
A Logic for Context-Aware Non-monotonic

Reasoning Agents

Abdur Rakib and Hafiz Mahfooz Ul Haque

School of Computer Science
The University of Nottingham, Malaysia Campus
{Abdur.Rakib,khyx2hma}@nottingham.edu.my

Abstract. We develop a logical model for resource-bounded context-
aware multi-agent systems which handles inconsistent context infor-
mation using non-monotonic reasoning. We extend the temporal logic
CTL∗ with belief and communication modalities, and the resulting logic
LDROCS allows us to describe a set of rule-based non-monotonic context-
aware agents with bounds on computational (time and space) and com-
munication resources. We use OWL 2 RL ontologies and Semantic Web
Rule Language (SWRL) for context-modelling and rules that enables
the construction of a formal system. We provide an axiomatization of
the logic and prove it is sound and complete. We illustrate the use of the
logical model on a simple example.

Keywords: Context-aware, Rule-based reasoning, Defeasible reasoning,
Multi-agent systems, Ontology.

1 Introduction

The term context-awareness in pervasive computing has been used relatively
long ago, e.g., by Schilit and colleagues [24]. It describes the ability of a device
to realise a situation and act accordingly. Thus a system is said to be context-
aware if it can extract, interpret, and is able to adapt its behaviour to the current
context of use [6]. In the literature, several definitions of context have been pro-
posed including those presented by [25,8]. We view context is any information
that can be used to identify the status of an entity. An entity can be a person,
a place, a physical or a computing object. This context is relevant to a user and
application, and reflects the relationship among themselves [8]. A context can be
formally defined as a 〈subject, predicate, object〉 triple that states a fact about
the subject where — the subject is an entity in the environment, the object is a
value or another entity, and the predicate is a relationship between the subject
and object. According to [8], “if a piece of information can be used to charac-
terize the situation of a participant in an interaction, then that information is
context”. For example, we can represent contexts “Mary has fever categorized
as High” as 〈Mary, hasFever,High〉 and “Mary has a carer named Fiona” as
〈Mary, hasCarer, F iona〉. Here, the caregiver of a patient is dynamically identi-
fied based on the care status of the caregiver. These contexts can be written using

A. Gelbukh et al. (Eds.): MICAI 2014, Part I, LNAI 8856, pp. 453–471, 2014.
c© Springer International Publishing Switzerland 2014

454 A. Rakib and H.M. Ul Haque

first order predicates as hasFever(’Mary, ’High) and hasCarer(’Mary, ’Fiona)
respectively.

In the literature, various techniques have been proposed to develop context-
aware systems, including rule-based techniques [7,12]. In rule-based techniques a
context-aware system composed of a set of rule-based agents, and firing of rules
that infer new facts may determine context changes and representing overall
behaviour of the system. An agent is called a rule-based agent if its behaviour
and/or its knowledge is expressed by means of rules. In the setting of this paper,
we call a rule-based agent as context-aware agent since it enables the system
to understand and process context information expressed using first order rules.
While active context-aware computing leads to a new paradigm that leverages
interaction among system users and their environments, many challenges might
arise on the basis of computational (time:measured in number of computational
steps and space: amount of memory) and communication (number of messages
need to be exchanged between devices) resources. This is due to the fact that
many context-aware systems often run on tiny resource-bounded devices and in
highly dynamic environments. The state of the art context-aware capable devices
including PDAs, mobile phones, smart phones, GPS system, and wireless sen-
sor nodes usually operate under strict resource constraints, e.g., battery energy
level, memory, processor, and quality of wireless connection [26]. Therefore, for
a given set of context-aware reasoning agents with some inferential abilities and
computational (time and space) and communication resource bounds, it may not
be clear whether a desired context can be inferred and if it can what compu-
tational and communication resources must be devoted by each agent. Further-
more, reasoning tasks may involve complex processing and resolve conflicting
context information. Although research advances have been made in building
context-aware systems for many applications, however well developed theoreti-
cal foundations considering their resource-boundedness features are still lacking.
In this work, we present a logical framework for resource-bounded context-aware
non-monotonic reasoning agents which is intended to be theoretically well mo-
tivated and technically well defined. We develop a logic LDROCS which extends
the temporal logic CTL∗ with belief and communication modalities and incorpo-
rates defeasible reasoning [19] technique (one of most prominent member of the
non-monotonic reasoning techniques). The logic LDROCS allows us to describe a
set of context-aware non-monotonic reasoning agents with bounds on computa-
tional and communication resources. We provide an axiomatization of the logic
and prove it is sound and complete, and using a simple example we show how we
can express some interesting resource-bounded properties of a desired system.

The rest of the paper is organised as follows. In section 2, we briefly review
description logics, ontologies and defeasible reasoning. In section 3, we describe
our model of context-aware systems. In section 4, we develop the logic LDROCS
and show an illustrative example system, in section 5 we present related work,
and conclude in section 6.

A Logic for Context-Aware Non-monotonic Reasoning Agents 455

2 Preliminaries

2.1 Description Logics and Ontology

Description logics (DLs) are a well-known family of knowledge representation
formalisms that can be used to represent knowledge of a domain in a structured
and organized manner [3]. A DL is based on the notion of concepts (classes) and
roles (binary relations), and is mainly characterized by the constructors that let
complex concepts and roles to be constructed from atomic ones. A DL knowledge
base (KB) has two components: the Terminology Box (TBox) and the Assertion
Box (ABox). The TBox introduces the terminology of a domain, while the ABox
contains assertions about individuals in terms of this vocabulary. The TBox is
a finite set of general concept inclusions (GCI) and role inclusions. A GCI is of
the form C � D where C, D are DL-concepts and a role inclusion is of the form
R � S where R, S are DL-roles. We may use C ≡ D (concept equivalence) as an
abbreviation for the two GCI s C � D and D � C and R ≡ S (role equivalence)
as an abbreviation for R � S and S � R. The ABox is a finite set of concept
assertions in the form of a : C (or C(a) which states that the individual a is an
instance of the class C) and role assertions in the form of 〈a, b〉 : R (or R(a, b)
which states that the individual a is related to the individual b through the
relation R). The ability to model a domain and the decidable computational
characteristics make DLs the basis for the widely accepted ontology languages
such as Web Ontology Language (OWL). The Web Ontology Language version 2,
OWL 2, has three sub-languages: OWL 2 EL, OWL 2 QL, and OWL 2 RL [17].
OWL 2 RL is suitable for rule-based applications, it enables additional rules
such as SWRL to be added to ontologies for more expressive descriptions of an
application domain.

There have been various approaches proposed for context modelling, how-
ever, ontology-based approach has been advocated as being the most promising
one [4]. For example, if we are interested in modelling a smart space health care
monitoring system we may use OWL concept names to capture terms that are
relevant to this domain and ultimately represent the desired scenario using a set
of logical statements [12]. We model context-aware systems using OWL 2 RL
ontologies (and SWRL) and extract rules from an ontology following a similar
approach proposed by [13] to design our rule-based non-monotonic context-aware
agents. We developed a translator that takes as input an OWL 2 RL ontology in
the OWL/XML format (an output file of the Protégé [20] editor) and translates
it to a set of plain text rules. We use the OWL API [15] to parse the ontology
and extract the set of axioms and facts. The design of the OWL API is directly
based on the OWL 2 Structural Specification and it treats an ontology as a set
of axioms and facts which are read using the visitor design pattern. We also
extract the set of SWRL rules using the OWL API which are already in the
Horn clause rule format. First, atoms with corresponding arguments associated
with the head and the body of a rule are identified and we then generate a plain
text Horn clause rule for each SWRL rule using these atoms. Abox axioms are
already in Horn clause formats as well and they are simply rules with empty
bodies.

456 A. Rakib and H.M. Ul Haque

2.2 Defeasible Reasoning

Defeasible reasoning is a simple rule-based reasoning technique that has been
used to reason with incomplete and inconsistent information [2]. A defeasible
logic theory consists of a collection of rules that reason over a set of facts to
reach a set of defeasible conclusions. It also supports priorities among rules to
resolve conflicts. More formally, a defeasible theory D is a triple (�,F ,�) where
� is a finite set of rules, F is a finite set of facts, and � is a superiority relation
on �. The superiority relation � is often defined on rules with complementary
heads and its transitive closure is irreflexive, i.e., the relation � is acyclic. Rules
are defined over literals, where a literal is either a first-order atomic formula P
or its negation ¬P . For example, given a literal l, the complement ∼ l of l is
defined to be P if l is of the form ¬P , and ¬P if l is of the form P . In the
rules, we assume variables are preceded by a question mark and constants are
preceded by a single quote. In D, there are three kinds of rules those are often
represented using three different arrows.

Strict rules are of the form: P1, P2, . . . , Pn → P where the conclusion P is
valid whenever its antecedents P1, P2, . . . Pn are true. An example of a strict rule
can be “A person who has a patient identification number is a patient” which
can be written as r1: Person(?p), PatientID(?pid), hasPatientID(?p, ?pid) →
Patient(?p).

Defeasible rules are of the form:P1, P2, . . . , Pn ⇒ P and they can be defeated by
contrary evidence. An example rule can be r2:Patient(?p), hasFever(?p, ’High)⇒
hasSituation(?p, ’Emergency). This rule states that if the patient has a high fever
then there are provable reasons to declare an emergency situation for her, unless
there is other evidence that provides reasons to believe the contrary.For example, a
defeasible rule r3: Patient(?p), hasFever(?p, ’High), hasConsciousness(?p, ’Yes)
⇒ ∼ hasSituation(?p, ’Emergency). We can observe that the defeasible rule r3 is
more specific (we assume that r3 is superior to r2 i.e., r3� r2) and it could override
the rule r2. That is a defeasible rule is used to represent tentative information that
may be used if nothing could be placed against it.

Defeater rules are of the form: P1, P2, . . . , Pn � P and they don’t support
inferences directly, however, they can be used to block the derivation of in-
consistent conclusions. Their only use is to prevent conclusions. For example,
r4: Patient(?p), hasFever(?p, ’High), hasDBCategory(?p, ’EstablishedDiabetes
� hasSituation(?p, ’Emergency).

A rule can have multiple (ground) instances. For example, Person(’Mary),
PatientID(’P001), hasPatientID(’Mary, ’P001) → Patient(’Mary) could be one
possible instance of the rule r1. In the above rules, suppose the superiority re-
lation � among the rules are defined as follows r1 � r4, r4 � r3, r3 � r2
and the current set of facts (contexts) are Person(’Mary), PatientID(’P001),
hasPatientID(’Mary, ’P001), hasFever(’Mary, ’High), hasConsciousness(’Mary,
’Yes) then by matching and firing those rules a defeasible conclusion ∼ hasSit-
uation(’Mary, ’Emergency) can be inferred.

A Logic for Context-Aware Non-monotonic Reasoning Agents 457

3 Context-Aware Systems as Multi-agent Defeasible
Reasoning Systems

We model a context-aware system as a multi-agent defeasible reasoning system
which consists of nAg(≥ 1) individual agents Ag = {1, 2,, nAg}. Each agent
i ∈ Ag is represented by a triple (�,F ,�), where F is a finite set of facts
contained in the working memory, � = (�s,�d) is a finite set of strict and de-
feasible rules representing the knowledge base, and � is a superiority relation
on �. As we have mentioned in the preceding section, rules are of the form
P1, P2, . . . , Pn ↪→ P (derived from OWL 2 RL and SWRL with possible user an-
notation), and a working memory contains ground atomic facts (contexts) taken
from ABox representing the initial state of the system. Without loss of general-
ity, in the rest of this paper we assume ↪→ as either → or ⇒. In a rule instance,
the antecedents P1, P2, . . . , Pn and the consequent P are context information.
The antecedents of a rule instance form a complex context which is a conjunction
of n contexts. We say that two contexts are contradictory iff they are comple-
mentary with respect to ∼, for example, hasSituation(’Mary, ’Emergency) and
∼hasSituation(’Mary,’Emergency) are contradictory contexts. Note that in our
model the set of facts translated from the ABox needs to be consistent, i.e., if it
contains pair of contradictory contexts then they can be detected and removed.
We assume that the set �s of strict rules is non-contradictory which is used to
represent non-defeasible contextual information, however, the set �d of defea-
sible rules is contradictory and hence the set � which is �s ∪ �d may also be
contradictory. Conflicting contexts may be resolved using the superiority rela-
tion � among rules. An agent i can fire instances of strict rules to infer new
non-contradictory contexts, while a defeasible context P can be inferred if there
is a rule instance whose consequence is P and there does not exist a stronger rule
instance whose consequence is ∼ P . Since the translated rules from an ontology
are not prioritized, we assume that the rule priorities are provided by the system
designers, depending on the intended applications. We further assume that the
priorities are static, i.e., the rule firing constraint does not change during the
reasoning process. In our model, agents share a common ontology and commu-
nication mechanism. To model communication between agents, we assume that
agents have two special communication primitives Ask(i, j, P) and Tell (i, j, P)
in their language, where i and j are agents and P is an atomic context not con-
taining an Ask or a Tell . Ask(i, j, P) means ‘i asks j whether the context P is
the case’ and Tell(i, j, P) means ‘i tells j that context P ’ (i �= j). The positions
in which the Ask and Tell primitives may appear in a rule depends on which
agent’s program the rule belongs to. Agent i may have an Ask or a Tell with ar-
guments (i, j, P) in the consequent of a rule; e.g., P1, P2, . . . , Pn → Ask(i, j, P).
Whereas agent j may have an Ask or a Tell with arguments (i, j, P) in the an-
tecedent of the rule; e.g., Tell (i, j, P) → P is a well-formed rule (we call it trust
rule) for agent j that causes it to believe i when i informs it that context P is the
case. No other occurrences of Ask or Tell are allowed. When a rule has either an
Ask or a Tell as its consequent, we call it a communication rule. All other rules
are known as deduction rules. These include rules with Asks and Tell s in the

458 A. Rakib and H.M. Ul Haque

antecedent as well as rules containing neither an Ask nor a Tell . Note that OWL
2 is limited to unary and binary predicates and it is function-free. Therefore, in
the Protégé [20] editor all the arguments of Ask and Tell are represented using
constant symbols.

Rule ::= Atoms ’↪→’ Atom | ∼ Atom
Atoms ::= Atom {, Atom}∗
Atom ::= standardAtom | commmunicationAtom
standardAtom ::= description’(’i-object ’)’

| individualvaluedProperty’(’i-object ’,’ i-object ’)’
| datavaluedProperty’(’i-object ’,’ d-object ’)’
| sameIndividuals’(’i-object ’,’ i-object ’)’
| differentIndividuals’(’i-object ’,’ i-object ’)’
| dataRange’(’ d-object ’)’
| builtIn’(’ builtinId ’,’ {d-object}∗ ’)’

communicationAtom ::= ’Ask(’ i ’,’ j ’,’ standardAtom ’)’
| ’Tell(’ i ’,’ j ’,’ standardAtom ’)’

i ::= 1 | 2 | ... | nAg
j ::= 1 | 2 | ... | nAg
builtinID ::= URIreference
i-object ::= i-variable | individualID
d-object ::= d-variable | dataLiteral
i-variable ::= ’I-variable(’URIreference’)’
d-variable ::= ’D-variable(’URIreference’)’

Listing 1.1. Abstract syntax of rules

4 The Logic LDROCS

We now introduce the logic LDROCS based on [1] (which has been developed
on propositional language and monotonic reasoning). Our proposed approach
is based on the work of [13] who show that a subset of DL languages can be
effectively mapped into a set of strict and defeasible rules. Intuitively, the set
of translated rules corresponds to the ABox joined with TBox axioms of an
OWL 2 RL ontology and SWRL rules. Let us define the internal language of
each agent in the system. Let the set of agents be Ag = {1, 2,, nAg}, C =
{C1, C2, . . . Cl} be a finite set of concepts, R = {R1, R2, . . . , Rm} be a finite
set of roles. We also define a set Q = {Ask(i, j, P), T ell(i, j, P)}, where i, j ∈
Ag and P ∈ C ∪ R. Let �s be a finite set of strict rules and �d be a finite
set of defeasible rules. Let � = �s ∪ �d = {r1, r2, . . . , rn} be a finite set of
rules of the form P1, P2, . . . , Pt ↪→ P , where t ≥ 0, Pi, P ∈ C ∪ R ∪ Q for
all i ∈ {1, 2, . . . , t},Pi �= Pj for all i �= j, and ↪→ as either → or ⇒. More
specifically, Pi and P are OWL atoms of the following form: Ci(x) and Rj(y, z).
Where Ci ∈ C, and x is either a variable, an individual or a data value. Rj ∈
R, when it is an Object property y, z are either variables, individuals or data
values, however, y is variable or individual and z is a data value when Rj is a
Datatype property. In Listing 1.1, we specify the abstract syntax of rules using
a BNF. In this notation, the terminals are quoted, the non-terminals are not
quoted, alternatives are separated by vertical bars, and components that can
occur zero or more times are enclosed braces followed by a superscript asterisk

A Logic for Context-Aware Non-monotonic Reasoning Agents 459

symbol ({. . .}∗). A class atom represented by description(i-object) in the
BNF consists of an OWL 2-named class and a single argument representing an
OWL 2 individual, for example an atom Person(a) holds if a is an instance of
the class description Person. Similarly, an individual property atom represented
by individualvaluedProperty(i-object,i-object) consists of an OWL 2
object property and two arguments representing OWL 2 individuals, for example
an atom hasCarer(a,b) holds if a is related to b by property hasCarer and so
on.

For convenience, we use the notation ant(r) for the set of antecedents of r
and cons(r) for the consequent of r, where r ∈ �. We fix a finite set of variables
X and a finite set of constants D and assume δ is some substitution function
from the set of variables of a rule into D. We denote by G(�) the set of all the
ground instances of the rules occurring in �, which is obtained using δ (a more
formal definition is given in Definition 2). Thus G(�) is finite. Let r̄ ∈ G(�)
be one of the possible instances of a rule r ∈ �. C(a), R(a, b), Ask(i, j, C(a)),
Ask(i, j, R(a, b)), Tell(i, j, C(a)), and Tell(i, j, R(a, b)) are ground atoms, for all
C ∈ C, R ∈ R. The internal language L includes all the ground atoms and rules.
Let us denote the set of all formulas (rules and ground atoms) by Ω which is
finite. In the language of L we have a belief operator Bi for all i ∈ Ag. We assume
that there is a bound on communication for each agent i which limits agent i to
at most nC(i) ∈ Z

∗ messages. Each agent has a communication counter, cp=n
i ,

which starts at 0 (cp=0
i) and is not allowed to exceed the value nC(i). We divide

agent’s memory into two parts as rule memory (knowledge base) and working
memory. Rule memory holds set of rules, whereas the facts are stored in the
agent’s working memory. Working memory is divided into static memory (SM (i))
and dynamic memory (DM (i)). The DM (i) of each agent i ∈ Ag is bounded in
size by nM (i) ∈ Z

∗, where one unit of memory corresponds to the ability to store
an arbitrary ground atom. The static part contains initial information to start
up the systems, e.g., initial working memory facts, thus it’s size is determined
by the number of initial facts. The dynamic part contains newly derived facts
as the system moves. Only facts stored in DM (i) may get overwritten, and this
happens if an agent’s memory is full or a contradictory context arrives in the
memory (even if the memory is not full). Whenever newly derived context arrives
in the memory, it is compared with the existing contexts to see if any conflict
arises. If so then the corresponding contradictory context will be replaced with
the newly derived context, otherwise an arbitrary context will be removed if the
memory is full. Note that unless otherwise stated, in the rest of the paper we
shall assume that memory means DM (i).

The syntax of LDROCS includes the temporal operators of CTL∗ and is defined
inductively as follows:

– � (tautology) and start (a propositional variable which is only true at the
initial moment of time) are well-formed formulas (wffs) of LDROCS ;

– cp=n
i (which states that the value of agent i’s communication counter is n)

is a wff of LDROCS for all n ∈ {0, . . . , nC(i)} and i ∈ Ag;

460 A. Rakib and H.M. Ul Haque

– BiC(a) (agent i believes C(a)), BiR(a, b) (agent i believes R(a, b)), and Bir
(agent i believes r) are wffs of LDROCS for any C ∈ C, R ∈ R, r ∈ � and
i ∈ Ag;

– BkAsk(i, j, C(a)), BkAsk(i, j, R(a, b)), BkTell(i, j, C(a)), and
BkTell(i, j, R(a, b)) are wffs of LDROCS for any C ∈ C, R ∈ R, i, j ∈ Ag,
k ∈ {i, j}, and i �= j;

– If ϕ and ψ are wffs of LDROCS , then so are ¬ϕ and ϕ ∧ ψ;
– If ϕ and ψ are wffs of LDROCS , then so are Xϕ (in the next state ϕ), ϕUψ

(ϕ holds until ψ), Aϕ (on all paths ϕ).

Other classical abbreviations for ⊥, ∨, → and ↔, and temporal operations:
Fϕ ≡ �Uϕ (at some point in the future ϕ) and Gϕ ≡ ¬F¬ϕ (at all points in
the future ϕ), and Eϕ ≡ ¬A¬ϕ (on some path ϕ) are defined as usual.

For convenience, we define the following sets: CPi = {cp=n
i | n =

{0, . . . , nC(i)}}, CP =
⋃

i∈Ag
CPi. Now we define priority relation between rules

as follows.

Definition 1 (Rule priority). Let pri : � → N≥0 be a function that assigns
each rule a non-negative integer. We define a partial order � on � such that
for any two rules r, r′ ∈ � we say that r � r′ (rule r has priority over r′) iff
pri(r) ≥ pri(r′), where ≥ is the standard greater-than-or-equal relation on the
set of non-negative integers N≥0.

The semantics of LDROCS is defined by LDROCS transition systems which
are based on ω-tree structures. Let (S, T) be a pair where S is a set and T is a
binary relation on S that is total, i.e., ∀s ∈ S · ∃s′ ∈ S · sT s′. (S, T) is a ω-tree
frame iff the following conditions are satisfied.

1. S is a non-empty set and T is total;
2. Let < be the strict transitive closure of T , namely {(s, s′) ∈ S × S | ∃n ≥

0, s0 = s, . . . , sn = s′ ∈ S such that siTsi+1∀i = 0, . . . , n− 1};
3. For all s′ ∈ S, the past {s ∈ S | s < s′} is linearly ordered by <;
4. There is a smallest element called the root, which is denoted by s0;
5. Each maximal linearly <- ordered subset of S is order-isomorphic to the

natural numbers.

A branch of (S, T) is an ω-sequence (s0, s1, . . .) such that s0 is the root and
siTsi+1 for all i ≥ 0. We denote B(S, T) to be the set of all branches of (S, T).
For a branch π ∈ B(S, T), πi denotes the element si of π and π≤i is the prefix
(s0, s1, . . . , si) of π. A LDROCS transition system M is defined as M = (S, T, V)
where

– (S, T) is a ω-tree frame
– V : S × Ag → ℘(Ω ∪ CP); we define the belief part of the assignment

V B(s, i) = V (s, i) \ CP and the communication counter part V C(s, i) =
V (s, i)∩CP . We further define V M (s, i) = {α|α ∈ V B(s, i)∩DM (i)} which
represents the set of facts stored in the dynamic memory of agent i at state
s. V satisfies the following conditions:

A Logic for Context-Aware Non-monotonic Reasoning Agents 461

1. |V C(s, i)| = 1 for all s ∈ S and i ∈ Ag.
2. If sT s′ and cp=n

i ∈ V (s, i) and cp=m
i ∈ V (s′, i) then n ≤ m.

– we say that a rule r : P1, P2, . . . , Pn ↪→ P is applicable in a state s of an
agent i if ant(r̄) ∈ V (s, i) and cons(r̄) /∈ V (s, i). The following conditions on
the assignments V (s, i), for all i ∈ Ag, and transition relation T hold in all
models:
1. for all i ∈ Ag, s, s

′ ∈ S, and r ∈ �, r ∈ V (s, i) iff r ∈ V (s′, i). This
describes that agent’s program does not change.

2. for all s, s′ ∈ S, sT s′ holds iff for all i ∈ Ag, V (s′, i) = V (s, i) \ {β} ∪
{cons(r̄)} ∪ {Ask(j, i, C(a))} ∪ {Tell(j, i, C(a)} ∪ {Ask(j, i, R(a, b))} ∪
{Tell(j, i, R(a, b)}. This describes that each agent i fires a single applica-
ble rule instance of a rule r, or updates its state by interacting with other
agents, otherwise its state does not change. Where β may be an arbitrary
context or a contradictory context which can be replaced depending on
the status of the memory and the newly derived or communicated con-
text.

The truth of a LDROCS formula at a point n of a path π ∈ B(S, T) is defined
inductively as follows:

– M, π, n |= �,
– M, π, n |= start iff n = 0,
– M, π, n |= Biα iff α ∈ V (πn, i),
– M, π, n |= cp=m

i iff cp=m
i ∈ V (πn, i),

– M, π, n |= ¬ϕ iff M, π, n �|= ϕ,
– M, π, n |= ϕ ∧ ψ iff M, π, n |= ϕ and M, π, n |= ψ,
– M, π, n |= Xϕ iff M, π, n+ 1 |= ϕ,
– M, π, n |= ϕUψ iff ∃m ≥ n s.t. ∀k ∈ [n,m) M, π, k |= ϕ and M, π,m |= ψ,
– M, π, n |= Aϕ iff ∀π′ ∈ B(S, T) s.t. π′

≤n = π≤n, M, π′, n |= ϕ.

We now describe conditions on the models. The transition relation T corre-
sponds to the agent’s executing actions 〈act1, act2, . . . , actnAg

〉 where acti is a
possible action of an agent i in a given state s. The set of actions that each agent
i can perform are: Rulei,r,β (agent i firing a selected matching rule instance r̄ of
r and adding cons(r̄) to its working memory and removing β), Copyi,α,β (agent
i copying α from other agent’s memory and removing β, where α is of the form
Ask(j, i, P) or Tell (j, i, P)), and Idlei (agent i does nothing but moves to the
next state). Intuitively, β may be an arbitrary context which gets overwritten if
it is in the agent’s dynamic memory DM (i) or it is a specific context that contra-
dicts with the newly derived context. If agent’s memory is full |V M (s, i)| = nM (i)
then we require that β has to be in VM (s, i). When the counter value reaches
to nC(i), i cannot perform copy action any more. Furthermore, not all actions
are possible in a given state. For example, there may not be any matching rule
instance. Note also that only selected matching rule instances can be fired. That
is one rule instance may be selected from the conflict set that has the highest
priority. If there are multiple rule instances with the same priority, the rule in-
stance to be executed is selected non-deterministically. More formally, we define
rule selection strategy as follows:

462 A. Rakib and H.M. Ul Haque

Definition 2 (Rule selection strategy). For every state s, agent i, and
r ∈ V (s, i), we say that the rule r matches at state s iff ant(r̄) ⊆ V (s, i) and
cons(r̄) /∈ V (s, i). Let δ : S ×Ag → G(�) be a function that generates matching
rule instances of the agent i at state s and �mat ⊆ G(�) denote the set of all
matching rule instances of the agent i at state s. A set �sel is said to be se-
lected rule instances if (i) �sel ⊆ �mat; and (ii) ∀r̄ ∈ �sel �r̄′ ∈ �sel such that
pri(r′) � pri(r).

Now let us denote the set of all possible actions by agent i in a given state s
by Ti(s) and its definition is given below:

Definition 3 (Available actions). For every state s and agent i,

1. Rulei,r,β ∈ Ti(s) iff r̄ ∈ �sel, β is a contradictory context (with respect to
cons(r̄) i.e., if β is α then cons(r̄) is ∼ α and vice versa) or β ∈ Ω or if
|V M (s, i)| = nM (i) then β ∈ V M (s, i);

2. Copyi,α,β ∈ Ti(s) iff there exists j �= i such that α ∈ V (s, j), α /∈ V (s, i),
cp=m

i ∈ V (s, i) for some m < nC(i), α is of the form Ask(j, i, P) or
Tell(j, i, P), and β as before;

3. Idlei is always in Ti(s).

Definition 4 (Effect of actions). For each i ∈ Ag, the result of performing
an action acti in a state s ∈ S is defined if acti ∈ Ti(s) and has the following
effect on the assignment of formulas to i in the successor state s′ ∈ S:

1. if acti is Rulei,r,β: V (s′, i) = V (s, i) \ {β} ∪ {cons(r̄)};
2. if acti is Copyi,α,β , cp

=m
i ∈ V (s, i) for some m ≤ nC(i): V (s′, i) = V (s, i) \

{β, cp=m
i } ∪ {α, cp=m+1

i };
3. if acti is Idlei: V (s′, i) = V (s, i).

Now, the definition of the set of models corresponding to a system of rule-
based context-aware reasoners is given below:

Definition 5. M(nM , nC) is the set of models (S, T, V) which satisfies the fol-
lowing conditions:

1. cp=0
i ∈ V (s0, i) where s0 ∈ S is the root of (S, T), ∀i ∈ Ag;

2. ∀s ∈ S and a tuple of actions 〈act1, act2, . . . , actnAg
〉, if acti ∈ Ti(s), ∀i ∈ Ag,

then ∃s′ ∈ S s.t. sT s′ and s′ satisfies the effects of acti, ∀i ∈ Ag;
3. ∀s, s′ ∈ S, sT s′ iff for some tuple of actions 〈act1, act2, . . . , actnAg

〉, acti ∈
Ti(s) and the assignment in s′ satisfies the effects of acti, ∀i ∈ Ag;

4. The bound on each agent’s memory is set by the following constraint on the
mapping V : |V M (s, i)| ≤ nM (i), ∀s ∈ S,i ∈ Ag.

Note that the bound nC(i) on each agent i’s communication ability (no branch
contains more than nC(i) Copy actions by agent i) follows from the fact that
Copyi is only enabled if i has performed fewer than nC(i) copy actions in the
past. Below are some abbreviations which will be used in the axiomatization:

A Logic for Context-Aware Non-monotonic Reasoning Agents 463

– ByRulei(P,m) = ¬BiP ∧ cp=m
i ∧∨

r̄∈�sel∧cons(r̄))=P (Bir ∧∧
Q∈ant(r̄) BiQ).

This formula describes a state s where it may make a Rule transition and
believe context P in the next state, m is the value of i’s communication
counter, P and Q are ground atomic formulas.

– ByCopyi(α,m) = ¬Biα∧Bjα∧ cp=m−1
i , where α is of the form Ask(j, i, P)

or Tell(j, i, P), i, j ∈ Ag and i �= j.

Now we introduce the axiomatization system.

A1 All axioms and inference rules of CTL∗ [22].
A2

∧

α∈DM (i)

Biα → ¬Biβ for all DM (i) ⊆ Ω such that |DM (i)| = nM (i) and

β /∈ DM (i). This axiom describes that, in a given state, each agent can
store maximally at most nM (i) formulas in its memory,

A3
∨

n=0,...,nC(i)

cp=n
i , n is value of the communication counter of an agent i

corresponding to its Copy actions.
A4 cp=n

i → ¬cp=m
i for any m �= n, which states that at any given time the

value of the copy counter of agent i is unique
A5 Biα → ¬Bi ∼ α for any α ∈ SM (i) ∪DM (i) ⊆ Ω, this axiom states that

agent does not believe contradictory contexts,
A6 Bir∧

∧
r̄∈�sel∧P∈ant(r̄) BiP∧cp=n

i ∧¬Bicons(r̄) → EX(Bicons(r̄)∧cp=n
i),

i ∈ Ag. This axiom describes that if a rule matches and is selected for
execution, its consequent belongs to some successor state.

A7 cp=m
i ∧¬Biα∧Bjα → EX(Biα∧cp=m+1

i)whereα is of the formAsk(j, i, P)
or Tell (j, i, P), i, j ∈ Ag, j �= i, m < nC(i). This axiom describes transi-
tions made by Copy with communication counter increased.

A8 EX(Biα ∧ Biβ) → Biα ∨ Biβ, where α and β are not of the form
Ask(j, i, P) and Tell (j, i, P). This axiom says that at most one new belief
is added in the next state.

A9 Biα → AXBiα for any α ∈ SM (i) ∪ �. This axiom states that an agent
i ∈ Ag always believes formulas residing in its static memory and its rules.

A10 EX(Biα ∧ cp=m
i) → Biα ∨ByRulei(α,m) ∨ByCopyi(α,m) for any α ∈

∪Ω. This axiom says that a new belief can only be added by one of the
valid reasoning actions.

A11a start → cp=0
i for all i ∈ Ag. At the start state, the agent has not performed

any Copy actions.
A11b ¬EX start. start holds only at the root of the tree.
A12 Bir where r ∈ � and i ∈ Ag. This axiom tells agent i believes its rules.
A13 ¬Bir where r /∈ � and i ∈ Ag. This axiom tells agent i only believes its

rules.
A14 ϕ → EXϕ, where ϕ does not contain start. This axiom describes an Idle

transition by all the agents.
A15

∧
i∈Ag

EX(
∧

α∈Γi
Biα∧cp=mi

i) → EX
∧

i∈Ag
(
∧

α∈Γi
Biα∧cp=mi

i) for any
Γi ⊆ Ω. This axiom describes that if each agent i can separately reach a
state where it believes formulas in Γi, then all agents together can reach
a state where for each i, agent i believes formulas in Γi.

464 A. Rakib and H.M. Ul Haque

Let us now define the logic obtained from the above axiomatisation system.

Definition 6. L(nM , nC) is the logic defined by the axiomatisation A1 - A15.

Theorem 1. L(nM , nC) is sound and complete with respect to M(nM , nC).

Sketch of Proof. The proof of soundness is standard. The proofs for axioms and
rules included in A1 are given in [22]. Axiom A2 assures that at a state, each
agent can store maximally at most nM (i) formulas in its memory. Axioms A3
and A4 force the presence of a unique counter for each agent to record the
number of copies it has performed so far. In particular, A3 makes sure that at
least a counter is available for any agent and A4 guaranties that only one of
them is present. Axiom A5 assures that an agent does not believe contradictory
contexts. In the following, we provide the proof for A6 and A7. The proofs for
other axioms are similar.

Let us consider A6. Let M = (S, T, V) ∈ M(nM , nC), π ∈ B(S, T) and n ≥ 0.
We assume that M, π, n |= Bir∧

∧
r̄∈�sel∧P∈ant(r̄) BiP ∧ cp=m

i ∧¬Bicons(r̄), for

some r ∈ � such that r̄ ∈ �sel, and |V M (s, i)| ≤ nM (i). Then P ∈ V (πn, i) for
all P ∈ ant(r̄), and cons(r̄) /∈ V (πn, i). This means that the action performed
by i is Rulei,r,β. According to the definition of M(nM , nC), ∃s′ ∈ S · πnTs

′ and
V (s′, i) = V (πn, i) \ {β} ∪ {cons(r̄)}. Let π′ be a branch in B(S, T) such that
π′
≤n = π≤n and π′

n+1 = s′. Then we have M, π′, n + 1 |= Bicons(r̄) ∧ cp=m
i .

Therefore, it is obvious that M, π, n |= EX(Bicons(r̄) ∧ cp=m
i).

Let us consider A7. Let M = (S, T, V) ∈ M(nM , nC), π ∈ B(S, T) and
n ≥ 0. We assume that M, π, n |= cp=m

i ∧ ¬Biα ∧Bjα, and |V M (s, i)| ≤ nM (i).
Then cp=m

i ∈ V (πn, i), α /∈ V (πn, i), and α ∈ V (πn, j), for i, j ∈ Ag, i �= j, and
m < nC(i). This means that the action performed by i is Copyi,α,β. According to
the definition of M(nM , nC), ∃s′ ∈ S ·πnTs

′ and V (s′, i) = V (πn, i)\{β, cp=m
i }∪

{α, cp=m+1
i }. Let π′ be a branch in B(S, T) such that π′

≤n = π≤n and π′
n+1 =

s′. Then we have M, π′, n + 1 |= Biα ∧ cp=m+1
i . Therefore, it is obvious that

M, π, n |= EX(Biα ∧ cp=m+1
i).

Completeness can be shown by constructing a tree model for a consistent
formula ϕ. This is constructed as in the completeness proof introduced in [22].
Then we use the axioms to show that this model is in M(nM , nC). Since the
initial state of all agents does not restrict the set of formulas they may derive
in the future, for simplicity we conjunctively add to ϕ a tautology that contains
all the potentially necessary formulas and message counters, in order to have
enough sub-formulas for the construction. We construct a model M = (S, T, V)
for

ϕ′ = ϕ ∧
∧

α∈Ω

(XBiα ∨ ¬XBiα) ∧
∧

n∈{0...nC(i)},i∈Ag

(Xcp=n
i ∨ ¬Xcp=n

i)

We then prove that M is in M(nM , nC) by showing that it satisfies all prop-
erties listed in Definition 5. Axioms A3 and A4 show that for any i ∈ Ag, there
exists a unique n ∈ {0, . . . , nC} such that at a state s of M, cp=n

i ∈ V (s, i).
At the root s0 of (S, T), the construction of the model implies that there exists

A Logic for Context-Aware Non-monotonic Reasoning Agents 465

a maximally consistent set (MCS) Γ0 such that Γ0 ⊇ V (s0, i) and start ∈ Γ0.
Therefore, by axiom A11, it is trivial that cp=0

i ∈ V (s0, i). We then need to
prove that ∀s ∈ S, acti ∈ Ti(s), and i ∈ Ag, ∃s′ ∈ S · sT s′ and V (s′, i) is the
result of V (s, i) after i has performed action acti. Let us consider the case when
acti is Rulei,r,β ∈ Ti(s) for some r ∈ � such that r̄ ∈ �sel. Since Rulei,r,β is
applicable at s, ant(r̄) ⊆ V (s, i), cons(r̄) /∈ V (s, i). Therefore there exists a MCS
Γ such that Γ ⊇ V (s, i), and

∧
r̄∈�sel∧P∈ant(r̄) BiP ∧ cp=m

i ∧ ¬Bicons(r̄) ∈ Γ ,

for some m ∈ {0, . . . , nC} and |V M (s, i)| ≤ nM (i). By axiom A6 and Modus
Ponens (MP), EX(Bicons(r̄) ∧ cp=m

i) ∈ Γ . Therefore, according to the con-
struction, ∃s′ ∈ S · sT s′, V (s′, i) ⊆ Γ ′ for some Γ ′, and Bicons(r̄) ∧ cp=m

i ∈ Γ ′.
Therefore V (s′, i) = V (s, i) \ {β} ∪ {cons(r̄)}. For the Copyi,α,β ∈ Ti(s) and
Idlei ∈ Ti(s) actions, the proofs are similar by using MP and axioms A7 and
axiom A14. Then, using axiom A15 we can show that, for any tuple of ac-
tions 〈act1, act2, . . . , actnAg

〉, acti ∈ Ti(s) is applicable at s ∈ S ∀i ∈ Ag, then
∃s′ ∈ S such that V (s′, i) is the result of V (s, i) after performing acti at s by
agent i, ∀i ∈ Ag. Finally, we prove that ∀s, s′ ∈ S · sT s′, ∃ a tuple of actions
〈act1, act2, . . . , actnAg

〉 and V (s′, i) is the result of V (s, i) when agent i performs
acti for all i ∈ Ag. By axioms A8 and A2, V (s′, i) is different from V (s, i) by at
most one formula added and possibly a formula is removed. If no formula is added
or removed, we consider acti to be Idlei. Let us now consider the case where a
formula α is added. By axiom A10, if cp=m

i ∈ V (s, i) for some m ∈ {0, . . . , nC}
then either cp=m

i or cpm+1
i ∈ V (s′, i). If cp=m

i ∈ V (s′, i) then set acti to be
Rulei,r,β for some r ∈ V (s, i) such that r̄ ∈ �sel, α = cons(r̄) /∈ V (s, i). If
cp=m+1

i ∈ V (s′, i) then set acti to be Copyi,α,β . Thus, we proved the existence
of the tuple 〈act1, act2, . . . , actnAg

〉 for sT s′. Therefore, M is in M(nM , nC). �

4.1 An Illustrative Example

To illustrate the use of the proposed logical model, let us consider an example
system consisting of four agents. A fragment of the context modelling ontology
of the system is depicted in Fig. 1 (a). Fig. 1 (b) shows an individualised patient
ontology and (c) depicts some SWRL rules. The set of translated rules and initial
working memory facts that are distributed to the agents are shown in Table 1,
and the goal is to infer the formula B4 hasSituation(

′Mary,′ Emergency) which
states that agent 4 believes that the patient Mary has Emergency situation. The
reasoning process includes resolving contradictory contextual information. One
possible run of the system is shown in Table 2 and Table 3 (continuation). In
the tables a newly inferred context at a particular step is shown in blue text. For
example, antecedents of rule R11 of agent 1 match the contents of the memory
configuration and infers new context Patient(′Mary) at step 1. A context which
gets overwritten in the next state is shown in red text, and a context which is
inferred in the current state and gets overwritten in the next state is shown in
magenta text. In the memory configuration, for each agent, left side of the red
vertical bar | represents SM (i) and its right side represents DM (i). It shows that
the size of DM (1) is 3 units and the size of DM (i) is 1 unit for all 2 ≤ i ≤ 4.
We can observe that the resource requirements for the system to derive the goal

466 A. Rakib and H.M. Ul Haque

(a) A fragment of the context ontology (b) Individualised ptient ontology

(c) Some SWRL rules

Fig. 1. A partial view of the context modelling ontology

formula B4 hasSituation(′Mary,′ Emergency) are 3 messages that need to be
exchanged by agent 1 and 1 message that needs to be exchanged by each of the
other three agents and 10 time steps. We can also observe that, if we reduce the
dynamic memory size for agent 1 by 1, then the system will not be able to achieve
the desired goal. We can prove that X10B4 hasSituation(′Mary,′ Emergency)
(i.e., from the start state, agent 4 believes hasSituation(′Mary,′ Emergency)
in 10 time steps), where X10 is the concatenation of ten LTL next operators X .
This is a very simple case; however, if we model a more realistic scenario and
increase the problem size, the verification task would be hard to do by hand.
Therefore it is more convenient to use an automatic method to verify them,
for example using model checking techniques. Due to space constraints, we had
to cut this discussion here, however, a LDROCS model can be encoded using a
standard model checker such as for example the Maude LTL model checker [11]
and its interesting resource-bounded properties can be verified automatically.

5 Related Work

In general, rule-based systems have been studied for decades and traditionally
rules have been used in theoretical computer science, databases, logic program-
ming, and in particular, in Artificial Intelligence, to describe expert systems,

A Logic for Context-Aware Non-monotonic Reasoning Agents 467

Table 1. Example rules for a homecare patients’ monitoring context-aware system

Agent 1: Patient care

Initial facts: Person(’Mary),PatientID(’P001), hasPatientID(’Mary, ’P001), hasConscious-
ness(’Mary, ’Yes)
R11: Person(?p), hasPatientID(?p, ?pid), PatientID(?pid) → Patient(?p)
R12: Tell(2,1, hasFever(?p, ’High)) → hasFever(?p, ’High)
R13: Tell(3,1, hasDBCategory(?p, ’EstablishedDiabetes)) → hasDBCategory(?p, ’EstablishedDia-
betes)
R14: Patient(?p), hasFever(?p, ’High), hasConsciousness(?p, ’Yes)⇒ ∼ hasSituation(?p, ’Emer-
gency)
R15: Patient(?p), hasFever(?p, ’High), hasDBCategory(?p, ’EstablishedDiabetes)⇒ hasSitua-
tion(?p, ’Emergency)
R16: Patient(?p), hasSituation(?p, ’Emergency) → Tell(1,4, hasSituation(?p, ’Emergency))
Rule Priority: R15
 R14

Agent 2: Fever detector

Initial facts: Person(’Mary),BodyTemperature(’102), hasBodyTemperature(’Mary,’102),
greaterThanOrEqual(’102, ’101), lessThanOrEqual (’102, ’103)
R21: Person(?p), BodyTemperature(?temp), hasBodyTemperature(?p,?temp), greaterThanOrE-
qual(?temp, ’101), lessThanOrEqual (?temp, ’103) → hasFever(?p, ’High)
R22: hasFever(?p, ’High)→ Tell(2,1, hasFever(?p, ’High))

Agent 3: Diabetes tester

Initial facts: Person(’Mary), BloodSugarLevel(’130), hasBloodSugarLevelBeforeMeal(’Mary,’130),
greaterThan(’130,’126)
R31: Person(?p), BloodSugarLevel(?bsl), hasBloodSugarLevelBeforeMeal(?p, ?bsl),
greaterThan(?bsl,’126) → hasDBCategory(?p, ’EstablishedDiabetes)
R32: hasDBCategory(?p, ’EstablishedDiabetes) → Tell(3,1,hasDBCategory(?p,’EstablishedDiabetes))

Agent 4: Emergency

Initial facts:
R41: Tell(1,4, hasSituation(?p, ’Emergency)) → hasSituation(?p, ’Emergency)

robot behaviour, and behaviour of business. They have found significant appli-
cation in practice and various researchers have proposed different approaches
of defining a knowledge base as a pair of ontology and a set of rules including
works by [16,18,23,9]. However, the approaches proposed by [14,13] have mostly
influenced the work presented in this paper. In [14] Grosof et. al. have shown
that the ontology based modelling techniques can be improved by using the con-
cepts of logic programming. In their work they have noticed certain constraints
while translating DL axioms into a set of rules. A similar approach proposed
by [13] who show that a subset of DL languages can be effectively mapped
into a set of strict and defeasible rules. Although we follow a similar approach
proposed by [14,13] while constructing a set of strict and defeasible rules from
an ontology, our purpose and application of those rules are quite different. We
use those rules to build a context-aware system as a multi-agent non-monotonic
rule-based agents and use a distributed problem solving approach to see whether
agents can infer certain contexts while they are resource-bounded. In [21], it has
been shown how context-aware systems can be modelled as resource-bounded
rule-based systems using ontologies, however it is based on monotonic reasoning
where beliefs of an agent cannot be revised based on some contradictory evi-
dence. In [12], OWL ontologies are used to model context-aware systems, the
authors exploited classes and properties from ontologies to write rules in Jess

468 A. Rakib and H.M. Ul Haque

T
a
b
le

2
.
(a
)
O
n
e
p
o
ss
ib
le

ru
n
(r
ea
so
n
in
g
)
o
f
th
e
sy
st
em

P
a
ti
en
t
ca
re

F
ev
er

d
et
ec
to
r

D
ia
b
et
es

te
st
er

E
m
er
g
en

cy
#
S
te
p
s
M
em

o
ry

C
o
n
fi
g
.1

A
ct
io
n
1
#

M
sg
1
M
em

o
ry

C
o
n
fi
g
.2

A
ct
io
n
2
#
M
sg
2
M
em

o
ry

C
o
n
fi
g
.3

A
ct
io
n
3
#
M
sg
3
M
em

o
ry

C
o
n
fi
g
.4

A
ct
io
n
4
#
M
sg
4

0
{P

er
so
n
(′
M

a
ry
),

−
0

{P
er
so
n
(′
M

a
ry
),

−
0

{P
er
so
n
(′
M

a
ry
),

−
0

{|−
}

−
0

P
a
ti
en

tI
D
(′
P
0
0
1
),

B
od
y
T
em

p
er
a
tu
re
(′
1
0
2
),

B
lo
od
S
u
g
a
rL

ev
el
(′
1
3
0
),

h
a
sP

a
ti
en

tI
D
(′
M

a
ry
,′
P
0
0
1
),

h
a
sB

od
y
T
em

p
er
a
tu
re
(′
M

a
ry
,′
1
0
2
),

h
a
sB

lo
od
S
u
g
a
rL

ev
el
B
ef

or
eM

ea
l

h
a
sC

on
sc
io
u
sn

es
s(

′ M
a
ry
,′
Y
es
)

g
re
a
te
rT

h
a
n
O
rE

qu
a
l(

′ 1
0
2
,′
1
0
1
),

(′
M

a
ry
,′
1
3
0
),

|−
,−

,−
}

le
ss
T
h
a
n
O
rE

qu
a
l(

′ 1
0
2
,′
1
0
3
)

g
re
a
te
rT

h
a
n
(′
1
3
0
,′
1
2
6
)

|−
}

|−
}

1
{P

er
so
n
(′
M

a
ry
),

R
u
le

0
{P

er
so
n
(′
M

a
ry
),

R
u
le

0
{P

er
so
n
(′
M

a
ry
),

R
u
le

0
{|−

}
I
d
le

0
P
a
ti
en

tI
D
(′
P
0
0
1
),

(R
1
1
)

B
od
y
T
em

p
er
a
tu
re
(′
1
0
2
),

(R
2
1
)

B
lo
od
S
u
g
a
rL

ev
el
(′
1
3
0
),

(R
3
1
)

h
a
sP

a
ti
en

tI
D
(′
M

a
ry
,′
P
0
0
1
),

h
a
sB

od
y
T
em

p
er
a
tu
re
(′
M

a
ry
,′
1
0
2
),

h
a
sB

lo
od
S
u
g
a
rL

ev
el
B
ef

or
eM

ea
l

h
a
sC

on
sc
io
u
sn

es
s(

′ M
a
ry
,′
Y
es
)

g
re
a
te
rT

h
a
n
O
rE

qu
a
l(

′ 1
0
2
,′
1
0
1
),

(′
M

a
ry
,′
1
3
0
),

|P
a
ti
en

t(
′ M

a
ry
),
−,

−}
le
ss
T
h
a
n
O
rE

qu
a
l(

′ 1
0
2
,′
1
0
3
)

g
re
a
te
rT

h
a
n
(′
1
3
0
,′
1
2
6
)

|ha
sF

ev
er
(′
M

a
ry
,′
H
ig
h
)}

|ha
sD

B
C
a
te
g
or
y
(

′ M
a
ry
,′
E
st
a
bl
is
h
ed
D
ia
be
te
s)
}

2
{P

er
so
n
(′
M

a
ry
),

I
d
le

0
{P

er
so
n
(′
M

a
ry
),

R
u
le

1
{P

er
so
n
(′
M

a
ry
),

R
u
le

1
{|−

}
I
d
le

0
P
a
ti
en

tI
D
(′
P
0
0
1
),

B
od
y
T
em

p
er
a
tu
re
(′
1
0
2
),

(R
2
2
)

B
lo
od
S
u
g
a
rL

ev
el
(′
1
3
0
),

(R
3
2
)

h
a
sP

a
ti
en

tI
D
(′
M

a
ry
,′
P
0
0
1
),

h
a
sB

od
y
T
em

p
er
a
tu
re
(′
M

a
ry
,′
1
0
2
),

h
a
sB

lo
od
S
u
g
a
rL

ev
el
B
ef

or
eM

ea
l

h
a
sC

on
sc
io
u
sn

es
s(

′ M
a
ry
,′
Y
es
)

g
re
a
te
rT

h
a
n
O
rE

qu
a
l(

′ 1
0
2
,′
1
0
1
),

(′
M

a
ry
,′
1
3
0
),

|P
a
ti
en

t(
′ M

a
ry
),
−,

−}
le
ss
T
h
a
n
O
rE

qu
a
l(

′ 1
0
2
,′
1
0
3
)

g
re
a
te
rT

h
a
n
(′
1
3
0
,′
1
2
6
)

|T
el
l(
2
,1
,h

a
sF

ev
er
(′
M

a
ry
,′
H
ig
h
)}

|T
el
l(
3
,1
,h

a
sD

B
C
a
te
g
or
y
(

′ M
a
ry
,′
E
st
a
bl
is
h
ed
D
ia
be
te
s)
}

3
{P

er
so
n
(′
M

a
ry
),

C
op
y

1
{P

er
so
n
(′
M

a
ry
),

I
d
le

1
{P

er
so
n
(′
M

a
ry
),

I
d
le

1
{|−

}
I
d
le

0
P
a
ti
en

tI
D
(′
P
0
0
1
),

B
od
y
T
em

p
er
a
tu
re
(′
1
0
2
),

B
lo
od
S
u
g
a
rL

ev
el
(′
1
3
0
),

h
a
sP

a
ti
en

tI
D
(′
M

a
ry
,′
P
0
0
1
),

h
a
sB

od
y
T
em

p
er
a
tu
re
(′
M

a
ry
,′
1
0
2
),

h
a
sB

lo
od
S
u
g
a
rL

ev
el
B
ef

or
eM

ea
l

h
a
sC

on
sc
io
u
sn

es
s(

′ M
a
ry
,′
Y
es
)

g
re
a
te
rT

h
a
n
O
rE

qu
a
l(

′ 1
0
2
,′
1
0
1
),

(′
M

a
ry
,′
1
3
0
),

|P
a
ti
en

t(
′ M

a
ry
),

le
ss
T
h
a
n
O
rE

qu
a
l(

′ 1
0
2
,′
1
0
3
)

g
re
a
te
rT

h
a
n
(′
1
3
0
,′
1
2
6
)

T
el
l(
2
,1
,
h
a
sF
ev
er
(’
M
a
ry
,
’H

ig
h
),
-}

|T
el
l(
2
,1
,h

a
sF

ev
er
(′
M

a
ry
,′
H
ig
h
)}

|T
el
l(
3
,1
,h

a
sD

B
C
a
te
g
or
y
(

′ M
a
ry
,′
E
st
a
bl
is
h
ed
D
ia
be
te
s)
}

4
{P

er
so
n
(′
M

a
ry
),

C
op
y

2
{P

er
so
n
(′
M

a
ry
),

I
d
le

1
{P

er
so
n
(′
M

a
ry
),

I
d
le

1
{|−

}
I
d
le

0
P
a
ti
en

tI
D
(′
P
0
0
1
),

B
od
y
T
em

p
er
a
tu
re
(′
1
0
2
),

B
lo
od
S
u
g
a
rL

ev
el
(′
1
3
0
),

h
a
sP

a
ti
en

tI
D
(′
M

a
ry
,′
P
0
0
1
),

h
a
sB

od
y
T
em

p
er
a
tu
re
(′
M

a
ry
,′
1
0
2
),

h
a
sB

lo
od
S
u
g
a
rL

ev
el
B
ef

or
eM

ea
l

h
a
sC

on
sc
io
u
sn

es
s(

′ M
a
ry
,′
Y
es
)

g
re
a
te
rT

h
a
n
O
rE

qu
a
l(

′ 1
0
2
,′
1
0
1
),

(′
M

a
ry
,′
1
3
0
),

|P
a
ti
en

t(
′ M

a
ry
),

le
ss
T
h
a
n
O
rE

qu
a
l(

′ 1
0
2
,′
1
0
3
)

g
re
a
te
rT

h
a
n
(′
1
3
0
,′
1
2
6
)

T
el
l(
2
,1
,
h
a
sF
ev
er
(’
M
a
ry
,
’H

ig
h
),

|T
el
l(
2
,1
,h

a
sF

ev
er
(′
M

a
ry
,′
H
ig
h
)}

|T
el
l(
3
,1
,h

a
sD

B
C
a
te
g
or
y
(

T
el
l(
3
,1
,
h
a
sD

B
C
a
te
g
o
ry
(

′ M
a
ry
,′
E
st
a
bl
is
h
ed
D
ia
be
te
s)
}

′ M
a
ry
,′
E
st
a
bl
is
h
ed
D
ia
be
te
s)
}

5
{P

er
so
n
(′
M

a
ry
),

R
u
le

2
{P

er
so
n
(′
M

a
ry
),

I
d
le

1
{P

er
so
n
(′
M

a
ry
),

I
d
le

1
{|−

}
I
d
le

0
P
a
ti
en

tI
D
(′
P
0
0
1
),

(R
1
2
)

B
od
y
T
em

p
er
a
tu
re
(′
1
0
2
),

B
lo
od
S
u
g
a
rL

ev
el
(′
1
3
0
),

h
a
sP

a
ti
en

tI
D
(′
M

a
ry
,′
P
0
0
1
),

h
a
sB

od
y
T
em

p
er
a
tu
re
(′
M

a
ry
,′
1
0
2
),

h
a
sB

lo
od
S
u
g
a
rL

ev
el
B
ef

or
eM

ea
l

h
a
sC

on
sc
io
u
sn

es
s(

′ M
a
ry
,′
Y
es
)

g
re
a
te
rT

h
a
n
O
rE

qu
a
l(

′ 1
0
2
,′
1
0
1
),

(′
M

a
ry
,′
1
3
0
),

|P
a
ti
en

t(
′ M

a
ry
),

le
ss
T
h
a
n
O
rE

qu
a
l(

′ 1
0
2
,′
1
0
3
)

g
re
a
te
rT

h
a
n
(′
1
3
0
,′
1
2
6
)

h
a
sF
ev
er
(’
M
a
ry
,
’H

ig
h
),

|T
el
l(
2
,1
,h

a
sF

ev
er
(′
M

a
ry
,′
H
ig
h
))
}

|T
el
l(
3
,1
,h

a
sD

B
C
a
te
g
or
y
(

T
el
l(
3
,1
,
h
a
sD

B
C
a
te
g
o
ry
(

′ M
a
ry
,′
E
st
a
bl
is
h
ed
D
ia
be
te
s)
}

′ M
a
ry
,′
E
st
a
bl
is
h
ed
D
ia
be
te
s)
}

A Logic for Context-Aware Non-monotonic Reasoning Agents 469

T
a
b
le

3
.
(b
)
O
n
e
p
o
ss
ib
le

ru
n
(r
ea
so
n
in
g
)
o
f
th
e
sy
st
em

P
a
ti
en
t
ca
re

F
ev
er

d
et
ec
to
r

D
ia
b
et
es

te
st
er

E
m
er
g
en

cy
#
S
te
p
s
M
em

o
ry

C
o
n
fi
g
.1

A
ct
io
n
1

#
M
sg
1
M
em

o
ry

C
o
n
fi
g
.2

A
ct
io
n
2
#
M
sg
2
M
em

o
ry

C
o
n
fi
g
.3

A
ct
io
n
3
#
M
sg
3
M
em

o
ry

C
o
n
fi
g
.4

A
ct
io
n
4
#
M
sg
4

6
{P

er
so
n
(′
M

a
ry
),

R
u
le

2
{P

er
so
n
(′
M

a
ry
),

I
d
le

1
{P

er
so
n
(′
M

a
ry
),

I
d
le

1
{|−

}
I
d
le

0
P
a
ti
en

tI
D
(′
P
0
0
1
),

(R
1
3
)

B
od
y
T
em

p
er
a
tu
re
(′
1
0
2
),

B
lo
od
S
u
g
a
rL

ev
el
(′
1
3
0
),

h
a
sP

a
ti
en

tI
D
(′
M

a
ry
,′
P
0
0
1
),

h
a
sB

od
y
T
em

p
er
a
tu
re
(′
M

a
ry
,′
1
0
2
),

h
a
sB

lo
od
S
u
g
a
rL

ev
el
B
ef

or
eM

ea
l

h
a
sC

on
sc
io
u
sn

es
s(

′ M
a
ry
,′
Y
es
)

g
re
a
te
rT

h
a
n
O
rE

qu
a
l(

′ 1
0
2
,′
1
0
1
),

(′
M

a
ry
,′
1
3
0
),

|P
a
ti
en

t(
′ M

a
ry
),

le
ss
T
h
a
n
O
rE

qu
a
l(

′ 1
0
2
,′
1
0
3
)

g
re
a
te
rT

h
a
n
(′
1
3
0
,′
1
2
6
)

h
a
sF
ev
er
(’
M
a
ry
,
’H

ig
h
),

|T
el
l(
2
,1
,h

a
sF

ev
er
(′
M

a
ry
,′
H
ig
h
))
}

|T
el
l(
3
,1
,h

a
sD

B
C
a
te
g
or
y
(

h
a
sD

B
C
a
te
g
o
ry
(’
M
a
ry
,
’E
st
a
b
li
sh
ed
D
ia
b
et
es
)}

′ M
a
ry
,′
E
st
a
bl
is
h
ed
D
ia
be
te
s)
}

7
{P

er
so
n
(′
M

a
ry
),

R
u
le

2
{P

er
so
n
(′
M

a
ry
),

I
d
le

1
{P

er
so
n
(′
M

a
ry
),

I
d
le

1
{|−

}
I
d
le

0
P
a
ti
en

tI
D
(′
P
0
0
1
),

(R
1
5
�R

1
4

B
od
y
T
em

p
er
a
tu
re
(′
1
0
2
),

B
lo
od
S
u
g
a
rL

ev
el
(′
1
3
0
),

h
a
sP

a
ti
en

tI
D
(′
M

a
ry
,′
P
0
0
1
),

R
es
o
lv
in
g

h
a
sB

od
y
T
em

p
er
a
tu
re
(′
M

a
ry
,′
1
0
2
),

h
a
sB

lo
od
S
u
g
a
rL

ev
el
B
ef

or
eM

ea
l

h
a
sC

on
sc
io
u
sn

es
s(

′ M
a
ry
,′
Y
es
)

co
n
fl
ic
ti
n
g

g
re
a
te
rT

h
a
n
O
rE

qu
a
l(

′ 1
0
2
,′
1
0
1
),

(′
M

a
ry
,′
1
3
0
),

|P
a
ti
en

t(
′ M

a
ry
),

co
n
te
x
t)

le
ss
T
h
a
n
O
rE

qu
a
l(

′ 1
0
2
,′
1
0
3
)

g
re
a
te
rT

h
a
n
(′
1
3
0
,′
1
2
6
)

h
a
sS
it
u
a
ti
o
n
(’
M
a
ry
,
’E
m
er
g
en

cy
),

|T
el
l(
2
,1
,h

a
sF

ev
er
(′
M

a
ry
,′
H
ig
h
))
}

|T
el
l(
3
,1
,h

a
sD

B
C
a
te
g
or
y
(

h
a
sD

B
C
a
te
g
o
ry
(’
M
a
ry
,
’E
st
a
b
li
sh
ed
D
ia
b
et
es
)}

′ M
a
ry
,′
E
st
a
bl
is
h
ed
D
ia
be
te
s)
}

8
{P

er
so
n
(′
M

a
ry
),

R
u
le

3
{P

er
so
n
(′
M

a
ry
),

I
d
le

1
{P

er
so
n
(′
M

a
ry
),

I
d
le

1
{|−

}
I
d
le

0
P
a
ti
en

tI
D
(′
P
0
0
1
),

(R
1
6
)

B
od
y
T
em

p
er
a
tu
re
(′
1
0
2
),

B
lo
od
S
u
g
a
rL

ev
el
(′
1
3
0
),

h
a
sP

a
ti
en

tI
D
(′
M

a
ry
,′
P
0
0
1
),

h
a
sB

od
y
T
em

p
er
a
tu
re
(′
M

a
ry
,′
1
0
2
),

h
a
sB

lo
od
S
u
g
a
rL

ev
el
B
ef

or
eM

ea
l

h
a
sC

on
sc
io
u
sn

es
s(

′ M
a
ry
,′
Y
es
)

g
re
a
te
rT

h
a
n
O
rE

qu
a
l(

′ 1
0
2
,′
1
0
1
),

(′
M

a
ry
,′
1
3
0
),

|P
a
ti
en

t(
′ M

a
ry
),

le
ss
T
h
a
n
O
rE

qu
a
l(

′ 1
0
2
,′
1
0
3
)

g
re
a
te
rT

h
a
n
(′
1
3
0
,′
1
2
6
)

h
a
sS
it
u
a
ti
o
n
(’
M
a
ry
,
’E
m
er
g
en

cy
),

|T
el
l(
2
,1
,h

a
sF

ev
er
(′
M

a
ry
,′
H
ig
h
))
}

|T
el
l(
3
,1
,h

a
sD

B
C
a
te
g
or
y
(

T
el
l(
1
,4
,
h
a
sS
it
u
a
ti
o
n
(’
M
a
ry
,
’E
m
er
g
en

cy
))
}

′ M
a
ry
,′
E
st
a
bl
is
h
ed
D
ia
be
te
s)
}

9
{P

er
so
n
(′
M

a
ry
),

I
d
le

3
{P

er
so
n
(′
M

a
ry
),

I
d
le

1
{P

er
so
n
(′
M

a
ry
),

I
d
le

1
{|T

el
l(
1
,4
,h

a
sS

it
u
a
ti
on

(
C
op
y

1
P
a
ti
en

tI
D
(′
P
0
0
1
),

B
od
y
T
em

p
er
a
tu
re
(′
1
0
2
),

B
lo
od
S
u
g
a
rL

ev
el
(′
1
3
0
),

′ M
a
ry
,′
E
m
er
g
en

cy
))
}

h
a
sP

a
ti
en

tI
D
(′
M

a
ry
,′
P
0
0
1
),

h
a
sB

od
y
T
em

p
er
a
tu
re
(′
M

a
ry
,′
1
0
2
),

h
a
sB

lo
od
S
u
g
a
rL

ev
el
B
ef

or
eM

ea
l

h
a
sC

on
sc
io
u
sn

es
s(

′ M
a
ry
,′
Y
es
)

g
re
a
te
rT

h
a
n
O
rE

qu
a
l(

′ 1
0
2
,′
1
0
1
),

(′
M

a
ry
,′
1
3
0
),

|P
a
ti
en

t(
′ M

a
ry
),

le
ss
T
h
a
n
O
rE

qu
a
l(

′ 1
0
2
,′
1
0
3
)

g
re
a
te
rT

h
a
n
(′
1
3
0
,′
1
2
6
)

h
a
sS
it
u
a
ti
o
n
(’
M
a
ry
,
’E
m
er
g
en

cy
),

|T
el
l(
2
,1
,h

a
sF

ev
er
(′
M

a
ry
,′
H
ig
h
))
}

|T
el
l(
3
,1
,h

a
sD

B
C
a
te
g
or
y
(

T
el
l(
1
,4
,
h
a
sS
it
u
a
ti
o
n
(’
M
a
ry
,
’E
m
er
g
en

cy
))
}

′ M
a
ry
,′
E
st
a
bl
is
h
ed
D
ia
be
te
s)
}

1
0

{P
er
so
n
(′
M

a
ry
),

I
d
le

3
{P

er
so
n
(′
M

a
ry
),

I
d
le

1
{P

er
so
n
(′
M

a
ry
),

I
d
le

1
{|h

a
sS

it
u
a
ti
on

(
I
n
f
er

1
P
a
ti
en

tI
D
(′
P
0
0
1
),

B
od
y
T
em

p
er
a
tu
re
(′
1
0
2
),

B
lo
od
S
u
g
a
rL

ev
el
(′
1
3
0
),

′ M
a
ry
,′
E
m
er
g
en

cy
)}

(R
4
1
)

h
a
sP

a
ti
en

tI
D
(′
M

a
ry
,′
P
0
0
1
),

h
a
sB

od
y
T
em

p
er
a
tu
re
(′
M

a
ry
,′
1
0
2
),

h
a
sB

lo
od
S
u
g
a
rL

ev
el
B
ef

or
eM

ea
l

h
a
sC

on
sc
io
u
sn

es
s(

′ M
a
ry
,′
Y
es
)

g
re
a
te
rT

h
a
n
O
rE

qu
a
l(

′ 1
0
2
,′
1
0
1
),

(′
M

a
ry
,′
1
3
0
),

|P
a
ti
en

t(
′ M

a
ry
),

le
ss
T
h
a
n
O
rE

qu
a
l(

′ 1
0
2
,′
1
0
3
)

g
re
a
te
rT

h
a
n
(′
1
3
0
,′
1
2
6
)

h
a
sS
it
u
a
ti
o
n
(’
M
a
ry
,
’E
m
er
g
en

cy
),

|T
el
l(
2
,1
,h

a
sF

ev
er
(′
M

a
ry
,′
H
ig
h
))
}

|T
el
l(
3
,1
,h

a
sD

B
C
a
te
g
or
y
(

T
el
l(
1
,4
,
h
a
sS
it
u
a
ti
o
n
(’
M
a
ry
,
’E
m
er
g
en

cy
))
}

′ M
a
ry
,′
E
st
a
bl
is
h
ed
D
ia
be
te
s)
}

470 A. Rakib and H.M. Ul Haque

to derive multi-agent rules based system. Thus their modelling part of the system
only reflects the static behaviour. In contrast, our ontology-based modelling
captures both static and dynamic behaviour of the system using OWL 2 RL
and SWRL. A prototype of context management model is presented in [10]
that supports collaborative reasoning in a multi-domain pervasive context-aware
application. The model facilitates the context reasoning by providing structure
for contexts, rules and their semantics. In [5], authors have proposed a distributed
algorithm for query evaluation in a Multi-Context Systems framework based on
defeasible logic. In their work, contexts are built using defeasible rules, and the
proposed algorithm can determine for a given literal P whether P is (not) a
logical conclusion of the Multi-Context Systems, or whether it cannot be proved
that P is a logical conclusion. However, none of these approaches studies formal
specification of context-aware systems considering their resource-boundedness
features.

6 Conclusions and Future Work

In this paper, we propose a logical framework for modelling context-aware sys-
tems as multi-agent non-monotonic rule-based agents, and the resulting logic
LDROCS allows us to describe a set of ontology-driven rule-based non-monotonic
reasoning agents with bounds on time, memory, and communication. Agents use
defeasible reasoning technique to reason with inconsistent information. In future
work, we will show how we can encode a LDROCS model considering a more
realistic system and verify its interesting resource-bounded properties automat-
ically.

References

1. Alechina, N., Logan, B., Nga, N.H., Rakib, A.: Verifying time and communication
costs of rule-based reasoners. In: Peled, D.A., Wooldridge, M.J. (eds.) MoChArt
2008. LNCS, vol. 5348, pp. 1–14. Springer, Heidelberg (2009)

2. Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: Representation re-
sults for defeasible logic. ACM Transactions on Computational Logic 2(2), 255–287
(2001)

3. Baader, F., McGuinness, D.L., Nardi, D. (eds.): P.F.P.S.: The Description Logic
Handbook: Theory, Implementation, and Applications. Cambridge University Press
(2003)

4. Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware systems. In-
ternational Journal of Ad Hoc and Ubiquitous Computing 2(4), 263–277 (2007)

5. Bikakis, A., Antoniou, G., Hasapis, P.: Strategies for contextual reasoning with
conflicts in ambient intelligence. Knowledge and Information Systems 27(1), 45–84
(2011)

6. Byun, H.E., Chevers, K.: Utilizing context history to provide dynamic adaptations.
Applied Artificial Intelligence 18(6), 533–548 (2004)

7. Daniele, L., Costa, P.D., Pires, L.F.: Towards a rule-based approach for context-
aware applications. In: Pras, A., van Sinderen, M. (eds.) EUNICE 2007. LNCS,
vol. 4606, pp. 33–43. Springer, Heidelberg (2007)

8. Dey, A., Abwowd, G.: Towards a better understanding of context and context-
awareness. Technical Report GIT-GVU-99-22, Georgia Institute of Technology

A Logic for Context-Aware Non-monotonic Reasoning Agents 471

9. Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R.: Well-founded semantics for
description logic programs in the semantic web. ACM Trans. Comput. Logic 12(2),
1–11 (2011)

10. Ejigu, D., Scuturici, M., Brunie, L.: An ontology-based approach to context model-
ing and reasoning in pervasive computing. In: PerCom Workshops 2007, pp. 14–19
(2007)

11. Eker, S., Meseguer, J., Sridharanarayanan, A.: The maude LTL model checker and
its implementation. In: Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648,
pp. 230–234. Springer, Heidelberg (2003)

12. Esposito, A., Tarricone, L., Zappatore, M., Catarinucci, L., Colella, R., DiBari, A.:
A framework for context-aware home-health monitoring. In: Sandnes, F.E., Zhang,
Y., Rong, C., Yang, L.T., Ma, J. (eds.) UIC 2008. LNCS, vol. 5061, pp. 119–130.
Springer, Heidelberg (2008)

13. Gómez, S.A., Chesñevar, C.I., Simari, G.R.: Inconsistent ontology handling by
translating description logics into defeasible logic programming. Inteligencia Arti-
ficial, Revista Iberoamericana de Inteligencia Artificial 11(35), 11–22 (2007)

14. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: Com-
bining logic programs with description logic. In: WWW 2003, pp. 48–57. ACM
Press (2003)

15. Horridge, M., Bechhofer, S.: The OWL API: A java API for working with OWL
2 Ontologies. In: 6th OWL Experienced and Directions Workshop (OWLED)
(October 2009)

16. Levy, A.Y., Rousset, M.C.: Combining horn rules and description logics in CARIN.
Artif. Intell. 104(1-2), 165–209 (1998)

17. Motik, B., Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2 Web
Ontology Language: Profiles, W3C Recommendation. (October 2009),
http://www.w3.org/TR/owl2-profiles/

18. Motik, B., Sattler, U., Studer, R.: Query answering for OWL-DL with rules. Journal
of Web Semantics: Science, Services and Agents on the World Wide Web 3, 41–60
(2005)

19. Pollock, J.L.: Defeasible reasoning. Cognitive Science 11(4), 481–518 (1987)
20. Protégé: The Protégé ontology editor and knowledge-base framework (Version 4.1)

(July 2011), http://protege.stanford.edu/
21. Rakib, A., Haque, H.M.U., Faruqui, R.U.: A temporal description logic for resource-

bounded rule-based context-aware agents. In: Vinh, P.C., Alagar, V., Vassev, E.,
Khare, A. (eds.) ICCASA 2013. LNICST, vol. 128, pp. 3–14. Springer, Heidelberg
(2014)

22. Reynolds, M.: An axiomatization of full computation tree logic. J. Symb.
Log. 66(3), 1011–1057 (2001)

23. Rosati, R.: DL+log: Tight integration of description logics and disjunctive datalog.
In: Proceedings of the Tenth International Conference on Principles of Knowledge
Representation and Reasoning, pp. 68–78. AAAI Press (2006)

24. Schilit, B., Adams, N., Want, R.: Context-aware computing applications. In: Pro-
ceedings of the First Workshop on Mobile Computing Systems and Applications,
pp. 85–90. IEEE Computer Society, Washington, DC (1994)

25. Schmidt, A., Beigl, M., Gellersen, H.W.: There is more to context than location.
Computers and Graphics 23, 893–901 (1998)

26. Viterbo, F.J., da G. Malcher, M., Endler, M.: Supporting the development of
context-aware agent-based systems for mobile networks. In: Proceedings of the
2008 ACM Symposium on Applied Computing, pp. 1872–1873. ACM (2008)

http://www.w3.org/TR/owl2-profiles/
http://protege.stanford.edu/

	A Logic for Context-Aware Non-monotonic
Reasoning Agents

	1 Introduction
	2 Preliminaries
	2.1 Description Logics and Ontology
	2.2 Defeasible Reasoning

	3 Context-Aware Systems as Multi-agent Defeasible Reasoning Systems
	4 The Logic LDROCS

	4.1 An Illustrative Example

	5 Related Work
	6 Conclusions and Future Work
	References

