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Abstract. The recently proposed speaker diarization technique based
on binary keys provides a very fast alternative to state-of-the-art sys-
tems with little increase of Diarization Error Rate (DER). Although the
approach shows great potential, it also presents issues, mainly in the
stopping criterion. Therefore, exploring alternative clustering/stopping
criterion approaches is needed. Recently some works have addressed the
speaker clustering as a global optimization problem in order to tackle
the intrinsic issues of the Agglomerative Hierarchical Clustering (AHC)
(mainly the local-maximum-based decision making). This paper aims at
adapting and applying this new framework to the binary key diariza-
tion system. In addition, an analysis of cluster purity across the AHC
iterations is done using reference speaker ground-truth labels to select
the purer clustering as input for the global framework. Experiments on
the REPERE phase 1 test database show improvements of around 6%
absolute DER compared to the baseline system output.
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1 Introduction

Speaker diarization is the task of segmenting an audio file into speaker homo-
geneous segments. It is well known the importance of speaker diarization as a
pre-processing tool for many speech-related tasks which take advantage of deal-
ing with speech signals from a single-speaker. For instance, speech recognition
can benefit of speaker diarization to adapt acoustic models to target speakers.
Furthermore, searching speech utterances spoken by target speakers within big
audiovisual content repositories is increasingly becoming very popular and chal-
lenging. Before identifying such speakers by means of speaker identification tech-
nology, they must be previously separated adequately. Here, speaker diarization
systems should be accurate and fast enough in order to process big quantities of
data in a reasonable time period.
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Most state-of-the-art systems perform a combination of Gaussian Mixture
Model (GMM) as speaker models, Bayesian Information Criterion (BIC) as a
measure for cluster merging and stopping criterion, and Viterbi decoding for
data assignment. All the mentioned algorithms are applied iteratively, imposing
a high computational load which results in too long processing times [1] (above
1xRT, being xRT the Real Time factor) for some real-life applications.

The recently proposed speaker diarization approach based on binary key
speaker modeling [1] provides a fast system (over 10 times faster than real time)
with little performance decrease. DER scores of around 27% with a real time fac-
tor of 0.103 xRT were reported using all the NIST RT databases. This technique
provides a fast alternative to the use of parallel computing, but using a single
CPU. Later, the approach was extended and successfully applied to process TV
broadcast audio in [2].

Both works report on the weakness of the stopping criterion being used, which
usually does not provide the optimum clustering in terms of DER. Indeed, [2]
demonstrates that the diarization system is able to produce better clusterings
than the one returned by the stopping criterion. This indicates that improving
stopping criterion will systematically produce a gain in performance.

Lately, a global optimization framework to speaker clustering was introduced
in [7]. Contrary to classic AHC, the framework tries to find the optimum cluster-
ing in a global way, instead of relying on greedy, local-maximum-made decisions
as AHC does. Given the weakness of the optimum clustering selection algo-
rithm used in the binary key speaker diarization system, it seems reasonable to
think that such an approach, which is able to implicitly determine the optimum
number of clusters, can provide an effective alternative to the faulty stopping
criterion.

This work follows this direction in order to evaluate the effectiveness of the
global clustering technique integrated in the binary key speaker diarization sys-
tem. First, the approach is adapted to be used in our case. Second, an analysis
of cluster purity of the binary key system is performed. And third, the global
clustering approach is tested in our system by using the extracted result of
the first analysis. Preliminary results show that the global clustering approach
outperforms the clustering originally returned by the system stopping criterion.
However, it also suffers some robustness issues among test audio files since the
global clustering parameters need to be tuned for each input file.

The paper is structured as follows: Section 2 describes the baseline binary key
speaker diarization system. Section 3 gives an explanation of the global speaker
clustering and proposes an adaptation suitable for the binary key system. Section
4 describes the experimental setup and results. Section 5 concludes and proposes
future work.

2 Overview of the Binary Key Speaker Diarization
System

The implementation of the binary key diarization system used in this work is
described in [2]. First, an acoustic processing block aims at transforming the
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acoustic input data into a suitable binary representation. Secondly, the binary
processing block takes the binary data from the previous stage to perform an
Agglomerative Hierarchical Clustering (AHC) but, unlike the classic approach,
all operations are performed in the binary domain. This results in a significant
gain in execution time, compared with state-of-the-art agglomerative systems.

As said above, the acoustic processing block transforms the acoustic feature
vectors into binary vectors called binary keys. The key element for this trans-
formation is a UBM-like acoustic model, called KBM (binary Key Background
Model), which is trained using the own test input data, but in a particular way.
A single Gaussian is trained every n seconds (with some overlap), so that at the
end a pool of several hundreds of Gaussians is obtained. Proceeding in this way,
it is guaranteed that the overall acoustic space of speakers is covered by the pool
of Gaussians. The next step consists in taking a subset of N components from
the pool so that the selected Gaussians are as complementary and discriminant
between them as possible. To achieve that, the Gaussians are selected iteratively
by calculating the KL2 (symmetric Kullback-Leibler) divergence between the
already selected components and the remaining ones, and the most dissimilar
component is selected. The process is repeated until having N components.

Once the KBM is trained, any set or sequence of input feature vectors can
be converted into a Binary Key (BK). A BK vf = {vf [1], ..., vf [N ]}, vf [i] =
{0, 1} is a binary vector whose dimension N is the number of components in
the KBM. Setting a position vf [i] to 1 (TRUE) indicates that the ith Gaussian
of the KBM coexists in the same area of the acoustic space as the acoustic
data being modeled. The BK can be obtained in two steps. Firstly, for each
feature vector, the best NG matching Gaussians in the KBM are selected (i.e.,
the NG Gaussians which provide higher likelihood for the given feature), and
their identifiers are stored. Secondly, for each component, the count of how many
times it has been selected as a top component along all the features is calculated.
Then, the final BK is obtained by setting to 1 the positions corresponding to
the top M Gaussians at the whole feature set level, (i.e., the Mth most selected
components for the given feature set). Note that this method can be applied to
any set of features, either a sequence of features from a short speech segment,
or a feature set corresponding to a whole speaker cluster.

The last step before switching to the binary process block is the clustering
initialization. This is done at the acoustic level in order to have an initial rough
clustering as a starting point. Taking advantage of the KBM trained before, an
initial set of Ninit clusters is build by using the first Ninitth Gaussians in the
KBM. The input data are divided into small segments (e.g., 100ms) and they
are assigned to the cluster whose Gaussian provides the highest likelihood.

The binary block implements an AHC clustering approach. However, all oper-
ations are done with binary data, which makes the process much faster than with
classic GMM-based approaches. First, BKs for the initial clusters are calculated
using the method explained in section 2. Then, the input data are reassigned to
the current clusters. Data are first divided into fixed length segments and BKs
are calculated for all them. Note that these BKs keys will be used along the
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iterations of the AHC, so they can be stored and reused. Next, the segments are
assigned by comparing their BKs with all current cluster BKs. The similarity
metric is given by equation 1.

S(vf1, vf2)) =

∑N
i=1(vf1[i] ∧ vf2[i])

∑N
i=1(vf1[i] ∨ vf2[i])

(1)

where ∧ indicates the boolean AND operator, and ∨ indicates the boolean OR
operator. This is a very fast, bit-wise operation between two binary vectors.

Once data are redistributed, BKs are trained for the new clusters. Finally,
similarities between all cluster pairs are obtained using equation 1 and the cluster
pair with the highest score is merged, reducing the number of clusters by one.

The iterative process is repeated until a single cluster is reached, storing all
the partial clusterings. At the end of the process, the final clustering is output by
using a modification of the T-test TS metric proposed in [6]. After the computa-
tion of intra-cluster and inter-cluster similarity distributions between segments
for each clustering Ci, the selected clustering is the one which maximizes TS ,
given by equation 2.

Ts =
m1 −m2
√

σ2
1

n1
+

σ2
2

n2

(2)

where m1 , σ1 , n1 , m2 , σ2 and n2 are the mean, standard deviation and size
of intra-cluster and inter-cluster distance distributions, respectively.

3 Global Speaker Clustering

As it has been reported in [1], the final clustering selection (i.e., the stopping
criterion) based on the T-test distance does not return the optimum clustering
(differences in performance of around 7-8% absolute DER with the REPERE
database [2]).

Recently an alternative approach to the classic AHC was presented in [7]. The
main argument against AHC is the greedy nature of the technique, which uses
local optimums to decide which cluster pair should be merged in each iteration. If
an erroneous merging is produced, the error will likely be propagated through the
iterations, resulting in impure clusters and, consequently, in loss of performance.
Following these thoughts, the proposed alternative clustering method addresses
the clustering as a global process, reformulated as a problem of Integer Linear
Programming (ILP), in order to minimize a certain objective function, subject
to a set of constraints, in a global manner.

The authors of [7] propose to apply this global clustering method immediately
after a first BIC-based AHC stage. At this point, it is assumed that the resulting
clusters are pure, i.e., each cluster contains speech from a single speaker. How-
ever, more than one cluster may refer to a given speaker. This can occur because
a given speaker who is speaking over different acoustic conditions (e.g. back-
ground music, background noise) may be modeled by different clusters by the
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system. It is at this point where the ILP clustering can be used to obtain a final
clustering where the several clusters referring to the same speaker are merged
together in a single cluster. Additionally, to deal with channel variability, each
input cluster is represented by an i-vector. Thus, given an input clustering of N
clusters, a set of N i-vectors is obtained. From here on, the clusters are treated
as single points.

Given theN points, the goal is to group them intoK clusters while minimizing
the objective function and meeting the constraints (refer to section 3.1). Some
of the N points can act as “centers” of new clusters. The remaining ones (e.g.,
the ones not selected as centers) must be associated to one of the centers. In the
end, there will be as many clusters as centers. Intuitively, the objective function
consists in minimizing the number K of clusters and the dispersion of the points
within each cluster. Regarding the constraints, each point which is not a center
can be associated with only one center and its distance to the center must be
short enough (below a given threshold).

3.1 Adaptation of ILP Clustering to the Binary Key Diarization
System

In order to adapt the technique to our framework, some modifications are pro-
posed. First, the points of the problem will be BKs instead of i-vectors. Second,
unlike the original work, no channel compensation is applied.

The ILP clustering formulation has been adapted to our framework (refer to
[3] for the original formulation), and it is defined as:

Minimize

N∑

k=1

xk,k − 1

D

N∑

k=1

N∑

j=1

d(k, j)xk,j (3)

Subject to

xk,j ∈ {0, 1} ∀k, ∀j (4)

N∑

k=1

xk,j = 1 ∀j (5)

d(k, j)xk,j ≤ δ ∀k, ∀j (6)

Eq. 3 is the objective function to be minimized. As said above, the aim is
to minimize the number of clusters and the dispersion of the BKs within each
cluster. The binary variable xk,k is equal to 1 if the BK k is a center. The distance
d(k, j) between BKs k and j is calculated as 1 − S(k, j), where S(k, j) is given
by eq. 1 (section 2). D is a normalization factor equal to the longest distance
d(k, j) for all k and j. The binary variable xk,j is set to 1 if BK j is associated
with center k. Eq. 5 ensures that each BK j is associated with only one center
k. Finally, each BK j associated with a center k must have a distance shorter
than a threshold.
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The proposed ILP clustering requires an input clustering to start the process.
This input clustering will be the result of applying a given number of iterations
of the AHC binary key diarization system. Each cluster will be represented as
a BK, extracted following the method for BK computation explained in section
2. Ideally, the input clusters should be as pure as possible, since the ILP clus-
tering method is not able to re-allocate misclassified data, so the errors will be
propagated to the resulting clusters. For this reason, an analysis of cluster purity
across the AHC iterations is conducted previous to the application of the global
clustering (section 4.2).

4 Experiments and Results

This section describes experimental setup and results for two different experi-
ments. Firstly, a study of cluster purity across the iterations of the baseline AHC
is performed. Secondly, the resulting purest clusterings from the first experiment
are taken to be used as input clusters to test the ILP global clustering.

As the aim of this work is mainly to analyze speaker clustering and stopping
criterion, it has been decided to use perfect SAD labels. That is, the speaker
ground-truth labels have been used to extract the speech activity and to discard
nonspeech content. In this way, the analysis can focus on speaker clustering
without the effects of additional noise (false alarm speech) and not loosing useful
speaker time (miss speech).

Both tests are evaluated on the REPERE phase 1 test dataset of TV data
[4]. This database was developed in the context of the REPERE Challenge [5].
It consists of a set of TV shows from several French TV channels.

Previous to experiment descriptions, the experimental setup is explained in
the next subsection.

4.1 Experimental Setup

Parameters and settings of the various modules of the binary key speaker di-
arization system are described here.

Regarding audio processing, the provided single channel is used without fur-
ther treatment. Next, feature extraction is performed. Standard 19-order MFCCs
are computed using a 25ms window every 10ms.

For training the KBM, single Gaussian components are obtained using a 2s
window in order to have sufficient data for parameter estimate. Window rate
is set according to the input audio length, in order to obtain an initial pool of
2000 Gaussians. Then, 896 components are selected to conform the final KBM
following the method described in section 2.

With regard to binary key estimate parameters, the top 5 Gaussian com-
ponents are taken in a frame basis, and the top 20% components at segment
level.

The clustering initialization is done by using the first Ninit Gaussian compo-
nents in the KBM as cluster models. Two different values of Ninit are tested in
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the experiments: 25 and 50. Then, 100ms segments are assigned to the different
clusters to obtain the first rough, over-segmented clustering.

Finally, in the AHC stage, BKs keys are computed for each 1s segment, aug-
menting it 1s before and after, totaling 3s.

In order to evaluate performance, the output labels are compared with the
reference ones to compute the DER. Since the proposed system does not handle
overlap speech, regions with more than one active speakers are ignored in the
score computation (note that this is only for evaluation, so that overlapped
speech regions are included during the complete diarization process). In addition,
as perfect SAD is being used and overlap speech is not being evaluated, false
alarm and miss errors are virtually equal to zero, so the analysis can focus only
on speaker errors.

4.2 Search of the Purest Clustering

The aim of this analysis is to study the evolution of the cluster purities among
the iterations of the diarization system. By using the reference speaker labels,
one can determine how much speaker time in the cluster belongs to the different
speakers in the reference. In a given cluster there is always a majority speaker,
who is the one with most speaker time within the cluster. Considering this
speaker as the “main” speaker, the cluster purity can be calculated as the ratio
between the cluster time assigned to the main speaker and the total cluster time.
However, purity of clusters of different sizes does not affect, globally speaking, in
the same way to the system. Due to this fact, the calculation of a time-weighted
purity measure is proposed instead by taking into account cluster sizes. The final
time-weighted cluster purity is calculated as the cluster purity multiplied by the
cluster length, and divided by the total duration of the test audio (after removing
nonspeech content). Finally, the time-weighted purity for a whole clustering can
be obtained as the average of the time-weighted purity of all clusters in the
clustering.

Normally, the purity should start to increase after a few iterations of AHC and
will start to decrease when the number of clusters is lower than the actual number
of speakers. In table 1, clustering purity is shown for two different clusterings: the
one providing highest purity (“highest purity columns”) and the one producing
lowest DER (“sysOut purity” columns). The experiment is repeated for 25 and 50
initial clusters (Ninit). Generally, purities reach the optimum in early iterations
of the AHC (with a number of clusters significantly higher than the optimum
clustering), although the exact iteration is showed to be quite dependent on
the show. In addition, optimum purities are higher in the case of 50 initial
clusters compared to 25 initial clusters. With regard to the system output, as it
could be expected, purity is, in general, inversely proportional to DER. Finally,
overall DER of system output with Ninit = 25 (9.47%) is slightly lower than for
Ninit = 50 (10.60%). It seems that each of the two configurations works better
for certain shows.
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Table 1. Results of cluster purity analysis broken down into shows. #spk is the number
of actual speaker of each show. Ninit indicates the number of initial clusters. Column
“highest purity” shows purity and number of clusters (#C) of the optimum clusterings
in terms of time-weighted overall purity, whilst column “sysOut purity” shows purity
and number of clusters of the optimum clusterings in terms of DER.

Show ID #spk

N init = 25 N init = 50

Highest purity SysOut purity Highest purity SysOut purity

#C Purity DER #C Purity DER #C Purity DER #C Purity DER

BFMTV BFMStory 1 6 19 0.910 24.60 8 0.883 4.37 45 0.923 51.49 6 0.865 6.42

BFMTV BFMStory 2 18 18 0.891 18.43 18 0.891 18.43 41 0.941 33.32 31 0.913 21.00

BFMTV BFMStory 3 10 19 0.951 29.77 13 0.937 7.25 35 0.962 33.19 11 0.915 5.58

BFMTV BFMStory 4 6 11 0.962 11.05 6 0.952 1.59 20 0.963 14.82 6 0.950 1.78

BFMTV CultureEtVous 1 5 14 0.950 52.13 4 0.891 10.11 21 0.970 52.04 3 0.881 8.88

BFMTV CultureEtVous 2 6 10 0.925 27.16 4 0.776 21.09 23 0.956 43.30 4 0.780 20.63

BFMTV CultureEtVous 3 16 22 0.904 63.80 5 0.744 24.44 29 0.851 62.16 4 0.702 23.68

BFMTV CultureEtVous 4 9 22 0.890 54.37 2 0.640 33.07 41 0.902 70.80 3 0.650 30.63

BFMTV CultureEtVous 5 6 21 0.905 72.06 3 0.823 9.90 20 0.917 65.02 3 0.823 9.90

BFMTV CultureEtVous 6 12 18 0.870 52.70 5 0.700 25.37 29 0.890 57.79 5 0.720 21.15

BFMTV CultureEtVous 7 14 18 0.839 43.19 6 0.701 31.22 34 0.850 68.51 9 0.758 26.67

LCP CaVousRegarde 1 7 23 0.925 70.01 4 0.823 15.46 48 0.957 82.51 6 0.883 12.11

LCP CaVousRegarde 2 5 7 0.938 8.00 4 0.903 3.11 14 0.951 9.28 4 0.917 2.64

LCP CaVousRegarde 3 5 21 0.950 40.21 6 0.836 19.28 37 0.950 55.75 15 0.886 21.94

LCP EntreLesLignes 1 5 15 0.919 24.07 10 0.909 11.34 19 0.958 19.64 19 0.958 19.64

LCP EntreLesLignes 2 5 27 0.932 28.44 6 0.891 4.92 26 0.949 24.37 6 0.891 4.44

LCP EntreLesLignes 3 5 15 0.945 29.45 3 0.823 14.74 26 0.935 29.45 3 0.823 14.74

LCP LCPInfo13h30 1 16 21 0.890 23.69 14 0.882 10.04 39 0.938 26.83 20 0.902 13.19

LCP LCPInfo13h30 2 12 18 0.951 16.77 11 0.890 10.87 41 0.953 34.64 23 0.918 17.40

LCP LCPInfo13h30 3 10 13 0.905 24.55 7 0.871 12.28 27 0.921 24.67 11 0.841 17.10

LCP PileEtFace 1 3 14 0.921 25.17 3 0.821 8.24 16 0.955 19.52 6 0.921 10.91

LCP PileEtFace 2 3 15 0.954 29.25 3 0.864 8.11 31 0.960 72.58 2 0.853 8.28

LCP PileEtFace 3 3 9 0.910 11.18 3 0.797 6.89 24 0.932 37.36 3 0.808 6.89

LCP PileEtFace 4 3 7 1.000 6.81 6 0.988 3.95 17 1.000 21.56 8 0.988 7.59

LCP PileEtFace 5 3 18 0.936 53.94 3 0.912 4.20 4 0.936 3.67 4 0.936 3.67

LCP TopQuestions 1 8 22 0.987 35.89 8 0.976 1.36 12 0.989 7.42 9 0.981 2.11

LCP TopQuestions 2 5 15 0.985 23.41 3 0.914 8.13 20 0.985 29.11 6 0.959 4.09

LCP TopQuestions 3 6 11 0.973 21.53 5 0.948 5.17 14 0.973 13.34 5 0.948 5.17

Overall - - - - - - 9.47 - - - - 10.60

4.3 Experiments on ILP Clustering

As stated above, the ILP clustering needs an input set of clusters to work with.
Ideally, this input clustering should be as pure as possible, as the technique is
not able to recover incorrectly assigned speech. The previous experiment shows
that the exact number of iterations to get the purest clustering is dependent on
the show. This fact results in a lack of robustness among different audio data.
To avoid this issue, in this experiment the clusterings with highest purity of the
previous experiment have been selected as input for the current one.

Figure 1 depicts DER of the ILP clustering in function of the threshold θ.
For comparison purposes, DER of the baseline system output and optimum
clusterings are also plotted. For the initial clustering obtained with Ninit = 25,
optimum DER is obtained for θ = 0.63, while for the one ofNinit = 50 is obtained
for θ = 0.66. Although the previous analysis shows that the average cluster purity
for the case of Ninit = 50 is higher, DER of clustering obtained from Ninit = 25
is slightly lower (15.1% versus 16,26%). This may be due to the higher number of
clusters to be merged. As it can be seen, the ILP method outperforms the baseline
system with T-test stopping criterion for a range of values of θ, obtaining a gain of
around 6% absolute DER with the best configuration. However, performance still
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Fig. 1. Overall DER trend of the ILP clustering while varying the threshold θ for Ninit

equal to 25 and 50. Overall DER of the baseline system output (BS out) and optimum
clusterings (BS optimum) are also provided for comparison.

Table 2. Results of ILP clustering experiments using the purest clusterings from table 1
for Ninit equal to 25 and 50 as inputs. For each show, values of the optimum threshold
θopt, resulting number of clusters #C, and DER are shown. The actual number of
speakers per show #spk is also provided.

Show ID #spk
N init = 25 N init = 50

θopt #C DER θopt #C DER

BFMTV BFMStory 1 6 0.63 5 4.52 0.78 6 7.17
BFMTV BFMStory 2 18 0.50 18 18.17 0.61 24 21.44
BFMTV BFMStory 3 10 0.57 11 6.42 0.63 11 4.51
BFMTV BFMStory 4 6 0.62 7 1.78 0.65 7 1.69
BFMTV CultureEtVous 1 5 0.77 2 18.57 0.82 3 20.35
BFMTV CultureEtVous 2 6 0.81 3 13.79 0.73 5 17.42
BFMTV CultureEtVous 3 16 0.77 4 30.31 0.77 6 55.28
BFMTV CultureEtVous 4 9 0.83 4 39.64 0.89 14 30.56
BFMTV CultureEtVous 5 6 0.77 4 38.63 0.75 4 33.24
BFMTV CultureEtVous 6 12 0.76 4 25.74 0.85 4 22.68
BFMTV CultureEtVous 7 14 0.77 4 29.73 0.82 4 26.48
LCP CaVousRegarde 1 7 0.69 4 9.61 0.79 5 12.05
LCP CaVousRegarde 2 5 0.63 4 3.11 0.73 4 2.60
LCP CaVousRegarde 3 5 0.69 9 19.58 0.74 7 19.31
LCP EntreLesLignes 1 5 0.63 11 10.08 0.50 19 19.64
LCP EntreLesLignes 2 5 0.68 5 3.41 0.75 4 9.27
LCP EntreLesLignes 3 5 0.77 3 15.39 0.76 3 15.00
LCP LCPInfo13h30 1 16 0.52 15 10.07 0.65 13 10.42
LCP LCPInfo13h30 2 12 0.53 11 15.26 0.56 22 11.40
LCP LCPInfo13h30 3 10 0.57 6 13.76 0.57 17 13.59
LCP PileEtFace 1 3 0.77 2 12.28 0.76 4 10.32
LCP PileEtFace 2 3 0.74 3 7.15 0.77 2 8.28
LCP PileEtFace 3 3 0.70 5 8.22 0.73 4 8.82
LCP PileEtFace 4 3 0.63 6 2.94 0.77 3 1.35
LCP PileEtFace 5 3 0.74 2 4.98 0.50 4 3.67
LCP TopQuestions 1 8 0.63 8 1.60 0.63 9 1.01
LCP TopQuestions 2 5 0.72 4 2.89 0.77 4 2.36
LCP TopQuestions 3 6 0.66 5 2.79 0.64 7 4.30

Overall - - - 9.57 - - 10.20

does not reach that of the optimum clustering of the baseline system manually
selected(5.63% absolute higher).

In order to demonstrate the dependence of threshold θ on the show, additional
results are provided in table 2. Here, DER is shown for the optimum value of
θ for each show. Obtained results are quite similar to the ones of the baseline
system with optimum clustering manually selected. The reading of these results
could be twofold. On one hand, the technique presents a lack of robustness
since the number of iterations and threshold must be tuned for each input audio
file. On the other hand, even if the threshold is not tuned in a per-show basis,
the proposed adaptation of the ILP clustering outperforms the baseline system
stopping criterion.
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5 Conclusions and Future Work

This work focuses on the exploration of alternative methods to the stopping
criterion of the binary key speaker diarization approach presented in [2]. The
recently presented global framework for speaker clustering is a candidate to
solve this drawback, as the technique implicitly estimates the optimum number
of clusters. As this approach needs an input clustering as pure as possible, an
analysis of cluster purity of the binary key AHC approach was carried out in
order to select the optimum clustering in terms of purity. Then, the original ILP
framework was adapted to our needs by replacing the i-vector with the binary
key and was tested and compared with the baseline system on the REPERE
phase 1 test database. Experiment results show an improvement of performance
with respect to the baseline system, but also present some robustness issues
according to the audio file being processed. It is thought that an in-depth analysis
of the relation between system parameters (number of previous AHC iterations,
threshold) and audio nature (audio length, number of speakers) could lead to
some guidelines in order to tune system parameters for optimizing the system
to the input audio. Finally, DER rates are still high and applying some kind of
channel compensation could help to improve performance.
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