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Abstract Nitric oxide (NO) has increasingly been recognized as an important cell 
signaling molecule that controls various steps of cancer development and metasta-
sis. NO regulates a wide range of tumor-associated proteins through S-nitrosylation, 
a reversible coupling of a nitroso moiety to a reactive cysteine thiol (SH) group to 
form an S-nitrosothiol (SNO). In this article, we discuss the various roles of pro-
tein S-nitrosylation in cancer development with a focus on anoikis resistance, cell 
invasion and angiogenesis, which are key determinants of cancer metastasis. We 
specially address the effect of S-nitrosylation on protein function and discuss how 
this post-translational modification affects the aggressive and metastatic behaviors 
of cancer cells. We propose that dysregulated NO signaling is common in many, if 
not most, metastatic cancers and that understanding the S-nitrosylation process will 
facilitate the development of novel therapeutic and preventive strategies against 
cancers.
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Abbreviations

ABCG2 ATP-binding cassette sub-family G member 2
c-Src cellular Src
DETA diethylenetriamine
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DISC death-inducing signaling complex
DPTA dipropylenetriamine
DR death receptor
DTT dithiothreitol
ECM extracellular matrix
EGFR epidermal growth factor receptor
eNOS (NOS3) endothelial nitric oxide synthase
ER estrogen receptor
ERK extracellular signal-regulated kinase
FAK focal adhesion kinase
FLIP FLICE-inhibitory protein
FLIP2CM FLIP double-cysteine mutant
JNK Jun N-terminal kinases
IGF insulin-like growth factor
iNOS (NOS2) inducible nitric oxide synthase
MKP7 MAP kinase phosphatase 7
MMP matrix metalloproteinase
NO nitric oxide
NOS nitric oxide synthase
nNOS (NOS1) neuronal NOS
PI3K phosphoinositide-3-kinase
PTEN phosphatase and tensin homolog deleted on chromosome ten
PTM post-translational modification
RNOS reactive nitrogen-oxygen species
ROS reactive oxygen species
SDF-1α stromal cell-derived factor-1α
SH cysteine thiol
SNAP S-nitroso-N-acetylpenicillamine
SNO S-nitrosothiol
SNOC S-nitrosocysteine
VEGF vascular endothelial growth factor

Introduction

Nitric oxide (NO, formula N = O) is an important signaling molecule that functions 
as a messenger or effector in various biological processes [1]. NO is synthesized by 
the metabolism of L-arginine to L-citrulline through a complex reaction catalyzed 
by NADPH-dependent enzymes called nitric oxide synthases (NOS), which exist 
in three isoforms, namely, neuronal NOS (nNOS or NOS1), inducible NOS (iNOS 
or NOS2), and endothelial NOS (eNOS or NOS3) [2]. Expression of NOS and NO 
activities are involved in the pathophysiology of cancers, particularly in tumori-
genesis and metastasis in various tissues including brain, breast, lung, prostate, and 
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pancreas [3–6]. With regards to cancers, NO is derived either from tumor cells or 
neighboring cells, e.g. endothelial cells in the microvasculature and immune and 
stromal cells in the tumors [6, 7]. NO with its lipophilic nature could diffuse freely 
across cellular membranes, i.e. of neighboring cells and ultimately exerts its effect 
on tumor cells. Depending on (i) its activity and cellular sources (tumor or neigh-
boring cells) (ii) localization of NOS (iii) concentration and duration of NO expo-
sure (iv) cellular context and sensitivity to NO and (v) tumor stage, NO appears to 
exert dichotomous roles (promotion or inhibition) in cancers [8–10].

With its unique chemistry, the reactivity of NO varies under different biological 
and pathological conditions. The chemical biology of NO is generally classified 
into direct and indirect effects [11]. Direct effects are defined as those of direct 
interactions between NO, generally at a low level, and specific molecular targets, 
e.g. metals, lipids and DNA through free radical reactions. Indirect effects are those 
mediated by reactive nitrogen-oxygen species (RNOS) derived from the reaction of 
NO, generally at a high level, with various reactive oxygen species (ROS) leading to 
nitrosative or oxidative stress. For instance, NO reacts with superoxide anion (O2

•−) 
in the inner-membrane environment that results in the generation of (i) peroxynitrite 
(ONOO−) in the case of equal concentrations of NO and O2

•− or (ii) dinitrogen tri-
oxide (N2O3) in the case of excess NO. The reaction of NO and O2 (auto-oxidation) 
yields a nitrogen dioxide (NO2) intermediate that forms N2O3. N2O3 (major species) 
and ONOO− are endogenous S-nitrosylating agents that lead to S-nitrosylation of 
proteins with reactive sulfhydryl groups.

In cancers, S-nitrosylation is an important post-translational protein modification 
(PTM) process that affects virtually all cancer cell phenotypes including cell growth 
and differentiation, apoptosis, migration and invasion, and angiogenesis [12]. The 
principal target of protein S-nitrosylation is the thiol group of protein’s cysteine 
residues. Not all cysteine residues, however, are susceptible for S-nitrosylation and/
or responsible for the alteration of protein functions, which depend largely on the 
degree of hydrophobicity, electrostatic environment, orientation of aromatic resi-
dues and proximity of target thiols to redox center, and protein-protein interactions 
[13–15]. In this article, we will review current findings on NO signaling and its role 
in cancer with a focus on protein S-nitrosylation and its effect on the various steps 
of cancer progression and metastasis.

Cancer Metastasis

Neoplastic transformation is an early cellular event leading to carcinogenesis. Neo-
plastic transformation of normal cells is typically a result of chronic or persistent in-
flammation of tissues in response to stresses or a result of genetic mutations caused 
by carcinogens, or both [12]. For example, NO has been shown to mediate the 
neoplastic effect of the carcinogenic metal chromium (VI) on human lung epithelial 
cells through NO-mediated S-nitrosylation of the Bcl-2 protein [16, 17].
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The continuous expansion and progression of a primary tumor frequently leads 
to metastasis, a process in which a restricted proportion of tumor cells spreads from 
the primary tumor to form secondary tumors at distant sites. Because metastatic 
cells are generally resistant to radiation and chemotherapy, they are a major cause 
of cancer-related death and prime targets for novel cancer therapies [18]. To me-
tastasize, tumor cells must acquire or possess the following properties [19, 20]: 
(i) unlimited or enhanced proliferative capacity (ii) vascularization within the sur-
rounding host tissues through the synthesis and secretion of angiogenesis factors 
(iii) local invasion of the host stroma by tumor cells into the blood and/or lymphatic 
circulation (intravasation) (iv) survival of tumor cells in the circulation (anoikis 
resistance) (v) adhesion to the capillary wall (vi) invasion and penetration of the 
cells out of the circulation (extravasation) and (vii) colonization, proliferation, and 
angiogenesis of tumor cells at distant sites (Fig. 8.1). NO has been shown to partici-
pate in all of these steps, which are further discussed below.

S-nitrosylation and Anoikis

Apoptosisor programmed cell death is a tightly regulated process characterized by 
shrinkage of cells, blebbing of plasma membranes, and condensation and fragmen-
tation of chromatin. Acquired apoptosis resistance is a hallmark of most, if not all, 
types of cancer that is implicated in the neoplastic evolution of pre-malignant cells 

Fig. 8.1  Diagrammatic representation of major steps involved in cancer metastasis. Increased NO 
production has been associated with many human metastatic tumors. Its effects span from neoplas-
tic transformation to tumor colonization at distant sites
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and in cancer metastasis [21]. With regards to metastasis, the loss of cell interaction 
with neighboring cells and the extracellular matrix (ECM) following intravasation 
into the circulation triggers apoptosis referred to as anoikis [22]. Anoikis prevents 
detached tumor cells from colonizing elsewhere, thereby, it is a critical step in de-
termining cancer metastasis. Surviving anoikis facilitates subsequent reattachment 
and colonization of tumor cells at distant sites [23]. Clinical evidence has demon-
strated a strong correlation between anoikis resistancein advanced stage cancers 
and poor survival of patients, strengthening the notion that anoikis resistance is a 
prerequisite for cancer metastasis [23, 24].

Anoikis is regulated by many signaling pathways, notably by the pro-survival 
signals phosphoinositide-3-kinase (PI3K)/Akt, extracellular signal-regulated ki-
nases (ERK), Jun N-terminal kinases (JNK), and apoptosis-regulatory signals as 
well as certain membrane microdomains and oncogenes. A number of direct and 
indirect evidence suggests that increased NO production suppresses anoikis through 
S-nitrosylation of several target proteins described below.

S-Nitrosylation and Pro-Survival Signals

Abnormal regulation of the phosphatases/kinases including PI3K/Akt activates pro-
survival signaling and suppresses anoikis [25]. Numajiri et al. demonstrated that 
PI3K/Akt on-off signaling was regulated through S-nitrosylation of phosphatase 
and tensin homolog deleted on chromosome ten (PTEN) [26]. S-nitrosylation of 
PTEN by a low level (≤ 10 μM) of S-nitrosocysteine (SNOC) was shown to inhibit 
its phosphatase activity and subsequently increases Akt phosphorylation, kinase ac-
tivity, and cell survival. In many cancers such as glioblastoma, prostate, lung and 
breast carcinoma, loss of PTEN confers resistance to anoikis [27, 28]. Kwak et al. 
demonstrated that S-nitrosylation of PTEN correlated with its ubiquitin-proteasom-
al degradation [29]. Although this S-nitrosylation-based regulation of PTEN was 
shown in the experimental model of neurons not cancers, it demonstrates a regula-
tory mechanism that might account for the loss of PTEN in aggressive tumors.

S-Nitrosylation and Apoptosis-regulatory Proteins

As a form of apoptotic cell death, anoikis is regulated through the common death re-
ceptor and mitochondrial apoptosis pathways (Fig. 8.2). The extrinsic death recep-
tor pathway is activated through the cell surface death receptors (DRs) upon bind-
ing with specific death ligands such as Fas (CD95) ligand, tumor necrosis factor-α 
(TNF-α), and TNF-related apoptosis-inducing ligand (TRAIL). The death-inducing 
signaling complex (DISC) then assembles, activates initiator caspases (caspase-8 or 
FLICE and caspase-10), which subsequently activate effector caspases (caspase-3, 
caspase-6 and caspase-7) to cleave cellular substrates. FLIP (FLICE-inhibitory pro-
tein) has a higher affinity for the DISC than caspase-8, thus inhibiting caspase-8 
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processing and apoptosis induction [30]. The intrinsic mitochondrial pathway is 
activated in response to various death signals, e.g. DNA damage, ROS/RNS stress 
and cytotoxic agents, leading to mitochondrial membrane depolarization, which 
is controlled by the balance of Bcl-2 family proteins including the anti-apoptotic 
proteins Bcl-2, Bcl-xL and Mcl-1, and the pro-apoptotic proteins Bax, Bak, Bok, 
Bim, Bik, Bad and Bid. The subsequent released cytochrome C binds to the caspase 
adaptor molecule Apaf-1 and recruits the initiator procaspase-9 to form a molecu-
lar complex called the apoptosome, which functions to recruit effector caspases to 
induce apoptosis [31].

Several studies have demonstrated that metastatic malignant cells acquire anoi-
kis resistance through an upregulation of anti-apoptotic proteins such as FLIP [32, 
33] and Bcl-2 [34, 35] (Fig. 8.2). NO has been shown to suppress apoptosis in-
duced by various agents including Fas ligand, chemotherapeutic agents, and heavy 
metals through S-nitrosylation of FLIP and Bcl-2 [36–38]. S-nitrosylation of these 
proteins at their cysteine residues prevents their degradation through the ubiquitin-
proteasome pathway. We have recently shown that S-nitrosylation of FLIP also me-
diates apoptosis resistance by disrupting its own interaction with an NF-κB adaptor 
molecule, receptor-interacting protein 1 (RIP1), which results in NF-κB activation 
[39]. Figure 8.3a illustrates that FLIP binds to RIP1 in the absence of the death 
ligand TNF-α in HEK293 cells, and that this complex is disrupted by TNF-α treat-
ment, which results in the translocation of RIP1 to the cell membrane. Lack of 

Fig. 8.2  Diagrammatic representation of the intrinsic (mitochondrial) and extrinsic (death recep-
tor) pathway of apoptosis and anoikis subtype. In metastatic cancer cells, increased Bcl-2 and FLIP 
expression promote anoikis resistance
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FLIP S-nitrosylation in a FLIP double-cysteine mutant (FLIP2CM) inhibits the 
RIP1 translocation (Fig. 8.3b). The FLIP-RIP1 complex is believed to contribute to 
the reversed anti-apoptotic effect of FLIP in human breast carcinoma MCF-7 cells 
(Fig. 8.3c). Accordingly, it is postulated that NO might exert its anti-anoikis effect 
through S-nitrosylation of FLIP and Bcl-2.

S-Nitrosylation and Caveolin-1

Caveolin-1 is an essential constituent of caveolae, the flask-shaped membrane in-
vaginations that occupy about 20 % of the cell membrane [40]. Such invaginations 
provide a platform for various signaling mechanisms, where caveolin-1 interacts 
with signaling molecules and controls their subcellular distributions and functions. 
Caveolin-1 has been shown to play a role in the multidrug resistance of cancer cells 
partly through its interaction and regulation of multidrug resistance ATP-binding 
cassette sub-family G member 2 (ABCG2) transporter [41]. In the past decade, the 
role of caveolin-1 in the regulation of anoikis has gained increasing attention. Ca-
veolin-1 expression has been shown to be associated with poor prognosis and me-
tastasis of several types of cancer, including lung cancer, prostate cancer, renal cell 
carcinoma, hepatocellular carcinoma, and melanoma [42–44]. Ectopic expression 
of caveolin-1 was shown to prevent anoikis through various mechanisms, includ-
ing p53 inactivation, upregulation of insulin-like growth factor (IGF)-I receptor, 
activation of Akt, and Mcl-1 stabilization in cancer cells [45–48]. A previous study 
by our group has shown that caveolin-1 expression is downregulated during anoikis 
through ubiquitin-proteasomal degradation and that NO inhibits this process by in-
ducing S-nitrosylation of the protein, thus providing a mechanism by which cancer 

Fig. 3  S-nitrosylation of FLIP mediates its interaction with RIP1 and subsequent anti-apoptotic 
function. A, B, HEK-293 cells were transfected with wild-type FLIP a or FLIP2CM mutant. b 
Together with RIP1 plasmids. Cells were then treated with TNF-α (50 ng/mL) for 15 min and 
analyzed for FLIP/RIP1 colocalization by confocal microscopy. c Effect of S-nitrosylation on anti-
apoptotic activity of FLIP. MCF-7 cells were transfected with empty vector (EV), wild-type FLIP 
or FLIP2CM mutant plasmid, after which they were treated with TNF-α (50 ng/mL) for 16 h. 
Apoptosis was then determined by flow cytometry using annexin V and propidium iodide assays. 
Both early and late apoptosis were combined and plotted. *p < 0.05 versus non-treated EV control. 
#p < 0.05 versus treated FLIP wild-type cells
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cells acquire anoikis resistance [49]. In this study, caveolin-1 was shown to be ni-
trosylated and resistant to proteasomal degradation upon treatment with NO donors 
such as sodium nitroprusside (SNP) and diethylenetriamine (DETA) NONOate. 
Such treatments also inhibited anoikis, the effect that can be reversed by blocking 
caveolin-1 S-nitrosylation, thus supporting the role of S-nitrosylation in anoikis re-
sistance of cancer cells.

S-Nitrosylation and Cell Migration and Invasion

Cell migration and invasion are the critical steps of cancer metastasis. To intravasate 
into the blood or lymphatic circulation and to extravasate out of the circulation, pri-
mary tumor cells must migrate and invade through the epithelial and vascular base-
ment membranes and surrounding extracellular matrix [50]. It has been established 
that only a small fraction of primary tumor cells becomes invasive and eventually 
metastatic at any given time. NO has been reported to have both promoting and 
inhibitory effects on tumor cell mobility through the regulation of multiple proteins 
depending on its concentration. The role of S-nitrosylation of specific proteins on 
cell motility is discussed below.

S-Nitrosylation and Caveolin-1

As mentioned above, caveolin-1 is subjected to S-nitrosylation and is associated 
with metastasis and poor patient survival. In human lung carcinoma cells, we previ-
ously reported that NO promoted malignant transformation of the cells through a 
caveolin-1-dependent mechanism [49]. Caveolin-1 was also shown to promote both 
cell migration and invasion in human lung cancer and melanoma cells as indicated 
by their increased motility upon caveolin-1 overexpression and by decreased mo-
tility upon caveolin-1 knockdown [51]. A recent study by Sanuphan et al. demon-
strated that prolonged exposure of human lung cancer cells, e.g. up to 14 days, to 
non-cytotoxic concentrations of DPTA NONOate increased cell motility through 
both caveolin-1-dependent and independent pathways [52]. In the caveolin-1-de-
pendent pathway, caveolin-1 was found to activate focal adhesion kinase (FAK) and 
its downstream target Akt, whereas in the caveolin-1-independent pathway, Cdc42 
and filopodia were activated. It was postulated that S-nitrosylation of caveolin-1 
might regulate an on-off pattern that controls the FAK-Akt signaling.

S-Nitrosylation and c-Src

c-Src (cellular Src) is a tyrosine kinase that promotes cell invasion and metastasis 
in many human cancers, including colon, breast, pancreatic and brain cancer [53]. 
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A previous study by Rahman et al. demonstrated that S-nitrosylation of c-Src at 
cysteine 498 in breast cancer MCF-7 cells is critical for its activation and cell inva-
sion induced by SNAP and β-estradiol [54]. In breast cancer cells that have estrogen 
receptors with minimal invasive property such as MCF-7 cells, the promoting ef-
fect of β-estradiol is dependent on NO through eNOS induction. Further, FAK was 
found to be a substrate of c-Src since c-Src activation led to tyrosine phosphoryla-
tion of FAK. The authors suggested that FAK might be subjected to S-nitrosylation 
since it has the cysteine residue that corresponds to cysteine 498 of c-Src.

S-Nitrosylation and EGFR

Epidermal growth factor receptor (EGFR) contributes to the aggressive nature of 
basal-like subtype of breast cancer and colon cancers [55]. Previous studies have 
shown that iNOS expression is associated with EGFR phosphorylation and poor 
disease outcome of estrogen receptor negative (ER−) breast cancer patients [56]. 
Likewise, NO, at physiological concentrations, promoted ER—cell migration, thus 
suggesting that iNOS/NO signaling is involved in the cell aggressiveness [56]. S-
nitrosylation of EGFR (and c-Src) in ER— breast cancer MDA-MB-468 cells in-
duced by DETA/NO resulted in the activation of EGFR/c-Src kinases, which led to 
the induction of oncogenic c-Myc, Akt, STAT3, and β-catenin signaling pathways as 
well as the inhibition of tumor suppressor PPA2 [57]. One of the clinically relevant 
phenotypes of basal-like breast cancer is the CD44−/CD24 +  cancer stem cell sub-
population, which requires STAT3 signaling for its proliferation. NO signaling via 
S-nitrosylation of EGFR was shown to upregulate CD44 expression concomitantly 
with STAT3 phosphorylation, suggesting its role in cancer stem cell regulation [57].

S-Nitrosylation and Ras

The Ras superfamily of small GTPase consists of many subfamilies, including 
Ras, Rho, and Rab. Among these, H-Ras, N-Ras, and K-Ras are the clinically most 
notable members because of their implication in cancers and their role as proto-
oncogenes [58]. Mutations and activation of Ras proto-oncogenes have been found 
in about 30 % of all human cancers. Ectopic expression of human or rodent H-
Ras in noncancerous cells leads to increased invasiveness and acquisition of the 
metastatic phenotype [59]. Interestingly, these Ras proteins contain redox active 
residues that are sensitive to NO modifications [60]. Lim et al. reported that S-
nitrosylation of H-Ras is required for its tumor promoter function [61]. Knockdown 
of wild-type H-Ras in the oncogenic K-Ras-driven pancreatic tumor CFPac1 cells 
reduced tumor xenograft growth in immunocompromised mice, the effect that can 
be reversed by re-expression of the wild-type H-Ras but not the H-Ras mutant lack-
ing S-nitrosylation at cysteine 118. However, Raines et al. reported the suppressive 
role of S-nitrosylation on the tumorigenic effect of H-Ras in N293 cells (HEK-293 
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ectopically transfected with nNOS) [62]. It was suggested that the difference in NO 
sources, e.g. nNOS or iNOS, may attribute to the differential tumorigenic response.

K-Ras was reported to regulate colon cancer cell migration through a caveo-
lin-1-dependent mechanism [63]. Ectopic expression of K-Ras in colon cancer 
HCT116 cells upregulated the expression of caveolin-1 through the Akt pathway, 
and caveolin-1 was, in turn, required for K-Ras signaling in promoting the HCT116 
cell migration. Although the role of NO in the K-Ras/caveolin-1 regulatory axis has 
not been firmly established, it is likely that NO regulates this axis as both K-Ras and 
caveolin-1 are known targets for S-nitrosylation.

S-Nitrosylation and FLIP

FLIP is a key anti-apoptotic protein involved in the regulation of cell death. It also 
plays a role in cancer cell motility [64]. Downregulation of FLIP in human cervi-
cal cancer HeLa cells by siRNA impaired cell motility by enhancing Akt activity. 
As described earlier, S-nitrosylation of FLIP inhibits its ubiquitination and sub-
sequent proteasomal degradation, thereby, stabilizing the protein and sustaining 
its anti-apoptotic activity. Although there is no direct evidence for the role of S-
nitrosylation in HeLa cell motility, indirect evidence suggests its involvement. For 
example, inhibition of iNOS and NO production was reported to suppress HeLa cell 
migration and invasion as well as xenograft tumor growth [65, 66].

S-Nitrosylation and MMP-9

There has been a strong correlation between matrix metalloproteinases (MMPs) 
and ECM degradation and cancer cell invasion [67]. MMP-9 is a key proteinase 
that efficiently degrades native collagen type IV and V, fibronectin, entactin, and 
elastin. Its expression is elevated in various solid malignancies, including breast, 
bladder, prostate and ovarian cancer [68]. S-nitrosylation of MMP-9 was facili-
tated by its colocalization with iNOS at the leading edge of migrating trophoblasts, 
where NO production occurred. S-nitrosylation of MMP-9 resulted in its activation 
and increased trophoblast migration and invasion [69]. It is conceivable that the 
promoting effect of NO on tumor cell motility may be mediated, in part, through 
S-nitrosylation of MMP-9.

S-Nitrosylation and Angiogenesis

Angiogenesis, the physical process of new blood vessel formation, is an essential 
step for tumor growth and metastasis. Angiogenesis involves endothelial cell migra-
tion and vascular permeability which are subjected to NO regulation [70, 71]. In this 



121

process, NO is synthesized through eNOS upon stimulation with angiogenic factors 
such as the vascular endothelial growth factor (VEGF) [72]. While S-nitrosylation 
of eNOS itself suppresses its enzymatic activity and, thus, NO production, S-ni-
trosylation of many other target proteins in the close proximity of eNOS and in 
the microenvironment enriched with NO enhance angiogenesis as further discussed 
below.

SDF-1α and S-Nitrosylation of MKP7

Stromal cell-derived factor-1α (SDF-1α), also called CXCL12, is one of the most 
potent pro-angiogenic CXC chemokines that plays a role in angiogenesis. In aortic 
endothelial cells, SDF-1α stimulated cell migration through eNOS activation [73]. 
Increased NO production by eNOS led to S-nitrosylation of MAP kinase phospha-
tase 7 (MKP7) and subsequent suppression of its activity. Under a basal condition, 
JNK3 is inactivated by MKP7. S-nitrosylation of MKP7 causes sustained JNK3 
activation and ultimately endothelial cell migration and angiogenesis.

S-nitrosylation and β-catenin

An increase in vascular permeability is one of the early events during angiogenesis 
and a key characteristic of the newly formed vasculature in tumors. The vascular 
permeability is controlled by the adherens junction complex consisting of β-catenin 
and VE-cadherin. In aortic endothelial cells, such complex is regulated by S-nitro-
sylation of β-catenin, which facilitates its dissociation from VE-cadherin and reor-
ganization of the adherens junction [74]. Together with its tyrosine phosphorylation 
by Src, S-nitrosylation of β-catenin promotes the disruption of adherens junction 
and increases endothelial permeability.

Conclusion

The effect of NO on tumor biology is broad, spanning from tumor initiation of 
cellular transformation to tumor progression of the metastatic cascade. Protein S-
nitrosylation is a PTM process that has gained increasing prominence rivaling other 
known PTMs such as phosphorylation and ubiquitination. S-nitrosylation controls 
the function and activity of many cancer-associated proteins, thus, its dysregula-
tion could lead to carcinogenesis and metastasis. Currently, numerous efforts have 
been made to develop novel anticancer therapeutics based on S-nitrosylation [75]. 
In this article, we review the role of protein S-nitrosylation in anoikis resistance, 
cell migration and invasion, and angiogenesis, which are key determinants of can-
cer metastasis. While most studies have indicated the positive regulatory role of 
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protein S-nitrosylation in cancer progression and metastasis, the suppressive role 
of this post-translational process has also been reported similarly to the observed 
dichotomous effects of NO. As we move forward, it will be essential to identify 
the key determining factors of these effects and answer some unresolved questions 
such as what tumor-associated proteins are involved, what are their mechanisms of 
action, how localization of NOS contributes to the protein S-nitrosylation, and how 
differential amounts of NO regulate the S-nitrosylation process. The past decade has 
provided exciting new discoveries on the diverse role of protein S-nitrosylation in 
cancer biology, but obviously we have only just started.
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