On the Usage of Network Visualization
for Multiagent System Verification

Fatemeh Hendijani Fard and Behrouz H. Far

Abstract Multiagent Systems (MAS) consists of many software agents that interact
to each other to perform their actions and achieve system goals. Due to the growing
demand of Distributed Software Systems (DSS) and MAS as a branch of DSS, the
verification of these systems has taken a special attention. The verification of these
systems is required because MAS and DSS are large scale systems, where a failure
canresult in a huge amount of cost or damage. One major field is verification of MAS
designs to prevent cost of fixing problems after implementation and deployment. The
agents and interactions among them form a network of agents. This network can be
used for verification of MAS from different perspectives and by various techniques.
Visualizing agents’ networks can lead to detect a special type of unexpected behavior
in MAS referred to as emergent behaviors and implied scenarios. These unexpected
behaviors are more probable in large scale systems because the functionality and
control are distributed and there is lack of central controller in MAS and DSS.
Consequently, a new scenario can be implied to the system at run time which may
not be an acceptable behavior in the system. In this article, visualization techniques
are applied to form three different networks extracted from the designs of MAS for
this purpose. These networks are used to detect emergent behaviors and implied
scenarios in the system. The methodology, system architecture, data preparation
and visualization, required network definitions, and results are verified through case
studies.

Keywords Network visualization technique + Multiagent systems verification -
Scenario-based software engineering + Emergent behaviors * Implied scenario

F. Hendijani Fard - B.H. Far (X))

Department of Electrical and Computer Engineering, University of Calgary,
Calgary, AB, Canada

e-mail: far@ucalgary.ca

F. Hendijani Fard
e-mail: thendija@ucalgary.ca

© Springer International Publishing Switzerland 2014 201
J. Kawash (ed.), Online Social Media Analysis and Visualization,
Lecture Notes in Social Networks, DOI 10.1007/978-3-319-13590-8_10

202 F. Hendijani Fard and B.H. Far

1 Introduction

In recent years, industrial applications of agent based systems have gained popu-
larity due to certain characteristics of agents, such as autonomous, collaborative,
and proactive characteristics [1]. Other characteristics, such as information hiding,
ability to learn, knowledgeability, autonomy, and mobility, are among features that
have made them ideal for use in Distribute Software Systems (DSS) [2]. One of the
problems that arise in DSS and Multi Agent Systems (MAS), is the lack of a central
controller that may cause the components/agents a new behavior to emerge at run
time, which was not seen in the system specifications. This unexpected behavior,
which is known as emergent behavior at the component level (i.e. considering behav-
ior of agents individually) and implied scenario at the system level (i.e. considering
the system behavior), may cause critical damage [3]. Since these are unexpected
behaviors, which were not seen in the designs, they should be detected and veri-
fied before system deployment. The acceptance or denying these behaviors is what
the software designer and stakeholders should decide on. However, they should be
aware of such behaviors earlier to consider these behaviors in the design or change
the designs to avoid them. The early detection of these behaviors reduces the cost
and time for fixing them [4]. It is stated that “Detecting the causes of faults early
may reduce their resulting costs by a factor of 100 or more” [5].

There are many approaches for the detection of emergent behaviors in the require-
ments and design phases of scenario based software systems. In these systems, the
agents/components’ behaviors and their interactions are shown through graphical
elements such as Messages Sequence Charts (MSC) or UML Sequence Diagrams.
In this paper, the MSCs are used as inputs of the system since they are widely used
for DSS. Figure 1 is an example of presenting system scenarios in the form of MSCs.
These are parts of the scenarios related to a multiagent system for managing a green-
house. The agent Ay, is the agent responsible for irrigation of plants. This agent
interacts with other agents, such as A; and A, (agents responsible for heat balanc-
ing and providing minerals) to perform effectively. Suppose that the only acceptable
interactions among agents of this system are shown in Fig. 1.

Al AW Am Am AW
Request Request
:‘ Analyze :| Analyze
Query .
>
. Answer
Answer h Answer
< <
+ I I s

Fig. 1 Two scenarios showing part of agents’ interactions for Greenhouse MAS

On the Usage of Network Visualization for Multiagent System Verification 203

Fig. 2 An emergent
behavior in Greenhouse Ay Ay, Am
MAS

Request

»

:| Analyze

Answer

»
»

The acceptable actions of agent Ay, are shown in the MSCs of Fig. I; however,
this agent may behave differently as shown in Fig. 2. Therefore, if a new scenario,
such as Fig.2 happens, it can lead to a problem in the system.

Figure 2 is an example of an emergent behavior. From the point of view of agent
Ay, this agent has a choice to follow, when it receives the “Analyze” message and
reaches its third state. Therefore, it neither follows the first MSC nor the second
one. This behavior is called an emergent behavior of Ay. More explanations as
to the reason and the effects of this example are presented in next sections. It is
worth mentioning that the decision of accepting or declining implied scenarios and
emergent behaviors depends on the stakeholders of the system, but they should be
detected and defined earlier to redesign the system to handle these situations.

Most research in the detection of emergent behaviors and implied scenarios use
model checking approaches that try to verify whether the model explaining the behav-
ior of components/agents satisfies the requirements and designs. These approaches
use various behavioral modeling techniques and finite state machines to be veri-
fied against the extracted languages [6—8]. One of the issues with model checking
approaches other than the problem of state space explosion (when they face large
scale systems) [9-16], is that most of them cannot find the exact point or cause of
emergent behavior and just identify the existence of an emergent behavior in the
system [17]. Therefore, this is a flaw that these approaches do not suggest solutions
to the designer and do not fix the problem either by the designer or automatically.

In this paper, visualization of the agents’ networks is taken into account as a major
tool for emergent behavior and implied scenario detection. Three different networks
are extracted from MSCs and visualized to detect the points in which an unexpected
behavior can happen. It can both demonstrate where and why the unexpected behavior
can occur and provide the reasons for and the effects of emergent behaviors. One of
the networks is associated with events on any individual agent for component level
analysis and the other two networks illustrate the agents’ interactions with each other
and how they see the sequence of actions that should be performed at the system level.
These networks are used to show violations to the designers and stakeholders and
to verify the behavior of agents. Although, in this paper, the complexity of existing
approaches and the present work is not the main issue, in our technique, model
checking approaches are avoided since they require behavioral modeling or synthesis

204 F. Hendijani Fard and B.H. Far

phase, which is considered to be even more complex than model checking [18]. To
avoid synthesis, we have devised a new technique for emergent behavior and implied
scenario investigation [19, 20] using interaction matrices. The scalability issues of
this technique is explained more in [21]. In this paper, the interaction matrices are
used to extract and demonstrate the three mentioned networks: agent’s states network,
agents’ interaction network, and graph of sequence of MSCs for each agent. Based
on our knowledge, this visualization for MAS verification against emergent behavior
and implied scenarios is among contributions of this research.

It is worth mentioning that these networks are semantically and visually differ-
ent from the state machines in Finite Automata and formal methods. This is more
explained in the Discussion part of this paper. The related works and basic informa-
tion about scenario based systems and MSCs, emergent behavior and its detection
approaches, and applications of social network analysis on MAS verification are
presented in next section. It is followed by the methodology which explains system
architecture, general steps of methodology, component and system level analysis,
data preparation, data visualization, verifying the networks, and how to generate
reports in Sect.3. Two examples are presented to illustrate the methodology and
results verification. The first example is a MAS greenhouse, which is used to explain
component level analysis. The second example is from Uchitel’s et al. [22] and is
used to explain the system level analysis. In the rest of this paper the words compo-
nent and agent may be used interchangeably and by both words we mean the word
software agent.

2 Related Works

2.1 Scenario Based Systems and Message
Sequence Charts

In software engineering, a practical approach is describing software requirements
using scenarios. Scenarios are stories about people and interactions, including agents
and actors and sequences of actions and event. Scenarios can describe different
levels and details with multiple perspectives. For different purposes, scenarios can
provide abstraction for the designer and problem solving [23]. The visual forms
of scenario based specifications like UML Sequence Diagrams (SD) and Message
Sequence Chart (MSC) can show the software behavior. Software system compo-
nents (processes) or inter-object and inter-processes are shown using vertical lines
with their interaction messages and send/receive events respectively in MSC or SD
[24, 25]. These specifications can be used for model checking, formal verification,
or monitoring for emergent behavior detection [26].

The MSCs are visual and formal description techniques for software requirements
and are widely used for MAS and DSS [27-30]. DSS has gained a broad attention
in recent years for developing various systems and a main process in DSS is how

On the Usage of Network Visualization for Multiagent System Verification 205

to show the system components and their cooperation [29]. This process in many
works is done using MSCs. Development of MSC, its definitions and semantics has
been standardized and published by Telecommunication Standardization Sector of
International Telecommunication Union (ITU) [31]. MSC describes the communica-
tion behavior of system components and their environment in the form of graphical
representation and message interchanging.

In an MSC each vertical line shows a component and the messages between them
are shown with arrows. The name of the component is written above its line. Each
message is shown with the label above it. The related scenario shows the MSC name.
Figure 1 shows an example of a MSC.

A formal description of MSC from [32] is defined as a set (E, L, C, pn, <, M)
where:

E is the set of events consists of send and receive ones.
L is a finite set of labels

C is the set of components

W is the mapping of events to labels and components
< is the set of total orders on the events and

M maps the send events to receive ones

In an MSC, the messages on the life line of each component are referred to as events
on that line. These events can change the state of a component. The network of these
states for each component is referred to as agent’s state in the rest of this paper. Going
from one state to another state or changing the state for an agent occurs by receiving
or sending a message to that agent. The message (event) that changes the state of an
agent is referred to as state transition in next sections.

The graphical means for showing how a set of MSCs can be combined are shown
either with Message Sequence Graph (MSG) or high level message sequence charts
(hMSC). These two are structured models of MSC. MSG has operations such as
choice and repetition. MSG has MSCs as its nodes and the edges represent the con-
catenation of MSCs. A choice or branching in MSG can be shown with a hexagonal.
An hMSC is a graph like formation and each node can be either an MSC or an
MSG. In hMSC, the start node is shown with an upside down triangle and the end
MSC:s is shown with a triangle. In many researches MSG and hMSC are considered
almost the same. MSC, hMSC, and MSG can be considered as the early models of
the system [33].

2.2 Emergent Behavior

Emergent behavior is defined as the unexpected behaviors of software components in
the execution time, while it was not seen in their requirement and design specification
[4]. These behaviors may cause irreparable damages to the system and therefore
detecting them in early phases of software lifecycle is valuable [6, 34]. Emergent
behaviors are also referred to as implied scenarios i.e. when integrating all of the

206 F. Hendijani Fard and B.H. Far

scenarios of the system (e.g. in the form of state machine), they may imply a new
scenario or unexpected behavior. This happens because the model is not the precise
equivalent of the requirements specification [17, 35, 36].

Emerging new behaviors in DSS is more probable because there is lack of central
control in these systems. This reason causes the components to have a local view
of the system. Consequently, they may start with one scenario of the system and
continue in another scenario in a shared state [37-39]. This state in some researches
is referred to as identical states [4].

The problem of detecting emergent behavior can be classified in two categories
which have different names based on the phase of software lifecycle and the scope
they are used. Component level emergent behavior detection investigates the unex-
pected behaviors in component level i.e. considering the individual component and
not its interaction with other components of the software. This refers to component
fault in some researches where the behavior of the implemented component does
not satisfy its specified behavior [5]. The second class is the detection of emergent
behavior in system level i.e. investigating the components and their interactions as a
system. Because even if the components have no emergent behavior, they can behave
differently when they are integrated and have interaction with other components of
the system. This is referred to as emerging an implied scenario in the system. The
reason of having implied scenarios is explained through an example in next sections.

2.3 Emergent Behavior Detection Approaches

The existing approaches consider detection of emergent behavior, implied scenar-
ios, or both. One approach for model checking in the requirement is Alur et al.
methodology [33]. His works define a detailed explanation of model checking of
Message Sequence Chart (MSC), Message Sequence Graph (MSG), and high-level
Message Sequence Chart (hMSC) [6]. All of the linearization of this model (MSC
and hMSC) is then checked against an automaton which is defined by the message
alphabet >, words, languages, states, and transitions which show the behavior of
each process/component. If the intersection of the automaton (showing unwanted
behavior of the system) and the linearization is empty, it shows that the defined
model with MSC satisfies the requirements. He also defines the realizability of MSC
and MSG which means the implementation should generate the exact behaviors spec-
ified in the graph. The safe realizability has polynomial-time solution for MSC [40].
One problem with model checking with Finite State Machine (FSM) is the required
processes to prepare the model: Flattening, remove cycles, etc. [41].

Whittle and Schumann et al. propose a methodology which uses Unified Modeling
Language (UML) notations and investigates the conflicts in translation between UML
notations. They define a methodology with algorithms in different steps supported
by a tool to synthesize statecharts from Sequence Diagrams (SD), class diagrams,
and Object Constraint Language (OCL) specifications. Their main focus is on using
their methodology for Agent Based Systems (ABS). In this translation, they detect

On the Usage of Network Visualization for Multiagent System Verification 207

conflicts and indentical states in merging the scenarios to have justified merging of
scenarios [30, 42]. Their most work is on the design part or synthesizing scenarios
to state machines and code [43, 44].

Ben-Abdallah explains the non-local branching choice which causes the emergent
behavior in system. This problem may arise from the abstraction view of MSC and
not having semantics or specific interpretation of the implemented process when
MSC:s face a branching choice in hMSC [45, 46].

Muccini inspects the effects of non-local branching choice on emerging implied
scenarios and explains the reason of an implied scenario generation. When the state
machines are synthesized from scenarios (which explain a model and specification
of the system), a set of behaviors are presented by state machines which was not in
the scenarios [35]. In the non-local choices, different processes send first events in
different branches. This is detected by “augmented behavior” of processes in the non-
local choice in their algorithm. When processes share the same augmented behavior
in the non-local choice, their interaction generates an implied scenario.

Song et al. methodology is quite different with the other approaches. They explain
the detection of implied scenarios when using UML as the specification language.
They generate two graphs named specification and implementation graphs. By match-
ing these two graphs, the implied scenarios and the exact cause of its emergence in
the specification are identified. Their methodology considers both synchronous and
asynchronous communications [17, 47].

Uchitel et al. provide a methodology and tool for detection of implied scenarios.
Their algorithm builds Labeled Transition Systems (LTS) for behavioral modeling
of MSC and hMSC (as semantics of MSC) with synchronous communication. They
have implemented their work in a tool named Labelled Transition System Analyzer
(LTSA) [8, 22, 37, 48, 49]. The work is later extended by Letier et al. to detect
input-output implied scenarios [50]. They also refer to the rejected implied scenarios
by the stakeholders as negative scenarios and define behavioral constraints with LTS
for eliciting them from implied scenarios. Kramer et al. use Timed automata and
the behavior model specified by LTS to animate the behavior models in LTSA. The
Timed automata adds local clocks to LTS [51].

Kumar et al. discuss the problems with main researches in this field. He dis-
cusses that many researches are not implementable and amendable, or do not show
correctness. They use MSG and FSM and define a reduced transition system to
detect implied scenarios and model checking. They develop a complete method for
this problem claiming the correctness and ability of implementation of their work
[7]. Correspondingly, they discuss that “without message labels, if we observe one
process at a time, checking for implied scenarios is decidable” [39]. There are other
works presented in [52, 53] regarding the theories of message passing automata and
regular MSC.

This paper uses a different approach for verifying MSC specifications using inter-
action matrices. Several pieces of information can be extracted from interaction
matrices: number of messages (events) for each component/agent in each MSC,
type of messages (send or receive), the order of messages in the MSC, the inter-
acting agents, the senders and receivers of messages, and the states of each agent.

208 F. Hendijani Fard and B.H. Far

Using these matrices helps to visualize specific networks required for detection of
emergent behaviors and implied scenarios. The network demonstration also helps
to detect where the emergent behavior has happened (in terms of the events of one
agent in the system), which possible MSCs it affects, and probably the origin of
such a behavior. This ability will help the designer to fix the problem rather than just
notifying of the existence of emergent behavior.

2.4 Social Network Analysis in MAS
Communication Verification

Social networks as a basic view are a series of individuals and their interaction such
as Facebook. However, many other forms of social networks exist. Social networks
can be considered as various types of interactions in different communities [54, 55].
The entities are considered as nodes with edges representing links between them
which can be shown in matrices [56]. Many analyses have been proposed to social
networks to specify different characters and in various applications [57, 58]. Some
measurements in SNA are link or node measures like tie strength, betweenness,
degree, authority, and hub measure, etc. [59] which are useful in many aspects of
network analysis. One application of SNA is verification of MAS communication
in a network of agents. For example, some works evaluate and verify the commu-
nication patterns of MAS. They classify communications in classes like overloader,
overloaded, isolated, and regular. Then they try to find design drawbacks in terms of
communication patterns [60—62]. Data mining tools are developed for this purpose.
SNA techniques like clustering is used for code debugging [63]. Some other data
analysis tools are available that analyze the interaction among agents and visualize
the result of running simulations to be compared with the modeling of agents in
MAS [64].

There is much difference between these works with what is presented in this
paper. Many of the researches in this field are restricted to the verification of MAS
from system logs, where the multiagent system is implemented and deployed. Some
like [64] work in the design phase, but they use some kind of simulation and run
the models of the system to analyze the agents’ interactions. The other factor that
makes a difference between our work and other researches that use SNA is analyzing
the communication to verify or detect different violation factors. We mostly look
for the violations in terms of new behaviors in the system (whether or not they
are accepted/declined by designers and stakeholder). However, these researches do
not detect possible new behaviors (referred to as emergent behavior in this article)
and mostly look for communication performance, interaction verification, or issues
associated with quality of service.

On the Usage of Network Visualization for Multiagent System Verification 209

- M1: Transform MSCs to
matrices

)

M2: Extract
oo VX rac MS:
vectors Extract
P — networks
M3: Detect
no EB

i Mé:

M4: Detection Visualize
algorithms networks
\ J \§ J
[|
v
[M?7: Generate reports Reports

Fig. 3 Main modules of the system

3 Methodology

3.1 System Architecture

The main modules of the system are shown in Fig. 3. The MSCs are used to extract
the allowable interactions among agents. The MSCs are transformed to interaction
matrices in module M1. In the next step some vectors are extracted from the matrices
in module M2. The required definitions can be found in next sections. In module M3
the agents with no emergent behavior are detected and removed from further analyses.
The detection of agents with no emergent behavior helps in reducing the complexity
of emergent behavior detection in system level. The algorithm works basically on
the similarities of an agent’s behavior in various MSCs to detect whether the agent
is a safe agent (in terms of possibility to show an emergent behavior in component
level). The behavior similarity of the agent is searched by finding all the interactions
that one agent is involved in, the similarity of its states, and the messages the agent is
involved in. The details of the algorithm and implementation are discussed in [21].
The next step is applying the emergent behavior algorithm in M4 for component and
system level. The agents with no emergent behavior are omitted for further analysis
in component level. Different algorithms are used in this module. Each algorithm
detects an specific type of emergent behavior. On the right part, modules M5 and
M6 are shown which extract networks and visualize data. Based on the algorithms
in M4 and the networks extracted, M7 generates reports on the states, agents, and
MSC:s that an emergent behavior or implied scenario occurs. The report also contains
information on the causes of this behavior which is also shown in the network.

210 F. Hendijani Fard and B.H. Far

The focus of this paper is mostly on M5 and M6 and the details of these two modules
are presented. Therefore, details on the rest of the system are referred to other papers
[19, 20].

3.2 Methodology Steps

The methodology for the detection of unexpected behavior has the following steps
in general:

Transfer the MSCs to interaction matrices.

Transform message contents to message labels.

Link message labels to entries of matrices.

Extract vectors.

Detect the agents that have no emergent behavior and omit them from processes
in component level.

Find shared states for each agent.

Apply algorithms based on the type of emergent behavior.
Prepare data.

Visualize the networks.

Apply network analysis and make them visible in the networks.
Generate reports and compare results for the designer.

Some definitions of the matrices and the vectors, information about the networks,
and how to prepare and visualize data are discussed in detail in the following for
both classes of emergent behavior: component level and system level.

3.3 Component Level Analysis

In component level analysis, the detection of emergent behavior for one agent is
important. In this level, an agent is considered and its states in all scenarios are
investigated to detect the potential points in which the agent can be confused between
two or more situations, or the states in which there is a branch with no priority to
continue the next actions. This situation can be interpreted as a graph, which has an
initial point, and the next node is followed when the required action for the associated
edge happens in the system (events on the agent’s life line). If one node has two or
more different next nodes, either with same or different events on the associated
edges, there is a branch in that graph. On one side, each branch should be taken into
account with only one scenario of the system with required interaction among other
agents. On the other side, when the software agent is traversing that graph, it has
an option between the branches to choose and follow. Consequently, an unexpected
situation can happen when the agent chooses another branch while the whole system
expects the actions on a different branch to be performed by the agent, as it was

On the Usage of Network Visualization for Multiagent System Verification 211

shown in the scenario of the system. In component level analysis, such branching
choices are investigated to detect the emergent behaviors.

One possible reason of these branches in a graph is when some states of one agent
are shared between two or more scenarios of the system. These states can be extracted
from the interaction matrices (refer to Definition 1 for matrices). Since the state
transitions are due to the messages sent/received by/to an agent, these states can form
anetwork. The agent’s states are the nodes of this network and the messages that cause
atransition to another state are considered as the edges of the network. Visualizing the
network of each agent’s states can lead to the detection of emergent behaviors. This
network, which is visualized as a directed graph, can be extracted using the interaction
matrices. Each matrix is associated to one scenario, and therefore it contains the
required information for a network state for each agent. Adding another scenario to
the system means expanding this base network. As mentioned before, some states and
their transitions may be shared among some scenarios. When expanding the network,
these shared states can be visualized as the weights of a part of our network, i.e. when
some states and the message labels are repeated weight of the edge between those
states is increased. The more the weight, the thicker the edge is in the network.
This visualization is helpful in conducting the research for detection of emergent
behaviors in component level in a few aspects:

1. The shared states of each agent are shown in its states’ network.

2. The branches in the graph of each agent are indicated.

3. The distance of these branches from the last state of the shared states are specified.
4. The message labels for the branching choices are illustrated.

All these choices are important when the agent behavior is verified. In case of having
a branch in the network, two probable paths are:

1. Case Cl: Going to two or more different states with the same message labels
(edges)

2. Case C2: Going to two or more different states with different message labels
(edges)

The former can be a design flaw if no condition is considered with the same messages.
The latter is the case declared previously and can cause emerging a new behavior in
the system. These two concerns can occur after the last state of the shared states or
in case where there are no shared states between some scenarios.

It is worth mentioning that the agent should be a sender in all cases. It means the
messages should be of type “sending” when the agent reaches a branching choice.
These cases are demonstrated in the Fig. 4.

As it is shown in the figure, the branching occurs after state Sj. By receiving
message label m there are two available states that the agent can follow, S» and S3.
This is the path indicated in Case C1. The path in Case C2 happens when the next
states can be obtained by receiving message labels m, and m3 which goes to unique
states S4 and S5 by following each of them.

Following our example of greenhouse MAS from introduction (Fig. 1), from Ay,
point of view, and based on its states’ graph, this agent has an option (branching

212 F. Hendijani Fard and B.H. Far

Case C1 Case C2

Fig. 4 Branching choices

choice) to follow when it reaches its third state by receiving the message “Analyze”.
Therefore, the emergent behavior of Fig.2 can happen.

3.4 System Level Analysis

Visualizing the Agent’s Sequence of MSCs.

System level analysis is referred to as detection of implied scenarios, when all com-
ponents/agents of the system are performing their task and a new scenario is implied
to the system. The system behavior should be considered in system level which
means following the sequence of all scenarios in the hMSC while there is no central
controller for the agents’ actions in system level. This problem arises because the
agents have local view from the system. In other words, each agent is independent of
other agents when completing its actions and the agent has no control on its received
messages. Consequently, they are not aware of the sequence of scenarios that other
agents are performing. The result can be following different sequences of MSCs by
various agents which results to have an implied scenario. Based on Uchitel, Kramer,
and Magee’s interpretation “Implied scenarios are the result of specifying the global
behaviors of system that will be implemented component wise” [22]. This explana-
tion is illustrated by an example from Uchitel and et al. paper [22]. The example in
Fig.5 consists of four components interacting in four MSCs. The overall behavior
of the system is shown in an hMSC in right side of this figure.

An implied scenario that can happen in this example is shown in Fig.6 and is
taken from [22].

In this scenario, analysis is done based on the previous data that sensor has reg-
istered to database. However, the sensor is initiated, terminated, and then initiated
again. But database, actuator, and control components analyze the first round of data
from sensor component, before it was terminated. This is not acceptable based on
MSCs and hMSCs.

For better investigation of this case, let’s divide agents into two groups: Passive
and Active agents. Passive agents are those agents who start an MSC by receiving a
message from other agents. For example components DB and Actuator in our example

On the Usage of Network Visualization for Multiagent System Verification 213

-Initialise Register

Sensor Database Control Actuator Sensor Database Control Actuator
- Analysis

Sensor Database Control Actuator

Initialise (&
Command
¥
» Register }

-Stop

Sensor Database Control Actuator +_%

Analysis Stop
S— | | —

Fig. 5 Four scenarios in the form of MSCs and the associated hMSC (Taken from Uchitel [22])

Fig. 6 An implied scenario
S Datab. Control Actuat
for system of Fig.5 (Taken kg alapase o e e
from Uchitel [22]) < =
Pressure |
" Off |
On
|—Query]
E[essum__,ma_’sgmmand_,
/_H_F._‘_‘_H\
"--..._________,_,—-/

are passive components. Active agents like Control component in the example are
defined as the agents who start an MSC by sending a message to other agents.

The sequence of MSCs followed by each component in the example is shown in
Fig.7. The name of each component is written above each graph. The abbreviations
IR, A, and T are used for MSC names Initialize, Register, Analysis, and Terminate
(Stop) respectively. The dotted arrows show that the component has not involved
in the associated MSCs. In other words, this component has not sent or received
any messages in these MSCs, and therefore does not follow the paths between these
MSCs in the hMSC. As an example, as it is obvious from Fig. 5, the Actuator has no
communication with other components in the MSCs other than Analysis scenario.
Therefore, there is no path between the MSCs in the Actuator’s sequence of MSCs
in Fig.7. These sequences are derived from the MSCs and the hMSC, which can be
extracted from the interaction matrices.

Based on what was derived as the sequence of MSCs for each component, the real
sequence of MSCs for each component is shown in Fig. 8, where the dotted arrows
are omitted. The name of the component is written on the left side of each graph.
These graphs show that component Sensor has no involvement in Analysis scenario,
DB component does not contribute in Initialize and Terminate MSCs, component

214 F. Hendijani Fard and B.H. Far

Control

Actuator Pl ;@
e
@ /
”
”

Fig. 7 Sequence of MSCs for components of Fig.5

Sensor Control
DB Actuator

OO O

Fig. 8 Sequence of MSCs demonstrating involving MSCs for each of components of Fig. 5

Control does not take part in Register MSC, and Actuator just has communications
in Analysis MSC.

The graph of the agent’s sequence of MSCs can be interpreted as an abstraction
of the MSCs of the system from the agent’s point of view. In other words, it shows
how the agent realizes the hMSC to perform its actions. From the designer’s point
of view, the agent’s sequence of MSCs can be interpreted as an abstraction of the
agent’s states in the whole system and in hMSC which shows how the MSCs are
performed by that agent.

One possible path in the agent’s sequence of MSCs that can lead to an implied
scenario is the existence of loops in the internal MSCs of an hMSC. It can affect the
system behavior, since the agent may perform the loop more than what is required
by other agents, or when others agent are performing the next MSCs, this agent can
continue the loop without considering a termination action and the whole system

On the Usage of Network Visualization for Multiagent System Verification 215

behavior. DB component is an example of a component which has such a path in its
sequence of MSCs.

The other possible path in an Active agent’s sequence of MSCs is the existence
of a path between internal MSCs of hMSC where the path does not include the
initial and termination nodes of hMSC. In this case an implied scenario can exist
since the agent is a sender in the startup of the MSCs it is involved in. Therefore,
the agent considers the internal MSCs as the initial MSCs and can start at any point
in the middle of hMSC without considering the position (hMSC nodes or MSCs)
of other agents in the hMSC (i.e. without considering the MSCs that other agents
are executing). This can be considered as having a sequence of MSCs like the ones
related for DB or Actuator components, however, the components in our example
are not Active.

Visualizing the Network of Agents’ Interactions.

The other factor other than emergent behavior analysis and implied scenarios that
can be investigated by visualization techniques is related to the communication per-
formance. The visualization of the network of agents’ interactions can help focusing
on analysis of agents with specific characteristics and can lead to a clue for better
design of the system. Regarding communication balancing and agents’ performance,
the agents’ interaction network is used to analyze the betweenness and centrality for
the agents. Agents with higher centrality/betweenness should be:

1. Analyzed for meeting the performance requirements.

2. Analyzed for emergent behavior analysis. Since the communication between these
agents and other agents is high and they play a critical role in the system, any
problem that arises with these agents can cause the whole system to fail. On the
other hand, the problems in the behavior of these agents can propagate in the
system and affect the system behavior.

These two points are especially important for the agents that play a coordinator role
in inter-communication between various agent types in MAS.

3.5 Data Preparation

As mentioned earlier, the MSCs and hMSC are the base inputs of the system. These
two charts are used to indicate system agents and components involved, the inter-
action of these components to their environment and among themselves, general
behavior of the agents and the whole system, and to what order the scenarios should
act (i.e. system behavior).

For preparing our data for further analysis, these MSCs are translated to analyz-
able data structure, namely interaction matrices. In this technique, the scenarios in
the form of MSCs are transformed to send/receive matrices. In synchronous commu-
nications (i.e. Messages are considered to be received at the same time they are sent),
either send or receive matrices are applicable, because they are transposes of each
other. Nevertheless, in asynchronous communications both send and receive matrices

216 F. Hendijani Fard and B.H. Far

should be utilized. The rest of this paper is based on considering the synchronous
communication style. Definitions are followed:

Matrix. One n x n matrix for each scenario (MSC) is built where n is the number
of agents in the system.

Definition 1 (Send matrix) Matrix S is defined as the send matrix. MSCy is the kth
MSC of the system. For each MSCy if there is a message sent from agent A; to
agent A; the order of message as appeared in the scenario is entered as s;; entry of
matrix Sy, otherwise s;; = 0. If there is more than one message sent from one agent
to another, the numbers are separated with a comma in that entry. The S is the send
matrix related to MSCy.

In this context each matrix is informative, since it shows the agents, their inter-
actions, the interaction types (i.e. sending or receiving), and the order of messages.
The only information missing is the message contents (not message labels).

For component level analysis, the states of each agent should be extracted from the
Send matrix of Definition 1. The extracted states should contain information about
the transitions between them, the message labels in this transition, and the type of
message (Send or Receive). In the finite automata each message can transmit the agent
from one state into another. This transition can be extracted from the matrices defined
earlier. The state and state transition formal definitions are explained by Alur [6].

Considering the synchronous communication and send matrices, other definitions
based on this basic definition can be outlined to help investigate the emergent behavior
detection process and show the specific information about agents.

The entities of S matrix in row and column i are the related message numbers
for A;. For each agent A; in matrix Si the entities s;; show the entities in row i and
column s where 1 < s < n and n is the total number of agents in the system. This
means the message numbers that agent A; has sent to other agents and/or to itself.
Also the entities s,; show the entities in column i and rows » where 1 < r < n. This
means the message numbers that agent A; has received in the related MSCg. The
order of the numbers in the row and column i shows the order of states for that agent.
In the case that the agent had sent a message to itself, two states are considered, one
for sending and the other for receiving a message. The row number other than i show
the agents that send messages to agent A;.

Definition 2 (Agent send communication vector) Vector vig = (ei1, €i2, - - -, €in)
shows the vector of row 7 in matrix Sy and n is the total number of agents. When
there is more than one number in one entry of the S matrix, the element is considered
as a compound element. It means for example if there is entry s;; = 2, 3 in matrix
Si; then in the vector v;, element ej; will be e;; = (2, 3). This vector shows all of the
communications of agent A; to other agents in the kth MSC where A; is the sender
of the messages.

Definition 3 (Agent receive communication vector) Vector vy = (eyj, €, - - - , €ni)
shows the vector of column 7 in matrix Si and # is the total number of agents. When
there is more than one number in one entry of the S matrix, the element is considered

On the Usage of Network Visualization for Multiagent System Verification 217

as a compound element. This vector shows all of the communications of agent A; to
other agents in the kth MSC where A; is the receiver of the messages.

The state vector of each agent A; in M SCy is defined as:

Definition 4 (Agent state vector) The states of each agent A; in kth MSC is shown
by a vector states;; which is the ordered vector of the entities of v;g and v, where
the zero entities are omitted and the elements are in ascending order. In the case that
an agent had sent a message to itself, the same numbers in the v; and v, are added
distinctly to the states vector. Therefore two states are considered for this agent by
sending a message to itself: one for sending and one for receiving the message. The
number of the elements in vector states;; shows the total number of events on agent
A; in MSC & or the projection of events of kth MSC on A; (MSCk|a;). Elements of
vector statesy, = (sty, Sta, ..., sty_1, sty) are the states of agent A;. The transitions
between the states are by messages sent or received to/by agent A;. The last element
sty shows the accepted state of agent A; in MSC k.

Note that since each element of the state vector states;; matches an element in v;g
or Vyix, we can trace the source entity si, in the related S matrix that it matches.
Therefore, the type of the message or state can be recognized based on whether it
matches a send event or a receive one.

The advantage of using these matrices is that the information about the agent that
causes the state transition for each individual agent can be identified by tracking the
number of that element in each of the vy or v, vectors.

Definition 5 (Srate transition sender vector) The state transition sender vector for
agent A; inMSC kis shown by Sender;; = (Snd,, Sndy, . . ., Snd),) where each element
shows the sender for a message that changes the state for agent A;. Each element of
statesj; has amatching eitherin vigx = (€i1, €i2, . . ., €in) Orin V% = (14, 124, - - -, Ini)-
Therefore, the senders of the messages for each state are either agent A; (if the element
in states;; has a matching in v;g) or are the agent A,, (if the element in szates;; has a
matching with the wth element in v,4). Simply explaining, this vector shows which
agent is the sender of each event for agent A; in MSC k.

Greenhouse System Example.

The scenarios in Fig. 1 are a part of scenarios of a greenhouse multiagent system. This
system consists of three different types of agents: Temperature balancing (At), Water
control (Aw), and Mineral control (Am) agents. The agents receive environmental
information from sensors, connect to data and knowledge bases and analyze the infor-
mation to perform the best task. The agents are supposed to perform autonomously
and interact with each other in order to keep the plants in the best situation. The sys-
tem is designed using MaSE methodology. MSCs are extracted from the sequence
diagrams of MaSE and the agent classes (MaSE artifacts) as explained in [26]. One
method for temperature balancing is shown in MSC1 in Fig.9. The S; and S;;, show
the temperature and mineral sensors respectively and KB stands for knowledge base.
MSC2 in Fig. 10 shows the request of Ay, to the water control agent to serve minerals
for the plants. For simplicity, just two of the MSCs of the system are shown here.

F. Hendijani Fard and B.H. Far

218
| st || At | [centraioB| [kKB |[Aw || Am |
Sendinfo
Request other St info
Answer
Ask plant info of| the related St place
Answer
e Analyzedata
Add analysisto
knowledge
Mist
:] Analyze data
Ask for minerals
Mist request answer Answer
'« Donothing

Fig. 9 MSCI1: Temperature balancing method

Lsm | [Aam | [k8 | [Aw |

Sendinfo

Y

Ask plant info ofthe
relatedSm place

Answer

+

Analyze data
Add analysisinto your

:l knowledge

MistReques N

Mist reFIJEt ansver

ENEE DN N

Fig. 10 MSC2 Mineral balancing method

Extract Matrices and Vectors for Emergent Behavior Detection
The first step is to transform the MSCs to related S matrices which show the send

matrices of MSCs. As an example, the matrix Sy related to the MSC1 is shown below:

On the Usage of Network Visualization for Multiagent System Verification 219

S, A; DBKB Ay Ay Sy th']
S$01 000000
A 0672 4 8 0 013
DBO 3 0 0 0 0 00
KBO 5 0 00 000
Ay012 0 0 9 10 0 0
Aw 0 0 0 0 11 0 00
S%0 0 0 0 0 0 00
| h 00 0 0 0 0 00 |

In the MSCs, we will consider the rows and columns (i = 5) related to A,,. For this
agent in the MSCs, the vectors vsg and v,5x show the related row and column of A,,
and statessy, represents the associated states vector of A,, in the related MSCs, where
k shows the kth MSC (MSCy). The states vectors of A,, are:

Statess) = {st1, stp, St3, Sta, sts5, sty}
Statessy = {st1, stp, st3, st}

And the associated message labels to each of the state vectors are:

mLabelss; = {mj, mp, mp, m3, m4, M5}
mLabelssy = {mp, mp, my, mg}

For this agent, the state transition sender vectors are shown with Sendersy. in the
kth MSC. The sender vectors are:

Senders) = {A;, Ay, Ay, Ay, A, Ayl
Sendersy = {An, Ay, Ay, Ay}

The state’s network of A,, for these two MSCs is shown in Fig. 11 with message
labels and senders of each state transition for each of them is shown above them. The
initial and final states are differentiated.

Fig. 11 Agent Aw’s states network for MSC1 and MSC2

220 F. Hendijani Fard and B.H. Far

Fig. 12 Visualized states’ network of Aw for two MSCs

3.6 Data Visualization

Base of the agent’s states network is constructed by one of its state vectors. Other
nodes are added to this graph from other agent’s state vectors either by adding a
separate node when the agent’s state is different or by merging to the existing graph
when some states are the same with existing nodes. The weights of the edges for the
shared parts are increased based on the times of repetition. This can be visualized
by bolding the edges or by color changes for edges’ weights. Note that shared states
can create various branches to the graph. The state transitions or messages are the
edge labels for this network.

Continue our example of greenhouse system, the states’ network of A,, can form
like the one in Fig. 12. Since a part of the states’ vectors in the two MSCs are the
same, they share part of the graph and then create a branch in the states’ network.
The shared states and edges are bolded. However, this is not a proof for being same
states regarding the states, messages labels, and sender transitions. As it is shown in
the figure, state s; shows no sender name, because the senders in the two MSCs are
different for this state.

For system level and visualization of agents’ interaction network, the matrices
in Definition 1 are used. The entries of matrices show all of the communications
between the agents in one MSC. The number of the messages sent to each agent
can be extracted from the same matrix and depends on the associated entry. Other
matrices are used later to specify more interactions or change the network based on
the number of messages sent to other agents. The weight of edges is defined as the
number of messages communicated between two agents.

3.7 Verification

Verifying New Paths Against MSCs.

At component level there are branching choices that visualized in previous sections
based on the agents’ states. These branches may cause an emergent behavior in the
system. However, not all of the branching choices lead the agent to emerge a new
behavior. The visualization technique acts as an indication to the possible points of

On the Usage of Network Visualization for Multiagent System Verification 221

such behaviors for an agent. Therefore, they should be verified against the MSCs and
defined system behavior to detect violations. When we traverse the graph from the
initial node and follow the other nodes through connecting edges, by following each
branch we will have various paths to reach the final state (last node of the directed
graph). These paths can be identified by nodes and edges, states and messaged labels
respectively, associated to the state transition senders. These senders can be extracted
by the vectors in Definition 5. Therefore, all paths include the senders’ information
as well.

Verification of each branch is by determining whether or not the path that contains
the branch is among the agent’s state vectors with respect to both message labels and
state transition senders.

Consider the emergent behavior of greenhouse system shown in Fig.2. The
allowed paths for Ay, in MSC1 and MSC2 are:

Acceptable_Pathsy = {st;,my, A;; str,m,A,,; st3, my, A,,; Sty, ms, A,,; Sts, my,
Am; SIG’ mS; AW}
Acceptable_Pathsy = {st1, my, Ay, Sta, mp, A, St3, my, A,,; Sta,me, Ay}

The elements are separated by a semicolon, and each element consists of a tuple
(st, m, A) where st shows the state of the agent, m stands for associated message
label, and the sender transition for that state is shown by A. However, the paths that
are extracted from the network contain other paths:

New_Pathy = {st|, my, A;; sty, mo, A, st3, ma, Ay, Sta,mg, Ay, }
New_Pathy = {st1, my, Ap; sta, my, Ayy; st3, my, A,y stg,m3, Ay}

As it was mentioned before, this is a new path which is not verified based on the
allowable paths extracted from MSCs. Therefore, an emergent behavior can happen
in the system.

Verifying MSC Sequences Against hMSC.

Two possible conditions that can lead to an implied scenario were investigated previ-
ously. The first one is the existence of loops in the internal MSCs of an hMSC in the
agent’s sequence of MSCs. The other condition is the existence of a path between
internal MSCs of hMSC in the agent’s sequence of MSCs where the path does not
include the initial and termination nodes of hMSC for an Active agent. These two
conditions can simply be detected and verified.

However, there is another condition that leads to an implied scenario and needs to
be verified against the hMSC. These can be verified by finding the paths in agent’s
sequence of MSCs and verifying it against the hMSC. For example, consider the
hMSC of Fig. 4. In this example, the MSC sequences extracted from the hMSC and
MSC:s for control component shows a path of MSCs as follows: Initialize, Analysis,
and Terminate, and then from Terminate MSC it can go back to Initialize MSC again.
This is shown in Fig. 7. However, when comparing this sequence of MSC {Initialize,
Analysis, Terminate} (Fig. 8) there is not such a sequence in hMSC, because there is
no direct path from Analysis MSC to Terminate MSC. When verifying the control
sequence of MSCs against the hMSC, this contradiction is detected which can lead
to another implied scenario in the system.

222 F. Hendijani Fard and B.H. Far

3.8 Generating Report

The report is generated to inform the designer about the possible emergent behaviors
and implied scenarios, the involved agents, the reasons of occurring such behaviors,
and the MSCs and states that have conflicts with the MSCs and hMSC of the system.
This report helps to announce the problematic points and leads to solve the problem
as well.

As an example, consider the greenhouse system. The emergent behavior explained
previously is because of the conflicts of the new path with the accepted paths in the
MSCs. The new paths contain the same states, message labels, and sender transitions
for most of its elements. However, two conflicts are found. The first conflict is
in the first element of two new paths (st;, m, A¢) or (st;, mj, Ap) which has a
different sender, comparing to similar accepted paths from the system specifications
(MSC:s). The other conflict is in the message label of the last element of these paths
(st4, mg, Ay) or (stq4, m3, Ay). These two conflicts show that either the senders of
first states should be the same for two MSCs or the message labels of the last element
should be changed, based on the message labels of the acceptable paths and the shared
states of all paths. The report contains all this information which suggests a solution
as well. When the changes are defined the new MSC specifications should be checked
again to have consistency.

4 Discussion

Social network analysis has various applications. One of the applications of them
is shown in this paper through modeling the agents’ interaction into various inter-
action network and analysis of these networks for system verification. The network
visualization explained in this paper is used for MAS verification against emergent
behavior and implied scenarios. The aim of this work is the detection of these behav-
iors and whether or not they are accepted or declined depends on the designers and
stakeholders. However, these emergent behaviors should be detected earlier in the
system to prevent or reduce later damage and costs.

The agent’s states’ network may seem similar to the state machines. However, they
are semantically different from state machines. State machines are not always shown
to the designer and the process of behavioral modeling is also different. The alphabet,
words, and languages are important in state machines; while in agent’s states’ network
other features are used. Some information about the senders, message types, and
transitions of each state are preserved in the network which makes the specification,
features, and applications of these networks different from state machines.

One major discussion about emergent behavior detection methodologies is whether
they can detect all the unexpected behaviors or not. For our methodology, we are
currently working on classification of types of emergent behaviors in these systems.
By classification of various scenarios that can happen in a system, we can investigate

On the Usage of Network Visualization for Multiagent System Verification 223

this issue, and also suggest solutions to fix these behaviors. The solutions that are
suggested and the visualization of the problematic parts are among contributions of
this work that are not present in the existing works. As a basic verification of our
methodology, until now, all the implied scenarios of other works for instance for
the example of Uchitel’s case [22] are detected by our methodology. Furthermore,
some other issues that can result in an implied scenario are presented which were not
discussed in other works. However, in this paper the correctness or completeness of
our methodologies is not mentioned.

One of the advantages of our methodology is transforming MSCs to interaction
matrices without underlying semantics, which is inspired by social network analysis
techniques. This abstraction from the semantics is valuable in terms of removing
synthesis phase for emergent behavior detection which is mentioned to be more
complex than the model checking. Model checking has problems like scalability
for large scale systems. Some proofs for providing scalability by this methodology
is applying techniques to detect agents with no emergent behavior in early steps
and omit them from further analysis, which helps improve the scalability of the
system. The other issue is that matrices have n> objects where most of them are
zero entities. This is solved by the definitions when extracting appropriate vectors
for analysis. The vectors contain just non-zero elements which is much less than n?.
Therefore the method has neither the analysis of n? objects nor the zero entities for
scalability problem. It is worth mentioning that the analysis for detection of agents
with no emergent behavior became feasible by defining interaction matrices rather
than using formal method and state machine approaches. This is another advantage
of using network analysis in the verification of DSS and MAS.

The other contribution is on visualizing the results which is the main focus of
this paper. Based on our knowledge, the three networks discussed in this paper and
the visualization techniques for this problem are not indicated in other works. The
visualization of these analyses for the network of agents and their states helps the
designer for faster fixing of the represented results for detected emergent behaviors.
It helps not only see what and where in the system, but also how the emergent
behavior is happening. This is another contribution of the work. Most of the existing
methodologies detect the emergent behavior without leading the reasons or a solution
for it [17]. The generated reports contain all the information about the detected
emergent behavior or implied scenario, and therefore covering the shortage of the
existing approaches.

The major difference of our work with other researches that try to find emergent
behaviors and implied scenarios is using network mining rather than modeling with
formal methods. In our work, we try to model the interaction of system components in
networks. Then we define the reasons of emerging new behaviors and find criteria and
restrictions for the extracted networks. These criteria are used as the main verification
method for the extracted networks to investigate and verify them against having
emergent behaviors and implied scenarios. Since the modeling is quite different in
our work and other researches, the comparison criteria can be quite different. Table 1
represents a comparison between existing main approaches in this field and our work.
Some criteria in this table are the level of analysis and whether or not they are capable

224 F. Hendijani Fard and B.H. Far

Table 1 Comparison of other approaches and our work

Research/ Source Modeling CLA? | SLA® | Origins of | Visualize | Suggest
criteria diagram problem® | results solution
Uchitel MSC/ hMSC | Labeled No Yes | No LTS X
et al. Transition
[8, 22, 32] System

(LTS)
Genest et al. | MSC/ State Yes Yes |X X X
2514 hMSC/MSG | machines
Whittle [30] | UML SD Statechart Yes Yes X X X
Mousavi [4] | MSC/ hMSC | Finite state | Yes Yes | X X X

machine
Alur et al. MSC/ Automata Yes Yes | X X X
[6]° hMSC/MSG | temporal

logic

formulas
Songetal. | UML SD Causal X Yes Yes Orders/ xf
[47] graphs Causal

graphs

Our work MSC/hMSC | Interaction | Yes Yes | Yes Yes Yes

networks/

MSC

sequences

4CLA is used as an abbreviation for Component Level Analysis

PSLA is used as an abbreviation for System Level Analysis

“This criteria means that the source of the problem is detected and shown to the designer rather than
just the existence of an emergent behavior is notified. This is due to the exact cause of emergent
behavior both in system and component level analysis, as mentioned in literature, is the local view
or restricted view of the components of the system

dThis paper and their recent papers of the authors mostly discuss the MSC/hMSC specification
languages and the validation problems about model-checking and implementability

€This paper and related papers of the authors mostly discuss on the computations and validation
features of MSC/hMSC/MSG. They discuss the decidability and implementability as well as com-
plexity of model checking

[They just provide the parts of the system that should be considered to handle the implied scenarios

of visualizing the analysis results in an effective way to the designer (i.e. in a way
that leads to a solution or revising the designs).

5 Conclusion and Future Work

Taking advantage of visualization techniques is an important factor in verification
of MAS for detection of emergent behaviors and implied scenarios. The networks
defined and presented in previous sections prove the role of this technique in the
verification field. These networks are used both for component level and system

On the Usage of Network Visualization for Multiagent System Verification 225

level analysis and demonstrates the wide application of network visualization in
MAS verification. Although the definitions are verified on MAS, the methodology
and visualization technique can be used for verification of DSS as well. Since in
this approach we mostly deal with the behavior of the system in terms of MSCs and
hMSC and not the internal knowledge or behavior of agents. Consequently, the terms
used in this article can be used for DSS verification as well.

Two main future lines of works are in our plans. First, demonstrating various
elements such as message types, type of states, and whether the agent is a sender
after branching choice in its states’ network that can be added as visualization options
to the system. Second, bolding the shared states and color differentiation among the
shared states with various sender transitions can be illustrated in the network. These
features make the designer aware of possible problems in advance before analyzing
and verifying the whole system. Other possible future directions include considering
other measurements for nodes and links and investigating the effectiveness of those
features in the software verification problem.

Acknowledgments This research is supported by a grant from Izaak Walton Killam Memorial
Scholarship, Alberta Innovates Technology Futures and partially from Natural Sciences and Engi-
neering Research Council of Canada.

References

1. Wooldridge M, Fisher M, Huget M-H, Parsons S (2002) Model checking multi-agent systems
with MABLE. In: Proceedings of the first international joint conference on autonomous agents
and multiagent systems: part 2. ACM: Bologna, pp 952-959

2. Bordini R, Fisher M, Pardavila C, Visser W, Wooldridge M (2003) Model checking multi-agent
programs with CASP. In: Hunt W Jr, Somenzi F (eds) Computer aided verification. Springer,
Berlin, pp 110-113

3. Moshirpour M, Mousavi A, Far BH (2010) A technique and a tool to detect emergent behavior of
distributed systems using scenario-based specifications. In: 22nd IEEE international conference
on tools with artificial intelligence (ICTAI)

4. Mousavi A (2009) Inference of emergent behaviours of scenario-based specifications. In:
Department of electrical and computer engineering. University of Calgary, Calgary, p 160

5. Broy M (2011) Seamless method- and model-based software and systems engineering. The
future of software engineering. Springer, Berlin, pp 3347

6. Alur R, Etessami K, Yannakakis M (2003) Inference of message sequence charts. IEEE Trans
Softw Eng 29(7):623-633

7. Chakraborty J, D’Souza D, Narayan Kumar K (2010) Analysing message sequence graph
specifications. In: Margaria T, Steffen B (eds) Leveraging applications of formal methods,
verification, and validation. Springer, Berlin, pp 549-563

8. Uchitel S (2003) Incremental elaboration of scenario-based specifications and behaviour mod-
els using implied scenarios. In: Department of computing. Imperial College of Science, Tech-
nology and Medicine, University of London, p 173

9. Chaki S, Clarke E, Grumberg O, Ouaknine J, Sharygina N, Touili T, Veith H (2005) State/event
software verification for branching-time specifications. In: Romijn J, Smith G, Pol J (eds)
Integrated formal methods. Springer, Berlin, pp 53-69

10. Sanchez E, Squillero G, Tonda A (2012) Automatic software verification. Industrial applica-
tions of evolutionary algorithms. Springer, Berlin, pp 17-30

226 F. Hendijani Fard and B.H. Far

11. Ammar K, Pullum L, Taylor B (2006) Augmentation of current verification and validation prac-
tices. Methods and procedures for the verification and validation of artificial neural networks.
Springer, New York, pp 13-31

12. Quan TT, Hoang DLN, Nguyen BT, Nguyen AN, Tran QD, Nguyen PH, Bui TH, Do AT,
Huynh LV, Doan NT, Huynh NT, Nguyen TD, Nguyen TT, Nguyen VH et al (2010) MAFSE:
a model-based framework for software verification, pp 150-156

13. Verhulst E, Jong G, Mezhuyev V (2008) An industrial case: pitfalls and benefits of applying
formal methods to the development of a network-centric RTOS. In: Cuellar J, Maibaum T, Sere
K (eds) FM 2008: formal methods. Springer, Berlin, pp 411418

14. Briand LC (2010) Software verification—a scalable, model-driven, empirically grounded
approach. Simula Research Laboratory. Springer, Berlin, pp 415-442

15. Knight J (1998) Challenges in the utilization of formal methods. In: Ravn A, Rischel H (eds)
Formal techniques in real-time and fault-tolerant systems. Springer, Berlin, pp 1-17

16. Kneuper R (1997) Limits of formal methods. Form Asp Comput 9(4):379-394

17. Song I-G, Sang-Uk J, Ah-Rim H, Doo-Hwan B (2011) An approach to identifying causes of
implied scenarios using unenforceable orders. Inf Softw Technol 53(6):666—681

18. Bontemps Y, Schobbens P-Y (2007) The computational complexity of scenario-based agent
verification and design. J Appl Log 5(2):252-276

19. Fard FH, Far BH (2013) Detection and verification of a new type of emergent behavior in
multiagent systems. In: 17th international conference on intelligent engineering systems (INES)

20. Fard FH (2013) Detecting and fixing emergent behaviors in distributed software systems using
a message content independent method. In: Press in 28th IEEE/ACM international conference
on automated software engineering (ASE), Doctoral symposium. IEEE

21. Fard FH, Far BH (2012) A method for detecting agents that will not cause emergent behavior
in agent based systems—a case study in agent based auction systems. In: 2012 IEEE 13th
international conference on information reuse and integration (IRI)

22. Uchitel S, Kramer J, Magee J (2002) Implied scenario detection in the presence of behaviour
constraints. Electron Notes Theor Comput Sci 65(7):65-84

23. Carrol JM (1999) Five reasons for scenario-based design. In: Proceedings of the 32nd annual
Hawaii international conference on system sciences, HICSS-32

24. Lunjin L, Dae-Kyoo K (2011) Required behavior of sequence diagrams: semantics and refine-
ment. In: 2011 16th IEEE international conference on engineering of complex computer sys-
tems (ICECCS)

25. Genest B, Muscholl A (2005) Message sequence charts: a survey. In: Fifth international con-
ference on application of concurrency to system design, ACSD 2005

26. Mani N, Garousi V, Far BH (2008) Monitoring multi-agent systems for deadlock detection
based on UML models. In: Canadian conference on electrical and computer engineering,
CCECE 2008

27. Genest B, Muscholl A, Peled D (2004) Message sequence charts. In: Desel J, Reisig W, Rozen-
berg G (eds) Lectures on concurrency and petri nets. Springer, Berlin, pp 103-121

28. Broy M (2000) The essence of message sequence charts. In: Proceedings of the international
symposium on multimedia software engineering 2000

29. Kriiger IH (2000) Distributed system design with message sequence charts. In: Institute of
computer science 2000, Technical University of Munich, p 386

30. Whittle J, Schumann J (2006) Scenario-based engineering of multi-agent systems in agent
technology from a formal perspective. In: Rouff C et al (eds) Springer, London, pp 159-189

31. UNION-, TSSOI-IT, SERIES Z (2004) Languages and general software aspects for telecom-
munication systems—formal description techniques (FDT)—message sequence chart, ITU-T
Recommendation Z.120, p 136

32. Uchitel S, Kramer J, Magee J (2001) Detecting implied scenarios in message sequence chart
specifications. In: Proceedings of the 8th European software engineering conference held jointly
with 9th ACM SIGSOFT international symposium on foundations of software engineering
2001. ACM, Vienna, pp 74-82

On the Usage of Network Visualization for Multiagent System Verification 227

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

Alur R, Yannakakis M (1999) Model checking of message sequence charts. In: Baeten JM,
Mauw S (eds) Concurrency theory CONCUR’99. Springer, Berlin, pp 114-129

Moshirpour M (2011) Model-based detection of emergent behavior in distributed and multi-
agent systems from component level perspective. In: Department of electrical and computer
engineering 2011, University of Calgary, Calgary, p 109

Muccini H (2003) Detecting implied scenarios analyzing non-local branching choices. In:
Pezze M (ed) Fundamental approaches to software engineering. Springer, Berlin, pp 372-386
Sousa FCd, Mendonca NC, Uchitel S, Kramer J (2007) Detecting implied scenarios from
execution traces. In: Proceedings of the 14th working conference on reverse engineering 2007.
IEEE Computer Society, pp 50-59

Uchitel S, Kramer J, Magee J (2003) Synthesis of behavioral models from scenarios. IEEE
Trans Softw Eng 29(2):99-115

Adsul B, Mukund M, Kumar KN, Narayanan V (2005) Causal closure for MSC languages.
In: Sarukkai S, Sen S (eds) FSTTCS 2005: foundations of software technology and theoretical
computer science. Springer, Berlin, pp 335-347

Bhateja P, Gastin P, Mukund M, Kumar KN (2007) Local testing of message sequence charts
is difficult, in fundamentals of computation theory. In: Csuhaj-Varji E, Esik Z (eds) Springer,
Berlin, pp 76-87

Alur R, Etessami K, Yannakakis M (2005) Realizability and verification of MSC graphs. Theor
Comput Sci 331(1):97-114

Alur R, Yannakakis M (2001) Model checking of hierarchical state machines. ACM Trans
Program Lang Syst 23(3):273-303

Schumann J, Whittle J (2001) Automatic synthesis of agent designs in UML. In: Rash J et al
(eds) Formal approaches to agent-based systems. Springer, Berlin, pp 148-162

Whittle J, Kwan R, Saboo J (2005) From scenarios to code: an air traffic control case study.
Softw Syst Model 4(1):71-93

Whittle J, Schumann J (2000) Generating statechart designs from scenarios. In: Proceedings of
the 22nd international conference on software engineering 2000. ACM, Limerick, pp 314-323
Ben-Abdallah H, Leue S (1998) MESA: Support for scenario-based design of concurrent
systems. In: Steffen B (ed) Tools and algorithms for the construction and analysis of systems.
Springer, Berlin, pp 118-135

Ben-Abdallah H, Leue S (1997) Syntactic detection of process divergence and non-local choice
in message sequence charts. In: Brinksma E (ed) Tools and algorithms for the construction and
analysis of systems. Springer, Berlin, pp 259-274

Song I-G, Jeon SU, Bae DH (2009) A graph based approach to detecting causes of implied
scenarios under the asynchronous and synchronous communication styles. In: Proceedings of
the 16th Asia-Pacific software engineering conference 2009. IEEE Computer Society, pp 53—60
Uchitel S, Kramer J (2001) A workbench for synthesising behaviour models from scenarios.
In: Proceedings of the 23rd international conference on software engineering 2001. IEEE
Computer Society, Toronto, Ontario, pp 188-197

Letier E, Kramer J, Magee J, Uchitel S (2008) Deriving event-based transition systems from
goal-oriented requirements models. Autom Softw Eng 15(2):175-206

Letier E, Kramer J, Magee J, Uchitel S (2005) Monitoring and control in scenario-based require-
ments analysis. In: Proceedings of the 27th international conference on software engineering
2005. ACM, St. Louis, pp 382-391

Magee J, Pryce N, Giannakopoulou D, Kramer J (2000) Graphical animation of behavior
models. In Proceedings of the 22nd international conference on software engineering 2000,
ACM, Limerick, pp 499-508

Henriksen J, Mukund M, Kumar KN, Thiagarajan PS (2000) Regular collections of message
sequence charts. In: Nielsen M, Rovan B (eds) Mathematical foundations of computer science
2000. Springer, Berlin, pp 405414

Mukund M, Kumar KN, Sohoni M (2000) Synthesizing distributed finite-state systems from
MSCs. In: Palamidessi C (ed) CONCUR 2000—concurrency theory. Springer, Berlin, pp 521-
535

228 F. Hendijani Fard and B.H. Far

54. Aggarwal C (2011) An introduction to social network data analytics. In: Aggarwal CC (ed)
Social network data analytics. Springer, New York, pp 1-15

55. Sabater J, Sierra C (2002) Reputation and social network analysis in multi-agent systems. In:
Proceedings of the first international joint conference on autonomous agents and multiagent
systems: part 1. ACM, Bologna, pp 475482

56. Hanneman RA, Riddle M (2005) Introduction to social network methods. http://faculty.ucr.
edu/~hanneman/nettext/C6_Working_with_data.html

57. Mislove AE (2009) Online social networks: measurement, analysis, and applications to dis-
tributed information systems. Rice University

58. Song HH, Cho TW, Dave V, Zhang Y, Qiuet L (2009) Scalable proximity estimation and link
prediction in online social networks. In: Proceedings of the 9th ACM SIGCOMM conference
on internet measurement conference 2009. ACM, Chicago, pp 322-335

59. Sun J, Tang J (2011) A survey of models and algorithms for social influence analysis. In:
Aggarwal CC (ed) Social network data analytics. Springer, New York, pp 177-214

60. Gutiérrez C, Garcia-Magarifio I, Fuentes-Ferndndez R (2011) Detection of undesirable com-
munication patterns in multi-agent systems. Eng Appl Artif Intell 24(1):103-116

61. Gutierrez C, Garcia-Magarifio I (2011) Revealing bullying patterns in multi-agent systems. J
Syst Softw 84(9):1563-1575

62. Gutiérez C, Garcia-Magariio I, Gémez-Sanz J (2009) Evaluation of multi-agent system com-
munication in INGENIAS. In: Cabestany J et al (eds) Bio-Inspired systems: computational and
ambient intelligence. Springer, Berlin, pp 619-626

63. BotiaJ, Hernansdez J, Gomez-Skarmeta A (2007) On the application of clustering techniques
to support debugging large-scale multi-agent systems. In: Bordini R et al (eds) Programming
multi-agent systems. Springer, Berlin, pp 217-227

64. Botia J, Gomez-Sanz J, Pavén J (2006) Intelligent data analysis for the verification of multi-
agent systems interactions. In: Corchado E et al (eds) Intelligent data engineering and automated
learning—IDEAL’06. Springer, Berlin, pp 1207-1214

http://faculty.ucr.edu/~ hanneman/nettext/C6_Working_with_data.html
http://faculty.ucr.edu/~ hanneman/nettext/C6_Working_with_data.html

	On the Usage of Network Visualization for Multiagent System Verification
	1 Introduction
	2 Related Works
	2.1 Scenario Based Systems and Message Sequence Charts
	2.2 Emergent Behavior
	2.3 Emergent Behavior Detection Approaches
	2.4 Social Network Analysis in MAS Communication Verification

	3 Methodology
	3.1 System Architecture
	3.2 Methodology Steps
	3.3 Component Level Analysis
	3.4 System Level Analysis
	3.5 Data Preparation
	3.6 Data Visualization
	3.7 Verification
	3.8 Generating Report

	4 Discussion
	5 Conclusion and Future Work
	References

