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Abstract. A state in time series can be referred as a certain signal pat-
tern occurring consistently for a long period of time. Learning such a
pattern can be useful in automatic identification of the time series state
for tasks like activity recognition. In this study we showcase the capa-
bility of our GP-based time series analysis method on learning different
types of states from multi-channel stream input. This evolutionary learn-
ing method can handle relatively complex scenarios using only raw inputs
requiring no features. The method performed very well on both artificial
time series and real world human activity data. It can be competitive
comparing with classical learning methods on features.

Keywords: Genetic Programming, Pattern Recognition, Time Series.

1 Introduction

Time series pattern refers to certain regularities in time series that may be of
user interests. There are in general two types of time series patterns. One is event
patterns which indicate the occurrence of an event, for example a heart beat on
EEG readings. Another type is patterns of states which indicate the time series
reading stabilizing during a relatively short period of time.

The main three differences between state or an event are that:

1. Occurrence: A state is usually a reflection of a stable condition, for example,
a person being standing or sitting. An event usually happens when transiting
from one condition to another, for example, a person sitting down (changing
from standing to sitting).

2. Data Characteristic: A state may show a certain form of repetition of seg-
ments over a time period, for example, a person can be in a walking state
with the repetition of leg movement. The data is often homogenous. On con-
trary, an event is heterogeneous along the time axis. Figure 1 demonstrates
the transition from standing to sitting. The 3 regions divided by 2 dotted
grey line show the subject be standing, sitting down and be sitting sequen-
tially. We can see that in both two states, the readings are similar but it is
not the case in transitions.
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3. Detection: The detection mechanism would be different as the occurrence of
an event can not be decided before the completion of the event while that is
not the case for detecting a state. An event usually has a certain duration
while a state may last indefinitely.

The boundary between state or an event are however subtle. As shown in
Fig 2, the short walking period is composed of 4 steps. Each step can be viewed
as an event. The repetition of such “step” events forms the a walking state.
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Fig. 1. A Person transiting from Standing to Sitting
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Fig. 2. Illustration of a walking state (4 steps)

A drawback of existing works on classifying time series patterns including
events and states is that they often require to know the pattern size in advance
[10, 8, 5, 6]. In case of state detection, the pattern size refers to the state length,
the minimum period that a state can be existing. 1 Such information is not

1 State length will be used with pattern size interchangeably through this paper.
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always available. Moreover, a suitable set of features has to be defined for each
particular task, which makes the solution usually domain-dependent. In addition,
a great number of techniques cannot work well on multi-channel time series.

Given the above complexity, a method that can automatically search the
state length and extract useful features is highly beneficial. In [12], Genetic
Programming (GP) has been shown its effectiveness in solving event detection
problem for raw, multi-channel time streams. We therefore propose to use this
GP based method for state detection problems. In particular, the three research
questions we are addressing in this paper are:

1. Is the GP-based event detection method applicable to state detection prob-
lems?

2. How does GP perform on a range of multivariate synthetic state detection
tasks?

3. How does GP perform when applied to real scenario e.g. Activity Recognition
tasks?

2 Related Work

There are mainly two categories of methods for classifying time series patterns:
1) Similarity-based techniques and 2) Features-based techniques. In the first
category, the class of a time series segment can be determined by its similarity
between segments from all classes. Nearest Neighbour, a typical distance-based
classifier is the most popular similarity-based time series classifier [10]. Another
popular choice is decision tree which uses similarity measure for the partition of
trees [8]. The key factor affecting the performance of such classifiers is the effec-
tiveness of that similarity measure [13]. The commonly used measures include
Euclidean Distance [7, 3] and Dynamic Time Warping (DTW) [1]. Similarity-
based methods assume that a time series pattern always appears similarly which
may not be true. Feature-based methods carry out classification based on time
series features. However feature extraction may be very time consuming and are
often highly problem-specific [5, 6, 9, 4, 2].

Methods of both categories mentioned above have to know the pattern size
beforehand and use it to define the window size for sampling segments. Our
approach is different as it does not require such information. Moreover, the
majority of aforementioned methods are designed for single channel time series.
Patterns over several parallel time series are very difficult to be captured by those
methods, because redundant or irrelevant channels have to be ruled out from
decision process and the dependencies between relevant channels are sometimes
complex. Our proposed method can handle multiple channel of time series.

3 A GP-Based State Detection Methodology

In this section, we present our methodology which is based on Genetic Pro-
gramming. The description mainly focuses on the function set which includes
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the window function, temporal difference function and multi-channel function.
These functions are internal nodes on a GP constructed program tree which
in this case a classifier. The higher classification accuracy the better fitness the
tree will receive.

3.1 Window Function

The Window Function defines the incoming sequential inputs, selects data points
inside the window, and applies the operations on the select data points. It takes
three parameters: i, temporal index and operation.

The first parameter (i.e. i) is the input of this function which samples a data
point at every time step. It keeps the subsequence of historical values of that
input in memory. The length of this subsequence is called “Window” function
size (denoted as S), which is manually adjustable. The reserved data points
are marked from the earliest point to the most recent one as t0, t1, ..., tS−1.
The value of S is set as 8 in this study. Greater values are not used so that the
evolved programs can be less complex for analysis. Moreover, this value does not
deteriorate the performance.

The second parameter is from terminal “temporal index” which returns an
random integer within the range of [1, 2S − 1]. First the integer is converted into
its binary form. In case that the binary is shorter than S and not sufficient to
mark all elements in the subsequence, it will be left padded with 0. For example,
assuming S is 8 and the parameter value is 5 then the binary string should
be 00000101, in which the first five 0s come from padding. This binary is then
mapped to the subsequence of time series data under the window. A bit with
“1” indicated the data point with the same index will be selected while a bit
with “0” will be discarded.

The third parameter (i.e. operation) is a randomly generated integer valued
from a range [1, 4]. Each value corresponds to one of the four operations: AVG,
STD, DIF and SKEWNESS. They are used for calculating the average, the stan-
dard deviation, the sum of absolute differences and the skewness of the selected
points under the window. The return value is the final output of the Window
Function.

3.2 Temporal-Difference Function

Temporal-Difference Function (noted as Temporal Diff ) is introduced to cap-
ture temporal change between adjacent points as it is obviously important for
identifying the occurrence of events.

It only takes one double value parameter i which defines the input. It stores the
value ti−1 which is one time stamp earlier and returns the difference between
ti−1 and the current value ti. It consequently can be considered to have an
effective window size of 2. Eventually, it calculates the first derivative of the
time series, as temporal changes can be more revealing. Higher order derivatives
can be achieved as well if this function is used iteratively.
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3.3 Multi-channel Function

The two functions mentioned earlier only handle the temporal dependence, that
is, they only work on a sequence along time axis by themselves. They can hardly
be aware of any relationship cross channels at a particular time point. Conse-
quently, a state occurring in multiple channels would not be captured by those
functions. To address this problem, Multi-Channel Function is introduced. The
function selects arbitrary collection of channels and computes characteristics
of these channels. It takes two integers as its parameters: channel index and
channel operation. No input parameter needs to be specified as the whole set
of channels are treated as input. The parameter channel index works in a simi-
lar way as to temporal index in the Window Function, except its range is from
1 to 2M − 1, where M is the total number of channels. So assuming the channel
number is 6 in total, a binary form of 13, 001101, would tell the function to
operate on the 3rd, the 4th and the 6th channels. The parameter for channel
operation also returns an integer from 1 to 4, which corresponds to the follow-
ing functions: median value which is the middle value of the selected variables
(MED), their average (AVG), their standard derivation (STD) and the distance
between the maximum and minimum values (RANGE).

The Window Function can be integrated with Multi-Channel Function by
taken the output of the latter as input data. Such combination enables GP to
find both temporal relationships and variable dependence simultaneously.

4 Synthetic State Detection

In this session, we introduce six synthetic data sets with increasing complex-
ity. They are used to verify the capability of the proposed method for states
detection. These data sets vary in the state size and the number of channels.

4.1 Single-Channel Time Series

In single-channel time series tasks, there is only one channel involved in the time
series. The time series data and the tasks are explained in following.

Box Functions. The task is to identify a state of signal at certain level. An
example is shown in Figure 4.1. The starting point and the end point of
a state are marked with red dots. It is the same in all other graphs in this
section. This stimulates voltage or temperature maintaining at a certain level
with minor fluctuations.

Oscillation. In a range of applications, constant oscillation may be viewed as
a certain state, such as vibration of a spring, which may indicate the normal
working condition of the spring. In this time series, a state is defined as
consecutive peaks of which the top value is above 180 and the bottom value
is bellow 10 (shown in Figure 4.1). Note that the state should last at least
for a period of p samples (p = 4) given each sample taking 12 time points.
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(a) An Example of Box Function
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(b) An Example of Oscillation

Fig. 3. Two Non-periodical Synthetic States

Sine Wave vs. Random Numbers. A state can be not just a constant value.
It can also be a regular signal. This task is to distinguish a signal being
generated through a periodical function versus at random. The regulated
signal is produced y = |100∗sin(x)| which is sampled at every π

30 . We define
the state size as 8. An example is given in Figure 4.1.

Sine Waves. The positive state is defined the same as last problem. The neg-
atives are however consisted of other sine waves, instead of random num-
bers. These variants are generated by several similar periodical function
y = |100 ∗ sin(x ∗ f)| (where f = 2, 3, 4, 5, 6), sampled at the same rate
as target function (shown if Figure 4.1). The aim is to investigate whether
our method can discriminate similar regularities. The state size is also set as
8 for this task.
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Fig. 4. Two Periodical Synthetic States
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4.2 Multi-channel Time Series

In the following two tasks, there are more than one channels in the time series.
The time series data and the tasks are explained in following.

Sine Wave in Two Channels. The sine wave is again y = 100 ∗ sin(x), sam-
pled at every π

7 . However, in this task, positives are only when time series
in both channels are sine waves. If one channel is random numbers the state
will be considered as negative. As shown in Figure 5, only the middle section
is considered positive.
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Fig. 5. An Example of Two-Channel Sine Waves

Box Functions in Four Out of Five Channels. The time series is in thepos-
itive state if there are more than four channels receiving signal value above 90
for at least 8 points. There is no constrain that at which channels the high read-
ing may occur.

5 Experiments and Results

GP was applied on the six synthetic tasks described in Section 4. For comparison
purposes five non-GP classifiers were also applied on those tasks, including OneR,
J48, Naive Bayes and IB1. In addition AdaBoost was used to combine multiple
classifiers as an ensemble to boost accuracy. For each task, the best conventional
classifier from the four was selected as the base classifier in AdaBoost. The
experimental settings for GP and Non-GP classifiers are shown in Section 5.1
and Section 5.2. The experimental results are presented in Section 5.3

5.1 The Experimental Settings for GP

The GP runtime parameter setting for synthetic data sets is: Population (300),
Generation (50), Maximum Depth (8), Minimum Depth (2), Mutation Rate (5),
Crossover Rate (85), Elitism Rate (10) andWindow Function Size (8). In activity
recognition task, a larger population size of 1000 and a greater Window Function
Size of 12 are used due to the complexity of the problem. Each run is repeated
10 times and the best run is taken as GP’s result.
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5.2 The Experimental Settings for Non-GP Classifiers

The time series streams are converted into a list of segments as inputs for non-
GP classifiers. For each tasks, the segments are extracted by a sliding window of
which the size equals to the state length. This ensures that each segment con-
tains sufficient amount of information while redundant information is eliminated.
The segments containing raw data can be used as inputs to classifiers directly.
We call such a segment raw input vector. Alternatively, a set of features can be
extracted based on each raw input vector and called feature set. We use both
types of inputs for non-GP classifiers. The processes of obtaining these inputs are
demonstrated in following by an example where the time series has 2 channels
and the pattern size is 3.

Raw Input Vector: A. A sliding window is moving through time series to
extract raw input vectors. For multi-channel time series, all the readings are
flattened into one row just like representing a matrix in a one-dimensional
array as shown in Figure 6.

Feature Set B: Wave Length. This feature is uniquely designed for sine func-
tions, which is calculated by equation

∑3
i=1 |ti − ti−1|. This features is not

effected by the phases of the sine wave. Therefore the feature at any time
point should have the identical feature values, hence a good feature for find-
ing a state of waves.

Feature Set C: Temporal Average and Variance. The feature setprovides
the average and standard deviation over the length of a pattern. So the size of
this feature set is the double of the number of channels.

Feature Set D: Channel Average. This feature takes averages calculations
on different points at each single channel. This feature set enumerate the
average value of all channels at each time point. The number of features
should be equal to the pattern size.

Table 1 summarizes, for each task, the state length, the numbers of attributes
in raw input vector, the type of feature set used in that task, and the numbers
of attributes in the feature set.

Stream Data  Converted Vectors 

( )   ( ) ( ), ( ), ( ), ( ), ( ), ( ) 

( )   ( ) ( ), ( ), ( ), ( ), ( ), ( ) 

( )   ( ) ( ), ( ), ( ), ( ), ( ), ( ) 

… … 

( )   ( ) ( ), ( ), ( ), ( ), ( ), ( ) 

Fig. 6. An Example showing converting a Two-Channel Time Series Stream To Raw
Data Vectors for Conventional Classifiers (Pattern Size: 3)
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Stream Data  Feature Vector B 

( )   ( ) |( ( ) - ( )) + ( ( ) - ( ))|, |( ( ) - ( )) + ( ( ) - ( )) | 

( )   ( ) |( ( ) - ( )) + ( ( ) - ( ))|, |( ( ) - ( )) + ( ( ) - ( )) | 

( )   ( ) |( ( ) - ( )) + ( ( ) - ( ))|, |( ( ) - ( )) + ( ( ) - ( )) | 

… … 

( )   ( ) |( ( ) - ( )) + ( ( ) - ( ))|, |( ( ) - ( )) + ( ( ) - ( ))| 

Fig. 7. Illustration of Extraction Feature Type B (Pattern Size: 3)

Stream Data  Feature Vector C 

( )   ( ) { ( ), ( ), ( )}, { ( ), ( ), ( )}, 
{ ( ), ( ), ( )}, { ( ), ( ), ( )}   

( )   ( ) { ( ), ( ), ( )}, { ( ), ( ), ( )}, 
{ ( ), ( ), ( )}, { ( ), ( ), ( )} 

( )   ( ) { ( ), ( ), ( )}, { ( ), ( ), ( )}, 
{ ( ), ( ), ( )}, { ( ), ( ), ( )} 

… … 

( )   ( ) { ( ), ( ), ( )}, { ( ), ( ), ( )}, 
{ ( ), ( ), ( )}, { ( ), ( ), ( )}   

Fig. 8. Illustration of Extraction Feature Type C (Pattern Size: 3)

Stream Data  Feature Vector D 

( )   ( ) { ( ), ( )}, { ( ), ( )}, { ( ), ( )} 

( )   ( ) { ( ), ( )}, { ( ), ( )}, { ( ), ( )} 

( )   ( ) { ( ), ( )}, { ( ), ( )}, { ( ), ( )} 

… … 

( )   ( ) { ( ), ( )}, { ( ), ( )}, { ( ), ( )} 

Fig. 9. Illustration of Extraction Feature Type D (Pattern Size: 3)

5.3 Experimental Results on Synthetic Tasks

Table 2 shown the results of 6 classifiers on six state detection tasks. All the
results are from test only. Considering the overall performance, GP outperformed
other classifiers. In particular, in Task 3 and 5, GP significantly outperformed
other counterparts. The performance gaps between GP and other classifiers are
not as wide as what we found in event detection.

Table 3 presents the results of conventional classifiers on pre-defined feature
sets B,C,D. The results from GP runs on raw data are also listed. Obviously
these well designed features can help the classifiers to achieve better results.
However the superior performance of GP can still be observed.
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Table 1. Training and Test Data of the Six Synthetic State Detection Tasks

Tasks Training Test
State
Size

Numbers of
Attributes

(No Features)
Feature Set

Numbers of
Attributes
(Features)

1. Box Functions 263:249 122:133 3 3 C 2
2. Oscillation 217:280 88:178 7 7 B 1
3. Sine Wave vs.
Random Numbers

279:150 112:133 8 8 B 1

4.Sine Waves 219:201 69:141 8 8 B 2
5. Sine Waves in
Two Channels

140:276 46:159 8 16 B 2

6. Box Functions
in Four out of
Five Channels

203:309 92:163 8 40 D 8

Table 2. Synthetic State Detection: Comparing GP with Non-GP Methods on Raw
Input Vector%

Tasks OneR J48 NB IB1 AdaBoost GP

1
92.09

TP: 98.4
TN: 86.3

100
TP: 100
TN: 100

100
TP: 100
TN: 100

100
TP: 100
TN: 100

100
TP: 100
TN: 100

100
TP : 100
TN : 100

2
59.84

TP: 63.7
TN: 56.8

98.46
TP: 99.1
TN: 97.9

90.73
TP: 100
TN: 83.6

99.23
TP: 100
TN: 98.6

99.23
TP: 100
TN: 98.6

100
TP : 100
TN : 100

3
56.3

TP: 92.9
TN: 23.8

91.18
TP: 100
TN: 83.3

61.76
TP: 74.1
TN: 50.8

92.86
TP: 100
TN: 86.5

91.18
TP: 100
TN: 83.3

99.58
TP : 99.11
TN : 100

4
66.5

TP: 65.2
TN: 67.2

96.55
TP: 100
TN: 94.8

66
TP: 82.6
TN: 57.5

98.52
TP: 100
TN: 97.8

97.04
TP: 100
TN: 95.5

98.52
TP: 100

TN: 97.76

5
65.15

TP : 100
TN : 54.6

87.88
TP : 56.5
TN : 97.4

82.83
TP : 100
TN : 77.6

74.75
TP : 0

TN : 97.4

85.86
TP : 43.5
TN : 98.7

100
TP: 100
TN: 100

6
74.6

TP: 51.1
TN: 88.5

96.77
TP: 97.8
TN: 96.2

90.73
TP: 79.3
TN: 97.4

99.19
TP: 100
TN: 98.7

97.18
TP: 98.9
TN: 96.2

100
TP : 100
TN : 100

The results shown in Table 2 and Table 3 demonstrate that GP has the
capability to extract features that can distinguish a state from the rest of time
series, even when a state pattern is relying in several channels. This is because
with the given functions and terminals, GP is able to combine and operate on
raw numeric values. This is actually an implicit feature construction process.

5.4 Experimental Results on a Real-world Task

To further evaluate the performance of our method, we tested it on a benchmark
data set [11] for mobile-based activity recognition 2, which includes 21-channel
sensory data collected from 5 subjects. There are four state detection tasks:
sitting, walking, running and lying flat. Note that the walking state includes dif-
ferent gaits, including going upstairs and going downstairs. A leave-one-person-
out validation is conducted in this study. That is, for each detection task, the

2 Data can be download at
http://yallara.cs.rmit.edu.au/~s3268719/AR/data.html

http://yallara.cs.rmit.edu.au/~s3268719/AR/data.html
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Table 3. Synthetic State Detection: Comparing GP with Non-GP Methods on Feature
Sets %

Tasks OneR J48 NB IB1 AdaBoost GP

1
100

TP: 100
TN:100

100
TP: 100
TN:100

100
TP: 100
TN:100

100
TP: 100
TN:100

100
TP: 100
TN:100

100
TP : 100
TN : 100

2
100

TP: 100
TN:100

100
TP: 100
TN:100

100
TP: 100
TN:100

100
TP: 100
TN:100

100
TP: 100
TN:100

100
TP : 100
TN : 100

3
100

TP: 100
TN: 100

100
TP: 100
TN: 100

99.58
TP: 74.1
TN: 99.2

100
TP: 100
TN: 100

100
TP: 100
TN: 100

A:99.58
TP: 99.11
TN: 100

4
93.6

TP: 100
TN: 90.3

98.52
TP: 100
TN: 97.8

91.13
TP: 100
TN: 86.6

98.52
TP: 100
TN: 97.8

98.52
TP: 100
TN: 97.8

98.52
TP: 100

TN: 97.76

5
77.78

TP: 100
TN: 71.1

98.99
TP: 100
TN: 98.7

100
TP: 100
TN: 100

99.49
TP: 100
TN: 99.3

100
TP: 100
TN: 100

100
TP: 100
TN: 100

6
87.1

TP: 93.5
TN: 83.3

98.79
TP: 97.8
TN: 99.4

100
TP: 100
TN: 100

100
TP: 100
TN: 100

100
TP: 100
TN: 100

100
TP : 100
TN : 100

Table 4. Leave-one-person-out: Accuracies, true Positive and true Negative rates
(trained and tested on data from the right front pant pocket)(%)

Sitting Walking Running Lying

Subject 1
91.5

TP: 100
TN: 90.1

93.7
TP: 97.5
TN: 88.5

99.7
TP: 96.9
TN: 99.9

99.6
TP: 99.2
TN: 99.6

Subject 2
97.1

TP: 79.8
TN: 99.3

94.1
TP: 96.9
TN: 87.5

99.5
TP: 94.2
TN: 99.7

97.7
TP: 98.2
TN: 97.7

Subject 3
88.7

TP: 93.4
TN: 88.1

91.2
TP: 97.8
TN: 83.6

86.0
TP: 90.3
TN: 83.3

99.6
TP: 96.4
TN: 99.9

Subject 4
95.9

TP: 94.3
TN: 96.3

93.4
TP: 95.4
TN: 91.6

96.4
TP: 94.0
TN: 96.6

98.1
TP: 94.7
TN: 98.6

Subject 5
98.5

TP: 96.3
TN: 98.9

91.0
TP: 91.2
TN: 91.0

96.0
TP: 97.5
TN: 95.7

99.7
TP: 99.1
TN: 99.8

classification is conducted for five times. For each time, the records from one
subjects are used for testing and the rest for training.

Table 4 shows the results from all four tasks on 5 subjects. Our method did
achieve consistently good accuracy over different scenarios of state detection.
These results show that GP can detect states not only from synthetic time
series but also in a complex, real-world scenario.

6 Conclusions

State and event are two main types of time series patterns. In this study, we
proposed a GP-based method for state detection from multi-channel time se-
ries. This method requires no manual feature extraction. Our experiments show
GP-based method can achieve significantly better results on raw inputs and
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competitive results when non-GP methods are provided with pre-defined fea-
tures. The good performance of the proposed method is consistent on a set of
synthetic problems as well as on real-world activity recognition problems. We
conclude that GP based time series classification method is suitable for state
detection.
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