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Abstract. There is a great amount of information in the speech signal,
although current speech recognizers do not exploit it completely. In this
paper articulatory information is extracted from speech and fused to
standard acoustic models to obtain a better hybrid acoustic model which
provides improvements on speech recognition. The paper also studies the
best input signal for the system in terms of type of speech features and
time resolution to obtain a better articulatory information extractor.
Then this information is fused to a standard acoustic model obtained
with neural networks to perform the speech recognition achieving better
results.
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1 Introduction

Speech production is a complex process which has attracted a wide research
activity in the last decades to obtain articulatory information embedded in the
speech signal. The motivation of this work is to study how articulatory infor-
mation can improve phoneme classification accuracy. As shown in [1], [2] and
[3], is possible to take advantage of phoneme similarities to build articulatory
class specific classifiers, which we use to provide additional inputs for a phoneme
classifier.

To deal with that amount of information and to obtain a better articulatory
information representation, we propose to integrate neural networks in a hybrid
recognizer. The performance of these models is very sensitive to the input fea-
tures, therefore in this paper we study two different signal representations, Mel-
Frequency Cepstrum Coefficients MFCC and a less processed representation,
the Mel scaled Filter Bank. It is also important to study the impact of higher
temporal resolution in the feature extraction process, that we think it may help
convolutional networks to compensate time label misalignments, which usually
degrade the performance of regular networks.

Once a good representation of the articulatory process is obtained as articu-
latory features, they may be included to get a hybrid model which takes advan-
tage of them to reduce classification errors. We will show in the experimental
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section that the fusion of the articulatory information with more standard fea-
tures reduces significantly recognition errors, thus validating the assumption of
articulatory information being helpful to improve speech recognition.

This article is organized as follows. Section 2 describes articulatory features
used in this work. Section 3 explains our representation of neural networks.
Section 4 describes experimental procedure. In Section 5 the results are shown,
and in Section 6 are exposed the conclusions extracted from this study.

2 Articulatory Features

Speech production involves three processes; initiation, phonation, and articu-
lation. The first, initiation is the process in which air starts to flow through
vocal tract. During the second process, phonation, vocal chords start to vibrate
producing the sound. Finally, in the articulation process, some constrictions are
made in the oral cavity to modify the produced sound.

During the articulation process, the constrictions made on the vocal cavity
perturbate natural air flow. The location and type of constriction imprints spe-
cific information in the speech signal that we propose to extract and use to
improve speech recognizers.

Constrictions could be done in different places, or by different manners. In
order to study the speech production process, articulatory features have been
described by phonology, which also studies their relation to human vocal tract.
Those articulatory features explain all sounds related with speech and they are
pictured on International Phonetic alphabet (IPA). Regarding to the relation
between articulatory features, for example the place where the main constriction
is made or the shape of lips, they are clustered in independent groups, which
offers an opportunity to classify sounds from different points of view and give
us additional information to perform the phoneme classification. There are some
previous works on speech recognition using only articulatory features to classify
phonemes like [1] with good results, or combined with acoustic features [2].
Other works use them for speaker recognition [3]. Besides, there are works that
use neural networks for speech recognition with articulatory features like [4].

We consider five different articulatory properties. The first property is voic-
ing, which tells if a sound is voiced or unvoiced, and it is related to vibration
of vocal cords. The second property used in this work is place, which indicates
where is allocated the main constriction. Another property we deal with is the
manner, which is referred to how the sound is generated, if it is a nasal sound
or fricative and so on. More related to vowel sounds there are two properties,
rounding, that describes if lips are rounded or not during pronunciation. And
finally the vowel location, to express the position of the tongue, if it is on the
front of vocal cavity or on the back. Table 1 shows all properties used in this work
and the features which are classified in each property. It is important to point
that silence is included in each property. The class Silence does not describe a
phoneme but it is included to allow the classifier to deal with audio segments
without speech. The same concept is applied to not representative, for instance if
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the sound corresponds to a consonant, it does not make sense to speak in terms
of rounding, which is a property that only take place on vowel sounds.

Table 1. Articulatory properties and theirs features

Property Classes N Classes
Voicing Unvoiced, Voiced, Silence 3
Place High, Medium, Low, Labial, Dental, Alveolar, 10

Palatal, Velar, Glottal, Silence
Manner Vowel, Nasal, Fricative, Aproximant-Lateral, 6

Stop, Silence
Rounding Rounded, Not Rounded, Not Representative, Silence 4
Vowel Location Front, Middle, Back, Not Representative, Silence 5

With those features, now we have to label the database. This process should be
done by manual labeling the database, but we propose a simpler labeling process
based on the phonetic labels provided by a canonical pronunciation dictionary,
since we have word level transcriptions. Then, using the phonetic description
of those phonemes we set the attributes which correspond to the articulatory
features described on Table 1. In this study it is used the TIMIT Acoustic-
Phonetic Continuous Speech Corpus in which each phoneme was characterized
and pictured in a table with the Sampa and IPA nomenclatures. The description
of the phonemes is based on the work [5] and an extract from this table is shown
on Table 2.

Table 2. Extract of TIMIT phonemes and their description on Sampa, IPA and ar-
ticulatory features. (NR means Not Representative).

Mono-phonemes Sampa IPA Voicing Place Manner Rounding Vowel Location
aa A: A Voiced Low Vowel Not Rounded Back
ae { æ Voiced Low Vowel Not Rounded Front
ah V 2 Voiced Low Vowel Not Rounded Back
ay aI aI Voiced Low Vowel Not Rounded Front
b b b Voiced Labial Stop NR NR

3 Artificial Neural Networks

In recent years, there has been an increasing interest in neural networks. This
work is based on multi-layer perceptron, a classical architecture of neural net-
works [6]. Equation (1) describes the mathematical model for an artificial neu-
ron which is given a vector of M elements as input X = [x1, x2, . . . , xM ], where
W = [w1, w2, . . . , wM ] are the weights for that input, b is a bias, and θ(·) is
the activation function that applies a non linearity to obtain the output. The
training process is based on generalized gradient descent [6].

y = θ

(
M∑

m=1

(wm · xm) + b

)
(1)
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The network is composed of tree layers. The input layer, one hidden layer with
the internal parameters, and the output layer which transforms the internal
parameters to human comprehensive information. Since in this work we use
neural networks as classifiers, we choose the cross-entropy as cost function and
softmax, shown in (2), as activation function for the output layer, where X =
[x1, x2, . . . , xi, . . . , xN ] is a vector of N elements, where the output vector is
normalized and it gives us the probability of being part of each class.

θ(xi) =
expxi∑N

n=1 expxn

, (2)

Other activation functions used are the Sigmoid function for hidden layers,
and the Rectified Linear Unit (ReLU) on input layer because this type of neurons
can regularize the training process both in image [7] and on speech [8].

One of the problems which can be found while processing speech signal with
neural networks is that neural networks are prepared for recognizing static pat-
terns, but speech signal is a complex and non stationary signal. One phoneme
has a temporal evolution, so in order to recognize better that phoneme it is
useful to show to the network the temporal context of the speech signal during
the phoneme. That means that it is important to give to the neural network
the vector with the calculated features for this time, and a context which con-
sists on the previous and posterior vectors. We suppose that the reference is on
central vector, so the label of the overall network input is the label which is
referred to the central vector. Using neural networks to learn spectro-temporal
patterns makes them very sensitive to the exact label alignment, which can be
inaccurate since it is obtained from a reference Hidden Markov Model HMM.
This effect can be minimized with convolutional neural networks. This type of
neural networks can be interpreted as if one neuron is a filter of a windowed
input, then this filter is repeated for some displacements of that window. Fi-
nally, the maximum activation is selected as output of all those repeated filters.
Mathematically, suppose that there is an input composed by feature vectors
X = [x1, x2, . . . , xM ] that belongs to K temporal windows, so the input may be
written as Xk = [x1,k, x2,k, . . . , xM,k]. There are J filters that we want to com-
pute, therefore the filtering for each time index is hk = [hk,1, hk,2, . . . , hk,J ] where
each filter is represented as (3). To complete the convolutional layer, the output
corresponding to the maximum temporal output per each filter as summarized in
(4) is called max pool stage whose overall output is a vector P = [p1, p2, . . . , pJ ]
which is the input for the next stages on the neural network.

hk,j = θ

(
M∑

m=1

(wm,j · xm,k) + bj

)
(3)

pj =
K

max
k=1

(hk,j) (4)

This kind of layer has proved a good behavior on different type of inputs
and applications where there is some spatial or temporal variability, and the
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convolutional mechanism might regularize the input, like in image [9] or in speech
in different ways [10] [11].

4 Experiment Description

This work uses the TIMIT Acoustic-Phonetic Continuous Speech Corpus, as
mentioned on Section 2, and the phonetic classes are referred to that corpus.
This corpus consists on 508 speakers from eight United States’ regions, 462 on
training set and 50 on testing set. As in previous works, we use the 3696 phrases
marked as ’si’ and ’sx’, and in the testing set 192 core test phrases [12]. From the
training set a 10% has been separated for development and validation set. For all
experiments a bigram language model has been used, and the phone alignment
has been obtained from reference HMMs. The database has 61 phoneme classes,
which have been extended up to 183 classes by using the state index in the HMM
as label, then each of those classes are composed by the phoneme class and the
state, using three states per phoneme [11]. However, in the test process the labels
are contracted to the 39 to calculate errors, as described on [13], [11] or [10]. One
of the benefits of neural networks is that the forward evaluation at test time is
inexpensive in computational terms, even though training in this experiments
can take up to four days in a graphic processing unit (GPU) architecture.

As mentioned before, neural networks have to take care of the influence of tem-
poral displacements. For the time-frequency analysis, a 25ms window is taken to
get the frequency analysis, and then this window is displaced 10ms to calculate
the next frame [14]. It has been suggested that there exists a context of 100ms
with relevant information around each frame, as said in [15], who in [16] used
mutual information to check that hypothesis, and [17] with the same method
showed that information remains in cepstrum feature space. Therefore, all that
information should be shown to the neural network by stacking a time-frequency
matrix with 10 frames around the labeled frame, 5 each side to maintain symme-
try, for a total of 11 frames, equivalent to 110ms of context. The temporal context
used by the convolutional networks input is extended to 15 frames, 150ms, to
allow them to realign it while using a comparable effective context of 11 frames.

Another effect that has been taken into account is the time resolution. As
mentioned before, the time-frequency analysis is made by transforming a win-
dow of the signal of 25ms and then displacing it 10ms. In order to increase time
domain resolution the displacement of analysis window is 5ms, but to maintain
the number of labels, and to allow a comparative between this two types of tem-
poral resolution, the separation between two time-frequency matrices is 10ms.
In other words we can say that the time resolution of time-frequency input ma-
trices has been increased but the number of matrices has been maintained as
before. We show that effect in Figure 1, where it is pictured the same phoneme,
labeled at the same time instant, but each one with different time resolution.

For the experiments, the TIMIT audios are processed in eight different ways
taking into account the strategies mentioned before. We used the static and dy-
namicMFCC, and the Mel scaled filter bank with static and dynamic coefficients,
which are resumed in Table 3
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Fig. 1. Time-frequency analysis of a TIMIT phoneme. On the left a 10ms resolution
matrix and on the right the 5ms resolution matrix.

Table 3. Input features description

Name Coefficients description Analysis
displacement

Mfcc EZ 10 12 Mfcc coefficients, energy and cepstral mean subtraction 10ms
Mfcc EZ 05 12 Mfcc coefficients, energy and cepstral mean subtraction 5ms
Mfcc EACZ 10 12 Mfcc coef., energy, cepstral mean subtraction and dynamic coef. 10ms
Mfcc EACZ 05 12 Mfcc coef., energy, cepstral mean subtraction and dynamic coef. 05ms
Fb 26 E 10 26 Mel scaled filter bands with energy 10ms
Fb 26 E 05 26 Mel scaled filter bands with energy 05ms
Fb 26 EDA 10 26 Mel scaled filter bands, energy and dynamic coef. 10ms
Fb 26 EDA 05 26 Mel scaled filter bands, energy and dynamic coef. 05ms

The architecture of the system is composed of two different parts. The first
part is a classificator, which is a neural network of three layers, an input layer, a
hidden layer, and the output layer. For those classificators the first layer has 512
ReLu neurons, and it can be of two types: a regular mlp layer or a convolutional
layer described in Section 3. The hidden layer is formed by 256 logistic neurons.
And finally, the output layer has the same neurons than classes to classify, whose
output is the probability of membership of the example in the input to the class
which this output is referred to. The second part of this architecture is a fusion
neural network. Once the classificators of phonemes and articulatory properties
are obtained, the information that can be achieved from the articulatory prop-
erties is shown to the fusion network to improve the classification result. In this
work three fusion philosophies are explored. The first one, Output-Layer-Fusion,
consist on composing an input with the probabilities of the phoneme states and
the articulatory features, then a neural network uses this information to per-
form a phoneme classification. The second strategy is to use the output of the
hidden layer, instead of the output layer, to conform an input vector for the
fusion network, the Previous-Layer-Fusion. The last strategy used is give to the
neural network the context of the classified input by stacking the previous and
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posterior classification outputs, the Context-Fusion. Moreover this fusion net-
work can have two architectures, the fist one is only an input layer followed by
an output layer, without hidden layer, and the second type has a hidden layer.
These layers follow the philosophy of previous networks and use the same neuron
types, with 1024 neurons on input and 512 in hidden layer.

5 Results

The first results obtained are the classification of phonemes as baseline, and the
experiment with the first layer as convolutional one. In this experiment we ana-
lyzed the accuracy of the neural network output, and of the speech recognition
system. The first is measured in terms of Frame by frame Error Rate, FER, which
counts substitutions, while the second is measured in terms of Phoneme Error
Rate, PER, which takes into account the substitutions, deletions and insertions.
As it is shown on Table 4 a better performance is obtained when convolutional
networks are used. Another important point is that when a better time resolu-
tion is used a better result is obtained in most of the cases, obtaining the best
result, a PER of 30.52% on the Fb 26 EDA 05 case in the convolutional case.

Table 4. FER and PER in phoneme classification. FER is calculated for 183 classes
and PER is calculated for 39 classes.

Features Baseline Convolutional
FER[%] PER[%] FER[%] PER[%]

Mfcc EZ 10 49.85 33.55 48.05 32.09
Mfcc EZ 05 50.18 34.02 48.07 32.27
Mfcc EDAZ 10 46.57 31.92 47.80 31.94
Mfcc EDAZ 05 46.25 32.57 47.28 30.72
Fb 26 E 10 49.03 32.57 50.01 32.12
Fb 26 E 05 49.27 32.82 47.90 31.88
Fb 26 EDA 10 45.40 30.90 49.87 32.96
Fb 26 EDA 05 46.12 30.67 46.92 30.52

In Table 5 we show the classification FER for each articulatory property, for
two configurations. In this case the better results are obtained on baseline archi-
tecture. This effect can be explained because in these features, the position of
events may not be as important as in phoneme classification, since the articula-
tory classes are less specific. Nevertheless in this case it can be observed as in
the phoneme case that using a higher temporal resolution may help classifica-
tion. As we can see, the best performance has been obtained for higher temporal
resolution in almost all cases.

For fusion experiments the Fb 26 EDA 05 convolutional network classificator
has been selected to use it as baseline, which provides an accuracy of PER of
30.52%, and whose output is fused with the articulatory classificators. For this
classificator we used the Fb 26 EDA 05 baseline classificator for each property in
order to obtain comparable results and to know which property helps more to the
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Table 5. FER[%] in articulatory classification. The properties are Voicing, Place,
Manner, Rounding and Vowel Location. #Classes means the number of classes of these
property.

Features Baseline Convolutional
Voice Place Manner Roundig Location Voice Place Manner Rounding Location

#Calsses 3 10 6 4 5 3 10 6 4 5
Mfcc EZ 10 9.91 27.59 20.84 14.79 19.93 10.13 25.36 19.64 14.03 16.23
Mfcc EZ 05 9.21 27.23 20.26 14.82 16.60 9.40 25.92 19.32 16.36 16.36
Mfcc EDAZ 10 8.91 24.59 18.54 13.37 15.66 9.48 25.23 19.11 14.06 15.92
Mfcc EDAZ 05 8.73 24.63 18.67 13.59 15.24 8.85 25.20 18.20 14.23 15.32
Fb 26 E 10 9.51 26.95 20.05 14.90 17.40 9.66 26.12 17.90 15.14 17.39
Fb 26 E 05 9.67 26.32 20.29 15.13 16.94 9.67 24.90 18.42 13.92 15.82
Fb 26 EDA 10 8.54 23.90 18.07 13.51 15.34 9.56 26.09 19.33 14.47 16.65
Fb 26 EDA 05 8.30 24.61 17.59 13.51 14.91 8.96 24.91 18.12 13.62 15.60

Table 6. Fusion experiments. FER is calculated for 183 classes and PER is calculated
for 39 classes.

Properties Output-Layer-Fusion Previous-Layer-Fusion Context-Fusion
2 Layers FER[%] PER[%] FER[%] PER[%] FER[%] PER[%]
Phoneme + Voicing 45.76 30.01 44.07 27.98 44.68 29.93
Phoneme + Position 45.35 29.92 43.49 27.26 44.39 29.63
Phoneme + Manner 45.31 29.93 43.57 27.79 44.27 29.48
Phoneme + Rounding 45.69 30.37 43.97 27.83 44.24 29.77
Phoneme + Location 45.57 30.12 44.02 28.11 44.10 29.74
Phoneme + All 44.61 29.67 43.21 27.03 43.82 29.66
3 Layers FER[%] PER[%] FER[%] PER[%] FER[%] PER[%]
Phoneme + Voicing 46.27 30.49 44.46 28.20 45.22 30.17
Phoneme + Position 45.67 29.85 43.71 27.64 44.84 29.92
Phoneme + Manner 45.57 29.67 43.61 27.52 44.53 29.77
Phoneme + Rounding 46.02 30.00 44.40 27.97 44.74 29.88
Phoneme + Location 45.92 29.93 44.23 28.09 44.58 29.89
Phoneme + All 45.20 30.06 43.04 26.96 44.05 29.86

classification for the same conditions. In Table 6 is shown that Previous-Layer-
Fusion provides better accuracy thanOutput-Layer-Fusion. Using Output-Layer-
Fusion might have as drawback that the classification has already been made,
and errors can be propagated to the fusion stage. Other interesting effect shown
in these results is that the addition of more context to the fusion network, like in
Context-Fusion, improves the result, even though in these conditions it can not
achieve as good results as Previous-Layer-Fusion. The motivation of the work is
to study how articulatory information can improve phoneme classification accu-
racy. Since it is harder for a general phoneme classificator to take advantage of
phoneme similarities. We propose different methods to train articulatory specific
classifiers and to fuse their outputs to improve the accuracy of the system. One
last impression of these results may be that manner or position provide more
information for the classification than the other articulatory features. This may
be because this two properties are present in all phonemes, so this property add
extra information for all phonemes. When we fuse the phoneme classificator, all
phonemes have extra information to improve classification. Although it can be
seen that the fusion with manner or position attain the best improvement in
accuracy individually. We show that fusion with all articulatory properties pro-
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vides an 26.96%PER confirming our previous hypothesis. In Table 6 the relative
improvement obtained using the different fusion methods ranges from 1% to 11%
which is comparable to previous results in similar conditions in the state of the
art [2].

6 Conclusions and Future Work

The main motivation of this work is study how articulatory information can
improve phoneme classification accuracy, for that we propose to process artic-
ulatory information to build specific classifiers which can be used as additional
information for the phoneme classifier. The first steps of the current study were
to determine the manner in which articulatory features can be extracted from
speech signal using neural networks as feature extractor, and use them to com-
plement the acoustic model for using speech recognition. The results of this
study indicate that using a less processed input in the frequency domain like
Mel scaled filter bank, instead of cepstrum domain input, like MFCC, increases
accuracy in acoustic neural network models. Moreover it seems that the higher
time resolution, the better results, not only in convolutional neural networks
which compensate misalignment, but also in simpler architectures, though this
may be studied deeper in future works. The other aspect studied in this paper
is how articulatory features may perform in an hybrid acoustic model, and the
evidence from this study suggests that this kind of models provide a better rep-
resentation which helps the speech recognition. It is shown that some properties
like position or manner produce a mayor impact on hybrid models, but the
relations among all of them in a unified hybrid model achieve the best results.

Further work needs to be done on both lines. It would be interesting to de-
terminate how much time resolution is needed for each type of input to perform
articulatory information extraction. The other aspect in which it is appropriated
a further research is on fusing this articulatory information. The new techniques
on deep neural networks may reach better representation of hybrid models by
extracting higher levels of abstraction in the relations between articulatory fea-
tures and phoneme acoustic models.
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