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Abstract. Convolutional deep neural networks (CDNNs) have been suc-
cessfully applied to different tasks within the machine learning field, and,
in particular, to speech, speaker and language recognition. In this work,
we have applied them to pair-wise language recognition tasks. The pro-
posed systems have been evaluated on challenging pairs of languages
from NIST LRE’09 dataset. Results have been compared with two spec-
tral systems based on Factor Analysis and Total Variability (i-vector)
strategies, respectively. Moreover, a simple fusion of the developed ap-
proaches and the reference systems has been performed. Some individual
and fusion systems outperform the reference systems, obtaining ∼ 17%
of relative improvement in terms of minCDET for one of the challenging
pairs.

Keywords: Convolutional networks, CDNNs, pair-wise language recog-
nition.

1 Introduction

Deep Neural Networks (DNNs) are a new paradigm within machine learning.
They have shown to be successful in many tasks such as acoustic modelling
[16,7,12,8] or speaker recognition [10,4].

Considering this, our work is focused on a related problem: the automatic
language recognition (or Spoken Language Recognition, SLR) task. This problem
has been addressed for many years by NIST Language Recognition Evaluations
(LRE). Many of the state-of-the-art approaches to this problem are based on
acoustic systems. For instance, GMM-based systems where a session variability
compensation scheme via Factor Analysis (FA) is applied [6], and, also, i-vector
approaches that have been proved to be successful to deal with the SLR task
[18].

However, new approaches to the problem of SLR based on DNNs have been
recently published [15,13]. We propose the use of convolutional deep neural net-
works (CDNNs), which is a less demanding approach in terms of memory and
computational resources than the one proposed in [15]. Moreover, we have ap-
plied them to the pair-wise language recognition task, which has been one of
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Fig. 1. Representation of architecture used in the experimental part of this work with
three hidden layers of 20, 50 and 30 filters respectively (Model 1 ). The other model
used (Model 2 ) has the same structure but with 12 filters in each layer.

the tasks proposed by NIST in their Language Recognition Evaluations (LRE).
Besides, unlike [13], our proposal is based on the use of CDNNs as a complete
system that is directly fed with filter-bank outputs. Figure 1 shows an example
of structure used in the experimental part of this work.

The rest of this paper is organized as follows. In Section 2, the proposed
system based on CDNNs is described. The reference systems are presented in
Section 3 and the database and experimental framework used are exposed in
Section 4. Finally, Sections 5 and 6 present the results and conclusions of this
work.

2 Convolutional DNNs for Language Recognition

2.1 Convolutional DNNs Architecture

The proposal of this work is to develop a system based on convolutional networks
applied to the problem of pairwise language recognition.

CDNNs are models based on the structure of the visual system and are com-
posed of two kinds of layers: convolutional layers and subsampling layers [11].
The first ones act as a feature extractor where each unit is connected to a lo-
cal subset of units in the layer below. Some units that are related because of
their location share their parameters, allowing the network to extract the same
features from different locations in the input. This also decreases the amount of
parameters to tune. Subsampling layers reduce the size of the representations
obtained by convolutional layers by applying a subsampling operation, and mak-
ing the network, in some way, invariant to small translations and rotations [1].
Moreover, convolutional nets can be trained as a classic feedforward network,
by using, for instance, supervised learning based on gradient descent algorithms
[11].

All these features make them be easier to train and cheaper in terms of re-
sources than other approaches within the deep learning paradigm. Then, we have
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used them as a complete system to perform pair language recognition. In par-
ticular, they have been trained in a supervised way to discriminate between two
languages, which are considered challenging pairs due to their similarities. The
database used has been a subset of the one provided by NIST in the LRE’09.

2.2 Proposed System: CDNN-Based System

The details of the CDNN-based system are as follows. The input of the network
consists of a 2-dimensional time-frequency representation of the speech signal.
In our case, 23 Mel-scale filter-bank outputs have been used to feed the network
for each segment of 3 seconds of speech, normalized to have zero mean and
unit variance for each coefficient over the whole training set. Those 3 seconds
correspond with 300 frames, since windows of 20 ms of duration have been
applied with 10 ms of overlap. Moreover, in order to suppress silences, a voice
activity detector based on energy has been used. This last filtering process makes
test segments contain less than 3 seconds of actual speech, which was a problem
since the network input dimensions were fixed. It was solved by applying a right
padding by using the first frames of the segment to fit this requirement.

Depending on the configuration of the network, two different models have
been considered. Both of them have 3 hidden convolutional-maxpooling layers.
Each of these layers are composed of two stages: 1) computation of the activation
for each hidden unit in each feature map by convolving the input with a linear
filter (weights), adding a bias term and applying the non-linear transformation
tanh (h = tanh(W ∗x+b)); and 2) application of a sub-sampling phase based on
partitioning the input into non-overlapping regions and choosing the maximum
activation of each region. For both models, the shape of the linear filters is 5× 5
for the first two hidden layers, and 2× 2 for the third one. Regarding the max-
pooling regions, they have a shape of 2 × 2 in the first two hidden layers, and
1 × 71 in the third one in order to have a single value as output of the last
hidden layer. Then, the difference between the two mentioned models relies on
the number of filters or feature maps considered for each hidden layer, which
is related to the idea of how many different features want to be extracted in
each layer. The first model (Model 1 ) has 12 filters in each layer and the second
one (Model 2 ), has 20, 50 and 30 in each of the three mentioned hidden layers,
respectively. All this information is summarized in Table 1.
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Table 1. Configuration parameters for the developed models

Conf. Parameter Model 1 Model 2

# Layers 3 3
# Filters/layer [12, 12, 12] [20, 50, 30]
Filter shapes [(5, 5), (5, 5), (2, 2)] [(5, 5), (5, 5), (2, 2)]
Pool shapes [(2, 2), (2, 2), (1, 71)] [(2, 2), (2, 2), (1, 71)]

As far as the output layer is concerned, it consists of a fully-connected layer
that computes a softmax function according to the following expression:

P (Y = i|x,W, b) = softmaxi(Wx+ b) =
eWix+bi

∑
j e

Wjx+bj

where i is a certain class, and W and b are the parameters of the model (weights
and bias, respectively).

The output value is considered as a score or likelihood measure of belonging
to a certain language, between the two languages involved, since the performed
experiments are based on language-pairs. The final score for a test segment is
computed as the difference between the logarithms of each likelihood.

Regarding the training of the network, the algorithm that has been used is
the stochastic gradient descent algorithm with a learning rate of 0.1 and based
on minibatches of 500 samples each one. The cost function that the algorithm
tries to optimize (minimize in this case) is the negative log-likelihood, defined
as follows:

NLL(θ,D) = −
|D|∑

i=1

logP (Y = y(i)|x(i), θ)

where D is the dataset, θ represents the parameters of the model (θ = W, b,
weights and bias respectively), x(i) is an example, y(i) is the label corresponding
to example x(i), and P is defined as the output of the softmax function defined
above.

Also, an “early stopping” technique has been used during the training in order
to avoid the overfiting problem, so the performance of the model is evaluated
in a validation set, and if the improvements over that set are not considered
relevant, the training stops.

All this development has been done by using Python and, specifically, Theano
[2], following the ideas of [14].

3 Reference Systems: FA-GMM and i-Vector

In order to have a baseline to compare with, two different systems have been
taken as reference and have been evaluated on the same datasets that the pro-
posed method based on CDNNs.
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The first one consists of a Factor Analysis GMM Linear Scoring (FA-GMM-
LS) [6], which is a GMM system with linear scoring and session variability com-
pensation applied in the statistic domain. The speech signal is represented by
a parameterization consisting of seven MFCCs with CMN-Rasta-Warping con-
catenated to 7-1-3-7 SDC-MFCCs. Two Universal Background Models (UBMs)
with 1024 Gaussian components were trained. One of them (UBMCTS) was
trained with Conversational Telephone Speech (hereafter, CTS). The other one
(UBMV OA) was train with data from VOA (Voice of America radio broad-
casts through Internet), provided by NIST. Thereby, two different systems were
developed, one for each UBM. Two session variability subspaces matrices were
obtained (UCTS and UV OA). The subspaces were initialized with PCA (Principal
Component Analysis) based on [9,20], taking into account just top-50 eigenchan-
nels, and trained by using the EM algorithm.

The second reference system, the i-vector system, is based on GMMs where
a Total Variability modeling strategy [3] is employed in order to model both
language and session variability. Unlike FA, a total space represented by a low-
rank T matrix jointly includes language and session variability. Moreover, a
session variability compensation stage is applied directly to the low dimensional
space driven by T by means of Linear Discriminant Analysis (LDA) and Within-
Class Covariance Normalization (WCCN) [5].

The speech signal is represented as in the first reference system and the T
matrix has been trained with CTS and broadcast data as well.

Both systems output a score for each test segment computed as the difference
between the scores given for each of the two language models involved in each
pair.

Moreover, as scores from reference and CDNN-based systems are in the same
domain (real numbers), a simple sum fusion has been performed.

4 Database and Experimental Protocol

4.1 Database Description

The database used to perform the experiments has been that provided by NIST
in LRE’09 [17].

LRE’09 database includes data coming from different audio sources: conversa-
tional telephone speech (CTS), used in previous evaluations, and broadcast data
that contain telephone and non-telephone speech. That broadcast data consist of
two corpora from past Voice of America (VOA) broadcast in multiple languages
(VOA2 and VOA3). Some language labels of VOA2 might be erroneous since
they have not been audited. More details can be found in [17].

Regarding evaluation data, segments of 3, 10 and 30 second of duration from
CTS and broadcast speech data are available to test the developed systems.
However, the experiments shown in this paper are only based on segments of 3
seconds (short duration).

We have selected five challenging pairs of languages for the experiments of this
work: Bosnian-Croatian (BC), Farsi-Dari (FD), Hindi-Urdu (HU), Portuguese-
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Table 2. Amount of data used for the experiments per language (in hours)

Amount of data (# Hours)
Training Validation Test

Bosnian 12.27 5.26 0.28
Croatian 9.16 3.92 0.29
Dari 25 10.72 1.07
Farsi 25 10.72 0.28
Hindi 25.9 11.10 0.51
Portuguese 11.79 5.05 0.32
Russian 20.27 8.69 0.66
Spanish 13.85 5.94 0.31
Ukrainian 15.89 6.81 0.31
Urdu 26.63 11.41 0.29

Spanish (PS) and Russian-Ukrainian (RU). These pairs are among the proposed
tasks of the language-pair evaluation in the NIST LRE’09, since they are con-
sidered of particular interest due to their similarities. Indeed, all of them except
Portuguese-Spanish are considered mutually intelligible.

The available datasets have been split into three separate subsets: training,
validation and test. The first two datasets includes just broadcast data (VOA2
and VOA3) from the development data provided by NIST LRE’09. However,
test segments come from CTS and VOA datasets and are the actual evaluation
data of NIST LRE’09. The amount of data (in hours) per language used in the
experiments is shown in Table 2.

4.2 Performance Evaluation

The performance of the systems has been evaluated according to the cost measure
(CDET ) defined in the NIST LRE’09 evaluation plan [17]. This measure takes
into account the false alarm and false rejection probabilities and the cost of a
bad classification of the segment of speech. As this measure shows the cost with
the optimal threshold, it corresponds with the minimum cost operating point,
so we will refer to it as minCDET [19].

Furthermore, DET curves have been used in order to evaluate the performance
of the systems in different operating points. In the legend of the DET curves
shown in Section 5 the EER (in %) is also shown.

Apart from the performance evaluation of the individual systems considered
in this work, the performance of fusion systems has been also included. Those
fusion schemes consist of a score level fusion where both mentioned reference
systems (FA-GMM and i-vector) and the corresponding CDNN-based model are
involved. A simple sum of the scores output by each system involved in the fusion
scheme has been used to obtain the final score for a certain segment of speech.
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Table 3. Performance of individual (left) and fusion (right) systems (minCDET ×100)

Individual Systems Fusion Systems
Reference CDNNs Ref. Systems + Ref. Systems +

FA-GMM i-vector Model1 Model 2 Model1 Model 2

BC 34.45 37.24 34.89 37.76 32.13 35.48
FD 33.81 45.51 49.92 49.88 49.46 49.79
HU 43.30 41.93 36.09 37.72 35.16 36.90
PS 11.51 9.15 17.08 14.71 10.07 9.53
RU 35.29 35.06 45.69 44.53 41.72 42.50

5 Results

The experiments shown in this paper are based on the five challenging language
pairs mentioned in Section 4.1. For each of these pairs, two different models
(according to the configurations shown in Table 1) and the two reference sys-
tems described in Section 3 have been evaluated on the same test samples. Fur-
thermore, the amount of data used for training the CDNN-based system (see
Table 2) is approximately the same that the used for training the reference
systems, although some languages datasets have been reduced in order not to
have big differences between the datasets of the two languages involved in each
experiment.

The performance of each individual system can be seen in the left side of
Table 3. According to the results, CDNN-based models outperform the best
reference systems in the case of Hindi-Urdu, with a relative improvement of
∼14% in minCDET . As it is shown in the right side of Table 3, by performing a
simple sum-fusion of the reference systems and the CDNNs systems, the relative
improvement yields up to ∼ 17% for the Hindi-Urdu pair. For the Bosnian-
Croatian experiment, the fusion system gives ∼ 7% of relative improvement,
and the performances of all individual systems are pretty similar for this pair.

By way of contrast, the models obtained for the language-pairs Farsi-Dari,
Portuguese-Spanish and Russian-Ukrainian, even the fusion ones, give worse
results than those yielded by the reference systems. Possible reasons might be
that the configuration parameters used are not adequate for the available data
or that the development dataset has not been adequately selected (with little
variability among utterances).

Regarding the comparison between the two CDNN-models, although Model 2
has more filters (feature maps) and, thereby, its capability to extract a better
abstract representation of the input signal is bigger, just in three pairs it gives
better results than Model 1. This might be caused by a lack of data or variability
within them that leads to the problem of overfitting. More evidence of occurrence
of that problem is that we have observed a big gap between validation and test
errors.

Finally, Figure 2 shows the DET curves obtained for each language-pair ac-
cording to the performance of both reference systems, the best CDNN system
and the best fusion model. As it was observed with the minCDET performance
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Fig. 2. DET curves corresponding to reference systems, the best CDNN system and
the best fusion according to the EER for each language pair. The EER (in %) is shown
in brackets.
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measure, our individual approach outperforms the reference systems in the ex-
periments with Hindi-Urdu, and the fusion one, in the Bosnian-Croatian pair.
Relative improvements and general behaviour or the systems are similar to the
one observed with minCDET measure.

6 Conclusions

Considering recent work, CDNNs can be considered a powerful tool to be applied
to SLR tasks with a tractable amount of data. It can be considered one of the
less costly approaches within the deep learning paradigm.

In this work, we have applied them to the problem of language-pair recog-
nition. The proposed systems have been trained to discriminate between two
languages, which are considered challenging due to their similarities. Results
have been compared with the ones obtained from two spectral systems.

The proposed models manage to outperform the reference systems in two out
of the five pairs considered. It should be pointed out that the test utterances
have a duration of just 3 seconds of speech. Moreover, the CDNN systems are
fed with the Mel-Filter bank outputs in blocks of 3 seconds. However, this can be
considered an exploratory work and more configurations and different treatment
of data should be studied.
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