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Abstract. Selection plays an important role in estimation of distribu-
tion algorithms. It determines the solutions that will be modeled to
represent the promising areas of the search space. There is a strong
relationship between the strength of selection and the type and num-
ber of dependencies that are captured by the models. In this paper we
propose to use different selection probabilities to learn the structural
and parametric components of the probabilistic graphical models. Cus-
tomized selection is introduced as a way to enhance the effect of model
learning in the exploratory and exploitative aspects of the search. We
use a benchmark of over 15, 000 instances of a simplified protein model
to illustrate the gains in using customized selection.

Keywords: selection, estimation of distribution algorithms, optimiza-
tion, customized selection.

1 Introduction

Since their inception most of the research on estimation of distribution algo-
rithms (EDAs) [9,10,13] has been devoted to the analysis of the learning and
sampling components of these algorithms. The characteristic feature of EDAs
with respect to other evolutionary algorithms (EAs) is the use of probabilistic
modeling to capture the most relevant features of the selected solutions. There-
fore, learning and sampling steps are critical for these algorithms and research
on these methods in EAs almost began with EDAs. A different situation arises
for the selection methods used by EDAs. The selection schemes traditionally
applied in these algorithms are essentially those widely applied in GAs.

Different approaches investigate how selection mediates the information about
the fitness function that is passed to the probabilistic models. Among the re-
search directions explored are: 1) Explicitly using fitness information in the con-
struction of the probabilistic models to learn more accurate models [15,17,20]
and 2) Explicitly modeling fitness information as part of the probabilistic model
[7,11]. These research directions are very related since it has been shown that
the explicit modeling of fitness information can produce more accurate repre-
sentations of the interactions between the variables. Furthermore, some research
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on the role of selection has gone beyond the classical aim of optimization to
investigate the effect of selection in recovering the original problem structure [2].

In this paper we propose customized selection as a new way to implement se-
lection in EDAs. We start from the assumption that the role played by selection
in EDAs is two-fold. As in GAs, selection should be able to capture information
about the promising areas of search space. But in addition, the selection method
should contribute to a meaningful and efficient representation by the probability
model. Basically, this assumption states that, in EDAs, considering the choice of
the selection method in accordance with the type of probability modeling applied
can contribute to a more efficient search for the optimal solutions. Customized se-
lection takes into account this assumption by splitting the information extracted
during the selection step into: 1) Information used for structural learning and 2)
Information used for parametric learning. We empirically evaluate this idea for
Boltzmann and truncation selections.

2 Selection and Learning in EDAs

In this section we assume the reader is familiar with EDAs. LetX = (X1, . . . , Xn)
denote a vector of discrete random variables. We use x = (x1, . . . , xn) to denote
an assignment to the variables. I denotes a set of indices in {1, . . . , n} and XI

(respectively xI) a subset of the variables of X (respectively x) determined by
the indices in I. p denotes a distribution, p(xI) the marginal probability for
XI = xI , and p(xi | xj) the conditional probability distribution of Xi = xi

given Xj = xj .

Algorithm 1. Tree-EDA

1 D0 ← Generate N individuals randomly

2 t = 0
3 do {
4 Evaluate the individuals using the fitness function.

5 Assign a selection probability to each individual.

6 Create a compact population DS
t where copies of the same individual add up

their probabilities pSt .

7 Calculate a probabilistic model using DS
t and pSt .

8 Compute the univariate and bivariate marginal frequencies psi (xi|Ds
t ) and

psi,j(xi, xj |DS
t ) using DS

t and pSt

9 Calculate the mutual information using bivariate and univariate marginals.

10 Calculate the maximum weight spanning tree from the mutual information.

11 Compute the parameters of the model.

12 t ← t+ 1
13 Dt ← Sample N individuals from the tree and add elitist solutions.

14 } until A stop criterion is met
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Algorithm 1 shows the pseudocode of an EDA that uses the complete popula-
tion to define the selection probabilities. This EDA learns a tree model. In this
section we focus on the analysis of the selection procedure and leave the analysis
of the model learning step for Section 4. In terms of the selection procedure, the
main difference between Algorithm 1 and the typical EDA is that in the former,
instead of selecting a subset of individuals based on their fitness, a vector of se-
lection probabilities is computed over the complete population. The probabilistic
model is learned from the vector and the population. The procedure described
in steps 5 to 7 of Algorithm 1 was originally introduced in [17].

Using this way to implement the selection has two advantages: 1) When pos-
sible, the fitness information of the complete population is used. 2) Although the
computation of the compact population is not essential for computation of the
probabilistic model, it helps to make model learning faster, particularly when
there are multiple copies of the same individuals in the population. A require-
ment for the application of this method is that model learning could be done
directly on the probabilities. This can be easily done for most of the model
learning methods [5,15,17,20].

There is an extra cost in finding the compact population but notice that for
detecting that two solutions are different, it is sufficient to find a variable where
they differ. Therefore, although comparison between pairs of solutions can have a
worst case cost of n, this cost will depend on the homogeneity of the population
and the expected cost of finding the compact population will be often much
smaller than Nlog(N)n, where N is the population size.

3 Customized Selection

Probabilistic models learned by EDAs can be classified according to the type of
learning they use into two groups: 1) Models that apply non-structural (para-
metric) learning. 2) Models that apply structural and parametric learning. We
extend this classification to EDAs and talk of non-structural learning and
structural-learning EDAs, understanding that the second class of algorithms
also applies parametric learning of the models. Among non-structural-learning
EDAs are the univariate marginal distribution algorithm (UMDA) [14] and other
EDAs based on marginal product models [12]. Structural-learning EDAs include
algorithms based on Bayesian networks and Markov networks.

The key idea of customized selection is to learn the structure and the parame-
ters of the model from different selection probabilities. We assume that, in terms
of population diversity, non-structural learning and structural learning may have
different requirements for accurately modeling. For example, in truncation se-
lection, we may need to have a selection threshold of 0.5 (half the population)
to guarantee a dataset large and diverse enough from which to learn the model
structure applying statistical tests. However, once the structure is learned, we
would like to make the marginal probabilities to represent the characteristics
of solutions of highest fitness, for instance, those included in the best 30% of
the population. In this way, we combine learning a robust structure with non-
structural learning more focused on the best solutions. In all selection methods
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currently used by EDAs, the same selected population is used for both tasks.
We aim to split this process and investigate whether customized selection has
an impact in the quality of the search of EDAs.

3.1 Customized Boltzmann and Truncation Selections

We use notation introduced in Section 2. In Boltzmann selection, the probability
of each solution to be part of the selected population is computed according to

the Boltzmann probability distribution p̂(x) = e
f(x)
T

∑
x′ e

f(x′)
T

, where
∑

x′ e
f(x′)

T is

the so-called partition function, and T is the temperature of the system that can
be used as a parameter to smooth the probabilities. The partition function is
computed using all the solutions in the current population and a probability of
selection is associated to each solution.

We use T as a way to influence the strength of selection. When T → ∞, the
models can not recover any information about the problem structure because all
solutions are given the same probability. Similarly, when T → 0 all the proba-
bility is concentrated in the point with highest function value in the population.
Customized Boltzmann selection is implemented by using two different values
of the temperature, Ts and Tp which will be associated to the structural and
non-structural learning, respectively. Ts and Tp will bias the type and amount of
information captured by the probabilistic models. In our experiments, we focus
on the analysis of Ts, T p = 2k for k ∈ {−3,−2, · · · , 1, 2}.

In truncation selection, the best M = αN individuals of the population is
selected, being α ∈ (0, 1]. We define truncation selection on the complete pop-
ulation by associating a probability 1

M to the best M individuals and 0 to the
rest. Customized truncation selection is implemented by defining two different
truncation thresholds αTs and αTp for structural and non-structural learning,
respectively. In usual application of truncation selection, αTs = αTp , but in cus-
tomized selection these values can be different.

4 EDAs with Customized Selection

Customized selection can only be applied to EDAs that apply structural learning.
We use Tree-EDA, an EDA that learns a tree probabilistic model and is similar
to the ones introduced in [1] and [16]. The probability distribution of a tree is
defined as pT (x) =

∏n
i=1 p(xi|pa(xi)) where Pa(Xi) is the parent of Xi in the

tree, and p(xi|pa(xi)) = p(xi) when pa(xi) = ∅, i.e. Xi is a root of the tree.
The distribution pT (x) itself will be called a tree model when no confusion is
possible. We allow the existence of more than one root in the PGM (i.e. forests)
although for convenience of notation we refer to the model as tree. Algorithm 1
shows the pseudocode of Tree-EDA.

We choose Tree-EDA to evaluate customized selection because it exhibits
a good balance between the capacity of the probabilistic model to represent
dependencies and the computational cost of learning and sampling the tree.
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For comparison purposes we use UMDA. The univariate model used by this
algorithm can be seen as a particular case of the tree when we have pa(Xi) = ∅
for all i.

As shown in Algorithm 1, the tree is learned using the Chow-Liu method [3]
that calculates the maximum weight spanning tree from the matrix of mutual
information. Notice that the mutual information is computed from the bivari-
ate and univariate probabilities calculated upon marginalization of the selection
probabilities of the compact population. When customized selection is used, the
computation of the bivariate and univariate probabilities is done twice. The first
time, from the selection probabilities calculated using Ts (respectively αs for
truncation selection). It is during this first step when the mutual information
and the tree structures are computed. Then, during a second step, the univariate
and bivariate probabilities are computed again, this time using Tp (respectively
αp for truncation selection), but only for the edges of the tree, i.e. a maximum

of n− 1 bivariate probabilities instead of n(n−1)
2 .

5 HP Functional Model Protein

As a testbed we use an optimization problem defined on a simplified protein
model. The HP model considers hydrophobic (H) residues and hydrophilic or
polar (P) residues. A protein is considered a sequence of these two types of
residues, which are located in regular lattice models forming self-avoided paths.
Given a pair of residues, they are considered neighbors if they are adjacent either
in the chain (connected neighbors) or in the lattice but not connected in the chain
(topological neighbors).

The functional model protein is a “shifted” HP model that can represent na-
tive states that are not maximally compact [6]. An energy function that measures
the interaction between topological neighbor residues is defined as εHH = −2
and εPP = εHP = εPH = 1. The functional model protein problem consists of
finding the solution that minimizes the total energy and it is a NP-hard problem.

Figure 1 shows an example of a functional model protein instance. In our so-
lution representation, for a given sequence and lattice, Xi represents the relative
move of residue i in relation to the previous two residues. Taking as a reference
the location of the previous two residues in the 2D lattice, Xi takes values in
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Fig. 1. One possible configuration of sequence HHHPHPPHPP in the functional
model protein. There is one HH interaction (represented by a dashed line), and one
HP interaction (represented by a dotted line).
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{0, 1, 2}. These values respectively mean that the new residue is located in one
of the 3 possible directions (left, ahead, right) with respect to the previous two
locations [8]. Therefore, values for X1 and X2 are meaningless. The locations of
these two residues are fixed. A solution x can be seen as a walk in the lattice,
representing one possible folding of the protein.

The codification corresponding to the configuration of the sequence shown in
Figure 1a) is x = (0, 0, 2, 1, 2, 0, 2, 2, 1, 1). The objective function is computed as
the opposite of the energy for feasible configurations.

In our representation there can be self-intersecting paths that correspond
to unfeasible configurations. We use two ways to deal with these solutions:
1) Penalized fitness functions and 2) Repairing of solutions. We penalize self-
intersecting solutions by dividing the energy by the number of the sequence’s
self-intersections. To repair solutions, a variation of the backtracking method
introduced in [4] is applied.

As a problem benchmark, the functional model protein is a very interesting
problem because, disregarding multiple representations of the same solution,
the problem reaches the optimum on a unique configuration. We have selected
a database of 15, 575 protein sequences (n = 23) [8] for which, the optimal
value, the closest suboptimal value, and the number of configurations where this
suboptimal value is reached have been previously determined. The complexity
of the optimization problem can be very different between sequences.

6 Experiments

The aim of the experiments is determining if using customized selection can help
to improve the results of the EDAs that apply Boltzmann and truncation selec-
tion. A second goal is to find an appropriate choice of the selection parameters.
Finally, we investigate the effect of the number of local optima in the behavior
of the EDAs for the different selection methods.

6.1 Experiment Settings

The population size for all EDAs was fixed to N = 500 and as termination
criterion we used a maximum number of generations Ng = 50. Experiments
were run with and without repairing of the solutions. In the second case, the
fitness values of infeasible solutions were penalized.

For Boltzmann selection we investigate in detail the effect of using different
probability distributions to learn the parameters and structure of the model. This
is done by trying all combinations of Ts, T p = 2k, for k ∈ {−3,−2, · · · , 1, 2}.
For truncation selection, αs, αp ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}. When using the
UMDA, the selection parameters of the structural and non-structural learning
have identical values. Therefore, for each type of selection there are 36 variants
of Tree-EDAs, and 6 variants of UMDA. We run the EDAs 100 times for each of
the 15, 575 instances. The total number of EDA runs for each type of selection
method was 2× 100× 15, 575× (36+ 6) = 130, 830, 000 that were executed in a
cluster of 575 computers.
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6.2 Results for Customized Boltzmann Selection

We compare the algorithms in terms of the number of times that the optimum
was found in 100 runs and in terms of the mean fitness value of the best solutions
found in each of the 100 runs. The mean success rate of the different EDA variants
from the 15, 575 instances is shown in Figure 2.

It can be seen in Figure 2a) that there are important variations in the success
rate of Tree-EDA due to parameters Ts and Tp. The influence of the parameters
can be critical for the behavior of the algorithm. Notably, Tree-EDA with Tp >
−1 can not outperform the behavior of UMDA. Notice however, that UMDA is
also very sensitive to the influence of parameter T . For all values of Tp, except
Tp = −3, the number of times that Tree-EDA finds the optimum improves by
selecting Ts < Tp. This means that, for a given selection strength applied to non-
structural learning, a stronger selection applied to structural learning will likely
improve the results. Figure 2b) shows how the mean success rate of Tree-EDA
also increases by repairing the solutions. The same trend in the influence of the
selection parameters is observed. Except for Tp = −3, the results of Tree-EDA
improves by selecting Ts < Tp.
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Fig. 2. Customized Boltzmann selection: Number of times the best solution was found
for the different values of the temperature. a) Without repairing. b) When repairing is
applied.

We also test, for each instance independently, for statistical differences be-
tween the EDAs that could be attributed to the use of customized selection.
Fixing the value of Tp, we apply a multi-comparison test (p-value 0.05) for the
six variants of Tree-EDA. The test uses as information the best result in each
of the 100 runs for the corresponding instance. Among the six variants of Tree-
EDA corresponding to the six values of Ts, we test which pairs of means are
significantly different, and which are not. A test that can provide such informa-
tion is called a multiple comparison procedure. Adjustment for multiple testing
is applied using the Dunn-Sidak method [18], a procedure similar to, but less
conservative than, the Bonferroni procedure.
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Using the results of the test, we compute the number of times each Tree-EDA
variant was significantly better (Sb) and significantly worst (Sw) than the Tree-
EDA that uses Ts = Tp. For example, for Tp = 1, we compute the number of
times that Tree-EDA (Ts = i) was significantly better than Tree-EDA (Ts = 1)
for all i �= 1. Similarly, we compute the number of times that Tree-EDA (Ts = i)
was significantly worse than Tree-EDA (Ts = 1). The difference between these
two numbers gives an idea of the appropriate choice for Ts in relation with Tp.
Figure 3 shows the values of (Sb − Sw) for all values of Tp. A positive value for
Ts = i means that Tree-EDA improves its performance when it takes this value.
Conversely, a negative value indicates a poorer behavior.

Figure 3 confirms the previous results obtained from the analysis of mean suc-
cess rate. For Boltzmann distribution, improvements can be achieved by using,
for structural learning, selection probabilities with a higher selection strength
than that used for non-structural learning. We should learn the structure from a
set of very good solutions but the selection strength can be relaxed at the time
of learning the model’s parameters.
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Fig. 3. Results of the statistical tests for customized Boltzmann selection

6.3 Results for Customized Truncation Selection

The analysis of customized truncation selection are conducted using the same
methodology.

Figure 4 shows the mean success rate of Tree-EDA with and without repairing.
The results of Tree-EDA improves by selecting αs < αp for αp > 0.1. Also for
Tree-EDA with repairing the results improve for αs < αp for αp > 0.1, but
the differences are not that clear. For truncation selection, αs ∈ {0.2, 0.3} is
the best choice for almost all values of αp. Another remarkable fact that makes
a difference with Boltzmann selection is that Tree-EDA is always better than
UMDA when truncation selection is used.
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The results of the statistical tests for customized truncation selection are
shown in Figure 5. It can be seen in the figure that Tree-EDA with truncation
selection exhibits a behavior similar to Tree-EDA with Boltzmann selection when
the repairing procedure is not used. Nevertheless, when repairing is applied, there
are fewer significant differences in the behavior of the algorithms. This fact can
be also observed in Figure 5.
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Fig. 4. Customized truncation selection: Number of times the best solution was found
for the different values of the truncation parameter. a) Without repairing. b) When
repairing is applied.
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Fig. 5. Results of the statistical tests for customized truncation selection
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Fig. 6. Mean success rate of Tree-EDA with repairing for solutions grouped according
to the number of local optima (nl)

To evaluate how sensitive are the introduced selection methods to the number
of optima in the problem, we selected two sets of instances. The first group con-
tains instances with one or two local optima (703 instances). The second group
comprises instances with more than 100 local optima (685 instances). Using Tree-
EDA with repairing we compute the mean success rate for the selection methods
on all possible combinations of parameters Tp and Ts (6× 6 = 36). The results
are shown in Figure 6 where nl is the number of local optima in addition to the
global optimum. The main conclusion from the analysis of Figure 6 is that both
selection methods are sensitive to the number of local optima. However, while
the Boltzmann customized selection is able to outperform customized trunca-
tion selection for appropriate combination of parameters, the second selection
method is more robust to the variation of the parameters.

7 Conclusions and Future Work

In this paper we have introduced customized selection in EDAs. We have shown
that, by using different selection probabilities for structural and non-structural
learning of the models, it is possible to increase the success rate of Tree-EDA
for the functional model protein. Our results show that improvements are more
important for Boltzmann selection than for truncation selection.

Beyond the improvements in optimization, customized selection opens new
possibilities for research on the relationship between selection and model learning
in EDAs. We can independently evaluate the effect of selection in the structural
and parametric components of the graphical models. For instance, we can inves-
tigate the quality of the models as fitness surrogates by independently manip-
ulating the different selection probabilities from which the model’s components
are learned.
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There are optimization problems where some sets of variables make a higher
contribution to the fitness. Evolutionary algorithms can fail in these situations
when these salient building blocks converge before those with lower marginal
fitness [19]. One possible extension of customized selection is the computation
of marginal probabilities of different subsets of variables using different selection
probabilities. In this way, marginal probabilities could be adjusted, according to
different strengths of selection, to “synchronize” building blocks with different
temporal-salience behaviors.
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