisfactory diversity in an ensemble there are a
very large variety of approaches. Kuncheva proposes an approach based on the
metrics that represents the amount of similarities or differences of classifier outputs.
He has proposed a series of methods for creation of an ensemble based on the
mentioned metrics [18].

Clustering is the task of assigning a set of objects into groups (also called clusters)
so that the objects in the same group are more similar (in some sense) to each other
than to those in other groups. It has widely employed in data mining applications such
as information retrieval, text categorization and text ranking [10-13].

Giacinto and Roli propose a clustering and selection method to present a method
that produces a host of classifiers with a high degree of diversity [5]. They first
produce a large number of artificial neural network classifiers [16-17] by different
initializations of their parameters. After that they select a subset of them according to
their distances in their output space.

Parvin et al. inspired from the clustering and selection method propose a new
clustering and selection method to deal with the drawbacks of the simple ensemble
methods in generating diversity [9]. In spite of Giacinto and Roli's method they take
into consideration how the base classifiers are created. In their work it is explored that
usage of Bagging [2] and Boosting [4] as the sources of generators of diversity how
can affect on Giacinto and Roli's method. They first train a large number of classifiers
using Bagging and Boosting methods, after that they partition the classifiers using
their outputs over the training set. Finally a random classifier from each cluster is
selected and is inserted into the ensemble. The weighted majority voting mechanism
is taken as the consensus function of the ensemble.

Decision Tree (DT) is one of the most versatile classifiers in the machine learning
field. DT is considered as one of the unstable classifiers that can produce different
results in its successive trainings on the same condition. It uses a tree-like graph or
model of decisions. The kind of representation is appropriate for experts to understand
what classifier does [10]. Its intrinsic instability can be employed as a source of
diversity in classifier ensemble. The ensemble of a number of DTs is a well-known
algorithm called Random Forest (RF) which is one of the most powerful ensemble
algorithms. The algorithm of Random Forest was first developed by Breiman [2]. In
this paper, DT is totally used as one of the base classifiers.

2 Related Work

Generally, there are two important challenging approaches to combine a number of
classifiers that use different training sets. They are Bagging and Boosting. Both of
them are considered as two methods that are sources of diversity generation. Indeed
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they are considered as the best ensemble methods and still the most challenging meta-
learners to any new classifier ensemble method.

First assume that training set is denoted by TS. Also let's denote the ith dataitem in
TS by o;. Let's m be the number of dataitems in 7. Fig. 1 generally depicts the
training phase of CSBC by the modified Bagging method as the generator of the base
classifiers in the ensemble.

The term Bagging is first used by Breiman [2] abbreviating for Bootstrap
AGGregatING. The idea of Bagging is simple and interesting: the ensemble is made
of classifiers built on bootstrap copies of the training set. Using different training sets,
the necessary diversity for ensemble is obtained. It is worthy to be mentioned that
Bagging does not assure that the necessary diversity is met.

Breiman [3] proposes a variant of Bagging that it is called Random Forest.
Random Forest is a general class of ensemble building methods using a decision tree
as the base classifier. To be labeled a “Random Forest”, an ensemble of decision trees
should be built by generating independent identically distributed random vectors and
should use each vector to grow a decision tree. Like Bagging, Random Forest also
does not assure that the ensemble classifiers are sufficiently diverse.

In this paper Random Forest algorithm that is one of the most well-known versions
of Bagging classifier [7] is implemented and compared with the proposed method. It
is worthy to be mentioned that Random Forest is first modified a little before usage.

Boosting is inspired by an online learning algorithm called Hedge(B) [4]. This
algorithm allocates weights to a set of strategies used to predict the outcome of a
certain event. At this point we shall relate Hedge(P) to the classifier combination
problem. Boosting is defined in [4] as related to the “general problem of producing a
very accurate prediction rule by combining rough and moderately inaccurate rules of
thumb.” The main boosting idea is to develop the classifier team D incrementally,
adding one classifier at a time. The classifier that joins the ensemble at step k is
trained on a dataset selectively sampled from the train dataset Z. The sampling
distribution starts from uniform, and progresses towards increasing the likelihood of
“difficult” data points. Thus the distribution is updated at each step, increasing the
likelihood of the objects misclassified at step k-1. Here the correspondence with
Hedge(p) is transposed. The classifiers in D are the trials or events, and the data
points in Z are the strategies whose probability distribution we update at each step.
The algorithm is called AdaBoost which comes from ADAptive BOOSTing. Another
version of these algorithms is arc-x4 which performs as another version of recently
ADAboost [7].

Giacinto and Roli propose a clustering and selection method [5]. They first
produce a large number of MLP classifiers with different initializations. After that
they partition them by a clustering method over their outputs. They select one
classifier from each cluster of the classifiers. Finally they consider the selected
classifiers as an ensemble. Majority voting is considered as their aggregator.

Parvin et al. propose a framework for development of combinational classifiers. In
their framework, a number of train data-bags are first bootstrapped from train dataset.
Then a pool of weak base classifiers is created; each classifier is trained on one
distinct data-bag. After that to get rid of similar base classifiers in the ensemble and
select a diverse subset of classifiers, the classifiers are partitioned using a clustering
algorithm. The partitioning is done considering the outputs of classifiers on training
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dataset as new feature space. In each cluster, one random classifier is selected to
participate in final ensemble. Then, to produce consensus vote, different votes (or
outputs) are gathered out of ensemble. After that the weighted majority voting
mechanism is applied as their aggregator. The weights are determined using the
accuracies of the base classifiers on training dataset [9].

Training li
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Fig. 1. Training phase of CSBC by modified Bagging method as generator of base classifiers

3 Classifier Selection by Clustering

The main idea behind the CSBS approach is to use the most diverse subset of the base
classifiers obtained by Bagging or Boosting methods. Indeed a number of base
classifiers are first generated by the two well-known ensemble creation mechanisms:
Bagging or Boosting. After that the produced classifiers are partitioned according
their outputs over training set. Then a random base classifier is selected from each
cluster. Since each cluster is produced according to classifiers' outputs, it is highly
likely that selecting one classifier from each cluster, and considering them as an
ensemble can produce a diverse ensemble that outperforms the traditional Bagging
and Boosting, i.e. usage of all base classifiers as an ensemble without selection phase.
It is also more likely that selecting the nearest classifier to the head of each produced
cluster produces an ensemble with a higher diversity than the ensemble of those
classifiers any of that is randomly extracted out of each cluster. The algorithm for
training phase of CSBC approach by the modified Bagging method as the generator of
the base classifiers for the ensemble is depicted in Fig. 1 schematically.

As it is obvious from Fig. 1, n subsets of 7S are firstly bootstrapped with b percent
of the training dataset. The ith dataset (subset) that is bootstrapped with b percent of
the training dataset is named ith data bag; it is denoted by DB,;. It is clear that the
cardinality of DB; is m*b/100. Then a base classifier is trained on each of DB;. Let's
denote the base classifier trained on DB; by C;. After that the classifier C; is tested
over the whole of training dataset and its accuracy is calculated. The output of ith
classifier over jth dataitem in TS will be a vector denoted by Oy. It means O, stands
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for the ith base classifier confidence in belonging dataitem o; to class k. The output of
ith classifier over total training dataset is also denoted by O; and its accuracy is
denoted by P;. The only difference between the approach of generation of the base
classifiers in the proposed method (depicted by Fig. 1), and in the Bagging method
comes from sampling ratio b. In the Bagging method, b is 100 during generation of all
base classifiers, while in the proposed method b is a value in range [30-100] for
generation of all them.

Like Fig. 1, the training phase of CSBC approach when the modified Boosting
method is used as the generator of the base classifiers in the ensemble, a subset
containing b percent of the training dataset is first selected. Then the first base
classifier is trained on this subset. After that the first base classifier is tested on the
whole training dataset which results in producing the O; and P,. Using O,, the next
subset of b percent of the training dataset is obtained. The mechanism is continued in
such a way that obtaining ith subset of b percent of the training dataset is produced
considering the O,;, O,, ..., O;;. The only difference between the approach of
generation of the base classifiers in the proposed method, and in the Boosting method
again comes from sampling ratio b. In the Boosting method, b is 100 during
generation of all base classifiers, while in the proposed method b is a value in range
[30-100] for generation of all them. For more information about the mechanism of
Boosting, the reader can be referred to [7].

This framework is also generally illustrated in Fig. 3. In the CSBC framework a
dataset of classifiers denoted by DC is firstly produced. The DC whose ith dataitem is
denoted by X; has f features. pth feature of ith dataitem in DC denoted by X, is
obtained by equation 1.

Xy =05 (M)
where j and k are obtained by equation 2 and 3 respectively.
Jj= (I’ / C—| )
where c is the number of classes.
k=p—j*c 3)

Features of the DC dataset are opinions of different base classifiers C; over real
data items of under-leaning dataset. So a new dataset having n dataitems, where any
of them stands for a base classifier, and f features, where f=m*c, is available.
Parameter n is a predefined value showing the number of classifiers produced by
Bagging or Boosting. To better clarify the DC dataset consider Fig. 2.

1 2 1 2 1 2
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1 2 1 2 1 2
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Fig. 2. The Classifier Selection Based on Clustering framework

In Fig. 2, we assume that there are two classes, i.e. m=2. After producing the
mentioned DC dataset, it is partitioned by use of a clustering algorithm that results in
producing some clusters of classifiers. We denote the number of clusters by r. Each of
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the classifiers falling into a cluster has similar outputs on the train dataset; it means
these classifiers have low diversities, so it is better to use one of them in the final
ensemble rather than all of them. For escaping from outlier classifiers, the clusters
which contain number of classifiers smaller than a predefined threshold are ignored.

Input:
E: Ensemble of Classifiers
P: Accuracies of Classifiers
O: Outputs of Classifiers
th: Threshold of Selectin a Classifier
Output:
SC: Ensemble of Classifiers
SP: Accuracies of Classifiers
[n m] = size (O)
C = K-means (O, r)
Cluster_of_Classifiers (1 : 1) = {}
Fori=1:n
CC (i) = CC ()u{C@i)}
Acc_C(i) = Acc_C (i)U{P@i)}
End
j=0
Fori=1:r
SizeOfCluster = | CC (i) |
If (SizeOfCluster > th)
j=+
tmp = RandomSelect (1 : SizeOfCluster)
SC (j) = CC (tmp)
SP (j) = Acc_C (tmp)
End
End

Fig. 3. Pseudo-code of the Classifier Selection Based on Clustering framework

Let us assume that E is the ensemble of n classifiers {C;, C, C; ...C,}. Also
assume that there are c classes in the case. Next, assume applying the ensemble over
data sample o; results in a D’ matrix like equation 4.

1 1 1
o, 0 . O}

o )
O 0y . Oy
o5, 05; . Oy

Now the ensemble decides the data sample o; to belong to class ¢ according to
equation 5.

c
q = argmax
ot

®

n .
* DJ
w, *D;
k=1

where w; is the effect weight of classifier j which is obtained optimally [7] according
to equation 6.
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Fig. 4. The performance of CSBC by the modified boosting (UP) and the Gianito’s method
(MIDDLE) the modified bagging (DOWN) ensemble over some datasets with n=151 and
different r and MLP (LEFT) and DT (RIGHT) as base classifier

where p; is accuracy of classifier j over total 7. Note that a tie breaks randomly in
equation 5. For dataitem o; consider a vector I. I/, is one if dataitem o; belongs to
class g otherwise it is zero. Now the accuracy of classifier C; over 7S is obtained
using equation 7.

3y L{—Oll;j
_ =Ll
Pk = om (7N

4 Experimental Study

The accuracy is taken as the evaluation metric throughout all the paper. All the
experiments are done using 4-fold cross validation. The results obtained by 4-fold
cross validation are also repeated as many as 10 independent runs. It means that to
reach the accuracy of any method on a dataset ,e.g. Iris, the accuracy of the method is
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computed by 4-fold cross validation and it is denoted by acc,. Repeating the same
scenario again we reach acc,. After repeating the scenario as many as 10 times, we

reach acc; where i€ {1,2,...,10}. The averaged accuracies acc; over the 10

independent runs are reported as the accuracy of the method over Iris dataset.

The proposed method is examined over 13 different standard datasets and also one
artificial one. It is tried for datasets to be diverse in their number of true classes,
features and samples. A large variety in used datasets can more validate the obtained
results and makes the conclusions more decisive. These real datasets are available at
UCT repository [1]. The details of HalfRing dataset can be available in [8].

The measure of decision for each employed decision tree is taken as Gini measure.
The threshold of pruning is also set to 2. Also the classifiers' parameters are fixed in
all of their usages. All MLPs which are used in the experiments have two hidden
layers including 10 and 5 neurons respectively in the first and second hidden layers.
All them are permitted to be trained in 100 epochs. In all experiments the default
value for parameters n, b and threshold of accepting a cluster are set to 151, 30 and 2
(i.e. only the clusters with one classifier is dropped down) respectively. All the
experiments are done using 4-fold cross validation. Clustering is done by k-means
clustering algorithm with different k parameters.

—+~Mean accuracy of proposed method by Bagging
~s-Mean accuracy of proposed method by Boosting
—+Giacinto and Roli Cluster & Selection Method

0.8 —+~Mean accuracy of proposed method by Bagging 0.78
~e-Mean accuracy of proposed method by Boosting
—+Giacinto and Roli Cluster & Selection Method
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Fig. 5. The performance of CSBC methods averaged over 14 used datasets with n=151 and
different r and MLP (UP LEFT), DT (UP RIGHT) as base classifier. The performance of
proposed CSBC methods averaged over 14 used datasets with n=151 and different »=33 and
different » (DOWN).

To see how the parameter r affects over the performance of classification over
CSBC methods (by bagging, boosting and Gianito [18]) with two base classifiers
(MLP, DT [2,10]), take a look at Fig. 4.

These figures depict the accuracies of different methods by 4-fold cross validation
on some benchmarks. As it can be inferred from these figures, increasing the cluster
number parameter r is not always resulted in the improvement in the performance.
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Indeed an r=15 is a well choice for all of the datasets. It means that if the classifier
number parameter, n, is 151 then r=15 is a good value for the cluster number
parameter. In other words, using 10 percent of the base classifiers in the final
ensemble can be considered as a good option. Indeed in this option, a classifier is
selected from each cluster of classifiers that contains about 10 classifiers, so it gives
the method the ability to select each classifier from a good coverage of classifiers.

The performances of CSC by boosting over some dataset with n=157 and different
r are depicted in Fig 5 while MLP and DT are used as base classifier. The same
results are depicted in the same figure for CSC by Gianito's method respectively while
the same classifiers are used as base classifier. Fig 5 also represents the performances
of CSC by bagging method respectively while the same classifiers are used as base
classifier.

Table 1. Comparison between the results obtained by applying different ensemble methods
considering DT and MLP as the base classifiers. * indicates the dataset is normalized. 4 fold
cross validation® is taken for performance evaluation. ** indicates that the train and test sets are
predefined and averaged over 10 independent runs is reported. Note that X-Y indicates X is
accuracy of DT as the base classifiers and Y is accuracy of MLP as the base classifiers.

AdaBoost Arc-X4 Random Classifier Classifier | Cluster and
Forest Selection By | Selection By | Selection
RF Arc-X4

Breast Cancer* 96.19-96.49 |  95.74-97.06 96.32-96.91 96.47-96.91 95.05-96.47 93.68-96.19
Balance Scale* 91.52-93.12 |  94.44-93.27 93.6-91.99 94.72-91.35 94.24-92.95 94.44-95.75
Bupa* 66.96-68.41 70.64-70.06 72.09-71.22 72.97-72.09 66.28-68.02 64.53-71.98
Glass™* 70.09-66.36 |  65.04-66.04 70.28-66.98 70.28-67.45 62.26-66.04 60.85-67.05

Galaxy* 71.83-85.14 70.59-87 73.07-85.62 72.45-85.62 70.28-84.52 70.94-87
Half-Ring* 97.25-97.25 | 97259725 95.75-95.75 97.25-97.25 95759725 | 95.75.97.25
SAHeart* 67.32-69.48 70-73.04 71.3-72.39 72.61-71.52 69.7-71.09 68.04-70.18
lonosphere* 91.17-89.17 90.31-90.03 92.31-88.51 91.45-90.31 89.74-87.64 87.64-88.51
Iris* 94.67-94.67 |  96.62-96.62 95.27-96.62 96.62-97.97 95.95-97.33 94.59-93.33
Monk problemI** | 95039899 | 98.11-98.06 97.49-92.23 98.76-98.43 97.37-97.87 98.34-98.34
Monk problem2** | 9j 65-87.48 97.01-87.35 86.64-85.68 97.62-87.41 86.73-87.23 97.14-87.21
Monk problem3** | 95 51.96.84 87.29-97.09 96.92-95.87 96.97-97.33 96.34-96.99 87.31-96.77
Wine* 96.63-94.38 |  96.07-96.59 97.19-96.06 97.19-97.19 95.51-95.51 92.61-95.23
Yeast* 54.78-59.5 53.17-60.85 53.98-61.19 53.98-61.19 52.09-60.85 54.51-60.56
Average 84.54-85.52 | 84.45-86.45 85.16-85.5 86.38-86.57 83.38-85.7 82.88-86.1

Fig. 5 depicts averaged accuracies over all 14 different datasets. Fig. 5 reports
performances of the proposed framework by using MLP as base classifier. As it is
illustrated in Fig. 5, the usage of bagging as generator of base classifiers for CSBC
method is better than Boosting and Giacinto and Roli's ensemble methods. Also it is
concluded that using r=33 instead of =15 is a better choice for all of 14 datasets. In
other words, using 22 percent of the base classifiers in the final ensemble can be a
better option. Comparing figures of Fig. 5 one can find out that the usage of decision
tree as base classifier increases the gap between the three approaches in generating an
ensemble of the base classifiers. It is due to special feature of the decision tree.
Because it is very sensitive to its training set, the usage of decision tree as the base
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classifier is very consistent with the Bagging mechanism. Fig. 5 also shows the effect
of sampling rate over the performance of two different proposed methods. The base
classifier used to reach the results reported in the figure is decision tree. As it is
obvious if a very low value is chosen for b, the performance is very weak. Also the
higher values for b in the proposed method can't monotonically improve the
performance. It even causes to decrease the performance for values after 40%.

Table 1 shows the accuracies obtained by applying different ensemble methods
considering DT as the base classifiers. Table 1 also shows the accuracies obtained by
applying the same ensemble methods presented in Table 1 considering MLP as the
base classifiers. The parameter r is set to 33 to reach the results of Table 1.

While we choose only at most 22 percent of the base classifiers produced by
modified Bagging, the accuracy of their ensemble outperforms their full ensemble, i.e.
Bagging Method. Also it outperforms Boosting method and proposed method based
on Boosting method.

Because the classifiers selected in this manner (by Bagging along with clustering),
have different outputs, i.e. they are as diverse as possible, they are more suitable than
ensemble of all them. It is worthy to mention that the Boosting is inherently diverse
enough to be an ensemble totally; and the reduction of ensemble size by clustering
destructs their Boosting effect. Take it in the consideration that in Boosting ensemble,
each member covers the drawbacks of the previous ones.

Table 2. Effect of usage of the new methods based on that a classifier is selected from a cluster.
RS stands for "random selection"; TMAS stands for "the most accurate selection"; TNTCCS
stands for "the nearest-to-cluster-center selection".

CSBC By CSBC By CSBC By Bagging
Bagging and Bagging and and TNTCCS
RS TMAS

Breast Cancer* 96.91 95.73 97.36
Balance Scale* 91.35 91.51 91.98
Bupa* 72.09 71.87 71.21
Glass* 67.45 65.98 68.67
Galaxy* 85.62 85.34 84.51
Half-Ring* 97.25 97.72 97.18
SAHeart* 71.52 71.49 7213
lonosphere* 90.31 91.07 90.01
Iris* 97.97 96.06 98.21
Monk problem1** 98.43 100.00 100.00
Monk problem2** 87.41 86.83 87.89
Monk problem3** 97.33 98.10 98.18
Wine* 97.19 98.21 98.55
Yeast* 61.19 60.91 61.62
Average 86.57 86.49 86.96

The method based on that a classifier is selected from a cluster in CSBC
framework has been based on random selection so far. It means a random classifier is
selected from each partition. Table 2 depicts the performance for three methods for
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selecting a representative classifier from any partition. The three methods for
selecting a representative classifier from any partition are RS, TMAS and TNTCCS.
RS stands for "random selection". TMAS stands for "the most accurate selection”. In
TMAS the most accurate classifier in any cluster is selected as the representative
classifier of the cluster; it means that in any cluster, the most accurate classifier is
selected for the representative classifier of the cluster. The accuracy of the classifier is
achieved by testing the classifier over all training dataset. TNTCCS stands for "the
nearest-to-cluster-center selection". In TNTCCS the nearest classifier to cluster center
in any cluster is selected as the representative classifier of the cluster. The measure of
distance is the same measure used for partitioning algorithm.

As it is completely understandable from Table 2, the method TNTCCS for
classifier selection method is the most dominant one among the three methods. The
RS is surprisingly the second one. Although it may be expected that TMAS is the best
one among the three methods at first, the experimentations show it is the worst one.

5 Conclusions

In this paper, we have proposed a new approach to improve the performance of
classification. The proposed method uses a modified version of bagging ensemble as
the generator of the base classifiers of the ensemble. After that using k-means we
partition the base classifiers. Then a random classifier is selected from each cluster.
The selected classifiers are jointly considered as the proposed ensemble. Since each
cluster is produced according to classifiers' outputs, it is highly likely that selecting
one classifier from each cluster, and using them as an ensemble can produce a diverse
ensemble that outperforms the traditional Bagging and Boosting, i.e. usage of all
classifiers as an ensemble. It is also more likely that selecting the nearest classifier to
the head of each produced cluster produces an ensemble with a higher diversity than
the ensemble of those classifiers any of that is randomly extracted out of each cluster.
This can also be worked as another investigation.

. There is a clear difference between our method and bagging and boosting, since
they are classifier generation procedures but ours involves in both classifier
generation and classifier selection. Our method, only in the first phase (i.e. classifier
generation phase) uses bagging (or boosting) procedure. But due to the lack of
flexibility in the original bagging (or boosting) procedure, it uses a modified version.

Using the decision tree as base classifier increases the gap between the three
approaches in generating an ensemble of the base classifiers. It is due to special
feature of the decision tree. Because it is very sensitive to its train set, the use of
decision tree as base classifier is very consistent with the Bagging mechanism.

While we choose only at most 22 percent of the base classifiers of Bagging, the
accuracy of their ensemble outperforms their full ensemble. Also it outperforms
Boosting. Therefore it is concluded that using 22 percent of the base classifiers in the
final ensemble can be a well option generally.

Although tuning parameters is also an aim of the paper, mostly paper says that (1)
clustering of classifier is better to be done on an ensemble produced by bagging or
boosting and (2) clustering classifier works well by bagging, not boosting.
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As a future work, one can turn to research on the variance of the method. Since it is

said about Bagging can reduce variance and Boosting can simultaneously reduce
variance and error rate.
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Abstract. In this work a polynomial-time reduction to the NP-complete subset
sum problem is followed in order to prove the complexity of Multiple Kernel
Support Vector Machine decision problem. The Lagrangian function of the
standard Support Vector Machine in its dual form was considered to derive the
proof. Results of this derivation allow researchers to properly justify the use of
approximate methods, such as heuristics and metaheuristics, when working with
multiple kernel learning algorithms.

Keywords: Support Vector Machine, Complexity, Multiple Kernels, Subset
sum Problem, NP-completeness.

1 Introduction

Support Vector Machines (SVMs) have been widely studied. Key design aspects for
achieving high performance rates involve: selection of the quadratic programming
solver, kernel selection and kernel parameter tuning [1,2].

Selection of the quadratic programming (QP) solver is essential when working
with large datasets. In this case, the density of the Gram matrix becomes a technical
obstacle. To solve this issue, a whole family of algorithms called decomposition me-
thods has been developed. Some representative algorithms of this family are the Se-
quential Minimal Optimization (SMO) type methods [4].

Basically, decomposition methods partition the original problem into subproblems
which are iteratively improved. In each iteration, the variable indices are split into two
parts, a working set and a set with remaining variables. The objective is to find a
working set that best approximates the original one. The decision problem of deter-
mining if such a working set exists has been proved to be NP—complete [10].

The NP-completeness of the working set selection problem allows researchers to
justify the use of approximate methods in order to find the best possible solution,
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© Springer International Publishing Switzerland 2014
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since a NP-complete problem indicates that there not exists a deterministic (exact)
algorithm that can solve it in polynomial time.

On the other hand, kernel selection has been traditionally done by trial-and-error
method. This is because there is not an efficient way of finding the best kernel for a
specific application [3]. Using more than one single kernel in order to improve per-
formance in learning tasks is a recent approach known as Multiple Kernel Learning
(MKL).

MKL algorithms are proposed to combine kernels in order to obtain a better simi-
larity measure or to integrate feature representations coming from different data
sources. Several MKL methods of different nature, together with its algorithmic com-
plexity, have been surveyed and classified in [6].

Combining kernels has been done by a wide range of techniques, from linear com-
binations to evolutionary methods [7]. A taxonomy of methods for evolving multiple
kernels is provided in [2]. The objective of these techniques is to find a multiple ker-
nel that helps to reach better performance than single kernels.

In contrast with working set selection, the multiple-kernel selection problem re-
mains unclassified into a complexity category. In consequence, the use of approx-
imate methods, such as evolutionary ones, is not formal justified. Our objective is to
demonstrate the complexity of MK-SVM to fill this technical gap.

A brief introduction to SVM and the concept of multiple kernels are provided in
section 2. The process of proving the complexity of MK-SVM is derived in section 3.
A discussion of the implications on the result of the proof is on section 4.

2 Support Vector Machines and Multiple Kernels

SVMs are non-probabilistic binary classifiers that can be used to construct a hyper-
plane to separate data into one of two classes. Its formulation is as follows [9][12]:

Given a training dataset D = {x;,y;}, where x; € RY, y; € {+1,—1}, SVM
classifies with an optimal separating hyperplane, which is given by:

D(x)=wTx+b (1)

When working with data non-linearly separable, this hyperplane is obtained by
solving the following quadratic programming problem:

Min%WTW +CYR &
s.t. yy(wTxi+b)=1-§, §>0 for i=1,..,m 2)

Introducing the nonnegative Lagrange multipliers o and B and following the KKT
conditions:

Vol =w =31 a;yix; = 0
Vol =—-31aiy; =0
VEHLZC—ai—BiZO (3)
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The problem (2) is equivalent to the following dual problem

1
Max L(a) = Zilvi1 a— 3 in1 2121 Yi}’jaiajk(xi' ;)
sst. C=2aq;=20Vi=1,..,m
and ¥i1; a;y; = 0 4)

This expression is considered the standard C-SVM. Nowadays there exist several
variants of this classifiers, namely, nu-SMV, least-squares SMV, linear programming
SVM, among others [9]. However, for the sake of our proof it is enough to consider
the function L(a) as expressed in (4).

A kernel is generally a non-linear function that maps the original input space into a
high-dimensional dot-product feature space in order to enhance linear separability.
Table 1 illustrates some common kernel functions [1].

Table 1. Some common kernel functions

Kernel K (x, x]-) = Kernel K (x, x]-) =

Lineal xTx; Powered —||x — x].”B 0<p<1

. B
Polynomial (a X x"x; + b)? Log —log (1 + [|]x = x| ) 0<p<1
RBF (- ||x—x]-||2) Generaliz.ed o~ (—x)TAG-x)
e 2 Gaussian  where A is a symmetric PD matrix
2

Sigmoid tanh(ox"x; + 1) Hybrid x4l

e 2 XxX(+xTx)?

To implement a multiple kernel in a SVM, the requirement is that this kernel ful-
fills the Mercer condition [1]:

K(x,x) = X7 a;0;() i (%), a; >0
ﬂ K(x, xj)g(x)g(xj)dxdxj >0 5)

Linear combinations of kernels also satisfy Mercer’s condition. Let K; (x, x]-) and
K, (x, x]-) be Mercer kernels, and c¢;,c, = 0, then:

K(x, x]-) = clKl(x, x]-) + Csz(x, x]-) (6)
is also a Mercer kernel. This property of linear combinations will be fundamental in

proving the complexity of Multiple Kernel Learning.

3 Multiple Kernel Support Vector Problem and Its Complexity

In this section, a four-step process is followed in order to prove the complexity of
MK-SVM problem. This problem will be denoted by m. The four steps are: (1)
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Showing that 7 is in NP. (2) Selecting a known NP-complete problem 7’'. (3)
Constructing a transformation f from @' to m and (4) Proving that f is a poly-
nomial transformation [5].

3.1 MK-SVM Problem (m)

Given a finite set of Mercer kernels A = {ky, ..., k,}, a dataset of labeled input pat-
terns D € X X Y, such that X € RY, Y = {+1,—1}; a set of Lagrange Multipliers
V ={ay,...,ay} and an optimal objective function value in terms of a kernel in A
expressed as a positive integer B; find the subset A" € A of maximum size q that
minimizes the cost:

cA) = [ZkGA’ (i [2?21 a; — $ i=1 2121}’13’1’((951'35]‘)“1“1])2 —B]z (7

Seen as a decision problem, the question is if there exists such a subset A’.

The cost function C(A") depends upon the objective function to be maximized in
the dual form of a standard SVM (4). Function cost basically expresses the idea of
reaching a bound B by means of a set of kernels, a fixed dataset and a SVM
represented by its support vectors.

3.2 MK-SVMisin NP

For MK-SMV to be in NP it is enough to show that an instance (A") of the problem
can be guessed and that this instance can be verified to solve or not to solve the prob-
lem in polynomial time.

Let R be a random function that accepts q¢ € Z* and returns the q indexes of the
Mercer kernels selected from a list with n € Z* kernels, R: R — A’, then the instance
A’ can be easily generated by R.

To show that the instance A’ can be verified in polynomial time, the equation (7)
should be analyzed. As V, D, q and B are a priori known, the only computations in
the verification stage lies in evaluating m X m kernels. And due to the fact that all
kernel evaluations mainly consists in dot products or differences among d-
dimensional vectors, the m X m evaluations of the kernels remains polynomial in
time, thus, MK-SVM is in NP.

3.3  Selecting a Known NP-Complete Problem

The known problem (m") selected for this proof is the subset sum, whose definition
is as follows [5]:

Given a finite set A, a size s(a) € Z* for each a € A and a positive integer B.
Is there an A" € A such that the sum of the sizes of the elements in A’ is exactly B?
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3.4  Constructing a Transformation f from 7' to

The transformation f should map every instance (I) in 7’ to 7 in such a way that
every instance with answer “yes” in 7 is an instance with answer “yes” in 7', and
analogously with instances with answer “no”. For doing this mapping its necessary to
show how the form of A, A’,s(a), and B will be transform from MK-SVM to Subset
sum.

First, A stands for any finite set, so we consider a finite set of n Mercer kernels
A ={kq,...,ky}. A" is simply a subset of A.

Then, to compute B the following procedure should be followed:

1. Solve a standard SVM for each k € A and with the same input dataset D
2. Take the kernel k*(xi, x]-) and the Lagrange multipliers V = {ay, ..., @} of the

SVM that reaches the best classification performance in step 1. For example, by
using cross-fold validation and taking the accuracy index. Denote M* = (V*, k™)
as the optimal SVM.

3. Calculate

2
B =[Em, & - 250, 5 vk ()i ®)

That represents the maximum value of the dual-form objective function for the op-
timal SVM.

Finally, the size s(a) = s(k € A) will be computed using V* and the dataset D
to calculate

1

s(k) = [(i i=1 @ T 22 i1 Zjnllyiyik(xi’ xi)aiaj)lz 2

Where q = |A'| is added to eliminate bias in the measurement by distributing the
weight of a’s among the number of kernels to combine. The s(k) measurement
represents the value of the objective function for the dual form of the optimal SMV,
which works with a kernel not necessarily being k*(xi, x]-).

Now it is proved that using the measurement s(k) and the bound B above de-

fined, the sum Y, c4-S(k) = B only when k*(xi, x]-) = qizzke,yk(xi, xj).

First, Y.xea s(k) = B is expressed in its extended form

1 1 2
[ZkeA’ (a Xt a— 292 =1 Zjn;1 )’i}’jk(xi' xj)“iaj)] =
1 . 2
[Z?;1 a; —EZ?Q Xt yiyik (xi, xj)aiaj] (10)
Taking the root squared of both members
1vm 1 vm yvm
Ykea (a Din @ — 2q2 Zi=1 Zj:l }’i}’jk(xi' xj)aiaj) =
1 *
o1 @ —;Z£1Z]‘n§1)’i)’jk (i, %)) i (11)
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Applying summation properties to the left member
Ykeal GZ{L ai) + Ykea’ [— ﬁ in1 2j=1 }’ink(xi' xj)aiaj] =
Xit; a; —%2?212121)’1)’1k*(xi'xj)aia1 (12)
Simplifying terms
Dkeal [— %Z?& 2ty yiyik (xi, xj)aiaj] =- %2?21 2ty yiyik® (%, %) (13)
Multiplying by (-2) both members
Ykeal [;—22211 Xt Yink(xi' xj)aiaj] =it Xje1 Yink*(xi' xj)aiaj (14)
Making 4;; = y;yja;a; to simplify notation
Dkea’ I:qiz i, 2R, A5k (x;, xj)] = 22, 2R, Ak (x5, %) (15)
Taking an equivalent form of the left member in (15)
itq Xjt1 4 é Yrea k(xi, %) =20, Xt 45k (i, x;) (16)
Which indicates that
qlszeA’k(xirxj) = k*(xi,xj) a7
And thus
Yreas(k) =B o k*(x;,x) = %ZkeA’k(xi' X)) (18)

This implies that the problem of finding a subset of measurements such that the sum
is equals to a positive integer could be transformed to the problem of finding a subset
of kernels which, in combination, are equivalent to an optimal kernel. Therefore,
every instance (I) of the subset sum problem whose answer is “yes” can be mapped
into an instance (I') of the MK-SMV whose answer is also “yes”. In summary, Sub-
set Sum problem can be transformed into MK-SVM problem.

3.5 Proving that f is a Polynomial Transformation

The last part of this proof consists in showing f is polynomial. To prove this, consid-
er the most expensive step in computational terms that the function f does, compu-
ting B, i.e., solving n Support Vector Machines for a given dataset D.

The problem of training a SVM reduces to solve a quadratic programming problem
(QP). When QP is viewed as a decision problem, it is NP-complete by itself. Howev-
er, when working with SVM, QP is convex. And there exist methods like Ellipsoid or
Interior Point algorithms that solve convex QP in polynomial time [13].
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Not only the convex QP is solvable in polynomial time, but also it is known that
training a standard SVM has a complexity of O(m3) where m is the number of
input vectors. [11].

Furthermore, it is m what determines the required algorithm to solve the SVM.
According to [8], for small and moderately sized problems (less than 5000 examples),
interior point algorithms are reliable and accurate methods to choose. And that for
large-scale problems, methods that exploit the sparsity of the dual variables must be
adopted; furthermore, if limitations on the storage is required, compact representation
should be considered, for example, using an approximation to the kernel matrix.

In conclusion, solving a standard SVM is done in polynomial time, and thus, sub-
sequent operations in f remains polynomial. Consequently, f is a polynomial trans-
formation.

4 Discussion

In this paper it was shown that MK-SVM is in NP and that it is possible to make a
polynomial reduction to the NP-complete subset sum problem. Therefore, MK-SVM
viewed as a decision problem is NP-complete.

This result has an impact in the Multiple Kernel Learning area because the com-
plexity of the problem justifies the use of approximate methods when trying to find an
optimal solution.

To our knowledge, this is the first work that put the focus on the complexity of
Multiple Kernel Learning as a decision problem. Previous reviews such as tha