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Preface

This LNCS volume contains the papers presented at SEAL 2014, the 10"
International Conference on Simulated Evolution and Learning, held during De-
cember 15-18, 2014, in Dunedin, New Zealand. SEAL is a prestigious interna-
tional conference series in evolutionary computation and learning. This biennial
event was first held in Seoul, Korea, in 1996, and then in Canberra, Australia
(1998), Nagoya, Japan (2000), Singapore (2002), Busan, Korea (2004), Hefei,
China (2006), Melbourne, Australia (2008), Kanpur, India (2010), and Hanoi,
Vietnam (2012).

SEAL 2014 received over 109 paper submissions from nearly 30 countries.
After a rigorous peer-review process involving at least three reviewers for each
paper, the best 42 papers were selected to be presented at the conference as a
regular talk (acceptance rate of 39%) and an additional 29 papers as short talks
(an acceptance rate of about 26%).

The papers included in this volume cover a wide range of topics in sim-
ulated evolution and learning. The accepted papers have been classified into
the following main categories: (a) evolutionary optimization, (b) evolutionary
multi-objective optimization, (c) evolutionary (machine) learning, (d) theoreti-
cal developments, (e) evolutionary feature reduction, (f) evolutionary scheduling
and combinatorial optimization, and (g) real-world applications and evolution-
ary image analysis.

The conference featured three distinguished keynote speakers: Xin Yao,
Kay Chen Tan, and Zbigniew Michalewicz. Prof. Xin Yao’s talk was on “Learn-
ing in the Model Space.” Prof. Kay Chen Tan’s talk was on “Advances in
Evolutionary Multiobjective Optimization and Applications.” Prof. Zbigniew
Michalewicz’s talk was on “Some Thoughts on Complexity of Real-World
Problems—Evolutionary Computation for Real-World Applications.” We were
very fortunate to have such internationally renowned research leaders giving
talks at SEAL 2014, given their busy schedules. Their presence at the confer-
ence was yet another indicator of the importance of the SEAL conference series
on the international research map.

SEAL 2014 also included six tutorials, which were free to all conference par-
ticipants. Two tutorials were kindly provided by two of the keynote speakers,
Prof. Xin Yao and Prof. Zbigniew Michalewicz, and in addition, we were also
fortunate to have Prof. Frank Neumann, Prof. Marcus Gallagher, Prof. Hernan
Aguirre, and Prof. Simon Lucas to each present a tutorial at the conference.

These six tutorials covered some of the hottest topics in evolutionary compu-
tation and learning, and their applications, including “Evolving and Designing
Neural Network Ensembles Effectively” (Xin Yao), “How to develop a Killer EC-
Based Application?” (Zbigniew Michalewicz), “Parameterized Complexity Anal-
ysis of Bio-Inspired Computing” (Frank Neumann), “Estimation of Distribution
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Algorithms and Probabilistic Modelling in Evolutionary Computation” (Marcus
Gallagher), “Advances on Evolutionary Many-Objective Optimization” (Hernan
Aguirre), and “Monte Carlo Tree Search and Evolutionary Enhancements” (Si-
mon Lucas). They provided an excellent start to the four-day conference.

The success of a conference depends on its authors, reviewers, participants
and Organizing Committees. SEAL 2014 was no exception. We are very grateful
to all the authors for their paper submissions and to all the reviewers for their
outstanding effort in refereeing the papers within a tight schedule. We relied
heavily upon a team of volunteers to keep SEAL 2014 running smoothly and
efficiently. They were the true heros working behind the scene. In particular,
Heather Cooper and Stephen Hall-Jones and the local organizing team from the
University of Otago played an important role in supporting the running of the
conference. We are most grateful to all the student volunteers for their great
efforts and contributions.

We would also like to thank our sponsors for providing all the support and
financial assistance to SEAL 2014, including the Department of Information
Science, University of Otago, School of Engineering and Computer Science and
Evolutionary Computation Research Group, Victoria University of Wellington,
and IEEE Computational Intelligence Society.

December 2014 Grant Dick
Will Browne

Peter Whigham

Mengjie Zhang
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Solving Dynamic Optimisation Problem
with Variable Dimensions

AbdelMonaem F.M. AbdAllah, Daryl L. Essam, and Ruhul A. Sarker

School of Engineering and Information Technology, University of New South Wales Canberra
(UNSW Canberra@ ADFA), Canberra 2600, Australia
a.abdallah@student.adfa.edu.au,

{d.essam, r.sarker}@adfa.edu.au

Abstract. Over the last two decades, dynamic optimisation problems (DOPs)
have become a challenging research topic. In DOPs, at least one part of the
problem changes as time passes. These changes may affect the objective func-
tion(s) and/or constraint(s). In this paper, we propose and define a novel type of
DOP in which dimensions change as time passes. It is called DOP with variable
dimensions (DOPVD). We also propose a mask detection procedure to help al-
gorithms in solving single objective unconstrained DOPVDs. This procedure is
used to try to detect ineffective and effective dimensions while solving
DOPVD:s. In this paper, this procedure is added to Genetic Algorithms (GAs) to
be tested. The results in this paper demonstrate that GAs which use the mask
detection procedure outperform GA without it especially Periodic GA 5
(PerGAS).

Keywords: Dynamic optimisation, variable dimensions, genetic algorithm, mask
detection, periodic.

1 Introduction

Optimisation is an important topic that relates to several aspects in our life, such as
transportation, management and industry. There are different categories of optimisa-
tion problems. Firstly, problems can be either discrete or continuous. In discrete opti-
misation, problems may have a finite number of objects to be ordered in their best
possible way, for example, when finding an optimised path among a set of locations
[1]. In contrast, continuous optimisation problems have real values to be optimised
[2]. Secondly, the problems can be either single objective or multi-objective [3].
Thirdly, problems can be either unconstrained or constrained [2]. Finally, problems
may either be stationary (static), where they do not change over time [4], or dynamic,
where they have at least one part that changes over time [5].

In this paper, we consider dynamic optimisation problems (DOPs), in particular, a
new class of problems in which effective dimensions change as time passes. We call
these problems DOPs with variable dimensions (DOPVDs). Also, we develop an
approach to identify active and inactive dimensions during the search process; this is
called mask detection procedure. The experiments are conducted by developing test

G. Dick et al. (Eds.): SEAL 2014, LNCS 8886, pp. 1-12, 2014.
© Springer International Publishing Switzerland 2014
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problems based on existing well-known functions. The analysis of the experimental
results shows that GAs with the proposed mask detection procedure outperform GAs
without it.

The rest of this paper is organised as follows. In Section 2, DOPs are addressed in
general. In Section 3, DOPVD is defined and a framework is constructed to design
such problems. Section 4 includes a comparison and discussion of six GAs that have
been designed for solving DOPVDs. While an overall discussion of the implications
of the results and suggestions for future work are concluded in this paper in Section 5.

2 Dynamic Optimisation Problems

In dynamic optimisation problems (DOPs), at least one part of each problem changes
as time passes. These changes may include the objective function(s) and/or con-
straint(s). Various methods have been used to solve DOPs, for example, Genetic
Algorithms (GAs) [6], Immune-based algorithms (IBAs) [7] and Evolutionary Algo-
rithms (EAs) [8]. When EAs are used to solve dynamic environments, they are called
evolutionary dynamic optimisation (EDO) algorithms [9]. These algorithms have
attracted a lot of research effort during the last 20 years. In this section, we consider
three issues; change detection, optimisation approaches for solving DOPs and DOPs
test problems and generators.

2.1  Change Detection

Ignoring the dynamics of the problem is the simplest way to solve DOPs, but such an
approach is not practical [5]. Hence, to deal with DOPs the methods have two main
goals, to track the changes in a problem, and to locate the optimal solution [9]. In addi-
tion, some type of correlation between the problem-after-change and the problem-before-
change must be considered. Otherwise, after a problem changes, the algorithm needs to
solve a different problem by starting from scratch.

When a change occurs, most of the algorithms need to detect the changes. Change
detection mechanisms can be categorised into: detecting change by re-evaluating
solutions [9], and detecting changes based on algorithm behaviour [9].

2.2 Optimisation Approaches for Solving DOPs

This subsection briefly critically reviews two of the most typical approaches that have
been proposed to solve DOPs.

I) Introducing Diversity when Changes Occur

This category contains methods that try to introduce diversity into their population when
they detect a change. For example, by increasing the mutation rate as in hyper-mutation
[10]. These approaches are good in solving problems with continuous changes, when the
changes are small and medium [11]. However, these methods might have some disadvan-
tages, for example, they are dependent on changes being easy to detect [12].
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II) Memory Approaches

It might be useful to reuse previously found solutions, if the changes of a DOP are
periodical or recurrent. In these situations, memory can be used to save computational
time. The memory can also play the role of maintaining diversity by reserving
place(s) for storing old solution(s). The memory can be integrated implicitly as a re-
dundant representation in an algorithm, or be maintained explicitly as a separate
memory component [9, 11]. These approaches are particularly effective in solving
problems with periodically changing environments [6]. However, if the ideal solu-
tions do not repeat, then the memory might become redundant [9].

This category is the closest to the approach proposed in this study. In this paper,
we use a partial explicit memory in our approach, as ineffective dimensions are pro-
hibited from changing.

2.3  DOPs Test Problems and Generators

There are various test problems and generators to be used to test the proposed algo-
rithms to solve DOPs. Some test problems in continuous search space are mentioned
as follows:

e Branke [13] proposed the Moving Peaks Benchmark (MPB) Problem, which
has been widely used in the literature [14].

e  Dynamic Composition Benchmark Generator (GDBG) the dynamic compo-
sition functions, are actually extended from the static functions that devised
by Liang et al. [15].

e  Dynamic test problems for the CEC 2009 Competition; The GDBG was used
to construct these test problems [16]. These dynamic test problems consist of
Sphere, Rastrigin, Weierstrass, Griewank and Ackley functions. The detailed
of each function can be found in [16]. These problems are used in this paper.

3 Dynamic Optimisation Problems with Variable Dimensions

A dynamic optimisation problem with variable dimensions (DOPVD) is a DOP in
which the effective dimensions change as time passes. In real life DOPVDs arise,
because sometimes the decision variables that affect a decision changes as time
passes. For example:

e Stock exchange; if a decision maker wants to optimise a group of illiquid stocks,
while their availability changes as time passes.

e Production systems; consider a production process that produces multiple products
based on market demand. In this case, all products do not have the same availabil-
ity/requirement as time passes.
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The effective dimensions are dimensions that affect a decision during the current
time slot while the ineffective dimensions are those that do not. To construct a frame-
work for designing DOPVD, benchmark function(s) containing multiple dimensions
are used. In this paper, Sphere, Rastrigin, Weierstrass, Griewank and Ackley are used
[16]. Without loss of generality, this paper only considered minimisation problems.

To construct a problem, the parameter, prob_change, is used; this parameter deter-
mines the probability of a problem change as time passes. The parameter, g_random,
is a variable that is randomly generated every generation. The parameter, MAX_Dim,
is the maximum number of dimensions that problem contains. The parameter, In-
Eff_Dim, is the number of ineffective dimensions in the time slot. Then the problem
changes as follows:

e  For each generation:
o Generate a random value (g_random)
o If (g_random < prob_change)
=  Change the mask of the problem
o Else
= Do not change

To determine which dimensions are ineffective, while all others are effective, a
problem mask is randomly generated. For example, if we have a problem with ten
dimensions (MAX_Dim = 10), where three are ineffective (InEff _Dim = 3), then
three unique indices € [1-10] are randomly generated, for example, 1, 5 and 9, and
then those dimensions are chosen to be ineffective (its mask value is equal to 0) as
shown in Fig. 1. When the fitness of function is evaluated, the value used for each of
the effective dimensions, is the one specified by an algorithm, however the value for
the ineffective dimensions is always 0. For example, consider a simple example func-
tion Minimise (abs(x; + X;)). The minimal value for this function is obviously x; and
x, = 0. However, consider if x, is ineffective. Due to mutation and crossover, x, will
gradually diversify, because if x; = 0, and the function will have its minimal value,
regardless the value of x, (because 0 is always used for its value).

Dimension 1|2 3 4 1567|8910
Problem Mask Value [ 0 | 1 1 1 (0|1 ]|]1[1f0]|1

Fig. 1. Example of a randomly generated problem mask

Hence, the efficiency of an algorithm for solving DOPVD depends on determining
and tracking the effective dimensions to be optimised, thus saving computational
power. In this paper, the optimisation approaches for solving DOPVD detect the inef-
fective and effective dimensions by using a mask detection procedure. This procedure
is used periodically, every g generations (this parameter determines how often to
detect the effective dimensions), by using a randomly selected solution as follows:

(a) A random solution is chosen from the current population.
(b) Calculate its actual fitness, let it be F1.
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(c) For each dimension, a random value is generated:
(i) The fitness is recalculated for the solution with the new random value, let it
be F2.
(i) If F1 is equal to F2, then this dimension is assumed to be detected as inef-
fective (its detected mask value is equal to 0), otherwise it is assumed to be
detected as effective (its detected mask value is equal to 1).

An example of a detected mask is shown in Fig. 2. In this figure, dimensions 2 and
6 are assumed to be detected as ineffective dimensions; that is they do not affect the
fitness value when different values are used for them, while other dimensions are
assumed to be detected as being effective dimensions.

Dimension 1|12 |3 (4|5[6]|7]|8]|9]10
Detected Mask Value | 1 | 0 1 1 11011 1 1 1

Fig. 2. Example of a detected mask

4 Experimental Results and Discussion

To solve DOPVD and demonstrate the effect of the proposed procedure, six Genetic
Algorithms (GAs) were implemented for experimentation with the set of uncon-
strained optimisation benchmark functions i.e. Sphere, Rastrigin, Weierstrass,
Griewank and Ackley [16]. In this paper, the algorithms were coded in Microsoft
C++, on a 3.4GHz/16GB Intel Core i7 machine. The six GAs were:

¢ 1) GA without the mask detection procedure.

o 2-6) Periodic GA N (where N =1, 5, 10, 20 or 40), the mask detection is used
periodically every N generations. The generated GAs are PerGA1, PerGAS,
PerGA10, PerGA20 and PerGA40 respectively.

In all the implemented GAs, only the detected effective dimensions were modified
by the genetic operators. Note that all genes were assumed to be effective in GA
without mask detection procedure. For a fair evaluation, every algorithm ran one mil-
lion fitness evaluations. To compare these algorithms, a group of points were deter-
mined for calculations over the fitness evaluations. This was done because each
system ran for a differing number of generations; depending on whether the mask
detection procedure was used or not and how often it was used. In this paper, twenty

1000000  _ 50,000 fitness

evaluations solutions were recorded. A variation of the Best-of-Generation measure
was used where the best-of-generation values were averaged over all generations at
each calculation point [17], it is calculated as follows:

- _ 1 i=G (1 Jj=N

Foc = 7 2025 (5 212 Faoa,)) )
where Fpp is the mean best-of-generation fitness, G is the number of generations,
N is the total number of runs, and FBOGL-]- is the best-of-generation fitness of genera-

calculation points were determined, so the values for every

tion i of run j of an algorithm to solve a problem [18].
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The parameter, prob_change, was also varied from less change (0.05) to more
change (0.75) to demonstrate how the implemented GAs deal with these variations.
The number of dimensions, MAX_Dim, was twenty dimensions, and the number of
ineffective dimensions, InEff Dim, was randomly determined between 5 and 10 di-
mensions.

Table 1 shows the parameters and processes of the implemented GAs. The
search space of all variables was [-5, 5] [16]. Note that all GAs had the same initial
population in the beginning of each run for a fair comparison. Also, in each run the
same masks are loaded for each algorithm to try to simulate the same changes in the
problems.

Table 1. Parameters of experiments

Parameters
Population size 100
Max. number of fitness evaluations / run 1000000
Probabilities of problem mask change (prob_change) 0.05, 0.25, 0.50, 0.75
Selection procedure Tournament
Tournament size 2
Selection pressure 0.9
Elitism percentage 2
Crossover Single-point
Crossover rate 0.9
Mutation Uniform
Mutation rate 0.15
Number of dimensions (MAX_Dim) 20
Number of ineffective dimensions (InEff_Dim) / change | Randomly € [5, 10]

4.1 Performance Evaluation

To evaluate the performance while regarding best-of-generation values, the Fppg in
equation (1) was averaged over the twenty points. Tables 2 to 5 show the comparison
among the algorithms; the best results that have lower values are shown in bold and
shaded cells.

Table 2. Performance comparison at prob_change = 0.05

Probability of| - iion | Without | Ko GA1 | PerGAS | PerGA10 | PerGA20 | PerGA40
change mask

Ackley 1144 | 0513 | 0389 | 0472 0612 0965

Griewank 0114 | 0020 | 0018 | 0019 0.047 0.086

005  |[Rastrigin 13369 | 6029 | 4692 | 494 7237 | 10.119

Sphere 1008 | 0233 | 0217 | 0400 0521 0.792

Weierstrass | 2454 | 1.165 | 1.058 1229 1265 2.004
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Table 3. Performance comparison over prob_change = 0.25

Probability | = o 1 otion | Without | 5o GAT | PerGAS | PerGA10 | PerGA20 | PerGA40
of change mask
Ackley 0488 | 0297 | 0230 0242 0339 0310
Griewank | 0016 | 0006 | 0.005 0.005 0.014 0.016
0.25 Rastrigin 6575 | 3680 | 2.567 2.980 3.653 3.822
Sphere 019 | 0.122 | 0.068 0.081 0.200 0.199
Weierstrass | 1346 | 0894 | 0.494 0529 0.716 0.729

Table 4. Performance comparison at prob_change = 0.50

Probability of| g | oo | Without | 5 GA1 | PerGAS | PerGA10 | PerGA20 | PerGA40
change mask

Ackley 0514 | 0239 | 0491 0211 0245 0283

Griewank 0016 | 0004 | 0.002 0.005 0.005 0.009

0.5  [Rastrigin 6.789 3.603 1.976 2535 3205 3235

Sphere 0194 | 0075 0.041 0.059 0.086 0.144

Weierstrass 1.627 0.785 0.468 0.499 0.621 0.664

Table 5. Performance comparison at prob_change = 0.75

Probability of) - p, | ion | Without | b0 GAL | PerGAS | PerGA10 | PerGA20 | PerGA40
change mask
Ackley 0538 0.282 0.160 0215 0257 0.254
Griewank 0016 0.004 0.002 0.004 0.008 0.006
0.75  [Rastrigin 6.697 3.661 1.924 2104 2.890 2853
Sphere 0.221 0.09 0.041 0.053 0.111 0.098
Weierstrass 1.821 0.727 0.369 0.502 0.639 0.656

The previous tables show that GAs with periodic mask detection outperform the
GA without mask. Also, the PerGAS outperforms the other periodic GAs. The previ-
ous tables were averaged and summarised in Table 6.

Table 6. The overall comparison

Probability of o, | ion | Without | K (GA1 | PerGAS | PerGA10 | PerGA20 | PerGA40
change mask
Ackley 0.671 0333 0243 0285 0363 0453
Griewank 0.041 0.008 0.007 0.008 0.019 0.029
Al [Rastrigin 8357 4245 2790 3.140 4246 5.007
Sphere 0.405 0.132 0.092 0.151 0.230 0308
Weierstrass | 1.812 0.893 0.597 0.690 0.810 1018

Table 6 shows that over all the functions and probabilities of change, the PerGAS
outperforms the other periodic GAs. Also, all periodic GAs outperform GA without
the mask detection procedure; the mask detection procedure is therefore significant
while solving DOPVD.

Here, in order to be able to compare our results more accurately, we also per-
formed statistical significance tests. The non-parametric Friedman test that is similar
to the parametric repeated measures ANOVA was used [19]. It is a multiple compari-
son test that aims to detect significant differences between the performances of two
or more algorithms. Friedman test was performed with a confidence level of 95%
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(o = 0.05) on results in Table 6 with null hypothesis that there is no significant differ-
ences among the performances of the compared algorithms. The computation of the
p-value for this test was 0.002 <= 0.05; so we reject the null hypothesis; as there is a
significant difference among the performances of the compared algorithms. Table 7
shows the ranks of the algorithms based on Friedman test.

Table 7. Performances Friedman test ranks

Algorithm | Without mask PerGAl PerGAS PerGA10 PerGA20 PerGA40
Rank 6 2.90 1 2.30 3.80 5

To test the stability of the compared algorithms, Table 8 shows their standard de-
viations. In this table, periodic GAs are more stable than GA without mask; while
PerGAS is the most stable GA.

Table 8. The overall comparison over the standard deviation

Probability of o | ion | Without | K (GA1 | PerGAS | PerGA10 | PerGA20 | PerGA40
change mask
Ackley 03012 | 0.1852 | 0577 | 02070 | 03049 | 03503
Griewank 00424 | 0.0102 | 00108 | 00151 | 00335 | 0.0463
Al [Rastrigin 37768 | 19280 | L7171 | 22645 | 33627 | 43457
Sphere 05198 | 0.1463 | 0.1569 | 03086 | 04498 | 0.6015
Weierstrass 0.7796 0.4741 0.4157 0.4856 0.6467 0.7728
Average 10839 | 05487 | 04916 | 06562 | 09595 | 12233

In these problems, we had million fitness evaluations (10000 generations), 20 di-
mensions and 100 population size; the mask detection procedure must be included in
this. So the periodic GAs had a number of wasted generations, in comparison to the
without mask GA (normal GA). PerGAl, as there were 100 individuals and mask
detection used 20 fitness evaluations, it wasted 1 of every 5 generations (about 2000
generations). Doing the same previous calculations for the other periodic GAs;
PerGAS, PerGA10, PerGA20, PerGA40 wasted 400, 200, 100 and 50 generations
respectively. Despite this, the periodic GAs outperformed the without mask GA
which did not waste any generation. However, it can be seen that when the wastage
reaches a critical level, the periodic GA could not improve its solutions; as PerGAS
outperforms PerGAL.

Lastly, Table 9 shows the effect of varying the probabilities of change. It aver-
ages the values of the previous Tables (2 to 5) over the probabilities of change.
Note that the best results have lower values. From it, it can be observed that
PerGA40 is worst for low probabilities of change. This presumably because a
change usually is maintained for a long period of time, and so on ineffective di-
mension can widely diverge. For higher probability of change, such dimensions
would not have as much time.
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Table 9. Comparison over the different probabilities of change

Probability of | = Without | p 4y | perGAS | PerGAI0 | PerGA20 | PerGA40
change mask
0.05 3618 1592 1275 1414 1936 2797
025 1724 1.001 0.673 0.768 0.985 1015
0.5 1828 0.941 0.536 0.662 0.833 0.867
0.75 1859 0.954 0.499 0.576 0.781 0.774

4.2  Behaviour Tracking Evaluation

In this section, we try to also evaluate the behaviour and the convergence speed of the
algorithms during solving the problems over the twenty points of calculations. This
tries to monitor and track how the algorithms perform when the problem changes over
time. An evaluation technique is used in this paper, which is similar to the normalised
scores [20]. While judging system i in terms of its average of the best solutions to test
problem j at calculation point k, Fjj is defined as the actual value of the average of the
best solutions that the system obtained, while BFj, = min (Fjj) and WFj, = max (Fi)
are the overall best and worst averages of the best solutions for test problem j at a
calculation point k respectively, and the score of system i (S;y) is calculated as fol-
lows:

| Fijx— BFjkl
Sijk - |Bij— Wij| (2)

Tables 10 to 13 show the comparison based on this evaluation approach, the best
results that have lower values are shown in bold and shaded cells. The less value indi-

cates that the algorithm converges better.

Table 10. Behaviour comparison at prob_change = 0.05

Probability of| - g, ion | Without | 50 A1 | PerGAS | PerGA10 | PerGA20 | PerGA40
change mask
Ackley 19.131 3.650 0.645 2.733 6.149 14.957
(Griewank 18.944 1.344 1.086 1.387 6.734 14.158
0.05 IRastrigin 19.560 3.535 0.753 1.240 6.816 13.376
Sphere 17.221 1.680 1.171 5.940 7.575 12.856
|Weierstrass 19.834 2.721 1.346 3.755 4.269 14.509
Table 11. Behaviour comparison at prob_change = 0.25
Probability of| -y, ion | Without | 0 GA1 | PerGAS | PerGA10 | PerGA20 | PerGA40
change mask
Ackley 18.651 5.807 1.285 2.484 11.898 7.821
IGriewank 9.699 1.733 1.340 1.940 10.084 15.585
0.25 IRastrigin 19.259 4.629 0.373 2.500 6.971 8.508
Sphere 8.574 3.541 1.156 1.297 11.537 10.990
Weierstrass 19.998 7.361 0.448 1.231 6.434 6.257




10 A.F.M. AbdAllah, D.L. Essam, and R.A. Sarker

Table 12. Behaviour comparison at prob_change = 0.50

Probability of| - g, ion | Without | 50 GA1 | PerGAS | PerGA10 | PerGA20 | PerGA40
change mask
Ackley 19374 | 2.898 1.005 2327 4923 8703
Griewank 18.199 | 1398 0.087 3394 5.042 6301
05  [Rastrigin 19982 | 6.120 0.118 2102 5.650 5.671
Sphere 17.675 | 3.771 0.036 2.968 7142 10313
Weierstrass | 20.000 | 4.825 0.403 0.680 2911 4.682
Table 13. Behaviour comparison at prob_change = 0.75
Probability of| - g\ iy | Without | 50 6A1 | PerGAS | PerGA10 | PerGA20 | PerGA40
change mask
Ackley 20 6.162 0.025 22381 6.126 4900
Griewank | 18401 | 1.044 0 1132 6.960 3.0
0.75 Rastrigin 20 6.764 0.080 0.899 3.589 4363
Sphere 19051 | 4937 0.013 1.426 6.560 7.696
Weicrstrass 20 4380 0.068 1702 3.826 3.739

The previous tables show that GAs with periodic mask detection outperform the
GA without mask in behaviour and convergence speed. Also, the PerGAS outper-
forms the other periodic GAs. The previous tables were averaged and summarised in
Table 14 which shows the average over all functions and probabilities of change,
based on the normalised scores.

Table 14. Summary of the behaviour tracking comparison

Probability of) - o, | ion | Without | b0 GAL | PerGAS | PerGA10 | PerGA20 | PerGA40
change mask
Ackley 19289 | 4.629 0.740 2456 7274 9.095
Griewank 16311 1380 0.628 1.964 7205 9.992
Al Rastrigin 19.700 | 5262 0.331 1.685 5756 7.980
Sphere 14940 | 3385 1.101 3.007 8.656 10.841
Weierstrass 19.958 4.687 0.948 1.600 4.402 7.745

Again, Friedman test was performed with a confidence level of 95% (a = 0.05) on
results in Table 14 with null hypothesis that there is no significant differences among
the behaviour and convergence speed of the compared algorithms. The computation
of the p-value for this test was 0.002 <= 0.05; so there is a significant difference
among the behaviour and convergence speed of the compared algorithms. Table 15
shows the ranks of the algorithms based on Friedman test.

Table 15. Behaviour Friedman test ranks

Algorithm Without mask PerGAl PerGAS PerGA10 PerGA20 PerGA40
Rank 6 3 1 2.20 3.80 5

The experimental results and statistical test show that GAs with mask detection
procedure gradually improve the solutions as time goes, while GA without mask dis-
turbs the ineffective dimensions, and so consequently this prevents GA from effec-
tively converging. Regarding the GAs with the mask detection procedure, when it is
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periodically called in small periods this allows them to detect the ineffective and ef-
fective dimensions early, and therefore they can solve DOPVD efficiently; however,
this consumes more fitness evaluations. However when the wastage reached a critical
level, the periodic GA could not improve its solutions, thus PerGAS outperformed
PerGAL.

5 Conclusions and Future Work

In this paper, we proposed a novel DOP with variable dimensions (DOPVD), in which
the ineffective and effective dimensions change as time passes. We also proposed the
mask detection procedure to help algorithms to solve DOPVDs. Based on the experimen-
tal results and statistical tests; the proposed GAs with mask detection outperformed the
pure GA (without mask detection procedure) in both performance and convergence
speed; however, this consumes more fitness evaluations. Despite of the wastage of fitness
evaluations, periodic GAs outperformed the without mask GA. However when the wast-
age reached a critical level, the periodic GA could not improve its solutions, thus Peri-
odic GA 5 (PerGAS) outperformed Periodic GA 1 (PerGA1). In general, the advantages
of the usage of the mask detection procedure are:

— save computational resources; algorithms deal with only the detected effective
dimensions.

— does not disturb the ineffective dimensions, and this helps algorithms to effec-
tively converge.

— can help a decision maker (user) to know which dimension(s) not affect the con-
sidered problem.

However, the disadvantages of using the mask detection procedure are that is
might detect the wrong mask, which might happen when two values of a dimension
gave the same fitness value while it is effective. Any such wrong detection might lead
to wrong values of the fitness function and/or prevent some dimensions (those
wrongly detected as ineffective) to be optimised.

Two directions for future work, the first direction is trying to enhance the mask de-
tection procedure, for example sampling more points rather than one point only. Also,
try to solve more problems with more complex function especially that have depend-
ent variables. The second direction is the DOPVDs algorithms; as more advanced
approaches will attempt to implicitly detect when changes occur, this might save
computational resources and so more effectively solve DOPVDs. Also, we intend to
investigate how to use local search procedure(s) in solving DOPVDs.
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Abstract. This paper proposes the use of estimation of distribution
algorithms to deal with the problem of finding an optimal product of
braid generators in topological quantum computing. We investigate how
the regularities of the braid optimization problem can be translated into
statistical regularities by means of the Boltzmann distribution. The in-
troduced algorithm obtains solutions with an accuracy in the order of
107°, and lengths up to 9 times shorter than those expected from braids
of the same accuracy obtained with other methods.

Keywords: topological computing, quasiparticle braids, probabilistic
graphical models, EDAs, braid optimization, Fibonacci anyons.

1 Introduction

The idea of using the theory of quantum mechanics to obtain computers poten-
tially exponentially faster for certain applications, such as the factorization of
prime numbers, arouses considerable interest and research efforts from the scien-
tific community nowadays. In quantum computation, information is represented
and manipulated using quantum properties. An obstacle for the construction of
large quantum computers is the problem of quantum decoherence, that can be
viewed as the loss of information of the quantum system due to the interaction
with the environment. One possible solution to this problem is the design of
quantum systems immune to quantum decoherence on a hardware level.

Topological quantum computing (TQC) [2,14] investigates quantum comput-
ing systems that, given the properties of quasiparticles they use, are not affected
by quantum decoherence. The key idea of these systems is that quantum in-
formation can be stored in global properties of the system and thus affected
only by global operations but not by local perturbations such as noise. In TQC,
quantum gates are carried out by adiabatically braiding quasiparticles around
each other. This braiding is used to perform the unitary transformations of a
quantum computation.

G. Dick et al. (Eds.): SEAL 2014, LNCS 8886, pp. 1324, 2014.
© Springer International Publishing Switzerland 2014
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One of the essential questions to design a TQC is to find a product of braid
generators (matrices) that approximates a quantum gate with the smallest pos-
sible error and, if possible, as short as possible to prevent loss [8]. The relevant
question of minimizing the error of a TQC design can be posed as a braid op-
timization problem. Some optimization approaches to this question have been
proposed. Exhaustive search [2] has been applied to search for braids of man-
ageable size (up to 46 exchanges). Other methods such as the Solovay-Kitaev
algorithm [3] provide bounds on the accuracy and length of the braids. However,
they do not allow the user to tune the balance between the accuracy and the
length as pioneered in [8] where the use of genetic algorithms (GAs) to find opti-
mal braids is proposed. In this paper, we build on the GA approach introduced
in [8] to solve the braid optimization problem.

We use the fitness function proposed in [8] and introduce a new represen-
tation, variation operators and enhancement procedures in the framework of
estimation of distribution algorithms (EDAs) [10,7]. EDAs are evolutionary al-
gorithms (EAs) that apply learning and sampling of distributions instead of clas-
sical crossover and mutation operators. Modeling the dependencies between the
variables of the problem serves to efficiently orient the search to more promis-
ing areas of the search space by explicitly capturing and exploiting potential
relationships between the problem variables.

2 Braids and Anyons

Qubits play in quantum computation a role similar to that played by bits in
digital computers. A braid operation can be represented by a matrix that acts on
the qubit space. These matrices are referred to as generators, and the quantum
gate that a braid represents is the product of the generators that encode the
individual braid operations.

Let o1 and o2 represent two possible generators. o ! and g I respectively
represent their inverses. Given a braid B, len() is a function that returns the
braid’s length [ (e.g. B = 01010207 ", | = len(B) = 4).

Since the product of a matrix by its inverse reduces to the identity matrix,
some braids can be simplified reducing their length. Therefore, we also define
function elen(), that has a braid as its argument and returns the braid’s effective
length which is the length of braid after all possible simplifications have been
conducted. For example, the effective length values of braids (o101010107 L=
o10101) and (02—1010101—101—10201—1 = crfl) are 3 and 1, respectively.

Let T represent the target matrix (gate to be emulated), the braid error is
calculated as [8]: ¢ = |B — T'| where the matrix norm used is |M| = \/Z” M.

The problem of finding braiding operations that approximate gates is then
reduced to finding a product chain of the reduced generators and their inverses
that approximates the matrix representing the quantum gate. Two elements that
describe the quality of a braid are its error € and its length .

Anyons appear as emergent quasiparticles in fractional quantum Hall states
and as excitations in microscopic models of frustrated quantum magnets that
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harbor topological quantum liquids [11]. Fibonacci anyons are the simplest
anyons with non-Abelian braiding statistics that can give rise to universal quan-
tum computation. Fibonacci anyon braids [2] only encompasses one-qubit gates.
In such systems, the braid transition operators result in a phase change for the
non computational state, and therefore it can be ignored. Overall, phases in the
problem can also be ignored. Therefore the transition matrices can be projected
onto SU(2) by a multiplication with e10, yielding for the generators

—iTT —im

e 10 0 —Te 10 —i\/T
g1 = —i37 g9 = —im 1
! ( 0 —e 1o ) 2 ( —i\/T —Te 10 ) (1)

where 7 = ‘/5271.

In this paper we address the problem of finding a product of generator ma-
trices for Fibonacci anyon braids. Although the methodology we propose can
be extended to other braids, we focus on anyon braids since they are one of
the best known in TQC [8,15]. As a target gate for computing the error we use

)

3 Problem Formulation

Let X = (Xi,...,X,) denote a vector of discrete random variables. We use
x = (x1,...,%,) to denote an assignment to the variables. I denotes a set of
indices in {1,...,n}, and X; (respectively x;) a subset of the variables of X
(respectively x) determined by the indices in I.

In our representation for the quasiparticle braids problem, X = (X1,...,X,)
represents a braid of length n, where X; takes values in {0,1,...,2¢9 — 1} and
g is the number of generators. Given an order for the generators o1, 02,..., 0y,

Xi = j,j < g means that the matrix in position 4 is oj41. If X; = j,5 > g,
then the matrix in position i is a(jig) 41 For example, for generators shown in
Equation (1), and B = 01010205 10{ ! the corresponding braid representation
is x = (0,0, 1, 3,2). Notice that this is a fixed length representation.

We are interested in the solution of an optimization problem formulated as
x* = argmazy f(x), where f : S — R is called the objective or fitness func-
tion. The optimum x* is not necessarily unique. To evaluate the fitness function
associated to a solution x, firstly the product of braid matrices B is computed
according to x and then the error € is calculated from B as previously defined.
The fitness function [8] is defined as:

*

_1-A ) @

f(x)il—i—e l

where [ is the braid’s length, and A serves to balance the two conflicting goals,
i.e., having short braids or low approximation error. When A = 0, braids are
optimized only for the error and the function reaches its maximum value when
this error is minimized.
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We define functions f(x) and f(x) as two variations of function (2). Function
f(x) is identical to f(x), except that the effective length | = elen(B) is used
instead of the braid’s length. Function f(x) outputs the maximum value of the
function for any of the braids contained in B that start from the first position,

Le. f(X) = mMaTy ye{(1),(21,02)s0s(@110erswi)sers (@1rszn) 1 (V)

4 Probabilistic Modeling of Braids

To optimize the braid problem we use EDAs; a class of evolutionary algorithms
that capture and exploit statistical regularities in the best solutions. EDAs as-
sume that such regularities exist. As a preliminary proof of concept on the exis-
tence of such regularities, we investigate the Boltzmann distribution for braids of
manageable size. A similar approach has been successfully applied to investigate
the dependencies that arise in the configurations of simplified protein models
[13] and conductance-based neuron models [12].

4.1 Boltzmann Distribution

We use complete enumeration to define a probability distribution on the space of
all possible braids for n = 10. Using the fitness value as an energy function, we
associate to each possible braid a probability value p(x) according to the Boltz-
mann probability distribution. The Boltzmann probability distribution pg(x) is
defined as

g(x)
e T

pe) =, (3)
Zx’ er

where g(x) is a given objective function and 7' is the system temperature that

can be used as a parameter to smooth the probabilities.

In our approach, pp(x) assigns a higher probability to braids that give a
more accurate approximation to the target gate. The solutions with the highest
probability correspond to the braids that maximize the objective function. We
use an arbitrary choice of the temperature, T' = 1, since our idea is to compare
the distributions associated to different fitness functions with fixed T'.

Using the Boltzmann distribution we can investigate how potential regularities
of the fitness function are translated into statistical properties of the distribution.
In particular, we are interested in the marginal probabilities associated to the
variables and the mutual information between pairs of variables.

4.2 Statistical Analysis of the Braids Space

Figure 1 shows the univariate probabilities computed from the Boltzmann dis-
tribution for functions f and f, and 10 variables. The search space comprises
410 = 1,048,576 braids. Univariate probabilities for function f were also com-
puted, they are similar to probabilities obtained for f, and due to space con-
straints we do not include figures for this function. p1, p2, p3, and py4 respectively
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represent the univariate probabilities for braid generators Ay, Ag, )\fl, and Ay L
For all the functions, higher probabilities for ps indicate that )\fl is more likely
to be present in the best solutions. This is the type of statistical regularities that
can be detected and exploited by EAs that learn probabilistic models.

0.2504¢ 0258

02503 0.256

02502
0254

= 02501 E

0252

°
|
|
|
|
Probabilities

Probabilities

°
Iy
3

0.2499

0248
0.2498

0.24971 0.246

o . . . . . . . . 0.244%
5 6
Variables

a) b)

5 6
Variables

Fig. 1. Univariate probabilities of the Boltzmann distribution for: a) f, b) f

We compute the bivariate marginal distributions between every pair of vari-
ables and derive the values of the mutual information. The mutual information
is a measure of statistical dependence between the variables and can serve to
identify variables that are dependent. A strong dependence between two vari-
ables may indicate that their joint effect has a strong influence on the function
and the optimizer should take into account this interaction. Figure 2 shows the
mutual information computed for functions f and f. It can be seen in Figure 2
that for the two functions the strongest dependencies are between adjacent vari-
ables, although for function f there is also a strong dependence between the first
and the last variables. It can be also seen in Figure 2b) that the dependencies
between adjacent variables decreases with the index for function f.

Summarizing, the statistical analysis of the Boltzmann distribution shows that
there are at least two types of regularities of the braid problem that are trans-
lated into statistical features. Firstly, there are different frequencies associated
to the generators in the space of the best solutions. Secondly, there are strong
dependencies between the variables, particularly those that are adjacent in the
braid representation.

5 Estimation of Distribution Algorithms

EDAs use samples of solutions to learn a model that captures some of the reg-
ularities that may exist in the data. The pseudocode of an EDA is shown in
Algorithm 1.

We work with positive distributions denoted by p. p(zy) denotes the marginal
probability for X; = x;. p(z; | z;) denotes the conditional probability
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Fig. 2. Mutual information computed from the Boltzmann distribution for: a) f, b) f

Algorithm 1. Estimation of distribution algorithm

1 Set t < 0. Generate N solutions randomly.
2 do{
3 Evaluate the solutions using the fitness function.
Select a population Dy of K < N solutions according to a selection method.

Calculate a probabilistic model of Dy .

model.
t<=t+1

4
5
6 Generate N new solutions sampling from the distribution represented in the
7
8 } until Termination criteria are met.

distribution of X; = z; given X; = z;. Three types of probabilistic graphi-
cal models are used: 1) Univariate model. 2) 1-order Markov model. 3) Tree
model.

Univariate 1-order Markov Tree

Pu (X) pMK(X) PT
H?=1 p(zi) p(z1) H?:z p(; | 2i-1) H?Zl p(zi|pa(zx;))

In the univariate model, variables are considered to be independent, and the
probability of a solution is the product of the univariate probabilities for all vari-
ables. In the 1-order Markov model, the configuration of variable X; depends on
the configuration of its previous variable. In a probability distribution confor-
mal with a tree, Pa(X;) is the parent of X; in the tree, and p(z;|pa(x;)) = p(z;)
when pa(X;) = 0, i.e. X; is a root of the tree. We allow the existence of more
than one root in the PGM (i.e. forests) although for convenience of notation we
refer to the model as tree.

Univariate approximations are expected to work well for functions that can be
additively decomposed into functions of order one (e.g. g(x) = ), ;). However,
other non additively decomposable functions can be easily solved with EDAs that
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use univariate models (e.g. g(x) = [[, i + >, ®;) [9]. Therefore, it makes sense
to test the univariate approximation for the braid problem. The 1-order Markov
model captures only dependencies between adjacent variables, and the tree model
can represent a maximum of n — 1 bivariate dependencies. The computational
cost of EDAs is mainly associated to the methods needed to learn and sample
the models. The most complex EDA used in this paper is Tree-EDA which has
a computational cost O(n?). Examples of EDAs that use univariate, 1-order
Markov, and tree models are respectively presented in [10], [4] and [1,13] and
details on the methods used to learn and sample the models can be obtained
from these references.

5.1 Enhancements to the EDAs

We consider three enhancements to EDAs: 1) Use of a local optimizer. 2) Partial
sampling. 3) Recoding.

As is the case of other EAs, EDAs can be enhanced by the incorporation of
local optimizers. We use a greedy optimization algorithm that is applied during
the evaluation of the population by the EDA. The algorithm starts from the
solution generated by the EDA. In each iteration, the local optimizer evaluates
all the 3n solutions that are different to the current solution in only one variable
(the neighbor solutions). The next selected solution is the neighbor that improves
the fitness of the current solution the most. The algorithm stops when none of
the neighbors improves the fitness of the current solution.

During the sampling step of an EDA, all variables are assigned their values
according to the probabilistic model and the sampling method. For the EDA
that uses the univariate model, variables are independently sampled. For 1-
order Markov and tree, probabilistic logic sampling (PLS) [5] is used. In both
methods, all variables are assigned the new values. However, for some problems
with higher-order interactions using a base-template solution can be better than
generating each new solution from scratch.

In partial sampling, a solution of the population is selected and only a subset
of its variables are sampled according to the model. We use two variants of partial
sampling I) Partial sampling where the number of variables to be modified is
randomly selected between 1 and n. IT) Partial sampling, where the number of
variables to be modified is randomly selected between 1 and 7.

Recoding consists in modifying the representation of the solution after the
fitness evaluation. For functions f and f it is possible to recode the solution
by eliminating redundant generators (e.g., pairs o;0; 1). The rationale of using
recoding is that meaningful variables will be located closer to the beginning of
the braid. Since solutions have a fixed length, the last variables will be kept
unused, i.e. garbage information. Therefore, we devised two ways to fill these
gaps: 1) Leaving the unused variables as they were in the original solution. IT)
Replacing the unused variables by a reverse copy of the variables used in the
evaluation. The second variant intends to replicate information that has proved
to be “informative” about the problem.
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6 Experiments

The main objective of our experiments is to evaluate the capacity of the EDAs
to find optimal solutions to the braid problem. We run experiments for n €
{50, 100, 150,200,250} in order to evaluate the scalability of the algorithms.
Increasing n may lead to obtain braids with a smaller error. A second objective
is to compare different variants of the problem formulation and of the algorithm.

6.1 Experimental Settings

Each EDA is characterized by 5 parameters:

— Use of local optimizer. 0: Only EDA is applied, 1: EDA is combined with
greedy search as described in Section 5.1.

— Type of function and representation. 0: Function f, 1: Function f without
recoding, 2: Function f with recoding I, 3: Function f with recoding II.

— A value. 0:0.0, 1:0.01, 2:0.05, 3:0.1.

— Sampling method. 0: Normal, 1: Partial sampling I, 2: Partial sampling II.

Type of probabilistic model. 0: Univariate, 1: 1-order Markov, 2: Tree.

The experimental settings were selected to investigate different aspects that
influence the behavior of the algorithm. The total number of variants of the
algorithm was 2x4x4x3x3 = 288. All the algorithms use truncation selection, in
which the best 5% of the population is selected. EDAs that do not incorporate
the greedy local search use a population size N = 10000. For these EDAs,
the number of generations was dependent on n as N, = 15n. Due to the large
number of evaluations spent by the greedy search method, the population size
for all hybrid EDAs was N = 100n and the number of generations was fixed to
Ny = 100. For each EDA variant, 100 experiments were run.

6.2 Best Solutions Found by EDAs

Figure 3a) and Table 1 respectively show the parameters that characterize the
best braids found by the EDAs for each value of n, and the braids. In Figure 3a),
we also show an estimate of the length of the braids (O[log3;)"(1/¢)]) that would
compute the Solovay-Kitaev algorithm [3] to obtain the same error e of our
best solutions. The lengths of our solutions clearly outperform these estimates.
Figure 3b) shows the length of all the best solutions achieved for each value of
n. It can be observed in Figure 3 that EDAs are able to find several braids with
different lengths for n = 150 and n = 200.

6.3 Behavior of the EDA Variants

We further investigate the behavior of the different EDA variants. Figure 4
shows the violin plots [6] with the distribution of the best values found in all the
executions for: a) All EDA variants without local optimizer (14400 runs), b) All
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Fig. 3. a) Parameters of the best braids found by the EDAs for each value of n. b)
Length of the best solutions found for each value of n

EDA variants that incorporate the greedy search (14400 runs), ¢) EDAs with
local optimizer, recoding type II, and that use partial sampling type IT (300
runs). Each violin plot shows a histogram smoothened using a kernel density
with Normal kernel. The mean and median are shown as red crosses and green
squares, respectively.

Table 1. Best braids found by the EDAs for each value of n

n braid
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-2 4 _—1 —4 -1 3 —1 2 -2 4 -1 —4 —-1 6 _2 2 3 5 —1
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010, 0705 501012 010, 0122 01({12 201 102 0, 0, 0 0, 010, 0102 010,
010, ‘0, 050, 0207 0201 0201 0507

In Figure 4, the modes of the Normal distribution indicate the existence of
a local optimum of the error with a very wide basin of attraction. This local
optimum has value log1of(€) = —2.50785 and the majority of the EDA runs can
be trapped in this value. Differences between the EDAs due to the application
of the greedy method can be appreciated for n = 200 and n = 250 (Figures 4a)
and 4b)). Also, Figure 4c) reveals how a particular combination of the EDA’s
parameters can improve the results of the search.

There are a number of commonalities between the best EDA variants. Except
in one case, all EDAs use recoding of type II. Similarly, except in one case, in all
the variants A € {0.01,0.05}. Except in two cases, the sampling method selected
was partial sampling. The application of the local optimizer notably improved
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Fig. 4. Violin plots showing the distribution of the best values found in all the exe-
cutions for: a) All EDAs variants without local optimizer (14400 runs), b) All EDAs
variants with local optimizer (14400 runs), ¢) EDAs with local optimizer, recoding type
11, and that use partial sampling type II (300 runs)

the results for n € {150,200} but in terms of the best solution found it did not
have an important influence for the other values of n.

As a summary, we recommend to use an EDA that adds the greedy search,
and uses partial sampling of type II and the 1-order Markov model since it is
less complex than the tree and results achieved using the two models are similar.

6.4 Improvement Over Other Search Methods

As a final validation of our method, we compare our best EDA variant with
the results achieved using a random search, the greedy local optimizer, and the
GA introduced in [8]. For the random search, we randomly generated 10000
solutions and selected the best solution according to function f,\ = 0.01. The
same experiment was repeated 100 times to select the 100 “best” solutions for
n € {50,100, 150, 200, 250}.

A similar procedure was followed for the greedy local search. The local op-
timizer was applied to each of the 10000 solutions until no improvement was
possible. For the GA, we used the results of the 100 GA runs analyzed in [8].
Since these results were obtained using solutions of different length, and with a
different number of evaluations, care must be taken to interpret the differences.
We only compare the GA results with the other algorithms for n = 50. Simi-
larly, the results of the random search were very poor for n > 50 and we only
include them in the comparison for n = 50. Results are shown in Figure 5a). In
the boxplots, the central mark is the median, the edges of the box are the 25th
and 75th percentiles, the whiskers extend to the most extreme data points not
considered outliers, and outliers are plotted individually.

Using the 100 best solutions for each of the four algorithms, a multiple com-
parison test was applied to test the null hypothesis that samples corresponding
to every pair of algorithms are drawn from the same population. The multi-
ple comparison test uses the Tukey’s honestly significant difference criterion.
Every pair-wise comparison is based on the Kruskal-Wallis test, a nonparametric
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Fig.5. a) Comparison between the Best EDA variant, the random search, the greedy
local search and the GA for n = 50. b) Comparison between the Best EDA variant and
the greedy local search n € {100, 150, 200, 250}

version of the classical one-way ANOVA. The significance criterion was o = 0.05.
The application of the test identified statistical differences between each pair of
algorithms and they were ranked as: 1) Best-EDA, 2) Greedy, 3) GA, 4) Random.

The results of the comparison between the EDA and the greedy search for n >
50 are shown in Figure 5b). The application of the Kruskal-Wallis test (o = 0.05)
found significant differences between the EDA and the Greedy algorithm for all
n. Furthermore, it can be seen in Figure 5b) that as n increases the algorithm
is able to scale and find better solutions.

7 Conclusions

In this paper we have proposed for the first time the use of probabilistic mod-
eling of the search space to address the problem of approximating a quantum
gate as a product of braid generators. We have shown that some of the problem
characteristics can be translated into statistical regularities of the Boltzmann
distribution. This result indicates that capturing and exploiting statistical reg-
ularities emerges as a sensible approach to the quasiparticle braid problem.

In a second step we have shown the effectiveness of EDAs to find short braids
that provide accurate approximations. The best braids obtained with our EDAs
have lengths up to 9 times shorter than those expected from braids of the same
accuracy obtained with the Solovay-Kitaev algorithm and had not been previ-
ously reported to be found by the GA approach.
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Abstract. The continuous need to increase the efficiency of technical
systems requires the utilization of complex adaptive systems which op-
erate in environments which are not completely predictable. Reasons in-
clude the often random nature of the environment and the fact that not
all phenomena can be explained in full detail. As a consequence the de-
veloper often gets confronted with the task to design an adaptive system
with only little prior knowledge about the problem at hand. The de-
sign of adaptive systems, which react autonomously to changes in their
environment, require the coordinated generation of sensors, providing
information about the environment, actuators which change the current
state of the system and signal processing structures thereby generating
suitable reactions to changed conditions. In this work we demonstrate
the applicability of a concurrent evolutionary design of the optimal mor-
phological configuration, presented as sensory and actuation systems,
and the corresponding optimal controller part of a system. We apply the
process to the example of an adaptive wing design. Prior experiments for
the optimization of the systems, having fixed number of sensor and actu-
ator elements demonstrate the existence of an optimal dimensionality of
the systems morphology. We show that the presented growth method is
able to detect this morphological configuration and concurrently find the
optimal corresponding controller autonomously during a single combined
evolutionary process.

Keywords: adaptive systems, co-evolution, system growth, dynamic
evolutionary optimization.

1 Introduction

The evolutionary development of higher animals can be seen as a complex pro-
cess of ongoing body-brain complexification to better adjust to the environment.
Since the morphology of the body is tightly coupled to the brain structure, these
two functional parts of living creatures are supposed to co-evolve. Admittedly,
an addition of new sensory inputs does not give an individual a performance

G. Dick et al. (Eds.): SEAL 2014, LNCS 8886, pp. 25-36, 2014.
© Springer International Publishing Switzerland 2014
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advantage without the adjustment of a corresponding signal processing struc-
ture. Analog to the development of complex living systems, we assume that the
design process of technical solutions with high complexity could be improved
by starting the system development with an initially simple system organiza-
tion while performing simultaneous complexification of its functional parts. The
majority of the current engineering methods adapt isolated parts of the overall
structure, which is in a strong contrast to biological body-brain co-evolution.
The design of adaptive systems implies a selection of sensors and actuators,
which adjust the system to a changed environment, as well as a generation of a
corresponding controller, according to a predefined quality measure. The devel-
opers usually design the morphological part, defined as sensors and actuators of
the system separately from the development of the corresponding controller unit.
This approach has been a usual practice in a field of evolutionary robotics. First,
the real mobile robots have been given fixed morphological limitations, such as
fixed number and resolution of camera system, fixed joints angles range etc. Than
through the following optimization of controller structure a complex behavior,
like for example an obstacle avoidance tasks of a robot, can be achieved. Exam-
ples of this approach can be found in Brooks [1], Dorigo and Schnepf [2], Cliff,
Husband and Harvey [3], Floreano and Mondada [4], Miglino, Nafasi, Taylor [5].

The weakness of the approach is that the controller performance strongly
depends on the suitability and the amount of sensory information, as well as
on the actuator resources. This causes the problem, that the optimal system
performance is difficult to be achieved, if not all detailed phenomena about the
system are known during the first phase, in which the hardware configuration is
defined. Otherwise it can happen, that some important information about the
environment or an actuator at the position in the structure, having a major
impact on the system performance, is missing. As an attempt to overcome the
problem, we could optimize an initially very rich system, having high number
of sensory and actuation elements. This would statistically decrease a chance of
missing important environmental factors during the sensors acquisition. How-
ever, the optimization progress of the system having a large scale dimensionality
might be not possible due to the high number of optimization parameters. To
solve the problem we implement a growth method which synchronize the design
process of sensing and signal processing system parts during optimization pro-
cess and additionally frees the system of early structural limitations. Therefore
it gives a possibility to develop a system autonomously to optimal morphological
configuration.

A variety of approaches for the co-evolutionary design of morphological and
controller configurations have been developed in the field of evolutionary robotics.
Early work in the field of automatic design of a systems by body-brain co-
evolution has been reported by Sims [6]. He demonstrated the evolutionary
development of the morphology of virtual creatures in a physical simulation
fulfilling simple locomotion tasks starting from simple building blocks without
any prior knowledge. Parker and Nathan [7] researched the design of sensor
morphology and controller for a simulated hexapod robot. For this purpose the
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type of sensors, the heading angle and the range of the sensors as well as the
rules for the controller are co-evolved. This method enables the system to ex-
tract information from the environment which is relevant to complete a given
task by configuring a minimal controller and minimal number of sensors and
actuators to increase the system’s overall efficiency. Bugajska and Schutz [8] co-
evolved the shape and strategies in the design of Micro Air Vehicles (MAV).
The target, similar to Parker and Nathan, was to find a minimal sensor suite
and reactive strategies for navigation and collision avoidance tasks. Sugiura et
al. [9] also proposed a system that automatically designs the sensor morphology
of an autonomous robot with two kinds of adaptation: ontogenetic and phylo-
genetic adaptation. Gomez, Lungarella, Eggenberger, et al. [10] extended the
principle of sensor-control balance to developmental enlargement of the system
by simultaneously increasing the sensor resolution, the precision of motors, as
well as the size of a neural structure (controller). They showed with their experi-
ments that a chosen system starting with a low-resolution sensory system, a low
precision motor system, and a low complexity of controller, can learn a given
task faster than a system with a complex configuration already in the beginning.
The coordination of the growth process was realized through internal learning
mechanisms where the active neural units controlling the robot were 'rewarded’
or 'punished’ depending on the improvement or aggravation in task fulfilling.
The authors showed the advantages of concurrent optimization of the sensory
and control systems as a dynamic developmental process of gradual complexi-
fication. Also Auerbach and Bongard [11] have made extensive research in the
field of co-evolution of morphology and control in evolutionary robotics. In their
work they implement a growth mechanism to create robots using compositional
pattern-producing networks and demonstrate that the concurrent development
of the morphological and controller structures of the simulated adaptive robots
can give an advantage for the final system performance, compared to the ap-
proaches with separate design strategies.

The promising results of the co-evolutionary approach in evolutionary robotics
motivated us to implement the biologically inspired growth process for the co-
ordination of the fully autonomous development of sensor, actuator and control
structures without dimensional limitation of sensory or actuator setup in the
early stages of development. Since the final system configuration is not pre-
defined and is the result of the concurrent optimization process, we expect an
evolvable system through enlargement of the search domain and potentially in-
crease the chances of global optima detection. Compared with the reviewed re-
search in evolutionary robotics, we utilize the co-evolution of morphology and
information processing structure for the optimal control of an adaptive wing
shape. Although the generation of optimal control for adaptive wings is not in
the main focus of our research we argue that this problem is a suitable test bed
for the research on evolutionary design of adaptive systems. Aerodynamic prob-
lems are characterized by highly complex interactions between flow body and
flow field which is in most cases difficult to understand in detail. Due to this, the
manual design is generally challenging although excellent tools are available for
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their simulation and evaluation. In this work we demonstrate that evolutionary
methods are able to generate systems which can optimally adapt to environ-
mental conditions, while at the same time we target shedding some light on the
precise synchronization of system parts during the developmental process.

In our previous work [12] we implemented the co-evolutionary growth of a
sensory and controller structures given a fixed actuation system on the example
of the adaptive wing. The promising results motivated us to expand the research
to the combined development of all functional parts of the system. In this case
the overall system configuration is fully variable during the optimization and
initially minimal. Additionally we implemented cost factors for sensors and ac-
tuators, which result in a limited growth of the system dimensionality. In this
case a system gets a new sensor or actuator only if it gives a significant benefit
to the system performance. The target for the optimization of the adaptive wing
is the reduction of the drag the airfoil generates while still creating a minimum
of lift. Environmental changes are realized through the changes in the angle of
attack of the airflow across a wide range of values. The co-evolutionary system
development has been implemented as a structural growth process of all it func-
tional parts, such as the number and position of the sensors and actuators and
the complexity of the controller structure, defined by its input (sensors) and
output (actuators) dimensionality. We show the results of the sensors-actuators-
controller growth method and compare them with the optimization of the sys-
tem with fixed morphological settings as well as with the results of the growth
of sensors-controller systems, having a fixed actuation system.

A description of the framework of the adaptive wing with a detailed explana-
tion of the functional set-up of the sensory, actuation and controlling systems is
given in section 2. In section 3 we explain and present the results of the experi-
ments with implemented growth method, and compare them with optimization
results for a fixed morphology as well as with the results of the growth of sensory
and controller systems. Finally, we conclude the paper with a summary of the
main findings of our work.

2 Framework for Morphology-Controller Co-evolution

In our work we implemented a system, consisting of virtual sensors, actuators
and a signal processing structure. The signal processing structure controls the
adaptive system under changing environmental conditions by generating actu-
ator signals based on sensor signals derived from the environment. The target
has been to achieve a system behavior which reduces the airfoil’s drag, calcu-
lated in a CFD (computational fluid dynamics) simulation of the resulting airfoil
shape while maintaining specified lift values. The actuator signals correspond to
changes of NURBS [13] control points and define the current airfoil shape. The
virtual sensors of the system have been defined as pressure sensors, at given
positions on the airfoil surface. The measurement results of the virtual sensors
correspond to the surface pressure calculated in the CFD simulation and there-
fore depend on the blade’s surface, the angle of attack and the speed of the air
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Fig. 1. (a) Adaptive airfoil framework, (b) Example of the airfoil created with NURBS.
Airfoil in white, defined by the initial positions of the spline control points. The airfoil
shape change (in gray) results from the movements of Cs and C.

flow etc. Fig. 1 (a) shows the described relations between the single parts of
the test-framework. The described setup allows us to simulate the interactions
between control structure and morphology during the operation of the control
structure as well as during their evolutionary development.

The two dimensional airfoil is represented by a non-uniform rational B-splines
(NURBS) as shown in Fig. 1 (b). The shape of the NURBS curve is determined
by the set of spline control points C,,. For the simulation of the aerodynamic
airfoil characteristics and pressure distribution the computational fluid dynamic
solver Xfoil' is used. In the simulation we change the angle of attack in order to
generate variations of the airfoil environment. The Reynolds number has been
fixed during the optimization (Re = 107). The pressure coefficient over the airfoil
surface represent the virtual sensor data. We used Xfoil to calculate the profile
of the pressure coefficients at 160 points on the airfoil surface. The more detailed
description of the implemented framework can be found in [12], [14].

The presented adaptive system of a virtual wing requires a suitable controller
for processing of sensor data and generating actuator signals. The actuators
morph the surface of the airfoil and therefore can reduce the drag and generate
the required lift. A wide variety of possible controller designs for similar purposes
can be found in the literature. Parker and Nathan [7] as well as Bugajska and
Schutz [8] implemented a controller as a reactive system which uses “if...then”
rules to control a simulated robot. Haller, Ijspeert and Floreano [15] implemented
a controller inspired by the central pattern generators underlying locomotion
in animals. In this work we implemented a linear recurrent model to control
the presented adaptive system. The controller input signals are the pressure
coefficients s;. The outputs of the controller are the actuator signals C, and
describe the position of the virtual actuators in the two dimensional space. The
actuator adjustments AC, are calculated as the sum of the signals of all sensors
of the system multiplied with the corresponding linear coefficients Kj;,. The
current state of the actuators C, determines the pressure coefficients s; by the
nonlinear air flow function f, simulated with Xfoil solver.

! http://web.mit.edu/drela/Public/web/xfoil/
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3 Sensor-Actuator-Controller Co-evolution

The co-evolutionary approach has been realized by the concurrent development
and gradual complexification of the sensory, actuation and corresponding con-
troller systems. Although these different functional parts of the system are coded
in a single genome, the described optimization process reflects the main aspect
of the co-evolutionary process, since all units are mutually co-adjusted during
the entire evolutionary process. In this work we combine the co-evolutionary
method with a growth process and implement it as a single dynamic optimization
task. We use standard evolution strategy optimization, ES(15,100) developed by
Bienert, Rechenberg and Schwefel [16] to optimize the overall system configura-
tion. Although more sophisticated algorithms are available like CMA-ES [17], we
stick to the comparable simple strategy which can also be applied in the growth
process. A single genome of the individual includes four chromosomes which
code the position of the sensors and actuators as well as the controller param-
eters and additionally the strategy parameters (mutation step sizes). Offspring
are the result of the gene intermediate recombination and mutation of the par-
ent individuals with the current mutation step size. The optimization has been
implemented, using SHARK?, open-source C++ machine learning library. One
of the important advantages of the growth process is a minimal requirement on
the prior knowledge about the system. The growth process shows fast conver-
gence in small search spaces, since it starts with an initially elementary system.
Thereby we free the system from the early limitations and allow it to develop
autonomously into a final system, having as simple morphology as possible, opti-
mally positioned in the structure and in the same time having an optimal signal
processing structure for the given morphology.

The results of our previous work in [12] demonstrate the expected difficulties of
the standard optimization strategies on large scale problems. The experiments
on the optimization of the systems with different number of sensors showed
the infeasibility of the standard ES for detection of the optimal solution for
a systems, having more than 5 sensors. We found out, that concurrent growth
method, based on the standard ES, could overcome these problems. Additionally,
such a system development method resulted a structured system organization,
with a strong hierarchical arrangement of the elements of sensor and controller
structures. In this way the arranged system organization provides information
about the importance of the present sensor elements of the system. However,
the overall system configuration in [12] has been pre-defined to the system using
6 actuators at fixed positions. In this work we fully free the system of any
morphological or controller system limitations on the early developmental stages
and evolve all functional parts of the system simultaneously.

The system is evaluated according to its ability to reduce the drag while
changes in the inflow angle of the air occur during the optimization process. The
ratio of the drag coefficients before change of the inflow angle happened C, and
after Cflﬂ a change is evaluated. The fitness of an individual is defined as a sum

2 http://image.diku.dk/shark/
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of drag value ratios over a cascade of 16 different angles of attack. Additionally
the cost functions of the sensor and actuator elements multiplied with a number
of sensors and actuators respectively has been added to the fitness function.

N CitlY (o
>im1 éij/l(o(H ))
N
where « is the angle of attack, N is the total number of angles of attack ap-
plied and on which the individual has been evaluated, C? is the drag coefficient
before and C;H - after actuator adjustments, S and A are the number of sensors
and actuators, w and v are the cost factors for sensors and actuators. To get a
fair comparison we use two constraint parameter derived from the parameters
of the NACA 2410 [18] airfoil. NACA airfoils are the aircraft wing shapes, de-
veloped by the National Advisory Committee for Aeronautics in 1948 [18] and
define since that time a set of standard airfoil shapes. The maximal thickness of
the adaptive airfoil was set to the maximal thickness of the NACA 2410 airfoil
which is equal to 10% of the chord length. Additionally, we put the constraint
on the lift coefficient to be equal or higher than a lift of a NACA 2410 airfoil at

corresponding angle of attack.

Fitness(Individual) = +w-S+v-A, (1)

3.1 Definition of Growth Process

We defined a system growth process as an optimization through gradual enlarge-
ment of the initially minimal system by concurrent addition and adaptation of
the sensors, actuators and corresponding connection weights of the controller
during entire optimization process. There exists a variety of approaches for the
topology optimization of the processing structures in the neuro-evolutionary do-
main proposed for example by Moriarty and Miikulainen [19] (SANE), Stanley
and Miikulainen [20],[21] (NEAT).
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Fig. 2. Demonstration of growth process. Probability based triggering of enlargement
of morphology and controller dimensionality

In this work we realize the topology optimization of the controller, consisting
of a linear recurrent model, as an optimization of the input as well as output
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dimensionality of the control structure, while adding necessary connections to
keep a fully connected network. We use a direct genotype to phenotype encod-
ing as shown in Fig. 2. We use a neutral system mutation by initializing the
weighting coefficients of a new sensor or new actuator elements with zero. The
new morphological elements as well as the corresponding controller connections
get individual mutation step sizes. Through this important method of system
enlargement, triggered by the probability based method, we give a mutated sys-
tem a possibility to evolve new elements individually while keeping the previously
optimized system setup intact. Each individual in a population has a fixed prob-
ability p = 0.2 to get a new sensor or actuator by mutation. Compared to our
previous research we implemented cost factors for the new sensory and actuation
elements. The values of the cost factor has been experimentally set to w = 0.04
and v = 0.04. The cost factors allow the generation of the systems with minimal
complexity of morphological and controller configurations required for fulfilling
a given task.

3.2 Experimental Results of Growth Process

In this section we demonstrate the experimental results of the presented sensor-
actuator-controller growth method of the adaptive wing and compare them with
the results of our previous work in [14] and [12].

growth
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Fig. 3. (a) Final quality of sensors-controller and sensors-actuators-controller opti-
mization runs, compared with a results of the runs with a different fixed morphological
configurations. 10 optimization runs with different starting parameters, (b) Comparison
of the averaged fitness curves.

Fig. 3 (a) present a comparison of the optimization results for different sys-
tems. On the one hand we have results of the systems, having different fixed
number of sensory elements and equally positioned fixed 6 actuators. On the
other hand we get the optimization results for the sensors-controller and sensors-
actuators- controller growth method. In following we compare the results and
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give an explanation to the difference in the final performance. Basically as the
performance of the final system is expected to get better, the more sensory infor-
mation about the environment is available. Indeed Fig. 3 (a) shows a significant
improvement of the final optimized system performance with an enlargement
of sensory system dimensionality up to 3 sensors. However the high number of
sensors and actuators leads to a high number of optimization parameters. The
problems of the standard ES on the large scale problem can be seen for a higher
number of sensory elements. For experiments with fixed morphological dimen-
sionality we observe a decline of the performance for the systems, having more
than 3 sensors. In this case of a morphologically rich system, an optimization
has a high chance to get stuck in local optima and not reach the globally optimal
solution.
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Fig.4. (a) Average (10 runs), worst and the best fitness progress of the sensors-
actuators-controller optimization, (b) Development of the number of sensors over 200
generations, (c) Development of the number of actuators

According to the optimization results, systems with 3 pressure sensors rep-
resent an optimal sufficient solution for morphological setting for given opti-
mization strategy, since it reached the best final quality in average. The results
demonstrate, that the systems developed with sensors-controller growth method
show similar good performance as the systems optimized for 3 sensors, both
having 6 fixed actuators. According to the average achieved quality of the fully
variable system design, presented as sensor-actuators-controller growth method,
we obtain a significant benefit starting the optimization with initially minimal
system configuration, which evolves during the optimization through gradual
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step-wise complexification. The fitness value of the best and worst individual
in each population as well as the average sensors-actuators-controller optimiza-
tion is presented in Fig. 4. The growth method generated a systems, having in
average about 3 sensors and between 3 and 4 actuators. To analyze the func-
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Fig. 5. Hinton diagrams of the system controller of the worst (a) and the best (b) sys-
tem in Fig. 4, developed by the sensors-actuators-controller growth process at 200th
generation, (c¢) and (d) Position of the sensors and actuators of the systems and
schematic airfoil controller with the signal connections between sensors and actua-
tors (thicker lines mean a stronger connection), (e) Example of the system controller
developed with sensors-controller method without cost functions

tional configuration of the controller a Hinton diagrams has been used [22]. The
size of the boxes corresponds to the value of the connection strength. The box
color (gray and black) represents a positive or negative sign of the connection
strength respectively. The values of the connection strengths have been scaled
between minimal (no box) and maximal controller connection strength (box of
maximum size). Fig. 5 demonstrates the final controller structures of the worst
and the best system, developed with the growth method after 200 generations.
Fig. 5 (c), (d) shows the optimized position of the sensors and actuators in both
systems. A reason for the performance difference of the two systems seems to be
an extra actuator of the first system. The results show in comparison to earlier
work, that the actuation resources of the system have a comparable impact on
the system performance than the amount of gathered sensor information about
the environment. This means that the pre-definition of the configuration of each
morphological structure limits a system’s global evolvability gradually. The pre-
sented system growth method shows experimentally on a virtual adaptive wing
design the potentials and benefits of the fully automatic globally optimal system
design.
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4 Conclusions

In the presented work the evolutionary generation of an optimal adaptive sys-
tem which reacts autonomously to changes in its environment is described. As
an example system for the evolutionary development a problem from the field
of aerodynamics was utilized. A virtual wing shape had to be adapted to show
minimal drag for changing unknown inflow angles based on pressure measure-
ments on its surface. All functional parts of the systems, such as morphological
configuration, defined by the sensory and actuation structures, as well as the
configuration of the signal processing unit of the virtual adaptive wing are not
specied in the early design stage and are the result of the evolutionary opti-
mization process implemented as a dynamic system growth process. We showed
that the proposed concurrent growth method could overcome the problems of
standard evolutionary strategies on a given large scale optimization task. Ac-
cording to the presented results we obtain a significant benefit in starting the
optimization initially as simple as possible while the system undergoes a step-
wise complexification during the co-evolution process. Proposed system growth
approach, combined with a cost factors for a morphological dimensionality, is
able to detect a minimally possible morphological configuration required to ful-
fill a given task of drag reduction and maintenance of a required lift. Therefore
an optimization process supports generation of preferably low dimensionality of
morphological and controller units, which is still sufficient to react optimally in
a simulated changing environment. Such a system development method results
in a structured system organization, with a strong hierarchical arrangement of
the elements of sensor and controller structures according to its importance to
the system. This system organization provides an important information to the
designers about the significance of sensors and actuators for the system perfor-
mance.
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Abstract. Search-based method using meta-heuristic algorithms is a hot topic in
automatic test data generation. In this paper, we develop an automatic test data
generating tool named particle swarm optimization data generation tool
(PSODGT). The PSODGT is characterized by the following two features. First,
the PSODGT adopts the condition-decision coverage (C/DC) as the criterion of
software testing, aiming to build an efficient test data set that covers all condi-
tions. Second, the PSODGT uses a particle swarm optimization (PSO) approach
to generate test data set. In addition, a new position initialization technique is
developed for PSO. Instead of initializing the test data randomly, the proposed
technique uses the previously-found test data that can reach the target condition
as the initial positions so that the search speed of PSODGT can be further acce-
lerated. The PSODGT is tested on four practical programs. Experimental results
show that the proposed PSO approach is promising.

Keywords: Particle swarm optimization, Automatic software test case generation,
Software testing,- Code coverage.

1 Introduction

With the rapid development of software industry, software is becoming bigger and
more subtle. In 2002, NIST estimated the loss caused by software failure which
reached 0.6 percent of GDP in America [1]. Hence, software testing, as a necessary
part during the circle of software development, is more difficult than before. Software
testing is also an expensive and labor-intensive work, which sometimes occupies
about half of the total workload [2] and brings lots of redundant expenditure both in
time and money. Hence, developing automatic test tool has important practical signi-
ficance.

The basic prerequisite for automatic software testing is generating test data auto-
matically. However, test data generation is a very challenging task, as a good data set
should not only fulfill all the requirements defined by test criterion well but also be as
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smaller as possible. As a result, more and more research effort has been attracted in
software test data generation in recent years [7], [16]. In general, these studies can be
classified into three classes, random, symbolic and dynamic. Random method just
generates inputs at random until a useful input is found. In symbolic method,
variables are assigned with symbolic values so that test data generation can be turned
into a problem of solving algebraic expressions [13], [14]. In dynamic test generation,
the source code is instrumented to collect information about the program when it
executes. This information can help test generators to modify the program’s input to
satisfy the requirement heuristically. Then the problem of generating test data con-
verted to function minimization problem. As the dynamic method is efficient and
robust for different kinds of programing codes, it has been increasingly considered as
a promising software test data generation technique in recent years [17]. The dynamic
method is also known as search-based software testing thus several meta-heuristic
optimization algorithms have been proposed for this problem, e.g. hill climbing [15],
tabu search algorithm [3], genetic algorithm (GA) [5] and particle swarm optimization
(PSO) [8].

Meanwhile most existing researches focused on covering paths in a program as
many as possible [6]. This strategy is known as path coverage which is a coverage
criterion in the field of white-box testing requiring that every path in the target pro-
gram should be reached. But sometimes it is not enough just covering all paths in a
program. Path coverage may also cause some conditions in the target program cannot
be fully covered. In order to overcome this problem, there is also another coverage
criterion called condition-decision coverage (C/DC). C/DC requires that every condi-
tion and every decision should take all possible outcomes at least once. Michael et al.
[4] used C/DC as criterion in their test data generation tool GADGET but the ap-
proaches they proposed are based on GA. Though GA has strong ability in global
searching, the local search capability is not good enough. Hence the convergence
speed of GA often cannot satisfy the software testing requirement.

In this paper, we intend to introduce a PSO approach to search-based software test-
ing with the C/DC criterion and further develop a PSO Data Generation Tool
(PSODGT). The reason of using PSO is that PSO has a fast convergence speed [10],
[18]. In addition, the self-cognitive and social-influence learning strategies of PSO
make it more reliable in detecting conditions which are difficult to reach. Though
PSO has been used in test data generation with the path coverage criterion in a few
works like [6], [9], different from these existing approaches, our proposed PSO ap-
proach focuses on a different criterion, i.e., the C/DC criterion. In addition, we further
improve the performance of PSO for test data generation by introducing a new initia-
lization technique to PSO and adjust its parameter setting. During each optimization
procedure, particles should reach the target condition before optimizing the fitness
function. In the proposed initialization technique, particles are initialized according to
the test data that can reach the current target condition found in previously. This mod-
ification saves time for particles to reach the target condition so that particles can
early start to optimize fitness function. As for experiment, most researches just tested
their approaches by simple programs like triangle classification, bubble sort. These
programs are not complicated enough to simulate real situations because they are too
simple and the search space is small. In this paper, four programs with different com-
plexities of inputs and conditions are tested. Our PSO approach is compared with a
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GA approach [4] which is also proposed for C/DC. Experimental results are evaluated
in two aspects, conditions coverage rate and convergence rate. When observing the
convergence rate, the number of executions of the target program is used as mea-
surement instead of time consumption.

The rest of this paper is organized as follows. In section 2, we introduce the PSO
algorithm and the test adequacy criteria. Section 3 shows some pivotal details about
PSODGT. Then experimental results and analysis are shown in section 4. Finally in
section 5 the conclusions are drawn.

2 Particle Swarm Optimization and Test Adequacy Criteria

2.1  Particle Swarm Optimization

Particle Swarm Optimization (PSO) algorithm was proposed by Russell Eberhart and
James Kennedy in 1995 [10]. In PSO algorithm, each particle keeps track of a posi-
tion which is the best solution it has achieved so far as pbx and globally optimal solu-
tion is stored as gbest. The basic steps of PSO are as follow:

1. Initialize N particles with random positions px; and velocities v; on D dimensions.
Evaluate every particle’s current fitness f{px;). Initialize pbx; = px; and

gbes[ = ir ﬂpxi ) = min(f(pbx() )r f(pbx] )r'"’ f(pbe )) ;
2. Check whether the criterion is met. If the criterion is met, loop ends else continue;
3. Change velocities according to formula (1):

Vi :wvi+Clrl(pbxi_pxi)+czrz(pbxgben_pxi); ey
4. Change positions according to formula (2):

DX, = px; tv, ()

|91

. Evaluate every particle’s fitness f{px;); if f(px;) < fipbx;) then pbx; = px;
6. Update gbest and loop to step 2.

Usually particle’s position cannot overstep the boundary of the search space and
velocity also cannot exceed one particular value which is often set as 20% of the
search space’s width. In formula (1), the particle velocity updating formula, @
presents inertia factor, generally obtained by formula (3) [18]

(@, — o,

W= a)ma,( _ max min) k . (3)
} maxlt

maxIt means the maximum iteration number and k& means the k-th iteration; c;, ¢, are
accelerated factors which present cognition and social of the particle; r;, r, are ran-
dom numbers between 0 and 1.
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2.2  Coverage Criteria

The goal of software test is to uncover as many faults as possible with a potent set of
tests. But predicting how many faults will be uncovered by a given test set is almost
impossible [11]. We need test adequacy criteria to help us judge whether a data set is
good enough to accomplish the test. Regardless of whether test adequacy criteria really
can represent the quality of a test suite, they do represent the thoroughness of testing.

There are several common coverage criteria in structural test like statement cover-
age, branch coverage, condition coverage, multiple condition coverage, condition-
decision coverage (C/DC) and path coverage [2]. A condition is a leaf-level Boolean
expression and cannot be broken down into a simpler Boolean expression. A decision
is a Boolean expression composed of conditions and Boolean operators. A decision
without any Boolean operators is a condition. In these criteria exists a hierarchy, the
top one is multiple condition coverage which requires every permutation of values for
the Boolean variables in every condition occurring at least once. On the contrary,
function coverage only requires the execution of every function.

In many automatic testing researches, path coverage was used as their criterion.
Though path coverage is applicable to a number of program’s testing, it is not perfect.
For example, assume there is a decision consisted by disjunction of two conditions
like (a Il b) in the program. For the true path, according to the short circuit evaluation,
most programming language will check condition a first and if condition a is true then
ignore the condition b; for the false path, both condition a and b need to be false. Fi-
nally we find that condition b may never be true even both paths were already cov-
ered.

In PSODGT, we use condition-decision coverage as the coverage criterion. Condi-
tion-decision coverage requires that every decision in the program has taken all possi-
ble outcomes at least once, and every condition in a decision in the program has taken
all possible outcomes at least once. Although in the hierarchy, the level of C/DC is
lower than multiple condition coverage, C/DC already can make sure that every piece
of the program can be executed if the requirement of C/DC is fully fulfilled.

3 The PSO Data Generation Tool (PSODGT)

In this section, the PSO data generation tool is introduced. First of all, we give a brief
overview of the PSODGT. Then we discuss three issues of the PSODGT in detail,
including the main data structure, implementation of the fitness function and the im-
proved PSO algorithm for this tool.

3.1 Overview of PSODGT

PSODGT is designed to work on programs written in C or C++ programing language
and the architecture of PSODGT is shown in Fig. 1. There are two parts in PSODGT,
automatic instrumentation and test data generation. Original source code is automatically
instrumented and compiled in the automatic instrumentation part. After compiling, an
instrumented executable program is generated for data generation part to work on. The
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data generation part also consists of two classes. Class controller maintains a condition
table and a test data set, taking charge of choosing target condition and branch, storing
useful inputs found by class optimizer and updating the condition table all by using a key
function named runOnce. The optimizer class only focuses itself on reaching the target
branch chosen by controller.

Test Data Set

/ﬁlﬁce
ﬁgdc

Controller Updat:
Condition Test runOnce
—Update .
Table Data Set Function
| “-), u E L f
Automatic Executable 2= =l Loop Z | E
3 E% E = =
Instrumentation Program o g _&' % 5 8 = g
g 3 JE|EG
= 2 € gHE*"
17 1N

. Particle
Optimizer oo

Fig. 1. Architecture of the PSODGT

3.2 Condition Table

The condition table is a vitally important data structure for the PSODGT. It is derived
from the decision table proposed in [12] and modified in [4] by replacing decision
with condition. Different from the condition table in [4], each branch in PSODGT’s
condition table has three statuses not two. A sample condition table is shown in
Table 1.

Table 1. Condition table

Branch
Condition | TRUE | FALSE
1 1 2
2 0 0
3 1 1
4 1 0

Status 0 means this branch is not covered yet, 1 means this branch has been cov-
ered and 2 means that the algorithm has failed in optimizing this branch of the condi-
tion. Status 2 is used to avoid endless loop. When a goal branch is needed, PSODGT
always chooses the condition the state of which is 1/0 or 0/1, i.e., this condition has
been reached but its branches are not fully covered yet. To satisfy C/DC requirement,
we take advantage of the short circuit evaluation. If every condition is fully covered
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(both TRUE and FALSE branches have been achieved), all decisions can be fully
covered. So we can only focus on covering conditions as many as possible.

3.3  Fitness Calculation

When a condition’s branch is chosen, things we need to do next is to get its fitness
under test data. If a strip of input data can reach the chosen condition, variables in the
chosen condition have relationship with the input data. Because different inputs
should cause different value for variables in condition so that conditions may take
different outcomes. For example, suppose that a hypothetical program contains the
condition

if(temp > 10){..} else {..}

on line 50 and the goal is to reach its FALSE branch. Denoting x as input, according
to the relationship between input data and variables in condition, temp can be
indicated as lineso(x). Then the fitness function of this condition can be express as
fix)=10—line,)(x)+1. When f{x) <= 0, the goal branch will be achieved. Using the

value of f{x), the problem of generating test data turns into function minimization
problem. If the input data cannot reach the chosen condition, we set a very large value
as fitness to represent that this condition is not related to the input data.

Table 2. Computation of the fitness function

Condition Type | Goal Branch | Fitness Calculation
c>d T d — ¢ + minConst
F c—d
c<d T ¢ —d + minConst
F d-c
c>=d T d-c
F ¢ —d + minConst
c<=d T c—d
F d — ¢ + minConst
c==d T lc —dI
F minConst — Ic — dI
c T 1000
F 1000

Table 2 shows how fitness is calculated for all condition types if the condition is
reached.We add a constant named minConst to some fitness so that all fitness calcula-
tions can be evaluated as a positive number no matter what the goal branch is. The
goal is to reduce the fitness down to zero or negative numbers. For integer problem,
minConst is set to 1; for float problem, minConst can be set to a very small float
number according to the precision needed in the real situation.
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3.4  Particle Swarm Optimization for PSODGT

According to the actual situation in test data generation, some improvements are ap-
plied to the PSO algorithm in initialization step and parameters setting. Initialization
step in PSO can be divided into position initialization and velocity initialization.

Plenty of existing researches use a strategy in initial population generating that add
the test data which can successfully reach the target condition to the population
firstly; if additional inputs are needed, generate some random inputs to fill the popula-
tion. However for PSO, these randomly generated inputs take a lot of time in reaching
the target condition. Considering this problem, this paper proposes a new method for
the initialization step of PSO using the idea of crossover operation in GA and strati-
fied sampling for reference. Suppose there are N particles needed in the swarm and
the number of the target program’s input is D. The position of the i-th particle is pre-
sented as an array P;[1...D]. The positions initialization steps are as follow:

1. If the number of the test data which can successfully reach the condition is bigger
or equal to N, randomly add N of them into swarm and end the initialization
process; else add all of them into swarm and calculate how many additional
particles are needed.

2. Assume M particles are needed. If M<=N-M, use random M particles in the swarm
as seeds and each seed generates one additional particle, else use all the particles in
the swarm as seeds and each seed generates M/(N-M) particles.

3. For every generation of every seed, it begins with copying the position of i-th seed
to the new particle, NewP[1...D]=P;[1...D].

4. After copy, generate a number d smaller than D randomly. Then construct an d-
length array changePos[1...d] filling up with different numbers which are
generated randomly and smaller than D.

5. Finally substitute the values in NewP with random numbers according to
changePos, NewP| changePos[1...d] l=randomNumber.

Research in [4] found that there are lots of serendipitous coverages during test data
generation. This means some test data do cover new condition branches but these
conditions are not the one the optimizer is currently working on. Serendipitous cover-
age requires degree of randomness in optimizer. However the directional character
makes PSO perform badly in gaining serendipitous coverage. Considering this prob-
lem, particles’ velocities are initialized within the same boundary as positions to ob-
tain more randomness in early stages of iteration. This setting causes a consequence
that convergence speed becomes slower than basic PSO. To make up the losses on
convergence rate, @ the inertia factor is set as 0.4 down to 0.3 with the iteration
growing. A lot of experiments have been done to verify this setting about inertia fac-
tor. When it is set much higher, convergence speed is too slow to meet the require-
ment. While, if it is smaller than 0.3, the algorithm usually fails.
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4 Experimental Studies

4.1 Experimental Settings

In the experiments, we test the proposed method on four programs: triangle classifica-
tion program, week calculation program, student grade judgment program and blood
glucose judgment program. (Denoted as P1, P2, P3, and P4) Different from the simple
programs tested in [4], these programs are practical and full of various conditions.
When we test these programs, two main aspects are taken into consideration. One is
the dimension (number of inputs) and size of search space; the other is the number of
conditions. Specific figure about the dimension of search space and the number of
conditions are shown in Table 3. And each program is tested with two different size
of search space measured by bit shown in Table 4.

Table 3. Number of conditions and inputs

Program | Condition number | Inputs Number (dimension)
P1 20 3
P2 76 3
P3 16 5
P4 33 12

Our proposed PSO approach is compared with two genetic algorithms with differ-
ent coding schemes which are gray code (GAG) and binary code (GAB). Also a PSO
method using the same initialization way with GA is tested to verify the necessity of
the proposed initialization technique, denoted as iPSO. We use 100 individuals, allow
30 generations to elapse before two GAs give up, the same as in [4], and the mutation
probability of every bit is 0.01. For PSO, 20 individuals and 100 generations are al-
lowed. Values of accelerated factors c¢; and ¢, are 2.

4.2  Experimental Results and Analysis

In this paper, experimental results are estimated in two aspects, efficiency
(convergence rate) and effectiveness (coverage rate). In the course of experiment, we
take five serial attempts as a group of tests. After six groups of tests for each method,
the best coverage rate in each group is selected and the best, worst, average coverage
rate of these six numbers are shown in Table 4, displayed in percentage.

Comparing the experimental data on different search space size for the same pro-
gram, we can find that when the number of input is relative small, increasing on the
search space size doesn’t affect the coverage rate greatly. However when the number
of input grows larger, the contrary is the case. Though both GA and PSO suffer the
increasing on search space size, the PSO approach is much more stable. And the poor
performance made by iPSO also demonstrates the importance of our proposed initiali-
zation tech in PSO method for software test data generation. In general, except the
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data of best coverage rate for P1 in 16-bit search space which is underlined in Table 4,
all the rest data show the advantage of our PSO approach in effectiveness.

Table 4. Experimental results on coverage rate

Fig. 2. Converge rate of three methods on P3

Prog. P1 P2 P3 P4
Bit 32 16 16 12 12 8 12 8
PSO | mean 95 95 | 99.45 100 100 | 100 | 88.38 100
worst 95 95 | 98.68 100 100 | 100 | 65.15 100
best 95 95 100 100 100 | 100 100 100
GAG | mean | 88.75 | 93.33 | 96.49 | 96.49 | 82.29 | 100 | 45.20 100
worst | 82.50 | 92.50 | 94.74 | 93.42 | 43.75 | 100 | 33.33 100
best 95 | 97.50 | 98.03 | 99.34 100 | 100 | 57.58 100
GAB | mean | 72.50 | 85.42 | 96.71 | 96.93 | 59.90 | 100 | 36.36 100
worst 50 | 72.50 | 95.39 | 96.05 | 43.75 | 100 | 28.79 100
best 85 | 92.50 | 98.03 | 98.68 | 90.63 | 100 | 40.91 100
iPSO | mean | 85.42 | 87.50 | 82.46 | 86.95 | 41.67 | 100 | 26.27 | 94.70
worst 80 | 87.50 | 79.61 | 85.53 | 40.63 100 | 24.24 | 71.21
best 87.50 | 87.50 | 84.21 | 87.50 | 43.75 | 100 | 30.30 100
—a— GAB
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1.0 4 A - e -
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As to the convergence rate, P3 with 8-bit search space is used in comparing the ef-
ficiency because all three approaches performed well on this program and iPSO is not
shown because it is too slow comparing with others. The relationship between runs
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and coverage rate is illustrated in Fig. 2. This plot shows that PSO begins to demon-
strate its advantages after reach 50% coverage and covers all conditions first. Clearly
the convergence rate of PSO is much faster than the two GA approaches. The same
fact also can be verified by the other programs.

All these experimental results show that the proposed PSO approach is effective
and efficient in automatic software test data generation.

5 Conclusion

In this paper, an improved PSO approach is proposed to apply to search-based test
data generation. The main contributions are in two aspects. First, the PSODGT is
developed by combining the PSO algorithm and C/DC. Second, a new position initia-
lization technique is developed for PSO to adapt accommodate software testing. Ex-
perimental results show that the proposed PSO approach is very promising.

In the future research, it will be interesting to find out which method is suitable to
which kind of condition so that more hybrid methods can be proposed to apply to
different conditions. And how to use much higher-level coverage criterion is also a
promising research topic.
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Abstract. Dominating tree problem (DTP) is a recent variant of domi-
nating set problems in graph theory and finds its root in providing virtual
backbone routing in wireless sensor networks. This problem consists in
finding a tree, say DT, with minimum total edge weight on an undi-
rected, weighted and connected graph such that each vertex of the graph
is either in DT or adjacent to a vertex in DT. In this paper, a steady-
state genetic algorithm (SSGA) is proposed for the solution of DTP. In
particular, crossover operator of SSGA is designed in such a way that it
generates a DT of the child solution which not only avoids the generation
of a forest of trees, but also contributes in finding a high quality of child
solution. Crossover and mutation of SSGA as well as other elements such
as pruning procedure for the DTP are effectively coordinated in such a
way that they help in evolving high quality solutions in a less time. SSGA
has been compared with the best approaches in the literature. Compu-
tational results show the superiority of SSGA over these state-of-the-art
approaches in terms of both solution quality and computational time.

Keywords: Evolutionary Algorithm, Genetic Algorithm, Steady-State,
Dominating Tree, Wireless Sensor Networks.

1 Introduction

In recent years, many hard combinatorial optimization problems have been en-
countered in the domain of wireless sensor networks (WSNs). Dominating tree
problem (DTP) is one of N'P-Hard problems in WSNs. Given an undirected,
weighted and connected graph G = (V, E,w), where V is a set of vertices, F is
a set of edges, and w is a non-negative weight function w : E — R associated
with the edges of G, DTP consists in finding a tree, say DT, with minimum
total edge weight on G such that for each vertex v € V' | v is either in DT or
adjacent to a vertex in DT. Every vertex in DT is called a dominating vertex,
whereas every vertex not in DT is called a non-dominating vertex. Note that
vertices and nodes are used interchangeably in this paper.

A solution to the DTP offers an application in providing a virtual backbone
for routing in WSNs. Since a non-dominating node is at least adjacent to one
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of dominating nodes of dominating tree (DT') in the WSN;, the routing informa-
tion can be stored only on dominating nodes of DT (solution). In this scheme,
a message can be sent from one source to destination by first forwarding this
message to its nearest dominating node of DT, then with the help of DT, this
message is further routed to one of its dominating nodes nearest to the receiver
and then, finally destined to the receiver. Each non-dominating node is required
to remember only its nearest dominating node. Advantage of this scheme is
that the total number of dominating nodes used for storing routing information
(virtual backbone) is small in comparison to the total nodes in the WSN, which
in turn, the less overhead on the size of routing table occurs.

2 Related Work

Dominating tree problem (DTP) is a recent variant of dominating set problems in
graph theory and is proven to AN'P-Hard problem [6, 13|. In literature, the concept
of connected dominating set [2, 4, 10-12] has been studied for constructing a
routing backbone with minimum energy consumption in WSNs. Such papers
consider the weight on each node instead of the weight on each edge. In fact,
energy consumption in routing is directly related to the energy consumed by
edges on the route. This led to the introduction of DTP [6, 13] with the objective
of minimizing energy consumption of routing. They proved inapproximability
result and presented an approximation algorithm - quasi-polynomial (|V'|?(9IVD)
algorithm- to solve the DTP. Due to quasi-polynomial algorithm, both Zhang et
al. [13] and Shin et al. [6] developed a polynomial time problem-specific heuristic
for the solution of DTP. Later, Sundar and Singh [8] presented a problem-specific
heuristic and two swarm intelligence techniques — artificial bee colony algorithm
and ant colony optimization algorithm — and demonstrated the superiority of
results over the results reported in [6, 13].

This paper presents a steady-state genetic algorithm (SSGA) for the solution
of DTP. SSGA has been compared with the state-of-the-art approaches, i.e., ar-
tificial bee colony (ABC) approach and ant colony optimization (ACO) approach
[8]. Computational results show the superiority of SSGA over ABC and ACO
approaches in terms of both solution quality and computational time.

The rest of this paper is organized as follows: Section 2 describes a a brief
introduction of SSGA, whereas Section 3 describes an SSGA for the DTP. Com-
putational results are reported in Section 4. Finally, Section 5 contains some
concluding remarks.

3 SSGA for the DTP

Genetic algorithm (GA) [3] is an evolutionary algorithm that works on the princi-
ples of natural evolution. It is one of the most powerful metaheuristic techniques
for optimization problems. This paper is focused on presenting a steady-state
genetic algorithm (SSGA) for the DTP. SSGA works on steady-state popula-
tion replacement method [1]. SSGA starts iteratively with selecting two parents,
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performing crossover and mutation to generate a child solution that replaces a
worst individual of the population. It is quite different from generational ge-
netic algorithm (GGA), where the whole parent population is replaced with the
same number of newly generated child solutions every generation. In general,
SSGA finds highly fit solutions in a faster way in comparison to GGA [1]. The
notion behind this one is that highly fit solutions in the population are kept
permanently and available instantly for selection and reproduction in order to
generate child solutions. Also, GGA may contain multiple copies of highly fit
solutions in the population which can dominate the whole population within
few generations. In such a situation, crossover operator becomes completely in-
effective. However, mutation can be used to improve the solution quality, but
such improvement, if occurs, is quite slow. In SSGA, one can simply prevent this
situation by comparing each newly generated child solution with the current in-
dividuals of the population and rejecting the newly generated child solution, in
case, it is equivalent to one of current individuals of the population.
Elements of SSGA for the DTP are described as follows:

3.1 Encoding

Each chromosome (solution) is represented as a set of dominating vertices of a
dominating tree.

3.2 Initial Solution Generation

Each initial solution is generated by an iterative process [8]. Initially, S and U
are the two empty sets. A vertex v; is selected uniformly at random from V' and
added to S. All vertices adjacent to v; are added to U. At each step, an edge
connecting a vertex v, € S to a vertex v, € U is selected, where v, and v, are
selected uniformly at random from S and U respectively. After this, v, is deleted
from U and added to S. Each vertex, which is adjacent to v, and is neither a
member of U nor S, is added to U. This whole procedure is repeated again and
again until the sum of cardinality of S and U becomes equal to the total number
of vertices in GG. At this juncture, a dominating tree DT is constructed.

Once a solution DT is generated, a pruning procedure is applied to DT [8].
According to this pruning procedure, a dominating vertex with degree one, say
vp, € DT is examined for pruning. It is possible only when all non-dominating
vertices adjacent to v, are also adjacent to other dominating vertices in DT.
When it is possible, then only the edge incident to v, can be deleted from DT,
which in turn reduces the total edge weight of DT'. This pruning procedure is
applied to DT repeatedly till it is no longer possible to prune any dominating
vertex with degree one. Thereafter, Prim’s algorithm [5] is applied to construct
a minimum spanning tree (M ST) on the sub-graph of G induced by the set
of dominating vertices of DT [8]. This may lead to further minimize the total
weight of DT'. The notion behind this one is that even after pruning, the total
weight of DT may not be minimum due to the selection of incorrect edges while
constructing DT'. Numerous dominating trees can be constructed in G on a given
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a set of dominating vertices. Obviously, resultant M ST or DT after applying
Prim’s algorithm will always be of minimum cost among all such dominating
trees.

Uniqueness of each generated individual (solution) is checked against the in-
dividuals of the population generated so far and if it is unique, it is included in
the initial population, otherwise it is discarded.

3.3 Fitness

Fitness of each solution is computed, where the fitness function of a solution is
same as objective function of a solution.

3.4 Selection

Binary tournament selection method is used consecutively two times for selecting
two different chromosomes as parents for crossover. This method starts with
selecting two chromosomes uniformly at random from the current population.
With probability P,, the chromosome with better fitness is selected, otherwise,
worse one is selected (with probability 1 — P,). This selection is also applied to
select a chromosome for mutation.

3.5 Crossover

Crossover starts with selecting two chromosomes (solutions) as parents (say,
p1 and ps) from the population with the help of binary tournament selection
method, initializing an empty child solution C, and labeling all vertices € V as
unmarked. With equal probabilities, first vertex vy,,1 (gene) is selected from the
first index of ordered set of dominating vertices of p;, otherwise first vertex vp,;
(gene) is selected from that of p. This selected vertex is added to C. All vertices
adjacent to this selected vertex and the selected vertex itself are labeled marked.
Hereafter, iteratively, with equal probabilities, a next vertex, say vp, ;, is selected
from the ordered set of dominating vertices of p;, otherwise next vertex, say vy, ;,
is selected from that of po. Here ¢ and j are the indices of vertices in the ordered
set of dominating vertices of p; and po respectively, and next vertex means a
vertex is next to previously selected vertex in the ordered set of dominating
vertices of selected parent. In addition, it is possible that next vertex (suppose
that this next vertex is vy,;) already exists in C. This possibility is based on
two things: the first one is that this next vertex may be common to both p; and
po and it may be selected from po in an earlier iteration, and the second one is
that this next vertex may be selected in an earlier iteration due to potential path
(potential path is explained later). In such a situation, index ¢ in p; is incremented
to i + 1 for selecting a mext vertex from p; in the next time, and the procedure
starts a fresh for selecting a next vertex. The selected next vertex which will be
either vy, ; or v, ; will be referred to as vy. After this, a connectivity of v; against
all other vertices in C' is checked first before adding it to C'. Here checking of a
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connectivity means checking of existence of an edge between v; and one of the
vertices € C' in G. If an edge exists, then v; is added to C, and all unmarked
vertices adjacent to v; and vy itself are now labeled marked. Otherwise, a path
(say, v1 ~ ve, where vy € C) having maximum potential is selected from among
all candidate paths connecting v; to all vertices in C. A potential path (say, v1 ~

‘31;""7(”1?”“” is the number

Ve, where v, € C') is based on , where |SPum(vl->vc)

of unmarked vertices in the path vll . Ve, Ve € C, and SP,, .y, is the cost of
shortest path vy ~» v.. All vertices, say V;p, constituting this selected path v;
~ v are added to C' except vg, as vo is already in C. All unmarked vertices
adjacent to Vs, and all unmarked vertices in Vy, are now labeled marked. This
whole iterative procedure continues until all vertices are labeled marked.

It is to be noted that simply selecting a vertex each time from one of ordered
set of dominating vertices of p; and po for C' is not applied in crossover operator.
The reason behind this one is that such crossover would possibly lead to a forest
of trees and in that situation, even after crossover it would require a repair
operator to transform this forest of trees into a dominating tree that would be
costly. To overcome this situation, the concepts of checking a connectivity and
selecting a potential path are applied during crossover which not only avoid the
construction of a forest of trees, but also contribute in finding a high quality of
child solution.

3.6 Mutation

Mutation starts with selecting a solution from the population with the help
of binary tournament selection method, and copying this solution to an empty
solution, say C. A small set (V},) of non-dominating vertices is selected uniformly
at random from V\C set, where V,,, = Py, X minimum{|C|,|V\C|}. P, is a
parameter determined empirically. Iteratively, a vertex vy € V,, having a path
of minimum cost with one (say vq) of the vertices in C' is determined. It is
to be noted that the degree of vs must be greater than one in G. All vertices
constituting the selected path are added to C except vy, as vq is already in C.
This iterative procedure continues until V;,, becomes empty. Hereafter, Prim’s
algorithm [5] is applied to construct a minimum spanning tree on the sub-graph
of G induced by the set of dominating vertices of C.

Similar to [7, 9], here crossover and mutation operators are also applied in
a mutually exclusive way to generate a child solution. With probability P,
crossover operator is selected, otherwise mutation operator is selected with the
probability (1 — P.). Once a child solution C' is generated either from crossover
or mutation operator, similar to [8], a series of procedures on the current DT of
C, i.e., pruning on DT of C, Prim’s algorithm on the resultant DT, and again
pruning on the resultant DT is applied to further minimize the cost of DT'. Such
procedures are already explained in Section 3.2.

The reason behind considering crossover and mutation operators in a mutually
exclusive way is that crossover operator generates a child solution (C') based
on selecting high-quality building blocks (genes) in a randomized manner either



A Steady-State Genetic Algorithm for the Dominating Tree Problem 53

from p; or ps, and greedy approach for connectivity. Whereas, mutation operator
generates a child solution C' based on adding some random non-dominating
vertices to C. If mutation operator is applied after crossover operator, then a
series of procedures — pruning, Prim’s algorithm and pruning (discussed above) —
would be applied on the current C' to further minimize the cost of C. In that case,
the resultant C' may lose some potentially high-quality building blocks (genes).

Algorithm 1. Pseudo-code of SSGA for the DTP

Generate a population (pop_size) of solutions s1,52,. .., Spop_size randomly
(see Section 3.2);
best < Best solution in the population;
while (Termination criteria is not met) do
if (u0l < P.) then

p1 < Binary_Tournament _Selection(si1, S2,. .., Spop_size);
p2 < Binary_Tournament _Selection(s1, S2,. .., Spop_size);
Child + Crossover _Operator(p1, p2);

else
p1 < Binary_Tournament _Selection(si1, S2,. .., Spop_size);

Child + Mutation _Operator(p1);

if (Child is a partial DT ) then
Apply repair procedure on Child,
Apply pruning procedure on DT of Child,
Apply Prim’s algorithm to construct a M.ST on the sub-graph of G induced
by the set of dominating vertices of DT
Apply pruning procedure on DT of Child,
if (Child is better than best) then
best < Child;

Apply replacement policy;

return best;

3.7 Replacement Policy

In this replacement policy, uniqueness of the newly generated child solution C' is
examined against each individual of the population. If C' is found to be different
from all individuals of the population, then it replaces the worst individual of
the population, irrespective of its own fitness. Otherwise, it is rejected.
Algorithm 1 presents the pseudo-code of SSGA for the DTP, where the size of
the population is pop _size. Two procedures called Crossover Operator(p1, p2)
and Mutation_ Operator(p; ) perform crossover and mutation operations respec-
tively. Binary_Tournament_ Selection(si, s2, ..., S56p0p ....) 1s another proce-
dure which selects a solution from solutions si, sg, ..., 8s,,, ... With the help
of using binary tournament selection method and returns the solution selected.
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4 Computational Results

The proposed SSGA for the DTP has been implemented in C and executed on
a Linux with the configuration of 3.0 GHz Core 2 Duo system with 2 GB RAM.
In this approach, pop size = 300, P, = 0.8, P. = 0.8 and P,, = 0.4 are con-
sidered for the DTP. SSGA has been allowed |V| x 500 generations to execute.
All these parameter values are chosen empirically. These parameter values give
good results although they may not be optimal for all problem instances. SSGA
has been compared with the best approaches such as artificial bee colony (ABC)
approach and ant colony optimization (ACO) approach [8] in the literature. Con-
figuration of a computer system used to execute both ABC and ACO approaches
was similar to that of SSGA. Similar to ABC and ACO approaches, SSGA has
been also executed 20 independent times for each problem instance. In subse-
quent subsections, a brief description of problem instances and the performance
comparisons of SSGA with ABC and ACO approaches are provided.

4.1 Problem Instances

SSGA uses same problem instances for the DTP as used in [8]. These problem
instances have been downloaded from http://dcis.uohyd.ernet.in/~alokcs/
dtp.zip. Each problem instance is described as follows: each instance is a disc
graph, G = (V, E) where each disk represents the transmission range of each
node. The weight on each edge ey, in E is defined as w(u,v) = C, X dij,
where d,, is the euclidean distance between two nodes (v and v), and C, is
a random constant which is considered as 1. The assumption is that all nodes
are distributed randomly in a 500m x 500m area and the transmission range
of each node is 100m. Three different problem instances are created for each
value of |V| € {50,100, 200, 300,400, 500}, resulting a total of eighteen problem

instances.

4.2 Comparison of SSGA with ABC and ACO Approaches

SSGA has been compared with ABC and ACO approaches [8] on a set of prob-
lem instances (see Section 4.1). Experimental results are reported in Table 1.
The descriptions of various columns of this table are as follows: Column 1 repre-
sents the name of each instance; columns 2-6 present best known value (BKV),
average solution quality (Avg.), standard deviation (SD) of solution values, av-
erage number of dominating vertices (ANDV) and average total execution time
(ATET) for each test instance that are obtained through ABC; columns 7-11
and 12-16 present same information (BKV, Avg., SD, ANDV and ATET) that
are obtained by ACO and SSGA respectively.

Table 1 clearly shows that SSGA is much better than both ABC and ACO
approaches in terms of solution quality (BKV and Avg.) and computational time
(ATET). Note that best values are presented in bold numbers. Considering its
all 18 instances, comparing with ABC approach, SSGA is better on 11 problem
instances and equal on 7 problem instances in terms of best solution quality
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(BKV), whereas SSGA is better on 13 problem instances, equal on 1 problem
instances and worse on 4 instances in terms of average solution quality (Avg.).
Only on small sized problem instances, solution quality obtained by ABC ap-
proach is slightly better than that of SSGA at a large computation time. Based
on ATET, SSGA is much faster than ABC approach. For example, the maxi-
mum time (ATET) taken by ABC approach on the problem instance (500 1)
is 379.72 seconds, whereas the maximum time (ATET) taken by SSGA on the
problem instance (500 2) is 22.84 seconds. In a similar way, comparing with
ACO approach, SSGA is better on 11 problem instances and equal on 7 problem
instances in terms of best solution quality (BKV), whereas SSGA is better on
13 problem instances, equal on 1 problem instances and worse on 4 instances
in terms of average solution quality (Avg.). Solution quality obtained by ACO
approach is slightly better than that of SSGA on only small sized problem in-
stances. Based on ATET, SSGA is much faster than ACO approach. For example,
the maximum time (ATET) taken by ACO approach on the problem instance
(500_1)is 1163.20 seconds, whereas the maximum time (ATET) taken by SSGA
on the problem instance (500 2) is 22.84 seconds.

Since the number of dominating vertices plays an important role in the per-
formance of any routing protocols based on virtual backbone, therefore, the
performance of SSGA is also examined with ABC and ACO approaches in terms
of average number of dominating vertices (ANDV). Table 1 clearly shows that
SSGA obtains less ANDV than ABC and ACO approaches on most of the in-
stances.

Overall, SSGA outperforms both ABC and ACO approaches on most of the
problem instances in terms of solution quality. SSGA has found new values for
9 problem instances out of 18. In particular, the convergence of SSGA is much
faster in finding high quality solutions in comparison to ABC and ACO ap-
proaches.

It is to be noted that the number of dominating vertices in the solution and
the solution quality do not vary significantly with instance size for SSGA. The
reason behind this one is that all problem instances consisting of vertices are
randomly distributed in a 500m x 500m area, and the average degree of vertices
also increases with the increase of instance size, resulting no significantly changes
in the number of dominating vertices of the solution and the solution quality with
the increase of instance size [8].

5 Conclusions

This paper presents a steady-state genetic algorithm (SSGA) for the dominating
tree problem (DTP). In particular, crossover operator is designed in such a way
that it generates a DT of the child solution which not only avoids the generation
of a forest of trees, but also contributes in finding a high quality of child solution.
Crossover and mutation of SSGA as well as other elements such as pruning
procedure for the DTP are effectively coordinated in such a way that they help
in evolving high quality solutions in a less time. In fact, the proposed SSGA
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has experimentally proved that SSGA is much superior than the state-of-the-
art approaches, i.e., artificial bee colony approach and ant colony optimization
approach in terms of both solution quality and computational time. In particular,
the convergence of SSGA is much faster in finding a high quality solution.

Since there is still room for improvement based on the results, particularly the

values of standard deviation of problem instances, obtained by SSGA. Therefore,
as a future work, we will intend to develop other metaheuristic techniques for
this dominating tree problem.
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Abstract. Conventional evolutionary algorithms (EAs) cannot solve
given optimization problems efficiently when their evolutionary opera-
tors do not accommodate to the structures of the problems. We previ-
ously proposed a mutation-based EA that does not use a recombination
operator and does not have this problem of the conventional EAs. The
mutation-based EA evolves timings at which probabilities for generating
phenotypic values (developmental timings) change, and brings different
evolution speed to each phenotypic variable, so that it can solve a given
problem hierarchically. In this paper we first propose the evolutionary
algorithm evolving developmental timing (EDT) by adding a crossover
operator to the mutation-based EA and then devise a new test prob-
lem that conventional EAs are likely to fail in solving and for which the
features of the proposed EA are well utilized. The test problem con-
sists of multiple deceptive problems among which there is hierarchical
dependency, and has the feature that the hierarchical dependency is rep-
resented by a graph structure. We apply the EDT and the conventional
EAs, the PBIL and c¢GA, for comparison to the new test problem and
show the usefulness of the evolution of developmental timing.

Keywords: developmental timing, deceptive problem, graph structure,
dependency between variables, estimation distribution algorithm.

1 Introduction

Evolutionary algorithms (EAs) evolve several spatial patterns at different levels,
such as genotype, phenotype and population, by using evolutionary operators.
These spatial patterns, as objects of evolution, are related to the structure of
optimization problems solved by EAs. Therefore, evolutionary operators have to
be adapted to spatial patterns involved in optimization problems. For instance,
fixed recombination operators that do not adapt linkages between variables have
been shown to be inadequate and scale-up exponentially in terms of population
size with increasing problem size [17].

To overcome the dependence of evolutionary operators on spatial patterns in-
volving optimization problems, EAs must have a mechanism to reconstruct the
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spatial patterns for their evolutionary operators to work effectively. One such
approach is to adopt a genetic code with a (position, value)-style, as used in
the messy genetic algorithm [6] and the linkage learning genetic algorithm [8].
This genetic coding style allows EAs to rearrange phenotypic variables origi-
nally arranged in a fixed order. Another method that allows EAs to rearrange
phenotypic variables within a genotype is the use of grammatical genetic codes.
Grammatical genetic codes, as used in a genetic algorithm using grammatical
evolution [16], enable EAs to provide priority to phenotypic variables by means
of sequential interactions among phenotypic variables induced by grammar, even
in uniformly-scaled problems, as well as to rearrange phenotypic variables within
a genotype in an arbitrary order [12].

A more direct approach is to introduce a learning mechanism instead of genetic
and evolutionary operators into EAs. This approach is referred to as probabilistic
model building of genetic algorithms [14] or estimation of distribution algorithms
[11]. This approach involves learning the distribution of selected genotypes in a
genotypic space, which is a spatial pattern representing a part of the whole
structure of an optimization problem, so that its performance is not influenced
by linkage between variables in a genotype.

Under the background mentioned above, we previously proposed a mutation-
based EA that does not use a recombination operator and does not have the
problem of conventional EAs [13]. The mutation-based EA evolves timings at
which probabilities for generating phenotypic values (developmental timings)
change, and brings different evolution speed to each phenotypic variable, so
that it can solve a given problem hierarchically. In the study, it was shown
that the mutation-based EA sequentially solves sub-problems comprising a hard
uniformly-scaled problem in which there is no prioritized variable. Concretely,
the 4-bit trap deceptive function [5] was used as a hard uniformly-scaled problem
and the scale-up of the mutation-based EA in terms of the number of function
evaluations was shown to be sub-exponential.

In this paper we first propose a new EA by adding a crossover operator to the
mutation-based EA. We refer to this EA as the evolutionary algorithm evolving
developmental timings (EDT) hereinafter. Then, we devise a new test prob-
lem that conventional EA are likely to fail in solving and for which features of
the proposed EA are well utilized. The test problem consists of multiple decep-
tive problems among which there is hierarchical dependency, and has a feature
that the hierarchical dependency is represented by a graph structure. We apply
the EDT and the conventional EAs, the population-based incremental learning
(PBIL) [1] and the compact genetic algorithm (cGA) [9], for comparison to the
new test problem and show the usefulness of the evolution of developmental tim-
ing. Though it is not shown in this paper due to page limitation, the EDT was
shown to have better scalability for the 4-bit trap deceptive function mentioned
above than the mutation-based EA proposed previously through simulations.

The present paper is organized as follows. Section 2 briefly describes related
research. In Section 3, we present the evolutionary algorithm evolving develop-
mental timings (EDT). Section 4 describes the new test problem. In Section 5,
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we examine the performance of the EDT on the new test problem through sim-
ulation. We summarize our results and present the conclusions in Section 6.

2 Related Work

Biological development is a complicated process in which a living organism de-
velops into an adult from only a fertilized egg that includes a genome. In biolog-
ical development, an appropriate temporal pattern of interactive developmental
events, such as gene expression and cell division, produces an appropriate form.
In certain species, when biological evolution occurs, the developmental system
must also change. Since biological evolution is continuous, the change of a devel-
opmental system should also be continuous. Heterochrony is a biological term
that refers to the change in timing of developmental events, and heterochrony
has been reported to be key in explaining biological evolution [7].

One of the differences between biological development and genotype-genotype-
mapping in EAs is that while living things continue to be exposed to environments
(a fitness function) during the entire process of biological development and differ-
ent genes are expressed at different times, individuals in EAs, in the case of prob-
lems with a fixed structure, are exposed to a fitness function (environments) only
when fixed-structured phenotypes are formed by genotype-phenotype-mapping.
Since only the formation of phenotypes that can be evaluated is meaningful in
terms of EA functions, bringing temporal elements in biological development to
genotype-phenotype-mapping in EAs is occasionally difficult or meaningless.

However, there have been several attempts to allocate temporal elements to
EAs in the case of problems with fixed structures. One such attempt involves
the development of grammatical genetic codes [16]. Genes in grammatical ge-
netic codes are decoded in a certain order into phenotypic values according to
grammar. In grammatical genetic codes, there are interactions among phenotypic
variables induced by grammar; however, as in biological development, there is
no interaction among decoding processes themselves.

In the case of optimizing variable structures such as trees and networks,
the situation is somewhat different. Since all possible structures can be eval-
uated, temporal elements can be used by considering the growth of structures to
be a process similar to biological development. Therefore, genotype-phenotype-
mapping including interactions among multiple decoding processes (developmen-
tal events) [4] as well as grammatical genetic codes [10][15] can be used for
structure optimization problems.

3 Evolutionary Algorithm Evolving Developmental
Timing

In this section, we present the evolutionary algorithm evolving developmen-
tal timings (EDT) that adds a crossover operator described in Section 3.3 to
the mutation-based evolutionary algorithm that we previously proposed in [13],
which is described in other parts of this section.
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3.1 Individual

In conventional evolutionary algorithms, individuals are usually equivalent to
genotypes, which are mapped into phenotypes in a fixed manner. A conven-
tional individual is evaluated only once during a generation and proceeds to
a selection phase that produces a generation gap. Here, we introduce a lifes-
pan to individuals within a generation. The individual then generates several
phenotypes during its lifetime.

The individual consists of two types of vectors. In the first type, the element
of the vector represents a cycle time of changing a probability to determine a
phenotypic value. This vector is a primary object to which evolutionary operators
are applied, and its elements can be considered as a type of information on
developmental timing. We refer to this vector and its element as a genotype
and a gene, respectively. In the second type, the element of the vector is a
probability for determining a phenotypic value. For example, in the case of bit
optimization, the probability of generating zero at a certain phenotypic position
is an element of the vector. While the vector of the cycle times does not vary
during a generation, the vector of probabilities does vary during a generation,
as discussed later.

The lengths of the genotype and the vector of probabilities are the same as
the length of the phenotype. Each position in these two vectors corresponds to
the same position in the phenotype.

3.2 Individual Development

As mentioned in the previous section, the individual within a generation has a
lifespan and consists of a genotype and a vector of probabilities. A time in a life-
time of the individual is denoted by n € [1, N], where N is the algorithm param-
eter representing the end of life of the individual. In addition, let (t1,to, -, ts)
and (p1,p2,---,pe) be the genotype and the vector of probabilities, respectively,
where ¢; is an integer within [1,T.] and p; is a real value. T,.(T, < N) is the algo-
rithm parameter representing the possible maximum cycle time. The genotype
does not vary during the lifetime of the individual, but the vector of probabil-
ities does vary during its lifetime. In this section, we explain how the vector of
probabilities varies due to developmental timings composing the genotype and
how N phenotypes are time-sequentially produced from the genotype and the
vector of probabilities.

The initialization of the individuals is performed as follows. The genotypes are
randomly generated. All elements of the vector of probabilities are set 0.5 in the
case of bit optimization problems, which represents the probability with which
zero is generated. A phenotype is generated using the vector of probabilities
at each time during the lifetime of the individual. After every generation of a
phenotype, by comparing the current time, n, and each element of the genotype,
t«, it is determined whether it is time to change the probability to generate each
phenotypic value. If n is a multiple of t,, then p, is modified.
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The modification of the elements of the vector of probabilities is performed
as follows. We assume that the #th gene is ¢; € [1,T,]. The modification of the
+th element of the vector of probabilities, p;, is carried out every ¢; time step
during development of the individual. When the time is a X t;, the modification
is performed using the phenotypes generated within (a — 1) X ¢; to a x ¢; and
their fitness values. For example, when ¢; is 2, if the phenotypic values at the
+-th position in the phenotypes generated between time 1 and time 2 are 1 and
0, and if the phenotypic value at the &th position in the phenotype with the best
fitness value among these two values, puy, is 0, then the probability with which
0 is generated on the #-th position in the phenotype, p;, increases in proportion
to the number of Os in the two phenotypic values generated, numg. If puvy is 1,
then p; decreases in proportion to the number of 1, num,. The new probability,
pire? . is determined by Equation (1).

new pi + C x numo Zf pvp, =0,
pi = { — C X num j = (1)

1 if poy =1,
where C is the algorithm parameter. This can be considered as a type of learning
process, not for the distribution of all phenotypes in the phenotypic space, but
rather for the distribution of pieces of the phenotypes. Figure 1(a) also illustrates
an example of modification of the vector of probabilities during the lifetime of

the individual.

The best fitness value among all of the phenotypes generated during the lifes-
pan of the individual is set as the fitness value of the individual, and the indi-
vidual proceeds to the selection, crossover, and mutation phases.

genotype consisting of developmental timings for phenotypic values
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Fig. 1. Overview of the evolutionary algorithm evolving developmental timing (EDT)
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3.3 Crossover Operator

The EDT proposed in this section cannot rearrange phenotypic variables on a
phenotype. Therefore, if the EDT uses a fixed crossover (recombination) oper-
ator, for example, one-point crossover, it depends on optimization problems to
be solved whether it can efficiently solve the problems. So, we design a crossover
operator that does not break good linkages between phenotypic variables that
the EDT has identified so far but brings them to the next generation.

The crossover operator designed here estimates the dependency between phe-
notypic variables from element values of the vector of probabilities of the indi-
vidual. When the i-th element value of the vector of probabilities of some parent
individual, p;, is close to 0 (or 1), the i-th phenotypic value becomes 1 mostly.
That is to say, it can be said that the i-th phenotypic variable’s value has almost
converged. We consider that multiple phenotypic variables whose values have
almost converged at some moment depend on each other. Then, the crossover
operator copies the i-th gene of that parent individual, ¢;, onto the genotype
of another parent individual. The reason for copying not element values of the
vector of probabilities but genes of the genotype to decide the developmental
timing is that phenotypic values might have converged incorrectly.

Before applying the crossover operator, the EDT does not conduct selection
for reproduction but just randomly divides all individuals of the present popu-
lation into pairs throughly. When the population size is P, the number of the
parent pairs is P/2, where P is an even number. Each pair of parent individuals
produces two new individuals, so that the total number of individuals produced
is P. The condition in which the i-th gene of a parent individual of focus, t;, is
copied onto the genotype of another parent individual is that the i-th element
value of the vector of probabilities of the parent individual of focus, p;, satisfies
pi <Tporp;, >Ty (Tr, < Ty), where Ty, and Ty are the algorithm parameters.
An example of the crossover is shown in Figure 1(b).

3.4 Mutation and Selection Operators

A mutation operator is applied to each element of the genotype and the vector
of probabilities The mutation rates for the th element of the genotype and the
vector of probabilities, pm;, are the same, and the rate is determined using the
i-th element of the genotype, t; € [1,T.]. The mutation rate, pm;, is determined
by Equation (2).

(2

N+1 @)
This equation indicates that the smaller the cycle time, the larger the mutation
rate. In addition, the mutation rate is always greater than zero.

The mutation to the genotype randomly changes its element value. The mu-
tation to the vector of probabilities sets its element value as 0.5. Using this
mutation operator, a parent-individual generates R child-individuals. When the
population size is P, R x P child-individuals are generated in one generation. P
and R are the algorithm parameters.

pm; =1
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A selection operator for survival selects P individuals with better fitness values
from among R x P child-individuals plus P parent-individuals as the population
of the next generation.

4 Hierarchically Dependent Deceptive Problem

We devise a new test problem for which the features of the EA proposed in
Section 3, the EDT, are well utilized. This is a bit optimization problem. The
salient feature of the EDT is that it brings a different evolution speed to each
phenotypic variable. It depends on individuals how evolution speeds are different
between phenotypic variables, but in any cases, individuals that bring suitable
evolution speeds to phenotypic variables for solving a given problem are selected
and adapted. Therefore, we consider a new test problem that requires bringing
different evolution speeds to phenotypic variables in order to to solve it efficiently.

The test problem considered here includes hierarchical dependency among
phenotypic variables in terms of fitness values, and is hard to determine values
of phenotypic variables at higher hierarchies correctly, and leads to incorrect
determination of values of phenotypic variables at lower hierarchies if the deter-
mination at higher hierarchies is incorrect.

The general procedures to produce the test problem as mentioned above are
as follows.

1. We generate a connected graph having some topology whose number of nodes
is equal to the number of phenotypic variables (the length of a bit string to
be optimized), .

2. We assign position numbers (1,2,...,¢) on a bit string as a phenotype to
each of the £ nodes on the generated graph.

3. We define L m-bit deceptive problems [5] on the generated connected graph,
where nodes of higher degree (the number of edges) form higher hierarchies.
If multiple nodes having the same degree are included in one m-bit deceptive
problem, the nodes having smaller position numbers become ones of higher
degree. A solution candidate of one m-bit deceptive problem consists of m
nodes (bits) sequentially connected by edges. More concretely, the solution
candidate is formed by arranging the m nodes (bits) from higher to lower in
terms of hierarchy. We need to prepare a way to determine a fitness value of
the obtained sequence of bits. In addition, we introduce dependency among
multiple m-bit deceptive problems. That is to say, multiple m-bit deceptive
problems share several same nodes (bits).

4. We set the sum of fitness values of L m-bit deceptive problems to be a fitness
value of a solution candidate of the entire problem. This is a maximization
problem.

In simulations described in the following section, we determine the parameters
of the procedures above as follows. We generate the connected graph used in
the simulations by using the algorithm described in [3]. The topology of the
generated graph follows a power law [2] with respect to the distribution of degree.
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We use 2-bit deceptive problems. One 2-bit deceptive problem consists of two
nodes connected by an edge. We introduce the dependency between two 2-bit
deceptive problems by setting a node at the lower hierarchy in one 2-bit deceptive
problem to be a node at the higher hierarchy in another 2-bit deceptive problem.
The total number of the 2-bit deceptive problems defined on the generated graph
is equal to the number of the edges of the graph.

Figure 2(a) shows an example graph representing the problem used here and
Figure 2(b) shows a way to determine a fitness value of the 2-bit deceptive prob-
lem. As shown in Figure 2(b), the optimum solution for the 2-bit optimization
problem is “11”, and the global optimum of the entire problem is obtained when
all bits (nodes) are 1. The second best solution for the 2-bit optimization prob-
lem is “00”. Due to the deceptive structure of the problem, it is likely that the
local optimum in which all bits are 0 is obtained.

of1]1]ol1]o]
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position (pp) 1 2 3 4 5 6
1 \ d ) N
- egree=2 phenotypic value of | phenotypic value of
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(a) An example graph representing the (b) A fitness value of the 2-bit
problem deceptive problem

Fig. 2. The proposed test problem

5 Simulations

In this section, we apply the EDT presented in Section 3 to the test problem
devised in Section 4. In addition, we compare the results with those obtained by
other algorithms for comparison.

5.1 Algorithms for Comparison

We use the population-based incremental learning (PBIL) [1] and the compact
genetic algorithm (cGA) [9] for comparison, which are the simple algorithms that
belong to the probabilistic model building of genetic algorithms or the estimation
of distribution algorithms. These algorithms are both for bit-optimization and
represent a population as one vector of probabilities for generating phenotypes.
Each element of the vector of probabilities is probability for generating “1” at
the corresponding position on the phenotype and is initialized as 0.5 at the
beginning.
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The PBIL generates M phenotypes using the vector of probabilities within
one generation and selects @ better phenotypes in terms of fitness values from
the M (Q < M) phenotypes, where @ and M are the algorithm parameters.
Suppose that the present generation is g. The PBIL determines each element
value of the vector of probabilities for the next generation, g + 1, using the
selected @ phenotypes. More specifically, the PBIL determines the probability for
generating “1” at each position ¢ (i = 1,2,...,¢) of the phenotype, Py41(X; =
1). This probability is given by Equation (3).

M
k=1

where a € (0,1] is the algorithm parameter and z¥ is the phenotypic value at
the i-th position on the k-th phenotype in the @ selected ones, which takes “0”
or “1”.

Next, the cGA generates two phenotypes, a and b, using the vector of proba-
bilities. Suppose that the fitness value of the phenotype a is better than b’s and
the present generation is g. Then, if phenotypic values of ¢ and b at the phe-
notypic position i (i = 1,2,...,¢) are different, the probability for generating
“1” at the phenotypic position i for the next generation g + 1, Py1(X; = 1),
is given as follows. If the phenotypic value of a is “17, Py4q(X; = 1) is given
by Equation (4). If the phenotypic value of ais “0”, Pyy1(X; = 1) is given by
Equation (5).

Pra(Xi=1)= Py(X; = 1) + ., (4)

Pg+1(Xi:1):Pg(Xi:1)* ) (5)
where K is the algorithm parameter.

The PBIL and ¢GA explained above build the vector of probabilities by learn-
ing the distribution of generated phenotypes. Meanwhile, the EDT builds the
vector of probabilities by learning the distribution of generated phenotypes piece
by piece at different times during the lifetime of the individual.

5.2 Settings

The test problem used here is the concrete one explained in the last part of
Section 4. We use 10 x j (j=1,2...,10) as the number of nodes (phenotypic
variables). Figure 3 shows the degree distributions of the graphs representing
the problems when the number of nodes is 10, 30, and 100.

All the parameter values of the EDT, PBIL, and ¢cGA are not varied depending
on the number of nodes. The termination conditions for all the algorithms are
the same, which is that the number of evaluations reaches 10%. The parameter
values of the EDT are as follows. The population size, P, is 100, the lifetime
length, N, is 10, the maximum possible value for the gene is 9, the parameter
for updating the probability, C, is 0.05, the parameters of the crossover operator,
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Ty and T, are 0.92 and 0.08, and the number of child individuals created from
one individual by the mutation operator, R, is 5. The parameter values of the
PBIL are as follows. The number of generated phenotypes, M, is 100, the number
of selected phenotypes, @, is 50, and the parameter for updating the probability,
«, is 0.01. The parameter of the cGA is only the parameter for updating the
probability, K, and its value is set to be 100.

L

1 10 1 10 1 1o 100
degree degree degree

(a) The number of (b) The number of (c¢) The number of
nodes is 10 nodes is 30 nodes is 100

Fig. 3. The degree distribution of the used test problems

5.3 Results and Discussions

Figure 4(a) shows the relationship between the number of nodes (phenotypic
variables) and the best fitness value obtained by 108 evaluations for the EDT,
PBIL, and ¢GA. The fitness values shown in Figure 4(a) are obtained by dividing
the actual fitness values by the number of edges in the graph, which is equal to
the number of the 2-bit deceptive problems defined on the graph. Therefore,
when the global optimum whose bits are all “1” is obtained, the fitness value in
Figure 4(a) becomes 10 and when the local optimum whose bits are all “0”, the
fitness value in Figure 4(a) becomes 9, no matter what number of nodes is used.

Figure 4(b) shows the result only for the EDT and the time transitions of
the ratio of “1” at three phenotypic positions, 3, 16, and 20, in all generated
phenotypes at the generation in case that the number of nodes is 30. The degrees
of the nodes corresponding to phenotypic positions 3, 16, and 20 are six, two,
and one, respectively. The degree of six is the highest in the graph.

We can observe from Figure 4(a) that the EDT obtained the global optimum
10 times out of the 10 simulation runs when the number of nodes is less than
or equal to 30. However, the EDT obtained the global optimum only a few
times out of the 10 simulation runs when the number of nodes is 40, 50, and 60.
When the number of nodes is more than or equal to 70, the EDT obtained the
local optimum whose bits are all “0” at all the simulation runs. Thus, at this
moment, the EDT is not so scalable against the increasing number of nodes (size
of problem) and needs the improvement of the scalability.

Meanwhile, we can observe from Figure 4(a) that the PBIL and cGA for
comparison obtained the local optimum or the nearly local optimum at all the
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Fig. 4. The simulation results

simulation runs. Compared the EDT with the PBIL and ¢GA, the EDT is supe-
rior to the PBIL and cGA. Since the test problem used here is basically designed
for the EDT to work efficiently, this result is expected. In addition, we can guess
from Figure 4(b) that the EDT solved the problem in a way such that values at
the phenotypic positions corresponding to nodes of higher degree are converged
correctly earlier than those corresponding to nodes of lower degree. This is also
expected and this way would contribute to the efficient problem solving.

6 Concluding Remarks

We proposed the evolutionary algorithm evolving developmental timings (EDT)
based on the mutation-based evolutionary algorithm that we previously pro-
posed. In addition, we devised the new test problem that was expected to be
solved efficiently by the EDT, and applied the EDT and the conventional evolu-
tionary algorithms for comparison to the new test problem. It was shown through
the comparison that the EDT is better.

In the future work, we will improve the scalability of the EDT and look for
the connection of the new test problem presented in the paper to problems in the
real world. Since the presented test problem is represented by a graph structure,
it might be, for example, related to realizing cooperative behaviors of nodes on
a network.
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Abstract. This paper proposes a novel crowding method, which we
call “Crowding with Asymmetric Crossover (CAX)” that can be applied
to traditional 2-parent crossover operators. The asymmetric crossover
operator begins with two parents. Then two offspring individuals are
created, each offspring taking more characteristics from one of the two
parents. This is an easy method to perform replacement between par-
ents and offspring individuals. Experimental results showed that CAX
can increases the performance of traditional 2-parent crossover operators
in finding global optimal solutions. CAX is also useful to find multiple
solutions (niching).

1 Introduction

Crowding methods constitute an important research area in genetic and evolu-
tionary computation. There are two main objectives of crowding methods: (1)
one is to prevent premature convergence of a population by preserving the pop-
ulation diversity, and obtain one global optimal solution; (2) the other is to
converge the population to multiple, highly fit, and significantly different solu-
tions (niching).

In this paper, we propose a novel crowding method, which we call “Crowding
with Asymmetric Crossover (CAX)” and show that the CAX can increases the
performance of traditional 2-parent crossover operators in finding global optimal
solutions. In the literature of crowding methods, the main efforts are focused
on how replacement is performed between parental individuals and offspring
individuals using similarity between them as a replacement criteria. Typical
studies of these are the crowding factor model [1], the deterministic crowding
(DC) [2], the probabilistic crowding (PC) [3], the Boltzmann crowding [4] and
the generalized crowding [5].

CAX does not use the similarity metric among individuals as a criteria for
replacement. Instead, we use “asymmetric crossover” for crossover operators.
The asymmetric crossover operator generates offspring individuals which are
each similar to one of two parent individuals. The degree of the similarity between
the parents individuals and the offspring individuals is controlled by a parameter.
By choosing the value of the parameter, CAX can maintain population diversity
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© Springer International Publishing Switzerland 2014
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to obtain one global optimal solution, or converge the population to multiple
different solutions (niching).

In the remainder of this paper, a brief review of the crowding methods are
described in Section 2. Then, we describe how the CAX is configured in Section 3.
The empirical analysis is given in Section 4 putting main emphasis on obtaining
one global optimal solution. Finally, Section 5 concludes the paper.

2 A Brief Review of Crowding Methods

Here, we review typical crowding methods. The original idea of crowding meth-
ods was proposed by De Jong [1]. De Jong reasoned that in nature, as like indi-
viduals begin to dominate a niche, increased competition for limited resources
decreases life expectancy and birthrates. Less crowded niches experience less
pressure and achieve life expectancy and birthrates much closer to their poten-
tial. To enforce such a crowding pressure in artificial genetic algorithms, De Jong
forced newly generated offspring to replace similar, older adults in the hope of
maintaining more diversity in the population [6].

Crowding consists of two main phases: pairing and replacement. In the pairing
phase, offspring individuals are paired with individuals in the current population
according to a similarity metric. In the replacement phase, a decision is made
for each pair of individuals as to which of them will remain in the population [5].

2.1 Crowding Factor Model

The main purpose of the crowding factor model by De Jong [1] is to maintain
population diversity to find global optimal solutions. In the crowding factor
model, replacement for each offspring produced is considered individually. For
each such individual, a sample of CF (Crowding Factor) number of individuals
are drawn from the population and searched for the most similar individual to
the offspring in question. The most similar individual from the small sample
is then directly replaced in the population by the offspring, without regard for
fitness.

2.2 Deterministic Crowding (DC)

Since offspring are obtained by recombination of their parents, parent individ-
uals and offspring individuals have a certain degree of similarity. Deterministic
Crowding (DC) [2] uses this feature as shown in Fig. 1.

2.3 The Extension of Deterministic Crowding

Unlike DC, Probabilistic Crowding (PC) [3] uses a non-deterministic rule to
establish the winner of a competition between a parent p and a child ¢. In PC,
c and p compete in probabilistic tournaments. The probability of ¢ winning is
given by:
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1. Select two parents, p | and p ,, randomly, without replacement
2. Cross them, yielding ¢ | and ¢,
3 eiltlpycal < e tipa, el
If f(c)>f(p ), replace p | with ¢
Iff(c,) > f(p,), replace p , with ¢,
Else
Iff(c,) > f(p ), replace p | with ¢,
If f(c,)>f(p,), replace p , with ¢ |

Fig. 1. Deterministic crowding methods

p- 1O (1)
fle)+ f(p)
where f is the fitness function. Boltzmann Crowding (BC) is based on the well-
known Simulated Annealing method, implemented with the Boltzmann accep-
tance rule [4] in Eq. (1).

Generalized Crowding (GC) [5] allows selective pressure to be controlled in a
simple way in the replacement phase of crowding, thus overcoming limitations of
the other approaches. Both DC and PC turn out to be special cases of GC. The
temperature parameter used in Simulated Annealing is replaced by a parameter
called scaling factor that controls the selective pressure applied.

3 Crowding with Asymmetric Crossover (CAX)

As we saw in Section 2, in usual crowding methods, offspring individuals are
generated using usual crossover operators in the pairing phase and then the
similarity between two parents and offspring individuals are measured in the
replacement phase. In Crowding with Asymmetric Crossover (CAX), we do not
use the similarity measure in the replacement phase. Instead, an “asymmetric
crossover (AX)” in the pairing phase is used. AX generates two offspring indi-
viduals each which is similar statistically to one of the two parent individuals.
Although AX is not restricted to 2-point crossover, hereafter we explain the
AX using 2-point crossover. Let [, be the length between cut-point cutl and
cut2. In usual 2-point crossover, [, distributes in [1,7 — 1] uniformly. Thus, the
average value of I, E(l,), is n/2, where n is the string length, or problem size.
In AX, we sample two cut-points so that E(l,) is bigger than n/2. If we choose
two cut-points so that E(l;) is closer to n, then both offspring individuals ¢;
and co are more similar to parents p; and ps, respectively as shown in Fig. 2.
To control the similarity, AX introduces a parameter A\(0.5 < A < 1) which
controls the similarity by sampling I, as E(l,) = n x A. For probability density
function (p.d.f.) of I, we determine in the following manner which is similar
to our previous study on cAS (cunning Ant System) [7]. When we apply ¢ cut-
points (¢=2, 3, 4, ...) to a string, the string can be divided into ¢ segments.
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cutl cut2=(cutl+/,) Mod n cutl cut2=(cutl+/,) Mod n
n
//— n \\ //- \\
P | o I
— |, —>] = I, > EQ,)= nx )
P2 | I ¢ | I

Fig. 2. Asymmetric crossover (AX). If we choose two cut-points so that E(l.) is closer
to m, then both offspring individuals ¢; and c2 are more similar to parents p; and pa,
respectively.

If we take any set of connected ¢ — 1 segments, then the average length of those
¢ — 1 segments should be n x (¢ — 1)/c. We then use this length for I,. The
probability density function of I, f,.A(lz), can be obtained as

ly

c—2
) , 0<lilyz<n,c>2. (2)
n

c—1
n,c lz =
fuclt) = (
Here, E(l,)isnx1/2,nx2/3,nx3/4,---forc=2,3,4, ..., and, A corresponds
to (¢—1)/e, i.e., A can take only the values of 0.5, 0.667, 0.75, corresponding to
¢=2,3,4, .... Hereafter, we extend this function of Eq. (2) to a more flexible

technique which allows for A to take values in the rage [0.5, 1.0) by setting
(c—=1)/c= A\ ie.,c=1/(1—)). Then, Eq. (2)can be rewritten as

—1

Furll) = (ln) . g

Fig. 3 shows fp A(lz) for A = 0.5, 0.6, 0.7, 0.8, and 0.9. We can see from this
figure that for a bigger A, longer lengths of [, become dominant and thus, ¢;
and ¢z become more similar to p; and pa, respectively (see Fig. 2). Please note
here that the case of A = 0.5 becomes uniform distribution, i.e., usual 2-point
crossover or “symmetrical crossover”.Overall description of the CAX algorithm
is shown in Fig. 4.

4 Empirical Analysis

In this section, we explore the effects of crowding with asymmetric crossover
(CAX). Many of studies on crowding explore the performance of their algo-
rithms to converge the population to highly fit solutions (niching). Instead, in
experiments in this paper, we mainly explore the performance of CAX to find
the global optima. In these experiments, we will see the performance of CAX
changing values of the control parameter A in the range [0.5, 1). Note here that
the results with A value of 0.5 are performances with “symmetric crossover”, i.e.,
canonical two-point crossover.
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Fig. 3. fu,a(lz) for various A values

We use the following three types of chromosome domains: (1) the binary
domains, (2) the permutation domains, and (3) the real-value domains. In the
following experiments, we run CAX 10 times on each test problem.

4.1 Results on the Binary Domains

Here we use two problems; the 0-1 Knapsack Problem (KP), and the fully decep-
tive problem. For the KP, we generated a problem which consists of 100 items.
Value and weight of each item are obtained randomly in [1, 100]. Thus the length
of the bit string is 100. The optimal solution was obtained by the Minknap Algo-
rithm [8] which is based on dynamic programming. For the deceptive problem,
we used the function which was proposed in [9]. In this experiment, we connected
20 3-bit fully deceptive functions tightly. Thus length of the bit string is 60. The
population size N is set to 100. We run the algorithm until 100,000 function
evaluations are reached or the global optima are found.

We analyze the CAX by #OPT (the number of runs in which algorithms
succeeded in finding the global optimum), MNE (the mean number of function
evaluations to find the global optimum in those runs where it did find the opti-
mum), and population diversity measure. For the diversity measure of population
with binary domains, we use the “Bias” (0.5 < Bias < 1) proposed by Grefen-
stette in developing his GA package “GENESIS” [10]. We used this measure to
see the current convergence status of the population in previous study [11] and it
worked well. Here, the Bias is defined as follows: Let a population be represented
by P = (p;;) where each row vector represents the string of an individual and
pij is O or 1 where,i=0,1,2,..., N—1and j =0,1,2,...,n—1. Then, Bias
is

1 n—1 N-1 N
Bias = ii — 0.5. 4
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1. Set A (e.g., 4=0.8)
2. Generate initial N size of population
3. Create N/2 number of parental pairs
4. For each parental pair [p,, p,], apply AX
4.1 Sample cutl in [0, n—1], randomly
4.2 Sample /_according to Eq. (3)
4.3 Set cut2 as (cut2+ /) Mod n
4.4 Cross p, and p,, yielding ¢, and ¢,
4.5 Replacement
o If fic,) > flp,), replace p, with c,
e If flc,) > f(p,), replace p, with c,
5. Shuffle the population
6. If the termination criteria are met, terminate the algorithm.
Otherwise, go to Step 3.

Fig. 4. Description of the CAX algorithm. N is the population size.

Bias is the first-order convergence indicator that indicates the average ratio of
the most prominent value in each position of the individuals of the population.
Larger values mean low genotype diversity.

Fig. 5 (a) shows the variations of #OPT and MNE for various A on KP. Here,
A values were varied starting from 0.5 to 0.95 with step 0.05. We can see that
CAX with A values within range [0.7, 0.85] finds the optimum (#OPT= 10)
showing relatively smaller values of MNE. Although with a smaller value of
A near 0.5, the results of MNFE show better results, but #OPT results are
rather poor. Typically with A = 0.5, #0PT being only 1. Fig. 5 (b) shows the
convergence process of the population measured by Bias for A = 0.5, 0.6, 0.7,
0.8, and 0.9. Fig. 5 (b) supports the results of Fig. 5 (a), i.e., using appropriate A
values (A > 0.5), we can maintain population diversity, and thus we can obtain
optimal solution effectively, as seen in (a).

Fig. 6 shows results of the deceptive function, showing similar results to KP
in Fig. 5. We can see that CAX with A values within range [0.7, 0.85] finds
the optimum (#OPT= 25) showing relatively smaller values of MNE. Although
with A = 0.5, #OPT shows smaller value than results with A values in [0.75,
0.9], but #OPT again results in a value of one with A = 0.5, as with KP in Fig.
5 (a). Fig. 6 (b) shows the convergence process of the population measured with
Bias for A = 0.5, 0.6, 0.7, 0.8, and 0.9.

4.2 Results on the Permutation Domains

For the permutation domains, we use the quadratic assignment problem (QAP).
The QAP is a problem which assigns a set of facilities to a set of locations and
can be stated as a problem to find a permutation ¢ which minimizes

n—1ln—1

cost($) = > D aijbsiye(i); (5)

i=0 j=0
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Fig. 5. Results of CAX on the Knapsack Problem (KP). (a) shows #OPT and MNE,
and (b) shows the convergence process measured by Bias of the population.

where A = (a;;) and B = (b;;) are two n X n matrices and ¢ is a permutation

of {0, 1, 2, ..., n—1}. Matrix A is a flow matrix between facilities ¢ and j, and
B is the distance between locations i and j.

We used benchmark instances in QAPLIB [12]. According to [13], benchmark
instances can be classified into i) randomly generated instances, ii) grid-based
instances, iii) real-life instances, and iv) real-life-like instances. In this experi-
ment, we used the following four instances; tai30b, tai40Ob, tai50b, and tai60b,
which are classified as real-life-like instances.

Since the performance of QAP in Eq. (5) depends mainly on absolute position
of nodes in a string, we used the partially matched crossover (PMX) [6] for the
base operator of AX. The QAP is considered one of the hardest optimization
problems. To get high quality solutions, it is common to combine heuristic algo-
rithms to the base algorithm [14,15]. However, we do not combine any heuristic
algorithms in this experiment to see the pure effect of the AX. As for the con-
vergence measure of the population, we used the following entropy F,

n—1n—1

B= S5 Moy (T), (6)

=0 i=0

where g;; represents the number of strings which have node value ¢ at position j in
the population. In this experiment, we used the following parameter setting: the
population size N = 8 X n, the maximum number of evaluations is 100, 000 x n.

Fig. 7 shows results on QAP for various A values. In the figure, performances
are shown by Error = (best functional value—optimal value)/optimal valuex
100. From this figure, we can see CAX with A values in [0.7, 0.8] works well
showing smaller Error values. Fig. 8 shows the convergence process of CAX on
taid0b as a representive. In the figure, (a) shows the change of Error (%) and (b)
shows the change of entropy E defined by Eq. (6). For example, with A\ value of
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Fig. 6. Results of CAX on the deceptive function. (a) shows #OPT and MNE, and
(b) shows the convergence process measured with Bias of the population.

0.5, the value of E rapidly decrease, as seen in (b) and a premature convergence
occurred, as seen in (a). In contrast to this, with A value of 0.9, the population
converges very slowly. With A values of 0.7 and 0.8, the population converges
with a degree of diversity, showing smaller Error values.

4.3 Results on the Real-Value Domains

A typical traditional 2-parent crossover operator for real-value domains is BLX-
a proposed by Eshelman & Schaffer [16]. In this experiment, we use BLX-« to
solve the following two test functions, the Sphere function (Fsphere) and the
Ridge function (Friqge) defined as

n—1
Fsphere(z) = Y a7, —5.12<z; <5.11, (7)
=0
2
n—1 %
FRidge(x) = Z Zl‘j , —64 <uz; <64. (8)
i=0 \ j=0

Function Fgppere is @ unimodal one and has no linkage among variables. Friqge
has a weak linkage among variables. We set n = 10.

BLX-« creates two children ¢; and co of parents p; and py which lie on the
line joining the parents, but not between them, as shown in Fig. 9. Since the
value of 0.5 is often used for «, we used that value.

BLX-a for AX samples using Eq. (3) as follows: Let X} and X} be values
obtained by sampling f|;:| x(z) of Eq. (3), respectively. Then, we obtain children

c1 and co as follows: 4 ' ' 4
c%l zei+\Jf|—X11 (©)
cy = ej + X5
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where, i =0, 1, 2, ..., n — 1. It is clear from Eq. (9) that ¢; and co are similar
to p1 and po, respectively, depending on the parameter value A of CAX.

Fig. 10 shows results of CAX on functions Fsphere and Fridge. On Fsphere,
which has no linkage among variable, the solution converges well when A value
is 0.5, i.e., the standard BLX-« is used. According to increasing A\ value, the
convergence speed becomes slower. In contrast to this, on Frsqge, which has a
linkage among valuables, the solution converges most well around A value of 0.7.

4.4 CAX for Niching

In experiments in this section, we briefly show how CAX converges the popu-
lation to multiple, highly fit, and significantly different solutions (niching). We
use the following two functions [17].

Fy(z) = sin® (57z), (10)

Fy(z) = e 2020758 5inb (5ma). (11)

We encoded z in the range [0, 1] with 30-bit binary string, and population size
was 100 as were set in [2]. As shown in Fig. 11, CAX found multiple solutions
with larger value of A than 0.5. The advantage of niching with CAX is that we

do not need any similarity measure, as was needed in crowding methods such
as DC.
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5 Conclusions

In this paper, we proposed a novel crowding method, Crowding with Asymmetric
Crossover (CAX). CAX can be applied to the traditional 2-parent crossover
operators in binary, permutation, and real-value domains.

Through the wide range of experiments, we showed CAX can enhance the
performance of traditional 2-point crossover operators, i.e., CAX can prevent
premature convergence of a population by preserving the population diversity,
and thus, CAX can obtain one global optimal solution efficiently. We used BLX-
« for the base of AX on the real-value domains in the experiments. But BLX-« is
not suitable to apply for problems which have a strong linkage among variables.
To test CAX on advanced 2-parent crossover operators for real-code such as
UNDX [18] or to extend CAX with multi-parent recombination operators remain
for future work.

Although our main focus was finding one global optimal solution, we showed
that CAX can also be applied to find multiple, highly fit, and significantly dif-
ferent solutions (niching). However, niching with CAX must be studied more
intensively comparing to other crowding methods in the literature. This also
remains for future work.
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Abstract. Cooperative coevolution (CC) employs a divide-and-conquer
paradigm for tackling complex optimization problems. Its performance is influ-
enced by many design decisions. Therefore, to beneficially use it, it is important
to acquire some knowledge of the effects of different design settings on the per-
formance of CC. In this paper, we investigate experimentally the performance
effects of interaction frequency in parallel CC. The experimental results show
that it is overall best for subpopulations to interact with each other as frequently
as possible when communication cost is ignored; when communication cost is
considered, the best interaction frequency varies from problem to problem and a
dynamic change of it is desirable during the optimization process.

Keywords: Cooperative Coevolution, Interaction Frequency.

1 Introduction

Cooperative coevolution (CC) is an evolutionary method that tries to solve large-scale
problems by problem decomposition. The idea of CC was firstly introduced in genetic
algorithm (GA) by Potter and De Jong [11], and later a framework for using the co-
operative coevolutionary algorithm (CCEA) was developed [10]. In this framework,
the decision variables of an optimization problem are firstly decomposed into several
subcomponents, each of which is then evolved in a population. The fitness for each
subpopulation individual is assessed by assembling it with representative individuals of
the other subpopulations. Experimental results in [11] have shown that this framework
can achieve superior performance to traditional GA. Since then, different evolutionary
algorithms (EAs) have been successfully extended under this framework due to its gen-
erality, such as particle swarm optimization (PSO) ([1], [5]), differential evolution (DE)
([131,[22]), MOEAs [16], and memetic algorithm (MA) [6].

Except combined with different EAs, the CCEA framework has different implemen-
tations in different computing environments [3]. In a sequential computing environ-
ment, subpopulations in CCEA take turns in evolving. This is called sequential CCEA.
The other is parallel CCEA in which all subpopulations are evolved simultaneously.
This is more natural in a parallel computing environment.

G. Dick et al. (Eds.): SEAL 2014, LNCS 8886, pp. 82-93, 2014.
(© Springer International Publishing Switzerland 2014
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As pointed out in [17] and [9], CCEA has many components that can be adjusted,
such as how and when to make subpopulations interact with each other. As a result, a
practitioner will face a lot of design decisions when applying CCEA to real-world prob-
lems. Therefore, it would be useful to generate the knowledge about the performance
effects of different choices of these components in CCEA. In literature, various studies
have been carried out along the directions of how to select representative individuals,
how many representatives to select, and how to calculate the fitness of each subpopu-
lation individual based on these representatives for both parallel CCEA ([2], [7].[19])
and sequential CCEA ([18], [8]). For when to make subpopulations interact with each
other, the performance effects of interaction frequency was systematically studied for
sequential CCEA [9] but little has been done for parallel CCEA in literature.

Subpopulations Peers Central server
)

Server

AN

V

Fig. 1. The Model of Parallel CCEA, taken from [16]

In this paper, we focus on studying the performance effects of communication fre-
quency in parallel CCEA. Different from sequential CCEA, communication cost exists
in parallel CCEA. Consider one model of parallel CCEA given in Fig. 1, in which sub-
populations are decomposed into several groups and these groups will be distributed
over several peer computers. The interaction among subpopulations is indirectly
achieved through the exchange of information between the peers and a central server.
In such a case, communication overhead can not be ignored especially for distributed
networks with limited communication speeds. As communication cost is involved, the
performance influence of communication frequency in parallel CCEA would be more
complicated than in sequential CCEA.

In CCEA, one critical step is problem decomposition. In [11], each dimension was
considered as a subcomponent and evolved in a population. The experimental results
have shown that this decomposition method loses its efficiency on non-separable prob-
lems. Since then, various studies ([20], [21], [12], [4], [15]) have been carried out to-
wards grouping interdependent variables into the same subcomponent during the search
process. In this paper, we consider fixed problem decomposition. In an extreme case,
when the subcomponents are independent, they do not need to communicate with each
other; when the subcomponents are interdependent, intuitively, it is better for them to
interact with each other. This means that the best communication frequency depends on
the correlation degree of subcomponents.
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Considering this, our first and second hypotheses are that the performance effects of
interaction frequency depends on communication cost and correlation degree of sub-
components, respectively. Besides, our another hypothesis is that the performance ef-
fects relate to the evolution speed of the EA. To confirm our hypotheses, we observe
the change of the best communication frequency using different EAs, different com-
munication costs, and test functions with different subcomponent correlation degrees.
Through this, we also try to answer the questions as follows.

1. Is there an optimal setting for the interaction frequency of parallel CCEA for a
particular class of problems?

2. How does the best interaction frequency vary in different EAs?

3. How does the best communication frequency relate to communication cost?

The remaining part of this paper is organized as follows. Section 2 will detail the
experiment methodology and experimental setup. Section 3 will give the experimental
results and analysis. In Section 4, answers to the above-mentioned questions will be
given as well as the directions of future work.

2 Experiment Methodology

2.1 Correlation of Subcomponents

The correlation degree of two subcomponents in this study is calculated by averaging
the correlation degree of variables between them, which is calculated based on the sta-
tistical interdependence learning model proposed in [15]. That is:

. . ’
— Suppose we have decision vectors o = (s @iy ey T, o), ? = (0, Ty ooy Ty o),

and they satisfy that f(/) < f (?) (f is the function to optimize). If the value of

. ! . . ’ ! ! ’ ’
x; is changed to @, resulting in o = (coos @iy oy Ty o), = (s Ty ey Ty o0n)s

and f(d@') > f (F/), then it is called variable z; is affected by variable x; under
context vector @ = (s @ity = Tig 1oy Tjm1, — Tj1en)-

— The extent to which the variable x; can be affected by x; depends on the probability
of the inequality change, i.e., P{f(d ) > f(?/)} which can be estimated by
selecting a number of ¢ and checking the affect of ; on z; under each sample .

— The correlation degree of two variables is calculated by averaging their separate
probabilities of the inequality change.

Note that it has been validated in [9] that the performance effects of interaction fre-
quency are dependent on a problem property called best-response curves. In this study,
we instead use the correlation degree of subcomponents to depict the problem prop-
erty. The reason is that the later could be much easier to estimate than the former if the
information is possibly used.
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2.2 The Domains

We start by using three families of test functions, each with a dimension of 2. One is
taken from [9], defined as follows:

2y + %2 (@ —n), ifay <z+(a—1)n
BR;(x,y) =< 2z + a2_a3(yfn), ify>ax+ (a—1)n; (D
n -+ I;ry, otherwise
where n € N, a € [0,1], 2,y € [0,n]. The optimum for this function is BR%(n,n) =
2n. In this paper, n is set to 10.
The other two are the shifted rotated sphere function and shifted rotated rastrigin’s

function [14], which are typical unimodal and multimodal function, respectively, de-
fined as:

D
Fsphere(x) = ZZ?,Z = (X - 0) * M,X = [.’ﬂl,.’ﬂg, "'axDLX € [71003 1OO]D (2)
=1

D
Fophere(x) = z:(zz2 — 10cos(27z;) + 10),z = (x — 0) * M, 3
i=1
X = [x1,29, ..., zp], x € [=5, 5]
where D is the number of dimensions, 0 = [01, 02, ...,0p] is the shifted global opti-

mum. In this paper, D is set to 2.

We chose these three functions because the correlation degree of « (or 1) and y (or
x9) can be changed by changing « (or M). For BRY (x, y), when increasing « from 0
to 1, the correlation degree of  and y increases monotonically from 0. For Fyppere(2)
[mn m12]

mMa1 M22
increasing both mi2 and mo; to the same value from O to 1, the correlation degree of
21 and x2 monotonically increases from 0.

and Fqstrigin (), assume M = and the initial M is an identity matrix. By

2.3 The CCEA Configuration

We use a two-population CCEA as the basic setup, in which one population is used to
evolve x (or z1) and the other is to evolve y (or z2). For each population, we run a non-
overlapping generational EA. The parameter setting for the used EA in our experiments
is given in Table 1.

At first, an initial population is generated for each subcomponent. The population
member of each population is evaluated by assembling it with a randomly chosen mem-
ber of the other population. Then, each population is simultaneously evolved with the
above-mentioned EA. The fitness of a population member is evaluated by combining
it with the current best member of the other population. During the search process,
they communicate with each other their current best solution every constant number of
generations.
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Table 1. Parameter Setting for EA

Population size (/N P) 20
Mutation Probability (Prut) 0.9
Gaussian mutation, elitism of size 1,

Evolutionary Operators . .
tournament selection of size 2

2.4 Experimental Setup

In our experiments, we vary the interaction frequency and observe the changes in the
performance of CCEA. To confirm the hypotheses, we observe the change of the best
interaction frequency by using the above-mentioned test functions with different alpha
and M values, the EA with different Gaussian mutation sigma, and different communi-
cation costs, respectively. We set the number of maximum fitness evaluations constant
across experiments, and independently run each experiment for 100 times, and then use
Wilcoxon rank-sum test at a 0.05 significance level to make comparisons.

We start from the extreme scenario in which communication cost equals 0. In this
scenario, we study the relationship between the best communication frequency and each
of correlation degree of subcomponents and the mutation step size. Then, we consider
the scenario in which communication has a cost and study how the best communication
frequency changes as each of correlation degree of subcomponents, the mutation step
size, and communication cost changes.

3 Experimental Studies: Communication Without Cost

3.1 Different Correlation Degrees of Variables

In this study, the maximum number of fitness evaluations was set to 3220, and thus the
maximum number of generations is 80 (20 + 80 * (2 x 20) = 3220). The Gaussian mu-
tation sigma was set to 0.2, 1.0, and 0.2 for BR% (x,y), Fsphere(x), and Fqstrigin (),
respectively. We varied the communication period from 1 to 80 generations and used
Wilcoxon rank-sum test to make comparisons. Here, communication period means ev-
ery how many generations two populations interact with each other. Table 2 summarizes
the interval of best communication periods for each test function, which means com-
munication periods in this interval performs the same best according to statistical test.

It can be seen from Table 2 that communication frequency indeed has an effect on the
performance of parallel CCEA as not all values in [1,80] performed the same best, and
thus worths studying . For each family of test functions, the interval of the best com-
munication period varies as the correlation degree of variables varies, and the change
tendency is similar. That is, when the variables are independent, all interaction periods
performs the same; as the interdependence degree of subcomponents increases, the al-
gorithm more and more prefers short interaction periods; when the correlation degree of
variable is high enough, the upper bound of the best interaction period interval increases
as correlation degree increases. This can substantiate our first hypothesis.
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Table 2. The Interval of Best Interaction Periods (denoted as I;,) for BRy, (z,y) with Different o
Values, Fsphere(x) and Frastrigin () with Different m12/ma; Values, respectively (the column
of “corr’ is the estimated correlation degree of = (or 1) and y (or z2))

BR%(QZ', y) Fsphere(m) Frastm'gin(x)

a corr Iy, miz/ma1 corr Iy miz2/ma1  corr Iy
0.0 00 [1,80] 0.0 0.0 [1,80] 0.0 0.0 [1,80]
0.05 0.0299 [1,10] 0.05 0.0364 [1,5] 0.01  0.0509 [1,4]J[10,16]
0.10 0.058 [1,10] 0.10  0.0805 [1,2] 0.02  0.1024 [1.4]
0.20 0.1206 [1,4] 0.15 0.1207 [1,2] 0.03  0.1534 [1,5]
0.30 0.1669 [1,2] 020 0.1770 [1] 0.04  0.1997 [1,4]
0.40 0.2202 [1,2] 030 0.2523 [1] 0.05 0.2434 [1,2]
0.50 0.2601 [1] 0.40  0.3205 [1,2] 0.068 0.3040 [1,2]
0.60 0.3061 [1] 0.50  0.3549 [1] 0.08  0.3270 [1,4]
0.70 0.3483 [1] 0.60  0.3726 [1] 0.10  0.3456 [1.4]
0.80 0.3737 [1] 0.70  0.3907 [1] 0.20 0.3813 [1,10]
0.90 0.4025 [1] 0.80  0.3893 [1] 0.40  0.4251 [1,4]
0.95 0.4078 [1] 0.90 0.3981 [1,2] 0.60  0.4410 [1,5]
0.993 0.4090 [1,10] 0.95 0.3994 [1,80] 0.80 0.4416 [1.4]

1.0 0.4107 [1,80] 1.0 0.4017 [1,2]J[20,80] 1.0 0.4474 [1,10][70,80]
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To get a clearer picture of how the best interaction period interval changes as the
correlation of variables changes, the curves of the best communication period interval
versus the correlation degree of variables for BRY (z,y), Fsphere (), and Frqsirigin ()
are plotted in Fig. 2. It can be seen from Fig. 2 that the upper bound of the interval and
the correlation of subcomponents are non-linearly and complicatedly related. Take a
closer look at Fig. 2, this non-linear relationship is much higher when the correlation
degree is at about 0.4 than when the correlation degree is less than 0.2. When the cor-
relation degree of subcomponents falls in the range between 0.2 to 0.35, it is highest
required that communication happens frequently. Moreover, the lower bound of the
communication interval is always 1, which means that overall every-generation com-
munication is best when communication cost can be neglected.

3.2 Different Mutation Step Sizes

In this study, we varied Gaussian mutation sigma and recorded the best interaction
period interval. Table 3 gives the best interaction frequency interval over BRY (z,y)
for three different sigma values (0.1, 0.2, and 0.5).

When the mutation sigma changes from 0.1 to 0.2, we cannot observe an obvious
trend of the change of the best communication period interval from Table 3. But, when
the sigma changes from 0.1 (or 0.2) to 0.5, it can be seen that the range of the best
interaction period decreases while short periods are still preferred.

Table 3. The Interval of Best Interaction Periods (denoted as I,) for BRy, (z,y) with Different
Gaussian Mutation Sigma Values

BR%(ZU,:I/) Ibp

a  corr c=01 0c=020=05
0.0 0.0 [1,80] [1,80] [1,80]
0.05 0.0299 [1,10] [1,10] [L8]
0.10 0.0580 [1,2]lJI5] [1,10] [L,5]

0.20 0.1206  [1,5] (1,41 [14]
0.30 0.1669  [1,2] [(1.2]  [14]
0.40 0.2202  [1,2] (121 [12]
0.50 0.2601 (1] (1] (1]
0.60 0.3061 (1] (1] (1]
0.70 0.3483 (1] (1] (1]
0.80 0.3737 (1] (1] (1]
0.90 0.4025 (1] (1] (1]
0.95 0.4078 (1] (1] (1]

0.993 0.4090 [1,4]116,80] [1,10] [1,2]
1.0 0.4107 [1,80] [1,80] [1.,4]

In general, if communication cost can be ignored, it is best for subpopulations to
communicate every generation. However, it should be noted here in previous experi-
ments we did not reevaluate each current subpopulation after the communication hap-
pens. Considering that in some implementation of parallel CCEA (e.g. Differential
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Evolution (DE) is chosen as the optimization algorithm) the current population needs
to be reevaluated when information of the best individual in the other subpopulation
changes, we further did experiments with reevaluation over BR% (x,v), Fsphere(T),
and Frqstrigin (), and the results are summarized in Table 4. It can be seen from Table
4 that the lower bound of the best interaction interval changes to 2 or 3 over some cases
of Fyphere(x). The reason why every-generation communication did not perform best
in these cases may be that reevaluation would not help improving the best solution but
waste more fitness evaluations if the information does not change too much. Thus, if
CCEA is implemented with reevaluation, it should be checked whether the reevaluation

is needed every exchange of information.

Table 4. The Interval of Best Interaction Periods (I5,) with Reevaluation for BR;, (x,y) with
Different o Values, Fsphere () and Frqstrigin () with Different m12/mo1 Values

BR% (ZE, y) Fsphsre(x) Frastrigin(x)

a corr Iy, miz/ma1 corr Iy miz2/ma1  corr Iy
00 00 [1,79] 0.0 0.0 [2,79] 0.0 0.0 [11U17,79]
0.05 0.0299 [1,9] 0.05 0.0364 [1,4] 0.01  0.0509 [1,19]
0.10 0.0580 [1,4] 0.10 0.0805 [1,3] 0.02 0.1024 [1,71
0.20 0.1206 [1,3] 0.15 0.1207 [1,3] 0.03 0.1534 [1,9]
0.30 0.1669 [1,3] 0.20 0.1770 [1,3] 0.04  0.1997 [1,7]
0.40 0.2202 [1,2] 0.30 0.2523 [2,3] 0.05 0.2434 [1,71
0.50 0.2601 [1,2] 0.40 0.3205 [3] 0.068 0.3040 [1,4]
0.60 0.3061 [1] 0.50 0.3549 [2] 0.08 0.3270 [1,4]
0.70 0.3483 [1] 0.60 0.3726 [2] 0.10 0.3456 [1,4]
0.80 0.3737 [1] 0.70  0.3907 [2] 020 0.3813 [1,19]
0.90 0.4025 [1] 0.80  0.3893 [1] 040 0.4251 [1,3]
0.95 0.4078 [1] 0.90 03981 [1,79] 0.60 0.4410 [1,71
0.993 0.4090 [1,9] 0.95 0.3994 [1,79] 0.80 0.4416 [1,7]

1.0 0.4107 [1,79] 1.0 0.4017 [11U[39,79] 1.0 0.4474 [1,15]169,79]

4 Experimental Studies: Communication with Cost

4.1 Different Communication Costs

In this study, we assume communication cost as a fixed number of fitness evaluations
as fitness evaluation denotes the time elapse in the CCEA framework. We used 7 cases
of BR%(x,y). The maximum number of of fitness evaluations was set to 3000. The
interaction period varies from 1 to 20 generations while the communication cost varies
from 0 * NP to 60 x NP (NP is the population size) fitness evaluations. The interval
of the best interaction periods for each test function and communication cost is given in
Table 5.

It can be seen from Table 5 that every-generation communication no longer per-
formed best when communication exists. For uncorrelated subcomponents, the largest
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Table 5. The Interval of Best Interaction Periods (I,,,) over BRy, (x, y) with Different Commu-
nication Costs

Iy
cost a=00 02 04 06 08 099 1.0
corr = 0.0 0.1206 0.2202 0.3061 0.3737 0.4090 0.4107

0 (1,20  [14] [1.2] [11 [1] [1,10] [1,20]
4%« NP [1220] [3.8] [25] [2] [21 [1.20] [1,20]
10« NP [1020] [3.8] [4]1 [34] [24] [1.20] [1,20]
4% NP [1020] [47] (51 [3.5] [25] [1.20] [1,20]
20« NP [1420] [68] [6.8] [4] [28] [1,20] [1,20]
30« NP [1420] [7.8]1 [6.8] [5.8] [2.20] [1,20] [1,20]
40% NP [1620] [8,14] [7,16] [3,16] [2,16] [1,20] [1,20]
50« NP [1620] [7,10] [6,10] [5,12] [3,20] [1,20] [1,20]
60« NP [1820] [6] [57] [47] [2.20] [1,20] [1,20]

communication period performed best. For strongly-related subcomponents, all com-
munication periods performed the same. For other functions, the best communication
periods are different for different communication costs. This confirms our second hy-
pothesis. Moreover, when the communication cost is the same, the best communication
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Fig. 3. The Curves of Best Interaction Period Range versus Different Communication Costs
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periods are different for different correlation degrees of subcomponents. This substan-
tiates our first hypothesis.

To get a picture of how best interaction period changes as the communication cost
changes, the curves of the best communication period interval versus communication
cost foraw = 0.2, « = 0.4, a = 0.6, and o = 0.8 are plotted in Fig. 3. It can be seen
that there is a non-linear relationship between the interval of best interaction period
and communication cost, and the relationship varies for different correlation degrees of
subcomponents. Overall, when communication cost becomes larger, the best interaction
period is prone to larger values (note that the decreasing part of the curve as the com-
munication cost increases is because we set the maximum number of fitness evaluations
fixed across all communication costs).

4.2 Different Mutation Step Sizes

In this experiment, we change Gaussian mutation sigma and recorded the best interac-
tion period interval over 10 cases of BR (z, y) with fixed communication cost (4 N P
fitness evaluations). We calculate the number of fitness evaluations to achieve the func-
tion value of 19.99 for each interaction period in [1,20], and obtain the best interaction
period according to the Wilcoxon rank-sum test. Table 6 shows the interval of best

interaction period for three different sigma values (0.05, 0.1, and 0.2).

Table 6. The Interval of Best Interaction Periods (denoted as I3,,) for Different Gaussian Mutation
Sigma Values over BR;;(x,y) with Communication Cost (4 ¥+ N P)

BR;(z,y) Top

alpha corr 0 =0.050=0.10=0.2
00 00 [7,20] [6,20] [7,20]
0.05 0.0299 [5,15] [49] [3.8]
0.10 0.058 [5,131 [3,71 [3.4]
0.20 0.1206 [4.9] 3,71 [2.4]
0.30 0.1669 [3,8] [2,51 [2,3]
0.40 0.2202 [3,7] 2,41  [2,3]
0.50 0.2601 [3,6] [2,4] [2]

0.60 0.3061 [2,5] [2,3] [2]

0.70 0.3433 [24] [2,3] [2]

0.80 0.3737 [2,3] [1,2] [2]

By comparing the best interaction period interval for 0.05, 0.1, and 0.2, it can be
seen that when the mutation step size decreases, the best interaction period will prefer
larger values. This confirms our third hypothesis. Furthermore, this indicates that a
different interaction period needs to be set if the evolution speed changes during the
search process.

5 Conclusion and Future Work

In this paper, we studied the communication frequency effects on the performance of
parallel CCEA. We showed that the best interaction frequency depends on the corre-
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lation degree of subcomponents, the evolution speed of the optimization algorithm as
well as the communication cost.

As an answer to question 1, for problems that communication cost can be compar-
atively ignored, it is best to communicate as frequently as possible. For problems that
consider communication cost, the best interaction period is hard to set, it is not only
related to the correlation of variables and communication cost but also to the evolution
speed of the optimization algorithm. But, for separable variables, it is best to set the
communication frequency as low as possible.

As an answer to question 2, if the evolution speed of optimization algorithm is quick,
high communication frequency is needed. Actually, during the evolutionary process of
a CCEA, the evolution speed would change. It would become slower in the later phase
of the evolutionary process. Therefore, a dynamic change of interaction frequency is
desirable during a parallel CCEA run.

As an answer to question 3, the relationship between interaction frequency and com-
munication cost is non-linear and complicated. The trend is that the best interaction
period is prone to larger values when communication cost becomes higher. For prob-
lems with a fixed communication cost, the best interaction frequency represents the
best trade-off between frequent communication and increased communication over-
head, which varies from problem to problem.

The answers to these questions are given based on the 2-D test functions used in our
experiments. In future, we will consider high-dimensional test functions. Moreover, the
studies were done using a fixed interaction frequency. In reality, a dynamic or adaptive
one might be more appropriate, which is another direction of our future work.
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Abstract. Selection plays an important role in estimation of distribu-
tion algorithms. It determines the solutions that will be modeled to
represent the promising areas of the search space. There is a strong
relationship between the strength of selection and the type and num-
ber of dependencies that are captured by the models. In this paper we
propose to use different selection probabilities to learn the structural
and parametric components of the probabilistic graphical models. Cus-
tomized selection is introduced as a way to enhance the effect of model
learning in the exploratory and exploitative aspects of the search. We
use a benchmark of over 15,000 instances of a simplified protein model
to illustrate the gains in using customized selection.

Keywords: selection, estimation of distribution algorithms, optimiza-
tion, customized selection.

1 Introduction

Since their inception most of the research on estimation of distribution algo-
rithms (EDAs) [9,10,13] has been devoted to the analysis of the learning and
sampling components of these algorithms. The characteristic feature of EDAs
with respect to other evolutionary algorithms (EAs) is the use of probabilistic
modeling to capture the most relevant features of the selected solutions. There-
fore, learning and sampling steps are critical for these algorithms and research
on these methods in EAs almost began with EDAs. A different situation arises
for the selection methods used by EDAs. The selection schemes traditionally
applied in these algorithms are essentially those widely applied in GAs.
Different approaches investigate how selection mediates the information about
the fitness function that is passed to the probabilistic models. Among the re-
search directions explored are: 1) Explicitly using fitness information in the con-
struction of the probabilistic models to learn more accurate models [15,17,20]
and 2) Explicitly modeling fitness information as part of the probabilistic model
[7,11]. These research directions are very related since it has been shown that
the explicit modeling of fitness information can produce more accurate repre-
sentations of the interactions between the variables. Furthermore, some research

G. Dick et al. (Eds.): SEAL 2014, LNCS 8886, pp. 94-105, 2014.
© Springer International Publishing Switzerland 2014
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on the role of selection has gone beyond the classical aim of optimization to
investigate the effect of selection in recovering the original problem structure [2].

In this paper we propose customized selection as a new way to implement se-
lection in EDAs. We start from the assumption that the role played by selection
in EDAs is two-fold. As in GAs, selection should be able to capture information
about the promising areas of search space. But in addition, the selection method
should contribute to a meaningful and efficient representation by the probability
model. Basically, this assumption states that, in EDAs, considering the choice of
the selection method in accordance with the type of probability modeling applied
can contribute to a more efficient search for the optimal solutions. Customized se-
lection takes into account this assumption by splitting the information extracted
during the selection step into: 1) Information used for structural learning and 2)
Information used for parametric learning. We empirically evaluate this idea for
Boltzmann and truncation selections.

2 Selection and Learning in EDAs

In this section we assume the reader is familiar with EDAs. Let X = (X71,..., X,)
denote a vector of discrete random variables. We use x = (z1,...,zy) to denote
an assignment to the variables. I denotes a set of indices in {1,...,n} and X;
(respectively xy) a subset of the variables of X (respectively x) determined by
the indices in I. p denotes a distribution, p(zy) the marginal probability for
X; = xy, and p(x; | z;) the conditional probability distribution of X; = z;
given X; = x;.

Algorithm 1. Tree-EDA

1 Do < Generate N individuals randomly

2 t=0

3 do{

4 Evaluate the individuals using the fitness function.
5 Assign a selection probability to each individual.
6

Create a compact population D; where copies of the same individual add up
their probabilities py .

7 Calculate a probabilistic model using D? and p?.

8 Compute the univariate and bivariate marginal frequencies p;(z;|D;7) and
Di (.Ti,ij‘Df) using Dy and p?

9 Calculate the mutual information using bivariate and univariate marginals.

10 Calculate the maximum weight spanning tree from the mutual information.

11 Compute the parameters of the model.

12 t—t+1

13 D; < Sample N individuals from the tree and add elitist solutions.

14} until A stop criterion is met
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Algorithm 1 shows the pseudocode of an EDA that uses the complete popula-
tion to define the selection probabilities. This EDA learns a tree model. In this
section we focus on the analysis of the selection procedure and leave the analysis
of the model learning step for Section 4. In terms of the selection procedure, the
main difference between Algorithm 1 and the typical EDA is that in the former,
instead of selecting a subset of individuals based on their fitness, a vector of se-
lection probabilities is computed over the complete population. The probabilistic
model is learned from the vector and the population. The procedure described
in steps 5 to 7 of Algorithm 1 was originally introduced in [17].

Using this way to implement the selection has two advantages: 1) When pos-
sible, the fitness information of the complete population is used. 2) Although the
computation of the compact population is not essential for computation of the
probabilistic model, it helps to make model learning faster, particularly when
there are multiple copies of the same individuals in the population. A require-
ment for the application of this method is that model learning could be done
directly on the probabilities. This can be easily done for most of the model
learning methods [5,15,17,20].

There is an extra cost in finding the compact population but notice that for
detecting that two solutions are different, it is sufficient to find a variable where
they differ. Therefore, although comparison between pairs of solutions can have a
worst case cost of n, this cost will depend on the homogeneity of the population
and the expected cost of finding the compact population will be often much
smaller than Nlog(N)n, where N is the population size.

3 Customized Selection

Probabilistic models learned by EDAs can be classified according to the type of
learning they use into two groups: 1) Models that apply non-structural (para-
metric) learning. 2) Models that apply structural and parametric learning. We
extend this classification to EDAs and talk of non-structural learning and
structural-learning EDAs, understanding that the second class of algorithms
also applies parametric learning of the models. Among non-structural-learning
EDAs are the univariate marginal distribution algorithm (UMDA) [14] and other
EDAs based on marginal product models [12]. Structural-learning EDAs include
algorithms based on Bayesian networks and Markov networks.

The key idea of customized selection is to learn the structure and the parame-
ters of the model from different selection probabilities. We assume that, in terms
of population diversity, non-structural learning and structural learning may have
different requirements for accurately modeling. For example, in truncation se-
lection, we may need to have a selection threshold of 0.5 (half the population)
to guarantee a dataset large and diverse enough from which to learn the model
structure applying statistical tests. However, once the structure is learned, we
would like to make the marginal probabilities to represent the characteristics
of solutions of highest fitness, for instance, those included in the best 30% of
the population. In this way, we combine learning a robust structure with non-
structural learning more focused on the best solutions. In all selection methods
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currently used by EDAs, the same selected population is used for both tasks.
We aim to split this process and investigate whether customized selection has
an impact in the quality of the search of EDAs.

3.1 Customized Boltzmann and Truncation Selections

We use notation introduced in Section 2. In Boltzmann selection, the probability

of each solution to be part of the selected population is computed according to
£ r)

e T .
sty » Where Yo e T s

e T
the so-called partition function, and T is the temperxature of the system that can
be used as a parameter to smooth the probabilities. The partition function is
computed using all the solutions in the current population and a probability of
selection is associated to each solution.

We use T as a way to influence the strength of selection. When T" — oo, the
models can not recover any information about the problem structure because all
solutions are given the same probability. Similarly, when T" — 0 all the proba-
bility is concentrated in the point with highest function value in the population.
Customized Boltzmann selection is implemented by using two different values
of the temperature, T's and T'p which will be associated to the structural and
non-structural learning, respectively. T's and T'p will bias the type and amount of
information captured by the probabilistic models. In our experiments, we focus
on the analysis of T's, Tp = 2" for k € {-3,—-2,---,1,2}.

In truncation selection, the best M = aN individuals of the population is
selected, being a € (0,1]. We define truncation selection on the complete pop-
ulation by associating a probability ]&1 to the best M individuals and 0 to the
rest. Customized truncation selection is implemented by defining two different
truncation thresholds ar, and ar, for structural and non-structural learning,
respectively. In usual application of truncation selection, ar, = ar,, but in cus-
tomized selection these values can be different.

the Boltzmann probability distribution p(x) =

4 EDAs with Customized Selection

Customized selection can only be applied to EDAs that apply structural learning.
We use Tree-EDA, an EDA that learns a tree probabilistic model and is similar
to the ones introduced in [1] and [16]. The probability distribution of a tree is
defined as pr(x) = [, p(z;|pa(z;)) where Pa(X;) is the parent of X; in the
tree, and p(x;|pa(x;)) = p(x;) when pa(z;) = 0, i.e. X; is a root of the tree.
The distribution py(x) itself will be called a tree model when no confusion is
possible. We allow the existence of more than one root in the PGM (i.e. forests)
although for convenience of notation we refer to the model as tree. Algorithm 1
shows the pseudocode of Tree-EDA.

We choose Tree-EDA to evaluate customized selection because it exhibits
a good balance between the capacity of the probabilistic model to represent
dependencies and the computational cost of learning and sampling the tree.
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For comparison purposes we use UMDA. The univariate model used by this
algorithm can be seen as a particular case of the tree when we have pa(X;) = ()
for all 1.

As shown in Algorithm 1, the tree is learned using the Chow-Liu method [3]
that calculates the maximum weight spanning tree from the matrix of mutual
information. Notice that the mutual information is computed from the bivari-
ate and univariate probabilities calculated upon marginalization of the selection
probabilities of the compact population. When customized selection is used, the
computation of the bivariate and univariate probabilities is done twice. The first
time, from the selection probabilities calculated using T, (respectively «y for
truncation selection). It is during this first step when the mutual information
and the tree structures are computed. Then, during a second step, the univariate
and bivariate probabilities are computed again, this time using 7T}, (respectively
oy, for truncation selection), but only for the edges of the tree, i.e. a maximum

of n — 1 bivariate probabilities instead of n(n;l).

5 HP Functional Model Protein

As a testbed we use an optimization problem defined on a simplified protein
model. The HP model considers hydrophobic (H) residues and hydrophilic or
polar (P) residues. A protein is considered a sequence of these two types of
residues, which are located in regular lattice models forming self-avoided paths.
Given a pair of residues, they are considered neighbors if they are adjacent either
in the chain (connected neighbors) or in the lattice but not connected in the chain
(topological neighbors).

The functional model protein is a “shifted” HP model that can represent na-
tive states that are not maximally compact [6]. An energy function that measures
the interaction between topological neighbor residues is defined as egg = —2
and epp = egp = epg = 1. The functional model protein problem consists of
finding the solution that minimizes the total energy and it is a NP-hard problem.

Figure 1 shows an example of a functional model protein instance. In our so-
lution representation, for a given sequence and lattice, X; represents the relative
move of residue ¢ in relation to the previous two residues. Taking as a reference
the location of the previous two residues in the 2D lattice, X; takes values in

6 d

Fig. 1. One possible configuration of sequence HHHPHPPHPP in the functional
model protein. There is one H H interaction (represented by a dashed line), and one
H P interaction (represented by a dotted line).
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{0,1,2}. These values respectively mean that the new residue is located in one
of the 3 possible directions (left, ahead, right) with respect to the previous two
locations [8]. Therefore, values for X; and X5 are meaningless. The locations of
these two residues are fixed. A solution x can be seen as a walk in the lattice,
representing one possible folding of the protein.

The codification corresponding to the configuration of the sequence shown in
Figure 1a) is x = (0,0,2,1,2,0,2,2,1,1). The objective function is computed as
the opposite of the energy for feasible configurations.

In our representation there can be self-intersecting paths that correspond
to unfeasible configurations. We use two ways to deal with these solutions:
1) Penalized fitness functions and 2) Repairing of solutions. We penalize self-
intersecting solutions by dividing the energy by the number of the sequence’s
self-intersections. To repair solutions, a variation of the backtracking method
introduced in [4] is applied.

As a problem benchmark, the functional model protein is a very interesting
problem because, disregarding multiple representations of the same solution,
the problem reaches the optimum on a unique configuration. We have selected
a database of 15,575 protein sequences (n = 23) [8] for which, the optimal
value, the closest suboptimal value, and the number of configurations where this
suboptimal value is reached have been previously determined. The complexity
of the optimization problem can be very different between sequences.

6 Experiments

The aim of the experiments is determining if using customized selection can help
to improve the results of the EDAs that apply Boltzmann and truncation selec-
tion. A second goal is to find an appropriate choice of the selection parameters.
Finally, we investigate the effect of the number of local optima in the behavior
of the EDAs for the different selection methods.

6.1 Experiment Settings

The population size for all EDAs was fixed to N = 500 and as termination
criterion we used a maximum number of generations N, = 50. Experiments
were run with and without repairing of the solutions. In the second case, the
fitness values of infeasible solutions were penalized.

For Boltzmann selection we investigate in detail the effect of using different
probability distributions to learn the parameters and structure of the model. This
is done by trying all combinations of T's,Tp = 2%, for k € {-3,-2,---,1,2}.
For truncation selection, as, o, € {0.1,0.2,0.3,0.4,0.5,0.6}. When using the
UMDA, the selection parameters of the structural and non-structural learning
have identical values. Therefore, for each type of selection there are 36 variants
of Tree-EDAs, and 6 variants of UMDA. We run the EDAs 100 times for each of
the 15,575 instances. The total number of EDA runs for each type of selection
method was 2 x 100 x 15,575 x (36 + 6) = 130, 830, 000 that were executed in a
cluster of 575 computers.
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6.2 Results for Customized Boltzmann Selection

We compare the algorithms in terms of the number of times that the optimum
was found in 100 runs and in terms of the mean fitness value of the best solutions
found in each of the 100 runs. The mean success rate of the different EDA variants
from the 15,575 instances is shown in Figure 2.

It can be seen in Figure 2a) that there are important variations in the success
rate of Tree-EDA due to parameters T's and T'p. The influence of the parameters
can be critical for the behavior of the algorithm. Notably, Tree-EDA with Tp >
—1 can not outperform the behavior of UMDA. Notice however, that UMDA is
also very sensitive to the influence of parameter T'. For all values of T'p, except
Tp = —3, the number of times that Tree-EDA finds the optimum improves by
selecting T's < T'p. This means that, for a given selection strength applied to non-
structural learning, a stronger selection applied to structural learning will likely
improve the results. Figure 2b) shows how the mean success rate of Tree-EDA
also increases by repairing the solutions. The same trend in the influence of the
selection parameters is observed. Except for Tp = —3, the results of Tree-EDA
improves by selecting T's < T'p.

251

S
T

Success rate
T
Success rate

05+

UMDA

Fig. 2. Customized Boltzmann selection: Number of times the best solution was found
for the different values of the temperature. a) Without repairing. b) When repairing is
applied.

We also test, for each instance independently, for statistical differences be-
tween the EDAs that could be attributed to the use of customized selection.
Fixing the value of T'p, we apply a multi-comparison test (p-value 0.05) for the
six variants of Tree-EDA. The test uses as information the best result in each
of the 100 runs for the corresponding instance. Among the six variants of Tree-
EDA corresponding to the six values of T's, we test which pairs of means are
significantly different, and which are not. A test that can provide such informa-
tion is called a multiple comparison procedure. Adjustment for multiple testing
is applied using the Dunn-Sidak method [18], a procedure similar to, but less
conservative than, the Bonferroni procedure.
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Using the results of the test, we compute the number of times each Tree-EDA
variant was significantly better (S,) and significantly worst (S,,) than the Tree-
EDA that uses T's = T'p. For example, for Tp = 1, we compute the number of
times that Tree-EDA (T's = i) was significantly better than Tree-EDA (T's = 1)
for all 4 # 1. Similarly, we compute the number of times that Tree-EDA (T's = 1)
was significantly worse than Tree-EDA (T's = 1). The difference between these
two numbers gives an idea of the appropriate choice for T's in relation with Tp.
Figure 3 shows the values of (S, — S, for all values of T'p. A positive value for
T's = i means that Tree-EDA improves its performance when it takes this value.
Conversely, a negative value indicates a poorer behavior.

Figure 3 confirms the previous results obtained from the analysis of mean suc-
cess rate. For Boltzmann distribution, improvements can be achieved by using,
for structural learning, selection probabilities with a higher selection strength
than that used for non-structural learning. We should learn the structure from a
set of very good solutions but the selection strength can be relaxed at the time
of learning the model’s parameters.

Number of instances (Sb -8,

-3
I -2
[N |
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I 1
N 2
-3 2 -1 o 1 2 -3 -2 -1 0 1 2
Tree—-EDA Tree—EDA Repair

Fig. 3. Results of the statistical tests for customized Boltzmann selection

6.3 Results for Customized Truncation Selection

The analysis of customized truncation selection are conducted using the same
methodology.

Figure 4 shows the mean success rate of Tree-EDA with and without repairing.
The results of Tree-EDA improves by selecting oy < oy, for oy, > 0.1. Also for
Tree-EDA with repairing the results improve for oy < a, for o, > 0.1, but
the differences are not that clear. For truncation selection, s € {0.2,0.3} is
the best choice for almost all values of c,,. Another remarkable fact that makes
a difference with Boltzmann selection is that Tree-EDA is always better than
UMDA when truncation selection is used.
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The results of the statistical tests for customized truncation selection are
shown in Figure 5. It can be seen in the figure that Tree-EDA with truncation
selection exhibits a behavior similar to Tree-EDA with Boltzmann selection when
the repairing procedure is not used. Nevertheless, when repairing is applied, there
are fewer significant differences in the behavior of the algorithms. This fact can
be also observed in Figure 5.

o | Mo

~
L

Success rate
w
.
Success rate

ro
L

UMDA 0.1 0.2 03 04 05 0.6 UMDA 0.1 0.2 0.3 0.4
o

Fig. 4. Customized truncation selection: Number of times the best solution was found
for the different values of the truncation parameter. a) Without repairing. b) When
repairing is applied.
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Fig. 5. Results of the statistical tests for customized truncation selection
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Fig. 6. Mean success rate of Tree-EDA with repairing for solutions grouped according
to the number of local optima (nl)

To evaluate how sensitive are the introduced selection methods to the number
of optima in the problem, we selected two sets of instances. The first group con-
tains instances with one or two local optima (703 instances). The second group
comprises instances with more than 100 local optima (685 instances). Using Tree-
EDA with repairing we compute the mean success rate for the selection methods
on all possible combinations of parameters Tp and T's (6 X 6 = 36). The results
are shown in Figure 6 where nl is the number of local optima in addition to the
global optimum. The main conclusion from the analysis of Figure 6 is that both
selection methods are sensitive to the number of local optima. However, while
the Boltzmann customized selection is able to outperform customized trunca-
tion selection for appropriate combination of parameters, the second selection
method is more robust to the variation of the parameters.

7 Conclusions and Future Work

In this paper we have introduced customized selection in EDAs. We have shown
that, by using different selection probabilities for structural and non-structural
learning of the models, it is possible to increase the success rate of Tree-EDA
for the functional model protein. Our results show that improvements are more
important for Boltzmann selection than for truncation selection.

Beyond the improvements in optimization, customized selection opens new
possibilities for research on the relationship between selection and model learning
in EDAs. We can independently evaluate the effect of selection in the structural
and parametric components of the graphical models. For instance, we can inves-
tigate the quality of the models as fitness surrogates by independently manip-
ulating the different selection probabilities from which the model’s components
are learned.
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There are optimization problems where some sets of variables make a higher
contribution to the fitness. Evolutionary algorithms can fail in these situations
when these salient building blocks converge before those with lower marginal
fitness [19]. One possible extension of customized selection is the computation
of marginal probabilities of different subsets of variables using different selection
probabilities. In this way, marginal probabilities could be adjusted, according to
different strengths of selection, to “synchronize” building blocks with different
temporal-salience behaviors.
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Abstract. Web service composition has become a promising technique
to build powerful business applications by making use of distributed ser-
vices with different functions. Due to the explosion in the volume of data,
providing efficient approaches to composing data intensive services will
become more and more important in the field of service-oriented comput-
ing. Meanwhile, as numerous web services have been emerging to offer
identical or similar functionality, web service composition is usually per-
formed with end-to-end Quality of Service (QoS) properties which are
adopted to describe the non-functional properties (e.g., response time,
execution cost, reliability, etc.) of a web service. In this paper, a hybrid
approach that integrates the use of genetic programming and tabu search
to QoS-aware data intensive service composition is proposed. The perfor-
mance of the proposed approach is evaluated using the publicly available
benchmark datasets. A full set of experimental results show that a sig-
nificant improvement of our approach over that obtained by the simple
genetic programming method and several traditional optimization meth-
ods, has been achieved.

1 Introduction

Service-oriented architecture (SOA) [1] is a widely accepted and engaged
paradigm for the realization of complex business processes. The aim of SOA is
to implement business processes covering different organisations and computing
platforms in a dynamic and loosely-coupled manner. As a promising technology
to implement such a service-oriented architecture, web services encapsulate soft-
ware functions and make them available to anyone in the world over the network
via standard interfaces and protocols (e.g., SOAP and WSDL). The advent of
web services has boosted the creation of business applications by reusing existing
resources on the network, rather than building new applications from scratch to
fulfill business functional requirements.

Today, a large number of web services on the Internet offer identical or over-
lapping functionality but present various non-functional characteristics which
are called quality of service (QoS) properties such as response time, execution
cost and reliability. Therefore, how to select a suitable web service that satisfies
user’s requirements still remains an open question. On the other hand, when no

G. Dick et al. (Eds.): SEAL 2014, LNCS 8886, pp. 106-118, 2014.
© Springer International Publishing Switzerland 2014
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single web service is able to respond to user’s request, it is necessary to compose
a range of existing services together in order to provide new value-added and
complex functionality, which is referred to as web service composition, and the
aggregated web service becomes a composite web service.

Aside from business processes, the service-oriented approach using web ser-
vices is also of great interest for the implementation of data intensive processes
such as data mining and image processing. Such web services are defined as data
intensive services that generally have large amounts of data as their inputs and
outputs. For example, a facial recognition solution for video and image content
could be published through a web service that, given a set of original images, will
provide a set of processed images with identified facial features. Over the recent
years, the amount of data generated by humanities, scientific activities, as well
as commercial applications from a diverse range of fields has been increasing ex-
ponentially. Data volumes used in the fields of sciences and engineering, finance,
media, online information resources and so on, are expected to double every two
years over the next decade and further [2]. There is no doubt in the industry
and research community that the importance of data intensive computing has
been raising and will continue to be the foremost research field. As a result, data
intensive services based applications have become the most challenging type of
applications in SOA. Also, data intensive service composition has become an
appealing research area in academia and industry.

Although various approaches have been presented to solve web service com-
position problems [3—7], there is limited work in the literature for data intensive
service composition [2, 8-10]. The authors of [8, 10] consider the data inten-
sity of service composition, but they overlook the communication cost of mass
data transfer and its effects on the performance of business processes with dif-
ferent structures. An ant colony based algorithm is proposed in [2, 9] to find the
cost minimized data intensive service composition by considering the access cost
and communication cost of mass data transfer. However, the approach focuses
on minimizing the cost only without reflecting other important QoS attributes
(e.g., availability and reliability). To the best of our knowledge, the use of ge-
netic programming in data intensive service composition was not examined in
the past research.

In this paper, we present a hybrid GP-Tabu approach to the problem
of QoS-aware data intensive service composition. Tabu search (TS) [11] as a
meta-heuristic local search is integrated into the evolutionary process of genetic
programming (GP) [12] in order to overcome the downsides of GP such as its
prematurity and proneness to trap in local optima. The main contributions of
this paper are two-fold. First, a QoS-aware mathematical model is developed to
take into account the effect of mass data transfer. Second, a hybrid approach
that combines the use of GP and TS is proposed to address the QoS-aware
data intensive service composition problem. The experimental results demon-
strate the effectiveness and efficiency of the approach, especially it offers better
performance than traditional optimization techniques.
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The rest of the paper is organized as follows. Section 2 introduces the back-
ground of the QoS-aware service composition problem. Section 3 discusses the
time and cost aware model used in the context of data intensive service com-
position. In Section 4, the details of the proposed approach are explained, and
Section 5 reports on the experimental results. Finally, the conclusions and future
work are outlined in Section 6.

2 Background

Standard protocols adoption and platform independent have enabled web
services to be integrated together to produce a value-added complex service.
Nowadays due to the explosive increase of web services that provide identical or
overlapping functionality on the Web, quality of service namely QoS becomes a
key factor in distinguishing these functionally equivalent services.

2.1 Atomic Web Service vs. Composite Web Service

A composite web service is made up of a collection of single web services each of
which is referred to as atomic web service. The goal of a service composition is
to generate the desired outputs given a set of available inputs that are described
by semantic concepts. Assume the task scenario is to search for an appropriate
flight as well as the weather forecast for the destination based upon the given
departure date, return date, departure city and arrival city. In other terms, a
web service is requested to take {departure date, return date, departure city,
arrival city} as inputs in order to produce {flight information, weather forecast}
as outputs. However, an atomic web service itself has limited functionality which
is not sufficient to respond to the user’s request. A composite web service that
consists of multiple atomic web services is needed to accomplish the task. A valid
service composition must guarantee that the inputs of any atomic web service
are available either from the outputs of its ancestors or from the original inputs
(i.e., from the user).

2.2 Quality of Service

QoS can be characterized according to various non-functional properties of web
services called QoS attributes such as response time, execution cost, availability
and reliability. Based on a selection of relevant characteristics in the field of
web services, the QoS attributes considered in this research work are latency,
execution cost, availability and accuracy all of which are defined as follows.

— latency L measures the expected delay in seconds between the moment when
a request is sent and the moment when the results are received.

— execution cost C'is the amount of money that a service requester has to pay
for executing the web service.

— availability A is the probability that a web service is accessible.
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— accuracy R is the measurement of the degree to which the real results pro-
duced by the web service match the desired results.

Amongest the above four QoS attributes, latency and execution cost are de-
creasing measures with respect to QoS. In other terms, the grades of these mea-
sures increase as their values decrease. In contrast, availability and accuracy are
increasing measures of which the grades decrease as their values decrease.

QoS reflects the non-functional properties of web services which in turn have
an influence on user satisfaction, thereby the QoS factors have become significant
criteria that cannot be overlooked in web service composition. The problem of
QoS-aware service composition denotes selecting a number of atomic web services
while obtaining the highest possible QoS of the service composition and satisfying
the global constraints posed by the user. Here, global constraints define an upper
or lower bound for the aggregated QoS values of a composite service. To optimize
the quality of a service composition, a method must be applied to estimate the
QoS of the service composition from its constituent services. This estimation
is called QoS aggregation, and the QoS aggregation formulas defined for basic
composition patterns [13] and major QoS attributes are summarized in Table 1.

Table 1. Aggregation formulae for each pair QoS attribute - workflow structure

QoS attribute Sequence Parallel (Flow) Choice (Switch) Loop
Latency L=3%7_1l L=MAX{lili €{1,...,5}} L=2>_1pi*li L=Fkxl
Execution cost C' = 377_, ¢; C=37_1c¢ C=3]_1pixci C=kxc

Availability A = [T/_, a; A=Tl_, ai A=Y7_ pivai A=ad"

Accuracy R=1][[I_;m R=TIl_,r: R=J_pi*xr; R=r1r"

3 Time and Cost Aware Model for Data Intensive Service

Since a data intensive service s; is provided by a service provider and deployed
on a server, a data intensive service composition SC' that consists of a set of
m service servers and certain composition patterns can be denoted by SC =
{S1, S2, ..., Sm}. Each atomic data intensive service s; is associated with a QoS
vector Q; = [l;, ¢;, 74, a;] where l;, ¢;, i, a; represents the latency, execution cost,
accuracy and availability of the service. Assume that a data intensive service s;
requires a set of data denoted by D; to form part of its inputs. The latency [;
for the service s; is made up of three parts: the queue time ¢;, the processing
time p; and the transfer time ¢;, as shown in Equation 1.

li = gi + pi(Di) + t:i(Di, Sj, 5i) (1)

where g; is the time spent in waiting in the queue for the data D; to be processed
by the server, p;(D;) is the actual time used to process the set of data D;, and
t;(D;, S;,5;) is the data transfer time for transferring the data set D; from the
server hosting the service s; to the server hosting the service s;.
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To be detailed, the queue time g; depends on server load, i.e., the current
request queue length on the server, while the processing time p; and the transfer
time ¢; can be calculated using Equation 2 and 3.

pi(Di) = size(D;)/pr(S;) (2)
ti(DZ‘, Sj, SZ) = SiZ@(Di)/bw(Sj, Sz) + SZZ@(DZ)/U]S(SZ) (3)
where size(D;) is the size of the data set D;, pr(S;) denotes the processing rate
of the server S;, bw(Sj;, S;) is the network bandwidth between the server S; and
the server S;, and ws(S;) is the disk write speed of the server S;. To sum up, as
described in the above equations, the processing time depends on the processing
capacity of the server, and the data transfer time is determined by the network
bandwidth and the amount of data to be transferred between two service servers.
As each server has many requests at the same time and it serves only one request
at a time, the current service request needs to wait until all requests prior to it
in the queue have completed.

In addition to time, the costs generated by data intensive services as well
as the movement of mass data have a significant impact on the total cost of a
service composition. Consider a data intensive service s;, similarly its execution
cost ¢; consists of three parts: the data access cost ac;, the data transfer cost
tc;, and the service related cost sc;. As can be seen from Equation 4, the data
access cost ac; is the price to be paid for writing the data D; to the server that
hosts the service s; and reading the data in order to invoke the service. The data
transfer cost tc; is proportional to the size of the data set D;, which depends
on the available network bandwidth between two service servers. The service
related cost sc; expresses the cost to provision the service s; as well as the cost
to process the service request including data processing.

¢ = ac;(D;) +tei(Ds, S5,.8:) + sci(D;)
ac;(D;) = size(D;) x weost(S;) + size(D;) * rcost(S;)
tei(Dy, Sy, S;) = size(D;) * tcost(S;, S;i) 6
sc;(D;) = peost(S;) + size(D;) * dcost(S;) 7
where size(D;) denotes the size of the data set D;, wcost(S;) is the cost of
writing per unit of data to the server S;, rcost(S;) is the cost of reading per unit
of data from the disk on the server \S;, tcost(S;, S;) is the transfer cost from the
service server S; to the service server S; for per unit of data, pcost(S;) is the
price charged to use the service s; which is usually specified by service provider,
and dcost(S;) is used to represent the expenditure for processing each unit of

data on the server S;.

For each data intensive service, the other two QoS attributes (i.e., accuracy
and availability) are supposed to have fixed values which can be collected from
service providers. Therefore, the QoS-aware data intensive service composition
can be regarded as an optimization problem. Clearly the goal of the optimization
problem is to minimize the latency and execution cost that have been defined

in Equations 1 and 4, meanwhile achieving the maximum possible accuracy and
availability for a composite web service.

4

(4)
()
(6)
(7)
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4 The Hybrid GP-Tabu Approach

Artificial intelligence techniques have been widely used to solve many optimiza-
tion problems. In recent years, GP has become increasingly popular as an al-
ternative to more classical techniques in science and engineering disciplines. As
another powerful optimization procedure, TS is capable of escaping local opti-
mum trap by employing a flexible memory system, and it has been successfully
applied to a diverse range of combinatorial optimization problems. These meth-
ods seem to be promising and are still evolving. Next, the GP and TS methods
are briefly reviewed before the proposed hybrid approach is presented.

4.1 An Overview of Genetic Programming

GP [12] simulates Darwin’s principles of natural selection and evolution to create
a working computer program that is typically represented as a tree-like structure.
Our approach employes the same tree representation as [14], that is, atomic web
services invoked by the composition are denoted by leaf nodes and the workflow
patterns (e.g., sequence) are expressed by intermediate nodes. In addition, GP
requires a fitness function to measure the quality of each individual (i.e., service
composition in our case) in the population. In general, GP involves three types
of operators which are described as follows.

— Selection. A number of individuals in the population are selected to breed a
new generation. Individuals selection is a fitness-based process, where fitter
individuals are typically more likely to be selected for reproduction.

— Crossover. The crossover operator takes two parents and replaces a randomly
chosen part of one parent with another randomly chosen part of the other
in order to produce two new offsprings. For the specific service composition
problem, two individuals are stochastically selected. If there is a common
node that represents the compatible inputs and outputs in both individuals,
the two nodes along with their subtrees are then swapped between the two
individuals. This guarantees that the offspring generated is feasible.

— Mutation. The mutation operator takes one parent and replaces a randomly
selected part of that parent with a randomly generated sequence of code. In
our particular case, a random node of a service composition is selected and
its subtree is replaced with a new stochastically generated one.

4.2 An Overview of Tabu Search

TS [11] is a meta-heuristic that guides a local heuristic search procedure to ex-
plore a problem’s solution space with the goal of avoiding local optimum and ul-
timately finding the desired solution. The basic principle of TS is to avoid cycling
back to previously visited solutions and allow non-improving moves whenever a
local optimum is encountered. This is achieved by using a short-term memory
that records the recent history of the search to prevent investigating the solu-
tion space that has been visited before. However, in some situations, T'S permits
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backtracking to previous solutions which may ultimately lead to better solutions
via a different direction. The two main components of TS are the tabu list and
the aspiration criteria of the solution associated with the recorded moves.

— Tabu list. Certain forbidden moves (trial solutions) are maintained in the
list to prevent cycling when moving away from local optimum through non-
improving moves. As a result, the search is not allowed to return to a recently
visited point in the search space, that is, a recent move is not allowed to be
reversed. Usually the tabu list stores a fixed or fairly limited quantity of
information. Empirically, the size of the list that provides good results often
grows with the size of the problem, and stronger restrictions are generally
coupled with smaller list size.

— Aspiration criteria. A key issue for tabu list is that it is sometimes so powerful
to prohibit attractive moves, even cycling cannot occur, or they may lead to
an overall stagnation of the search process. Hence, aspiration criteria are used
to allow for exceptions from the tabu list, if such moves lead to promising
solutions. The simplest and most commonly used aspiration criterion, found
in almost all TS implementations, allows a tabu move when it results in a
solution with an objective value better than that of the current best-known
solution (since the new solution has obviously not been previously visited).

4.3 The Proposed Hybrid Approach

In order to determine a solution to the QoS-aware data intensive service com-
position problem, we propose a new hybrid approach where the evolutionary
process of GP works along with the local TS search procedure. To be specific,
the proposed hybrid approach adopts the neighbour solutions found by TS to
generate part of a new population in the global search process of GP. The major
steps of our approach are described in Algorithm 1. The approach starts from a
randomly initialized population after setting up the necessary variables for GP
and Tabu. The individuals in the current population are then evaluated using the
specific fitness function. Crossover and mutation are performed on the selected
individuals to produce next generation. For every ¢ generations, the m best in-
dividuals (i.e., service compositions) in the population are selected as the initial
solutions of the TS procedure. As a result, n neighbour solutions are generated
by mutating a random node in the tree representation of a candidate service
composition solution, and the n worst individuals in the current population are
replaced. The above process is repeated until the maximum number of iterations
is reached.

In our approach, the fitness function introduced to measure the performance
of each individual ¢ in the gth generation of the evolution process is defined as
follows.

(w1 R; + waAy) * (wsI; + weO;)

fi - deZ + ’lU4CZ‘

®)

where R;, A;, L; and C; denote the aggregated accuracy, availability, latency
and execution cost of a composite data intensive service, each of which can be
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Algorithm 1. GP-Tabu for QoS-aware data intensive service composition
Require: available inputs, required outputs, QoS constraints and a service repository
Ensure: a service composition that meets both functional and non-functional require-
ments
: Initialize the parameters of GA and TS, and set g=1
: Generate an initial population P randomly
: Evaluate each individual ¢ in P using the fitness function
while g < gmaz do
Select two parents from the population P. Perform crossover with rate P., and
perform mutation with rate P, to generate a new population P’
if g mod k = 0 then
Choose the m best individuals from the current population, and apply the T'S
algorithm to generate n neighbours to substitute the worst n individuals in
the new population P’
8: end if
9:  Evaluate each individual i’ in P’ using the fitness function
10:  Set g=g+1
11: end while
12: return the individual with the best fitness

calculated using the formulae described in Table 1 and the equations proposed in
Section 3. For example, the aggregated latency for a sequence workflow structure
is L = Zgzl l;. In the function, wy, ws, w3, wy, ws and wg are real and positive
weights. A larger weight means that that particular QoS attribute is considered
more important than others from the point of view of users. Note that the fitness
function can be easily adapted to user’s requirements, i.e., adding or removing
QoS attributes without affecting the performance of our approach. I; and O;
that indicate the degree to which a valid solution has been found are presented
in Equation 9.

L= gl e 0= It Ll ()
where input,. is the list of inputs available for a composite service solution, input,
is the list of inputs required by the solution, output, is the list of outputs desired
by a composition task, output, is the list of outputs that are actually produced
by the solution, and |.| represents the size of the list.

To guarantee incommensurable QoS attributes have fair impact on the cal-
culation of fitness, the value of each QoS attribute is to be normalized in the
interval [0,1]. All the weights utilized in the fitness function also falls within
the range [0, 1]. As illustrated in Equation 8, QoS-aware data intensive service
composition is converted to a maximization problem, i.e., greater fitness denotes
more satisfying solution.

5 Experimental Results and Analysis

For the purpose of evaluation, we carry out a set of experiments using the test
cases provided by the public benchmark datasets, WSC2008 and WSC2009.
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Each dataset consists of a great number of web services associated with ran-
domly generated inputs and outputs. However, QoS attributes are not included
in neither datasets. Therefore, the QoS values of web services are generated
based on the data collected in another public dataset called QWS [15]. Each test
case is made up of available inputs, required outputs, and a service repository.
The complexity of the test cases is diverse in terms of the number of atomic web
services and the number of workflow structures involved.

5.1 Parameter Settings

The experiments are conducted with the population size of 200 for maximum
100 generations (i.e., gmaz=100). The crossover probability P.=0.9, the mutation
probability P,,,=0.2, and the size of the tabu list is 7. In our experiments, the top
10% individuals in the current population (i.e., m=20) will be selected for apply-
ing TS for every 10 generations (i.e., t=10), so the 20 worst (i.e., n=20) individ-
uals will be replaced with the new neighbour solutions. Assume that availability
and execution cost are considered more important than accuracy and latency.
The weights defined in the fitness function are w; = 0.2, wy = 0.3, wg = 0.2,
wy = 0.3, ws = 0.5 and wg = 0.5 which can give better performance indicated
by a large number of empirical trials. Since our approach is nondeterministic, 30
independent runs are performed for each test case.

To simulate the time and cost for data access and transfer in our experiments,
the amount of input data for an atomic data intensive service is randomly gen-
erated in the interval (0, 30]MB, and the amount of output data is determined
by multiplying by a random factor of 0~10. For the sake of simplicity, the queue
time required by a service server is between 0~10s, all server’s data write speed
(i.e., ws(S;)) and process rate (i.e., pr(S;)) are both 10MB/s, the transfer rate
between two service servers (i.e., bw(S;,S;)) is 3MB/s, and all other costs such
as data access cost and transfer cost for per unit of data are all 1.

5.2 Experimental Results

The experimental results for the test cases are presented in Table 2. Each row
in the table shows the fitness of the solutions found by GP and GP-Tabu for
each test case. To demonstrate the superiority of our approach over the simple
GP method, a significance test (z-test) is conducted to compare the solutions
found by the two approaches. As illustrated in the table, for simple composition
tasks (i.e., WSC2008-1, WSC2008-2 and WSC2008-4), both GP and GP-Tabu
are able to make the same optimal service composition to achieve the high-level
task. However, it is observed that for more complicated test cases, the GP-Tabu
approach is capable of finding better compositions of services indicated by a
significant improvement on the fitness. In summary, our hybrid approach was
successful in computing a solution to each of the service composition tasks, and
the results showed that it is much more effective for complicated tasks.
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Table 2. The results of the test cases for GP and GP-Tabu. (1 denotes significantly

better)

Test case GP GP-Tabu
WSC2008-1  0.9167 + 0.0000 0.9167 + 0.0000
WSC2008-2  0.9206 £ 0.0000 0.9206 + 0.0000
WSC2008-3  0.9025 +0.0017  0.9114 4+ 0.0009t
WSC2008-4  0.8668 + 0.0000 0.8668 + 0.0000
WSC2008-5 0.8126 +0.0014  0.8135 £ 0.0008%
WSC2008-6  0.8461 +0.0003  0.8556 + 0.00021
WSC2008-7  0.8988 +0.0008  0.9052 + 0.00131
WSC2008-8  0.8825 +0.0011  0.8857 4+ 0.00071
WSC2009-1  0.8276 +£0.0002  0.8311 + 0.00061
WSC2009-2  0.8844 + 0.0001  0.8982 + 0.00111
WSC2009-3  0.7846 +0.0023  0.7931 £ 0.00091
WSC2009-4  0.7024 £+ 0.0006  0.7546 + 0.00191
WSC2009-5  0.7290 + 0.0008  0.8449 £ 0.00231

5.3 Further Analysis

To further study the effectiveness and efficiency of our approach, here we conduct
a set of experiments with the same test cases on two traditional optimization
methods, i.e., TS and integer linear programming (ILP) [16]. In order to evaluate
the quality of the solutions found by different optimization methods, a unity
function that adopts the simple additive weighting approach is used as shown in
Equation 10.

USC)=wy - R+wz- A+wz-L+wd-C (10)

where wq, ws, ws, and ws4 remain the same as described in Section 5.1. I and
O are not included in the function as they are specified as constraints in all the
optimization methods, that is, the solution found must be able to generate the
desired outputs given the available inputs.

The simulation results of the experiments are shown in Table 3. The last three
columns of the table present the fitness of the solutions found by GP-Tabu, ILP
and Tabu, respectively. As can be observed from the table, the ILP method
cannot find a valid solution for most of the service composition tasks except
for tasks WSC2008-1, WSC2008-2, WSC2008-4 and WSC2008-5, and the sig-
nificance test demonstrates the superiority of the GP-Tabu approach over ILP
in this problem domain. In contrast, the TS method is able to find a service
composition solution for each task, especially when the tasks (i.e., WSC2008-1,
WSC2008-2, WSC2008-3, WSC2008-4, WSC2008-5 and WSC2009-2) are rela-
tively simple. However, in most situations where the service composition request
is very complex, our GP-Tabu approach is recommended due to its better per-
formance implied by the significant improvement from the statistical test.
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Table 3. The results of the test cases for GP-Tabu, ILP and Tabu. (| denotes signifi-

cantly worse, and 1 denotes significantly better)

Test case GP-Tabu ILP Tabu search
WSC2008-1  0.5946 + 0.0000  0.5849 + 0.0014]  0.5916 + 0.0019]
WSC2008-2  0.4997 £ 0.0000  0.4654 £ 0.0006]  0.5108 £ 0.00071
WSC2008-3  0.4588 + 0.0005 n/a 0.4836 + 0.00081
WSC2008-4  0.4738 £ 0.0000  0.4531 +0.0013)  0.4876 =+ 0.00061
WSC2008-5  0.4888 £ 0.0007  0.3626 £ 0.0027] 0.4884 4+ 0.0010
WSC2008-6  0.4212 4 0.0003 n/a 0.4192 4+ 0.0014.,
WSC2008-7  0.4177 4+ 0.0006 n/a 0.3791 + 0.0006
WSC2008-8  0.5146 £ 0.0009 n/a 0.5033 + 0.0012],
WSC2009-1  0.6666 % 0.0008 n/a 0.5779 + 0.0007]
WSC2009-2  0.4447 £ 0.0015 n/a 0.4441 4+ 0.0009
WSC2009-3  0.5612 £ 0.0008 n/a 0.5531 + 0.0004.
WSC2009-4  0.4623 % 0.0006 n/a 0.3145 4+ 0.0011)
WSC2009-5  0.4844 £ 0.0019 n/a 0.3487 + 0.0023].

6 Conclusions and Future Work

In this paper, a novel combination of genetic programming and tabu search
for solving the problem of QoS-aware data intensive service composition has
been presented. A time and cost aware mathematical model was developed for
describing the effect of the movement of mass data. In the proposed approach,
the local search procedure employed by TS was integrated into the global search
process of GP, in order to avoid premature convergence and getting stuck in
local optima. To verify the effectiveness and efficiency of the proposed hybrid
approach, it was successfully applied to two public benchmark datasets, i.e.,
WSC2008 and WSC2009, each of which consists of a large variety of web services
as well as diverse service composition tasks. Compared to the simple GP and two
traditional optimization methods, the analysis of the experimental results showed
the superiority of our approach in finding more satisfying service compositions.
In this study, multiple QoS constraints are transformed into one single crite-
rion to be optimized by our approach. This makes it difficult to simultaneously
optimize multiple conflicting QoS objectives. Therefore, for future work we will
investigate the use of multi-objective GP with the expectation that multiple and
often conflicting QoS properties (e.g., time and cost) can be optimized simulta-
neously to produce a set of pareto-optimal solutions. Future work also includes
applying our approach in real life situations so server load (e.g., queue time,
processing time, transfer time, etc.) can be measured with real values.
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Abstract. Continuous Estimation of Distribution Algorithms (EDAs)
commonly use a Gaussian distribution to control the search process.
For high-dimensional optimization problems, several practical issues arise
when estimating a large covariance matrix from the selected population.
Recent work in continuous EDAs has aimed to address these issues. The
Screening Estimation of Distribution Algorithm (sEDA) is one such al-
gorithm which, uniquely, utilizes the objective function values obtained
during the search. A sensitivity analysis technique is then used to reduce
the rank of the covariance matrix, according to the estimated sensitivity
of the fitness function to individual variables in the search space.

In this paper we analyze sEDA and find that it does not scale well
to very high-dimensional problems because it uses a large number of
additional fitness function evaluations per generation. A modified ver-
sion of the algorithm, named sEDA-lite is proposed which requires no
additional fitness evaluations for sensitivity analysis. Experiments on a
variety of artificial and real-world representative problems evaluate the
performance of the algorithm compared with sEDA and EDA-MCC, a
related, recently proposed algorithm.

Keywords: Estimation of Distribution algorithms, High-Dimensional
Optimization problems, Screening Technique.

1 Introduction

Estimation of Distribution Algorithms (EDAs) are a class of evolutionary opti-
mization algorithms, where probabilistic models play the key role in controlling
the search process. In EDAs, the selected population is used to learn a prob-
ability distribution and subsequent solutions obtained by sampling from this
distribution. The general procedure for an EDA is summarized in Algorithm
1. A number of different types of density estimation models have been used in
EDAs for both discrete and continuous search spaces. Probabilistic models can
be used to identify and represent interactions among the variables and can rep-
resent a priori information about the problem structure, which may assist the
search process. EDAs have been developed in both the discrete and continu-
ous setting, and have been successfully applied to solving a variety of problems.
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Algorithm 1. General pseudocode framework for an EDA

: Initialization: set ¢ = 0, Generate initial population uniformly in search space
Evaluate f(x’) for each individual x" in the current population

Select promising individuals

Build probabilistic model p(x) based on selected individuals

Generate new population by sampling from p(x)

t=t+1

Goto step 2 until a stopping criterion is met

Reviews of EDAs can be found in [13,16,19]. This paper focuses on continuous
EDAs (x € R™).

Truncation selection is typically applied in EDAs. The parameters of p(x) are
typically fitted using maximum likelihood estimation. While several different
models have been considered for continuous optimization, a Gaussian distribu-
tion is most commonly used. The continuous Univariate Marginal Distribution
Algorithm (UMDA,)[13] uses a factorized Gaussian model (i.e. a diagonal co-
variance matrix) which assumes all the variables are independent. UMDA. is
easy to apply and computationally robust and efficient, but the model may
have difficulty in solving problems with strong dependencies between variables.
Multivariate Gaussian EDAs, such as the Estimation of Multivariate Normal
Algorithm (EMNAgioha1) address this issue by modelling dependencies between
all pairs of variables using a full covariance matrix [13].

The behaviour of basic Gaussian EDAs has been shown to be sometimes
undesirable. On some fitness landscapes, performance is poor due to premature
shrinking of the model variance at an exponential rate (Eg., in slope-like regions
of the search space, described in [1] or in an elliptical region [10]). To address
such issues, a number of enhancements have been proposed. Adaptive variance
scaling (AVS) provides a way to control the rate of contraction and expansion
of the model and scale the variance to improve the progress of the EDA model.
Anticipated Mean Shift (AMS) additionally modifies sampled solutions in the
direction of mean shift of the previous generation [1,2]. Nevertheless, the task
of covariance matrix estimation remains a fundamental step in state of the art
Gaussian EDAs.

In practice, numerical issues can arise with estimating the full covariance
matrix. The covariance matrix, X, is by definition positive semi-definite, but
this is not guaranteed in implementation because of finite precision represen-
tation. Computational errors or numerical issues arise when the sample used
to estimate the model does not adequately span all dimensions of the search
space, which becomes likely when the sample size is relatively small compared
to the problem dimensionality. As a result of these issues, several techniques have
been proposed to avoid the covariance matrix becoming ill-posed in EDAs. The
Eigenspace EDA (EEDA) [20] was one of the first modifications in this direction
(see [7] for a discussion and comparison of variants). Dong et al. [6] developed
the Covariance Matrix Repairing (CMR) method, where a positive value (equal
to the absolute value of the smallest eigenvalue) is added to the diagonal of X.
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The Eigen-decomposition EDA (ED-EDA) builds on this previous work with
eigenvalue-based repairing strategies [7] . Experimental results show that these
different covariance repairing methods can avoid numerical difficulties. The al-
gorithms also show good performance results with respect to the best solution
found and because of the improved numerical properties, a smaller population
can be used.

More recently, Dong et al.[5] proposed the EDA Model Complexity Control
(EDA-MCC) to scale up continuous EDAs to high-dimensional problems us-
ing a sparse covariance matrix, with reduced computational cost and a smaller
population. EDA-MCC uses EMNAjoha1 for each subset of the variables. A set
of artificial test problems were used for comparing EDA-MCC with UMDA,,
EMNAioba1 and EEDA [20]. While EDA-MCC does not outperform traditional
EDASs on low dimensional problems, EDA-MCC shows significantly better results
on high dimensional problems. Other existing statistical methods have also been
applied to control the amount of covariance/dependency modelling in EDAs.
In [11], regularization techniques were adopted into EDAs. The resulting algo-
rithm shows the ability to solve high dimensional problems with a comparable
quality of solutions using much smaller populations.

The screening Estimation of Distribution Algorithm (SEDA), was proposed
in [14] as an EDA to control the degree of covariance modelling. However unlike
other approaches, this algorithm explicitly uses the objective function values
obtained during the search. Using this information, a notion of variable impor-
tance is derived by adapting a screening technique from experimental design.
The algorithm also improves on numerical stability in EDAs by allowing the
level of dependency modelling to be controlled. It performs better than tradi-
tional EDAs on low dimensional problems. In this paper, a modified version of
sEDA, called sEDA-lite is proposed which improves on the previous algorithm,
specifically by allowing the algorithm to scale to higher dimensional problems
using less function evaluations than sEDA.

This paper is structured as follows. In Section 2, the existing SEDA algorithm
is described. We analyse the issues arising in high dimensions when using sEDA.
In Section 3, we propose sEDA-lite to address these issues. In Section 4, we
compare the solutions of sEDA-lite with solutions of UMDA., EEDA and EDA-
MCC on a set of artificial test problems. In addition to this, the solution of
sEDA-lite is also compared with UMDA., EMNAjopa and sEDA on a couple of
real world problems. Conclusions of this paper are drawn in Section 6.

2 Screening Estimation of Distribution Algorithms
(sEDA)

The continuous global optimization problem is to find x* such that
fx") < f(x),vx €8,

where S C R" is the set of feasible solutions, f(x) is the fitness or objective
function and x = (z1,...,2,) is an individual or candidate solution vector.
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In the Screening EDA [14], variables are modeled based on their estimated
influence on the fitness function. From this, the most important variables are
then modeled using the EMNAjon,1 model (full covariance matrix), while the
variables which are least important are modeled using the UMDA, model (no
covariance), to try and capture the advantages and limit the potential problems
of both approaches. Hence, the SEDA uses a multivariate Gaussian model where
the covariance matrix contains some degree of sparseness. To select which vari-
ables to model using covariance, a technique from sensitivity analysis known as
the Morris method is used.

The Morris method [15], is based on measuring the mean and standard devi-
ation of changes in the fitness function value given perturbations of individual
variables, calculated via so-called elementary effects terms. The elementary ef-
fect for the ith variable, E;(x), is defined as follows. Let A be a pre-determined
amount to perturb each variable. For a given x,

flz1, 2o,y @i, 2 + A, ia1, ey ) — f(X
EZ(X) _ ( ) g reey by % A i+1, n) ( ) (1)
where x = (z1, %2, ...., T,) is a given starting or “baseline” vector in the solution

space. The perturbations, A are by default determined according to a full fac-
torial sampling grid of some fixed resolution or increment size. In other words,
for each variable x;, over some fixed range and increment size, the value of xz; is
changed and f is recalculated, producing a sample or set of values of F;(x).

Given a set of elementary effect values, the mean, F;(x), and standard devi-
ation, std(E;(x)) over the sample can be calculated. If this calculation is done
over an arbitrary set of points in an arbitrary order, the absolute values, |E;| are
used [4,12] and we take this approach in SEDA. A high value of F;(x*) indicates
that z; has a large average influence on the value of f. A high value of std(E;(x))
indicates that variable x; has a fluctuating influence on the value of f, which
may indicate that it is involved in interactions with other variables [15].

In sEDA, the Morris method is adapted by calculating elementary effects val-
ues using the selected population on each generation of the algorithm rather
than being based on a predetermined grid of points. Specifically, the mean
of the selected population is calculated for each dimension z;. A new set of
candidate solutions is then generated, by creating new solution vectors where
the mean value is substituted in turn for each problem variable (e.g. x' =
Liyovo s Tie1, My, Tit1, - - . ,Tp) in each individual in the selected population. This
produces n X 7 X My, new individuals, where My, is the size of the selected
population!, n is the dimension of the problem and 7 (0 < 7 < 1) is the selection
ratio, which are evaluated using f to produce a set of elementary effect values.

Given these values and their sample mean and standard deviation, sEDA
uses the concepts of dominance and Pareto optimality from multi-objective op-
timization (see, e.g. chapter 9 of [8]) to determine which variables are the most
“important”. We consider the mean and standard deviation of elementary effects
as two different (aka decision-making) criteria. One solution is said to dominate

! Rounding if M. - 7 is not an integer.
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the other if its score is at least as high for all objectives, and is strictly better
for at least one. The set of all non-dominated solutions is called the Pareto set
or the Pareto front.

A fixed fraction 7 (0 < n < 1) of the variables need to be selected for covari-
ance modeling in the SEDA. Variables that belong to the Pareto set are selected
first. If more variables are required, then those which have the minimum (Eu-
clidean) distance to the Pareto front are selected. On the other hand, if the
number of variables on the Pareto front is greater than required, then a random
subset of these variables is selected. Hence at each generation, a sparse matrix is
formed that has n x n variables? which are modeled using covariance parameters
while the remaining variables are modelled using only variance terms. The mean
vector of the selected population along with the sparse covariance matrix is then
used to generate the new population for the next generation.

2.1 Scaling of sEDA

Due to the nature of the algorithm, sEDA as described above will require a
relatively large number of function evaluations when applied to high-dimensional
problems. This is due to the fact that for each generation, the population size
is directly proportional to the dimension of the problem. Hence, the number of
function evaluations per generation is O(nMs;).

3 Scaling sEDA to High-Dimensional Problems:
sEDA-lite

In this section we describe a modified version of sEDA, called sEDA-lite. The
algorithm uses the same principles as sEDA but differs in the calculation of
the elementary effects values. As discussed in Section 2.1, using the mean of
the selected population to calculate elementary effects values in sSEDA results
in significant increase in the number of fitness function evaluations required per
generation. In sEDA-lite, the main innovation is to instead use the median of each
dimension in the selected population to calculate elementary effects values. Like
the mean, the median is representative of the center of the selected population.
However, the median is by definition located at one of the given individual points.
Hence, all calculations in Equation(1) are carried out between individuals in the
selected population (i.e. their fitness values have already been evaluated). Hence
for each generation of sEDA-lite the number of function evaluations is reduced
from Mo + (Mgt X n X T) to Mg

The median of the selected population is taken as the central/reference point
for the elementary effect calculations. Other points in the selected population
represent perturbations around this point and hence the elementary effect values
measure the sensitivity of the objective function to changes in the solution values
in the region of the search space represented by the current selected population.

2 Rounding if n x 7 is not an integer.
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The mean is also still calculated, since this is used as a parameter of the EDA
model itself.

sEDA-lite uses the same Pareto optimal concept as in sEDA, to select the im-
portant variables in the problem as the ones that have the largest mean/standard
deviation of elementary effect values. After selection, the covariance matrix for
the EDA model is formed as a sparse matrix, with non-zero covariance terms
for selected variables. This is used in combination with the EDA mean vector
(estimated from the selected expanded population) and the model is then used
to generate the new population as in a standard EDA. The process is repeated
until some stopping criterion is met.

Algorithm 2. Pseudo code for sEDA-lite

1: Given: Population size M, dimensionality n, selection parameter 0 < 7 < 1, model
selection parameter 0 < n < 1.

2: Begin (set t = 0)
Initialize population P by generating M individuals uniformly in S.

3: while stopping criteria not met do

4:  Evaluate f for population P.

5: Truncation selection: Pse; = Me; best individuals from P; My, = Rnd(M - 7) .

6: Calculate mean, p and median, m of Psg;

7:  Calculate m = median(Pse), where m = my, - , M.

8 fori=1tondo

9: for j =1 to M. do

10: Calculate E;;(x) using Eqn.1, where m is the baseline point and the per-
turbation value is given by 7 individual

11: end for

12:  end for

13:  Calculate mean(E) and std(E) over Mg perturbations in Ej;.

14:  Determine the Pareto optimal solutions/variables for objectives abs(mean(E))

and std(E). Let this number of variables be p, .

15:  Let B = Round(n - 7).

16:  If p, > B, randomly choose B variables from p,.

17:  If p, < B, select/add the next B — p, variables nearest to the Pareto front.

18:  Build X} using covariance terms for the B selected variables and variance terms
only for the remaining n — B variables

19 plx)  (u, Z0).

20:  Generate P new population by sampling from p(x).

21: end while

4 Experimental Design

To evaluate the performance of SEDA-lite, we have carried out experiments on
3 different sets of problems. The first is a set of commonly used artificial test
functions. The second set of problems are Circle in a square (CiaS) packing
problems and the third set are the 50-customer Location Allocation problems
with different numbers of facilities. While the artificial functions are useful for
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comparison with other algorithms, we also consider it important to evaluate the
technique on real-world representative problems. The problems used here are all
scalable in terms of dimensionality. They are also known to have features that
make them difficult to solve for many algorithms, e.g. they are not everywhere
differentiable and contain a large number of local optima.

4.1 Artificial Test Problems

The artificial test problems considered in this paper are taken from Dong et
al. [5]. The problems are categorized into separable unimodal (F} and F5), non
separable problems (Fj, - -, Fig) and multimodal problems (Fi1, Fi2, Fi3). The
offset values used in the test functions are same as described in [5], with the
exception of Fy and Fg. For these 2 functions, the offset values were generated
randomly. While this means the results are not precisely comparable, we gener-
ated offset values for these functions using the same formula as given in [5].

The problem sizes were 50D and 100D for each artificial test function. The
maximum number of function evaluation was set at 10000 x n. The population
sizes used in [5], were tested for sEDA-lite (i.e., 200, 500, 1000 and 2000). From
this, a population size of 2000 was used for all functions except F} and Fb,
where 200 was used since these very simple functions do not require a large
population. Initially, rough experiments were conducted to determine reasonable
algorithm parameter values: 7 = {0.1,0.2,0.3,0.5} and n = 0.1 were trialled,
though not explored exhaustively. The parameter values that seemed to work
best for each set of problems were then used. The algorithm stopped when the
difference between the global optimum and the optimal values obtained from
the algorithm is 1E-12 or it attained maximum number of function evaluations.
The results reported are based on 25 repeated trials.

4.2 Circle in a Square Problem

Given the 2D unit square and a pre-specified number of circles, n., constrained
to be of equal size, the circles in a square (CiaS) problem is to find an optimal
packing; i.e. to position the circles and compute the radius length of the circles
such that the circles occupy the maximum possible area within the square. All
circles must remain fully enclosed within the square, and cannot overlap. The
problem can be formulated as finding the positions of n, points inside the unit
square such that their minimum pairwise distance is maximized:

d,,, = maxmin || w! — wl l|2 (2)
) i#£]
wi e [0,1]%i=1,...,n. (3)

The feasible search space of a CiaS problem is defined by the unit hypercube
[0,1]?me C IR?", and solutions outside this are infeasible. To ensure the gener-
ation of such candidate solutions by the EDAs, any value in a solution vector
generated that lies outside the feasible region is reset to the (nearest) boundary.
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For the (CiaS) problems, experiments were conducted on the number of cir-
cles, ranging from 2,...,50. The problem dimensionality n is equal to 2 X n..
UMDA., EMNA b1, SEDA and sEDA-lite were implemented on this problem.
The population size of all the algorithms was set to 2000 except sEDA, where
the population was 50 times n. The value of 7 for all the algorithms is set to 0.2.
Since EMNA oba1 is performing better than UMDA, in CiaS problem discussed
in [14], the value of 1 as 0.5 was set for sSEDA and sEDA-lite. The algorithm is
stopped after 2E+406 function evaluations or if the difference between the best
fitness value and the global optimum is 1E-04. The results were computed based
on 25 repeated trials.

4.3 Location Allocation

In the continuous location allocation problem [18], the aim is to determine the
location of ny facilities in a 2D Euclidean space in order to serve customers at ¢
fixed points so that the distances between each customer and the nearest facility
are minimized [3]. There is no restriction on the capacity of the facilities to serve
customers.

The (uncapacitated, continuous) location-allocation problem is formulated as
follows:

min Z mind(X;, A;)

Jj=1

where X is the vector consisting of the coordinates of the facilities. For ny
facilities problem, there are 2ny variables for optimization. The X;th facility has
coordinate values (;, Zn,44). A is the vector consisting of the given coordinates
of the customers in the problem. For the A;th customer the coordinate values are
represented as (a1;,a2;). d (X;, A;) is the Euclidean distance from the location
of facility X;, to the location of a customer at fixed point A;. For ny > 1, this
problem is known to be non convex and generally contains a large number of
local minima [3].

In this paper we consider the widely used (e.g.[3,17]) 50-customer problem
with a unit weight value for all the customers. The data A; for the problem
is given in [9]. For the 50-Customer problems, experiments were conducted
using, ny = 5,10, 15, 20,25, 35. The dimensionality of the problem n = 2 x ny.
UMDA., EMNAobal, SEDA and sEDA-lite were compared on these problems.
The population size of all the algorithms was set to 2000 except sEDA, where the
population was 50 X n to allow the algorithm a sufficient number of generations
to converge. The value of 7 for all the algorithms was 0.3, while the value of 5
was 0.1 for sEDA and sEDA-lite. The maximum number of function evaluations
was 10000 x n. The results are over 25 repeated trials.
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5 Results

5.1 Artificial Test Problems

The results of SEDA-lite are compared here with the values of UMDA., EEDA
and EDA-MCC which are taken from [5]. The results of EMNAgoba1 are not
repeated since it was previously found to perform worst on the test problems [5].
Comparative results for sEDA are also not reported here since it requires a
prohibitive number of function evaluations for these larger-scale problems. The
comparative results between UMDA,., EEDA, EDA-MCC and sEDA-lite are
listed in Table 5.1.

The results of the experiments for separable problems (F; and F5), show that
all the algorithms for 50D and 100D can solve these problems without difficulty.
Functions from Fj ... Fjg are non-separable problems with only a few local op-
tima. On these functions, UMDA . and EEDA do not show the best performance.
The performance of EDA-MCC is significantly better than rest of the algorithms
in problems F3 and F5. Since the offset values are generated randomly, the pre-
vious solutions of F; and Fg for EEDA and EDA-MCC are not reported here.
We recomputed the results of UMDA, on these functions and compared with
sEDA-lite for the same offset values. sEDA-lite clearly outperforms UMDA.. The
results also show EDA-MCC and sEDA-lite outperformUMDA, in 50D F7 and
Fg functions. Solution comparison Table 5.1 shows that EEDA performs well
on the 50D Fjg function. Overall, from functions F3 to F}g, the performance of
sEDA-lite is similar to EDA-MCC.

Functions from Fj; to Fi3 are multimodal functions. In these functions EDA-
MCC and EEDA do not perform well. The performance of UMDA,. and sEDA-
lite are similar for function Fi;, however, on the functions Fj, and Fi3, the
performance of sEDA-lite exceeds UMDA.. It is to be expected that there would
be some variability in the relative performance of the algorithms. Overall, sEDA-
lite is generally competitive and in some cases provides the best performance for
these problems.

5.2 Results for the Circle in a Square (CiaS) Problems

The performance of the algorithms on a large set of CiaS problems (4D - 100D)
is presented in Figure 1. The x-axis denotes the problem size (n.) while the
y-axis is a performance ratio given by d,/f(zy), where d,, is the known global
optimum and f(z,,) is the solution found by the algorithm.

The results show that up to n. = 16, UMDA,, sEDA and sEDA-lite perform
similarly. EMNAioha1 does not perform as well, likely because it requires a larger
population size and/or number of function evaluations. When 16 < n. < 24,
sEDA actually performs slightly better than the other algorithms, but its per-
formance then quickly degrades when n. > 24. This is when the total budget
of function evaluations for this experiment means that sEDA cannot perform
sufficient generations, due to the requirement for calculating elementary effects
values during execution. However sEDA-lite does not suffer from this, maintain-
ing performance that is a little better than UMDA. up to n. = 50.
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Table 1. Solution quality comparison. Each cell contains the mean and standard de-
viation of the difference between the best fitness value and the global optimum. Bold
font represents the best result. A “+” indicates a statistically significant difference
(t-test, unequal variances, 0.05 level) when compared with sEDA-lite. A “-” sign indi-
cates no significant difference. ¢ indicates previous results for the algorithms which are
incomparable due to the random values of the offset.
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5.3 Results for the 50-Customer Location Allocation Problem

Table 5.3 shows the results for UMDA ., EMNAioba1, SEDA and sEDA-lite. The
performance of sEDA-lite is relatively good, particularly for high-dimensional
problems. While it is possible that sSEDA and EMNA,ioha could give similar
(or even better) performance, the amount of function evaluations required is
prohibitive. Note however that there is some difference between these average
performance results and the known optimal values. Also, these results are not
as good as some of the previously reported results [3,17].

Table 2. Solution quality comparison (mean and standard deviation) for 50 Customer
problem. Bold font represents the best result. A “4” indicates a statistically significant
difference (¢-test, unequal variances, 0.05 level) when compared with best result. A “-”
sign indicates no significant difference.

(ny) Optimum UMDA. EMNAiobal sEDA sEDA-lite

5 72.2369 72.688+0.551(+) 77.454+3.650(+) 72.560 +0.591 72.54240.543(-)
10 41.6851 43.401+0.823 52.539+2.753(+) 47.9304£3.809(+)  43.61440.764(+)
15 27.6282  29.295+0.948(+) 42.991+3.171(+) 49.376+£3.224(+) 28.952+1.080
20 19.3560 21.135+0.494(+) 36.292+2.559(+) 48.554+9.155(+) 20.889+0.321
25 13.3016  14.653+0.705(-) 34.402+2.772(+) 50.093 +£16.515(+) 14.218+0.492
30 8.7963 10.104+0.970(+) 31.2374£2.173(+) 49.796+£20.015(+) 9.5924+0.538
35 5.0483 7.364+0.605(-)  29.917+2.293(+) 47.7714+20.717(+) 7.246+0.757

6 Summary

This paper has proposed a modified version of the sSEDA algorithm called sEDA-
lite. Like the original algorithm, sEDA-lite is a Gaussian-EDA with a sparse co-
variance matrix model, that uses a screening technique to predict the important
variables which is subsequently used to control covariance modelling. However,
sEDA-lite achieve this without using any additional objective function values
per generation to carry out the modelling. As a result, it can be effectively ap-
plied to high-dimensional problems without a prohibitive number of function
evaluations. Experimentally, sEDA-lite has been shown to be competitive with
UMDA., EEDA, EDA-MCC, EMNA o1, and sEDA in various problems.
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Abstract. This paper analyses the data clustering problem from the
continuous black-box optimization point of view and proposes method-
ological guidelines for a standard benchmark of clustering problem
instances. Clustering problems have been used many times in the litera-
ture to evaluate evolutionary, metaheuristic and other global optimiza-
tion algorithms. However much of this work has occurred independently
and the various experimental methodologies used have produced results
which tend to be incomparable and provide little collective wisdom as to
the difficulty of the problems used, or an objective measure for compar-
ing and evaluating the performance of algorithms. This paper surveys
some of the clustering literature and results to identify issues relevant
for benchmarking. A set of 27 problem instances ranging from 4-D to
40-D and based on three well-known datasets is identified. To establish
some pilot results on this benchmark set, experiments are presented for
the Covariance Matrix Adaptation-Evolution Strategy and several other
standard algorithms. A web-repository has also been created for this
problem set to facilitate better experimental evaluations of algorithms.

Keywords: Algorithm Benchmarking, Continuous Black-box Optimiza-
tion, Clustering.

1 Introduction

In evolutionary computation and metaheuristic optimization, an enormous num-
ber of algorithms have been developed. Since no algorithm is superior in the the-
oretical, No Free Lunch sense, in practice the performance differences we observe
depend on how well the mechanisms of the algorithm match the structure of the
problem landscape. A key step towards understanding the matching between
problems and algorithms is to develop better benchmark problems and more
rigorous approaches to the experimental analysis of algorithms. Unfortunately,
the dominating paradigm in the literature has been to continually develop new
algorithm variants and to evaluate these techniques in isolation. For continuous
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black-box optimization, artificial test functions (e.g. Sphere, Rastrigin, Rosen-
brock) have been used hundereds of times, but a question such as “what is the
best performance of a black-box optimization algorithm on function f, given
10° functions evaluations?” seems to be difficult (if not impossible) to answer
using the literature. The situation is even more problematic, because subtle dif-
ferences in experimental settings in different papers (e.g. using a different bound
on the feasible search space) mean that results are often not strictly compara-
ble. Recently, research has begun to focus more on such experimental issues.
For example, the Black-Box Optimization Benchmarking (BBOB) problem set!
resolves many of these issues by standardizing many aspects of the experimental
setting. However, it is very important to also evaluate algorithms on real-world
problems, since it is difficult to know how well artificial test problems represent
real-world problems and hence to what extent algorithm performance on artificial
problems is indicative of real-world performance. It can be difficult to use real-
world problems for algorithm benchmarking because real problems may require
expert domain knowledge to configure, or may come with additional complexities
that are not part of the basic optimization algorithm (e.g. complex constraints).
Ideally, problems that are real-world “representative” while being convenient for
benchmarking should provide a valuable contribution to experimental research
practice.

This paper examines data clustering as a useful source of continuous, black-
box benchmark problems. In Section 2, the sum of squares clustering problem
is defined and its key properties discussed. Clustering problems have previously
been used in the literature to test optimization algorithms: Section 4 reviews
some of this literature and discusses why it is difficult to compare with previ-
ously reported results. A specification is proposed to describe clustering prob-
lem instances and a set of problem instances defined (and made available via
the web). To establish some baseline results for future comparison, a number of
commonly-used algorithms are applied to the clustering problem sets. The ex-
periments are described in Section 5 and Results presented in Section 6. Where
possible, the results are also compared with previous results from the literature,
revealing some surprising insights. The work is summarised in Section 7.

2 Clustering

The sum of squares clustering problem (see, e.g.[13]) can be stated as follows.
Given a set X = {x1,...,x,} C IR? of n data points, find a set of k cluster

centers C = {ci,...,c;} € IR? to minimize:
n k
FCIX) =D bijllxi — ¢
i=1j=1
where _ )
p = 41 i llxi— el = ming [[x; — ¢
“d 0 otherwise.

! http://coco.gforge.inria.fr/doku.php


http://coco.gforge.inria.fr/doku.php

Clustering Problems for Benchmarking Optimization Algorithms 133

The problem variables are the coordinates of the cluster centres in the data space.
Let the d-dimensional coordinates of ¢; = (Ya(i—1)41, Yd(i—1)+2; - - - » Yas), then we
have an unconstrained, continuous optimization problem of dimensionality dk:

min f(y),y € R%

A clustering problem instance is therefore defined by a dataset, X and a value
of k.

An equivalent problem from operations research is the (continuous, uncapaci-
tated) location-allocation problem , also known as facility location or multisource
Weber problem [2,9]. Given a set of customers to be serviced by a set of facilities,
the problem is to position the facilities to optimize a criterion measuring overall
service. Under the following conditions:

— the set of customer locations is given by &,

— the set of facility locations be C,

— assuming equal customer weightings, unlimited capacity of facilities to pro-
vide service and Euclidean distances between customers and facilities,

the problem then reduces to the sum of squares clustering problem.

Clustering is a fundamental task in machine learning, data analysis and oper-
ations research. Finding a global optimum is known to be NP-hard, even in the
restricted cases where d = 2 or k = 2. A large number of algorithms have been
proposed for clustering, though there is little doubt that the k-means algorithm
is the most widely known and used [11]. From an optimization perspective, k-
means is a local iterative optimization algorithm which follows a non-increasing
trajectory over f. It is not a black-box algorithm, nevertheless its popularity
makes it frequently used in experimental comparative studies. Note also that
solving the optimization problem (i.e. locating cluster centres) is often not the
final goal of clustering. Further analysis might include studying which data points
are assigned to which cluster centre, or producing a classifier, where each cluster
represents a class in the data set and the class label of future data points can
then be predicted (e.g. using the minimum distance from the cluster centres).

3 Why Use Clustering Problems for Black-Box
Optimization Benchmarking?

Clustering problems have a number of properties which suggest that they might
provide an extremely useful source of benchmark problems for the evaluation
and comparison of algorithms:

— They seem to be generally challenging to solve.

— They are scalable in dimensionality (via d and k).

— They are “real-world” problems in data analysis (i.e. datasets can come from
real-world problems).

— They are unconstrained, meaning that black-box algorithms can be readily
applied without the need for a constraint-handling mechanism.
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— They can be implemented relatively simply and do not require a large amount
of problem-domain-specific knowledge to understand.
— The objective function is not expensive to evaluate.

There are currently few (if any) benchmark problem sets that have all of the
above properties. This suggests an exciting opportunity to improve on and in-
crease the utility of experimental black-box algorithm evaluation and comparison
by building a standardised set of clustering problem instances.

4 Black-box Optimization Approaches to Clustering

Given the fundamental nature of the clustering problem and data analysis, it is
not surprising that hundreds of clustering algorithms have been proposed in the
literature. At the same time, general-purpose metaheuristics and other optimiza-
tion techniques have also been applied to clustering problems. This paper does
not attempt an exhaustive review of all this work, but rather aims to extract
the important issues to be considered in developing a specification of clustering
problems for black-box optimization benchmarking.

4.1 Difficulties in Comparing with Previous Results

One of the major difficulties in trying to compare an algorithm with previous
work stems from the lack of standard in the way authors present their results.
Clustering results are presented in a variety of ways in the literature [13]. While
the sum of squares objective function is frequently used, the actual function
values (and the number of evaluations made by the algorithm) obtained are
sometimes not reported. Instead, measures of cluster shape around the cluster
centres produced have been used (e.g. the Rand index is used by Chang et al.
to evaluate their genetic algorithm variant [3]). When the intended application
is classification, measures such as classification accuracy on the data are used
(e.g. Liu et al.[7] evaluate a fuzzy C-means, genetic algorithm based fuzzy C-
means and an immunodominance clonal selection fuzzy C-means algorithm in
this way).

While clustering problems have been widely used to compare algorithms, the
datasets that have been used also vary from paper to paper. Some authors gen-
erate artificial datasets with known structure/distributions. There are a large
number of benchmark datasets available in machine learning, and different au-
thors select different datasets to use. Focussing on specific datasets would clearly
improve the comparability of results for black-box optimization algorithms.

Finally, there are many experimental factors that are not specific to clustering
problems that can impact on future comparisons of results. The fundamental
performance results are in terms of the best objective function values found
(or statistics of such values over multiple trials) and the number of function
evaluations used. Presenting results in figures has several advantages, but on
the other hand it is often difficult to read off numerical values from a graph
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for comparison. Full details of the experimental configuration (e.g. algorithm
parameter settings, termination criteria, number of repeated trials) are essential
to permit fair comparison and reproduction of results.

4.2 Results Selected for Comparison

The literature was further reviewed for experimental results that could be com-
pared in a black-box optimization context. A representative number of ap-
proaches were identified:

— Maulik [8] develops a real-valued genetic algorithm (GA) for clustering and
compares with k-means.

— Ye and Chen [14] apply particle swarm optimization (PSO), ant colony op-
timization (ACO) and a honey bees algorithm.

— Kao and Cheng [6] develop an ant colony optimization algorithm and com-
pare it with a previous ACO clustering algorithm (due to Shelokar et al.[10])
and k-means.

— Fathian et al.[5] present a honey bee mating algorithm and compare it with
ACO, a GA, Tabu search (TS) and simulated annealing (SA).

— Taherdangkoo et al.[12] propose a blind, naked mole-rats algorithm and com-
pare it with k-means, two GA variants, PSO, ACO, simulated annealing and
artificial bee colony algorithms.

These papers have each used different datasets to evaluate and compare algo-
rithms. One problem instance is common across all the papers - these results are
compared in Section 6.1.

4.3 Clustering Problem Instances

In the literature, many different datasets have been utilized to evaluate and
compare clustering algorithms. Sometimes, authors generate artificial test data
with known clustering structure. This can be useful, for example to visualize
results. However if the exact dataset used is not available, then results can only
be compared qualitatively. Benchmark datasets have also been widely used, such
as those from the UCI Machine Learning Repository [1]. In particular, Du Merle
et al.[4] used an interior point algorithm to compute approximate global opti-
mum values for problem based on the Iris, Ruspini and German Towns (Spath)
datasets. This is useful because we can assess the performance of algorithms
relative to the optimal value on these problems. These datasets have also been
used in other papers, therefore the following set of problem instances is used:

— The Iris dataset, with d = 4, k = 2,. .., 10 and initial search space [0.1, 7.9]*.

— The Ruspini dataset, with d = 2, £ = 2,...,10 and initial search space
[4, 156]4%.

— The German Towns dataset, with d = 3, k = 2,...,10 and initial search
space [24.49, 1306024,
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Clustering Problem Specification. To be useful for black-box optimization
evaluation, a clustering problem should be specified with the following elements:

1. A dataset, X of dimensionality d.

2. A value of k.

3. An initial bounded search space, which contains the global optimum. This
can be done by using the minimum and maximum value in the dataset as
the upper and lower bounds of the search space. For simplicity the overall
minimum and maximum are used for every variable. A tighter search space
could consider the minimum and maximum of each variable independently,
however the implementation would be more complex.

To facilitate future use of these problems, a web repository has been created at
http://realopt.uqcloud.net/crwr.html. The repository records the specifications
of each problem instance, the global optimum (solution vector and objective
function value) and a copy of the dataset. This will be extended to record results
on these problems from the literature.

5 Experimental Details

To make a comparison and establish some results for the selected clustering
problems, the following algorithms were evaluated:

— CMA-ES: the Matlab implementation of the Covariance Matrix Adaptation
Evolution Strategy available from
https://www.Iri.fr/~hansen/cmaes inmatlab.html was used with default pa-
rameter settings (as recommended, the initial search variance was set to 2/3
of the search space.

— CMA-ES (50,100): the same implementation of CMA-ES but with a (larger)
population size of 50.

— NM: the Nelder-Mead simplex algorithm, as implemented in the Matlab
fminsearch function. Default parameter settings were used, with termina-
tion criteria extended so that the algorith ran until a tolerance of change
in variables or function values was less than 10719, or if 3 x 10° function
evaluations were reached. The algorithm is initialized at a random point in
the search space for each trial.

— RS: uniform random search over the search space. The algorithm was given
10° function evaluations.

— KM: the k-means clustering algorithm. Cluster centers were initialized to be
randomly selected data points (this is probably the most common method
in the literature but there are many other possibilities [11]).

The algorithms were chosen firstly because they can be applied with little set-
ting of internal parameters. In addition: CMA-ES is a well-regarded black-box
algorithm; NM is the standard Matlab solver; KM is a standard non-black-box
clustering algorithm; RS provides a useful baseline. Each algorithm was run for
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50 restarts. Note that the different algorithms ran for different numbers of func-
tion evaluations. The intention was not to impose a fixed budget of function
evaluations across the algorithms but to allow them to use the amount of re-
sources they request to“converge”. Results on these problems can be of interest
for any reasonable budget of function evaluations. Future research may choose to
focus on a “limited budget” scenario or on finding high quality solutions using a
possibly large number of function evaluations. Different algorithm specifications
will be more suitable to different budgets of function evaluations and any result
that improves upon previous results makes a worthwhile contribution.

6 Results

The experimental results are shown in Tables 1 and 2. Overall, CMA(50,100)
gave the best performance, with average values that were closer to the optimal
value that the other techniques. It required between 10000 and 50000 function
evaluations. CMA used a smaller population size (determined automatically)
and used between 2000 and 25000 function evaluations. The results were very
similar on some problems (e.g. for Ruspini n = 4,6,10) but an order of magni-
tude worse on others (e.g. German, n = 8 —20). The NM results are considerably
worse across the problem sets than CMA(50,100) and worse than CMA for the
Iris and Ruspini problems, but (interestingly) better on the German Towns prob-
lems. As a local search algorithm, it does however use a much smaller budget
of function evaluations: between 1000 and 8000. As a completely non-local algo-
rithm, RS outperforms the standard Matlab solver (NM) on most of the Ruspini
problem instances! Finally, KM as a non-black-box solver has a considerable
advantage over the other algorithms. It converges very quickly, taking less than
20 iterations/function evaluations across the problems tested. Its performance is
relatively good, however CMA(50,100) still provides better performance on all
problem instances! This is an impressive result for a black-box solver and ex-
perimentally demonstrates that metaheuristics are able to outperform problem-
specific algorithms, and that global/population-based search would seem to lead
to results that are difficult to obtain with a local/trajectory-based algorithm.
With such small requirements for function evaluations, large amount of restarts
could be performed for KM. Nevertheless the results here over 50 runs at least
indicate that the fitness landscapes of clustering problems contain structure that
causes problems for the standard solver in this problem domain.

On most problems (shown with bold), CMA(50,100) found the global opti-
mum on at least one of the 50 trials. The exceptions were some of the larger
problems on the German Towns problems. It is an open question to establish
results on these problems to see how many functions evaluations are required
to locate the global optimum. KM finds the global optimum for around half
of the problems (lower dimensions) and CMA and NM do so for some of the
smaller problem instances. Figs 1-3 compare the average fitness performance
of the algorithms over the problems from each dataset. Results are given as a
performance ratio with the global optimum value for each problem instance.
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Table 1. Results for clustering problems. Problem instances are defined by a dataset
(D), i.e. Iris (I), Ruspini (R) or German towns (G), together with the problem dimen-
sionality (n), where n = dk. Shown are mean and standard deviations over 50 trials
of each algorithm. The mean and average number of function evaluations (#f) is also
shown for each algorithm. A result is in bold if one or more of the 50 trials located the
global optimum (f*) to at least 15 significant figures.

Dn f* CMA(50,100) CMA(50,100) #f CMA CMA #f

I 8 1.52348e02 1.523480e02(0.0e00) 1.1168e04(2.9¢02) 2.68733e02(2.2e02) 2.41780e03(2.1e02)
12 7.88514e01 7.885144e01(0.0e00) 1.7136e04(5.7¢02) 1.96530e02(1.8e02) 3.77214e03(5.3¢02)
16 5.72285e01 5.922328e01(5.0e00) 2.1938e04(7.4e02) 1.26181e02(8.8e01) 4.98944€03(5.9¢02)
20 4.64462e01 4.904783e01(2.3e00) 2.5092e04(9.5¢02) 1.20999€02(8.9¢01) 6.58952e03(9.8e02)
24 3.90400e01 4.076697e01(3.5e00) 2.7466e04(1.3¢03) 1.06623e02(8.9¢01) 8.39298e03(1.3e03)
28 3.42982e¢01 3.554887e01(1.4e00) 3.0220e04(1.1e03) 8.90713e01(3.3e01) 9.90306€03(1.2¢03)
32 2.99889e¢01 3.232285e01(2.1e00) 3.3250e04(9.3¢02) 8.84456e01(3.3e01) 1.20515e04(1.8e03)
36 2.77861e01 2.946070e01(1.9€00) 3.6432e04(1.4e03) 8.38895e01(2.9¢01) 1.46102e04(2.4e03)
40 2.58341e01 2.705470e01(1.3e00) 3.9214e04(1.5¢03) 8.00406e01(3.2e01) 1.67537e04(3.0e03)

R 4 8.93378¢04 8.93378e04(0.0e00) 1.3842¢04(4.2¢03) 8.93378e04(0.0e00) 1.4188¢03(3.0e02)
6 5.10635¢04 5.11278e04(4.4€01) 1.9382¢04(2.9¢03) 5.11094e04(4.8e01) 3.2726e03(3.2¢02)
8 1.28811e04 1.28811e04(0.0e00) 1.6822¢04(5.1€03) 1.66519e04(1.2e04) 2.8380e03(7.9¢02)
10 1.01267e04 1.10334e04(6.3e02) 2.0862¢04(4.9¢03) 1.14295e04(1.2e03) 3.1720e03(2.2¢02)
12 8.57541e03 8.84859e03(6.8e02) 2.2022¢04(1.1e03) 9.86935¢03(9.6¢02)  3.8949¢03(2.1€02)
14 7.12620e03 7.55527€03(7.4€02) 2.5912¢04(2.3¢03) 8.76290e03(1.4€03)  4.9135¢03(7.2¢02)
16 6.14964¢03 6.43566e03(3.5e02) 2.8792¢04(2.7¢03) 7.75958¢03(1.5¢03) 5.7632e03(6.7¢02)
18 5.18165¢03 5.64378e03(2.0e02) 3.1892¢04(4.3¢03) 6.67363e¢03(1.1e03) 6.1772e03(7.1€02)
20 4.446.28¢03 4.80930e03(2.5€02) 3.1822¢04(2.4€03) 6.87915e03(1.4€03) 7.2632e03(1.5e03)

G 6 6.02546ell 6.02547e11(0.0e00) 1.6282e¢04(4.7e03) 1.55257¢12(8.2¢11) 3.6002e03(4.5e02)
9 2.94506ell 3.08336e11(2.9e10) 2.2952e04(5.5¢03) 1.04493e12(8.0ell) 5.4150e03(8.9¢02)
12 1.04474ell 1.42481e11(8.0e10) 2.8652e04(8.1e03) 1.05834e12(7.8¢el1) 7.3940e03(1.7€03)
15 5.97615e10 7.46629e10(1.5e€10) 3.2272e04(5.0e03) 8.33722e11(7.2e11) 1.0106e04(2.4e03)
18 3.59085¢e10 4.80932e10(9.0e09) 3.3402e04(1.5e¢03) 5.99661e11(6.0e11) 1.19768¢04(1.4e03)
21 2.19832e10 4.40172e10(9.4e09) 3.9092e04(2.6e03) 4.31552e11(1.5e11) 1.44593e04(1.8e03)
24 1.33854e10 3.11688e10(1.2e10) 4.0962e04(2.6e03) 4.17723e11(1.6e11) 1.82163e04(1.4e03)
27 7.80442e09 2.26611e10(1.2¢10) 4.6382e04(3.5e¢03) 4.05634e11(1.8e11) 2.09944€04(1.9¢03)
30 6.44647e09 2.80614e10(1.2e10) 4.9872e04(5.8e03) 4.19464e11(1.7ell) 2.3522e04(3.2e03)
8 T T —

I CMA(50,100) _
I CVA _ M

o6 [ KM 3 |

= [ INM . M

o [ IRs

(0]

2

c 45 B

e

—

Ke]

o

o 2f i
O I

8 12 16 20 24 28 32 36 40

Problem Dimensionality (n)

Fig. 1. Performance results (mean best fitness) for the Iris (I) dataset problems, as a
ratio with the globally optimal value (e.g. a value of 2.5 means the average best solution
found by an algorithm was 2.5 times the value of the global optimum
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Table 2. Results for clustering problems. Problem instances are defined by a dataset
(D), i.e. Iris (I), Ruspini (R) or German towns (G), together with the problem dimen-
sionality (n), where n = dk. Shown are mean and standard deviations over 50 trials
of each algorithm. The mean and average number of function evaluations (#f) is also
shown for each algorithm. A result is in bold if one or more of the 50 trials located the
global optimum (f*) to at least 15 significant figures.
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Fig. 3. Performance results (mean best fitness) for the German towns (G) dataset
problems, as a ratio with the globally optimal value

The trends as problem dimensionality increases give some indication of the scal-
ing behaviour of the performance of each algorithm. As expected, random search
steadily increases (given a fixed budget of function evaluations). Some individual
problem instances also appear to be particularly challenging for the algorithms
tested. For example, the 8D Ruspini problem appears more difficult for KM and
CMA, than both the 6D and the 10D Ruspini problem instances (Fig.2). Note
also that the German towns problems lead to poor performance ratios for the
algorithms compared to the other datasets (in Fig.3 the y-axis is on a log scale).
The comparative results in Figs 1-3 give a general indication of performance,
but it is important to note that average fitness values are a relatively gross sum-
mary of the results and may hide important details. For example, the average
performance of CMA on the 12D and 15D German towns problems (Fig.3) is
slightly worse than random search! However, Table 1 shows that the standard
deviation of CMA results on these problems is relatively large. Further inves-
tigation of these results revealed that many trials found solutions much better
than the average, but a number of other trials converged to a poor solution
considerably worse. Hence, the average is a poor summary of such results.

6.1 Comparison with Previous Results

Table 3 shows the results reported by previous papers for one of the problem
instances tested, Iris with k& = 3. A variety of algorithms have been tested on
this problem. Comparing these results with those from above, the most striking
thing is that all of these reported results are relatively poor. The average ob-
jective function values are far from optimal and are significantly outperformed
by CMA(50,100). These results tend to be based on fewer function evaluations,
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but the papers do not seem to be targetting a “low budget” scenario, but rather
evaluating the potential of the algorithms. Another significant anomaly is the
differences between the k-means (KM, SBKM) results reported in these papers
(average values between 97 and 101) and the result obtained in this paper for
KM on this problem (8.79682¢01(2.3¢01)). There may be a difference in the ini-
tialization technique used which is not mentioned in all papers. In any case,
there are clearly unresolved questions here, demonstrating the need for the de-
velopment of standard specifications and experimental practice when evaluating
black-box optimization algorithms.

Table 3. Previous results for the Iris (k=3, n=12) problem. A question mark (?) means
that it is not clear from the paper what value was used in the experiments.

Reference Algorithm fave Evals
8] GA 97.10077 (5 times!) 10*
[8] KM (best trial of 5) 97.204574
[14] KM 98.1872 ?
[14]  Fuzzy c-means 96.9280 ?
[14]  AKPSO 96.7551 ?
6] KM 99.84 10*
[6]  Shelokar ACO 97.78 10*
6] ACOC 97.22 10*
[5] HBM 96.95316 11214
[5] ACO 97.171546 10998
[5]  GA 125.197025 38128
[5] TS 97.868008 20201
[5] SA 97.134625 29103
[12]  SBKM 101.3672 3e04(?)
[12]  GAPS 97.3868 3e04(?)
[12]  VGAPS 96.2022 3e04(?)
[12]  PSO 96.0176 3¢04(?)
[12]  ACO 99.9176 3¢04(?)
[12] SA 101.4574 3¢04(?)
[12] BNMR 95.0927 3¢04(?)

7  Summary

This paper has examined sum of squares clustering problems as a source of
real-world benchmark problems for the evaluation and comparison of black-box
optimization algorithms. It was shown that clustering problems have many useful
properties for benchmarking. To facilitate better comparisons of algorithms and
experimental results, a specification was provided for clustering problems and a
web repository has been created. Experimental results were presented on a set of
27 clustering problems and some comparisons made with existing results in the
literature. It is intended that future work will build on and add to the problems
specified here, with additional datasets. Also, future research should be able to
make better use of published experimental results on clustering problems.
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Abstract. Differential evolution (DE) is a very powerful and simple
algorithm for single- and multi-objective continuous optimization prob-
lems. However, its success is highly affected by the right choice of pa-
rameters. Authors of successful multi-objective DE algorithms usually
use parameters which do not render the algorithm ¢nvariant with re-
spect to rotation of the coordinate axes in the decision space. In this
work we try to see if such a choice can bring consistently good perfor-
mance under various rotations of the problem. We do this by testing a
DE algorithm with many combinations of parameters on a testbed of
bi-objective problems with different modality and separability charac-
teristics. Then, we explore how the performance changes when we rotate
the axes in a controlled manner. We find out that our results are con-
sistent with the single-objective theory but only for unimodal problems.
On multi-modal problems, unexpectedly, parameter settings which do
not render the algorithm rotationally invariant have a consistently good
performance for all studied rotations.

Keywords: differential evolution, rotational invariance, multi-objective
optimization, parameter analysis.

1 Introduction

Differential evolution [6] started as a simple single-objective continuous optimiza-
tion heuristic. The need for a versatile multi-objective optimizer has motivated
researchers to generalize the basic algorithm for multi-objective problems. Now
we have a great number of multi-objective DE variants. Many of them use the
same mechanism to generate new individuals. In a problem with n variables a
new individual is created using a crossover variation operator which randomly
selects k; k < n variables which are perturbed. The magnitude of the mutation
is generated by scaling a difference of randomly chosen individuals.

Many research papers on DE such as [1] or [9] provide little insight into how
the authors chose the parameters for their benchmarking. We find this striking
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© Springer International Publishing Switzerland 2014
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since many authors choose their parameters such that the crossover operator
perturbs only a small number of variables in an existing individual. In other
words, the search for the Pareto optimal set proceeds along the coordinate axes.
Since these algorithms perform very well [1][9], we have a suspicion that this
may be due to some characteristic of the problem, such as separability, that
makes it easy to optimize along the axes. This would mean that if the axes are
transformed, the algorithm should lose some performance.

Very strict warning against the practice of perturbing a small number of vari-
ables at a time has been raised as soon as 1996 by Salomon [8]. Salomon empiri-
cally demonstrated that the stellar performance of many popular single-objective
genetic algorithms owes to the fact that most of the benchmark functions were sep-
arable and that the low mutation rate caused them to be optimized one compo-
nent at a time. Once Salomon stripped the separability by rotating the principal
axes of the benchmark functions, many algorithms were significantly slowed down,
while some failed to converge completely. Salomon’s theoretical results state that,
in some cases, the probability of finding the global optimum can drop below that
of random search. We are concerned that the same is true for the multi-objective
realm since many authors perform their experiments with separable test functions.

In DE the number of variables that are perturbed is controlled by a param-
eter. If all variables are perturbed, the algorithm has the same performance
regardless of rotation. Let us have a parameter setting, that perturbs only a
small proportion of the variables, which outperforms a setting that perturbs all
variables. In this work we attempt to answer this question: Is this exceptionally
good performance on a problem with a particular alignment of the coordinate
axes balanced by exceptionally bad performance on a different alignment?

We do this empirically by observing the performance of a simple multi-
objective algorithm DEMO (Differential evolution for multi-objective optimiza-
tion) [9] on a bi-objective subset of the WFG (Walking Fish Group) test suite [3].
We run all our experiments with a fixed population size and a fixed number of
variables, while varying the parameters. Then we gradually rotate the problems
in a controlled manner and observe the new behavior.

The answer to our question is, unexpectedly, negative. We find a statisti-
cally significant difference between the performance on the rotated problems
and the original ones. Closer inspection reveals that a systematic performance
loss happens when we rotate the separable problems, but the performance is
still significantly better than for a rotationally invariant algorithm. We find that
this happens for multi-modal problems, while single-modal problems exhibit the
behavior we would expect from the work of Salomon.

In the following section we provide background information on DE and on the
previous related work on DE parameters. In Section 3 we introduce the exper-
imental design, where we explain which problems are used and why were they
chosen. In addition we introduce a new performance metric called the relative
hypervolume, and explain the controlled manner in which the rotations are gen-
erated. In Section 4 we present our data along with a discussion. Finally, in
Section 5, we present the conclusion.
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Algorithm 1. Modified DEMO [9] algorithm

1 initialize P = {X1, ..., Xn} uniformly randomly in the decision space
2 for generation := 1 to Gz do Evolutionary loop
3 for target := 1 to N do Generational loop

4 randomly generate mutually distinct 71, r2, 73 # target
5 Xmutant 1= Xrl + F(Xrg - Xr\;)
6 randomly generate inv € {1,...,n}
7 for i:=1 ton do
8 if rand(0.0;1.0) < Cr or i = inv then
9 Xtrial,i = Xmutant,i
10 else
11 Xtrial,i = Xtarget,i
12 end
13 end
14 project Xirial to decision space
15 if Xtarget dominates Xirial then
16 discard Xirial
17 else if Xiiia dominates Xiarger then
18 replace Xtarges With Xirial
19 else if Xiarget and Xirial are mutually non-dominated then
20 add Xiyia1 to the end of the population
21 end
22 end

23 Trim the P to size N using non-dominated sorting[9] and MNN diversity[4]
24 end

2 Background

2.1 Differential Evolution

In this section, we describe the variant of DE which we use in this work. It is a
slightly modified version of the DEMO algorithm [9] described in Algorithm 1.
The modified parts are highlighted with yellow color in lines 14 and 23. Let
us look at the algorithm in detail. First, the population of the algorithm is
randomly initialized (line 1). Then, the algorithm runs for a fixed number of
generations (evolutionary loop). In each generation, DE iterates through the
entire population generating a trial individual, which is compared to an existing
target individual. The trial is generated utilizing the traditional method in lines
4 to 13. Here we introduce the parameters of DE.

To generate a new individual, three distinct individuals are selected from
the population. By forming a difference between two of them, scaling it by
a fixed parameter F, and adding to a third individual we obtain a so called
mutant individual (line 5). The trial individual is created by crossover between
the mutant and the target. First, a randomly chosen variable from the mutant
is inherited (line 6). Next, each other variable is inherited from the mutant with
a fixed crossover probability of Cr. Otherwise it comes from the target.
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After the individual is generated we project it to the decision space. This is a
modification of the original algorithm which did not explicitly deal with domain
issues. The purpose is to keep the algorithm as simple as possible while being
able to optimize problems with simple constraints. Next the trial is compared to
the target. If one of them is dominated by the other, we discard the dominated
one. If they are mutually non-dominated, we keep them both. At the end of
the generation loop, the population is trimmed to size N using non-dominated
sorting and the M nearest neighbor diversity estimation procedure [4]. We chose
this procedure because it achieves a better distribution along the Pareto front
than the original crowding distance computation.

Note that Cr = 1 is the only value of Cr for which the DE algorithm is
rotationally invariant with probability 1. Rotational invariance does not by itself
imply good performance. Its merit is that it allows us to generalize a single
observation to an entire invariance class [2].

2.2 Crossover Probability and Separability

In this section we summarize what we know about the relationship between the
separability of the test functions and the good choice of Cr parameter.

There are many different types of separability. One of the simplest is additive
separability. A function f: D CR™ — R is called additively separable if:

3fi, .o, fu such that f(2y,... o x0) = filx:)
=1

The most important consequence of additive separability is that the n-dimensional
problem can be optimized sequentially one variable at a time. Therefore separable
problems are not subject to the curse of dimensionality [8].

Salomon [8] illustrates the problems of algorithms which vary the individuals
one variable at a time on a quadratic function of two variables in Figure 1. The
ellipses in the left part are contours of a separable quadratic function. We can
see two individuals on one of the contours. The blue individual represents an in-
dividual in a randomized algorithm. If we mutate one variable of this individual,
the probability to get an improvement in the objective function is relatively high,
since the improvement intervals dq, ds are long. If we rotate the coordinate axes,
thus rendering the function non-separable, the improvement intervals shrink.

One more illustration of problems which arise is using a sequential deter-
ministic algorithm which finds the optimum with respect to one variable at a
time. The red individual illustrates the path of one such an algorithm. When the
function is aligned with the axes, this algorithm achieves optimum in just two
iterations, while in the rotated case the algorithm not only progresses slower,
but never actually reaches the optimum.

Huband et al. from the Walking Fish Group (WFG) define separability from
the optimizational standpoint[3]. A variable x; is separable if the set of global
optima of a problem:

argmin f(x1,...,2,)

Zq
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Non-separable (rotated)
quadratic function

Separable (aligned) quadratic function X,
XZ [l Improvement intervals
[l Global optimum
[l Sequential optimizer

W=D o

Fig. 1. Illustration of variable-wise optimization on a rotated quadratic function

is the same for any choice of the other variables z1,...,z;—1,%it1,...,Zy. For
example, an additively separable function is WFG-separable, hence WFG-
separability is a generalization of additive separability. The authors define a
separable multi-objective problem as one where each objective is separable. The
majority of the frequently used DTLZ and ZDT problems are WFG-separable
[3], while their objective functions are not additively separable.

The multi-objective model is fundamentally different from the single-objective
model because all objectives are being optimized simultaneously. The global
optima of each optimized function constitute only a relatively small subset of
the Pareto optimal set. Therefore, it is appropriate to ask if the problems of
sequential algorithms which are illustrated in Figure 1 persist in multi-objective
optimization. Also, while additively separable unimodal functions are inherently
similar to the quadratic function in Figure 1, it is not clear if the intuition holds
for multi-modal functions or for functions which are WFG-separable but not
additively separable.

2.3 Variance as a Common Currency

Probably the most significant work on the theoretical properties of DE has been
written by Zaharie [10]. Let us collect all the trial vectors that are generated in
the course of one generational loop of Algorithm 1 into a set P Then the
relationship between the variance in decision space of P and Pia is given by
the simple equation E[V ar(Piyial)] = cE[Var(P)] where:
2
c—or2cr4+ O 2N (1)
N

Zaharie omits the fact that in most DE variants the individuals which generate
the trial individual are chosen distinct from the target individual (Algorithm 1
line 4). However her results hold unchanged also after adding this assumption.

The work of Zaharie is important since it transforms the two parameters into
a single number ¢ (common currency) which has a very intuitive interpretation.
If ¢ < 1 we see that the algorithm tends to contract the population while if ¢ > 1
it expands the population. Based on empirical data Kukkonen concluded in [5]
[7] that a good choice of parameters is one that satisfies ¢ € [1.0;1.5] with the
upper bound not very strict.
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3 Experimental Design

In this section, we describe which test problems we chose and why. We explain
what we mean by rotating the problem and we propose a new performance metric
which we use.

3.1 WPFG Problems

In order to explore the relationship between the control parameters of DE and the
characteristics of the problem, we chose 4 problems from the WFG test suite[3].
These problems have been chosen since they have the same Pareto front and
contain all possible combinations of the WFG-separability and modality charac-
teristics. They are summarized in Table 1. We chose the number of variables to
be 10 of which one is a positional variable.

Table 1. Characteristics of the selected WFG problems

WFG4 WFG7 WFG6 WFG9

separable yes yes no no
unimodal no yes yes no

3.2 Rotations in R™

As humans we have a very good intuitive understanding of rotation in 2 or 3
dimensional space. However in higher dimensions things are not as intuitive as
they might seem. An elementary rotation by the angle ¢ is characterized by the

matrix: .
w = () o)

We can generalize this rotation to n-dimensional space by taking an n-dimensional
identity matrix I and replacing 1; ;, I; j, I;i, I; ; by Rf 1, R{ 5, RS 1, RS 5 respec-
tively. We can see that the rotation is not executed around an azis as we might
intuitively feel, but around ann — 2 dimensional subspace which is coincidentally
a 1-dimensional axis in the intuitive 3-dimensional case. For our experiments, we
generate the rotation matrix R by applying a rotation to each n — 2 dimensional
subspace in sequence, one rotation after the other.

We rotate the entire decision space (DS). This way the entire Pareto optimal
set is always attainable since the entire decision space rotates along. In the case
of WFG problems this means rotating a n-dimensional hyper-boz. For example,
in order to initialize the population in Algorithm 1 in the rotated DS (line 1),
we first initialize the population in the original DS and then multiply by R~!.
Similar process is used to project the individual to the rotated DS on line 14.
To evaluate the objective value of an individual we first multiply the decision
vector by R and evaluate the original objective functions.
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3.3 Relative Hypervolume

In our experiments, we use only one performance metric, the hypervolume (HV)
[11], since it includes information on both convergence and spread of the indi-
viduals. With WFG problems, it is not easy to choose the reference point for the
HV. Even if we choose the point as tight as possible, there are some individuals
after the initialization of DE which dominate the reference point. Therefore the
HYV at the start is not zero and it is hard to say if a certain attained HV is good
or bad. Moreover, it is hard to make quantitative comparisons based on HV. If
some algorithm achieves HV of 100 and another one achieves a HV of 99.98, it
may seem that the difference is not very big, but it all depends on the HV at
initialization. If the algorithms started with HV = 0, the interpretation of the
results would be quite different from one where HV = 99.99 at the start.

We attempt to mitigate this problem by subtracting the HV at initialization
(HVinit) and normalizing the result using the mazimal attainable hypervolume
(HV pmax). We define the relative hypervolume (RHV) in the following equation:

Ry :— 1V~ HVini (2)
vaax - Hvinit
We compute HV .« deterministically by integrating the space between the true
Pareto front (PF) and the reference point. From (2), we have RHV € [1; —00).
RHV = 1 implies convergence, RHV at initialization is 0 and RHV < 0 indicates
an algorithm which is receding from the Pareto front.

We use RHYV since its normalized nature is more intuitive and it is more robust
with respect to the selection of the reference point. It may be more meaningful
to compare two algorithm runs in terms of RHV. If we have two algorithm
runs starting from the same randomly initialized population then the ratio of
their RHVs is independent of the choice of the reference point. ' On the other
hand, two independent runs which produce the same final population may yield
different relative hypervolume.

4 Results and Discussion

In our experiments we varied the parameters F € [0.05;1.5], Cr € [0; 1] equidis-
tantly with a resolution of 0.05. For each combination we performed 10 runs of
Algorithm 1. To simplify the setup, the population size was kept constant at
100 individuals and the length of each run was 250 generations. We explored the
rotations from 0 to 90 degrees with a resolution of 5 degrees. In the following we
discuss our results on a subset of the experimental data. To simplify the analysis,
in each section we keep either F, Cr or the rotation angle fixed.

4.1 Fixed Rotation Angle

Figure 2 shows the average RHV on non-rotated problems. For illustration, we
plot the combinations of F and Cr which result in ¢ = 1.0, 1.5 and 3.0 according

! Given that the reference point is dominated by all individuals in the population.
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Fig. 3. Average RHV with rotation angle of 5 degrees

to (1). The circle marks the combination of parameters with the best RHV. The
data in all our figures from now on is presented from left to right in the same
order as in Table 1. The separable problems (S) are on the left, the non-separable
(NS) on the right, while the unimodal (UM) are on the inside and multi-modal
(MM) ones are near the page margins. For each problem, an L-shaped favorable
region containing RHV of 0.8 and higher, roughly corresponds to ¢ € [1;1.5].
Low value of Cr is more robust, since it allows for a wider interval of F values.
Unexpectedly, this holds also for non-separable problems WFG6 and WFG9.
The effect of introducing a rotation by 5 degrees is shown in Figure 3. The two
figures seem identical, but the ratio of these averages in Figure 4 reveals a differ-
ence. A value of less than 1 indicates that the rotation caused the performance
to decrease. We highlighted the contour at level 1 and marked the maximal and
minimal value by circles. In order to make the results most readable we chose
a color scale of [0.5;1.2] for separable problems and [0.6;1.7] for non-separable
problems. The separable problems on the left half exhibit a performance loss
consistent with Salomon’s single-objective results. Performance dropped for al-
most all Cr smaller than 1. Non-separable WFG6 and WFG9 do not show such
a systematic decrease. In some areas we even see an increase of performance.
It seems that there is relatively little difference between the rotated and non-
rotated data. These result may seem not as significant as Salomon’s. However,
there is an important methodological difference. When he mentions that the
performance on the rotated benchmark is siz orders of magnitude worse than
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the performance on the non-rotated benchmark ([8, p.273]), he means that the
minimal attained value 2.65 - 10° is six orders of magnitude worse in absolute
numbers. But the value at initialization was three orders of magnitude greater
yet. This means that both algorithms started somewhere near 2.65 - 102 and the
non-rotated one progressed to 2.65 - 107! while the rotated one progressed to
2.65-10°. In terms of relative hypervolume, this would be a very small difference 2.
In order to provide a scale-independent comparison, we compared all data using a
two-tailed Wilcoxon signed rank test at a significance level of 0.05. For separable
problems in Figures 4 and 5 we separate the parameter space with a dashed line
into two areas. The area on the right is such that the rotated and non-rotated
data is not significantly different, while on the left there is a significant decrease
in performance. The data for non-separable problems contains areas of both
significant decrease and significant decrease, as well as areas with no significant
difference so in this case the separation cannot be plotted so compendiously.
The effects are more visible with 45 degree rotation in Figure 5. Again, there
is a systematic decrease in performance for the separable problems for Cr < 1.
However, this decrease does not imply that Cr = 1 is a good choice. Looking

2 Assuming that the minimum of the given function is 0, the difference would be on
the order of 1075,
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Fig. 7. Average RHV for Cr = 0.1

at Figures 2 and 3, we see that Cr = 1 is a consistently bad choice for the
multi-modal problems WFG4 and WFG9.

4.2 Fixed F

In Figures 2 and 3 we see that F = 0.5 is compatible with many different values of
Cr and achieves consistently good performance. The average RHV for F = 0.5 is
shown in Figure 6. For multi-modal problems WFG4 and WFG9, very low values
of Cr are consistently good for all studied rotations, while for uni-modal problems
WFG6 and WFG7 big values of Cr yield a consistently good performance. On the
other hand, poor performance is achieved with big values of Cr for multi-modal
problems and small values for uni-modal problems. The data for WFG4 and
WFG9 suggests that the exceptionally good performance of a small Cr setting
does not have to be balanced by an exceptionally bad performance after the
problem is rotated. Based on the observation from Figure 6 we see that for each
problem either Cr = 0.1 or Cr = 0.9 perform well through the observed spectrum
of rotations.

4.3 Fixed Cr

In Figures 7 and 8 we see data with a fixed value of Cr = 0.1 and Cr = 0.9
respectively. For Cr = 0.1 the regions with the best performance are for rotations
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which are either close to 0 or 90 degrees. This is true also for non-separable
problems, but it is more visible for separable problems. The data for Cr = 0.9
seems different. The choice of Cr close to 1 means that the algorithm is nearly
rotationally invariant. The gained robustness with respect to coordinate rotation
is balanced by lost robustness in the choice of F. Almost in all cases the interval
with favorable values of F became shorter.

We see that for values of Cr < 1 there is a performance loss when the coordi-
nate axes are rotated, but does the performance drop bellow that of a rotationally
invariant choice of Cr = 1?7 The data supporting a negative answer is presented
in Figure 9. Here we divided the average RHV with Cr = 0.1 by the average RHV
attained with a rotationally invariant Cr = 1. The interpretation of the dashed
and full contour lines is the same as for Figures 4 and 5. For WFG4, the setting
of Cr = 0.1 statistically significantly outperformed Cr = 1 for all rotations and
all values of F. This means a definitive negative answer to our main question.
The results are similar for the second multi-modal problem WFG9. Here we see
a small region in which the data for Cr = 0.1 and Cr = 1 are not significantly
different and Cr = 1 is significantly better in a few isolated cases. The unimodal
problems on the other hand show that Cr = 1 is significantly better for most
rotations and for the best performing values of F.



154 M. Drozdik et al.

5 Conclusion

In this work we showed how the behavior of the differential evolution algorithm
on bi-objective problems changes when the coordinate axes of the decision space
are rotated. Our findings show that the change is significant even for small
rotations. There is a consistent drop in performance on separable problems while
the qualitative properties of the change for non-separable problems are much less
predictable. Unexpectedly, for multi-modal problems, low values of crossover
probability perform better through the observed spectrum of rotations. As a
future work we propose to see if this holds for problems other than the ones we
studied and if this is the case, to find the cause of this behavior.
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Abstract. Fuzzy c-means (FCM) is the most common fuzzy clustering model
and uses an objective function to measure the desirability of partitions. However,
if the data sets contain several noise points, or if the data sets are very high di-
mensional, the iteration process of optimization the FCM model often falls into
local optima solution. To avoid this problem, this paper proposes a new hybrid
fuzzy clustering algorithm that incorporates the Fitness Predator Optimizer (FPO)
into the FCM model. FPO is a new bionic-inspired algorithm to avoid premature
convergence for the multimodal optimization problem. The excellent probability
of finding the global optimum of FPO enhances the quality of fuzzy clustering.
Five benchmark data sets from the UCI Machine Learning Repository are used to
compare the performances of proposed FPO-FCM with FCM and a hybrid swarm
algorithm based on Quantum-behaved PSO. Experimental results show that the
proposed approach could demonstrate the desirable performance and avoid the
minimum local value of objective function for multivariate data type clustering
problems.

Keywords: Fitness Predator Optimizer, Fuzzy C-means Model, multimodal
optimization problem, hybrid fuzzy clustering algorithm.

1 Introduction

The most common popular data mining techniques discussed are clustering and classi-
fication. The clustering aims at identifying and extracting significant groups in under-
lying data, which is an unsupervised learning method. In the field of clustering, Fuzzy
c-means (FCM) is one of the most popular algorithms. Although FCM is extensively
used in literature, it suffers from several drawbacks. The objective function of the FCM
is the multimodal function which means that it may contain many local minima. Con-
sequently, while minimizing the objective function, there is possibility of getting stuck
at local minima or saddle points. In addition, the performance of the FCM depends on
the initial selection of the cluster center.

To increase the probability of finding the global optimum, various alternative meth-
ods for the optimization of clustering models were suggested in the literature. Some
researchers adopt the stochastic methods such as evolutionary or swarm-based methods
to increase the global convergence ability of fuzzy clustering. In [7], authors used a
Fuzzy c-means algorithm based on Picard iteration and PSO (PPSO-FCM) to improve
the performance of FCM. In [8], a hybrid data clustering algorithm based on PSO and

G. Dick et al. (Eds.): SEAL 2014, LNCS 8886, pp. 155-166, 2014.
(© Springer International Publishing Switzerland 2014
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KHM is proposed, which makes full use of the merits of PSO and KHM. However, to
the classical PSQO, it couldn’t guarantee to convergence to the global best solution. The
QPSO algorithm proposed by [4] outperforms traditional PSO in search ability as well
as having less parameter to control. Then, [6] proposed a new hybrid fuzzy clustering
algorithm that incorporates the Quantum-behaved PSO into the FCM model.

Basically, the major problem with most of swarm intelligent algorithms in multi-
modal function is premature convergence. To avoid premature convergence by main-
taining diversity in the population, many kinds of optimization algorithms are proposed.
However, few of the swarm intelligence techniques focus on individual competition
and independent self awareness. The individual competition is more likely to reduce
the rapid social collaboration process and increase the ability of being out of the local
optimum. This motivated our attempt to present a new swarm intelligence algorithm,
called Fitness Predator Optimizer (FPO) [15]. In this paper an application of the pro-
posed FPO is presented in the field of fuzzy clustering. In FCM model, the probability
of finding the global optimum can be increased by FPO due to its outstanding global
searching ability. Consequently a new hybrid fuzzy clustering algorithm FPO-FCM is
proposed in this paper.

The outline of this paper is organized as follows. In section 2, the brief introduction
of the state of the art and the characteristics of the fuzzy clustering. In section 3, basic
conceptions and pseudocode of FPO is introduced first. Then a new hybrid fuzzy clus-
tering algorithm based on the FPO (FPO-FCM) is proposed. A hybrid FCM algorithm
based on the QPSO is also introduced in this section. In Section 4, the FPO-FCM is
verified by five widely used data sets in the pattern recognition literature. Finally, some
concluding remarks and suggestions for future research are provided in Section 5.

2 Related Work

There are three main types of fuzzy clustering - fuzzy clustering based on fuzzy relation,
fuzzy clustering based on objective function and fuzzy generalized k-nearest neighbour
rule. The fuzzy clustering based on objective function is the most popular one, because
it is quite facile, and allows the most precise formulation of the clustering criteria. The
most popular version is the Bezdek’s FCM model [1],[10] with the generalized objective
function.

In(UV) =33 (ui)™ | x—vi |2 (D
i=1k=1

Where m (m > 1) is a scalar termed the weighting exponent” and controls the fuzzi-
ness of the resulting clusters. The FCM model partitions a data set X = {xi,...,x,,n €
N} into ¢ (1 < ¢ < n) number of fuzzy clusters with V = {v{,v2,...,v.} cluster centroids
by a partition matrix U. The matrix U shows the fuzzy relation from set of data objects,
which is expressed as follows:

U= |- wj - )



Fuzzy Clustering with Fitness Predator Optimizer for Multivariate Data Problems 157

In which u;; is the membership function of the j™* data object with the i cluster
within the constraints of u;; € [0, 1] and 2 u;j = 1. Clustering partitions a data set into

subsets by finding the maximum membershlp grade u;; of data object x; belonging to
the cluster j. This model aims to minimize the following objective function with respect
to each fuzzy membership grade u;; and each cluster centroid v;. In most of the cases,
the distance between x; and v; is assigned with the Euclidean norm and the fuzzifier
m = 2. A popular method to optimize the FCM model is Alternating Optimization (AO)
through the necessary conditions extrema of J,,,(U,V):

1
Uik = |V‘—.X ‘ (3)
ik )2/(m—l)
j=t [ vj—x|
n
vi=", 4
kglu%

The subsequent computation of the partition matrix u;; can be merged to V (u(V,X),X)
in FCM algorithm. The reformulated version of J,,(U,V) [2] is obtained by inserting
(3) into (1).

c n ‘ Vi — Xk |2
_Z‘Z‘ &l vi— x| ©
i=1k=1 )Zm/(mfl)
= vy —xe |

In this paper we consider a widely used FCM model with a number of cluster centers
prototype. Then FCM-AO-V is described in Algorithm 1.

Algorithm 1. FCM-AO-V
Initialize data: X = {x,x2,...,X,}
Initialize the clustering centroids V = {vy,va,...,v¢}
Initialize the maximum iterations f,,,,y € N
while t <1,,,, do
Generate the partition matrix u;; by (3)
Generate the new clustering center v; by (4)
end while
Output U,V

Figure 1 shows J,,(V,X) in 3-dimensional graph with two clustering centroids v; €
[—1,1] and v, € [—1, 1]. The reformulated function can be visualized for the trivial data
setX = {x1,...,X100 }, xi € [—5,5] with the parameters m = 2, ¢ = 2. It also shows that the
objective function J,,,(V;X) is a non-linear multimodal function with a number of local
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Fig. 1. Reformulated objective function J,,,(V;X)

minima. Obviously, the alternating optimization or gradient based methods might get
stuck in these local extrema. To avoid local minima, heuristic search algorithms can be
applied to minimize the objective function, such as evolutionary or swarm intelligence
methods.

3 Proposal of New Hybrid Fuzzy Clustering Algorithm for
Multivariate Data Type Clustering Problems

In order to overcome the shortcomings of Fuzzy C-means algorithm, various comput-
ing techniques such as artificial neural networks [12] [13], hybrid fuzzy time series
approach [11], genetic algorithms and PSO-based fuzzy clustering algorithms [9] have
been used in FCM recently. We also proposed a new hybrid fuzzy clustering algorithm
by incorporation the QPSO into the FCM model [6] in our previous work. Similarly, a
new optimization technique named as IQPSO-FCM in [14] is a combination of FCM
and improved QPSO to drive the clustering efficiency in standard medical and non-
medical data sets. However, the diversity declines rapidly in the later iteration period,
leaving the QPSO with great difficulties of escaping the local optima. In order to im-
prove the diversity of the population, we present a new swarm intelligence algorithm
called Fitness Predator Optimizer (FPO) [15].

3.1 The Fitness Predator Optimization with Competitive Predators

Fitness Predator Optimizer (FPO) is a new bionic-inspired algorithm proposed in our
previous work to avoid premature convergence for the multimodal problems. All of the
individuals in the FPO are defined as predators, whose purpose is to find the global
optimum (seen as prey) in the search space. Each individual is depicted only by its
position vector x, which determines the trajectory of the particle. Then an individual is
named as a ”position” which comprises the population in FPO. If position i has a higher
value of fitness function, then i has more power of locomotion. If position i does not
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know what is the next best place, a sensible way is to dynamically adjust it according
to its own experience and its companions’ experience. The definition of an updated
position is:

newx(; jy = X(i j) + (rand — 0.5) x g w* (xx j) — X(i,)) (6)

To the position i, x; = {X(j,1), -+, X(i,j),--»X(i.d) } 1S @ vector with d (1 < j < d) dimen-
sions. newx ;) is the updated position. rand is a positive decimal randomly produced by
computer. u is a positive constant, w is defined as inertia weight, first proposed by Y.Shi
and Eberhart [3] for PSO. It is a variable parameter in the range of [0.2,1] in this paper.
However, it must be said that the given method of w’s selection is a trial. Generally, it
is not sure whether the new position newx;) is better than x, during the optimum search
process. In FPO, only a limited number of chances are released in each iteration. A
position with better value of fitness function has a prior possibility to access the chance
and update its next position by (6). The remaining positions keep the previous positions
until they get a chance to update. The main function of FPO is described in Algorithm 2.

Algorithm 2. Main Function
Initialize population: popsize
Initialize x;: rand (x;) € (Xmin, Xmax)
whiler <p do

fitness(x;) then

if rand, < rand, x
Y, fitness(x;)
i=1

get a chance to update its position
X(i,j) = NEWX(i,j)
Generate a new position by (6)
For each position use the elitism strategy
end if
end while
For all population use the elitism strategy

In Algorithm 2, the vector x; depicts a position i, popsize denotes the population of
particles, the amount of chances p equals to popsize on each iteration. p number of
chances are released in each iteration, and only the competitive position could get the
chance to update. The elitism strategy in FPO is to reserve the best optimal position as
shown in (7).

s = {f(X) FX) < f; -

i others
The f;f is the best optimal position fitness value after k times comparison with other

positions. X is the new position which will be compared with f; in the (k4 1)th time.
The elitism strategy function is shown in Algorithm 3.
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Algorithm 3. Elitism Strategy Function
GlobalMin = find(min(f(x;))
newx; jy = X(; jy + (rand — 0.5) * prxw (x(x_j) —X(i.j))
tmp = find(min(f (newx; j)))
if tmp < GlobalMin then
GlobalMin =tmp
end if

3.2 The Proposal of FPO-FCM Algorithm

In FPO-FCM, the position of particle x; represents a set of clustering centers. Which
can be expressed as follows:

®)

To the particle x;, each row of the center matrix (x;1,xp,...,Xx;s) denotes the clus-
ter center with d dimensions. There are P number of particles that composed a swarm
of FPO-FCM. In FPO-FCM algorithm, we need a function for evaluating the general-
ized solutions called fitness function. In this paper, equation (5) is used for the fitness
function. The smaller is J,,,(V, X), the better is the clustering effect and the better is the
individual fitness function. The FPO-FCM algorithm can be stated as follows:

Algorithm 4. FPO-FCM
Initialize population: popsize
Initialize the sample data
Initialize the total number of iteration f,,yx
Initialize pbest for each particle and gbest for the warm
while t < t,,,x do
if rand < ,,f imess(Xi)  then
E] fitness(x;)
get a chance to update its position x(; ;) = newx(;
for each center do
Generate a new position by (6)
end for
for each position of particle do
Use the elitism strategy function
end for
end if
For all population use the elitism strategy function
Update the clustering center
end while
Partition the data set with the final clustering centroids
Output the final clustering centroids and classified data sets

The performance of FPO-FCM is verified by several widely used data sets in the
pattern recognition literature.
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4 Experiments

4.1 Experimental Method

In this section, we compare the performances of FPO-FCM with FCM and QPSO-FCM
by using five different benchmark data sets that obtained from the UCI Machine Learn-
ing Repository. In Table 1, all of the data sets are multivariate data type. In particular,
Lung Cancer data set is a relatively higher dimensional data than the others. The num-
bers of instances and attributes are shown in third and fourth column of the table 1
respectively. Class distribution reflects the number of classes and the number of in-
stance in each class. Basically, the intra-cluster distance and inter-cluster distance are
used as clustering evaluation index in this paper.

Table 1. Benchmark data set description

Data Set Name Data Types Instances Attributes Class distribution
Iris Multivariate 150 4 (50,50,50)
Wine Multivariate 178 13 (59,71,48)
Breast Cancer Wisconsin (BCW)  Multivariate 699 10 (458,241)
Wisconsin Diagnostic Breast Cancer Multivariate 569 32 (357,212)
Lung Cancer Multivariate 27 56 (8,10,9)
- 2
Intra—D:[zz Il xx —vi ||7]/c 9)
i=lkec;
Inter—D= Y |lvi—vj| (10)
i,jEC;
n c 2
QFE = Y Y (uix)" dg. (xk, vi) (1)
k=1i=1

When the value of the intra-cluster distance is decreasing, it means that the data
partition is more accurate. On the contrary, when the value of inter-cluster distance is
increasing, the data partition is more accurate as well. Quantum Error equals to the
objective function of FCM which reflected the tightness of clustering.

In experiment A, four data sets (iris, wine, breast cancer wisonsin and Wisconsin
Diagnostic Breast Cancer(WDBC)) are selected to test the performance of FPO-FCM
comparing with K-means, FCM and QPSO-FCM. Each of hybrid fuzzy swarm algo-
rithms was run with 100 iterations and a population size of 30 on each data set. The test
environment and experimental execution parameters are shown in Table 2 and Table 3
respectively.
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Table 2. Evaluation test environment

(O] Windows 7

Processor Intel(R) Core™ i7 CPU 2.80GHz
Memory (RAM) 8.00GB

System type 64-bit operation system

Tool MATLAB 7.10.0

Table 3. Parameters Setting of experiment A

Experiment A Algorithm  Parameters
Population=30 FCM m=2

Max iteration=100 QPSO-FCM m=2, o € [0.5,1.0]

Run Number=50 FPO-FCM m=2, c=2, m € [0.2,1.0]

Table 4. Experimental results of A
Dataset® Algorithms Error Distribution Intra-D Inter-D QE Accuracy (%)

K-means 0,3,13) 0.4483 1.0942 1.2393* 89.33
Iris FCM (0,7,6) 0.3742 1.0409 1.2701 91.33
QPSO-FCM (0,8.4) 0.0065 0.0112 1.1957 92.00
FPO-FCM (0,2,9) 0.0062 0.0122 1.1953 92.67
K-means (13,21,19) 0.0476 0.2383 0.1429* 70.22
Wine FCM (13,20,23) 0.0570 0.1804 6.2100 68.54
QPSO-FCM (2,18,29) 0.0033 0.0117 5.6024 72.47
FPO-FCM (10,21,17) 0.0025 0.0150 5.5827 73.03
K-means (11,18) 275.6728 0.9629 551.3456* 95.85
BCW FCM (14.4) 271.7616 0.9212 258.0470 97.42
QPSO-FCM (61,17) 335.8733 0.2877 296.6230 88.84
FPO-FCM 5.,7) 266.2934 1.1054 256.6245 98.28
K-means (83,0) 1.4610 0.1447 2.9219% 85.41
WDBC FCM (0,86) 1.7658 0.0897 1.9173 84.89
QPSO-FCM 0,77) 1.4462 0.1352 0.0018 86.47
FPO-FCM (87,0) 1.7720 0.1317 2.0719 84.71

¢ Each data set is normalized within a range of [0.1,0.9]

. c N

" the Quantum Error of K-means algorithm is defined as: QE = 3 3 dl.zk (xk,vi)
i=1k=1

* Where c is the total number of clusters and N; is the count of data in each cluster

4.2 Experimental Results

Table 4 resumes the clustering results of FPO-FCM, K-means, FCM and partly re-
sults of QPSO-FCM obtained from our previous work [6]. Error distribution reflects
the number of instances that were wrongly assigned to each class. The intra-cluster dis-
tance, inter-cluster distance and quantum error are used as clustering evaluation indexes
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for all of the algorithms. The statistical results including four kinds of clustering eval-
uation indexes and accuracy show that FPO-FCM is able to provide very competitive
results on each benchmark data set partition.

In experiment B, a relatively high dimensional data set, lung Cancer data, is selected
to evaluate the performance of FPO-FCM comparing with K-Means, FCM and QPSO-
FCM. The FPO-FCM and QPSO-FCM terminating condition are limited in 500 consec-
utive iterations and a population size of 30 for both of them. All execution parameters
in experiment B are shown in Table 5.

Table 5. Parameters setting of experiment B

Experiment B Algorithm  Parameters
Population=30 FCM m=2

Max iteration=500 QPSO-FCM m=2, o € [0.5,1.0]

Run Number=30 FPO-FCM m=2, c=2, » € [0.2,1.0]

The lung cancer data set described 3 types of pathological lung cancers. In the orig-
inal data, five instances were missing some feature values, as such only 27 vectors are
collected as our experimental samples. These three clusters are more likely to highly
overlap according with [5], so finding the clusters is very difficult. Figure 2 shows the
convergence curve of FCM with lung cancer data set. Obviously, the FCM model is
trapped into local minima and cannot improve the objective function value after the
fourth iteration.

Mean best objective values of FCM in lung cancer data set
13.323 T T T T T T T T T

13.3225 q

13.322 4

13.3215 1

13.321 4

13.3205 - 1

13.32 1

13.3195 1

Mean best objective values of FCM

13.319 1

13.3185 1

13.318 .
0 2 4 6 8 10 12 14 16 18 20
Iterations

Fig. 2. Convergence curve of FCM
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Mean best global fitness values of lung cancer data set
50 T T T T T T T T T

e FPO-FCM
QPSO-FCM

45

Mean best fitness value

50 100 150 200 250 300 350 400 450 500
Iterations

Fig. 3. Comparison of convergence curves between FPO-FCM and QPSO-FCM

Figure 3 shows the convergence curves between FPO-FCM and QPSO-FCM in lung
cancer data set. All of algorithms constantly minimize objective functions of clustering
within 500 times of the iteration. Compared with QPSO-FCM, the FPO-FCM has a
faster speed and higher convergence rate during the iteration process.

Table 6. Experimental results of B

Dataset®  Algorithms Error Distribution Intra-D Inter-D QE  Accuracy (%)
K-means 2,7,4) 19.8399 3.0913 59.5198* 51.85
FCM 4,5,4) 23.5750 1.18e-11 13.3180 51.85
QPSO-FCM (3,4,6) 23.6350 1.5895 13.1833 51.85
FPO-FCM (4,3,2) 22.8330 0.9592 12.7418 66.67

© The data set is normalized within [0.1,0.9]

lung cancer

. c N

" the Quantum Error of K-means algorithm is defined as: QE = 3 3 dizk (xk,vi)
i=1k=1

* Where c is the total number of clusters and N; is the count of data in each cluster

Table 6 resumes the lung cancer data’s clustering results of K-means, FCM, QPSO-
FCM and FPO-FCM. Due to the highly overlapping character of clusters in lung cancer,
the precision of all of the algorithms is dramatically decreased compared with experi-
ment A. However, the FPO-FCM has a higher clustering accuracy than the others. The
experimental results show that the proposed algorithm has a good robustness for the
high dimensional and overlapping clusters in data set.
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4.3 Discussion

According to the results of experiment A, it is easy to see that FPO-FCM shows its
competitive global search ability on the three benchmark data sets except Wisconsin
Diagnostic Breast Cancer (WDBC) data. The best classification results of WDBC in ex-
periment A is the QPSO-FCM algorithm. We think that this is because QPSO has better
global search ability for the clustering of space partition that resembles the shape of a
completely round ball. Then QPSO-FCM demonstrates its superior performance to the
WDBC that with the similar space distribution. In experiment B, the lung cancer data
set is a fairly difficult clustering problem due to its high dimensions and overlapping
clusters. In table 6, the intra-distance index and the inter-distance index of K-means
algorithm is better than the others. However, the K-means algorithm has not worked
as well as expected. One of the reasons is that using euclidean norm as similarity cal-
culation formulation may not fit for the overlapping cluster such as lung cancer data
set. Despite of it, FPO-FCM is still able to escape the trap of the suboptimal values of
objective function and to find the global minimum.

5 Conclusion

In this study, a cluster optimization methodology is proposed based on the Fitness
Predator Optimizer (FPO) algorithm. The proposed approach deals with the modified
FPO algorithm for fuzzy clustering optimization. In the proposed new hybrid fuzzy
clustering algorithm (FPO-FCM), the position of each particle represents a set of clus-
tering centroids, a number of particles composed of a swarm of FPO-FCM. The ob-
jective function J,,,(U,V) of FCM is used for evaluating the generalized solutions. The
experimentation is done with five benchmark data sets covered examples of data from
low and high dimensions. Compared with traditional algorithms (K-means and FCM)
and hybrid swarm algorithm (QPSO-FCM), FPO-FCM has a higher robustness and bet-
ter global optimization ability of clustering partition.

References

[1] Bezdek, J.C.: Pattern recognition with fuzzy objective function algorithms. Kluwer Aca-
demic Publishers (1981)

[2] Hathaway, R.J., Bezdek, J.C.: Optimization of clustering criteria by reformulation. IEEE
Transactions on Fuzzy Systems 3(2), 241-245 (1995)

[3] Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: IEEE World Congress on
Computational Intelligence, pp. 69-73. IEEE (1998)

[4] Sun, J., Feng, B., Xu, W.: Particle swarm optimization with particles having quantum be-
havior. In: Congress on Evolutionary Computation, pp. 325-331 (2004)

[5] Runkler, T.A., Katz, C.: Fuzzy clustering by particle swarm optimization. In: 2006 IEEE
International Conference on Fuzzy Systems, pp. 601-608. IEEE (2006)

[6] Wang, H., Yang, S., Xu, W., Sun, J.: Scalability of hybrid fuzzy c-means algorithm based on
quantum-behaved pso. In: Fourth International Conference on Fuzzy Systems and Knowl-
edge Discovery, vol. 2, pp. 854-857 (2007)

[7] Liu, H.-C., Yih, J.-M., Wu, D.-B,, Liu, S.-W.: Fuzzy c-mean clustering algorithms based on
picard iteration and particle swarm optimization, pp. 838-842. IEEE (2008)



166

(8]

(9]

[10]
[11]

[12]

[13]
[14]

[15]

S. Yang and Y. Sato

Yang, F., Sun, T., Zhang, C.: An efficient hybrid data clustering method based on k-
harmonic means and particle swarm optimization. Expert Systems with Applications 36(6),
9847-9852 (2009)

Gupta, K., Shrivastava, M.: Web usage mining clustering using hybrid fcm with ga. Inter-
national Journal of Advanced Computer Research, 322-336 (2010)

Bezdek, J.C.: Fuzzy c-means cluster analysis. Scholarpedia 6(7), 2057 (2011)

Egrioglu, E., Aladag, C.H., Yolcu, U.: Fuzzy time series forecasting with a novel hybrid
approach combining fuzzy c-means and neural networks. Expert Systems with Applica-
tions 40(3), 854-857 (2013)

Ortiz, A., Palacio, A.A., Gorriz, J.M., Ramirez, J., Salas-Gonzdlez, D.: Segmentation of
brain mri using som-fcm-based method and 3d statistical descriptors. Computational and
Mathematical Methods in Medicine (2013)

Khan, A., Jaffar, M.A., Choi, T.-S.: Som and fuzzy based color image segmentation. Multi-
media Tools and Applications 64(2), 331-344 (2013)

Anusuya, S., Parthiban, L.: Efficient hybridized fuzzy clustering with fcm-igpso for biomed-
ical datasets. Annual Review & Research in Biology 4(17) (2014)

Yang, S., Sato, Y.: Fitness predator optimizer to avoid premature convergence for mul-
timodal problems. In: IEEE International Conference on Systems, Man and Cybernetics,
pp. 264-269 (2014)



Effects of Mutation and Crossover Operators
in the Optimization of Traffic Signal Parameters

Rolando Armas, Herndn Aguirre, and Kiyoshi Tanaka

Faculty of Engineering, Shinshu University
4-17-1 Wakasato, Nagano, 380-8553 Japan
rolando.armas@iplab, {ahernan,ktanaka}@shinshu-u.ac.jp

Abstract. In this work, we analyze crossover and mutation operators
for traffic signals optimization aiming to understand the problem from
a system level perspective. We use MATSim to simulate the transport
system of the business district of Quito (Ecuador) with 20000 agents
moving in a one-day congested scenario. We relax the usual assumption
of common cycle length for all signals and minimize travel time focusing
on the optimization of 11 consecutive signals located in a main road. We
study individual and combined effects of crossover and mutation for cycle
length, offset, and green times. The results of this study provide valuable
insights to know better the problem, validate the mobility scenario, and
understand the effects of the operators.

1 Introduction

Population growth and urbanization trends have increased the demand of road
networks causing congestion. This adds substantial costs, increases gas emissions,
and the risk of accidents. A way to alleviate traffic congestion is to make better
use of the existing roads, which can be achieved in part by a properly setting
traffic signals. Essential parameters of a traffic signal are cycle length, green
times of the phases bounded by the cycle length, and the offset between the
beginning of the cycle of consecutive signals. Common measures to evaluate the
performance of a network are average delay, travel time through the network,
number of stops, or some combination of these. The choice of a measure of
performance depends on the type of traffic that should benefit ( e.g. private and
commercial vehicles, public transportation, pedestrians and cyclists); societal
objectives (e.g. safety, priority to businesses, reduction of emissions); and cost
of traffic congestion (e.g. delay, fuel consumption). Clearly there are tradeoffs
among these objectives.

There are many suggestions for setting traffic signals, ranging from statisti-
cally based methods developed in the early 60’s to adaptive and cooperative
methods that use actual flow information supplied by traffic detectors [12]. Here
we consider a system for offline optimization. Most works in the literature focus
on optimization for single intersections or coordination of signals along a main
road [12], where genetic algorithms are among the preferred optimizer [8,11,2,7].
A typical optimization formulation involves a common cycle length, green times

G. Dick et al. (Eds.): SEAL 2014, LNCS 8886, pp. 167-179, 2014.
© Springer International Publishing Switzerland 2014
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for the phases and offsets [11,12]. Assuming a common cycle length simplifies
the complexity of the problem. Nonetheless, the search space still is vast and the
evaluation of a candidate solution could be very costly, especially when some
form of simulation is performed to compute the objective function values. Use-
ful knowledge about traffic management has been gained from previous studies.
Unfortunately, this knowledge is not readily applicable to highly congested net-
works. In addition, transport networks differ substantially from one another and
we need to understand the particularities of the system and validate the model
used for optimization.

We consider the optimization of traffic signals as one important component in
the design of a sustainable transport system, where mobility, societal and eco-
nomical aspects should be considered. In this work we relax the assumption of
common cycle length for all signals and focus on the optimization of 11 consecu-
tive signals located in a main road of a real-world scenario. We use MATSim [1],
a multi-agent transport system simulator, to simulate the transport system of
the business district of Quito (Ecuador) with 20000 agents moving in a one-day
congested scenario. We study the individual and combined effects of operators
for crossover and mutation of cycle length, offset, and green times minimizing
travel time. Analyzing congested scenarios is a complex task, especially when sev-
eral optimization objectives related to sustainability are present. Here, our main
objective is to understand the kind and range of optimal signal configurations
when travel time is optimized without considering other important objectives.
The results of this study provide valuable insights to know better the problem,
validate the mobility scenario, and understand the effects of the operators.

2 Problem Formulation

The traffic signals optimization problem aims to coordinate traffic signals in
order to provide smooth flow of traffic along streets and highways to reduce
travel times, stops and delays[10]. A transport network can be represented by a
directed graph G = (N, A), where N represents nodes and A represents links.
The travel time for a given vehicle is

tia =15, —15, a=1,.,4; i=1.V, (1)

where t;, represents the travel time on link a for vehicle ¢, t7, denotes the time
vehicle i exited link a (see Fig.2), t5, denotes the time vehicle ¢ entered link a, V'
is the number of vehicles being simulated, A is the number of links in network,
e is the enter node and z is the exit node [9].

In this work, we minimize average travel time expressed by

. ZY—1 22—1 tia

= = 2
min v (2)
subject to signal timing design and feasibility constraints shown in Eq.(3)- Eq.(9)
[11].
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The principal components of a traffic signal are cycle length, phase, off-
set, stage, green and inter-green time. Cycle length is the time in seconds
required for one complete color sequence of the signal. A phase is the set of
movements that can take place simultaneously or the sequence of signal indica-
tors received by such movements. Offset is the time lapse in seconds between
the beginning of a a corresponding green phase at an intersection and the be-
ginning of a corresponding green phase at the next intersection. One stage is a
green and inter-green time sequence. The list of principal components are sum-
marized in Table 1. Fig.1 illustrates a traffic signal that models two traffic flows
in orthogonal directions.

Equations Eq.(3) - Eq.(5) represent the range for cycle length Ch, offset 0,
and green time ¢y, ., respectively. Ch 4y, is determined by identifying the signal
that needs the longest duration just to accommodate the inter-green times and
the minimum green times as shown in Eq.(6). Cpq. is set to 120 seconds [10].
Inter-green is 3 seconds and minimum green time duration is 7 seconds for all
signals as shown in Eq.(7).

C’h min < Ch < Ch max (3 )
0<0,<C,—1 (4)
¢h,rmin S ¢h,r S ¢h,rmax (5)

Sh Sh
Chin :Max{<z¢;w—|—21hm> : h= 1,2...,N} (6)
r=1 r=1

(bh,rmin =7 sec Vh, r (7)
Sh Sh
Ch=> énr+> Iny Vh (8)
r=1 r=1
Sh Sh
¢h,rmax = Ch - Z Ih,?" - Z ¢h,ymin (9)
r=1 y=1ly#r

Table 1. Notation

Variable Description

Ch Cycle length at signal h

On Offset at signal h

Oh,r Green time at signal h for stage r (phase)

Iy, » Inter-green time signal h for stage r (phase)

Sh Total number of stages (phases) at signal h
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Eq.(8) ensures that the sum of the green times in a signal together with inter-
green do not exceed the cycle length set for the signal. Eq.(9) establishes the
maximum green time for the signal phase based on the cycle time, inter-green
and minimum green time.

3 Method

3.1 Transport Simulation and Optimization Algorithm

In this work, we use evolutionary algorithms to find optimal signal settings of
a transportation system in order to minimize average travel time. Fig.2 illus-
trates the interaction of the various components of the optimization system. The
evolutionary algorithm (EA) evolves a population of candidate solutions, each
solution represents a configuration of signals (signal control) for the transporta-
tion system. At each iteration, the evolutionary algorithm calls the transport
simulator for each candidate solution in order to evaluate it. Once all solutions
are evaluated, the evolutionary algorithm continues to the next iteration.

We use the Multi-agent Transport Simulator MATSim [6]. MATSim allows
micro-simulation of the transport system producing detailed information about
the behavior of the agents being modeled. MATSim receives initial mobility
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plans for a set of agents and a model of the transport infrastructure as inputs.
It simulates traffic following the plans of the agents trying various routes and
iterates to optimize plans and routes for all agents in order to provide a system
in an equilibrium state. The network equilibrium model refers to a Wardrop
user equilibrium (UE) condition [13]: A stable condition is reached only when
no traveler can improve his travel time by unilaterally changing routes. To run
a scenario with traffic lights, MATSim simulates traffic lights microscopically
using fixed-time controls [4].

Before we run the optimizer, we first run MATSim until it reaches an equilib-
rium state. When the optimizer calls MATSim to evaluate a solution, MATSim
starts from the equilibrium state setting its signals controls with the tentative
solution provided by the optimizer and runs one additional iteration. The out-
put collected from that iteration of the simulator is used to calculate travel time
using Eq.(2), which is passed as fitness of the solution to the optimizer.

3.2  Evolutionary Algorithm (EA)

Representation. A signal S in junction h is represented by set of integer
variables expressed by

Sh - (Chveha¢/L,1a"' 7¢h,7‘) 5 (10)

where C}, is cycle length, 0j, is the offset, and ¢y 1, -, @n,» are the green times
for the r phases of the signal. The ranges and constrains of these variables are
given in Eq.(3)-(9). Signal S, represents one gene and a set of signals form
the chromosome of an individual; a solution with a complete specification of
the signals considered for optimization. Fig.4 illustrates the representation of a
solution with h signals, each one with two phases.

Algorithm. In this work we use a simple elitist evolutionary algorithm, which
general flow is shown in Procedure 1. The main steps of the algorithm are as
follows:

Initial Population. The population P can be initialized as a combination of pre-
settings, mutation of the pre-settings, and randomly creating individuals. De-
tails of how the initial population is created in this work are included in
Section 4.2.

Parent Selection. Individuals are selected to reproduce using binary tourna-
ments among randomly sampled solutions from the population P. The win-
ner of a tournament is decided based on fitness.
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Procedure 1. Evolutionary Algorithm
: P < Initial Population()
: Evaluation (P)
repeat
Pr < Parent selection(P)
Q@ < Recombination and mutation (P/)
Evaluation (Q)
P « Survival selection (P, nElite, Q)
until condition is met

PP oW

Recombination and Mutation. The offspring population @ is created apply-
ing crossover to the selected parents with probability P, followed by muta-
tion. There is one operator of mutation per variable of the signal. Pm(Ct),
Pm(Ot), and P,,(%Y are mutation probabilities for cycle, offset and green
times, respectively. To mutate, we first decide which mutation operator will
be applied using the probabilities of the operators. Then we apply the chosen
mutation operator with probability P,, per signal.

Evaluation. To evaluate each individual we first run the traffic simulator. The
parameters of the simulation are the signals settings contained in the vari-
ables of the individual. The fitness value of the individual is calculated from
the output of the simulation using Eq.(2).

Survival Selection. The nFElite best individuals from the current population
P and the offspring population ) are combined. For the next generation, we
select the best |P| individuals from this combined population.

Operators. To create offspring we follow the representation described above
and employ one crossover operator and three mutation operators for cycle length,
offset, and green times, respectively. In the following we explain each one of them.

Crossover. In this work we implement one point crossover taking each signal
as an atomic unit. The crossing point is selected randomly with equal prob-
ability in the range [1,h - 1], where h is the number of signals. Then the
crossover operator interchanges complete signals between parents.

Cycle Length Mutator. This operator increases or decreases randomly with
equal probability the cycle length of a signal using step size stepC't. If the
new cycle length is out of the specified range, we adjust it accordingly to be
either Chnin OF Chynaz- After that, it is necessary to check whether offset
time violates its constraint. If offset is larger than the new cycle length, it is
reset to new cycle length - stepOf f, where stepOf f is the offset step size.
Finally, for each signal phase the green times are adjusted proportionally to
the new cycle length. Due to the correlation of offset and green times to the
cycle length, this operator may act as a macro-mutation operator.

Green Time Mutator. This operator decreases the green time of one phase
and adds it to another phase using step size stepGt. To determine the phase
that will decrease its green time, we randomly visit the phases until we find
one in which the decrement does not violate the constraint for minimum
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green time @p rmin. The phase to which the green time is added is also
determined randomly among all phases, except the one in which time was
reduced.

Offset Time Mutator. This operator increases or decreases randomly with
equal probability the offset time of a signal using step size stepOf f. If offset
becomes negative, it is reset to 0. Likewise, if offset is greater than the
maximum cycle length C},,,,0z, it is reset to Ch,ee - StepOf f.

4 Simulation Results and Discussion

4.1 Mobility Scenario and MatSim Simulation

The geographical area of study is the business district of Quito (Ecuador), which
covers approximately 7x3 Km? as shown in Fig.3. For this experiment, the area
takes into account only the primary and secondary pathways which free speeds
are in the range from 30 to 80 Km/h. The network has 1000 links approximately
and comes from Geofabrik and OpenStreetMap]3].

The number of simulated agents is 20000. The mobility plan for each agent
consists of three main trips: (1) home to work, (2) work to leisure, and (3)
leisure to home (see Fig.2). The plans are designed so that all agents move first
from south to north, completely crossing the geographical area of study. In their
second trip, the agents move from north to the central zone of the area under
study and in their last trip from the central zone to the south. Eleven signal
lights are located in a main two-way street with flows in south-north and north-
south directions. We run the multi-agent transport simulator MATSim for 500
iterations, making sure it reaches a user equilibrium state without setting any
traffic signal. The traffic simulation period is for 24 hours. It takes approximately
1 hour and 30 minutes of computation time to run MATSim for this number of
iterations. Traffic signals are optimized using the equilibrium state as an initial
condition.

4.2 Evolutionary Algorithm Experimental Setup

We set the number of elite individuals n Elite=10 and use a fixed population size
of 21. The initial population is created deterministically as follows. We prepare
21 cycle lengths in the range [20, 120] seconds in steps of 5. All solutions are
set with a different cycle length, but all signals of a solution are set to the same
cycle length. The offset times of all signals are set to zero and green times per
phase are set to the same value according to the cycle length, i.e. green time
= (cycle length - inter-green) /2. That is, all signals are synchronized but not
coordinated.

We conduct 10 experiments using different settings for the probabilities of
the operators. All experiments start with the same initial population and use
the same random seed. The parameters used for each experiment are detailed in
Table 2, where P, is the probability of recombination, P,, is the probability of
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Table 2. Experiment Settings (EA Parameters)

Exp. Pm Pm(©) Pm(©Y pm(&Y pc Comments
EO1 O - - 1 only crossover
E02 2/11 0 0 1 0 only green time mutation
E03 2/11 0 1 0 0 only offset time mutation
E04 2/11 0 0.5 05 0 offset and green time mutation
E05 2/11 1 0 0 0 only cycle time mutation
E06 2/11 0.5 0.5 0 0 cycle and offset time mutation
E07 2/11 0.5 0 05 0 cycle and green time mutation
E08 2/11 0.5 0.3 02 0 cycle,offset and green time mutation
E09 2/11 0.5 0.3 02 0 mutation 100 generations
E10 2/11 0.5 0.3 0.2 1 mutation and crossover 100 generations
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mutation per signal, and Pm(Ct), P©7) and P,,“Y are mutation probability
for cycle length, offset and green time, respectively. For each experiment we
run the algorithm just once. The first eight experiments run for 50 generations,
whereas the last 2 run for 100 generations. It takes in average 70 seconds to
evaluate one individual. The mutation steps are set to stepCt=5, stepO f f=10,
stepGt=3 for cycle, offset and green time respectively.

4.3 Results

Fig.5 shows the average travel time (fitness) in seconds of all solutions in the
initial population. Note that the smallest travel time is achieved when cycle
length is set to 25 seconds for all traffic lights. Increasing cycle length from 25
to 110 seconds in steps of 5 linearly increases travel time. It is well known that
shorter cycle lengths usually result in reduced delays [10]. The cycle length trend
observed for the mobility pattern studied here is in accordance with the above
statement. However, note that the minimum cycle length of 20 seconds tried
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here does not lead to the smallest travel time. Also note that the travel time
trend is reversed for cycle lengths above 110, i.e. travel time reduces linearly for
cycle length 115 and 120. Fig.6 shows the configuration (Ct, Off, G1, G2) of all
eleven signals in the solution with smallest travel time in the initial population.

Next, in order to study the impact of optimizing independently cycle length,
offset, and green times, we analyze one experiment using recombination with-
out mutation (E01) and seven experiments (E02-E08) using mutation without
recombination. All experiments start with the same initial population shown in
Fig.5 and use the same random seed.

Fig.7 shows the travel time transition of the best solution found so far over the
generations for the eight experiments and Fig.9 shows the signal configuration of
the best solution for some experiments. From these figures, it is worth mentioning
the following. Experiment E01 performs only crossover without mutation (P, =
1, P, = 0), which has the effect of recombining the different cycle lengths of
the signals in the initial population without changing their initially set offset
and green times. In this case, travel time improves until generation 16 and the
best solution includes signals with cycle length 20, 25, 30 and 35 as shown in
Fig.9(a). This shows that a better overall system configuration can be found
by having different signals set with different cycle lengths. This fact is crucial
because a large number of works focus on the optimization of groups of signals
that are assumed to be synchronized or coordinated, i.e. cycle length is a variable
considered for optimization but all signals are assigned the same cycle length.
The problem with these approaches is that it is not possible to know in advance
which signals have to be coordinated and assigned the same cycle, as shown by
this simple experiment.

Experiment E02 that mutates green times (P, (“® = 1) could not find a solution
better than the best solution of the initial population because mutating green times
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of the best and second best initial configurations (Ct, Of, G1, G2)=(25,0,10,9) and
(20,0,7,7), respectively, violates the minimum and maximum allowed green times.
Remember that, in this work, the green time mutation step (stepGt) is set to 3
seconds. Also, improvement in other solutions is not large enough to surpass the
best configuration of the initial population.

Experiment E03 tests the effect of mutation on offset of traffic signals
(Pm(of ) = 1). Offset parameter is the only one that is independent of the cycle
length and green times, and it is used to coordinate signals in order to induce
green waves [5]. As Fig.7 shows, travel time improves until generation 17 and
then it stagnates. Note however, that travel time is considerably better than
by experiment EQ1. From Fig.9(b) note that the only difference with the best
configuration of the initial population is the offset for each signal. This results
is in agreement with previous efforts where improvements are achieved by signal
coordination, i.e. common cycle and different offsets. Experiment E04 mutates
offset and green time (P,, %" = 0.5, P,,(Y = 0.5), which leads to the same
solution of experiment E03, where only offset was mutated. This is because green
time mutation violates the minimum constraint, similar to experiment E02.

EO05 mutates exclusive cycle length (Pm(Ct) = 1). Note that travel time re-
duces substantially compared to the previous experiments as shown in Fig.9(c).
Although the operator is directed to cycle length it also affects green times, be-
cause when cycle changes green times must also be adjusted accordingly, up or
down, to be within the limits imposed by the newly mutated cycle length. Exper-
iment E06 mutates cycle length and offset with same probability (P,,L(Ct) = 0.5,
P, 00 = 0.5), which leads to a slightly better travel time than E05 that only
mutates cycle length.

EO07 mutates cycle length and green times with equal probability (Pm(Ct) =
0.5, P,,(G = 0.5). Note that this experiment leads to the best travel time. EO8
mutates cycle length, offset, and green times with larger probability for cycle
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length (Pm(Ct) =05, P90 =03, P, = 0.2), which leads to the second
best travel times of the experiments included in this figure. EQ7 clearly shows
that mutating green times in addition to cycle length contributes to reduce travel
time, but the addition of offset mutation in E06 and EO8 seems not to improve
the effectiveness of the search in the scenario studied here. Fig.9(d) shows the
signals configurations of the best solution found by experiment EQ7.

Next, in experiment E10 we analyze the combined effect of crossover and
the three mutation operators for cycle length, offset and green times (P.=1.0,
P, =05 , P,,00) = O.3,Pm(Gt) = 0.2). For this experiment, we allow the
algorithms to run for 100 generations instead of the 50 used in the experiments
before. For comparison, we run experiment E08 again also using 100 generations
and call it E09. Note that in E09 the three-mutation operators are used with
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the same probabilities as in E10 but no crossover is used. Results by these
experiments are shown in Fig.8. Note that the inclusion of crossover in E10
makes the algorithm converge faster. However, E09 produce a solution with a
slightly better travel time. From Fig.9(e) and Fig.9(f) note that although the
travel time only differs by six seconds the configurations for the individual signals
are different.

5 Conclusions

In this article, we have analyzed the effects of different EA operators for traffic
signals optimization. We performed a system-level optimization of 11-traffic sig-
nals simulating the mobility of 20000 agents on a 21Km? area of Quito (Ecuador).
MATSim was used as the transport simulator. Ten experiments were configured
and tested for evaluating different combinations of operators for cycle length
mutation, offset mutation, green times mutation and crossover. We found that
operators related to cycle length show better results than the other operators
related to green times and offsets. The combination of cycle length mutation and
green times produces the best results in terms of travel time. The incorporation
of crossover did not lead to better travel time, but it speeded up convergence,
which could be important in this computationally expensive problem. An impor-
tant finding of this study is that heterogeneous cycle lengths reduce significantly
travel time compared to settings where a common cycle length is used for all
signals. The results of this study provide valuable insights to explain better the
problem, validate the mobility scenario, and understand the effects of the opera-
tors. In the future, we would like to explore other operators with more complex
mobility scenarios and extend the problem formulations to deal with multiple
objectives to design sustainable transport systems.
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National Secretariat of Higher Education, Science, Technology and Innovation
of Ecuador.
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Abstract. Web services are independent functionality modules that can
be used as building blocks for applications that accomplish more specific
tasks. The large and ever-growing number of Web services means that
performing this type of Web service composition manually is unfeasi-
ble, which leads to the exploration of automated techniques to achieve
this objective. Evolutionary Computation (EC) approaches, in particu-
lar, are a popular choice because they are capable of efficiently handling
the complex search space involved in this problem. Therefore, we propose
the use of a Genetic Programming (GP) technique for Web service com-
position, building upon previous work that combines the identification
of functionally correct solutions with the consideration of the Quality
of Service (QoS) properties for each atomic service. The proposed GP
technique is compared with two PSO composition techniques using the
same QoS-aware objective function, and results show that the solution
fitness values and execution times of the GP approach are inferior to
those of both PSO approaches, failing to converge for larger datasets.
This is because the fitness function employed by the GP technique does
not have complete smoothness, thus leading to unreliable behaviour dur-
ing the evolution process. Multi-objective GP and the use of functional
correctness constraints should be considered as alternatives to overcome
this in the future.

1 Introduction

With the popularisation of the Internet, Web services have become feasible build-
ing blocks for applications. Web services can be defined as independent function-
ality modules that are used for achieving specific tasks, and that can be accessed
via a network communication protocol. The combination of services in order to
create a larger application is known as Web service composition [11], a technique
that encourages component reuse and consequently leads to the expedient de-
velopment of software solutions. Even though Web service composition can be
performed manually, the number of services has been growing so quickly that
doing so could prove to be quite time-consuming, particularly when selecting
between many services with the same functionality but different non-functional
attributes. As a result, significant research efforts have been invested to identi-
fying and developing techniques for the automated composition and selection of
services.

G. Dick et al. (Eds.): SEAL 2014, LNCS 8886, pp. 180-191, 2014.
© Springer International Publishing Switzerland 2014
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Applying Evolutionary Computation (EC) approaches to Web service compo-
sition and selection is a popular direction of investigation, since EC techniques
employ non-deterministic strategies for discovering solutions and thus are ca-
pable of efficiently handling large search spaces (i.e. large numbers of possible
service combinations) [13]. The goal of this work is to present an alternative
QoS-aware Web service composition approach using GP, introducing the idea
of a fitness function with separate ranges of values to differentiate between the
composition solutions that are not fully functionally correct and those that are.
This work assumes knowledge of genetic programming [6] and particle swarm op-
timisation techniques [8]. This paper is organised as follows: Section 2 presents
a brief overview of the research on GP and PSO conducted in this area. Sec-
tion 3 presents the improved GP approach. Section 4 briefly reviews the two
PSO approaches used for the comparison and presents the details of the com-
parative evaluation. Section 5 analyses the evaluation results while section 6
briefly presents further investigations that we attempted to improved our GP
approach. Section 7 concludes this paper and discusses future work possibilities.

2 Background

2.1 Problem Description

The basic idea behind Web service compositions is to meet user task require-
ments by combining services into a composition with appropriate functionality.
However, this fundamental process only takes into account how well the inputs
and outputs of the services within the composition match, meanwhile overlook-
ing important non-functional requirements such as execution time and reliability.
A more sophisticated approach is to consider the Quality of Service (QoS) mea-
sures [10] of each service when performing the composition, in what is known as
a QoS-aware Web service composition. While many different Web service quality
measures exist, four of them have appeared consistently in previous works [7,20]:
the probability of a service being available for execution (A), the probability of
a service conforming to previously estimated execution times (R), the estimated
time limit between sending requests and receiving responses (7), and the ser-
vice’s financial execution cost (C'). A and R are expressed as probabilities, where
the highest values denote the highest quality, and T" and C' are absolute figures,
where the lowest values denote the highest quality.

Commonly used Web service composition languages, including BPEL4WS and
OWL-S, support four basic constructs for configuring the interaction between
services: sequence, parallel, choice and loop [20]. A number of papers only con-
siders sequence and parallel constructs [20,5], and the same applies to this work.
These two constructs are described as follows:

— Sequence Construct: The services organised using the sequence construct
are executed sequentially, which means that the output of the first service
feeds into the input of the second in a chain. The total time (T") and cost (C)
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of this construct can be calculated simply by adding the individual property
values from each service in the sequence. As probabilities, the availability
(A) and reliability (R) are calculated by multiplying the individual property
values from each service.

— Parallel Construct: The services organised using the parallel construct
are executed in parallel, which means that the inputs of each service must
be fulfilled independently and that the outputs are consequently also pro-
duced independently. The cost, availability and reliability (C, A, R) of this
construct are calculated in the same way as in the sequence construct. The
total time (T'), on the other hand, is calculated by selecting the highest
individual execution time out of all services.

2.2 Objective Function

An objective function must be employed to perform QoS-aware service compo-
sition. This function ensures that desirable quality properties are maximised in
the solutions to a composition task [2]. In accordance to the four QoS values cho-
sen in this work, the following objective function was employed for a candidate
solution 4:

fi = wi Ay +wa Ry + w3 (1 —T3) + wa(1 — C;) (1)

where Z?:l w; = 1.

The QoS attributes used in this function are calculated according to the strate-
gies described above for each sequential and parallel construct in the overall com-
position. The output of this objective function is within the range [0, 1], where
1 represents the best possible composition quality and 0 represents the worst.
As the function weights (w; to wy) all add to 1, the T and C values must be
normalised between 0 and 1 so that the overall result falls within the required
range. To perform this normalisation, C' is divided by the sum of costs in all
the services that could possibly be in the composition, and T is divided by the
sum of times of these services. The services that are possibly in the composition
can be identified using a simple discovery algorithm outlined in previous works
[17,16]. Finally, as the lowest possible T and C' values represent the best quality,
the objective function must be offset using (1 —7T') and (1 — C).

A key aspect in the comparison performed in this work is that it utilises
the same objective function for all the techniques compared. This consistency
is important because it means that the results of the comparison are fair with
regards to the composition quality measure.

2.3 Existing GP-Based Composition Approaches

Genetic programming is a popular EC technique for performing Web service com-
position. In [12,15] a GP approach is proposed that guarantees functional correct-
ness by generating the initial population candidates according to a context-free
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grammar. After the initial generation of candidates, any genetic operation to the
trees is also guaranteed to maintain the functional correctness by checking that
inputs and outputs match. The authors claim to have supported all composition
structures present in the OWL-S and BPEL4WS models, but the context-free
grammar upon which this work is based does not seem to support loop con-
structs. Their work was tested using a collection of composition problems and
large service repositories, with favourable results for all runs. The positive re-
sults demonstrate that this is a robust approach. An important limitation of
this work is that it does not consider QoS measurements, instead assuming that
the minimum execution path needed to achieve a solution in the measure of its
quality (e.g., the depth of the tree [12]).

Similarly, [17] proposes a technique in which all initial candidate compositions
are functionally correct, and any subsequent candidates must also be functionally
correct. This approach is more accurate than [15], since the latter may generate
candidates that are functionally correct but do not relate to the original compo-
sition task, thus requiring the imposition of additional penalties by the fitness
function. In the case of [17], on the other hand, all candidates in all populations
are both guaranteed to be functionally correct and also guaranteed to fulfil the
original task’s need. This is accomplished by utilising a greedy search algorithm
that generates suitable composition candidates and subtrees during mutation. It
must be noted that the fitness function in this work relies on the total number
of unique web services as its measure of goodness, but does not consider QoS
measurements.

[19] investigates the use of GP for Web service composition by proposing a
dedicated composition framework. This framework uses a fitness function that
incorporates the results from black-box testing using automatically generated
use cases, as well as taking into account the overlap between inputs and outputs
of each solution’s subtrees. The black-box testing ensures that the behaviour of
the generated candidates is correct, thus preventing compositions in which the
input and output names match but the behaviour of the combined services is not
logically compatible. The framework also relies on a Service Dependency Graph
to ensure that all generated candidates are functionally correct when performing
genetic operations. However, once again the proposed solution neglects to use
QoS measurements as the criteria with which to evaluate candidate compositions,
a pattern that is repeated in [4].

[20] proposes a genetic programming approach to solve the problem of Web
service composition, which is unique because it achieves both the goals of func-
tional correctness and non-functional Quality of Service through a single fitness
function. In contrast to process-driven composition approaches — where only
the input, output, and total number of services are considered —, this method
provides the benefit of evolving the final composition based on global QoS mea-
sures. Nevertheless, while this work does consider QoS measures, it does not
guarantee functional correctness for all composition candidates.
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2.4 Existing PSO-Based Composition Approaches

Web service composition using QoS-aware PSO techniques has been discussed
by several works, see [16]. In [3] a fitness function is proposed that considers the
availability, response and execution times, successful execution rate, and repu-
tation of each Web service to be included in the composition. This function is
employed in the PSO’s evolution process, where each particle dimension corre-
sponds to a Web service with the required functionality for the composition.
This approach assumes that the overall workflow in which each individual ser-
vice is to be placed has already been provided, which simply leaves particles to
discover the most suitable services for each workflow slot. While the preselection
of a workflow considerably facilitates the composition process, it requires either
a selection mechanism or a person with sufficient domain knowledge to make the
appropriate decision.

[18] carries on the idea of preselecting a workflow upon which to perform
PSO. Their main contribution lies in the utilisation of a multi-objective fitness
function to evaluate composition candidates. Multi-objectivity is ideal when the
goal is to maximise several, often conflicting, desirable attributes in a population.
For example, an ideal Web service composition would incur the lowest possible
cost while providing the highest possible availability. However, there is often a
trade-off between these two quality measures in a composition. The advantage
of a multi-objective function is that it allows the retrieval of a Pareto set of
solutions that are equivalent overall, despite being different from the perspective
of a single quality measure [14].

Despite once again preselecting a workflow to be optimised, [9] proposes a
unique method with which to update the position of the particles in the swarm.
The idea is to apply list of changes to each particle in order to update it, as
opposed to performing the usual numerical calculations. Effectively, particles
undergo a transformation process at every step of the PSO search, yielding
new workflow configurations. As this approach can lead to stagnant particles, a
technique to search solutions within the radius of a given candidate is also imple-
mented, thus diminishing the probability of early convergence on local optima.

3 Proposed GP Approach

The GP approach proposed herein is based on [20]. Candidates are represented
using trees where inner nodes consist of parallel and sequence constructs that
direct the flow of the composition, and leaf nodes consist of the Web services
used as basic components. Each parallel and sequence construct requires a set
of inputs and produces a set of outputs according to the nodes that compose its
subtree. The genetic operations employed are crossover, in which subtrees are
swapped, and mutation, in which a node is randomly selected and modified. This
particular tree representation is convenient because it allows the set of inputs,
outputs, and QoS values for each inner node to be calculated by performing a
simple depth-first tree traversal. Since this approach relies on the mutation and
crossover of the trees to explore the search space, it is capable of composing
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workflows with varying configurations while at the same time selecting the ser-
vices with the best QoS properties. However, it may generate solutions that are
not fully functional, so the fitness function that evaluates each candidate must
proportionally penalise those solutions with functionality issues.

3.1 Fitness Function

The novel contribution of the proposed approach is in its fitness function, which
maximises desirable QoS attributes while penalising solutions that are not en-
tirely functionally correct. This works similarly to the approach of [20], but
the difference is that the function produces two separate ranges of values, an
inferior range denoting partially functional solutions without considering QoS,
and a superior range denoting fully functional solutions with QoS. By creating
this separation, the fitness function priorities the achievement of full functional
correctness before considering non-functional properties.

The range of the fitness function is [—1, 1], where [—1,0) corresponds to the
functional correctness of the solution (with 0 being a completely correct solu-
tion), and [0,1] corresponds to the total QoS properties of a fully functional
solution, with 1 indicating the best quality. Before calculating the fitness func-
tion the candidate solution tree is traversed in a depth-first fashion, and within
each node both the functional (output and input matching) and non-functional
(QoS properties) aspects of the candidate are calculated.

In the case of the tree leaves, which represent atomic Web services, the non-
functional properties A, R, T' and C are the values of those properties in that
service and the functional score is always 0 (i.e. not considered). In the case of
the inner nodes, which represent workflow configurations, the values of A, R, T
and C' are calculated as explained in Subsection 2.1, treating each child node as
an atomic service.

It is impossible to evaluate the functional correctness of isolated parallel nodes
in the tree, since they simply hold services that should be simultaneously exe-
cuted and are thus unaware of the outside arguments provided to them. Because
of this, they do not contribute to the calculation of the functional score com-
ponent of a candidate’s fitness. For sequence nodes, on the other hand, the
functional score can be calculated by creating an average of the output-input
matches between each pair of child nodes, s;_1, s; in the sequence. This average
is calculated using the equation below, and results in a value in the range [0,1]:

n  |output,_1Ninput,|
=2 input;
average = linput| (2)
n

where n is the number of children of the sequence node, output;_1,input; is the
output of service s;_1, the input of services s;, respectively.

This score is added to an overall running average of the candidate tree. Once
the entire tree has been visited, the match for the overall task inputs and outputs
is also calculated and added to the running average. Finally, this average is offset
using -1 and the functional score yields a value between -1 and 0. If the value
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is 0, that means that the solution is fully functional, so the objective function
introduced earlier (Eq. 1) is employed. Otherwise, the functional score is returned
as the fitness value. Thus, the fitness function for a solution ¢ can be expressed
as follows:

fi if func(i)=0
func(i) otherwise

fitness(i) = { (3)

where

|[iniNinreq| |out;Nout eq|
ws (" 1) Fwe( 0 17 ) + treeScore(root)

func(i) = -1+ 9 )
ws +wg = 1 and treeScore(root) is a recursive function that traverses the tree
and calculates the average of the results obtained by applying Equation 2 to the

sequence constructs within the structure.

4 Design of Experiments

Experiments were carried out to compare the proposed GP approach with two
recent PSO approaches, graph-based PSO, and greedy-based PSO. The datasets
used for the set of experiments were generated in [20] using the QWS dataset [1]
as its basis, since currently no benchmark datasets are available for evaluating
QoS-aware web service composition. The exception to this is dataset 6, which is
based on dataset 5 but expanded with synthetically generated Web services in
order to test the scalability of the approaches. The datasets contain information
that has been collected online detailing the inputs, outputs, time, cost, reliabil-
ity, and availability of real Web services. Four different composition tasks were
used throughout this set of experiments, requiring the creation of composition
solutions of various sizes and complexities. Their details are displayed in Table 1.

Table 1. Experiment tasks

Task Inputs Outputs Dataset (No. of Services)
1  PhoneNumber Address 1(20)
2 ZipCode, Date City, WeatherInfo 2(30)
3 From, To, DepartDate, ArrivalDate, Reservation 3(60)
ReturnDate
4  From, To, DepartDate, ArrivalDate, Reservation, 4(150), 5(450), 6 (4500)
ReturnDate BusTicket, Map

4.1 Two Recent PSO Approaches

The proposed GP approach was compared to two Web composition approaches
that rely on PSO. For reasons of brevity, only the key characteristics of each
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PSO approach will be described here, however their full explanation can be
found in the original work from which they were reproduced [16]. For both of
these approaches, the fitness function employed in the evolutionary process is the
unchanged objective function presented in Subsection 2.2 (Eq. 1). This function
is different from that of the GP method presented in section 3 in that it does
not need to constrain functionality, so it only ranges from 0 to 1.

Greedy-Based PSO Approach. The greedy-based PSO approach [16] uses a
greedy algorithm, originally proposed in [17], to generate an initial Web service
composition workflow where services can be executed sequentially, in parallel,
or in a combination thereof. This workflow contains abstract slots for placing
services, each slot presenting a different set of available inputs and required
outputs. For each slot, a list of compatible services is compiled. PSO is then
employed to select the best possible service for each slot in order to arrive at
a solution with the best possible QoS attributes overall. Each particle is repre-
sented as having n dimensions, where n corresponds to the number of abstract
slots in the workflow, and each dimension points to a Web service from its list
of compatible services. In summary, in greedy-based PSO the structure of the
composition is determined first, and the services to populate that structure are
selected afterwards.

Graph-Based PSO Approach. The graph-based PSO approach [16] also
employs the greedy composition algorithm, but this time during the evolution-
ary process. Initially, the discovery of all services from the repository that could
possibly be used for the requested composition task is performed using a ba-
sic algorithm. Once the discovery is finished, a directed graph showing all the
input-output relationships between these services is created — this is referred
to as the master graph. The services in the master graph are represented as
nodes, and the relationships between them as edges. Each particle has k dimen-
sions, where k corresponds to the number of edges in the master graph. Each
dimension holds a value between 0 and 1, which represents a weight associated
with that edge. Since each particle only contains a series of weights, during PSO
it is necessary to extract the candidate composition workflow from the master
graph using the greedy algorithm. The algorithm is run aided by the weights in
the particle, meaning that edges with the highest weights are selected to be in
the candidate composition. After the workflow has been extracted its fitness can
finally be calculated. In summary, in graph-based PSO both the structure of the
composition and the services that populate it are selected simultaneously.

4.2 Parameters

Experiments were conducted on a personal computer with a 3.4 GHz CPU and
8 GB RAM. For GP, 50 independent runs were executed per dataset with a
population size of 1000 — smaller populations were previously attempted with
unsatisfactory convergence rates. Each run was required to continue until a fully
functional result was achieved, at which point 50 more iterations would occur and
the run would finish. The fitness function was configured with weights of 0.25 for
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all QoS properties, and of 0.5 for both ws and wg. The crossover and mutation
probabilities were set to 0.9 and 0.1, respectively. The single best solution in one
generation was copied to the next.

For both PSO approaches, the same settings outlined in the original work were
preserved [16]. 50 independent runs were executed per dataset, all of them using
a swarm of 30 particles. Runs were allowed to execute a maximum of 100, but
were terminated earlier if the global best fitness remained the same throughout
10 iterations. The fitness function was configured with weights of 0.25 for all QoS
properties, the PSO inertia weight w was set to 1, and acceleration constants ¢;
and co were both set to 1. The greedy-based PSO approach was configured to
choose the initial composition workflow from 50 randomly generated candidates.

5 Results and Analysis

The results of the comparison are shown in Table 2, where the first column
records the dataset used and its total number of services, the second column
contains the composition task employed, and the third column shows the min-
imum number of services from that dataset which had to be used in order to
create a fully functional solution for the composition task. The fourth, fifth and
sixth columns present the fitness of the greedy-based, graph-based and GP ap-
proaches, respectively; the seventh, eighth and ninth columns show the execution
time of the greedy-based, graph-based and GP approaches, including setup times
associated with service discovery, creation of the master graph, etc. A Wilcoxon
signed-rank test at 0.95 confidence interval was carried out to verify whether
there was any statistically significant time or fitness differences between the
graph-based and the other two approaches. These differences are indicated in
the table as |, |, | and | symbols denoting significantly smaller and significantly
larger values, respectively.

The results show that our GP based approach has clearly worse execution
time than that of graph-based PSO approach and the greedy-based PSO
approach, though graph-based PSO has clearly worse execution time than that

Table 2. Average time and fitness results for each approach

Dataset Min. Fitness Time (ms)

(No. of Task Cmp. G d G N G q G I

Serv. Si reedy rap reedy rap

) ”¢ pso PSO GP PSO PSO GP
1200 1 1 0.80840  0.80840  0.80840  22.941.2 41.3410 149.6458.3 1}
2(30) 2 2 071340  0.71340 0.63940.04 || 9+0.1  13.842.8 346+ 282 1|
3(60) 3 2 0.634+40 0.63140.011 0.634+0 | 1140 87.2418 180.6+68.6 1|
4(150) 4 4 0.53240 0.52440.01 0.413+0.06 || 21.740.5 116.1424.5 670897 44
: : 010 : T£0. A£245 4 109320.9

5(450) 4 4 0.53240 0.525+0.01 - 33.641  60.4+ 2.3 -
6(4500) 4 4 0.586-0.01 0.637-0.022 - 462.4461.2 752.34+78.6 -

# | / 1 mean significant lower / higher in comparison with Greedy PSO
b | / | mean significant lower / higher in comparison with Graph PSO
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of greedy-based PSO. The average fitness, on the other hand, suggests that the
fitness of the GP approach becomes progressively inferior with the growth of
dataset sizes, though overall performance of the greedy-based and graph-based
approaches is equivalent. As it can be observed, the fitness and time values for
the execution of GP using datasets 5 and 6 are missing from the table. This is
because the runs using those two datasets failed to converge after a significant
amount of time. In fact, the efficiency of GP is severely reduced for dataset 4,
as seen by the sudden spike in the execution time and drop in the fitness value.

In hindsight, the fundamental problem with the proposed approach is in its
fitness function. Specifically, the division of function values into ranges is prob-
lematic because it means that the fitness of solutions does not increase smoothly
as they evolve past the threshold of functional correctness. For example, sup-
pose that the fitness for the best solution in generation k is —0.01, i.e. not fully
functionally correct. If a crossover operation occurs in generation k& 4+ 1 and
pushes descendants of that solution to the threshold of functional correctness
(0), these descendants’ QoS scores will be used as their fitness values from that
point onwards. However, these QoS values are likely to already be significantly
higher than 0, thus causing a jump in the fitness progression of these candidates
and leading to unreliable behaviour during the evolution process. In the future,
this problem could be addressed by employing a multi-objective GP approach to
adequately consider the independent goals of functional correctness and compo-
sition quality. Alternatively, functional correctness constraints could be enforced
to determine which candidates are structurally valid before applying a fitness
function that would concern itself exclusively with QoS optimisation.

6 Further Investigation

As seen from the previous section our proposed GP approach to QoS aware ser-
vice composition does not perform well comparing with two PSO approaches, due
to the fitness function we used. To further improve our GP approach we adjust
our GP approach by considering functional correctness during the process of evo-
lutions, i.e, when applying mutation and crossover operations. Correspondingly,
we change the fitness function to only measure the aggregate QoS properties of
the individuals of each generation. To show the effectiveness of our improved GP
approach, ImprGP, we have conducted a further experimental evaluation using
the same datasets and the same parameter settings as in Section 4. Table 3 below
shows the experimental results.

The results show that the fitness for all approaches is mostly equivalent, with
small variations for datasets 4 and 5, but differences are more pronounced in
dataset 6. The execution time for ImprGP is higher than for both PSO-based ap-
proaches for all datasets except dataset 6, for which ImprGP takes less time than
graph-based PSO. When looking at datasets 5 and 6, the increase in the num-
ber of services (from 450 to 4500) causes an increase in the execution time by
a factor of 15 for graph-based PSO, while the execution time for ImprGP in-
creases only by a factor of less than 2. Compared to graph-based PSO, ImprGP
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Table 3. Average time and fitness results for the improved GP and the two PSO-based
each approaches

Dataset Min. Fitness Time (ms)

(No. of Task Cmp. Greed G h Greed G h

Serv. Size reedy rap I P reedy rap I P
) PSO PSO mprG PSO PSO mprG

1(20) 1 1 0.808+0 0.808+0 0.808+0 6.7+8.3 27.6+£36.5 62.2+£81.4 1]
2(30) 2 2 0.713+0 0.713£0 0.713+0 4.440.5 33.4+£17.4 193.5+13.5 1|
3(60) 3 2 0.634+0 0.634£0 0.634+0 4.9£0.3 32.5+6.8 187.1£11.2 1]
4(150) 4 4 0.532+0 0.52740.01 0.527+£0.01 | 9.4£0.5 60.4+3.6 340.8+36.5 11
5(450) 4 4 0.532+0 0.52740.01 0.526+0.01|| 10.7+1.1  62.7+5.3 351.3£32.51]

6(4500) 4 4 0.586+0.01 0.637+0.02 0.617+0.02] 374.4+71.9 934.3+44.5 634.8+51.4 1|

| / 1 mean significant lower / higher in comparison with Greedy PSO
b | / | mean significant lower / higher in comparison with Graph PSO

a

produces a 3% lower fitness in a 30% shorter execution time for dataset 6. This
indicates that there is a trade-off between fitness and execution time for larger
datasets, an observation that was also made in [16]. In summary, after modifying
the fitness function our improved GP approach performs better than the original
GP approach. In particular, the experiment results indicate that for large data
sets (such as dataset 6), ImprGP achieves better fitness than greedy PSO, and
executes faster than graph-based PSO.

7 Conclusions and Future Work

This paper proposed a GP approach for QoS-aware Web service composition
which builds upon previous work by employing an improved fitness function.
This approach was compared through a set of experiments against two previ-
ously defined PSO techniques for QoS-aware composition, namely greedy-based
and graph-based PSO. Results showed that while fitness values for GP oscil-
lated between noteworthy and undesirable when compared with the other two
approaches, its execution time was clearly higher in all instances, and conver-
gence could not be achieved for the larger datasets. The problem was that the
fitness function employed in the GP approach lacked the smoothness required
for a reliable evolution process. Further investigation has attempted to improve
our proposed GP approach. Experiments has shown that our further improved
GP approach shows its efficiency for large datasets. For future work we will
evaluate our GP approach using larger datasets to test its scalability. Finally,
further work will investigate to apply evolutionary multi-objective optimization
(EMO) techniques to QoS aware service composition.
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Problems in reality usually have multi-objectives instead of one single objective. A
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Abstract. Multi-objective Evolutionary Algorithms (MOEAs) are popular ap-
proaches for solving multi-objective problems (MOPs). One representative me-
thod is Non-dominated Sorting Genetic Algorithm II (NSGA-II), which has
achieved great success in the field by introducing non-dominated sorting into
survival selection. However, as a common issue for dominance-based algo-
rithms, the performance of NSGA-II will decline in solving problems with 3 or
more objectives. This paper aims to circumvent this issue by incorporating the
concept of decomposition into NSGA-II. A grouping-based hybrid multi-
objective optimization framework is proposed for tackling 3-objective prob-
lems. Original MOP is decomposed into several scalar subproblems, and each
group of population is assigned with two scalar subproblems as new objectives.
In order to better cover the whole objective space, new objective spaces are
formulated via rotating the original objective space. Simulation results show
that the performance of the proposed algorithm is competitive when dealing
with 3-objective problems.

Keywords: Multi-objective evolutionary algorithm, hybrid, decomposition.

Introduction

Multi-Objective Optimization Problem (MOP) can be defined as follows:

where x refers to the decision variables which lie in the decision (variable) space ).
The MOP consists of m objective functions and it maps the decision space () into an

max/min F(x) = (fl(x), ...,fm(x))T

subject tox € Q

m-dimensional objective space R™, i.e. F: Q - R™.

Objectives of a MOP are often conflicting with each other, meaning that the
optimized solution in one objective does not produce optimal result for the other

G. Dick et al. (Eds.): SEAL 2014, LNCS 8886, pp. 192-203, 2014.
© Springer International Publishing Switzerland 2014
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objectives. Thus, there are many or even infinite Pareto Optimal solutions for a MOP
instead of a single solution to optimize all the objectives simultaneously. The best
tradeoff among objectives is defined as the Pareto Front (PF).

In real life applications, the task of solving MOP eventually becomes a task of pro-
viding a good approximation of PF in the objective space for decision makers [1].
Therefore, it is desired to have optimization algorithms to produce a good approxima-
tion of the real PF with manageable number of Pareto optimal solutions which are
evenly distributed along the real PF. NSGA-II [2] is one of the most famous evolutio-
nary algorithms for multi-objective optimization. Non-dominated sorting and density
estimation is utilized in the survival selection process to help maintain the diversity of
the population. According to empirical results in literatures [3-5], NSGA-II is able to
provide powerful performance in 2-objective problems. However, when the number
of objectives increases, the quality of the solution set obtained by NSGA-II will
impair. To seek the reason, it becomes more difficult for non-dominated sorting to
decide which individual should survive to next generation as most solutions are non-
dominated, which is a common issue for dominance-based approaches. To circumvent
such issue, this paper proposes a new algorithm that combines the concept of decom-
position used in MOEA/D [1] with the current NSGA-II framework. The whole popu-
lation is divided into several groups and the MOP is decomposed into a number of
scalar subproblems. Each group will then be assigned with two scalar subproblem as
new objectives. Non-dominated sorting and density estimation is conducted within the
group based on the new objectives. To better cover the whole objective space, new
objective spaces are formulated for each group by rotating the original objective
space. Simulation results demonstrate that the proposed algorithm is competitive in
solving 3-objective problems.

The rest of the paper is organized as follows. Section 2 reviews some related work.
Section 3 provides the details of the proposed framework. Section 4 presents the ex-
perimental results and compares the performance of the new framework with that of
original NSGA-II. Conclusions are drawn in Section 5.

2 Related Work

2.1 NSGA-II

NSGA-II makes use of the important techniques of non-dominated sorting and density
estimation in the survival selection process [2].

The concept of domination can be explained as follows.

In a maximization problem, let u and v be two points in an m-dimensional objec-
tive space R™,i.e.u,v € R™, uis said to dominate v if and only if:

1. u; > v; for at least one indexi € {1, 2, ..., m}
2. uj = v; forevery indexj € {1,2,..,m}

This is to say, performance of u must be better than v in at least one objective (i.e.
condition 1) and cannot be worse than v in any of the m objectives (i.e. condition 2) in
order for us to say u dominates v.
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NSGA-II makes use of the non-dominated sorting technique to give every individ-
ual solution a rank. The improved fast non-dominated sort is a sorting method that
helps to separate the combined parents and child population into different fronts of
dominance level. To achieve the first non-dominated front, each individual is com-
pared with others to see whether it is being dominated. The best set of individual
which dominates over other population will made up the first non-dominated front.
The process repeats itself until every individual is allocated to a non-dominated front.

Density estimation computes the distance between individual solutions. In the case
that there are more than required number of individuals with the same rank in a selec-
tion process, the algorithm considers the contribution of the individuals in diversity
maintenance as well. The solution set that presents better diversity in objective space
will have a higher chance to be selected for the next generation.

Evaluation of the overall fitness in NSGA-II is based on the rank as well as density
estimation results. From the second generation onwards, each individual is to generate
its own offspring through crossover and mutation. Survival selection is conducted
among parents as well as offspring. Population for the next generation is selected
through non-dominated sorting as well as density estimation.

22 MOEA/D

Essentially, MOEA/D decomposes a MOP into a set of scalar subproblems using
uniformly distributed aggregation weight vectors and optimizes all of them simulta-
neously. Throughout the searching process, each individual solution is assigned with a
scalar subproblem as its new objective. By doing so, individual solutions are in fact
assigned with specified searching directions in the objective space. Uniformly distri-
buted aggregation weight vectors are utilized to ensure the searching directions are
evenly distributed in the objective space. Thus, a good approximation of PF with in-
dividual solutions evenly distributed along the real PF can be expected. The most
common decomposition approaches that have been adopted are weight sum approach
and Tchebycheff approach.

Weighted Sum Approach [6]. Weighted sum approach involves a convex combina-
tion of the different objectives in a MOP. In this case, each scalar subproblem is in
fact a linear combination of the original objectives in the MOP with all the coeffi-
cients to be non-negative and sum to 1. Let 4 = (44, ..., A,,)7 be a weight vector of a
MOP with m objectives, 4; = 0 fori =0,1,...,m; and };/; A; = 1. The correspond-
ing scalar function g(x) produced with this weight vector 4 would be:

min g(x|4) = X2, 4; - fi(x) )
where f;(x) is the real objective value obtained on objective i.

Tchebycheff Approach [7]. In the Tchebycheff approach, the scalar optimization
problem with weight vector 4 is the difference between the current performance on
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objective i and the optimal result obtained on the same objective, while i is decided
to be the objective producing the maximum value of such difference.

min g(x|4) = max;<i<m{2:|f;(x) — 2|} 3)

where z; is the reference point storing the optimal value found so far for objective i
and |f;(x) — z| gives the absolute difference between the performance of decision
variable x on objective { and the optimal result on objective i stored in the refer-
ence point.

3 Proposed Framework

The new framework proposed in this paper is a grouping approach combining the
non-dominated sorting technique from NSGA-II and the decomposition concept from
MOEA/D. After the very first initialization of the population, the overall population is
immediately grouped into N groups. The original objectives from the MOP are
decomposed into a fixed number of scalar subproblems and every group will be as-
signed with two of the scalar subproblems. Non-dominated sorting will thus be
conducted within each group with the 2 scalar functions as the new objectives.

The essence of the new approach is to assign groups of individuals to look for dif-
ferent sections of the real PF while expecting the overall coverage by all the sections
is a good approximation of the real PF.

3.1  Basic Concepts

Optimal Points for a Scalar Function. For a specific scalar function given, there
always exists a corresponding point in the objective space representing the intersec-
tion of the specified searching direction by the scalar function with the real PF. This
point is referred as the optimal solution for the specific scalar function [8].

Group Solution Lines. In the 3-D objective space corresponding to a 3-objective
MOP, a section of PF eventually found by a group of individual solutions with two
specific scalar functions assigned is expected to be a line, which is distributed along
the real Pareto surface connecting the two optimal points in the objective space cor-
responding to the two scalar functions given. For the rest of the paper, such lines will
be referred as the group solution lines.

3.2  Distribution of Group Solution Lines

The goal of the new framework in solving 3-objective MOPs is to cover the Pareto
surface with group solution lines as evenly as possible. There are quite a number of
ways to do so. One of the possible assignment scheme shown in Fig. 1 is eventually
chosen to implement the new framework to deal with 3-objective MOP.

As shown in Fig. 1, twelve group lines are necessary in this case implying the
group number in the new framework is fixed to be twelve (i.e. N=12). Essentially,
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the implementation of the new framework to solve 3-objective MOPs is a reversed
process in which we identify the way to cover the Pareto surface with group solution
lines first. Corresponding scalar functions are in turn identified according to the points
predefined in the objective space. Each group is assigned with two scalar functions as

the new objective to conduct non-dominated sorting within the group.

Fig. 1. Distribution of group solution lines on Pareto surface

One of the difficulties faced is about the scalar functions identification. Scalar
functions corresponding to vertex points A, B and C are easy to be identified. Ob-
viously, these three points imply the best performances on two of the objectives and
the worst performance on the other. Due to the conflicting nature of the three objec-
tives, we can interpret that the weight vectors assigned to the two objectives with best
performance are 0.5 while the one assigned to the other objective with worst perfor-
mance is 0 in order to generate such points in the objective space.

It is very difficult if not impossible to get the scalar functions to represent the other
points in our group lines assignment scheme. The common feature for these points is
that they perform extremely well on one of the three objectives. Taking points H, D
and G as examples, they all have the best performance on the third objective f5. The
difficulty comes from the fact that it is hard to give an exact ratio to the importance
among the three objectives for these points. Generally they could all be generated by
scalar functions 0f; + 0f, + 1f;. However, due to the conflicting nature of the three
objectives, point D would eventually be generated with this scalar function. The same
idea can be applied to points E and F.

The rest of the points are approximated with the points that are extremely close to
them. Taking point G as an example, approximated point G’ would be a point that is
extremely near point G with position slightly lifted up with respect to the third
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objective f;. Weight vector assignment is found through solution mapping vector. The
concept of solution mapping vector is proposed in [8]. The coordinates of the optimal
point corresponding to a specific scalar function is found through the solution map-
ping vector A', while A' is expressed as follows:

X = e (4)

Thus, with weight vector A given, we are in fact able to find out the searching di-
rection through the solution mapping vectors as calculated above. While in our case, it
is a reversed process in which we predefined the points of intersection of the search-
ing direction with PF, and calculate for the weight vector A correspondingly. The
coordinates are obtained based on the assumption that the PF of the problem is the
simple case as the one show in Fig.1. Table 1 below shows the corresponding weight
vectors to generate the points.

Table 1.
. Coordinates in Objective Space | Weight Vector Assignment
Pont g I I

A 0 : 0 : 1 0.5 : 0.5 : 0

B 1 : : 0 0 : 0.5 : 0.5

C 0 ! 1 ! 0 05 ' 0 ' 05
N i i e

D 0.5 : 0.5 : 0 0 : 0 : 1

E 0 : 0.5 : 0.5 1 : 0 : 0
UL LR ST RN T N B 0 L il %

G 025 | 075 | O 007 | 002 | 09

H 0.75 : 0.25 : 0 0.02 : 0.07 : 0.9

1 0 : 0.25 : 0.75 0.9 : 0.07 : 0.02

J 0 : 0.75 : 0.25 0.9 : 0.02 : 0.07

K 0.25 : 0 : 0.75 0.07 : 0.9 : 0.02

L 0.75 : 0 : 0.25 0.02 : 0.9 : 0.07

With the knowledge of the weight vectors corresponding to the points, group
solution lines can be obtained by assigning designated scalar functions to the groups.
The scalar function assignment scheme employed during implementation is shown in
Table 2.
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3.3 Rotating the Objective Space

Both weighted sum and Tchebycheff decomposition approaches are employed in the
new framework to deal with 3-objective MOP. Experimental results demonstrated that
weighted sum approach is good at searching for the solution lines that are at the edge
of Pareto surface (i.e. solution line AD, BE and CF in Fig. 1). Tchebycheff approach
is good at looking for the central lines (i.e. solution line AB, BC and CA in Fig. 1) but
not able to look for those lines at the edge of the Pareto surface. Unfortunately there
are no good ways to obtain the rest of the group lines with the current available de-

composition sch