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Preface

This LNCS volume contains the papers presented at SEAL 2014, the 10th

International Conference on Simulated Evolution and Learning, held during De-
cember 15-18, 2014, in Dunedin, New Zealand. SEAL is a prestigious interna-
tional conference series in evolutionary computation and learning. This biennial
event was first held in Seoul, Korea, in 1996, and then in Canberra, Australia
(1998), Nagoya, Japan (2000), Singapore (2002), Busan, Korea (2004), Hefei,
China (2006), Melbourne, Australia (2008), Kanpur, India (2010), and Hanoi,
Vietnam (2012).

SEAL 2014 received over 109 paper submissions from nearly 30 countries.
After a rigorous peer-review process involving at least three reviewers for each
paper, the best 42 papers were selected to be presented at the conference as a
regular talk (acceptance rate of 39%) and an additional 29 papers as short talks
(an acceptance rate of about 26%).

The papers included in this volume cover a wide range of topics in sim-
ulated evolution and learning. The accepted papers have been classified into
the following main categories: (a) evolutionary optimization, (b) evolutionary
multi-objective optimization, (c) evolutionary (machine) learning, (d) theoreti-
cal developments, (e) evolutionary feature reduction, (f) evolutionary scheduling
and combinatorial optimization, and (g) real-world applications and evolution-
ary image analysis.

The conference featured three distinguished keynote speakers: Xin Yao,
Kay Chen Tan, and Zbigniew Michalewicz. Prof. Xin Yao’s talk was on “Learn-
ing in the Model Space.” Prof. Kay Chen Tan’s talk was on “Advances in
Evolutionary Multiobjective Optimization and Applications.” Prof. Zbigniew
Michalewicz’s talk was on “Some Thoughts on Complexity of Real-World
Problems—Evolutionary Computation for Real-World Applications.” We were
very fortunate to have such internationally renowned research leaders giving
talks at SEAL 2014, given their busy schedules. Their presence at the confer-
ence was yet another indicator of the importance of the SEAL conference series
on the international research map.

SEAL 2014 also included six tutorials, which were free to all conference par-
ticipants. Two tutorials were kindly provided by two of the keynote speakers,
Prof. Xin Yao and Prof. Zbigniew Michalewicz, and in addition, we were also
fortunate to have Prof. Frank Neumann, Prof. Marcus Gallagher, Prof. Hernan
Aguirre, and Prof. Simon Lucas to each present a tutorial at the conference.

These six tutorials covered some of the hottest topics in evolutionary compu-
tation and learning, and their applications, including “Evolving and Designing
Neural Network Ensembles Effectively” (Xin Yao), “How to develop a Killer EC-
Based Application?” (Zbigniew Michalewicz), “Parameterized Complexity Anal-
ysis of Bio-Inspired Computing” (Frank Neumann), “Estimation of Distribution
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Algorithms and Probabilistic Modelling in Evolutionary Computation” (Marcus
Gallagher), “Advances on Evolutionary Many-Objective Optimization” (Hernan
Aguirre), and “Monte Carlo Tree Search and Evolutionary Enhancements” (Si-
mon Lucas). They provided an excellent start to the four-day conference.

The success of a conference depends on its authors, reviewers, participants
and Organizing Committees. SEAL 2014 was no exception. We are very grateful
to all the authors for their paper submissions and to all the reviewers for their
outstanding effort in refereeing the papers within a tight schedule. We relied
heavily upon a team of volunteers to keep SEAL 2014 running smoothly and
efficiently. They were the true heros working behind the scene. In particular,
Heather Cooper and Stephen Hall-Jones and the local organizing team from the
University of Otago played an important role in supporting the running of the
conference. We are most grateful to all the student volunteers for their great
efforts and contributions.

We would also like to thank our sponsors for providing all the support and
financial assistance to SEAL 2014, including the Department of Information
Science, University of Otago, School of Engineering and Computer Science and
Evolutionary Computation Research Group, Victoria University of Wellington,
and IEEE Computational Intelligence Society.

December 2014 Grant Dick
Will Browne

Peter Whigham
Mengjie Zhang
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Abstract. Over the last two decades, dynamic optimisation problems (DOPs) 
have become a challenging research topic. In DOPs, at least one part of the 
problem changes as time passes. These changes may affect the objective func-
tion(s) and/or constraint(s). In this paper, we propose and define a novel type of 
DOP in which dimensions change as time passes. It is called DOP with variable 
dimensions (DOPVD). We also propose a mask detection procedure to help al-
gorithms in solving single objective unconstrained DOPVDs. This procedure is 
used to try to detect ineffective and effective dimensions while solving 
DOPVDs. In this paper, this procedure is added to Genetic Algorithms (GAs) to 
be tested. The results in this paper demonstrate that GAs which use the mask 
detection procedure outperform GA without it especially Periodic GA 5 
(PerGA5). 

Keywords: Dynamic optimisation, variable dimensions, genetic algorithm, mask 
detection, periodic. 

1 Introduction 

Optimisation is an important topic that relates to several aspects in our life, such as 
transportation, management and industry. There are different categories of optimisa-
tion problems. Firstly, problems can be either discrete or continuous. In discrete opti-
misation, problems may have a finite number of objects to be ordered in their best 
possible way, for example, when finding an optimised path among a set of locations 
[1]. In contrast, continuous optimisation problems have real values to be optimised 
[2]. Secondly, the problems can be either single objective or multi-objective [3]. 
Thirdly, problems can be either unconstrained or constrained [2]. Finally, problems 
may either be stationary (static), where they do not change over time [4], or dynamic, 
where they have at least one part that changes over time [5]. 

In this paper, we consider dynamic optimisation problems (DOPs), in particular, a 
new class of problems in which effective dimensions change as time passes. We call 
these problems DOPs with variable dimensions (DOPVDs). Also, we develop an 
approach to identify active and inactive dimensions during the search process; this is 
called mask detection procedure. The experiments are conducted by developing test 
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problems based on existing well-known functions. The analysis of the experimental 
results shows that GAs with the proposed mask detection procedure outperform GAs 
without it.  

The rest of this paper is organised as follows. In Section 2, DOPs are addressed in 
general. In Section 3, DOPVD is defined and a framework is constructed to design 
such problems. Section 4 includes a comparison and discussion of six GAs that have 
been designed for solving DOPVDs. While an overall discussion of the implications 
of the results and suggestions for future work are concluded in this paper in Section 5. 

2 Dynamic Optimisation Problems 

In dynamic optimisation problems (DOPs), at least one part of each problem changes 
as time passes. These changes may include the objective function(s) and/or con-
straint(s). Various methods have been used to solve DOPs, for example, Genetic  
Algorithms (GAs) [6], Immune-based algorithms (IBAs) [7] and Evolutionary Algo-
rithms (EAs) [8]. When EAs are used to solve dynamic environments, they are called 
evolutionary dynamic optimisation (EDO) algorithms [9]. These algorithms have 
attracted a lot of research effort during the last 20 years. In this section, we consider 
three issues; change detection, optimisation approaches for solving DOPs and DOPs 
test problems and generators. 

2.1 Change Detection 

Ignoring the dynamics of the problem is the simplest way to solve DOPs, but such an 
approach is not practical [5]. Hence, to deal with DOPs the methods have two main 
goals, to track the changes in a problem, and to locate the optimal solution [9]. In addi-
tion, some type of correlation between the problem-after-change and the problem-before-
change must be considered. Otherwise, after a problem changes, the algorithm needs to 
solve a different problem by starting from scratch. 

When a change occurs, most of the algorithms need to detect the changes. Change 
detection mechanisms can be categorised into: detecting change by re-evaluating 
solutions [9], and detecting changes based on algorithm behaviour [9]. 

2.2 Optimisation Approaches for Solving DOPs 

This subsection briefly critically reviews two of the most typical approaches that have 
been proposed to solve DOPs. 

I) Introducing Diversity when Changes Occur 

This category contains methods that try to introduce diversity into their population when 
they detect a change. For example, by increasing the mutation rate as in hyper-mutation 
[10]. These approaches are good in solving problems with continuous changes, when the 
changes are small and medium [11]. However, these methods might have some disadvan-
tages, for example, they are dependent on changes being easy to detect [12]. 
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II) Memory Approaches 

It might be useful to reuse previously found solutions, if the changes of a DOP are 
periodical or recurrent. In these situations, memory can be used to save computational 
time. The memory can also play the role of maintaining diversity by reserving 
place(s) for storing old solution(s). The memory can be integrated implicitly as a re-
dundant representation in an algorithm, or be maintained explicitly as a separate 
memory component [9, 11]. These approaches are particularly effective in solving 
problems with periodically changing environments [6]. However, if the ideal solu-
tions do not repeat, then the memory might become redundant [9]. 

This category is the closest to the approach proposed in this study. In this paper, 
we use a partial explicit memory in our approach, as ineffective dimensions are pro-
hibited from changing. 

2.3 DOPs Test Problems and Generators 

There are various test problems and generators to be used to test the proposed algo-
rithms to solve DOPs. Some test problems in continuous search space are mentioned 
as follows: 

• Branke [13] proposed the Moving Peaks Benchmark (MPB) Problem, which 
has been widely used in the literature [14]. 

• Dynamic Composition Benchmark Generator (GDBG) the dynamic compo-
sition functions, are actually extended from the static functions that devised 
by Liang et al. [15]. 

• Dynamic test problems for the CEC 2009 Competition; The GDBG was used 
to construct these test problems [16]. These dynamic test problems consist of 
Sphere, Rastrigin, Weierstrass, Griewank and Ackley functions. The detailed 
of each function can be found in [16]. These problems are used in this paper. 

3 Dynamic Optimisation Problems with Variable Dimensions 

A dynamic optimisation problem with variable dimensions (DOPVD) is a DOP in 
which the effective dimensions change as time passes. In real life DOPVDs arise, 
because sometimes the decision variables that affect a decision changes as time 
passes. For example:  

• Stock exchange; if a decision maker wants to optimise a group of illiquid stocks, 
while their availability changes as time passes. 

• Production systems; consider a production process that produces multiple products 
based on market demand. In this case, all products do not have the same availabil-
ity/requirement as time passes. 
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The effective dimensions are dimensions that affect a decision during the current 
time slot while the ineffective dimensions are those that do not. To construct a frame-
work for designing DOPVD, benchmark function(s) containing multiple dimensions 
are used. In this paper, Sphere, Rastrigin, Weierstrass, Griewank and Ackley are used 
[16]. Without loss of generality, this paper only considered minimisation problems. 

To construct a problem, the parameter, prob_change, is used; this parameter deter-
mines the probability of a problem change as time passes. The parameter, g_random, 
is a variable that is randomly generated every generation. The parameter, MAX_Dim, 
is the maximum number of dimensions that problem contains. The parameter, In-
Eff_Dim, is the number of ineffective dimensions in the time slot. Then the problem 
changes as follows: 

• For each generation: 
o Generate a random value (g_random) 
o If (g_random < prob_change) 

 Change the mask of the problem 
o Else  

 Do not change 

To determine which dimensions are ineffective, while all others are effective, a 
problem mask is randomly generated. For example, if we have a problem with ten 
dimensions (MAX_Dim = 10), where three are ineffective (InEff_Dim = 3), then 
three unique indices ∈ [1-10] are randomly generated, for example, 1, 5 and 9, and 
then those dimensions are chosen to be ineffective (its mask value is equal to 0) as 
shown in Fig. 1. When the fitness of function is evaluated, the value used for each of 
the effective dimensions, is the one specified by an algorithm, however the value for 
the ineffective dimensions is always 0. For example, consider a simple example func-
tion Minimise (abs(x1 + x2)). The minimal value for this function is obviously x1 and 
x2 = 0. However, consider if x2 is ineffective. Due to mutation and crossover, x2 will 
gradually diversify, because if x1 = 0, and the function will have its minimal value, 
regardless the value of x2 (because 0 is always used for its value). 
 

 

Fig. 1. Example of a randomly generated problem mask 

Hence, the efficiency of an algorithm for solving DOPVD depends on determining 
and tracking the effective dimensions to be optimised, thus saving computational 
power. In this paper, the optimisation approaches for solving DOPVD detect the inef-
fective and effective dimensions by using a mask detection procedure. This procedure 
is used periodically, every g generations (this parameter determines how often to  
detect the effective dimensions), by using a randomly selected solution as follows: 

(a) A random solution is chosen from the current population. 
(b) Calculate its actual fitness, let it be F1. 

Dimension 1 2 3 4 5 6 7 8 9 10

Problem Mask Value 0 1 1 1 0 1 1 1 0 1
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(c) For each dimension, a random value is generated: 
(i) The fitness is recalculated for the solution with the new random value, let it 

be F2. 
(ii) If F1 is equal to F2, then this dimension is assumed to be detected as inef-

fective (its detected mask value is equal to 0), otherwise it is assumed to be 
detected as effective (its detected mask value is equal to 1). 

An example of a detected mask is shown in Fig. 2. In this figure, dimensions 2 and 
6 are assumed to be detected as ineffective dimensions; that is they do not affect the 
fitness value when different values are used for them, while other dimensions are 
assumed to be detected as being effective dimensions. 

 

Fig. 2. Example of a detected mask 

4 Experimental Results and Discussion 

To solve DOPVD and demonstrate the effect of the proposed procedure, six Genetic 
Algorithms (GAs) were implemented for experimentation with the set of uncon-
strained optimisation benchmark functions i.e. Sphere, Rastrigin, Weierstrass, 
Griewank and Ackley [16]. In this paper, the algorithms were coded in Microsoft 
C++, on a 3.4GHz/16GB Intel Core i7 machine. The six GAs were: 

• 1) GA without the mask detection procedure. 
• 2-6) Periodic GA N (where N = 1, 5, 10, 20 or 40), the mask detection is used 

periodically every N generations. The generated GAs are PerGA1, PerGA5, 
PerGA10, PerGA20 and PerGA40 respectively. 

In all the implemented GAs, only the detected effective dimensions were modified 
by the genetic operators. Note that all genes were assumed to be effective in GA 
without mask detection procedure. For a fair evaluation, every algorithm ran one mil-
lion fitness evaluations. To compare these algorithms, a group of points were deter-
mined for calculations over the fitness evaluations. This was done because each  
system ran for a differing number of generations; depending on whether the mask 
detection procedure was used or not and how often it was used. In this paper, twenty 

calculation points were determined, so the values for every 
ଵ଴଴଴଴଴଴ଶ଴   = 50,000 fitness 

evaluations solutions were recorded. A variation of the Best-of-Generation measure 
was used where the best-of-generation values were averaged over all generations at 
each calculation point [17], it is calculated as follows: ܨ஻ைீ ൌ  ଵீ  ∑ ቀଵே  ∑ ஻ைீ೔ೕ௝ୀே௝ୀଵܨ ቁ௜ୀீ௜ୀଵ                          (1) 

where ܨ஻ைீ  is the mean best-of-generation fitness, G is the number of generations,  
N is the total number of runs, and ܨ஻ைீ೔ೕ  is the best-of-generation fitness of genera-

tion i of run j of an algorithm to solve a problem [18]. 

Dimension 1 2 3 4 5 6 7 8 9 10

Detected Mask Value 1 0 1 1 1 0 1 1 1 1
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The parameter, prob_change, was also varied from less change (0.05) to more 
change (0.75) to demonstrate how the implemented GAs deal with these variations. 
The number of dimensions, MAX_Dim, was twenty dimensions, and the number of 
ineffective dimensions, InEff_Dim, was randomly determined between 5 and 10 di-
mensions. 

Table 1 shows the parameters and processes of the implemented GAs. The  
search space of all variables was [-5, 5] [16]. Note that all GAs had the same initial 
population in the beginning of each run for a fair comparison. Also, in each run the 
same masks are loaded for each algorithm to try to simulate the same changes in the 
problems. 

Table 1. Parameters of experiments 

Parameters 

Population size 100 

Max. number of fitness evaluations / run 1000000 

Probabilities of problem mask change (prob_change) 0.05, 0.25, 0.50, 0.75 

Selection procedure Tournament 

Tournament size 2 

Selection pressure 0.9 

Elitism percentage 2 

Crossover Single-point 

Crossover rate 0.9 

Mutation Uniform 

Mutation rate 0.15 

Number of dimensions (MAX_Dim) 20 

Number of ineffective dimensions (InEff_Dim) / change Randomly ∈ [5, 10] 

4.1 Performance Evaluation 

To evaluate the performance while regarding best-of-generation values, the ܨ஻ைீ  in 
equation (1) was averaged over the twenty points. Tables 2 to 5 show the comparison 
among the algorithms; the best results that have lower values are shown in bold and 
shaded cells. 

Table 2. Performance comparison at prob_change = 0.05 

Probability of 
change 

Function Without 
mask 

PerGA1 PerGA5 PerGA10 PerGA20 PerGA40 

0.05 

Ackley 1.144 0.513 0.389 0.472 0.612 0.965 
Griewank 0.114 0.020 0.018 0.019 0.047 0.086 
Rastrigin 13.369 6.029 4.692 4.942 7.237 10.119 
Sphere 1.008 0.233 0.217 0.409 0.521 0.792 
Weierstrass 2.454 1.165 1.058 1.229 1.265 2.024 
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Table 3. Performance comparison over prob_change = 0.25 

Probability 
of change 

Function Without 
mask 

PerGA1 PerGA5 PerGA10 PerGA20 PerGA40 

0.25 

Ackley 0.488 0.297 0.230 0.242 0.339 0.310 
Griewank 0.016 0.006 0.005 0.005 0.014 0.016 
Rastrigin 6.575 3.689 2.567 2.980 3.653 3.822 
Sphere 0.196 0.122 0.068 0.081 0.200 0.199 
Weierstrass 1.346 0.894 0.494 0.529 0.716 0.729 

Table 4. Performance comparison at prob_change = 0.50 

Probability of 
change Function Without 

mask PerGA1 PerGA5 PerGA10 PerGA20 PerGA40 

0.5 

Ackley 0.514 0.239 0.191 0.211 0.245 0.283 
Griewank 0.016 0.004 0.002 0.005 0.005 0.009 
Rastrigin 6.789 3.603 1.976 2.535 3.205 3.235 
Sphere 0.194 0.075 0.041 0.059 0.086 0.144 
Weierstrass 1.627 0.785 0.468 0.499 0.621 0.664 

Table 5. Performance comparison at prob_change = 0.75 

Probability of 
change 

Function Without 
mask 

PerGA1 PerGA5 PerGA10 PerGA20 PerGA40 

0.75 

Ackley 0.538 0.282 0.160 0.215 0.257 0.254 
Griewank 0.016 0.004 0.002 0.004 0.008 0.006 
Rastrigin 6.697 3.661 1.924 2.104 2.890 2.853 
Sphere 0.221 0.096 0.041 0.053 0.111 0.098 
Weierstrass 1.821 0.727 0.369 0.502 0.639 0.656 

The previous tables show that GAs with periodic mask detection outperform the 
GA without mask. Also, the PerGA5 outperforms the other periodic GAs. The previ-
ous tables were averaged and summarised in Table 6. 

Table 6. The overall comparison 

Probability of 
change Function Without 

mask PerGA1 PerGA5 PerGA10 PerGA20 PerGA40 

All 

Ackley 0.671 0.333 0.243 0.285 0.363 0.453 
Griewank 0.041 0.008 0.007 0.008 0.019 0.029 
Rastrigin 8.357 4.245 2.790 3.140 4.246 5.007 
Sphere 0.405 0.132 0.092 0.151 0.230 0.308 
Weierstrass 1.812 0.893 0.597 0.690 0.810 1.018 

 
Table 6 shows that over all the functions and probabilities of change, the PerGA5 

outperforms the other periodic GAs. Also, all periodic GAs outperform GA without 
the mask detection procedure; the mask detection procedure is therefore significant 
while solving DOPVD. 

Here, in order to be able to compare our results more accurately, we also per-
formed statistical significance tests. The non-parametric Friedman test that is similar 
to the parametric repeated measures ANOVA was used [19]. It is a multiple compari-
son test that aims to detect significant differences between the performances of two  
or more algorithms. Friedman test was performed with a confidence level of 95%  
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(α = 0.05) on results in Table 6 with null hypothesis that there is no significant differ-
ences among the performances of the compared algorithms. The computation of the  
p-value for this test was 0.002 <= 0.05; so we reject the null hypothesis; as there is a 
significant difference among the performances of the compared algorithms. Table 7 
shows the ranks of the algorithms based on Friedman test. 

Table 7. Performances Friedman test ranks 

Algorithm Without mask PerGA1 PerGA5 PerGA10 PerGA20 PerGA40 
Rank 6 2.90 1 2.30 3.80 5 

 

To test the stability of the compared algorithms, Table 8 shows their standard de-
viations. In this table, periodic GAs are more stable than GA without mask; while 
PerGA5 is the most stable GA. 

Table 8. The overall comparison over the standard deviation 

Probability of 
change 

Function Without 
mask 

PerGA1 PerGA5 PerGA10 PerGA20 PerGA40 

All 

Ackley 0.3012 0.1852 0.1577 0.2070 0.3049 0.3503 
Griewank 0.0424 0.0102 0.0108 0.0151 0.0335 0.0463 
Rastrigin 3.7768 1.9280 1.7171 2.2645 3.3627 4.3457 
Sphere 0.5198 0.1463 0.1569 0.3086 0.4498 0.6015 
Weierstrass 0.7796 0.4741 0.4157 0.4856 0.6467 0.7728 

 Average 1.0839 0.5487 0.4916 0.6562 0.9595 1.2233 

 

In these problems, we had million fitness evaluations (10000 generations), 20 di-
mensions and 100 population size; the mask detection procedure must be included in 
this. So the periodic GAs had a number of wasted generations, in comparison to the 
without mask GA (normal GA). PerGA1, as there were 100 individuals and mask 
detection used 20 fitness evaluations, it wasted 1 of every 5 generations (about 2000 
generations). Doing the same previous calculations for the other periodic GAs; 
PerGA5, PerGA10, PerGA20, PerGA40 wasted 400, 200, 100 and 50 generations 
respectively. Despite this, the periodic GAs outperformed the without mask GA 
which did not waste any generation. However, it can be seen that when the wastage 
reaches a critical level, the periodic GA could not improve its solutions; as PerGA5 
outperforms PerGA1. 

Lastly, Table 9 shows the effect of varying the probabilities of change. It aver-
ages the values of the previous Tables (2 to 5) over the probabilities of change. 
Note that the best results have lower values.  From it, it can be observed that 
PerGA40 is worst for low probabilities of change. This presumably because a 
change usually is maintained for a long period of time, and so on ineffective di-
mension can widely diverge. For higher probability of change, such dimensions 
would not have as much time. 
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Table 9. Comparison over the different probabilities of change 

Probability of 
change 

Without 
mask 

PerGA1 PerGA5 PerGA10 PerGA20 PerGA40 

0.05 3.618 1.592 1.275 1.414 1.936 2.797 
0.25 1.724 1.001 0.673 0.768 0.985 1.015 
0.5 1.828 0.941 0.536 0.662 0.833 0.867 

0.75 1.859 0.954 0.499 0.576 0.781 0.774 

4.2 Behaviour Tracking Evaluation 

In this section, we try to also evaluate the behaviour and the convergence speed of the 
algorithms during solving the problems over the twenty points of calculations. This 
tries to monitor and track how the algorithms perform when the problem changes over 
time. An evaluation technique is used in this paper, which is similar to the normalised 
scores [20]. While judging system i in terms of its average of the best solutions to test 
problem j at calculation point k, Fijk is defined as the actual value of the average of the 
best solutions that the system obtained, while BFjk = min (Fijk) and WFjk = max (Fijk) 
are the overall best and worst averages of the best solutions for test problem j at a 
calculation point k respectively, and the score of system i (Sijk) is calculated as fol-
lows:                             S୧୨୩ ൌ   | F౟ౠౡି BFౠౡ|หBFౠౡି WFౠౡห                                             (2) 

Tables 10 to 13 show the comparison based on this evaluation approach, the best 
results that have lower values are shown in bold and shaded cells. The less value indi-
cates that the algorithm converges better. 

Table 10. Behaviour comparison at prob_change = 0.05 

Probability of 
change Function Without 

mask PerGA1 PerGA5 PerGA10 PerGA20 PerGA40 

0.05 

Ackley 19.131 3.650 0.645 2.733 6.149 14.957 
Griewank 18.944 1.344 1.086 1.387 6.734 14.158 
Rastrigin 19.560 3.535 0.753 1.240 6.816 13.376 
Sphere 17.221 1.680 1.171 5.940 7.575 12.856 
Weierstrass 19.834 2.721 1.346 3.755 4.269 14.509 

Table 11. Behaviour comparison at prob_change = 0.25 

Probability of 
change 

Function Without 
mask 

PerGA1 PerGA5 PerGA10 PerGA20 PerGA40 

0.25 

Ackley 18.651 5.807 1.285 2.484 11.898 7.821 
Griewank 9.699 1.733 1.340 1.940 10.084 15.585 
Rastrigin 19.259 4.629 0.373 2.500 6.971 8.508 
Sphere 8.574 3.541 1.156 1.297 11.537 10.990 
Weierstrass 19.998 7.361 0.448 1.231 6.434 6.257 
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Table 12. Behaviour comparison at prob_change = 0.50 

Probability of 
change 

Function Without 
mask 

PerGA1 PerGA5 PerGA10 PerGA20 PerGA40 

0.5 

Ackley 19.374 2.898 1.005 2.327 4.923 8.703 
Griewank 18.199 1.398 0.087 3.394 5.042 6.301 
Rastrigin 19.982 6.120 0.118 2.102 5.650 5.671 
Sphere 17.675 3.771 0.036 2.968 7.142 10.313 
Weierstrass 20.000 4.825 0.403 0.680 2.911 4.682 

Table 13. Behaviour comparison at prob_change = 0.75 

Probability of 
change 

Function Without 
mask 

PerGA1 PerGA5 PerGA10 PerGA20 PerGA40 

0.75 

Ackley 20 6.162 0.025 2.281 6.126 4.900 
Griewank 18.401 1.044 0 1.132 6.960 3.922 
Rastrigin 20 6.764 0.080 0.899 3.589 4.363 
Sphere 19.051 4.937 0.013 1.426 6.560 7.696 

Weierstrass 20 4.380 0.068 1.702 3.826 3.739 
 

The previous tables show that GAs with periodic mask detection outperform the 
GA without mask in behaviour and convergence speed. Also, the PerGA5 outper-
forms the other periodic GAs. The previous tables were averaged and summarised in 
Table 14 which shows the average over all functions and probabilities of change, 
based on the normalised scores. 

Table 14. Summary of the behaviour tracking comparison 

Probability of 
change 

Function Without 
mask 

PerGA1 PerGA5 PerGA10 PerGA20 PerGA40 

All 

Ackley 19.289 4.629 0.740 2.456 7.274 9.095 
Griewank 16.311 1.380 0.628 1.964 7.205 9.992 
Rastrigin 19.700 5.262 0.331 1.685 5.756 7.980 
Sphere 14.940 3.385 1.101 3.007 8.656 10.841 
Weierstrass 19.958 4.687 0.948 1.600 4.402 7.745 

 
Again, Friedman test was performed with a confidence level of 95% (α = 0.05) on 

results in Table 14 with null hypothesis that there is no significant differences among 
the behaviour and convergence speed of the compared algorithms. The computation 
of the p-value for this test was 0.002 <= 0.05; so there is a significant difference 
among the behaviour and convergence speed of the compared algorithms. Table 15 
shows the ranks of the algorithms based on Friedman test. 

Table 15. Behaviour Friedman test ranks 

Algorithm Without mask PerGA1 PerGA5 PerGA10 PerGA20 PerGA40 
Rank 6 3 1 2.20 3.80 5 

 
The experimental results and statistical test show that GAs with mask detection 

procedure gradually improve the solutions as time goes, while GA without mask dis-
turbs the ineffective dimensions, and so consequently this prevents GA from effec-
tively converging. Regarding the GAs with the mask detection procedure, when it is 
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periodically called in small periods this allows them to detect the ineffective and ef-
fective dimensions early, and therefore they can solve DOPVD efficiently; however, 
this consumes more fitness evaluations. However when the wastage reached a critical 
level, the periodic GA could not improve its solutions, thus PerGA5 outperformed 
PerGA1. 

5 Conclusions and Future Work 

In this paper, we proposed a novel DOP with variable dimensions (DOPVD), in which 
the ineffective and effective dimensions change as time passes. We also proposed the 
mask detection procedure to help algorithms to solve DOPVDs. Based on the experimen-
tal results and statistical tests; the proposed GAs with mask detection outperformed the 
pure GA (without mask detection procedure) in both performance and convergence 
speed; however, this consumes more fitness evaluations. Despite of the wastage of fitness 
evaluations, periodic GAs outperformed the without mask GA. However when the wast-
age reached a critical level, the periodic GA could not improve its solutions, thus Peri-
odic GA 5 (PerGA5) outperformed Periodic GA 1 (PerGA1). In general, the advantages 
of the usage of the mask detection procedure are: 

─ save computational resources; algorithms deal with only the detected effective 
dimensions. 

─ does not disturb the ineffective dimensions, and this helps algorithms to effec-
tively converge. 

─ can help a decision maker (user) to know which dimension(s) not affect the con-
sidered problem. 

However, the disadvantages of using the mask detection procedure are that is 
might detect the wrong mask, which might happen when two values of a dimension 
gave the same fitness value while it is effective. Any such wrong detection might lead 
to wrong values of the fitness function and/or prevent some dimensions (those 
wrongly detected as ineffective) to be optimised. 

Two directions for future work, the first direction is trying to enhance the mask de-
tection procedure, for example sampling more points rather than one point only. Also, 
try to solve more problems with more complex function especially that have depend-
ent variables. The second direction is the DOPVDs algorithms; as more advanced 
approaches will attempt to implicitly detect when changes occur, this might save 
computational resources and so more effectively solve DOPVDs. Also, we intend to 
investigate how to use local search procedure(s) in solving DOPVDs. 
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Abstract. This paper proposes the use of estimation of distribution
algorithms to deal with the problem of finding an optimal product of
braid generators in topological quantum computing. We investigate how
the regularities of the braid optimization problem can be translated into
statistical regularities by means of the Boltzmann distribution. The in-
troduced algorithm obtains solutions with an accuracy in the order of
10−6, and lengths up to 9 times shorter than those expected from braids
of the same accuracy obtained with other methods.

Keywords: topological computing, quasiparticle braids, probabilistic
graphical models, EDAs, braid optimization, Fibonacci anyons.

1 Introduction

The idea of using the theory of quantum mechanics to obtain computers poten-
tially exponentially faster for certain applications, such as the factorization of
prime numbers, arouses considerable interest and research efforts from the scien-
tific community nowadays. In quantum computation, information is represented
and manipulated using quantum properties. An obstacle for the construction of
large quantum computers is the problem of quantum decoherence, that can be
viewed as the loss of information of the quantum system due to the interaction
with the environment. One possible solution to this problem is the design of
quantum systems immune to quantum decoherence on a hardware level.

Topological quantum computing (TQC) [2,14] investigates quantum comput-
ing systems that, given the properties of quasiparticles they use, are not affected
by quantum decoherence. The key idea of these systems is that quantum in-
formation can be stored in global properties of the system and thus affected
only by global operations but not by local perturbations such as noise. In TQC,
quantum gates are carried out by adiabatically braiding quasiparticles around
each other. This braiding is used to perform the unitary transformations of a
quantum computation.

G. Dick et al. (Eds.): SEAL 2014, LNCS 8886, pp. 13–24, 2014.
c© Springer International Publishing Switzerland 2014
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One of the essential questions to design a TQC is to find a product of braid
generators (matrices) that approximates a quantum gate with the smallest pos-
sible error and, if possible, as short as possible to prevent loss [8]. The relevant
question of minimizing the error of a TQC design can be posed as a braid op-
timization problem. Some optimization approaches to this question have been
proposed. Exhaustive search [2] has been applied to search for braids of man-
ageable size (up to 46 exchanges). Other methods such as the Solovay-Kitaev
algorithm [3] provide bounds on the accuracy and length of the braids. However,
they do not allow the user to tune the balance between the accuracy and the
length as pioneered in [8] where the use of genetic algorithms (GAs) to find opti-
mal braids is proposed. In this paper, we build on the GA approach introduced
in [8] to solve the braid optimization problem.

We use the fitness function proposed in [8] and introduce a new represen-
tation, variation operators and enhancement procedures in the framework of
estimation of distribution algorithms (EDAs) [10,7]. EDAs are evolutionary al-
gorithms (EAs) that apply learning and sampling of distributions instead of clas-
sical crossover and mutation operators. Modeling the dependencies between the
variables of the problem serves to efficiently orient the search to more promis-
ing areas of the search space by explicitly capturing and exploiting potential
relationships between the problem variables.

2 Braids and Anyons

Qubits play in quantum computation a role similar to that played by bits in
digital computers. A braid operation can be represented by a matrix that acts on
the qubit space. These matrices are referred to as generators, and the quantum
gate that a braid represents is the product of the generators that encode the
individual braid operations.

Let σ1 and σ2 represent two possible generators. σ−1
1 and σ−1

2 respectively
represent their inverses. Given a braid B, len() is a function that returns the
braid’s length l (e.g. B = σ1σ1σ2σ

−1
1 , l = len(B) = 4).

Since the product of a matrix by its inverse reduces to the identity matrix,
some braids can be simplified reducing their length. Therefore, we also define
function elen(), that has a braid as its argument and returns the braid’s effective
length which is the length of braid after all possible simplifications have been
conducted. For example, the effective length values of braids (σ1σ1σ1σ1σ

−1
1 =

σ1σ1σ1) and (σ−1
2 σ1σ1σ

−1
1 σ−1

1 σ2σ
−1
1 = σ−1

1 ) are 3 and 1, respectively.
Let T represent the target matrix (gate to be emulated), the braid error is

calculated as [8]: ε = |B − T | where the matrix norm used is |M | =
√∑

ij M
2
ij .

The problem of finding braiding operations that approximate gates is then
reduced to finding a product chain of the reduced generators and their inverses
that approximates the matrix representing the quantum gate. Two elements that
describe the quality of a braid are its error ε and its length l.

Anyons appear as emergent quasiparticles in fractional quantum Hall states
and as excitations in microscopic models of frustrated quantum magnets that
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harbor topological quantum liquids [11]. Fibonacci anyons are the simplest
anyons with non-Abelian braiding statistics that can give rise to universal quan-
tum computation. Fibonacci anyon braids [2] only encompasses one-qubit gates.
In such systems, the braid transition operators result in a phase change for the
non computational state, and therefore it can be ignored. Overall, phases in the
problem can also be ignored. Therefore the transition matrices can be projected
onto SU(2) by a multiplication with e

iπ
10 , yielding for the generators

σ1 =

(
e

−i7π
10 0

0 −e
−i3π
10

)
σ2 =

(
−τe

−iπ
10 −i

√
τ

−i
√
τ −τe

−iπ
10

)
(1)

where τ =
√
5−1
2 .

In this paper we address the problem of finding a product of generator ma-
trices for Fibonacci anyon braids. Although the methodology we propose can
be extended to other braids, we focus on anyon braids since they are one of
the best known in TQC [8,15]. As a target gate for computing the error we use

T =

(
i 0
0 i

)
.

3 Problem Formulation

Let X = (X1, . . . , Xn) denote a vector of discrete random variables. We use
x = (x1, . . . , xn) to denote an assignment to the variables. I denotes a set of
indices in {1, . . . , n}, and XI (respectively xI) a subset of the variables of X
(respectively x) determined by the indices in I.

In our representation for the quasiparticle braids problem, X = (X1, . . . , Xn)
represents a braid of length n, where Xi takes values in {0, 1, . . . , 2g − 1} and
g is the number of generators. Given an order for the generators σ1, σ2, . . . , σg,
Xi = j, j < g means that the matrix in position i is σj+1. If Xi = j, j ≥ g,
then the matrix in position i is σ−1

(j−g)+1. For example, for generators shown in

Equation (1), and B = σ1σ1σ2σ
−1
2 σ−1

1 , the corresponding braid representation
is x = (0, 0, 1, 3, 2). Notice that this is a fixed length representation.

We are interested in the solution of an optimization problem formulated as
x∗ = argmaxxf(x), where f : S → R is called the objective or fitness func-
tion. The optimum x∗ is not necessarily unique. To evaluate the fitness function
associated to a solution x, firstly the product of braid matrices B is computed
according to x and then the error ε is calculated from B as previously defined.
The fitness function [8] is defined as:

f(x) =
1− λ

1 + ε
+

λ

l
(2)

where l is the braid’s length, and λ serves to balance the two conflicting goals,
i.e., having short braids or low approximation error. When λ = 0, braids are
optimized only for the error and the function reaches its maximum value when
this error is minimized.
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We define functions f̂(x) and f̄(x) as two variations of function (2). Function

f̂(x) is identical to f(x), except that the effective length l̂ = elen(B) is used
instead of the braid’s length. Function f̄(x) outputs the maximum value of the
function for any of the braids contained in B that start from the first position,
i.e. f̄(x) = maxy,y∈{(x1),(x1,x2),...,(x1,...,xi),...,(x1,...,xn)}f(y).

4 Probabilistic Modeling of Braids

To optimize the braid problem we use EDAs, a class of evolutionary algorithms
that capture and exploit statistical regularities in the best solutions. EDAs as-
sume that such regularities exist. As a preliminary proof of concept on the exis-
tence of such regularities, we investigate the Boltzmann distribution for braids of
manageable size. A similar approach has been successfully applied to investigate
the dependencies that arise in the configurations of simplified protein models
[13] and conductance-based neuron models [12].

4.1 Boltzmann Distribution

We use complete enumeration to define a probability distribution on the space of
all possible braids for n = 10. Using the fitness value as an energy function, we
associate to each possible braid a probability value p(x) according to the Boltz-
mann probability distribution. The Boltzmann probability distribution pB(x) is
defined as

pB(x) =
e

g(x)
T

∑
x′ e

g(x′)
T

, (3)

where g(x) is a given objective function and T is the system temperature that
can be used as a parameter to smooth the probabilities.

In our approach, pB(x) assigns a higher probability to braids that give a
more accurate approximation to the target gate. The solutions with the highest
probability correspond to the braids that maximize the objective function. We
use an arbitrary choice of the temperature, T = 1, since our idea is to compare
the distributions associated to different fitness functions with fixed T .

Using the Boltzmann distribution we can investigate how potential regularities
of the fitness function are translated into statistical properties of the distribution.
In particular, we are interested in the marginal probabilities associated to the
variables and the mutual information between pairs of variables.

4.2 Statistical Analysis of the Braids Space

Figure 1 shows the univariate probabilities computed from the Boltzmann dis-
tribution for functions f and f̄ , and 10 variables. The search space comprises
410 = 1, 048, 576 braids. Univariate probabilities for function f̂ were also com-
puted, they are similar to probabilities obtained for f , and due to space con-
straints we do not include figures for this function. p1, p2, p3, and p4 respectively
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represent the univariate probabilities for braid generators λ1, λ2, λ
−1
1 , and λ−1

2 .
For all the functions, higher probabilities for p3 indicate that λ−1

1 is more likely
to be present in the best solutions. This is the type of statistical regularities that
can be detected and exploited by EAs that learn probabilistic models.

1 2 3 4 5 6 7 8 9 10
0.2496

0.2497

0.2498

0.2499

0.25

0.2501

0.2502

0.2503

0.2504

0.2505

P
ro

b
ab

ili
ti

es

Variables

 

 
p

1
p

2

p
3

p
4

1 2 3 4 5 6 7 8 9 10
0.244

0.246

0.248

0.25

0.252

0.254

0.256

0.258

0.26

P
ro

b
ab

ili
ti

es

Variables

 

 
p

1
p

2

p
3

p
4

a) b)

Fig. 1. Univariate probabilities of the Boltzmann distribution for: a) f , b) f̄

We compute the bivariate marginal distributions between every pair of vari-
ables and derive the values of the mutual information. The mutual information
is a measure of statistical dependence between the variables and can serve to
identify variables that are dependent. A strong dependence between two vari-
ables may indicate that their joint effect has a strong influence on the function
and the optimizer should take into account this interaction. Figure 2 shows the
mutual information computed for functions f and f̄ . It can be seen in Figure 2
that for the two functions the strongest dependencies are between adjacent vari-
ables, although for function f there is also a strong dependence between the first
and the last variables. It can be also seen in Figure 2b) that the dependencies
between adjacent variables decreases with the index for function f̄ .

Summarizing, the statistical analysis of the Boltzmann distribution shows that
there are at least two types of regularities of the braid problem that are trans-
lated into statistical features. Firstly, there are different frequencies associated
to the generators in the space of the best solutions. Secondly, there are strong
dependencies between the variables, particularly those that are adjacent in the
braid representation.

5 Estimation of Distribution Algorithms

EDAs use samples of solutions to learn a model that captures some of the reg-
ularities that may exist in the data. The pseudocode of an EDA is shown in
Algorithm 1.

We work with positive distributions denoted by p. p(xI) denotes the marginal
probability for XI = xI . p(xi | xj) denotes the conditional probability
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Fig. 2. Mutual information computed from the Boltzmann distribution for: a) f , b) f̄

Algorithm 1. Estimation of distribution algorithm

1 Set t ⇐ 0. Generate N solutions randomly.

2 do {
3 Evaluate the solutions using the fitness function.

4 Select a population DS
t of K ≤ N solutions according to a selection method.

5 Calculate a probabilistic model of DS
t .

6 Generate N new solutions sampling from the distribution represented in the
model.

7 t ⇐ t+ 1

8 } until Termination criteria are met.

distribution of Xi = xi given Xj = xj . Three types of probabilistic graphi-
cal models are used: 1) Univariate model. 2) 1-order Markov model. 3) Tree
model.

Univariate 1-order Markov Tree

pu(x) pMK(x) pT∏n
i=1 p(xi) p(x1)

∏n
i=2 p(xi | xi−1)

∏n
i=1 p(xi|pa(xi))

In the univariate model, variables are considered to be independent, and the
probability of a solution is the product of the univariate probabilities for all vari-
ables. In the 1-order Markov model, the configuration of variable Xi depends on
the configuration of its previous variable. In a probability distribution confor-
mal with a tree, Pa(Xi) is the parent of Xi in the tree, and p(xi|pa(xi)) = p(xi)
when pa(Xi) = ∅, i.e. Xi is a root of the tree. We allow the existence of more
than one root in the PGM (i.e. forests) although for convenience of notation we
refer to the model as tree.

Univariate approximations are expected to work well for functions that can be
additively decomposed into functions of order one (e.g. g(x) =

∑
i xi). However,

other non additively decomposable functions can be easily solved with EDAs that
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use univariate models (e.g. g(x) =
∏

i xi +
∑

i xi) [9]. Therefore, it makes sense
to test the univariate approximation for the braid problem. The 1-order Markov
model captures only dependencies between adjacent variables, and the tree model
can represent a maximum of n − 1 bivariate dependencies. The computational
cost of EDAs is mainly associated to the methods needed to learn and sample
the models. The most complex EDA used in this paper is Tree-EDA which has
a computational cost O(n2). Examples of EDAs that use univariate, 1-order
Markov, and tree models are respectively presented in [10], [4] and [1,13] and
details on the methods used to learn and sample the models can be obtained
from these references.

5.1 Enhancements to the EDAs

We consider three enhancements to EDAs: 1) Use of a local optimizer. 2) Partial
sampling. 3) Recoding.

As is the case of other EAs, EDAs can be enhanced by the incorporation of
local optimizers. We use a greedy optimization algorithm that is applied during
the evaluation of the population by the EDA. The algorithm starts from the
solution generated by the EDA. In each iteration, the local optimizer evaluates
all the 3n solutions that are different to the current solution in only one variable
(the neighbor solutions). The next selected solution is the neighbor that improves
the fitness of the current solution the most. The algorithm stops when none of
the neighbors improves the fitness of the current solution.

During the sampling step of an EDA, all variables are assigned their values
according to the probabilistic model and the sampling method. For the EDA
that uses the univariate model, variables are independently sampled. For 1-
order Markov and tree, probabilistic logic sampling (PLS) [5] is used. In both
methods, all variables are assigned the new values. However, for some problems
with higher-order interactions using a base-template solution can be better than
generating each new solution from scratch.

In partial sampling, a solution of the population is selected and only a subset
of its variables are sampled according to the model. We use two variants of partial
sampling I) Partial sampling where the number of variables to be modified is
randomly selected between 1 and n. II) Partial sampling, where the number of
variables to be modified is randomly selected between 1 and n

2 .
Recoding consists in modifying the representation of the solution after the

fitness evaluation. For functions f̂ and f̄ it is possible to recode the solution
by eliminating redundant generators (e.g., pairs σiσ

−1
i ). The rationale of using

recoding is that meaningful variables will be located closer to the beginning of
the braid. Since solutions have a fixed length, the last variables will be kept
unused, i.e. garbage information. Therefore, we devised two ways to fill these
gaps: I) Leaving the unused variables as they were in the original solution. II)
Replacing the unused variables by a reverse copy of the variables used in the
evaluation. The second variant intends to replicate information that has proved
to be “informative” about the problem.
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6 Experiments

The main objective of our experiments is to evaluate the capacity of the EDAs
to find optimal solutions to the braid problem. We run experiments for n ∈
{50, 100, 150, 200, 250} in order to evaluate the scalability of the algorithms.
Increasing n may lead to obtain braids with a smaller error. A second objective
is to compare different variants of the problem formulation and of the algorithm.

6.1 Experimental Settings

Each EDA is characterized by 5 parameters:

– Use of local optimizer. 0: Only EDA is applied, 1: EDA is combined with
greedy search as described in Section 5.1.

– Type of function and representation. 0: Function f , 1: Function f̄ without
recoding, 2: Function f̄ with recoding I, 3: Function f̄ with recoding II.

– λ value. 0:0.0, 1:0.01, 2:0.05, 3:0.1.
– Sampling method. 0: Normal, 1: Partial sampling I, 2: Partial sampling II.
– Type of probabilistic model. 0: Univariate, 1: 1-order Markov, 2: Tree.

The experimental settings were selected to investigate different aspects that
influence the behavior of the algorithm. The total number of variants of the
algorithmwas 2×4×4×3×3 = 288. All the algorithms use truncation selection, in
which the best 5% of the population is selected. EDAs that do not incorporate
the greedy local search use a population size N = 10000. For these EDAs,
the number of generations was dependent on n as Ng = 15n. Due to the large
number of evaluations spent by the greedy search method, the population size
for all hybrid EDAs was N = 100n and the number of generations was fixed to
Ng = 100. For each EDA variant, 100 experiments were run.

6.2 Best Solutions Found by EDAs

Figure 3a) and Table 1 respectively show the parameters that characterize the
best braids found by the EDAs for each value of n, and the braids. In Figure 3a),
we also show an estimate of the length of the braids (O[log3.9710 (1/ε)]) that would
compute the Solovay-Kitaev algorithm [3] to obtain the same error ε of our
best solutions. The lengths of our solutions clearly outperform these estimates.
Figure 3b) shows the length of all the best solutions achieved for each value of
n. It can be observed in Figure 3 that EDAs are able to find several braids with
different lengths for n = 150 and n = 200.

6.3 Behavior of the EDA Variants

We further investigate the behavior of the different EDA variants. Figure 4
shows the violin plots [6] with the distribution of the best values found in all the
executions for: a) All EDA variants without local optimizer (14400 runs), b) All
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n l ε log10(ε) log3.9710 ( 1
ε
)

50 44 4.8435 × 10−4 −3.3148 116.47

100 70 8.3527 × 10−6 −5.0782 633.37

150 64 8.3527 × 10−6 −5.0782 633.37

200 62 8.3527 × 10−6 −5.0782 633.37

250 124 3.5038 × 10−6 −5.4555 841.82
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Fig. 3. a) Parameters of the best braids found by the EDAs for each value of n. b)
Length of the best solutions found for each value of n

EDA variants that incorporate the greedy search (14400 runs), c) EDAs with
local optimizer, recoding type II, and that use partial sampling type II (300
runs). Each violin plot shows a histogram smoothened using a kernel density
with Normal kernel. The mean and median are shown as red crosses and green
squares, respectively.

Table 1. Best braids found by the EDAs for each value of n
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In Figure 4, the modes of the Normal distribution indicate the existence of
a local optimum of the error with a very wide basin of attraction. This local
optimum has value log10f(ε) = −2.50785 and the majority of the EDA runs can
be trapped in this value. Differences between the EDAs due to the application
of the greedy method can be appreciated for n = 200 and n = 250 (Figures 4a)
and 4b)). Also, Figure 4c) reveals how a particular combination of the EDA’s
parameters can improve the results of the search.

There are a number of commonalities between the best EDA variants. Except
in one case, all EDAs use recoding of type II. Similarly, except in one case, in all
the variants λ ∈ {0.01, 0.05}. Except in two cases, the sampling method selected
was partial sampling. The application of the local optimizer notably improved
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Fig. 4. Violin plots showing the distribution of the best values found in all the exe-
cutions for: a) All EDAs variants without local optimizer (14400 runs), b) All EDAs
variants with local optimizer (14400 runs), c) EDAs with local optimizer, recoding type
II, and that use partial sampling type II (300 runs)

the results for n ∈ {150, 200} but in terms of the best solution found it did not
have an important influence for the other values of n.

As a summary, we recommend to use an EDA that adds the greedy search,
and uses partial sampling of type II and the 1-order Markov model since it is
less complex than the tree and results achieved using the two models are similar.

6.4 Improvement Over Other Search Methods

As a final validation of our method, we compare our best EDA variant with
the results achieved using a random search, the greedy local optimizer, and the
GA introduced in [8]. For the random search, we randomly generated 10000
solutions and selected the best solution according to function f̄ , λ = 0.01. The
same experiment was repeated 100 times to select the 100 “best” solutions for
n ∈ {50, 100, 150, 200, 250}.

A similar procedure was followed for the greedy local search. The local op-
timizer was applied to each of the 10000 solutions until no improvement was
possible. For the GA, we used the results of the 100 GA runs analyzed in [8].
Since these results were obtained using solutions of different length, and with a
different number of evaluations, care must be taken to interpret the differences.
We only compare the GA results with the other algorithms for n = 50. Simi-
larly, the results of the random search were very poor for n > 50 and we only
include them in the comparison for n = 50. Results are shown in Figure 5a). In
the boxplots, the central mark is the median, the edges of the box are the 25th
and 75th percentiles, the whiskers extend to the most extreme data points not
considered outliers, and outliers are plotted individually.

Using the 100 best solutions for each of the four algorithms, a multiple com-
parison test was applied to test the null hypothesis that samples corresponding
to every pair of algorithms are drawn from the same population. The multi-
ple comparison test uses the Tukey’s honestly significant difference criterion.
Every pair-wise comparison is based on the Kruskal-Wallis test, a nonparametric
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Fig. 5. a) Comparison between the Best EDA variant, the random search, the greedy
local search and the GA for n = 50. b) Comparison between the Best EDA variant and
the greedy local search n ∈ {100, 150, 200, 250}

version of the classical one-way ANOVA. The significance criterion was α = 0.05.
The application of the test identified statistical differences between each pair of
algorithms and they were ranked as: 1) Best-EDA, 2) Greedy, 3) GA, 4) Random.

The results of the comparison between the EDA and the greedy search for n >
50 are shown in Figure 5b). The application of the Kruskal-Wallis test (α = 0.05)
found significant differences between the EDA and the Greedy algorithm for all
n. Furthermore, it can be seen in Figure 5b) that as n increases the algorithm
is able to scale and find better solutions.

7 Conclusions

In this paper we have proposed for the first time the use of probabilistic mod-
eling of the search space to address the problem of approximating a quantum
gate as a product of braid generators. We have shown that some of the problem
characteristics can be translated into statistical regularities of the Boltzmann
distribution. This result indicates that capturing and exploiting statistical reg-
ularities emerges as a sensible approach to the quasiparticle braid problem.

In a second step we have shown the effectiveness of EDAs to find short braids
that provide accurate approximations. The best braids obtained with our EDAs
have lengths up to 9 times shorter than those expected from braids of the same
accuracy obtained with the Solovay-Kitaev algorithm and had not been previ-
ously reported to be found by the GA approach.
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Abstract. The continuous need to increase the efficiency of technical
systems requires the utilization of complex adaptive systems which op-
erate in environments which are not completely predictable. Reasons in-
clude the often random nature of the environment and the fact that not
all phenomena can be explained in full detail. As a consequence the de-
veloper often gets confronted with the task to design an adaptive system
with only little prior knowledge about the problem at hand. The de-
sign of adaptive systems, which react autonomously to changes in their
environment, require the coordinated generation of sensors, providing
information about the environment, actuators which change the current
state of the system and signal processing structures thereby generating
suitable reactions to changed conditions. In this work we demonstrate
the applicability of a concurrent evolutionary design of the optimal mor-
phological configuration, presented as sensory and actuation systems,
and the corresponding optimal controller part of a system. We apply the
process to the example of an adaptive wing design. Prior experiments for
the optimization of the systems, having fixed number of sensor and actu-
ator elements demonstrate the existence of an optimal dimensionality of
the systems morphology. We show that the presented growth method is
able to detect this morphological configuration and concurrently find the
optimal corresponding controller autonomously during a single combined
evolutionary process.

Keywords: adaptive systems, co-evolution, system growth, dynamic
evolutionary optimization.

1 Introduction

The evolutionary development of higher animals can be seen as a complex pro-
cess of ongoing body-brain complexification to better adjust to the environment.
Since the morphology of the body is tightly coupled to the brain structure, these
two functional parts of living creatures are supposed to co-evolve. Admittedly,
an addition of new sensory inputs does not give an individual a performance
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advantage without the adjustment of a corresponding signal processing struc-
ture. Analog to the development of complex living systems, we assume that the
design process of technical solutions with high complexity could be improved
by starting the system development with an initially simple system organiza-
tion while performing simultaneous complexification of its functional parts. The
majority of the current engineering methods adapt isolated parts of the overall
structure, which is in a strong contrast to biological body-brain co-evolution.
The design of adaptive systems implies a selection of sensors and actuators,
which adjust the system to a changed environment, as well as a generation of a
corresponding controller, according to a predefined quality measure. The devel-
opers usually design the morphological part, defined as sensors and actuators of
the system separately from the development of the corresponding controller unit.
This approach has been a usual practice in a field of evolutionary robotics. First,
the real mobile robots have been given fixed morphological limitations, such as
fixed number and resolution of camera system, fixed joints angles range etc. Than
through the following optimization of controller structure a complex behavior,
like for example an obstacle avoidance tasks of a robot, can be achieved. Exam-
ples of this approach can be found in Brooks [1], Dorigo and Schnepf [2], Cliff,
Husband and Harvey [3], Floreano and Mondada [4], Miglino, Nafasi, Taylor [5].

The weakness of the approach is that the controller performance strongly
depends on the suitability and the amount of sensory information, as well as
on the actuator resources. This causes the problem, that the optimal system
performance is difficult to be achieved, if not all detailed phenomena about the
system are known during the first phase, in which the hardware configuration is
defined. Otherwise it can happen, that some important information about the
environment or an actuator at the position in the structure, having a major
impact on the system performance, is missing. As an attempt to overcome the
problem, we could optimize an initially very rich system, having high number
of sensory and actuation elements. This would statistically decrease a chance of
missing important environmental factors during the sensors acquisition. How-
ever, the optimization progress of the system having a large scale dimensionality
might be not possible due to the high number of optimization parameters. To
solve the problem we implement a growth method which synchronize the design
process of sensing and signal processing system parts during optimization pro-
cess and additionally frees the system of early structural limitations. Therefore
it gives a possibility to develop a system autonomously to optimal morphological
configuration.

A variety of approaches for the co-evolutionary design of morphological and
controller configurations have been developed in the field of evolutionary robotics.
Early work in the field of automatic design of a systems by body-brain co-
evolution has been reported by Sims [6]. He demonstrated the evolutionary
development of the morphology of virtual creatures in a physical simulation
fulfilling simple locomotion tasks starting from simple building blocks without
any prior knowledge. Parker and Nathan [7] researched the design of sensor
morphology and controller for a simulated hexapod robot. For this purpose the
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type of sensors, the heading angle and the range of the sensors as well as the
rules for the controller are co-evolved. This method enables the system to ex-
tract information from the environment which is relevant to complete a given
task by configuring a minimal controller and minimal number of sensors and
actuators to increase the system’s overall efficiency. Bugajska and Schutz [8] co-
evolved the shape and strategies in the design of Micro Air Vehicles (MAV).
The target, similar to Parker and Nathan, was to find a minimal sensor suite
and reactive strategies for navigation and collision avoidance tasks. Sugiura et
al. [9] also proposed a system that automatically designs the sensor morphology
of an autonomous robot with two kinds of adaptation: ontogenetic and phylo-
genetic adaptation. Gomez, Lungarella, Eggenberger, et al. [10] extended the
principle of sensor-control balance to developmental enlargement of the system
by simultaneously increasing the sensor resolution, the precision of motors, as
well as the size of a neural structure (controller). They showed with their experi-
ments that a chosen system starting with a low-resolution sensory system, a low
precision motor system, and a low complexity of controller, can learn a given
task faster than a system with a complex configuration already in the beginning.
The coordination of the growth process was realized through internal learning
mechanisms where the active neural units controlling the robot were ’rewarded’
or ’punished’ depending on the improvement or aggravation in task fulfilling.
The authors showed the advantages of concurrent optimization of the sensory
and control systems as a dynamic developmental process of gradual complexi-
fication. Also Auerbach and Bongard [11] have made extensive research in the
field of co-evolution of morphology and control in evolutionary robotics. In their
work they implement a growth mechanism to create robots using compositional
pattern-producing networks and demonstrate that the concurrent development
of the morphological and controller structures of the simulated adaptive robots
can give an advantage for the final system performance, compared to the ap-
proaches with separate design strategies.

The promising results of the co-evolutionary approach in evolutionary robotics
motivated us to implement the biologically inspired growth process for the co-
ordination of the fully autonomous development of sensor, actuator and control
structures without dimensional limitation of sensory or actuator setup in the
early stages of development. Since the final system configuration is not pre-
defined and is the result of the concurrent optimization process, we expect an
evolvable system through enlargement of the search domain and potentially in-
crease the chances of global optima detection. Compared with the reviewed re-
search in evolutionary robotics, we utilize the co-evolution of morphology and
information processing structure for the optimal control of an adaptive wing
shape. Although the generation of optimal control for adaptive wings is not in
the main focus of our research we argue that this problem is a suitable test bed
for the research on evolutionary design of adaptive systems. Aerodynamic prob-
lems are characterized by highly complex interactions between flow body and
flow field which is in most cases difficult to understand in detail. Due to this, the
manual design is generally challenging although excellent tools are available for
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their simulation and evaluation. In this work we demonstrate that evolutionary
methods are able to generate systems which can optimally adapt to environ-
mental conditions, while at the same time we target shedding some light on the
precise synchronization of system parts during the developmental process.

In our previous work [12] we implemented the co-evolutionary growth of a
sensory and controller structures given a fixed actuation system on the example
of the adaptive wing. The promising results motivated us to expand the research
to the combined development of all functional parts of the system. In this case
the overall system configuration is fully variable during the optimization and
initially minimal. Additionally we implemented cost factors for sensors and ac-
tuators, which result in a limited growth of the system dimensionality. In this
case a system gets a new sensor or actuator only if it gives a significant benefit
to the system performance. The target for the optimization of the adaptive wing
is the reduction of the drag the airfoil generates while still creating a minimum
of lift. Environmental changes are realized through the changes in the angle of
attack of the airflow across a wide range of values. The co-evolutionary system
development has been implemented as a structural growth process of all it func-
tional parts, such as the number and position of the sensors and actuators and
the complexity of the controller structure, defined by its input (sensors) and
output (actuators) dimensionality. We show the results of the sensors-actuators-
controller growth method and compare them with the optimization of the sys-
tem with fixed morphological settings as well as with the results of the growth
of sensors-controller systems, having a fixed actuation system.

A description of the framework of the adaptive wing with a detailed explana-
tion of the functional set-up of the sensory, actuation and controlling systems is
given in section 2. In section 3 we explain and present the results of the experi-
ments with implemented growth method, and compare them with optimization
results for a fixed morphology as well as with the results of the growth of sensory
and controller systems. Finally, we conclude the paper with a summary of the
main findings of our work.

2 Framework for Morphology-Controller Co-evolution

In our work we implemented a system, consisting of virtual sensors, actuators
and a signal processing structure. The signal processing structure controls the
adaptive system under changing environmental conditions by generating actu-
ator signals based on sensor signals derived from the environment. The target
has been to achieve a system behavior which reduces the airfoil’s drag, calcu-
lated in a CFD (computational fluid dynamics) simulation of the resulting airfoil
shape while maintaining specified lift values. The actuator signals correspond to
changes of NURBS [13] control points and define the current airfoil shape. The
virtual sensors of the system have been defined as pressure sensors, at given
positions on the airfoil surface. The measurement results of the virtual sensors
correspond to the surface pressure calculated in the CFD simulation and there-
fore depend on the blade’s surface, the angle of attack and the speed of the air
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Fig. 1. (a) Adaptive airfoil framework, (b) Example of the airfoil created with NURBS.
Airfoil in white, defined by the initial positions of the spline control points. The airfoil
shape change (in gray) results from the movements of C2 and CN .

flow etc. Fig. 1 (a) shows the described relations between the single parts of
the test-framework. The described setup allows us to simulate the interactions
between control structure and morphology during the operation of the control
structure as well as during their evolutionary development.

The two dimensional airfoil is represented by a non-uniform rational B-splines
(NURBS) as shown in Fig. 1 (b). The shape of the NURBS curve is determined
by the set of spline control points Cn. For the simulation of the aerodynamic
airfoil characteristics and pressure distribution the computational fluid dynamic
solver Xfoil1 is used. In the simulation we change the angle of attack in order to
generate variations of the airfoil environment. The Reynolds number has been
fixed during the optimization (Re = 107). The pressure coefficient over the airfoil
surface represent the virtual sensor data. We used Xfoil to calculate the profile
of the pressure coefficients at 160 points on the airfoil surface. The more detailed
description of the implemented framework can be found in [12], [14].

The presented adaptive system of a virtual wing requires a suitable controller
for processing of sensor data and generating actuator signals. The actuators
morph the surface of the airfoil and therefore can reduce the drag and generate
the required lift. A wide variety of possible controller designs for similar purposes
can be found in the literature. Parker and Nathan [7] as well as Bugajska and
Schutz [8] implemented a controller as a reactive system which uses “if...then”
rules to control a simulated robot. Haller, Ijspeert and Floreano [15] implemented
a controller inspired by the central pattern generators underlying locomotion
in animals. In this work we implemented a linear recurrent model to control
the presented adaptive system. The controller input signals are the pressure
coefficients si. The outputs of the controller are the actuator signals Co and
describe the position of the virtual actuators in the two dimensional space. The
actuator adjustments ΔCo are calculated as the sum of the signals of all sensors
of the system multiplied with the corresponding linear coefficients Kio. The
current state of the actuators Co determines the pressure coefficients si by the
nonlinear air flow function f , simulated with Xfoil solver.

1 http://web.mit.edu/drela/Public/web/xfoil/
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3 Sensor-Actuator-Controller Co-evolution

The co-evolutionary approach has been realized by the concurrent development
and gradual complexification of the sensory, actuation and corresponding con-
troller systems. Although these different functional parts of the system are coded
in a single genome, the described optimization process reflects the main aspect
of the co-evolutionary process, since all units are mutually co-adjusted during
the entire evolutionary process. In this work we combine the co-evolutionary
method with a growth process and implement it as a single dynamic optimization
task. We use standard evolution strategy optimization, ES(15,100) developed by
Bienert, Rechenberg and Schwefel [16] to optimize the overall system configura-
tion. Although more sophisticated algorithms are available like CMA-ES [17], we
stick to the comparable simple strategy which can also be applied in the growth
process. A single genome of the individual includes four chromosomes which
code the position of the sensors and actuators as well as the controller param-
eters and additionally the strategy parameters (mutation step sizes). Offspring
are the result of the gene intermediate recombination and mutation of the par-
ent individuals with the current mutation step size. The optimization has been
implemented, using SHARK2, open-source C++ machine learning library. One
of the important advantages of the growth process is a minimal requirement on
the prior knowledge about the system. The growth process shows fast conver-
gence in small search spaces, since it starts with an initially elementary system.
Thereby we free the system from the early limitations and allow it to develop
autonomously into a final system, having as simple morphology as possible, opti-
mally positioned in the structure and in the same time having an optimal signal
processing structure for the given morphology.

The results of our previous work in [12] demonstrate the expected difficulties of
the standard optimization strategies on large scale problems. The experiments
on the optimization of the systems with different number of sensors showed
the infeasibility of the standard ES for detection of the optimal solution for
a systems, having more than 5 sensors. We found out, that concurrent growth
method, based on the standard ES, could overcome these problems. Additionally,
such a system development method resulted a structured system organization,
with a strong hierarchical arrangement of the elements of sensor and controller
structures. In this way the arranged system organization provides information
about the importance of the present sensor elements of the system. However,
the overall system configuration in [12] has been pre-defined to the system using
6 actuators at fixed positions. In this work we fully free the system of any
morphological or controller system limitations on the early developmental stages
and evolve all functional parts of the system simultaneously.

The system is evaluated according to its ability to reduce the drag while
changes in the inflow angle of the air occur during the optimization process. The
ratio of the drag coefficients before change of the inflow angle happened Ct

d and
after Ct+1

d a change is evaluated. The fitness of an individual is defined as a sum

2 http://image.diku.dk/shark/
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of drag value ratios over a cascade of 16 different angles of attack. Additionally
the cost functions of the sensor and actuator elements multiplied with a number
of sensors and actuators respectively has been added to the fitness function.

Fitness(Individual) =

∑N
i=1

Ct+1
d (αi)

Ct
d(αi)

N
+ w · S + v ·A, (1)

where α is the angle of attack, N is the total number of angles of attack ap-
plied and on which the individual has been evaluated, Ct

d is the drag coefficient
before and Ct+1

d - after actuator adjustments, S and A are the number of sensors
and actuators, w and v are the cost factors for sensors and actuators. To get a
fair comparison we use two constraint parameter derived from the parameters
of the NACA 2410 [18] airfoil. NACA airfoils are the aircraft wing shapes, de-
veloped by the National Advisory Committee for Aeronautics in 1948 [18] and
define since that time a set of standard airfoil shapes. The maximal thickness of
the adaptive airfoil was set to the maximal thickness of the NACA 2410 airfoil
which is equal to 10% of the chord length. Additionally, we put the constraint
on the lift coefficient to be equal or higher than a lift of a NACA 2410 airfoil at
corresponding angle of attack.

3.1 Definition of Growth Process

We defined a system growth process as an optimization through gradual enlarge-
ment of the initially minimal system by concurrent addition and adaptation of
the sensors, actuators and corresponding connection weights of the controller
during entire optimization process. There exists a variety of approaches for the
topology optimization of the processing structures in the neuro-evolutionary do-
main proposed for example by Moriarty and Miikulainen [19] (SANE), Stanley
and Miikulainen [20],[21] (NEAT).

Fig. 2. Demonstration of growth process. Probability based triggering of enlargement
of morphology and controller dimensionality

In this work we realize the topology optimization of the controller, consisting
of a linear recurrent model, as an optimization of the input as well as output
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dimensionality of the control structure, while adding necessary connections to
keep a fully connected network. We use a direct genotype to phenotype encod-
ing as shown in Fig. 2. We use a neutral system mutation by initializing the
weighting coefficients of a new sensor or new actuator elements with zero. The
new morphological elements as well as the corresponding controller connections
get individual mutation step sizes. Through this important method of system
enlargement, triggered by the probability based method, we give a mutated sys-
tem a possibility to evolve new elements individually while keeping the previously
optimized system setup intact. Each individual in a population has a fixed prob-
ability p = 0.2 to get a new sensor or actuator by mutation. Compared to our
previous research we implemented cost factors for the new sensory and actuation
elements. The values of the cost factor has been experimentally set to w = 0.04
and v = 0.04. The cost factors allow the generation of the systems with minimal
complexity of morphological and controller configurations required for fulfilling
a given task.

3.2 Experimental Results of Growth Process

In this section we demonstrate the experimental results of the presented sensor-
actuator-controller growth method of the adaptive wing and compare them with
the results of our previous work in [14] and [12].

0.55

0.6

0.65

0.7

0.75

1
Sensor

2
Sensors

3
Sensors

5
Sensors

10
Sensors

15
Sensors

20
Sensors

Growth
sensors-controller

Growth
sensors-actuators-
      controller

growth
sensors-actuators-

growth
sensors-controller

fixed dimensionaliy:  
3 sensors, 6 actuators

controller

Fi
tn

es
s v

al
ue

(a) (b)

Fi
tn

es
s v

al
ue

Fig. 3. (a) Final quality of sensors-controller and sensors-actuators-controller opti-
mization runs, compared with a results of the runs with a different fixed morphological
configurations. 10 optimization runs with different starting parameters, (b) Comparison
of the averaged fitness curves.

Fig. 3 (a) present a comparison of the optimization results for different sys-
tems. On the one hand we have results of the systems, having different fixed
number of sensory elements and equally positioned fixed 6 actuators. On the
other hand we get the optimization results for the sensors-controller and sensors-
actuators- controller growth method. In following we compare the results and
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give an explanation to the difference in the final performance. Basically as the
performance of the final system is expected to get better, the more sensory infor-
mation about the environment is available. Indeed Fig. 3 (a) shows a significant
improvement of the final optimized system performance with an enlargement
of sensory system dimensionality up to 3 sensors. However the high number of
sensors and actuators leads to a high number of optimization parameters. The
problems of the standard ES on the large scale problem can be seen for a higher
number of sensory elements. For experiments with fixed morphological dimen-
sionality we observe a decline of the performance for the systems, having more
than 3 sensors. In this case of a morphologically rich system, an optimization
has a high chance to get stuck in local optima and not reach the globally optimal
solution.
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Fig. 4. (a) Average (10 runs), worst and the best fitness progress of the sensors-
actuators-controller optimization, (b) Development of the number of sensors over 200
generations, (c) Development of the number of actuators

According to the optimization results, systems with 3 pressure sensors rep-
resent an optimal sufficient solution for morphological setting for given opti-
mization strategy, since it reached the best final quality in average. The results
demonstrate, that the systems developed with sensors-controller growth method
show similar good performance as the systems optimized for 3 sensors, both
having 6 fixed actuators. According to the average achieved quality of the fully
variable system design, presented as sensor-actuators-controller growth method,
we obtain a significant benefit starting the optimization with initially minimal
system configuration, which evolves during the optimization through gradual
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step-wise complexification. The fitness value of the best and worst individual
in each population as well as the average sensors-actuators-controller optimiza-
tion is presented in Fig. 4. The growth method generated a systems, having in
average about 3 sensors and between 3 and 4 actuators. To analyze the func-

Fig. 5. Hinton diagrams of the system controller of the worst (a) and the best (b) sys-
tem in Fig. 4, developed by the sensors-actuators-controller growth process at 200th
generation, (c) and (d) Position of the sensors and actuators of the systems and
schematic airfoil controller with the signal connections between sensors and actua-
tors (thicker lines mean a stronger connection), (e) Example of the system controller
developed with sensors-controller method without cost functions

tional configuration of the controller a Hinton diagrams has been used [22]. The
size of the boxes corresponds to the value of the connection strength. The box
color (gray and black) represents a positive or negative sign of the connection
strength respectively. The values of the connection strengths have been scaled
between minimal (no box) and maximal controller connection strength (box of
maximum size). Fig. 5 demonstrates the final controller structures of the worst
and the best system, developed with the growth method after 200 generations.
Fig. 5 (c), (d) shows the optimized position of the sensors and actuators in both
systems. A reason for the performance difference of the two systems seems to be
an extra actuator of the first system. The results show in comparison to earlier
work, that the actuation resources of the system have a comparable impact on
the system performance than the amount of gathered sensor information about
the environment. This means that the pre-definition of the configuration of each
morphological structure limits a system’s global evolvability gradually. The pre-
sented system growth method shows experimentally on a virtual adaptive wing
design the potentials and benefits of the fully automatic globally optimal system
design.



Adaptive System Design by a Simultaneous Evolution 35

4 Conclusions

In the presented work the evolutionary generation of an optimal adaptive sys-
tem which reacts autonomously to changes in its environment is described. As
an example system for the evolutionary development a problem from the field
of aerodynamics was utilized. A virtual wing shape had to be adapted to show
minimal drag for changing unknown inflow angles based on pressure measure-
ments on its surface. All functional parts of the systems, such as morphological
configuration, defined by the sensory and actuation structures, as well as the
configuration of the signal processing unit of the virtual adaptive wing are not
specied in the early design stage and are the result of the evolutionary opti-
mization process implemented as a dynamic system growth process. We showed
that the proposed concurrent growth method could overcome the problems of
standard evolutionary strategies on a given large scale optimization task. Ac-
cording to the presented results we obtain a significant benefit in starting the
optimization initially as simple as possible while the system undergoes a step-
wise complexification during the co-evolution process. Proposed system growth
approach, combined with a cost factors for a morphological dimensionality, is
able to detect a minimally possible morphological configuration required to ful-
fill a given task of drag reduction and maintenance of a required lift. Therefore
an optimization process supports generation of preferably low dimensionality of
morphological and controller units, which is still sufficient to react optimally in
a simulated changing environment. Such a system development method results
in a structured system organization, with a strong hierarchical arrangement of
the elements of sensor and controller structures according to its importance to
the system. This system organization provides an important information to the
designers about the significance of sensors and actuators for the system perfor-
mance.

Acknowledgments. The authors gratefully acknowledge the support of Bern-
hard Sendhoff and the financial support from Honda Research Institute Europe
GmbH.

References

1. Brooks, R.A.: New approaches to robotics. Science 253, 1227–1232 (1991)
2. Dorigo, M., Schnepf, U.: Genetics-based machine learning and behaviour based

robotics: A new synthesis. IEEE Transactions on Systems, Man, and Cybernet-
ics 23(1), 141–154 (1993)

3. Cliff, D., Harvey, I., Husbands, P.: Explorations in Evolutionary Robotics. Adaptive
Behavior 2(1), 73–110 (1993)

4. Floreano, D., Mondada, F.: Automatic creation of an autonomous agent: Genetic
evolution of a neural-network driven robot. In: Proceedings of the Third Interna-
tional Conference on Simulation of Adaptive Behavior: From Animals to Animats
3: From Animals to Animats 3, SAB 1994, pp. 421–430. MIT Press, Cambridge
(1994)



36 O. Smalikho and M. Olhofer

5. Miglino, O., Nafasi, K., Taylor, C.: Selection for wandering behavior in a small
robot. Technical Report UCLA-CRSP-94-01, Department of Cognitive Science,
University of California, Los Angeles (1994)

6. Sims, K.: Evolving virtual creatures. In: The 21st Annual Conference, pp. 15–22.
ACM Press, New York (1994)

7. Parker, G.B., Nathan, P.J.: Co-evolution of sensor morphology and control on a
simulated legged robot. In: International Symposium on Computational Intelli-
gence in Robotics and Automation, CIRA 2007, pp. 516–521 (2007)

8. Bugajska, M.D., Schultz, A.C.: Coevolution of form and function in the design of
micro air vehicles. In: Evolvable Hardware, pp. 154–166. IEEE Computer Society
(2002)

9. Sugiura, K., Akahane, M., Shiose, T., Shimohara, K., Katai, O.: Exploiting in-
teraction between sensory morphology and learning. In: 2005 IEEE International
Conference on Systems, Man and Cybernetics, vol. 1, pp. 883–888 (2005)

10. Gomez, G., Lungarella, M., Hotz, P.E., Matsushita, K., Pfeifer, R.: Simulating
development in a real robot: on the concurrent increase of sensory, motor, and
neural complexity (2004)

11. Auerbach, J., Bongard, J.: 12th International Conference on the Synthesis and
Simulation of Living Systems (ALife XII) (August 2010)

12. Smalikho, O., Olhofer, M.: Growth in co-evolution of sensor system and signal pro-
cessing for optimal wing control. In: Proceedings of the Genetic and Evolutionary
Computation Conference. ACM (2014)

13. Farin, G.E.: NURBS: From Projective Geometry to Practical Use, 2nd edn. A. K.
Peters, Ltd., Natick (1999)

14. Smalikho, O., Olhofer, M.: Co-evolution of sensor system and signal processing for
optimal wing control. In: Proceedings of the EvoApplication Conference. Springer
(2014)

15. von Haller, B., Ijspeert, A., Floreano, D.: Co-evolution of structures and controllers
for neubot underwater modular robots. In: Capcarrère, M.S., Freitas, A.A., Bent-
ley, P.J., Johnson, C.G., Timmis, J. (eds.) ECAL 2005. LNCS (LNAI), vol. 3630,
pp. 189–199. Springer, Heidelberg (2005)

16. Rechenberg, I.: Evolutionsstrategie 1994. Frommann, Stuttgart (1994), Fit via Evo-
lutionsstrategie, Routine von Volker Tuerck vorhanden

17. Hansen, N.: The CMA Evolution Strategy: A Comparing Review (2006)
18. Jacobs, E.N., Ward, K.E., Pinkerton, R.M.: The characteristics of 78 related airfoil

sections from tests in the variable density wind tunnel. Technical Report 460 (1948)
19. Moriarty, D.E., Miikkulainen, R.: Efficient reinforcement learning through symbi-

otic evolution. Machine Learning (AI94-224), 11–32 (1996)
20. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting

topologies. Evolutionary Computation 10(2), 99–127 (2002)
21. Stanley, K.O., Miikkulainen, R.: Competitive coevolution through evolutionary

complexification. Journal of Artificial Intelligence Research 21, 63–100 (2004)
22. Bremner, F., Gotts, S., Denham, D.: Hinton diagrams: Viewing connection

strengths in neural networks, vol. 26, pp. 215–218. Springer (1994)



 

G. Dick et al. (Eds.): SEAL 2014, LNCS 8886, pp. 37–47, 2014. 
© Springer International Publishing Switzerland 2014 

Generating Software Test Data  
by Particle Swarm Optimization 

Ya-Hui Jia1,3,4, Wei-Neng Chen2,3,4,**, Jun Zhang1,2,3,4, and Jing-Jing Li5 

1School of Information Science and Technology, Sun Yat-sen University, Guangzhou, China 
2School of Advanced Computing, Sun Yat-sen University, Guangzhou, China 

3Key Lab. Machine Intelligence and Advanced Computing, Ministry of Education, China 
4Engineering Research Center of Supercomputing Engineering Software, MOE, China 

5School of Computer Science, South China Normal University, Guangzhou, China 
chenwn3@mail.sysu.edu.cn 

Abstract. Search-based method using meta-heuristic algorithms is a hot topic in 
automatic test data generation. In this paper, we develop an automatic test data 
generating tool named particle swarm optimization data generation tool 
(PSODGT). The PSODGT is characterized by the following two features. First, 
the PSODGT adopts the condition-decision coverage (C/DC) as the criterion of 
software testing, aiming to build an efficient test data set that covers all condi-
tions. Second, the PSODGT uses a particle swarm optimization (PSO) approach 
to generate test data set. In addition, a new position initialization technique is 
developed for PSO. Instead of initializing the test data randomly, the proposed 
technique uses the previously-found test data that can reach the target condition 
as the initial positions so that the search speed of PSODGT can be further acce-
lerated. The PSODGT is tested on four practical programs. Experimental results 
show that the proposed PSO approach is promising. 

Keywords: Particle swarm optimization, Automatic software test case generation, 
Software testing,· Code coverage. 

1 Introduction 

With the rapid development of software industry, software is becoming bigger and 
more subtle. In 2002, NIST estimated the loss caused by software failure which 
reached 0.6 percent of GDP in America [1]. Hence, software testing, as a necessary 
part during the circle of software development, is more difficult than before. Software 
testing is also an expensive and labor-intensive work, which sometimes occupies 
about half of the total workload [2] and brings lots of redundant expenditure both in 
time and money. Hence, developing automatic test tool has important practical signi-
ficance. 

The basic prerequisite for automatic software testing is generating test data auto-
matically. However, test data generation is a very challenging task, as a good data set 
should not only fulfill all the requirements defined by test criterion well but also be as 
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smaller as possible. As a result, more and more research effort has been attracted in 
software test data generation in recent years [7], [16]. In general, these studies can be 
classified into three classes, random, symbolic and dynamic. Random method just 
generates inputs at random until a useful input is found. In symbolic method,  
variables are assigned with symbolic values so that test data generation can be turned 
into a problem of solving algebraic expressions [13], [14]. In dynamic test generation, 
the source code is instrumented to collect information about the program when it  
executes. This information can help test generators to modify the program’s input to 
satisfy the requirement heuristically. Then the problem of generating test data con-
verted to function minimization problem. As the dynamic method is efficient and 
robust for different kinds of programing codes, it has been increasingly considered as 
a promising software test data generation technique in recent years [17]. The dynamic 
method is also known as search-based software testing thus several meta-heuristic 
optimization algorithms have been proposed for this problem, e.g. hill climbing [15], 
tabu search algorithm [3], genetic algorithm (GA) [5] and particle swarm optimization 
(PSO) [8]. 

Meanwhile most existing researches focused on covering paths in a program as 
many as possible [6]. This strategy is known as path coverage which is a coverage 
criterion in the field of white-box testing requiring that every path in the target pro-
gram should be reached. But sometimes it is not enough just covering all paths in a 
program. Path coverage may also cause some conditions in the target program cannot 
be fully covered. In order to overcome this problem, there is also another coverage 
criterion called condition-decision coverage (C/DC). C/DC requires that every condi-
tion and every decision should take all possible outcomes at least once. Michael et al. 
[4] used C/DC as criterion in their test data generation tool GADGET but the ap-
proaches they proposed are based on GA. Though GA has strong ability in global 
searching, the local search capability is not good enough. Hence the convergence 
speed of GA often cannot satisfy the software testing requirement. 

In this paper, we intend to introduce a PSO approach to search-based software test-
ing with the C/DC criterion and further develop a PSO Data Generation Tool 
(PSODGT). The reason of using PSO is that PSO has a fast convergence speed [10], 
[18]. In addition, the self-cognitive and social-influence learning strategies of PSO 
make it more reliable in detecting conditions which are difficult to reach. Though 
PSO has been used in test data generation with the path coverage criterion in a few 
works like [6], [9], different from these existing approaches, our proposed PSO ap-
proach focuses on a different criterion, i.e., the C/DC criterion. In addition, we further 
improve the performance of PSO for test data generation by introducing a new initia-
lization technique to PSO and adjust its parameter setting. During each optimization 
procedure, particles should reach the target condition before optimizing the fitness 
function. In the proposed initialization technique, particles are initialized according to 
the test data that can reach the current target condition found in previously. This mod-
ification saves time for particles to reach the target condition so that particles can 
early start to optimize fitness function. As for experiment, most researches just tested 
their approaches by simple programs like triangle classification, bubble sort. These 
programs are not complicated enough to simulate real situations because they are too 
simple and the search space is small. In this paper, four programs with different com-
plexities of inputs and conditions are tested. Our PSO approach is compared with a 
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GA approach [4] which is also proposed for C/DC. Experimental results are evaluated 
in two aspects, conditions coverage rate and convergence rate. When observing the 
convergence rate, the number of executions of the target program is used as mea-
surement instead of time consumption. 

The rest of this paper is organized as follows. In section 2, we introduce the PSO 
algorithm and the test adequacy criteria. Section 3 shows some pivotal details about 
PSODGT. Then experimental results and analysis are shown in section 4. Finally in 
section 5 the conclusions are drawn. 

2 Particle Swarm Optimization and Test Adequacy Criteria 

2.1 Particle Swarm Optimization 

Particle Swarm Optimization (PSO) algorithm was proposed by Russell Eberhart and 
James Kennedy in 1995 [10]. In PSO algorithm, each particle keeps track of a posi-
tion which is the best solution it has achieved so far as pbx and globally optimal solu-
tion is stored as gbest. The basic steps of PSO are as follow: 

1. Initialize N particles with random positions pxi and velocities vi on D dimensions. 
Evaluate every particle’s current fitness f(pxi). Initialize pbxi = pxi and 

i 0 1 Ngbest = i, f(px )= min(f(pbx ), f(pbx ),..., f(pbx )) ; 

2. Check whether the criterion is met. If the criterion is met, loop ends else continue; 
3. Change velocities according to formula (1): 

1 1 2 2( ) ( )i i i i gbest iv v c r pbx px c r pbx pxω= + − + − ;              (1) 

4. Change positions according to formula (2): 

i i ipx px v= +                              (2) 

5. Evaluate every particle’s fitness f(pxi); if f(pxi) < f(pbxi) then pbxi = pxi; 
6. Update gbest and loop to step 2. 

Usually particle’s position cannot overstep the boundary of the search space and 
velocity also cannot exceed one particular value which is often set as 20% of the 
search space’s width. In formula (1), the particle velocity updating formula, ω
presents inertia factor, generally obtained by formula (3) [18] 

( )max min
max k

maxIt

ω ωω ω −
= − .                       (3) 

maxIt means the maximum iteration number and k means the k-th iteration; c1, c2 are 
accelerated factors which present cognition and social of the particle; r1, r2 are ran-
dom numbers between 0 and 1. 
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2.2 Coverage Criteria 

The goal of software test is to uncover as many faults as possible with a potent set of 
tests. But predicting how many faults will be uncovered by a given test set is almost 
impossible [11]. We need test adequacy criteria to help us judge whether a data set is 
good enough to accomplish the test. Regardless of whether test adequacy criteria really 
can represent the quality of a test suite, they do represent the thoroughness of testing.  

There are several common coverage criteria in structural test like statement cover-
age, branch coverage, condition coverage, multiple condition coverage, condition-
decision coverage (C/DC) and path coverage [2]. A condition is a leaf-level Boolean 
expression and cannot be broken down into a simpler Boolean expression. A decision 
is a Boolean expression composed of conditions and Boolean operators. A decision 
without any Boolean operators is a condition. In these criteria exists a hierarchy, the 
top one is multiple condition coverage which requires every permutation of values for 
the Boolean variables in every condition occurring at least once. On the contrary, 
function coverage only requires the execution of every function. 

In many automatic testing researches, path coverage was used as their criterion. 
Though path coverage is applicable to a number of program’s testing, it is not perfect. 
For example, assume there is a decision consisted by disjunction of two conditions 
like (a || b) in the program. For the true path, according to the short circuit evaluation, 
most programming language will check condition a first and if condition a is true then 
ignore the condition b; for the false path, both condition a and b need to be false. Fi-
nally we find that condition b may never be true even both paths were already cov-
ered. 

In PSODGT, we use condition-decision coverage as the coverage criterion. Condi-
tion-decision coverage requires that every decision in the program has taken all possi-
ble outcomes at least once, and every condition in a decision in the program has taken 
all possible outcomes at least once. Although in the hierarchy, the level of C/DC is 
lower than multiple condition coverage, C/DC already can make sure that every piece 
of the program can be executed if the requirement of C/DC is fully fulfilled. 

3 The PSO Data Generation Tool (PSODGT) 

In this section, the PSO data generation tool is introduced. First of all, we give a brief 
overview of the PSODGT. Then we discuss three issues of the PSODGT in detail, 
including the main data structure, implementation of the fitness function and the im-
proved PSO algorithm for this tool. 

3.1 Overview of PSODGT 

PSODGT is designed to work on programs written in C or C++ programing language 
and the architecture of PSODGT is shown in Fig. 1. There are two parts in PSODGT, 
automatic instrumentation and test data generation. Original source code is automatically 
instrumented and compiled in the automatic instrumentation part. After compiling, an 
instrumented executable program is generated for data generation part to work on. The 
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data generation part also consists of two classes. Class controller maintains a condition 
table and a test data set, taking charge of choosing target condition and branch, storing 
useful inputs found by class optimizer and updating the condition table all by using a key 
function named runOnce. The optimizer class only focuses itself on reaching the target 
branch chosen by controller. 

 

Fig. 1. Architecture of the PSODGT 

3.2 Condition Table 

The condition table is a vitally important data structure for the PSODGT. It is derived 
from the decision table proposed in [12] and modified in [4] by replacing decision 
with condition. Different from the condition table in [4], each branch in PSODGT’s 
condition table has three statuses not two. A sample condition table is shown in  
Table 1. 

Table 1. Condition table 

 Branch 
Condition TRUE FALSE 

1 1 2 
2 0 0 
3 1 1 
4 1 0 

 
Status 0 means this branch is not covered yet, 1 means this branch has been cov-

ered and 2 means that the algorithm has failed in optimizing this branch of the condi-
tion. Status 2 is used to avoid endless loop. When a goal branch is needed, PSODGT 
always chooses the condition the state of which is 1/0 or 0/1, i.e., this condition has 
been reached but its branches are not fully covered yet. To satisfy C/DC requirement, 
we take advantage of the short circuit evaluation. If every condition is fully covered 
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(both TRUE and FALSE branches have been achieved), all decisions can be fully 
covered. So we can only focus on covering conditions as many as possible.  

3.3 Fitness Calculation 

When a condition’s branch is chosen, things we need to do next is to get its fitness 
under test data. If a strip of input data can reach the chosen condition, variables in the 
chosen condition have relationship with the input data. Because different inputs 
should cause different value for variables in condition so that conditions may take 
different outcomes. For example, suppose that a hypothetical program contains the 
condition 

if(temp > 10){…} else {…} 

on line 50 and the goal is to reach its FALSE branch. Denoting x as input, according 
to the relationship between input data and variables in condition, temp can be 
indicated as line50(x). Then the fitness function of this condition can be express as 

10 150f(x)= line (x)− + . When f(x) <= 0, the goal branch will be achieved. Using the 

value of f(x), the problem of generating test data turns into function minimization 
problem. If the input data cannot reach the chosen condition, we set a very large value 
as fitness to represent that this condition is not related to the input data.  

Table 2. Computation of the fitness function 

Condition Type Goal Branch Fitness Calculation 

c > d 
T d – c + minConst 
F c – d 

c < d 
T c – d + minConst 
F d – c 

c >= d 
T d – c 
F c – d + minConst 

c <= d 
T c – d 
F d – c + minConst 

c == d 
T |c – d| 
F minConst – |c – d| 

c 
T 1000 
F 1000 

 
Table 2 shows how fitness is calculated for all condition types if the condition is 

reached.We add a constant named minConst to some fitness so that all fitness calcula-
tions can be evaluated as a positive number no matter what the goal branch is. The 
goal is to reduce the fitness down to zero or negative numbers. For integer problem, 
minConst is set to 1; for float problem, minConst can be set to a very small float 
number according to the precision needed in the real situation. 
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3.4 Particle Swarm Optimization for PSODGT 

According to the actual situation in test data generation, some improvements are ap-
plied to the PSO algorithm in initialization step and parameters setting. Initialization 
step in PSO can be divided into position initialization and velocity initialization. 

Plenty of existing researches use a strategy in initial population generating that add 
the test data which can successfully reach the target condition to the population 
firstly; if additional inputs are needed, generate some random inputs to fill the popula-
tion. However for PSO, these randomly generated inputs take a lot of time in reaching 
the target condition. Considering this problem, this paper proposes a new method for 
the initialization step of PSO using the idea of crossover operation in GA and strati-
fied sampling for reference. Suppose there are N particles needed in the swarm and 
the number of the target program’s input is D. The position of the i-th particle is pre-
sented as an array Pi[1…D]. The positions initialization steps are as follow: 

1. If the number of the test data which can successfully reach the condition is bigger 
or equal to N, randomly add N of them into swarm and end the initialization 
process; else add all of them into swarm and calculate how many additional 
particles are needed. 

2. Assume M particles are needed. If M<=N–M, use random M particles in the swarm 
as seeds and each seed generates one additional particle, else use all the particles in 
the swarm as seeds and each seed generates M/(N–M) particles. 

3. For every generation of every seed, it begins with copying the position of i-th seed 
to the new particle, NewP[1…D]=Pi[1…D]. 

4. After copy, generate a number d smaller than D randomly. Then construct an d-
length array changePos[1…d] filling up with different numbers which are 
generated randomly and smaller than D. 

5. Finally substitute the values in NewP with random numbers according to 
changePos, NewP[ changePos[1…d] ]=randomNumber. 

Research in [4] found that there are lots of serendipitous coverages during test data 
generation. This means some test data do cover new condition branches but these 
conditions are not the one the optimizer is currently working on. Serendipitous cover-
age requires degree of randomness in optimizer. However the directional character 
makes PSO perform badly in gaining serendipitous coverage. Considering this prob-
lem, particles’ velocities are initialized within the same boundary as positions to ob-
tain more randomness in early stages of iteration. This setting causes a consequence 
that convergence speed becomes slower than basic PSO. To make up the losses on 
convergence rate, ω the inertia factor is set as 0.4 down to 0.3 with the iteration 
growing. A lot of experiments have been done to verify this setting about inertia fac-
tor. When it is set much higher, convergence speed is too slow to meet the require-
ment. While, if it is smaller than 0.3, the algorithm usually fails. 
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4 Experimental Studies 

4.1 Experimental Settings 

In the experiments, we test the proposed method on four programs: triangle classifica-
tion program, week calculation program, student grade judgment program and blood 
glucose judgment program. (Denoted as P1, P2, P3, and P4) Different from the simple 
programs tested in [4], these programs are practical and full of various conditions. 
When we test these programs, two main aspects are taken into consideration. One is 
the dimension (number of inputs) and size of search space; the other is the number of 
conditions. Specific figure about the dimension of search space and the number of 
conditions are shown in Table 3. And each program is tested with two different size 
of search space measured by bit shown in Table 4. 

Table 3. Number of conditions and inputs 

Program Condition number Inputs Number (dimension) 
P1 20 3 
P2 76 3 
P3 16 5 
P4 33 12 

 
Our proposed PSO approach is compared with two genetic algorithms with differ-

ent coding schemes which are gray code (GAG) and binary code (GAB). Also a PSO 
method using the same initialization way with GA is tested to verify the necessity of 
the proposed initialization technique, denoted as iPSO. We use 100 individuals, allow 
30 generations to elapse before two GAs give up, the same as in [4], and the mutation 
probability of every bit is 0.01. For PSO, 20 individuals and 100 generations are al-
lowed. Values of accelerated factors c1 and c2 are 2. 

4.2 Experimental Results and Analysis 

In this paper, experimental results are estimated in two aspects, efficiency 
(convergence rate) and effectiveness (coverage rate). In the course of experiment, we 
take five serial attempts as a group of tests. After six groups of tests for each method, 
the best coverage rate in each group is selected and the best, worst, average coverage 
rate of these six numbers are shown in Table 4, displayed in percentage. 

Comparing the experimental data on different search space size for the same pro-
gram, we can find that when the number of input is relative small, increasing on the 
search space size doesn’t affect the coverage rate greatly. However when the number 
of input grows larger, the contrary is the case. Though both GA and PSO suffer the 
increasing on search space size, the PSO approach is much more stable. And the poor 
performance made by iPSO also demonstrates the importance of our proposed initiali-
zation tech in PSO method for software test data generation. In general, except the 
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data of best coverage rate for P1 in 16-bit search space which is underlined in Table 4, 
all the rest data show the advantage of our PSO approach in effectiveness. 

Table 4. Experimental results on coverage rate 

 
Prog. P1 P2 P3 P4 
Bit 32 16 16 12 12 8 12 8 

PSO mean 95 95 99.45 100 100 100 88.38 100 

worst 95 95 98.68 100 100 100 65.15 100 
best 95 95 100 100 100 100 100 100 

GAG mean 88.75 93.33 96.49 96.49 82.29 100 45.20 100 
worst 82.50 92.50 94.74 93.42 43.75 100 33.33 100 
best 95 97.50 98.03 99.34 100 100 57.58 100 

GAB mean 72.50 85.42 96.71 96.93 59.90 100 36.36 100 

worst 50 72.50 95.39 96.05 43.75 100 28.79 100 
best 85 92.50 98.03 98.68 90.63 100 40.91 100 

iPSO mean 85.42 87.50 82.46 86.95 41.67 100 26.27 94.70 
worst 80 87.50 79.61 85.53 40.63 100 24.24 71.21 
best 87.50 87.50 84.21 87.50 43.75  100 30.30 100 

 
Fig. 2. Converge rate of three methods on P3 

As to the convergence rate, P3 with 8-bit search space is used in comparing the ef-
ficiency because all three approaches performed well on this program and iPSO is not 
shown because it is too slow comparing with others. The relationship between runs 
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and coverage rate is illustrated in Fig. 2. This plot shows that PSO begins to demon-
strate its advantages after reach 50% coverage and covers all conditions first. Clearly 
the convergence rate of PSO is much faster than the two GA approaches. The same 
fact also can be verified by the other programs. 

All these experimental results show that the proposed PSO approach is effective 
and efficient in automatic software test data generation. 

5 Conclusion 

In this paper, an improved PSO approach is proposed to apply to search-based test 
data generation. The main contributions are in two aspects. First, the PSODGT is 
developed by combining the PSO algorithm and C/DC. Second, a new position initia-
lization technique is developed for PSO to adapt accommodate software testing. Ex-
perimental results show that the proposed PSO approach is very promising.  

In the future research, it will be interesting to find out which method is suitable to 
which kind of condition so that more hybrid methods can be proposed to apply to 
different conditions. And how to use much higher-level coverage criterion is also a 
promising research topic.  
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Abstract. Dominating tree problem (DTP) is a recent variant of domi-
nating set problems in graph theory and finds its root in providing virtual
backbone routing in wireless sensor networks. This problem consists in
finding a tree, say DT , with minimum total edge weight on an undi-
rected, weighted and connected graph such that each vertex of the graph
is either in DT or adjacent to a vertex in DT . In this paper, a steady-
state genetic algorithm (SSGA) is proposed for the solution of DTP. In
particular, crossover operator of SSGA is designed in such a way that it
generates a DT of the child solution which not only avoids the generation
of a forest of trees, but also contributes in finding a high quality of child
solution. Crossover and mutation of SSGA as well as other elements such
as pruning procedure for the DTP are effectively coordinated in such a
way that they help in evolving high quality solutions in a less time. SSGA
has been compared with the best approaches in the literature. Compu-
tational results show the superiority of SSGA over these state-of-the-art
approaches in terms of both solution quality and computational time.

Keywords: Evolutionary Algorithm, Genetic Algorithm, Steady-State,
Dominating Tree, Wireless Sensor Networks.

1 Introduction

In recent years, many hard combinatorial optimization problems have been en-
countered in the domain of wireless sensor networks (WSNs). Dominating tree
problem (DTP) is one of NP-Hard problems in WSNs. Given an undirected,
weighted and connected graph G = (V,E,w), where V is a set of vertices, E is
a set of edges, and w is a non-negative weight function w : E → �+ associated
with the edges of G, DTP consists in finding a tree, say DT , with minimum
total edge weight on G such that for each vertex v ∈ V , v is either in DT or
adjacent to a vertex in DT . Every vertex in DT is called a dominating vertex,
whereas every vertex not in DT is called a non-dominating vertex. Note that
vertices and nodes are used interchangeably in this paper.

A solution to the DTP offers an application in providing a virtual backbone
for routing in WSNs. Since a non-dominating node is at least adjacent to one
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of dominating nodes of dominating tree (DT ) in the WSN, the routing informa-
tion can be stored only on dominating nodes of DT (solution). In this scheme,
a message can be sent from one source to destination by first forwarding this
message to its nearest dominating node of DT , then with the help of DT , this
message is further routed to one of its dominating nodes nearest to the receiver
and then, finally destined to the receiver. Each non-dominating node is required
to remember only its nearest dominating node. Advantage of this scheme is
that the total number of dominating nodes used for storing routing information
(virtual backbone) is small in comparison to the total nodes in the WSN, which
in turn, the less overhead on the size of routing table occurs.

2 Related Work

Dominating tree problem (DTP) is a recent variant of dominating set problems in
graph theory and is proven to NP-Hard problem [6, 13]. In literature, the concept
of connected dominating set [2, 4, 10–12] has been studied for constructing a
routing backbone with minimum energy consumption in WSNs. Such papers
consider the weight on each node instead of the weight on each edge. In fact,
energy consumption in routing is directly related to the energy consumed by
edges on the route. This led to the introduction of DTP [6, 13] with the objective
of minimizing energy consumption of routing. They proved inapproximability
result and presented an approximation algorithm - quasi-polynomial (|V |O(lg|V |))
algorithm- to solve the DTP. Due to quasi-polynomial algorithm, both Zhang et
al. [13] and Shin et al. [6] developed a polynomial time problem-specific heuristic
for the solution of DTP. Later, Sundar and Singh [8] presented a problem-specific
heuristic and two swarm intelligence techniques – artificial bee colony algorithm
and ant colony optimization algorithm – and demonstrated the superiority of
results over the results reported in [6, 13].

This paper presents a steady-state genetic algorithm (SSGA) for the solution
of DTP. SSGA has been compared with the state-of-the-art approaches, i.e., ar-
tificial bee colony (ABC) approach and ant colony optimization (ACO) approach
[8]. Computational results show the superiority of SSGA over ABC and ACO
approaches in terms of both solution quality and computational time.

The rest of this paper is organized as follows: Section 2 describes a a brief
introduction of SSGA, whereas Section 3 describes an SSGA for the DTP. Com-
putational results are reported in Section 4. Finally, Section 5 contains some
concluding remarks.

3 SSGA for the DTP

Genetic algorithm (GA) [3] is an evolutionary algorithm that works on the princi-
ples of natural evolution. It is one of the most powerful metaheuristic techniques
for optimization problems. This paper is focused on presenting a steady-state
genetic algorithm (SSGA) for the DTP. SSGA works on steady-state popula-
tion replacement method [1]. SSGA starts iteratively with selecting two parents,
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performing crossover and mutation to generate a child solution that replaces a
worst individual of the population. It is quite different from generational ge-
netic algorithm (GGA), where the whole parent population is replaced with the
same number of newly generated child solutions every generation. In general,
SSGA finds highly fit solutions in a faster way in comparison to GGA [1]. The
notion behind this one is that highly fit solutions in the population are kept
permanently and available instantly for selection and reproduction in order to
generate child solutions. Also, GGA may contain multiple copies of highly fit
solutions in the population which can dominate the whole population within
few generations. In such a situation, crossover operator becomes completely in-
effective. However, mutation can be used to improve the solution quality, but
such improvement, if occurs, is quite slow. In SSGA, one can simply prevent this
situation by comparing each newly generated child solution with the current in-
dividuals of the population and rejecting the newly generated child solution, in
case, it is equivalent to one of current individuals of the population.

Elements of SSGA for the DTP are described as follows:

3.1 Encoding

Each chromosome (solution) is represented as a set of dominating vertices of a
dominating tree.

3.2 Initial Solution Generation

Each initial solution is generated by an iterative process [8]. Initially, S and U
are the two empty sets. A vertex v1 is selected uniformly at random from V and
added to S. All vertices adjacent to v1 are added to U . At each step, an edge
connecting a vertex vx ∈ S to a vertex vy ∈ U is selected, where vx and vy are
selected uniformly at random from S and U respectively. After this, vy is deleted
from U and added to S. Each vertex, which is adjacent to vy and is neither a
member of U nor S, is added to U . This whole procedure is repeated again and
again until the sum of cardinality of S and U becomes equal to the total number
of vertices in G. At this juncture, a dominating tree DT is constructed.

Once a solution DT is generated, a pruning procedure is applied to DT [8].
According to this pruning procedure, a dominating vertex with degree one, say
vp, ∈ DT is examined for pruning. It is possible only when all non-dominating
vertices adjacent to vp are also adjacent to other dominating vertices in DT .
When it is possible, then only the edge incident to vp can be deleted from DT ,
which in turn reduces the total edge weight of DT . This pruning procedure is
applied to DT repeatedly till it is no longer possible to prune any dominating
vertex with degree one. Thereafter, Prim’s algorithm [5] is applied to construct
a minimum spanning tree (MST ) on the sub-graph of G induced by the set
of dominating vertices of DT [8]. This may lead to further minimize the total
weight of DT . The notion behind this one is that even after pruning, the total
weight of DT may not be minimum due to the selection of incorrect edges while
constructing DT . Numerous dominating trees can be constructed in G on a given
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a set of dominating vertices. Obviously, resultant MST or DT after applying
Prim’s algorithm will always be of minimum cost among all such dominating
trees.

Uniqueness of each generated individual (solution) is checked against the in-
dividuals of the population generated so far and if it is unique, it is included in
the initial population, otherwise it is discarded.

3.3 Fitness

Fitness of each solution is computed, where the fitness function of a solution is
same as objective function of a solution.

3.4 Selection

Binary tournament selection method is used consecutively two times for selecting
two different chromosomes as parents for crossover. This method starts with
selecting two chromosomes uniformly at random from the current population.
With probability Pb, the chromosome with better fitness is selected, otherwise,
worse one is selected (with probability 1− Pb). This selection is also applied to
select a chromosome for mutation.

3.5 Crossover

Crossover starts with selecting two chromosomes (solutions) as parents (say,
p1 and p2) from the population with the help of binary tournament selection
method, initializing an empty child solution C, and labeling all vertices ∈ V as
unmarked. With equal probabilities, first vertex vp11 (gene) is selected from the
first index of ordered set of dominating vertices of p1, otherwise first vertex vp21

(gene) is selected from that of p2. This selected vertex is added to C. All vertices
adjacent to this selected vertex and the selected vertex itself are labeled marked.
Hereafter, iteratively, with equal probabilities, a next vertex, say vp1i, is selected
from the ordered set of dominating vertices of p1, otherwise next vertex, say vp2j ,
is selected from that of p2. Here i and j are the indices of vertices in the ordered
set of dominating vertices of p1 and p2 respectively, and next vertex means a
vertex is next to previously selected vertex in the ordered set of dominating
vertices of selected parent. In addition, it is possible that next vertex (suppose
that this next vertex is vp1i) already exists in C. This possibility is based on
two things: the first one is that this next vertex may be common to both p1 and
p2 and it may be selected from p2 in an earlier iteration, and the second one is
that this next vertex may be selected in an earlier iteration due to potential path
(potential path is explained later). In such a situation, index i in p1 is incremented
to i+ 1 for selecting a next vertex from p1 in the next time, and the procedure
starts a fresh for selecting a next vertex. The selected next vertex which will be
either vp1i or vp1j will be referred to as v1. After this, a connectivity of v1 against
all other vertices in C is checked first before adding it to C. Here checking of a
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connectivity means checking of existence of an edge between v1 and one of the
vertices ∈ C in G. If an edge exists, then v1 is added to C, and all unmarked
vertices adjacent to v1 and v1 itself are now labeled marked. Otherwise, a path
(say, v1 � v2, where v2 ∈ C) having maximum potential is selected from among
all candidate paths connecting v1 to all vertices in C. A potential path (say, v1 �
vc, where vc ∈ C) is based on |SPum(v1�vc)|

SPv1�vc
, where

∣∣SPum(v1�vc)

∣∣ is the number
of unmarked vertices in the path v1 � vc, vc ∈ C, and SPv1�vc is the cost of
shortest path v1 � vc. All vertices, say Vsp, constituting this selected path v1
� v2 are added to C except v2, as v2 is already in C. All unmarked vertices
adjacent to Vsp and all unmarked vertices in Vsp are now labeled marked. This
whole iterative procedure continues until all vertices are labeled marked.

It is to be noted that simply selecting a vertex each time from one of ordered
set of dominating vertices of p1 and p2 for C is not applied in crossover operator.
The reason behind this one is that such crossover would possibly lead to a forest
of trees and in that situation, even after crossover it would require a repair
operator to transform this forest of trees into a dominating tree that would be
costly. To overcome this situation, the concepts of checking a connectivity and
selecting a potential path are applied during crossover which not only avoid the
construction of a forest of trees, but also contribute in finding a high quality of
child solution.

3.6 Mutation

Mutation starts with selecting a solution from the population with the help
of binary tournament selection method, and copying this solution to an empty
solution, say C. A small set (Vm) of non-dominating vertices is selected uniformly
at random from V \C set, where Vm = Pm × minimum{|C|,|V \C|}. Pm is a
parameter determined empirically. Iteratively, a vertex vs ∈ Vm having a path
of minimum cost with one (say vd) of the vertices in C is determined. It is
to be noted that the degree of vs must be greater than one in G. All vertices
constituting the selected path are added to C except vd, as vd is already in C.
This iterative procedure continues until Vm becomes empty. Hereafter, Prim’s
algorithm [5] is applied to construct a minimum spanning tree on the sub-graph
of G induced by the set of dominating vertices of C.

Similar to [7, 9], here crossover and mutation operators are also applied in
a mutually exclusive way to generate a child solution. With probability Pc,
crossover operator is selected, otherwise mutation operator is selected with the
probability (1− Pc). Once a child solution C is generated either from crossover
or mutation operator, similar to [8], a series of procedures on the current DT of
C, i.e., pruning on DT of C, Prim’s algorithm on the resultant DT , and again
pruning on the resultant DT is applied to further minimize the cost of DT . Such
procedures are already explained in Section 3.2.

The reason behind considering crossover and mutation operators in a mutually
exclusive way is that crossover operator generates a child solution (C) based
on selecting high-quality building blocks (genes) in a randomized manner either
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from p1 or p2, and greedy approach for connectivity. Whereas, mutation operator
generates a child solution C based on adding some random non-dominating
vertices to C. If mutation operator is applied after crossover operator, then a
series of procedures – pruning, Prim’s algorithm and pruning (discussed above) –
would be applied on the current C to further minimize the cost of C. In that case,
the resultant C may lose some potentially high-quality building blocks (genes).

Algorithm 1. Pseudo-code of SSGA for the DTP
Generate a population (pop_size) of solutions s1, s2, . . . , spop_size randomly
(see Section 3.2);
best ← Best solution in the population;
while (Termination criteria is not met) do

if (u01 < Pc) then
p1 ← Binary_Tournament_Selection(s1, s2, . . . , spop_size);
p2 ← Binary_Tournament_Selection(s1, s2, . . . , spop_size);
Child ← Crossover_Operator(p1, p2);

else
p1 ← Binary_Tournament_Selection(s1, s2, . . . , spop_size);
Child ← Mutation_Operator(p1);

if (Child is a partial DT ) then
Apply repair procedure on Child;

Apply pruning procedure on DT of Child;
Apply Prim’s algorithm to construct a MST on the sub-graph of G induced
by the set of dominating vertices of DT ;
Apply pruning procedure on DT of Child;
if (Child is better than best) then

best ← Child;

Apply replacement policy;

return best;

3.7 Replacement Policy

In this replacement policy, uniqueness of the newly generated child solution C is
examined against each individual of the population. If C is found to be different
from all individuals of the population, then it replaces the worst individual of
the population, irrespective of its own fitness. Otherwise, it is rejected.

Algorithm 1 presents the pseudo-code of SSGA for the DTP, where the size of
the population is pop_size. Two procedures called Crossover_Operator(p1, p2)
and Mutation_Operator(p1) perform crossover and mutation operations respec-
tively. Binary_Tournament_Selection(s1, s2, . . . , sspop_size) is another proce-
dure which selects a solution from solutions s1, s2, . . . , sspop_size with the help
of using binary tournament selection method and returns the solution selected.
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4 Computational Results

The proposed SSGA for the DTP has been implemented in C and executed on
a Linux with the configuration of 3.0 GHz Core 2 Duo system with 2 GB RAM.
In this approach, pop_size = 300, Pb = 0.8, Pc = 0.8 and Pm = 0.4 are con-
sidered for the DTP. SSGA has been allowed |V | × 500 generations to execute.
All these parameter values are chosen empirically. These parameter values give
good results although they may not be optimal for all problem instances. SSGA
has been compared with the best approaches such as artificial bee colony (ABC)
approach and ant colony optimization (ACO) approach [8] in the literature. Con-
figuration of a computer system used to execute both ABC and ACO approaches
was similar to that of SSGA. Similar to ABC and ACO approaches, SSGA has
been also executed 20 independent times for each problem instance. In subse-
quent subsections, a brief description of problem instances and the performance
comparisons of SSGA with ABC and ACO approaches are provided.

4.1 Problem Instances

SSGA uses same problem instances for the DTP as used in [8]. These problem
instances have been downloaded from http://dcis.uohyd.ernet.in/~alokcs/
dtp.zip. Each problem instance is described as follows: each instance is a disc
graph, G = (V,E) where each disk represents the transmission range of each
node. The weight on each edge euv in E is defined as w(u, v) = Cv × d2uj ,
where duv is the euclidean distance between two nodes (u and v), and Cv is
a random constant which is considered as 1. The assumption is that all nodes
are distributed randomly in a 500m × 500m area and the transmission range
of each node is 100m. Three different problem instances are created for each
value of |V | ∈ {50, 100, 200, 300, 400, 500}, resulting a total of eighteen problem
instances.

4.2 Comparison of SSGA with ABC and ACO Approaches

SSGA has been compared with ABC and ACO approaches [8] on a set of prob-
lem instances (see Section 4.1). Experimental results are reported in Table 1.
The descriptions of various columns of this table are as follows: Column 1 repre-
sents the name of each instance; columns 2-6 present best known value (BKV),
average solution quality (Avg.), standard deviation (SD) of solution values, av-
erage number of dominating vertices (ANDV) and average total execution time
(ATET) for each test instance that are obtained through ABC; columns 7-11
and 12-16 present same information (BKV, Avg., SD, ANDV and ATET) that
are obtained by ACO and SSGA respectively.

Table 1 clearly shows that SSGA is much better than both ABC and ACO
approaches in terms of solution quality (BKV and Avg.) and computational time
(ATET). Note that best values are presented in bold numbers. Considering its
all 18 instances, comparing with ABC approach, SSGA is better on 11 problem
instances and equal on 7 problem instances in terms of best solution quality

http://dcis.uohyd.ernet.in/~alokcs/
dtp.zip
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(BKV), whereas SSGA is better on 13 problem instances, equal on 1 problem
instances and worse on 4 instances in terms of average solution quality (Avg.).
Only on small sized problem instances, solution quality obtained by ABC ap-
proach is slightly better than that of SSGA at a large computation time. Based
on ATET, SSGA is much faster than ABC approach. For example, the maxi-
mum time (ATET) taken by ABC approach on the problem instance (500_1)
is 379.72 seconds, whereas the maximum time (ATET) taken by SSGA on the
problem instance (500_2) is 22.84 seconds. In a similar way, comparing with
ACO approach, SSGA is better on 11 problem instances and equal on 7 problem
instances in terms of best solution quality (BKV), whereas SSGA is better on
13 problem instances, equal on 1 problem instances and worse on 4 instances
in terms of average solution quality (Avg.). Solution quality obtained by ACO
approach is slightly better than that of SSGA on only small sized problem in-
stances. Based on ATET, SSGA is much faster than ACO approach. For example,
the maximum time (ATET) taken by ACO approach on the problem instance
(500_1) is 1163.20 seconds, whereas the maximum time (ATET) taken by SSGA
on the problem instance (500_2) is 22.84 seconds.

Since the number of dominating vertices plays an important role in the per-
formance of any routing protocols based on virtual backbone, therefore, the
performance of SSGA is also examined with ABC and ACO approaches in terms
of average number of dominating vertices (ANDV). Table 1 clearly shows that
SSGA obtains less ANDV than ABC and ACO approaches on most of the in-
stances.

Overall, SSGA outperforms both ABC and ACO approaches on most of the
problem instances in terms of solution quality. SSGA has found new values for
9 problem instances out of 18. In particular, the convergence of SSGA is much
faster in finding high quality solutions in comparison to ABC and ACO ap-
proaches.

It is to be noted that the number of dominating vertices in the solution and
the solution quality do not vary significantly with instance size for SSGA. The
reason behind this one is that all problem instances consisting of vertices are
randomly distributed in a 500m× 500m area, and the average degree of vertices
also increases with the increase of instance size, resulting no significantly changes
in the number of dominating vertices of the solution and the solution quality with
the increase of instance size [8].

5 Conclusions

This paper presents a steady-state genetic algorithm (SSGA) for the dominating
tree problem (DTP). In particular, crossover operator is designed in such a way
that it generates a DT of the child solution which not only avoids the generation
of a forest of trees, but also contributes in finding a high quality of child solution.
Crossover and mutation of SSGA as well as other elements such as pruning
procedure for the DTP are effectively coordinated in such a way that they help
in evolving high quality solutions in a less time. In fact, the proposed SSGA
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has experimentally proved that SSGA is much superior than the state-of-the-
art approaches, i.e., artificial bee colony approach and ant colony optimization
approach in terms of both solution quality and computational time. In particular,
the convergence of SSGA is much faster in finding a high quality solution.

Since there is still room for improvement based on the results, particularly the
values of standard deviation of problem instances, obtained by SSGA. Therefore,
as a future work, we will intend to develop other metaheuristic techniques for
this dominating tree problem.
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Abstract. Conventional evolutionary algorithms (EAs) cannot solve
given optimization problems efficiently when their evolutionary opera-
tors do not accommodate to the structures of the problems. We previ-
ously proposed a mutation-based EA that does not use a recombination
operator and does not have this problem of the conventional EAs. The
mutation-based EA evolves timings at which probabilities for generating
phenotypic values (developmental timings) change, and brings different
evolution speed to each phenotypic variable, so that it can solve a given
problem hierarchically. In this paper we first propose the evolutionary
algorithm evolving developmental timing (EDT) by adding a crossover
operator to the mutation-based EA and then devise a new test prob-
lem that conventional EAs are likely to fail in solving and for which the
features of the proposed EA are well utilized. The test problem con-
sists of multiple deceptive problems among which there is hierarchical
dependency, and has the feature that the hierarchical dependency is rep-
resented by a graph structure. We apply the EDT and the conventional
EAs, the PBIL and cGA, for comparison to the new test problem and
show the usefulness of the evolution of developmental timing.

Keywords: developmental timing, deceptive problem, graph structure,
dependency between variables, estimation distribution algorithm.

1 Introduction

Evolutionary algorithms (EAs) evolve several spatial patterns at different levels,
such as genotype, phenotype and population, by using evolutionary operators.
These spatial patterns, as objects of evolution, are related to the structure of
optimization problems solved by EAs. Therefore, evolutionary operators have to
be adapted to spatial patterns involved in optimization problems. For instance,
fixed recombination operators that do not adapt linkages between variables have
been shown to be inadequate and scale-up exponentially in terms of population
size with increasing problem size [17].

To overcome the dependence of evolutionary operators on spatial patterns in-
volving optimization problems, EAs must have a mechanism to reconstruct the

G. Dick et al. (Eds.): SEAL 2014, LNCS 8886, pp. 58–69, 2014.
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spatial patterns for their evolutionary operators to work effectively. One such
approach is to adopt a genetic code with a (position, value)-style, as used in
the messy genetic algorithm [6] and the linkage learning genetic algorithm [8].
This genetic coding style allows EAs to rearrange phenotypic variables origi-
nally arranged in a fixed order. Another method that allows EAs to rearrange
phenotypic variables within a genotype is the use of grammatical genetic codes.
Grammatical genetic codes, as used in a genetic algorithm using grammatical
evolution [16], enable EAs to provide priority to phenotypic variables by means
of sequential interactions among phenotypic variables induced by grammar, even
in uniformly-scaled problems, as well as to rearrange phenotypic variables within
a genotype in an arbitrary order [12].

A more direct approach is to introduce a learning mechanism instead of genetic
and evolutionary operators into EAs. This approach is referred to as probabilistic
model building of genetic algorithms [14] or estimation of distribution algorithms
[11]. This approach involves learning the distribution of selected genotypes in a
genotypic space, which is a spatial pattern representing a part of the whole
structure of an optimization problem, so that its performance is not influenced
by linkage between variables in a genotype.

Under the background mentioned above, we previously proposed a mutation-
based EA that does not use a recombination operator and does not have the
problem of conventional EAs [13]. The mutation-based EA evolves timings at
which probabilities for generating phenotypic values (developmental timings)
change, and brings different evolution speed to each phenotypic variable, so
that it can solve a given problem hierarchically. In the study, it was shown
that the mutation-based EA sequentially solves sub-problems comprising a hard
uniformly-scaled problem in which there is no prioritized variable. Concretely,
the 4-bit trap deceptive function [5] was used as a hard uniformly-scaled problem
and the scale-up of the mutation-based EA in terms of the number of function
evaluations was shown to be sub-exponential.

In this paper we first propose a new EA by adding a crossover operator to the
mutation-based EA. We refer to this EA as the evolutionary algorithm evolving
developmental timings (EDT) hereinafter. Then, we devise a new test prob-
lem that conventional EA are likely to fail in solving and for which features of
the proposed EA are well utilized. The test problem consists of multiple decep-
tive problems among which there is hierarchical dependency, and has a feature
that the hierarchical dependency is represented by a graph structure. We apply
the EDT and the conventional EAs, the population-based incremental learning
(PBIL) [1] and the compact genetic algorithm (cGA) [9], for comparison to the
new test problem and show the usefulness of the evolution of developmental tim-
ing. Though it is not shown in this paper due to page limitation, the EDT was
shown to have better scalability for the 4-bit trap deceptive function mentioned
above than the mutation-based EA proposed previously through simulations.

The present paper is organized as follows. Section 2 briefly describes related
research. In Section 3, we present the evolutionary algorithm evolving develop-
mental timings (EDT). Section 4 describes the new test problem. In Section 5,
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we examine the performance of the EDT on the new test problem through sim-
ulation. We summarize our results and present the conclusions in Section 6.

2 Related Work

Biological development is a complicated process in which a living organism de-
velops into an adult from only a fertilized egg that includes a genome. In biolog-
ical development, an appropriate temporal pattern of interactive developmental
events, such as gene expression and cell division, produces an appropriate form.
In certain species, when biological evolution occurs, the developmental system
must also change. Since biological evolution is continuous, the change of a devel-
opmental system should also be continuous. Heterochrony is a biological term
that refers to the change in timing of developmental events, and heterochrony
has been reported to be key in explaining biological evolution [7].

One of the differences between biological development and genotype-genotype-
mapping in EAs is that while living things continue to be exposed to environments
(a fitness function) during the entire process of biological development and differ-
ent genes are expressed at different times, individuals in EAs, in the case of prob-
lems with a fixed structure, are exposed to a fitness function (environments) only
when fixed-structured phenotypes are formed by genotype-phenotype-mapping.
Since only the formation of phenotypes that can be evaluated is meaningful in
terms of EA functions, bringing temporal elements in biological development to
genotype-phenotype-mapping in EAs is occasionally difficult or meaningless.

However, there have been several attempts to allocate temporal elements to
EAs in the case of problems with fixed structures. One such attempt involves
the development of grammatical genetic codes [16]. Genes in grammatical ge-
netic codes are decoded in a certain order into phenotypic values according to
grammar. In grammatical genetic codes, there are interactions among phenotypic
variables induced by grammar; however, as in biological development, there is
no interaction among decoding processes themselves.

In the case of optimizing variable structures such as trees and networks,
the situation is somewhat different. Since all possible structures can be eval-
uated, temporal elements can be used by considering the growth of structures to
be a process similar to biological development. Therefore, genotype-phenotype-
mapping including interactions among multiple decoding processes (developmen-
tal events) [4] as well as grammatical genetic codes [10][15] can be used for
structure optimization problems.

3 Evolutionary Algorithm Evolving Developmental
Timing

In this section, we present the evolutionary algorithm evolving developmen-
tal timings (EDT) that adds a crossover operator described in Section 3.3 to
the mutation-based evolutionary algorithm that we previously proposed in [13],
which is described in other parts of this section.
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3.1 Individual

In conventional evolutionary algorithms, individuals are usually equivalent to
genotypes, which are mapped into phenotypes in a fixed manner. A conven-
tional individual is evaluated only once during a generation and proceeds to
a selection phase that produces a generation gap. Here, we introduce a lifes-
pan to individuals within a generation. The individual then generates several
phenotypes during its lifetime.

The individual consists of two types of vectors. In the first type, the element
of the vector represents a cycle time of changing a probability to determine a
phenotypic value. This vector is a primary object to which evolutionary operators
are applied, and its elements can be considered as a type of information on
developmental timing. We refer to this vector and its element as a genotype
and a gene, respectively. In the second type, the element of the vector is a
probability for determining a phenotypic value. For example, in the case of bit
optimization, the probability of generating zero at a certain phenotypic position
is an element of the vector. While the vector of the cycle times does not vary
during a generation, the vector of probabilities does vary during a generation,
as discussed later.

The lengths of the genotype and the vector of probabilities are the same as
the length of the phenotype. Each position in these two vectors corresponds to
the same position in the phenotype.

3.2 Individual Development

As mentioned in the previous section, the individual within a generation has a
lifespan and consists of a genotype and a vector of probabilities. A time in a life-
time of the individual is denoted by n ∈ [1, N ], where N is the algorithm param-
eter representing the end of life of the individual. In addition, let (t1, t2, · · · , t�)
and (p1, p2, · · · , p�) be the genotype and the vector of probabilities, respectively,
where ti is an integer within [1, Tc] and pi is a real value. Tc(Tc ≤ N) is the algo-
rithm parameter representing the possible maximum cycle time. The genotype
does not vary during the lifetime of the individual, but the vector of probabil-
ities does vary during its lifetime. In this section, we explain how the vector of
probabilities varies due to developmental timings composing the genotype and
how N phenotypes are time-sequentially produced from the genotype and the
vector of probabilities.

The initialization of the individuals is performed as follows. The genotypes are
randomly generated. All elements of the vector of probabilities are set 0.5 in the
case of bit optimization problems, which represents the probability with which
zero is generated. A phenotype is generated using the vector of probabilities
at each time during the lifetime of the individual. After every generation of a
phenotype, by comparing the current time, n, and each element of the genotype,
t∗, it is determined whether it is time to change the probability to generate each
phenotypic value. If n is a multiple of t∗, then p∗ is modified.
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The modification of the elements of the vector of probabilities is performed
as follows. We assume that the i-th gene is ti ∈ [1, Tc]. The modification of the
i-th element of the vector of probabilities, pi, is carried out every ti time step
during development of the individual. When the time is a× ti, the modification
is performed using the phenotypes generated within (a − 1) × ti to a × ti and
their fitness values. For example, when ti is 2, if the phenotypic values at the
i-th position in the phenotypes generated between time 1 and time 2 are 1 and
0, and if the phenotypic value at the i-th position in the phenotype with the best
fitness value among these two values, pvb, is 0, then the probability with which
0 is generated on the i-th position in the phenotype, pi, increases in proportion
to the number of 0s in the two phenotypic values generated, num0. If pvb is 1,
then pi decreases in proportion to the number of 1, num1. The new probability,
pnewi , is determined by Equation (1).

pnewi =

{
pi + C × num0 if pvb = 0,
pi − C × num1 if pvb = 1,

(1)

where C is the algorithm parameter. This can be considered as a type of learning
process, not for the distribution of all phenotypes in the phenotypic space, but
rather for the distribution of pieces of the phenotypes. Figure 1(a) also illustrates
an example of modification of the vector of probabilities during the lifetime of
the individual.

The best fitness value among all of the phenotypes generated during the lifes-
pan of the individual is set as the fitness value of the individual, and the indi-
vidual proceeds to the selection, crossover, and mutation phases.

0

1

2

3

4

5

time

3 3 3 3 1 1 1 1 6 6 6 6

genotype consisting of developmental timings for phenotypic values

6

0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

1 1 0 0 1 0 0 1 0 1 0 0

probabilistic vector

phenotype
             fitness: 1.0

0.50 0.50 0.50 0.50 0.45 0.55 0.55 0.45 0.50 0.50 0.50 0.50

0 1 1 0 1 0 1 1 1 1 0 0

probabilistic vector

phenotype
             fitness: 0.5

0.50 0.50 0.50 0.50 0.40 0.60 0.50 0.40 0.50 0.50 0.50 0.50

1 1 1 1 0 1 0 0 0 1 0 0

probabilistic vector

phenotype
             fitness: 2.0

0.40 0.35 0.40 0.45 0.45 0.55 0.55 0.45 0.50 0.50 0.50 0.50

1 1 0 0 0 1 0 0 1 0 1 1

probabilistic vector

phenotype
             fitness: 0.75

0.40 0.35 0.40 0.45 0.50 0.50 0.60 0.50 0.50 0.50 0.50 0.50

1 1 1 1 0 0 0 0 0 0 1 0

probabilistic vector

phenotype
             fitness: 2.25

0.40 0.35 0.40 0.50 0.55 0.55 0.70 0.55 0.50 0.50 0.50 0.50

0 1 1 0 1 0 0 1 1 1 0 0

probabilistic vector

phenotype
             fitness: 0.75

7

0.30 0.20 0.30 0.60 0.50 0.60 0.75 0.50 0.65 0.60 0.40 0.75

1 1 1 1 1 0 0 1 0 1 1 0

probabilistic vector

phenotype
             fitness: 1.5

pvb = 1

num1 = 2

C = 0.05

p1 = 0.50

p1   = p1 - C    num1

      = 0.40

new

pvb = 1

num1 = 2

C = 0.05

p1   = p1 - C    num1

      = 0.30

new

Example)

(a) An example of the modification of
the vector of probabilities

parent 1

parent 2

genotype

probabilistic vector

genotype

probabilistic vector

0.95

0.44

8

2

0.63

3

0.30

5

0.38

2

0.02

9

genotype

probabilistic vector

genotype

probabilistic vector

0.95

0.44

8

8

0.63

3

0.30

5

0.38

9

0.02

9

0.95 > TH
0.02 < TL

crossover

(b) An example of crossover

Fig. 1. Overview of the evolutionary algorithm evolving developmental timing (EDT)
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3.3 Crossover Operator

The EDT proposed in this section cannot rearrange phenotypic variables on a
phenotype. Therefore, if the EDT uses a fixed crossover (recombination) oper-
ator, for example, one-point crossover, it depends on optimization problems to
be solved whether it can efficiently solve the problems. So, we design a crossover
operator that does not break good linkages between phenotypic variables that
the EDT has identified so far but brings them to the next generation.

The crossover operator designed here estimates the dependency between phe-
notypic variables from element values of the vector of probabilities of the indi-
vidual. When the i-th element value of the vector of probabilities of some parent
individual, pi, is close to 0 (or 1), the i-th phenotypic value becomes 1 mostly.
That is to say, it can be said that the i-th phenotypic variable’s value has almost
converged. We consider that multiple phenotypic variables whose values have
almost converged at some moment depend on each other. Then, the crossover
operator copies the i-th gene of that parent individual, ti, onto the genotype
of another parent individual. The reason for copying not element values of the
vector of probabilities but genes of the genotype to decide the developmental
timing is that phenotypic values might have converged incorrectly.

Before applying the crossover operator, the EDT does not conduct selection
for reproduction but just randomly divides all individuals of the present popu-
lation into pairs throughly. When the population size is P , the number of the
parent pairs is P/2, where P is an even number. Each pair of parent individuals
produces two new individuals, so that the total number of individuals produced
is P . The condition in which the i-th gene of a parent individual of focus, ti, is
copied onto the genotype of another parent individual is that the i-th element
value of the vector of probabilities of the parent individual of focus, pi, satisfies
pi < TL or pi > TH (TL < TH), where TL and TH are the algorithm parameters.
An example of the crossover is shown in Figure 1(b).

3.4 Mutation and Selection Operators

A mutation operator is applied to each element of the genotype and the vector
of probabilities The mutation rates for the i-th element of the genotype and the
vector of probabilities, pmi, are the same, and the rate is determined using the
i-th element of the genotype, ti ∈ [1, Tc]. The mutation rate, pmi, is determined
by Equation (2).

pmi = 1− ti
N + 1

(2)

This equation indicates that the smaller the cycle time, the larger the mutation
rate. In addition, the mutation rate is always greater than zero.

The mutation to the genotype randomly changes its element value. The mu-
tation to the vector of probabilities sets its element value as 0.5. Using this
mutation operator, a parent-individual generates R child-individuals. When the
population size is P , R×P child-individuals are generated in one generation. P
and R are the algorithm parameters.
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A selection operator for survival selects P individuals with better fitness values
from among R×P child-individuals plus P parent-individuals as the population
of the next generation.

4 Hierarchically Dependent Deceptive Problem

We devise a new test problem for which the features of the EA proposed in
Section 3, the EDT, are well utilized. This is a bit optimization problem. The
salient feature of the EDT is that it brings a different evolution speed to each
phenotypic variable. It depends on individuals how evolution speeds are different
between phenotypic variables, but in any cases, individuals that bring suitable
evolution speeds to phenotypic variables for solving a given problem are selected
and adapted. Therefore, we consider a new test problem that requires bringing
different evolution speeds to phenotypic variables in order to to solve it efficiently.

The test problem considered here includes hierarchical dependency among
phenotypic variables in terms of fitness values, and is hard to determine values
of phenotypic variables at higher hierarchies correctly, and leads to incorrect
determination of values of phenotypic variables at lower hierarchies if the deter-
mination at higher hierarchies is incorrect.

The general procedures to produce the test problem as mentioned above are
as follows.

1. We generate a connected graph having some topology whose number of nodes
is equal to the number of phenotypic variables (the length of a bit string to
be optimized), �.

2. We assign position numbers (1, 2, . . . , �) on a bit string as a phenotype to
each of the � nodes on the generated graph.

3. We define L m-bit deceptive problems [5] on the generated connected graph,
where nodes of higher degree (the number of edges) form higher hierarchies.
If multiple nodes having the same degree are included in one m-bit deceptive
problem, the nodes having smaller position numbers become ones of higher
degree. A solution candidate of one m-bit deceptive problem consists of m
nodes (bits) sequentially connected by edges. More concretely, the solution
candidate is formed by arranging the m nodes (bits) from higher to lower in
terms of hierarchy. We need to prepare a way to determine a fitness value of
the obtained sequence of bits. In addition, we introduce dependency among
multiple m-bit deceptive problems. That is to say, multiple m-bit deceptive
problems share several same nodes (bits).

4. We set the sum of fitness values of L m-bit deceptive problems to be a fitness
value of a solution candidate of the entire problem. This is a maximization
problem.

In simulations described in the following section, we determine the parameters
of the procedures above as follows. We generate the connected graph used in
the simulations by using the algorithm described in [3]. The topology of the
generated graph follows a power law [2] with respect to the distribution of degree.
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We use 2-bit deceptive problems. One 2-bit deceptive problem consists of two
nodes connected by an edge. We introduce the dependency between two 2-bit
deceptive problems by setting a node at the lower hierarchy in one 2-bit deceptive
problem to be a node at the higher hierarchy in another 2-bit deceptive problem.
The total number of the 2-bit deceptive problems defined on the generated graph
is equal to the number of the edges of the graph.

Figure 2(a) shows an example graph representing the problem used here and
Figure 2(b) shows a way to determine a fitness value of the 2-bit deceptive prob-
lem. As shown in Figure 2(b), the optimum solution for the 2-bit optimization
problem is “11”, and the global optimum of the entire problem is obtained when
all bits (nodes) are 1. The second best solution for the 2-bit optimization prob-
lem is “00”. Due to the deceptive structure of the problem, it is likely that the
local optimum in which all bits are 0 is obtained.

phenotypic
position (pp) 1 2 3 4 5 6

pp=3
degree=4

pp=1

pp=2
pp=4

pp=6

pp=5
degree=1 degree=2

degree=1

degree=1

degree=1

0 1 1 0 1 0

1

10

1 0

0

higher degree

lower degree

 higher degree

lower degree

(a) An example graph representing the
problem

phenotypic value of 
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phenotypic value of 
lower degree node fitness value

0 0

0 1

1 0

1 1 10

0

7

9

(b) A fitness value of the 2-bit
deceptive problem

Fig. 2. The proposed test problem

5 Simulations

In this section, we apply the EDT presented in Section 3 to the test problem
devised in Section 4. In addition, we compare the results with those obtained by
other algorithms for comparison.

5.1 Algorithms for Comparison

We use the population-based incremental learning (PBIL) [1] and the compact
genetic algorithm (cGA) [9] for comparison, which are the simple algorithms that
belong to the probabilistic model building of genetic algorithms or the estimation
of distribution algorithms. These algorithms are both for bit-optimization and
represent a population as one vector of probabilities for generating phenotypes.
Each element of the vector of probabilities is probability for generating “1” at
the corresponding position on the phenotype and is initialized as 0.5 at the
beginning.
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The PBIL generates M phenotypes using the vector of probabilities within
one generation and selects Q better phenotypes in terms of fitness values from
the M (Q � M) phenotypes, where Q and M are the algorithm parameters.
Suppose that the present generation is g. The PBIL determines each element
value of the vector of probabilities for the next generation, g + 1, using the
selectedQ phenotypes. More specifically, the PBIL determines the probability for
generating “1” at each position i (i = 1, 2, . . . , �) of the phenotype, Pg+1(Xi =
1). This probability is given by Equation (3).

Pg+1(Xi = 1) = (1− α) · Pg(Xi = 1) + α · 1

M
·

M∑
k=1

xk
i , (3)

where α ∈ (0, 1] is the algorithm parameter and xk
i is the phenotypic value at

the i-th position on the k-th phenotype in the Q selected ones, which takes “0”
or “1”.

Next, the cGA generates two phenotypes, a and b, using the vector of proba-
bilities. Suppose that the fitness value of the phenotype a is better than b’s and
the present generation is g. Then, if phenotypic values of a and b at the phe-
notypic position i (i = 1, 2, . . . , �) are different, the probability for generating
“1” at the phenotypic position i for the next generation g + 1, Pg+1(Xi = 1),
is given as follows. If the phenotypic value of a is “1”, Pg+1(Xi = 1) is given
by Equation (4). If the phenotypic value of a is “0”, Pg+1(Xi = 1) is given by
Equation (5).

Pg+1(Xi = 1) = Pg(Xi = 1) +
1

K
, (4)

Pg+1(Xi = 1) = Pg(Xi = 1)− 1

K
, (5)

where K is the algorithm parameter.
The PBIL and cGA explained above build the vector of probabilities by learn-

ing the distribution of generated phenotypes. Meanwhile, the EDT builds the
vector of probabilities by learning the distribution of generated phenotypes piece
by piece at different times during the lifetime of the individual.

5.2 Settings

The test problem used here is the concrete one explained in the last part of
Section 4. We use 10 × j (j=1,2. . . ,10) as the number of nodes (phenotypic
variables). Figure 3 shows the degree distributions of the graphs representing
the problems when the number of nodes is 10, 30, and 100.

All the parameter values of the EDT, PBIL, and cGA are not varied depending
on the number of nodes. The termination conditions for all the algorithms are
the same, which is that the number of evaluations reaches 106. The parameter
values of the EDT are as follows. The population size, P , is 100, the lifetime
length, N , is 10, the maximum possible value for the gene is 9, the parameter
for updating the probability, C, is 0.05, the parameters of the crossover operator,
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TH and TL, are 0.92 and 0.08, and the number of child individuals created from
one individual by the mutation operator, R, is 5. The parameter values of the
PBIL are as follows. The number of generated phenotypes,M , is 100, the number
of selected phenotypes, Q, is 50, and the parameter for updating the probability,
α, is 0.01. The parameter of the cGA is only the parameter for updating the
probability, K, and its value is set to be 100.

 1

 10

 1  10

fr
eq

u
en

cy

degree

(a) The number of
nodes is 10

 1

 10

 100

 1  10

fr
eq

u
en

cy

degree

(b) The number of
nodes is 30

 1

 10

 100

 1  10  100

fr
eq

u
en

cy

degree

(c) The number of
nodes is 100

Fig. 3. The degree distribution of the used test problems

5.3 Results and Discussions

Figure 4(a) shows the relationship between the number of nodes (phenotypic
variables) and the best fitness value obtained by 106 evaluations for the EDT,
PBIL, and cGA. The fitness values shown in Figure 4(a) are obtained by dividing
the actual fitness values by the number of edges in the graph, which is equal to
the number of the 2-bit deceptive problems defined on the graph. Therefore,
when the global optimum whose bits are all “1” is obtained, the fitness value in
Figure 4(a) becomes 10 and when the local optimum whose bits are all “0”, the
fitness value in Figure 4(a) becomes 9, no matter what number of nodes is used.

Figure 4(b) shows the result only for the EDT and the time transitions of
the ratio of “1” at three phenotypic positions, 3, 16, and 20, in all generated
phenotypes at the generation in case that the number of nodes is 30. The degrees
of the nodes corresponding to phenotypic positions 3, 16, and 20 are six, two,
and one, respectively. The degree of six is the highest in the graph.

We can observe from Figure 4(a) that the EDT obtained the global optimum
10 times out of the 10 simulation runs when the number of nodes is less than
or equal to 30. However, the EDT obtained the global optimum only a few
times out of the 10 simulation runs when the number of nodes is 40, 50, and 60.
When the number of nodes is more than or equal to 70, the EDT obtained the
local optimum whose bits are all “0” at all the simulation runs. Thus, at this
moment, the EDT is not so scalable against the increasing number of nodes (size
of problem) and needs the improvement of the scalability.

Meanwhile, we can observe from Figure 4(a) that the PBIL and cGA for
comparison obtained the local optimum or the nearly local optimum at all the
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simulation runs. Compared the EDT with the PBIL and cGA, the EDT is supe-
rior to the PBIL and cGA. Since the test problem used here is basically designed
for the EDT to work efficiently, this result is expected. In addition, we can guess
from Figure 4(b) that the EDT solved the problem in a way such that values at
the phenotypic positions corresponding to nodes of higher degree are converged
correctly earlier than those corresponding to nodes of lower degree. This is also
expected and this way would contribute to the efficient problem solving.

6 Concluding Remarks

We proposed the evolutionary algorithm evolving developmental timings (EDT)
based on the mutation-based evolutionary algorithm that we previously pro-
posed. In addition, we devised the new test problem that was expected to be
solved efficiently by the EDT, and applied the EDT and the conventional evolu-
tionary algorithms for comparison to the new test problem. It was shown through
the comparison that the EDT is better.

In the future work, we will improve the scalability of the EDT and look for
the connection of the new test problem presented in the paper to problems in the
real world. Since the presented test problem is represented by a graph structure,
it might be, for example, related to realizing cooperative behaviors of nodes on
a network.
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Abstract. This paper proposes a novel crowding method, which we
call “Crowding with Asymmetric Crossover (CAX)” that can be applied
to traditional 2-parent crossover operators. The asymmetric crossover
operator begins with two parents. Then two offspring individuals are
created, each offspring taking more characteristics from one of the two
parents. This is an easy method to perform replacement between par-
ents and offspring individuals. Experimental results showed that CAX
can increases the performance of traditional 2-parent crossover operators
in finding global optimal solutions. CAX is also useful to find multiple
solutions (niching).

1 Introduction

Crowding methods constitute an important research area in genetic and evolu-
tionary computation. There are two main objectives of crowding methods: (1)
one is to prevent premature convergence of a population by preserving the pop-
ulation diversity, and obtain one global optimal solution; (2) the other is to
converge the population to multiple, highly fit, and significantly different solu-
tions (niching).

In this paper, we propose a novel crowding method, which we call “Crowding
with Asymmetric Crossover (CAX)” and show that the CAX can increases the
performance of traditional 2-parent crossover operators in finding global optimal
solutions. In the literature of crowding methods, the main efforts are focused
on how replacement is performed between parental individuals and offspring
individuals using similarity between them as a replacement criteria. Typical
studies of these are the crowding factor model [1], the deterministic crowding
(DC) [2], the probabilistic crowding (PC) [3], the Boltzmann crowding [4] and
the generalized crowding [5].

CAX does not use the similarity metric among individuals as a criteria for
replacement. Instead, we use “asymmetric crossover” for crossover operators.
The asymmetric crossover operator generates offspring individuals which are
each similar to one of two parent individuals. The degree of the similarity between
the parents individuals and the offspring individuals is controlled by a parameter.
By choosing the value of the parameter, CAX can maintain population diversity
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to obtain one global optimal solution, or converge the population to multiple
different solutions (niching).

In the remainder of this paper, a brief review of the crowding methods are
described in Section 2. Then, we describe how the CAX is configured in Section 3.
The empirical analysis is given in Section 4 putting main emphasis on obtaining
one global optimal solution. Finally, Section 5 concludes the paper.

2 A Brief Review of Crowding Methods

Here, we review typical crowding methods. The original idea of crowding meth-
ods was proposed by De Jong [1]. De Jong reasoned that in nature, as like indi-
viduals begin to dominate a niche, increased competition for limited resources
decreases life expectancy and birthrates. Less crowded niches experience less
pressure and achieve life expectancy and birthrates much closer to their poten-
tial. To enforce such a crowding pressure in artificial genetic algorithms, De Jong
forced newly generated offspring to replace similar, older adults in the hope of
maintaining more diversity in the population [6].

Crowding consists of two main phases: pairing and replacement. In the pairing
phase, offspring individuals are paired with individuals in the current population
according to a similarity metric. In the replacement phase, a decision is made
for each pair of individuals as to which of them will remain in the population [5].

2.1 Crowding Factor Model

The main purpose of the crowding factor model by De Jong [1] is to maintain
population diversity to find global optimal solutions. In the crowding factor
model, replacement for each offspring produced is considered individually. For
each such individual, a sample of CF (Crowding Factor) number of individuals
are drawn from the population and searched for the most similar individual to
the offspring in question. The most similar individual from the small sample
is then directly replaced in the population by the offspring, without regard for
fitness.

2.2 Deterministic Crowding (DC)

Since offspring are obtained by recombination of their parents, parent individ-
uals and offspring individuals have a certain degree of similarity. Deterministic
Crowding (DC) [2] uses this feature as shown in Fig. 1.

2.3 The Extension of Deterministic Crowding

Unlike DC, Probabilistic Crowding (PC) [3] uses a non-deterministic rule to
establish the winner of a competition between a parent p and a child c. In PC,
c and p compete in probabilistic tournaments. The probability of c winning is
given by:
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≤

Fig. 1. Deterministic crowding methods

Pc =
f(c)

f(c) + f(p)
, (1)

where f is the fitness function. Boltzmann Crowding (BC) is based on the well-
known Simulated Annealing method, implemented with the Boltzmann accep-
tance rule [4] in Eq. (1).

Generalized Crowding (GC) [5] allows selective pressure to be controlled in a
simple way in the replacement phase of crowding, thus overcoming limitations of
the other approaches. Both DC and PC turn out to be special cases of GC. The
temperature parameter used in Simulated Annealing is replaced by a parameter
called scaling factor that controls the selective pressure applied.

3 Crowding with Asymmetric Crossover (CAX)

As we saw in Section 2, in usual crowding methods, offspring individuals are
generated using usual crossover operators in the pairing phase and then the
similarity between two parents and offspring individuals are measured in the
replacement phase. In Crowding with Asymmetric Crossover (CAX), we do not
use the similarity measure in the replacement phase. Instead, an “asymmetric
crossover (AX)” in the pairing phase is used. AX generates two offspring indi-
viduals each which is similar statistically to one of the two parent individuals.

Although AX is not restricted to 2-point crossover, hereafter we explain the
AX using 2-point crossover. Let lx be the length between cut-point cut1 and
cut2. In usual 2-point crossover, lx distributes in [1, n− 1] uniformly. Thus, the
average value of lx, E(lx), is n/2, where n is the string length, or problem size.

In AX, we sample two cut-points so that E(lx) is bigger than n/2. If we choose
two cut-points so that E(lx) is closer to n, then both offspring individuals c1
and c2 are more similar to parents p1 and p2, respectively as shown in Fig. 2.

To control the similarity, AX introduces a parameter λ(0.5 ≤ λ < 1) which
controls the similarity by sampling lx as E(lx) = n× λ. For probability density
function (p.d.f.) of lx, we determine in the following manner which is similar
to our previous study on cAS (cunning Ant System) [7]. When we apply c cut-
points (c=2, 3, 4, . . .) to a string, the string can be divided into c segments.
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λ×=

Fig. 2. Asymmetric crossover (AX). If we choose two cut-points so that E(lx) is closer
to n, then both offspring individuals c1 and c2 are more similar to parents p1 and p2,
respectively.

If we take any set of connected c− 1 segments, then the average length of those
c − 1 segments should be n × (c − 1)/c. We then use this length for lx. The
probability density function of lx, fn,λ(lx), can be obtained as

fn,c(lx) =
c− 1

n

(
lx
n

)c−2

, 0 < lx < n, c ≥ 2. (2)

Here, E(lx) is n×1/2, n×2/3, n×3/4, · · · for c = 2, 3, 4, . . ., and, λ corresponds
to (c− 1)/c, i.e., λ can take only the values of 0.5, 0.667, 0.75, corresponding to
c = 2, 3, 4, . . .. Hereafter, we extend this function of Eq. (2) to a more flexible
technique which allows for λ to take values in the rage [0.5, 1.0) by setting
(c− 1)/c = λ, i.e., c = 1/(1− λ). Then, Eq. (2)can be rewritten as

fn,λ(lx) =
λ

n(1− λ)

(
lx
n

) 2λ−1
1−λ

. (3)

Fig. 3 shows fn,λ(lx) for λ = 0.5, 0.6, 0.7, 0.8, and 0.9. We can see from this
figure that for a bigger λ, longer lengths of lx become dominant and thus, c1
and c2 become more similar to p1 and p2, respectively (see Fig. 2). Please note
here that the case of λ = 0.5 becomes uniform distribution, i.e., usual 2-point
crossover or “symmetrical crossover”.Overall description of the CAX algorithm
is shown in Fig. 4.

4 Empirical Analysis

In this section, we explore the effects of crowding with asymmetric crossover
(CAX). Many of studies on crowding explore the performance of their algo-
rithms to converge the population to highly fit solutions (niching). Instead, in
experiments in this paper, we mainly explore the performance of CAX to find
the global optima. In these experiments, we will see the performance of CAX
changing values of the control parameter λ in the range [0.5, 1). Note here that
the results with λ value of 0.5 are performances with “symmetric crossover”, i.e.,
canonical two-point crossover.
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Fig. 3. fn,λ(lx) for various λ values

We use the following three types of chromosome domains: (1) the binary
domains, (2) the permutation domains, and (3) the real-value domains. In the
following experiments, we run CAX 10 times on each test problem.

4.1 Results on the Binary Domains

Here we use two problems; the 0-1 Knapsack Problem (KP), and the fully decep-
tive problem. For the KP, we generated a problem which consists of 100 items.
Value and weight of each item are obtained randomly in [1, 100]. Thus the length
of the bit string is 100. The optimal solution was obtained by the Minknap Algo-
rithm [8] which is based on dynamic programming. For the deceptive problem,
we used the function which was proposed in [9]. In this experiment, we connected
20 3-bit fully deceptive functions tightly. Thus length of the bit string is 60. The
population size N is set to 100. We run the algorithm until 100,000 function
evaluations are reached or the global optima are found.

We analyze the CAX by #OPT (the number of runs in which algorithms
succeeded in finding the global optimum), MNE (the mean number of function
evaluations to find the global optimum in those runs where it did find the opti-
mum), and population diversity measure. For the diversity measure of population
with binary domains, we use the “Bias” (0.5 ≤ Bias ≤ 1) proposed by Grefen-
stette in developing his GA package “GENESIS” [10]. We used this measure to
see the current convergence status of the population in previous study [11] and it
worked well. Here, the Bias is defined as follows: Let a population be represented
by P = (pij) where each row vector represents the string of an individual and
pij is 0 or 1 where, i = 0, 1, 2, . . ., N − 1 and j = 0, 1, 2, . . ., n− 1. Then, Bias
is

Bias =
1

N × n

n−1∑
j=0

(∣∣∣∣∣
N−1∑
i=0

pij − N

2

∣∣∣∣∣

)
+ 0.5. (4)
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Fig. 4. Description of the CAX algorithm. N is the population size.

Bias is the first-order convergence indicator that indicates the average ratio of
the most prominent value in each position of the individuals of the population.
Larger values mean low genotype diversity.

Fig. 5 (a) shows the variations of #OPT and MNE for various λ on KP. Here,
λ values were varied starting from 0.5 to 0.95 with step 0.05. We can see that
CAX with λ values within range [0.7, 0.85] finds the optimum (#OPT∼= 10)
showing relatively smaller values of MNE. Although with a smaller value of
λ near 0.5, the results of MNE show better results, but #OPT results are
rather poor. Typically with λ = 0.5, #OPT being only 1. Fig. 5 (b) shows the
convergence process of the population measured by Bias for λ = 0.5, 0.6, 0.7,
0.8, and 0.9. Fig. 5 (b) supports the results of Fig. 5 (a), i.e., using appropriate λ
values (λ > 0.5), we can maintain population diversity, and thus we can obtain
optimal solution effectively, as seen in (a).

Fig. 6 shows results of the deceptive function, showing similar results to KP
in Fig. 5. We can see that CAX with λ values within range [0.7, 0.85] finds
the optimum (#OPT∼= 25) showing relatively smaller values of MNE. Although
with λ = 0.5, #OPT shows smaller value than results with λ values in [0.75,
0.9], but #OPT again results in a value of one with λ = 0.5, as with KP in Fig.
5 (a). Fig. 6 (b) shows the convergence process of the population measured with
Bias for λ = 0.5, 0.6, 0.7, 0.8, and 0.9.

4.2 Results on the Permutation Domains

For the permutation domains, we use the quadratic assignment problem (QAP).
The QAP is a problem which assigns a set of facilities to a set of locations and
can be stated as a problem to find a permutation φ which minimizes

cost(φ) =
n−1∑
i=0

n−1∑
j=0

aijbφ(i)φ(j), (5)
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λ
λ

λ

λ
λ

λ

Fig. 5. Results of CAX on the Knapsack Problem (KP). (a) shows #OPT and MNE,
and (b) shows the convergence process measured by Bias of the population.

where A = (aij) and B = (bij) are two n× n matrices and φ is a permutation
of {0, 1, 2, . . ., n− 1}. Matrix A is a flow matrix between facilities i and j, and
B is the distance between locations i and j.

We used benchmark instances in QAPLIB [12]. According to [13], benchmark
instances can be classified into i) randomly generated instances, ii) grid-based
instances, iii) real-life instances, and iv) real-life-like instances. In this experi-
ment, we used the following four instances; tai30b, tai40b, tai50b, and tai60b,
which are classified as real-life-like instances.

Since the performance of QAP in Eq. (5) depends mainly on absolute position
of nodes in a string, we used the partially matched crossover (PMX) [6] for the
base operator of AX. The QAP is considered one of the hardest optimization
problems. To get high quality solutions, it is common to combine heuristic algo-
rithms to the base algorithm [14,15]. However, we do not combine any heuristic
algorithms in this experiment to see the pure effect of the AX. As for the con-
vergence measure of the population, we used the following entropy E,

E = − 1

n

n−1∑
j=0

n−1∑
i=0

qij
N

log2(
qij
N

), (6)

where qij represents the number of strings which have node value i at position j in
the population. In this experiment, we used the following parameter setting: the
population size N = 8× n, the maximum number of evaluations is 100, 000× n.

Fig. 7 shows results on QAP for various λ values. In the figure, performances
are shown byError = (best functional value−optimal value)/optimal value×
100. From this figure, we can see CAX with λ values in [0.7, 0.8] works well
showing smaller Error values. Fig. 8 shows the convergence process of CAX on
tai40b as a representive. In the figure, (a) shows the change of Error (%) and (b)
shows the change of entropy E defined by Eq. (6). For example, with λ value of
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Fig. 6. Results of CAX on the deceptive function. (a) shows #OPT and MNE, and
(b) shows the convergence process measured with Bias of the population.

0.5, the value of E rapidly decrease, as seen in (b) and a premature convergence
occurred, as seen in (a). In contrast to this, with λ value of 0.9, the population
converges very slowly. With λ values of 0.7 and 0.8, the population converges
with a degree of diversity, showing smallerError values.

4.3 Results on the Real-Value Domains

A typical traditional 2-parent crossover operator for real-value domains is BLX-
α proposed by Eshelman & Schaffer [16]. In this experiment, we use BLX-α to
solve the following two test functions, the Sphere function (FSphere) and the
Ridge function (FRidge) defined as

FSphere(x) =

n−1∑
i=0

x2
i , −5.12 ≤ xi ≤ 5.11, (7)

FRidge(x) =

n−1∑
i=0

⎛
⎝

i∑
j=0

xj

⎞
⎠

2

, −64 ≤ xi ≤ 64. (8)

Function FSphere is a unimodal one and has no linkage among variables. FRidge

has a weak linkage among variables. We set n = 10.
BLX-α creates two children c1 and c2 of parents p1 and p2 which lie on the

line joining the parents, but not between them, as shown in Fig. 9. Since the
value of 0.5 is often used for α, we used that value.

BLX-α for AX samples using Eq. (3) as follows: Let Xi
1 and Xi

2 be values
obtained by sampling f|Ji|,λ(x) of Eq. (3), respectively. Then, we obtain children
c1 and c2 as follows: {

ci1 = ei1 + |Ji| −Xi
1

ci2 = ei1 +Xi
2

(9)
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λ
Fig. 7. Results of CAX on QAP instances. Error deviation from optimal values in %.

where, i = 0, 1, 2, . . ., n− 1. It is clear from Eq. (9) that c1 and c2 are similar
to p1 and p2, respectively, depending on the parameter value λ of CAX.

Fig. 10 shows results of CAX on functions FSphere and FRidge. On FSphere,
which has no linkage among variable, the solution converges well when λ value
is 0.5, i.e., the standard BLX-α is used. According to increasing λ value, the
convergence speed becomes slower. In contrast to this, on FRidge, which has a
linkage among valuables, the solution converges most well around λ value of 0.7.

4.4 CAX for Niching

In experiments in this section, we briefly show how CAX converges the popu-
lation to multiple, highly fit, and significantly different solutions (niching). We
use the following two functions [17].

F1(x) = sin6(5πx), (10)

F2(x) = e−2(ln 2)(x−0.1
0.8 )

2

sin6(5πx). (11)

We encoded x in the range [0, 1] with 30-bit binary string, and population size
was 100 as were set in [2]. As shown in Fig. 11, CAX found multiple solutions
with larger value of λ than 0.5. The advantage of niching with CAX is that we
do not need any similarity measure, as was needed in crowding methods such
as DC.
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Fig. 8. Convergence process of CAX on tai40b. (a) shows the change of Error, and
(b) shows the change of the entropy E defined by Eq. (6).

Fig. 9. BLX-α. BLX-α uniformly samples new individuals with values that lie on Ji

(i = 1, 2, . . . , n)

Fig. 10. Results of CAX on FSphere and FRidge. Each line shows functional values for
evaluations.
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Fig. 11. Niching with CAX

5 Conclusions

In this paper, we proposed a novel crowding method, Crowding with Asymmetric
Crossover (CAX). CAX can be applied to the traditional 2-parent crossover
operators in binary, permutation, and real-value domains.

Through the wide range of experiments, we showed CAX can enhance the
performance of traditional 2-point crossover operators, i.e., CAX can prevent
premature convergence of a population by preserving the population diversity,
and thus, CAX can obtain one global optimal solution efficiently. We used BLX-
α for the base of AX on the real-value domains in the experiments. But BLX-α is
not suitable to apply for problems which have a strong linkage among variables.
To test CAX on advanced 2-parent crossover operators for real-code such as
UNDX [18] or to extend CAX with multi-parent recombination operators remain
for future work.

Although our main focus was finding one global optimal solution, we showed
that CAX can also be applied to find multiple, highly fit, and significantly dif-
ferent solutions (niching). However, niching with CAX must be studied more
intensively comparing to other crowding methods in the literature. This also
remains for future work.
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Abstract. Cooperative coevolution (CC) employs a divide-and-conquer
paradigm for tackling complex optimization problems. Its performance is influ-
enced by many design decisions. Therefore, to beneficially use it, it is important
to acquire some knowledge of the effects of different design settings on the per-
formance of CC. In this paper, we investigate experimentally the performance
effects of interaction frequency in parallel CC. The experimental results show
that it is overall best for subpopulations to interact with each other as frequently
as possible when communication cost is ignored; when communication cost is
considered, the best interaction frequency varies from problem to problem and a
dynamic change of it is desirable during the optimization process.

Keywords: Cooperative Coevolution, Interaction Frequency.

1 Introduction

Cooperative coevolution (CC) is an evolutionary method that tries to solve large-scale
problems by problem decomposition. The idea of CC was firstly introduced in genetic
algorithm (GA) by Potter and De Jong [11], and later a framework for using the co-
operative coevolutionary algorithm (CCEA) was developed [10]. In this framework,
the decision variables of an optimization problem are firstly decomposed into several
subcomponents, each of which is then evolved in a population. The fitness for each
subpopulation individual is assessed by assembling it with representative individuals of
the other subpopulations. Experimental results in [11] have shown that this framework
can achieve superior performance to traditional GA. Since then, different evolutionary
algorithms (EAs) have been successfully extended under this framework due to its gen-
erality, such as particle swarm optimization (PSO) ([1], [5]), differential evolution (DE)
([13],[22]), MOEAs [16], and memetic algorithm (MA) [6].

Except combined with different EAs, the CCEA framework has different implemen-
tations in different computing environments [3]. In a sequential computing environ-
ment, subpopulations in CCEA take turns in evolving. This is called sequential CCEA.
The other is parallel CCEA in which all subpopulations are evolved simultaneously.
This is more natural in a parallel computing environment.

G. Dick et al. (Eds.): SEAL 2014, LNCS 8886, pp. 82–93, 2014.
c© Springer International Publishing Switzerland 2014
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As pointed out in [17] and [9], CCEA has many components that can be adjusted,
such as how and when to make subpopulations interact with each other. As a result, a
practitioner will face a lot of design decisions when applying CCEA to real-world prob-
lems. Therefore, it would be useful to generate the knowledge about the performance
effects of different choices of these components in CCEA. In literature, various studies
have been carried out along the directions of how to select representative individuals,
how many representatives to select, and how to calculate the fitness of each subpopu-
lation individual based on these representatives for both parallel CCEA ([2], [7],[19])
and sequential CCEA ([18], [8]). For when to make subpopulations interact with each
other, the performance effects of interaction frequency was systematically studied for
sequential CCEA [9] but little has been done for parallel CCEA in literature.

Fig. 1. The Model of Parallel CCEA, taken from [16]

In this paper, we focus on studying the performance effects of communication fre-
quency in parallel CCEA. Different from sequential CCEA, communication cost exists
in parallel CCEA. Consider one model of parallel CCEA given in Fig. 1, in which sub-
populations are decomposed into several groups and these groups will be distributed
over several peer computers. The interaction among subpopulations is indirectly
achieved through the exchange of information between the peers and a central server.
In such a case, communication overhead can not be ignored especially for distributed
networks with limited communication speeds. As communication cost is involved, the
performance influence of communication frequency in parallel CCEA would be more
complicated than in sequential CCEA.

In CCEA, one critical step is problem decomposition. In [11], each dimension was
considered as a subcomponent and evolved in a population. The experimental results
have shown that this decomposition method loses its efficiency on non-separable prob-
lems. Since then, various studies ([20], [21], [12], [4], [15]) have been carried out to-
wards grouping interdependent variables into the same subcomponent during the search
process. In this paper, we consider fixed problem decomposition. In an extreme case,
when the subcomponents are independent, they do not need to communicate with each
other; when the subcomponents are interdependent, intuitively, it is better for them to
interact with each other. This means that the best communication frequency depends on
the correlation degree of subcomponents.
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Considering this, our first and second hypotheses are that the performance effects of
interaction frequency depends on communication cost and correlation degree of sub-
components, respectively. Besides, our another hypothesis is that the performance ef-
fects relate to the evolution speed of the EA. To confirm our hypotheses, we observe
the change of the best communication frequency using different EAs, different com-
munication costs, and test functions with different subcomponent correlation degrees.
Through this, we also try to answer the questions as follows.

1. Is there an optimal setting for the interaction frequency of parallel CCEA for a
particular class of problems?

2. How does the best interaction frequency vary in different EAs?
3. How does the best communication frequency relate to communication cost?

The remaining part of this paper is organized as follows. Section 2 will detail the
experiment methodology and experimental setup. Section 3 will give the experimental
results and analysis. In Section 4, answers to the above-mentioned questions will be
given as well as the directions of future work.

2 Experiment Methodology

2.1 Correlation of Subcomponents

The correlation degree of two subcomponents in this study is calculated by averaging
the correlation degree of variables between them, which is calculated based on the sta-
tistical interdependence learning model proposed in [15]. That is:

– Suppose we have decision vectors −→α = (..., xi, ..., xj , ...),
−→
β = (..., x

′
i, ..., xj , ...),

and they satisfy that f(−→α ) ≤ f(
−→
β ) (f is the function to optimize). If the value of

xj is changed to x
′
j , resulting in −→α ′

= (..., xi, ..., x
′
j , ...),

−→
β

′
= (..., x

′
i, ..., x

′
j , ...),

and f(−→α ′
) > f(

−→
β

′
), then it is called variable xi is affected by variable xj under

context vector −→c = (..., xi−1,−, xi+1..., xj−1,−, xj+1...).
– The extent to which the variable xi can be affected by xj depends on the probability

of the inequality change, i.e., P{f(−→α ′
) > f(

−→
β

′
)}, which can be estimated by

selecting a number of −→c and checking the affect of xj on xi under each sample −→c .
– The correlation degree of two variables is calculated by averaging their separate

probabilities of the inequality change.

Note that it has been validated in [9] that the performance effects of interaction fre-
quency are dependent on a problem property called best-response curves. In this study,
we instead use the correlation degree of subcomponents to depict the problem prop-
erty. The reason is that the later could be much easier to estimate than the former if the
information is possibly used.
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2.2 The Domains

We start by using three families of test functions, each with a dimension of 2. One is
taken from [9], defined as follows:

BRα
n(x, y) =

⎧
⎪⎨
⎪⎩

2y + α−3
2α (x− n), if αy < x+ (α− 1)n;

2x+ α−3
2α (y − n), if y > x+ (α− 1)n;

n+ x+y
2 , otherwise

(1)

where n ∈ N, α ∈ [0, 1], x, y ∈ [0, n]. The optimum for this function is BRα
n(n, n) =

2n. In this paper, n is set to 10.
The other two are the shifted rotated sphere function and shifted rotated rastrigin’s

function [14], which are typical unimodal and multimodal function, respectively, de-
fined as:

Fsphere(x) =

D∑
i=1

z2i , z = (x− o) ∗M,x = [x1, x2, ..., xD],x ∈ [−100, 100]D (2)

Fsphere(x) =

D∑
i=1

(z2i − 10cos(2πzi) + 10), z = (x− o) ∗M,

x = [x1, x2, ..., xD],x ∈ [−5, 5]D

(3)

where D is the number of dimensions, o = [o1, o2, ..., oD] is the shifted global opti-
mum. In this paper, D is set to 2.

We chose these three functions because the correlation degree of x (or x1) and y (or
x2) can be changed by changing α (or M). For BRα

n(x, y), when increasing α from 0
to 1, the correlation degree of x and y increases monotonically from 0. For Fsphere(x)

and Frastrigin(x), assume M = [
m11 m12

m21 m22
] and the initial M is an identity matrix. By

increasing both m12 and m21 to the same value from 0 to 1, the correlation degree of
x1 and x2 monotonically increases from 0.

2.3 The CCEA Configuration

We use a two-population CCEA as the basic setup, in which one population is used to
evolve x (or x1) and the other is to evolve y (or x2). For each population, we run a non-
overlapping generational EA. The parameter setting for the used EA in our experiments
is given in Table 1.

At first, an initial population is generated for each subcomponent. The population
member of each population is evaluated by assembling it with a randomly chosen mem-
ber of the other population. Then, each population is simultaneously evolved with the
above-mentioned EA. The fitness of a population member is evaluated by combining
it with the current best member of the other population. During the search process,
they communicate with each other their current best solution every constant number of
generations.
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Table 1. Parameter Setting for EA

Population size (NP ) 20
Mutation Probability (Pmut) 0.9

Evolutionary Operators
Gaussian mutation, elitism of size 1,

tournament selection of size 2

2.4 Experimental Setup

In our experiments, we vary the interaction frequency and observe the changes in the
performance of CCEA. To confirm the hypotheses, we observe the change of the best
interaction frequency by using the above-mentioned test functions with different alpha
and M values, the EA with different Gaussian mutation sigma, and different communi-
cation costs, respectively. We set the number of maximum fitness evaluations constant
across experiments, and independently run each experiment for 100 times, and then use
Wilcoxon rank-sum test at a 0.05 significance level to make comparisons.

We start from the extreme scenario in which communication cost equals 0. In this
scenario, we study the relationship between the best communication frequency and each
of correlation degree of subcomponents and the mutation step size. Then, we consider
the scenario in which communication has a cost and study how the best communication
frequency changes as each of correlation degree of subcomponents, the mutation step
size, and communication cost changes.

3 Experimental Studies: Communication Without Cost

3.1 Different Correlation Degrees of Variables

In this study, the maximum number of fitness evaluations was set to 3220, and thus the
maximum number of generations is 80 (20+ 80 ∗ (2 ∗ 20) = 3220). The Gaussian mu-
tation sigma was set to 0.2, 1.0, and 0.2 for BRα

n(x, y), Fsphere(x), and Frastrigin(x),
respectively. We varied the communication period from 1 to 80 generations and used
Wilcoxon rank-sum test to make comparisons. Here, communication period means ev-
ery how many generations two populations interact with each other. Table 2 summarizes
the interval of best communication periods for each test function, which means com-
munication periods in this interval performs the same best according to statistical test.

It can be seen from Table 2 that communication frequency indeed has an effect on the
performance of parallel CCEA as not all values in [1,80] performed the same best, and
thus worths studying . For each family of test functions, the interval of the best com-
munication period varies as the correlation degree of variables varies, and the change
tendency is similar. That is, when the variables are independent, all interaction periods
performs the same; as the interdependence degree of subcomponents increases, the al-
gorithm more and more prefers short interaction periods; when the correlation degree of
variable is high enough, the upper bound of the best interaction period interval increases
as correlation degree increases. This can substantiate our first hypothesis.
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Table 2. The Interval of Best Interaction Periods (denoted as Ibp) for BRα
n(x, y) with Different α

Values, Fsphere(x) and Frastrigin(x) with Different m12/m21 Values, respectively (the column
of ’corr’ is the estimated correlation degree of x (or x1) and y (or x2))

BRα
n(x, y) Fsphere(x) Frastrigin(x)

α corr Ibp m12/m21 corr Ibp m12/m21 corr Ibp
0.0 0.0 [1,80] 0.0 0.0 [1,80] 0.0 0.0 [1,80]

0.05 0.0299 [1,10] 0.05 0.0364 [1,5] 0.01 0.0509 [1,4]
⋃

[10,16]
0.10 0.058 [1,10] 0.10 0.0805 [1,2] 0.02 0.1024 [1,4]
0.20 0.1206 [1,4] 0.15 0.1207 [1,2] 0.03 0.1534 [1,5]
0.30 0.1669 [1,2] 0.20 0.1770 [1] 0.04 0.1997 [1,4]
0.40 0.2202 [1,2] 0.30 0.2523 [1] 0.05 0.2434 [1,2]
0.50 0.2601 [1] 0.40 0.3205 [1,2] 0.068 0.3040 [1,2]
0.60 0.3061 [1] 0.50 0.3549 [1] 0.08 0.3270 [1,4]
0.70 0.3483 [1] 0.60 0.3726 [1] 0.10 0.3456 [1,4]
0.80 0.3737 [1] 0.70 0.3907 [1] 0.20 0.3813 [1,10]
0.90 0.4025 [1] 0.80 0.3893 [1] 0.40 0.4251 [1,4]
0.95 0.4078 [1] 0.90 0.3981 [1,2] 0.60 0.4410 [1,5]
0.993 0.4090 [1,10] 0.95 0.3994 [1,80] 0.80 0.4416 [1,4]
1.0 0.4107 [1,80] 1.0 0.4017 [1,2]

⋃
[20,80] 1.0 0.4474 [1,10]

⋃
[70,80]
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Fig. 2. The Curves of Best Interaction Period Range versus Correlation Degree of Variables
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To get a clearer picture of how the best interaction period interval changes as the
correlation of variables changes, the curves of the best communication period interval
versus the correlation degree of variables for BRα

n(x, y), Fsphere(x), and Frastrigin(x)
are plotted in Fig. 2. It can be seen from Fig. 2 that the upper bound of the interval and
the correlation of subcomponents are non-linearly and complicatedly related. Take a
closer look at Fig. 2, this non-linear relationship is much higher when the correlation
degree is at about 0.4 than when the correlation degree is less than 0.2. When the cor-
relation degree of subcomponents falls in the range between 0.2 to 0.35, it is highest
required that communication happens frequently. Moreover, the lower bound of the
communication interval is always 1, which means that overall every-generation com-
munication is best when communication cost can be neglected.

3.2 Different Mutation Step Sizes

In this study, we varied Gaussian mutation sigma and recorded the best interaction
period interval. Table 3 gives the best interaction frequency interval over BRα

n(x, y)
for three different sigma values (0.1, 0.2, and 0.5).

When the mutation sigma changes from 0.1 to 0.2, we cannot observe an obvious
trend of the change of the best communication period interval from Table 3. But, when
the sigma changes from 0.1 (or 0.2) to 0.5, it can be seen that the range of the best
interaction period decreases while short periods are still preferred.

Table 3. The Interval of Best Interaction Periods (denoted as Ibp) for BRα
n(x, y) with Different

Gaussian Mutation Sigma Values

BRα
n(x, y) Ibp

α corr σ = 0.1 σ = 0.2 σ = 0.5

0.0 0.0 [1,80] [1,80] [1,80]
0.05 0.0299 [1,10] [1,10] [1,8]
0.10 0.0580 [1,2]

⋃
[5] [1,10] [1,5]

0.20 0.1206 [1,5] [1,4] [1,4]
0.30 0.1669 [1,2] [1,2] [1,4]
0.40 0.2202 [1,2] [1,2] [1,2]
0.50 0.2601 [1] [1] [1]
0.60 0.3061 [1] [1] [1]
0.70 0.3483 [1] [1] [1]
0.80 0.3737 [1] [1] [1]
0.90 0.4025 [1] [1] [1]
0.95 0.4078 [1] [1] [1]
0.993 0.4090 [1,4]

⋃
[16,80] [1,10] [1,2]

1.0 0.4107 [1,80] [1,80] [1,4]

In general, if communication cost can be ignored, it is best for subpopulations to
communicate every generation. However, it should be noted here in previous experi-
ments we did not reevaluate each current subpopulation after the communication hap-
pens. Considering that in some implementation of parallel CCEA (e.g. Differential
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Evolution (DE) is chosen as the optimization algorithm) the current population needs
to be reevaluated when information of the best individual in the other subpopulation
changes, we further did experiments with reevaluation over BRα

n(x, y), Fsphere(x),
and Frastrigin(x), and the results are summarized in Table 4. It can be seen from Table
4 that the lower bound of the best interaction interval changes to 2 or 3 over some cases
of Fsphere(x). The reason why every-generation communication did not perform best
in these cases may be that reevaluation would not help improving the best solution but
waste more fitness evaluations if the information does not change too much. Thus, if
CCEA is implemented with reevaluation, it should be checked whether the reevaluation
is needed every exchange of information.

Table 4. The Interval of Best Interaction Periods (Ibp) with Reevaluation for BRα
n(x, y) with

Different α Values, Fsphere(x) and Frastrigin(x) with Different m12/m21 Values

BRα
n(x, y) Fsphere(x) Frastrigin(x)

α corr Ibp m12/m21 corr Ibp m12/m21 corr Ibp
0.0 0.0 [1,79] 0.0 0.0 [2,79] 0.0 0.0 [1]

⋃
[7,79]

0.05 0.0299 [1,9] 0.05 0.0364 [1,4] 0.01 0.0509 [1,19]
0.10 0.0580 [1,4] 0.10 0.0805 [1,3] 0.02 0.1024 [1,7]
0.20 0.1206 [1,3] 0.15 0.1207 [1,3] 0.03 0.1534 [1,9]
0.30 0.1669 [1,3] 0.20 0.1770 [1,3] 0.04 0.1997 [1,7]
0.40 0.2202 [1,2] 0.30 0.2523 [2,3] 0.05 0.2434 [1,7]
0.50 0.2601 [1,2] 0.40 0.3205 [3] 0.068 0.3040 [1,4]
0.60 0.3061 [1] 0.50 0.3549 [2] 0.08 0.3270 [1,4]
0.70 0.3483 [1] 0.60 0.3726 [2] 0.10 0.3456 [1,4]
0.80 0.3737 [1] 0.70 0.3907 [2] 0.20 0.3813 [1,19]
0.90 0.4025 [1] 0.80 0.3893 [1] 0.40 0.4251 [1,3]
0.95 0.4078 [1] 0.90 0.3981 [1,79] 0.60 0.4410 [1,7]
0.993 0.4090 [1,9] 0.95 0.3994 [1,79] 0.80 0.4416 [1,7]
1.0 0.4107 [1,79] 1.0 0.4017 [1]

⋃
[39,79] 1.0 0.4474 [1,15]

⋃
[69,79]

4 Experimental Studies: Communication with Cost

4.1 Different Communication Costs

In this study, we assume communication cost as a fixed number of fitness evaluations
as fitness evaluation denotes the time elapse in the CCEA framework. We used 7 cases
of BRα

n(x, y). The maximum number of of fitness evaluations was set to 3000. The
interaction period varies from 1 to 20 generations while the communication cost varies
from 0 ∗NP to 60 ∗NP (NP is the population size) fitness evaluations. The interval
of the best interaction periods for each test function and communication cost is given in
Table 5.

It can be seen from Table 5 that every-generation communication no longer per-
formed best when communication exists. For uncorrelated subcomponents, the largest
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Table 5. The Interval of Best Interaction Periods (Ibp) over BRα
n(x, y) with Different Commu-

nication Costs

cost
Ibp

α = 0.0 0.2 0.4 0.6 0.8 0.99 1.0
corr = 0.0 0.1206 0.2202 0.3061 0.3737 0.4090 0.4107

0 [1,20] [1,4] [1,2] [1] [1] [1,10] [1,20]
4 ∗NP [12,20] [3,8] [2,5] [2] [2] [1,20] [1,20]
10 ∗NP [10,20] [3,8] [4] [3,4] [2,4] [1,20] [1,20]
14 ∗NP [10,20] [4,7] [5] [3,5] [2,5] [1,20] [1,20]
20 ∗NP [14,20] [6,8] [6,8] [4] [2,8] [1,20] [1,20]
30 ∗NP [14,20] [7,8] [6,8] [5,8] [2,20] [1,20] [1,20]
40 ∗NP [16,20] [8,14] [7,16] [3,16] [2,16] [1,20] [1,20]
50 ∗NP [16,20] [7,10] [6,10] [5,12] [3,20] [1,20] [1,20]
60 ∗NP [18,20] [6] [5,7] [4,7] [2,20] [1,20] [1,20]

communication period performed best. For strongly-related subcomponents, all com-
munication periods performed the same. For other functions, the best communication
periods are different for different communication costs. This confirms our second hy-
pothesis. Moreover, when the communication cost is the same, the best communication
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Fig. 3. The Curves of Best Interaction Period Range versus Different Communication Costs
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periods are different for different correlation degrees of subcomponents. This substan-
tiates our first hypothesis.

To get a picture of how best interaction period changes as the communication cost
changes, the curves of the best communication period interval versus communication
cost for α = 0.2, α = 0.4, α = 0.6, and α = 0.8 are plotted in Fig. 3. It can be seen
that there is a non-linear relationship between the interval of best interaction period
and communication cost, and the relationship varies for different correlation degrees of
subcomponents. Overall, when communication cost becomes larger, the best interaction
period is prone to larger values (note that the decreasing part of the curve as the com-
munication cost increases is because we set the maximum number of fitness evaluations
fixed across all communication costs).

4.2 Different Mutation Step Sizes

In this experiment, we change Gaussian mutation sigma and recorded the best interac-
tion period interval over 10 cases of BRα

n(x, y) with fixed communication cost (4∗NP
fitness evaluations). We calculate the number of fitness evaluations to achieve the func-
tion value of 19.99 for each interaction period in [1,20], and obtain the best interaction
period according to the Wilcoxon rank-sum test. Table 6 shows the interval of best
interaction period for three different sigma values (0.05, 0.1, and 0.2).

Table 6. The Interval of Best Interaction Periods (denoted as Ibp) for Different Gaussian Mutation
Sigma Values over BRα

n(x, y) with Communication Cost (4 ∗NP )

BRα
n(x, y) Ibp

alpha corr σ = 0.05 σ = 0.1 σ = 0.2

0.0 0.0 [7,20] [6,20] [7,20]
0.05 0.0299 [5, 15] [4,9] [3,8]
0.10 0.058 [5,13] [3,7] [3,4]
0.20 0.1206 [4,9] [3,7] [2,4]
0.30 0.1669 [3,8] [2,5] [2,3]
0.40 0.2202 [3,7] [2,4] [2,3]
0.50 0.2601 [3,6] [2,4] [2]
0.60 0.3061 [2,5] [2,3] [2]
0.70 0.3483 [2,4] [2,3] [2]
0.80 0.3737 [2,3] [1,2] [2]

By comparing the best interaction period interval for 0.05, 0.1, and 0.2, it can be
seen that when the mutation step size decreases, the best interaction period will prefer
larger values. This confirms our third hypothesis. Furthermore, this indicates that a
different interaction period needs to be set if the evolution speed changes during the
search process.

5 Conclusion and Future Work

In this paper, we studied the communication frequency effects on the performance of
parallel CCEA. We showed that the best interaction frequency depends on the corre-
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lation degree of subcomponents, the evolution speed of the optimization algorithm as
well as the communication cost.

As an answer to question 1, for problems that communication cost can be compar-
atively ignored, it is best to communicate as frequently as possible. For problems that
consider communication cost, the best interaction period is hard to set, it is not only
related to the correlation of variables and communication cost but also to the evolution
speed of the optimization algorithm. But, for separable variables, it is best to set the
communication frequency as low as possible.

As an answer to question 2, if the evolution speed of optimization algorithm is quick,
high communication frequency is needed. Actually, during the evolutionary process of
a CCEA, the evolution speed would change. It would become slower in the later phase
of the evolutionary process. Therefore, a dynamic change of interaction frequency is
desirable during a parallel CCEA run.

As an answer to question 3, the relationship between interaction frequency and com-
munication cost is non-linear and complicated. The trend is that the best interaction
period is prone to larger values when communication cost becomes higher. For prob-
lems with a fixed communication cost, the best interaction frequency represents the
best trade-off between frequent communication and increased communication over-
head, which varies from problem to problem.

The answers to these questions are given based on the 2-D test functions used in our
experiments. In future, we will consider high-dimensional test functions. Moreover, the
studies were done using a fixed interaction frequency. In reality, a dynamic or adaptive
one might be more appropriate, which is another direction of our future work.
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Abstract. Selection plays an important role in estimation of distribu-
tion algorithms. It determines the solutions that will be modeled to
represent the promising areas of the search space. There is a strong
relationship between the strength of selection and the type and num-
ber of dependencies that are captured by the models. In this paper we
propose to use different selection probabilities to learn the structural
and parametric components of the probabilistic graphical models. Cus-
tomized selection is introduced as a way to enhance the effect of model
learning in the exploratory and exploitative aspects of the search. We
use a benchmark of over 15, 000 instances of a simplified protein model
to illustrate the gains in using customized selection.

Keywords: selection, estimation of distribution algorithms, optimiza-
tion, customized selection.

1 Introduction

Since their inception most of the research on estimation of distribution algo-
rithms (EDAs) [9,10,13] has been devoted to the analysis of the learning and
sampling components of these algorithms. The characteristic feature of EDAs
with respect to other evolutionary algorithms (EAs) is the use of probabilistic
modeling to capture the most relevant features of the selected solutions. There-
fore, learning and sampling steps are critical for these algorithms and research
on these methods in EAs almost began with EDAs. A different situation arises
for the selection methods used by EDAs. The selection schemes traditionally
applied in these algorithms are essentially those widely applied in GAs.

Different approaches investigate how selection mediates the information about
the fitness function that is passed to the probabilistic models. Among the re-
search directions explored are: 1) Explicitly using fitness information in the con-
struction of the probabilistic models to learn more accurate models [15,17,20]
and 2) Explicitly modeling fitness information as part of the probabilistic model
[7,11]. These research directions are very related since it has been shown that
the explicit modeling of fitness information can produce more accurate repre-
sentations of the interactions between the variables. Furthermore, some research
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on the role of selection has gone beyond the classical aim of optimization to
investigate the effect of selection in recovering the original problem structure [2].

In this paper we propose customized selection as a new way to implement se-
lection in EDAs. We start from the assumption that the role played by selection
in EDAs is two-fold. As in GAs, selection should be able to capture information
about the promising areas of search space. But in addition, the selection method
should contribute to a meaningful and efficient representation by the probability
model. Basically, this assumption states that, in EDAs, considering the choice of
the selection method in accordance with the type of probability modeling applied
can contribute to a more efficient search for the optimal solutions. Customized se-
lection takes into account this assumption by splitting the information extracted
during the selection step into: 1) Information used for structural learning and 2)
Information used for parametric learning. We empirically evaluate this idea for
Boltzmann and truncation selections.

2 Selection and Learning in EDAs

In this section we assume the reader is familiar with EDAs. LetX = (X1, . . . , Xn)
denote a vector of discrete random variables. We use x = (x1, . . . , xn) to denote
an assignment to the variables. I denotes a set of indices in {1, . . . , n} and XI

(respectively xI) a subset of the variables of X (respectively x) determined by
the indices in I. p denotes a distribution, p(xI) the marginal probability for
XI = xI , and p(xi | xj) the conditional probability distribution of Xi = xi

given Xj = xj .

Algorithm 1. Tree-EDA

1 D0 ← Generate N individuals randomly

2 t = 0
3 do {
4 Evaluate the individuals using the fitness function.

5 Assign a selection probability to each individual.

6 Create a compact population DS
t where copies of the same individual add up

their probabilities pSt .

7 Calculate a probabilistic model using DS
t and pSt .

8 Compute the univariate and bivariate marginal frequencies psi (xi|Ds
t ) and

psi,j(xi, xj |DS
t ) using DS

t and pSt

9 Calculate the mutual information using bivariate and univariate marginals.

10 Calculate the maximum weight spanning tree from the mutual information.

11 Compute the parameters of the model.

12 t ← t+ 1
13 Dt ← Sample N individuals from the tree and add elitist solutions.

14 } until A stop criterion is met
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Algorithm 1 shows the pseudocode of an EDA that uses the complete popula-
tion to define the selection probabilities. This EDA learns a tree model. In this
section we focus on the analysis of the selection procedure and leave the analysis
of the model learning step for Section 4. In terms of the selection procedure, the
main difference between Algorithm 1 and the typical EDA is that in the former,
instead of selecting a subset of individuals based on their fitness, a vector of se-
lection probabilities is computed over the complete population. The probabilistic
model is learned from the vector and the population. The procedure described
in steps 5 to 7 of Algorithm 1 was originally introduced in [17].

Using this way to implement the selection has two advantages: 1) When pos-
sible, the fitness information of the complete population is used. 2) Although the
computation of the compact population is not essential for computation of the
probabilistic model, it helps to make model learning faster, particularly when
there are multiple copies of the same individuals in the population. A require-
ment for the application of this method is that model learning could be done
directly on the probabilities. This can be easily done for most of the model
learning methods [5,15,17,20].

There is an extra cost in finding the compact population but notice that for
detecting that two solutions are different, it is sufficient to find a variable where
they differ. Therefore, although comparison between pairs of solutions can have a
worst case cost of n, this cost will depend on the homogeneity of the population
and the expected cost of finding the compact population will be often much
smaller than Nlog(N)n, where N is the population size.

3 Customized Selection

Probabilistic models learned by EDAs can be classified according to the type of
learning they use into two groups: 1) Models that apply non-structural (para-
metric) learning. 2) Models that apply structural and parametric learning. We
extend this classification to EDAs and talk of non-structural learning and
structural-learning EDAs, understanding that the second class of algorithms
also applies parametric learning of the models. Among non-structural-learning
EDAs are the univariate marginal distribution algorithm (UMDA) [14] and other
EDAs based on marginal product models [12]. Structural-learning EDAs include
algorithms based on Bayesian networks and Markov networks.

The key idea of customized selection is to learn the structure and the parame-
ters of the model from different selection probabilities. We assume that, in terms
of population diversity, non-structural learning and structural learning may have
different requirements for accurately modeling. For example, in truncation se-
lection, we may need to have a selection threshold of 0.5 (half the population)
to guarantee a dataset large and diverse enough from which to learn the model
structure applying statistical tests. However, once the structure is learned, we
would like to make the marginal probabilities to represent the characteristics
of solutions of highest fitness, for instance, those included in the best 30% of
the population. In this way, we combine learning a robust structure with non-
structural learning more focused on the best solutions. In all selection methods
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currently used by EDAs, the same selected population is used for both tasks.
We aim to split this process and investigate whether customized selection has
an impact in the quality of the search of EDAs.

3.1 Customized Boltzmann and Truncation Selections

We use notation introduced in Section 2. In Boltzmann selection, the probability
of each solution to be part of the selected population is computed according to

the Boltzmann probability distribution p̂(x) = e
f(x)
T

∑
x′ e

f(x′)
T

, where
∑

x′ e
f(x′)

T is

the so-called partition function, and T is the temperature of the system that can
be used as a parameter to smooth the probabilities. The partition function is
computed using all the solutions in the current population and a probability of
selection is associated to each solution.

We use T as a way to influence the strength of selection. When T → ∞, the
models can not recover any information about the problem structure because all
solutions are given the same probability. Similarly, when T → 0 all the proba-
bility is concentrated in the point with highest function value in the population.
Customized Boltzmann selection is implemented by using two different values
of the temperature, Ts and Tp which will be associated to the structural and
non-structural learning, respectively. Ts and Tp will bias the type and amount of
information captured by the probabilistic models. In our experiments, we focus
on the analysis of Ts, T p = 2k for k ∈ {−3,−2, · · · , 1, 2}.

In truncation selection, the best M = αN individuals of the population is
selected, being α ∈ (0, 1]. We define truncation selection on the complete pop-
ulation by associating a probability 1

M to the best M individuals and 0 to the
rest. Customized truncation selection is implemented by defining two different
truncation thresholds αTs and αTp for structural and non-structural learning,
respectively. In usual application of truncation selection, αTs = αTp , but in cus-
tomized selection these values can be different.

4 EDAs with Customized Selection

Customized selection can only be applied to EDAs that apply structural learning.
We use Tree-EDA, an EDA that learns a tree probabilistic model and is similar
to the ones introduced in [1] and [16]. The probability distribution of a tree is
defined as pT (x) =

∏n
i=1 p(xi|pa(xi)) where Pa(Xi) is the parent of Xi in the

tree, and p(xi|pa(xi)) = p(xi) when pa(xi) = ∅, i.e. Xi is a root of the tree.
The distribution pT (x) itself will be called a tree model when no confusion is
possible. We allow the existence of more than one root in the PGM (i.e. forests)
although for convenience of notation we refer to the model as tree. Algorithm 1
shows the pseudocode of Tree-EDA.

We choose Tree-EDA to evaluate customized selection because it exhibits
a good balance between the capacity of the probabilistic model to represent
dependencies and the computational cost of learning and sampling the tree.
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For comparison purposes we use UMDA. The univariate model used by this
algorithm can be seen as a particular case of the tree when we have pa(Xi) = ∅
for all i.

As shown in Algorithm 1, the tree is learned using the Chow-Liu method [3]
that calculates the maximum weight spanning tree from the matrix of mutual
information. Notice that the mutual information is computed from the bivari-
ate and univariate probabilities calculated upon marginalization of the selection
probabilities of the compact population. When customized selection is used, the
computation of the bivariate and univariate probabilities is done twice. The first
time, from the selection probabilities calculated using Ts (respectively αs for
truncation selection). It is during this first step when the mutual information
and the tree structures are computed. Then, during a second step, the univariate
and bivariate probabilities are computed again, this time using Tp (respectively
αp for truncation selection), but only for the edges of the tree, i.e. a maximum

of n− 1 bivariate probabilities instead of n(n−1)
2 .

5 HP Functional Model Protein

As a testbed we use an optimization problem defined on a simplified protein
model. The HP model considers hydrophobic (H) residues and hydrophilic or
polar (P) residues. A protein is considered a sequence of these two types of
residues, which are located in regular lattice models forming self-avoided paths.
Given a pair of residues, they are considered neighbors if they are adjacent either
in the chain (connected neighbors) or in the lattice but not connected in the chain
(topological neighbors).

The functional model protein is a “shifted” HP model that can represent na-
tive states that are not maximally compact [6]. An energy function that measures
the interaction between topological neighbor residues is defined as εHH = −2
and εPP = εHP = εPH = 1. The functional model protein problem consists of
finding the solution that minimizes the total energy and it is a NP-hard problem.

Figure 1 shows an example of a functional model protein instance. In our so-
lution representation, for a given sequence and lattice, Xi represents the relative
move of residue i in relation to the previous two residues. Taking as a reference
the location of the previous two residues in the 2D lattice, Xi takes values in

�

� �

�

�

��

��

������

Fig. 1. One possible configuration of sequence HHHPHPPHPP in the functional
model protein. There is one HH interaction (represented by a dashed line), and one
HP interaction (represented by a dotted line).
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{0, 1, 2}. These values respectively mean that the new residue is located in one
of the 3 possible directions (left, ahead, right) with respect to the previous two
locations [8]. Therefore, values for X1 and X2 are meaningless. The locations of
these two residues are fixed. A solution x can be seen as a walk in the lattice,
representing one possible folding of the protein.

The codification corresponding to the configuration of the sequence shown in
Figure 1a) is x = (0, 0, 2, 1, 2, 0, 2, 2, 1, 1). The objective function is computed as
the opposite of the energy for feasible configurations.

In our representation there can be self-intersecting paths that correspond
to unfeasible configurations. We use two ways to deal with these solutions:
1) Penalized fitness functions and 2) Repairing of solutions. We penalize self-
intersecting solutions by dividing the energy by the number of the sequence’s
self-intersections. To repair solutions, a variation of the backtracking method
introduced in [4] is applied.

As a problem benchmark, the functional model protein is a very interesting
problem because, disregarding multiple representations of the same solution,
the problem reaches the optimum on a unique configuration. We have selected
a database of 15, 575 protein sequences (n = 23) [8] for which, the optimal
value, the closest suboptimal value, and the number of configurations where this
suboptimal value is reached have been previously determined. The complexity
of the optimization problem can be very different between sequences.

6 Experiments

The aim of the experiments is determining if using customized selection can help
to improve the results of the EDAs that apply Boltzmann and truncation selec-
tion. A second goal is to find an appropriate choice of the selection parameters.
Finally, we investigate the effect of the number of local optima in the behavior
of the EDAs for the different selection methods.

6.1 Experiment Settings

The population size for all EDAs was fixed to N = 500 and as termination
criterion we used a maximum number of generations Ng = 50. Experiments
were run with and without repairing of the solutions. In the second case, the
fitness values of infeasible solutions were penalized.

For Boltzmann selection we investigate in detail the effect of using different
probability distributions to learn the parameters and structure of the model. This
is done by trying all combinations of Ts, T p = 2k, for k ∈ {−3,−2, · · · , 1, 2}.
For truncation selection, αs, αp ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}. When using the
UMDA, the selection parameters of the structural and non-structural learning
have identical values. Therefore, for each type of selection there are 36 variants
of Tree-EDAs, and 6 variants of UMDA. We run the EDAs 100 times for each of
the 15, 575 instances. The total number of EDA runs for each type of selection
method was 2× 100× 15, 575× (36+ 6) = 130, 830, 000 that were executed in a
cluster of 575 computers.
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6.2 Results for Customized Boltzmann Selection

We compare the algorithms in terms of the number of times that the optimum
was found in 100 runs and in terms of the mean fitness value of the best solutions
found in each of the 100 runs. The mean success rate of the different EDA variants
from the 15, 575 instances is shown in Figure 2.

It can be seen in Figure 2a) that there are important variations in the success
rate of Tree-EDA due to parameters Ts and Tp. The influence of the parameters
can be critical for the behavior of the algorithm. Notably, Tree-EDA with Tp >
−1 can not outperform the behavior of UMDA. Notice however, that UMDA is
also very sensitive to the influence of parameter T . For all values of Tp, except
Tp = −3, the number of times that Tree-EDA finds the optimum improves by
selecting Ts < Tp. This means that, for a given selection strength applied to non-
structural learning, a stronger selection applied to structural learning will likely
improve the results. Figure 2b) shows how the mean success rate of Tree-EDA
also increases by repairing the solutions. The same trend in the influence of the
selection parameters is observed. Except for Tp = −3, the results of Tree-EDA
improves by selecting Ts < Tp.
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Fig. 2. Customized Boltzmann selection: Number of times the best solution was found
for the different values of the temperature. a) Without repairing. b) When repairing is
applied.

We also test, for each instance independently, for statistical differences be-
tween the EDAs that could be attributed to the use of customized selection.
Fixing the value of Tp, we apply a multi-comparison test (p-value 0.05) for the
six variants of Tree-EDA. The test uses as information the best result in each
of the 100 runs for the corresponding instance. Among the six variants of Tree-
EDA corresponding to the six values of Ts, we test which pairs of means are
significantly different, and which are not. A test that can provide such informa-
tion is called a multiple comparison procedure. Adjustment for multiple testing
is applied using the Dunn-Sidak method [18], a procedure similar to, but less
conservative than, the Bonferroni procedure.
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Using the results of the test, we compute the number of times each Tree-EDA
variant was significantly better (Sb) and significantly worst (Sw) than the Tree-
EDA that uses Ts = Tp. For example, for Tp = 1, we compute the number of
times that Tree-EDA (Ts = i) was significantly better than Tree-EDA (Ts = 1)
for all i �= 1. Similarly, we compute the number of times that Tree-EDA (Ts = i)
was significantly worse than Tree-EDA (Ts = 1). The difference between these
two numbers gives an idea of the appropriate choice for Ts in relation with Tp.
Figure 3 shows the values of (Sb − Sw) for all values of Tp. A positive value for
Ts = i means that Tree-EDA improves its performance when it takes this value.
Conversely, a negative value indicates a poorer behavior.

Figure 3 confirms the previous results obtained from the analysis of mean suc-
cess rate. For Boltzmann distribution, improvements can be achieved by using,
for structural learning, selection probabilities with a higher selection strength
than that used for non-structural learning. We should learn the structure from a
set of very good solutions but the selection strength can be relaxed at the time
of learning the model’s parameters.
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Fig. 3. Results of the statistical tests for customized Boltzmann selection

6.3 Results for Customized Truncation Selection

The analysis of customized truncation selection are conducted using the same
methodology.

Figure 4 shows the mean success rate of Tree-EDA with and without repairing.
The results of Tree-EDA improves by selecting αs < αp for αp > 0.1. Also for
Tree-EDA with repairing the results improve for αs < αp for αp > 0.1, but
the differences are not that clear. For truncation selection, αs ∈ {0.2, 0.3} is
the best choice for almost all values of αp. Another remarkable fact that makes
a difference with Boltzmann selection is that Tree-EDA is always better than
UMDA when truncation selection is used.
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The results of the statistical tests for customized truncation selection are
shown in Figure 5. It can be seen in the figure that Tree-EDA with truncation
selection exhibits a behavior similar to Tree-EDA with Boltzmann selection when
the repairing procedure is not used. Nevertheless, when repairing is applied, there
are fewer significant differences in the behavior of the algorithms. This fact can
be also observed in Figure 5.
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Fig. 4. Customized truncation selection: Number of times the best solution was found
for the different values of the truncation parameter. a) Without repairing. b) When
repairing is applied.
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Fig. 5. Results of the statistical tests for customized truncation selection
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Fig. 6. Mean success rate of Tree-EDA with repairing for solutions grouped according
to the number of local optima (nl)

To evaluate how sensitive are the introduced selection methods to the number
of optima in the problem, we selected two sets of instances. The first group con-
tains instances with one or two local optima (703 instances). The second group
comprises instances with more than 100 local optima (685 instances). Using Tree-
EDA with repairing we compute the mean success rate for the selection methods
on all possible combinations of parameters Tp and Ts (6× 6 = 36). The results
are shown in Figure 6 where nl is the number of local optima in addition to the
global optimum. The main conclusion from the analysis of Figure 6 is that both
selection methods are sensitive to the number of local optima. However, while
the Boltzmann customized selection is able to outperform customized trunca-
tion selection for appropriate combination of parameters, the second selection
method is more robust to the variation of the parameters.

7 Conclusions and Future Work

In this paper we have introduced customized selection in EDAs. We have shown
that, by using different selection probabilities for structural and non-structural
learning of the models, it is possible to increase the success rate of Tree-EDA
for the functional model protein. Our results show that improvements are more
important for Boltzmann selection than for truncation selection.

Beyond the improvements in optimization, customized selection opens new
possibilities for research on the relationship between selection and model learning
in EDAs. We can independently evaluate the effect of selection in the structural
and parametric components of the graphical models. For instance, we can inves-
tigate the quality of the models as fitness surrogates by independently manip-
ulating the different selection probabilities from which the model’s components
are learned.
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There are optimization problems where some sets of variables make a higher
contribution to the fitness. Evolutionary algorithms can fail in these situations
when these salient building blocks converge before those with lower marginal
fitness [19]. One possible extension of customized selection is the computation
of marginal probabilities of different subsets of variables using different selection
probabilities. In this way, marginal probabilities could be adjusted, according to
different strengths of selection, to “synchronize” building blocks with different
temporal-salience behaviors.

Acknowledgments. This work has been partially supported by the Saiotek
and Research Groups 2013-2018 (IT-609-13) programs (Basque Government),
TIN2013-41272P (Ministry of Science and Technology of Spain), COMBIOMED
network in computational bio-medicine (Carlos III Health Institute), and by the
NICaiA Project PIRSES-GA-2009-247619 (European Commission).

References

1. Baluja, S., Davies, S.: Using optimal dependency-trees for combinatorial optimiza-
tion: Learning the structure of the search space. In: Fisher, D.H. (ed.) Proceedings
of the 14th International Conference on Machine Learning, pp. 30–38. Morgan
Kaufmann, San Francisco (1997)

2. Brownlee, A.E.I., McCall, J., Shakya, S.K.: The Markov network fitness model.
In: Shakya, S., Santana, R. (eds.) Markov Networks in Evolutionary Computation,
pp. 125–140. Springer (2012)

3. Chow, C.K., Liu, C.N.: Approximating discrete probability distributions with de-
pendence trees. IEEE Transactions on Information Theory 14(3), 462–467 (1968)

4. Cotta, C.: Protein structure prediction using evolutionary algorithms hybridized
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Abstract. Web service composition has become a promising technique
to build powerful business applications by making use of distributed ser-
vices with different functions. Due to the explosion in the volume of data,
providing efficient approaches to composing data intensive services will
become more and more important in the field of service-oriented comput-
ing. Meanwhile, as numerous web services have been emerging to offer
identical or similar functionality, web service composition is usually per-
formed with end-to-end Quality of Service (QoS) properties which are
adopted to describe the non-functional properties (e.g., response time,
execution cost, reliability, etc.) of a web service. In this paper, a hybrid
approach that integrates the use of genetic programming and tabu search
to QoS-aware data intensive service composition is proposed. The perfor-
mance of the proposed approach is evaluated using the publicly available
benchmark datasets. A full set of experimental results show that a sig-
nificant improvement of our approach over that obtained by the simple
genetic programming method and several traditional optimization meth-
ods, has been achieved.

1 Introduction

Service-oriented architecture (SOA) [1] is a widely accepted and engaged
paradigm for the realization of complex business processes. The aim of SOA is
to implement business processes covering different organisations and computing
platforms in a dynamic and loosely-coupled manner. As a promising technology
to implement such a service-oriented architecture, web services encapsulate soft-
ware functions and make them available to anyone in the world over the network
via standard interfaces and protocols (e.g., SOAP and WSDL). The advent of
web services has boosted the creation of business applications by reusing existing
resources on the network, rather than building new applications from scratch to
fulfill business functional requirements.

Today, a large number of web services on the Internet offer identical or over-
lapping functionality but present various non-functional characteristics which
are called quality of service (QoS) properties such as response time, execution
cost and reliability. Therefore, how to select a suitable web service that satisfies
user’s requirements still remains an open question. On the other hand, when no
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single web service is able to respond to user’s request, it is necessary to compose
a range of existing services together in order to provide new value-added and
complex functionality, which is referred to as web service composition, and the
aggregated web service becomes a composite web service.

Aside from business processes, the service-oriented approach using web ser-
vices is also of great interest for the implementation of data intensive processes
such as data mining and image processing. Such web services are defined as data
intensive services that generally have large amounts of data as their inputs and
outputs. For example, a facial recognition solution for video and image content
could be published through a web service that, given a set of original images, will
provide a set of processed images with identified facial features. Over the recent
years, the amount of data generated by humanities, scientific activities, as well
as commercial applications from a diverse range of fields has been increasing ex-
ponentially. Data volumes used in the fields of sciences and engineering, finance,
media, online information resources and so on, are expected to double every two
years over the next decade and further [2]. There is no doubt in the industry
and research community that the importance of data intensive computing has
been raising and will continue to be the foremost research field. As a result, data
intensive services based applications have become the most challenging type of
applications in SOA. Also, data intensive service composition has become an
appealing research area in academia and industry.

Although various approaches have been presented to solve web service com-
position problems [3–7], there is limited work in the literature for data intensive
service composition [2, 8–10]. The authors of [8, 10] consider the data inten-
sity of service composition, but they overlook the communication cost of mass
data transfer and its effects on the performance of business processes with dif-
ferent structures. An ant colony based algorithm is proposed in [2, 9] to find the
cost minimized data intensive service composition by considering the access cost
and communication cost of mass data transfer. However, the approach focuses
on minimizing the cost only without reflecting other important QoS attributes
(e.g., availability and reliability). To the best of our knowledge, the use of ge-
netic programming in data intensive service composition was not examined in
the past research.

In this paper, we present a hybrid GP-Tabu approach to the problem
of QoS-aware data intensive service composition. Tabu search (TS) [11] as a
meta-heuristic local search is integrated into the evolutionary process of genetic
programming (GP) [12] in order to overcome the downsides of GP such as its
prematurity and proneness to trap in local optima. The main contributions of
this paper are two-fold. First, a QoS-aware mathematical model is developed to
take into account the effect of mass data transfer. Second, a hybrid approach
that combines the use of GP and TS is proposed to address the QoS-aware
data intensive service composition problem. The experimental results demon-
strate the effectiveness and efficiency of the approach, especially it offers better
performance than traditional optimization techniques.
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The rest of the paper is organized as follows. Section 2 introduces the back-
ground of the QoS-aware service composition problem. Section 3 discusses the
time and cost aware model used in the context of data intensive service com-
position. In Section 4, the details of the proposed approach are explained, and
Section 5 reports on the experimental results. Finally, the conclusions and future
work are outlined in Section 6.

2 Background

Standard protocols adoption and platform independent have enabled web
services to be integrated together to produce a value-added complex service.
Nowadays due to the explosive increase of web services that provide identical or
overlapping functionality on the Web, quality of service namely QoS becomes a
key factor in distinguishing these functionally equivalent services.

2.1 Atomic Web Service vs. Composite Web Service

A composite web service is made up of a collection of single web services each of
which is referred to as atomic web service. The goal of a service composition is
to generate the desired outputs given a set of available inputs that are described
by semantic concepts. Assume the task scenario is to search for an appropriate
flight as well as the weather forecast for the destination based upon the given
departure date, return date, departure city and arrival city. In other terms, a
web service is requested to take {departure date, return date, departure city,
arrival city} as inputs in order to produce {flight information, weather forecast}
as outputs. However, an atomic web service itself has limited functionality which
is not sufficient to respond to the user’s request. A composite web service that
consists of multiple atomic web services is needed to accomplish the task. A valid
service composition must guarantee that the inputs of any atomic web service
are available either from the outputs of its ancestors or from the original inputs
(i.e., from the user).

2.2 Quality of Service

QoS can be characterized according to various non-functional properties of web
services called QoS attributes such as response time, execution cost, availability
and reliability. Based on a selection of relevant characteristics in the field of
web services, the QoS attributes considered in this research work are latency,
execution cost, availability and accuracy all of which are defined as follows.

– latency L measures the expected delay in seconds between the moment when
a request is sent and the moment when the results are received.

– execution cost C is the amount of money that a service requester has to pay
for executing the web service.

– availability A is the probability that a web service is accessible.
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– accuracy R is the measurement of the degree to which the real results pro-
duced by the web service match the desired results.

Amongest the above four QoS attributes, latency and execution cost are de-
creasing measures with respect to QoS. In other terms, the grades of these mea-
sures increase as their values decrease. In contrast, availability and accuracy are
increasing measures of which the grades decrease as their values decrease.

QoS reflects the non-functional properties of web services which in turn have
an influence on user satisfaction, thereby the QoS factors have become significant
criteria that cannot be overlooked in web service composition. The problem of
QoS-aware service composition denotes selecting a number of atomic web services
while obtaining the highest possible QoS of the service composition and satisfying
the global constraints posed by the user. Here, global constraints define an upper
or lower bound for the aggregated QoS values of a composite service. To optimize
the quality of a service composition, a method must be applied to estimate the
QoS of the service composition from its constituent services. This estimation
is called QoS aggregation, and the QoS aggregation formulas defined for basic
composition patterns [13] and major QoS attributes are summarized in Table 1.

Table 1. Aggregation formulae for each pair QoS attribute - workflow structure

QoS attribute Sequence Parallel (Flow) Choice (Switch) Loop

Latency L =
∑j

i=1 li L = MAX {li|i ∈ {1, . . . , j}} L =
∑j

i=1 pi ∗ li L = k ∗ l

Execution cost C =
∑j

i=1 ci C =
∑j

i=1 ci C =
∑j

i=1 pi ∗ ci C = k ∗ c

Availability A =
∏j

i=1 ai A =
∏j

i=1 ai A =
∑j

i=1 pi ∗ ai A = ak

Accuracy R =
∏j

i=1 ri R =
∏j

i=1 ri R =
∑j

i=1 pi ∗ ri R = rk

3 Time and Cost Aware Model for Data Intensive Service

Since a data intensive service si is provided by a service provider and deployed
on a server, a data intensive service composition SC that consists of a set of
m service servers and certain composition patterns can be denoted by SC =
{S1, S2, ..., Sm}. Each atomic data intensive service si is associated with a QoS
vectorQi = [li, ci, ri, ai] where li, ci, ri, ai represents the latency, execution cost,
accuracy and availability of the service. Assume that a data intensive service si
requires a set of data denoted by Di to form part of its inputs. The latency li
for the service si is made up of three parts: the queue time qi, the processing
time pi and the transfer time ti, as shown in Equation 1.

li = qi + pi(Di) + ti(Di, Sj , Si) (1)

where qi is the time spent in waiting in the queue for the data Di to be processed
by the server, pi(Di) is the actual time used to process the set of data Di, and
ti(Di, Sj , Si) is the data transfer time for transferring the data set Di from the
server hosting the service sj to the server hosting the service si.
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To be detailed, the queue time qi depends on server load, i.e., the current
request queue length on the server, while the processing time pi and the transfer
time ti can be calculated using Equation 2 and 3.

pi(Di) = size(Di)/pr(Si) (2)

ti(Di, Sj , Si) = size(Di)/bw(Sj , Si) + size(Di)/ws(Si) (3)

where size(Di) is the size of the data set Di, pr(Si) denotes the processing rate
of the server Si, bw(Sj , Si) is the network bandwidth between the server Sj and
the server Si, and ws(Si) is the disk write speed of the server Si. To sum up, as
described in the above equations, the processing time depends on the processing
capacity of the server, and the data transfer time is determined by the network
bandwidth and the amount of data to be transferred between two service servers.
As each server has many requests at the same time and it serves only one request
at a time, the current service request needs to wait until all requests prior to it
in the queue have completed.

In addition to time, the costs generated by data intensive services as well
as the movement of mass data have a significant impact on the total cost of a
service composition. Consider a data intensive service si, similarly its execution
cost ci consists of three parts: the data access cost aci, the data transfer cost
tci, and the service related cost sci. As can be seen from Equation 4, the data
access cost aci is the price to be paid for writing the data Di to the server that
hosts the service si and reading the data in order to invoke the service. The data
transfer cost tci is proportional to the size of the data set Di, which depends
on the available network bandwidth between two service servers. The service
related cost sci expresses the cost to provision the service si as well as the cost
to process the service request including data processing.

ci = aci(Di) + tci(Di, Sj , Si) + sci(Di) (4)

aci(Di) = size(Di) ∗ wcost(Si) + size(Di) ∗ rcost(Si) (5)

tci(Di, Sj , Si) = size(Di) ∗ tcost(Sj , Si) (6)

sci(Di) = pcost(Si) + size(Di) ∗ dcost(Si) (7)

where size(Di) denotes the size of the data set Di, wcost(Si) is the cost of
writing per unit of data to the server Si, rcost(Si) is the cost of reading per unit
of data from the disk on the server Si, tcost(Sj , Si) is the transfer cost from the
service server Si to the service server Sj for per unit of data, pcost(Si) is the
price charged to use the service si which is usually specified by service provider,
and dcost(Si) is used to represent the expenditure for processing each unit of
data on the server Si.

For each data intensive service, the other two QoS attributes (i.e., accuracy
and availability) are supposed to have fixed values which can be collected from
service providers. Therefore, the QoS-aware data intensive service composition
can be regarded as an optimization problem. Clearly the goal of the optimization
problem is to minimize the latency and execution cost that have been defined
in Equations 1 and 4, meanwhile achieving the maximum possible accuracy and
availability for a composite web service.
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4 The Hybrid GP-Tabu Approach

Artificial intelligence techniques have been widely used to solve many optimiza-
tion problems. In recent years, GP has become increasingly popular as an al-
ternative to more classical techniques in science and engineering disciplines. As
another powerful optimization procedure, TS is capable of escaping local opti-
mum trap by employing a flexible memory system, and it has been successfully
applied to a diverse range of combinatorial optimization problems. These meth-
ods seem to be promising and are still evolving. Next, the GP and TS methods
are briefly reviewed before the proposed hybrid approach is presented.

4.1 An Overview of Genetic Programming

GP [12] simulates Darwin’s principles of natural selection and evolution to create
a working computer program that is typically represented as a tree-like structure.
Our approach employes the same tree representation as [14], that is, atomic web
services invoked by the composition are denoted by leaf nodes and the workflow
patterns (e.g., sequence) are expressed by intermediate nodes. In addition, GP
requires a fitness function to measure the quality of each individual (i.e., service
composition in our case) in the population. In general, GP involves three types
of operators which are described as follows.

– Selection. A number of individuals in the population are selected to breed a
new generation. Individuals selection is a fitness-based process, where fitter
individuals are typically more likely to be selected for reproduction.

– Crossover. The crossover operator takes two parents and replaces a randomly
chosen part of one parent with another randomly chosen part of the other
in order to produce two new offsprings. For the specific service composition
problem, two individuals are stochastically selected. If there is a common
node that represents the compatible inputs and outputs in both individuals,
the two nodes along with their subtrees are then swapped between the two
individuals. This guarantees that the offspring generated is feasible.

– Mutation. The mutation operator takes one parent and replaces a randomly
selected part of that parent with a randomly generated sequence of code. In
our particular case, a random node of a service composition is selected and
its subtree is replaced with a new stochastically generated one.

4.2 An Overview of Tabu Search

TS [11] is a meta-heuristic that guides a local heuristic search procedure to ex-
plore a problem’s solution space with the goal of avoiding local optimum and ul-
timately finding the desired solution. The basic principle of TS is to avoid cycling
back to previously visited solutions and allow non-improving moves whenever a
local optimum is encountered. This is achieved by using a short-term memory
that records the recent history of the search to prevent investigating the solu-
tion space that has been visited before. However, in some situations, TS permits
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backtracking to previous solutions which may ultimately lead to better solutions
via a different direction. The two main components of TS are the tabu list and
the aspiration criteria of the solution associated with the recorded moves.

– Tabu list. Certain forbidden moves (trial solutions) are maintained in the
list to prevent cycling when moving away from local optimum through non-
improving moves. As a result, the search is not allowed to return to a recently
visited point in the search space, that is, a recent move is not allowed to be
reversed. Usually the tabu list stores a fixed or fairly limited quantity of
information. Empirically, the size of the list that provides good results often
grows with the size of the problem, and stronger restrictions are generally
coupled with smaller list size.

– Aspiration criteria. A key issue for tabu list is that it is sometimes so powerful
to prohibit attractive moves, even cycling cannot occur, or they may lead to
an overall stagnation of the search process. Hence, aspiration criteria are used
to allow for exceptions from the tabu list, if such moves lead to promising
solutions. The simplest and most commonly used aspiration criterion, found
in almost all TS implementations, allows a tabu move when it results in a
solution with an objective value better than that of the current best-known
solution (since the new solution has obviously not been previously visited).

4.3 The Proposed Hybrid Approach

In order to determine a solution to the QoS-aware data intensive service com-
position problem, we propose a new hybrid approach where the evolutionary
process of GP works along with the local TS search procedure. To be specific,
the proposed hybrid approach adopts the neighbour solutions found by TS to
generate part of a new population in the global search process of GP. The major
steps of our approach are described in Algorithm 1. The approach starts from a
randomly initialized population after setting up the necessary variables for GP
and Tabu. The individuals in the current population are then evaluated using the
specific fitness function. Crossover and mutation are performed on the selected
individuals to produce next generation. For every t generations, the m best in-
dividuals (i.e., service compositions) in the population are selected as the initial
solutions of the TS procedure. As a result, n neighbour solutions are generated
by mutating a random node in the tree representation of a candidate service
composition solution, and the n worst individuals in the current population are
replaced. The above process is repeated until the maximum number of iterations
is reached.

In our approach, the fitness function introduced to measure the performance
of each individual i in the gth generation of the evolution process is defined as
follows.

fi =
(w1Ri + w2Ai) ∗ (w5Ii + w6Oi)

w3Li + w4Ci
(8)

where Ri, Ai, Li and Ci denote the aggregated accuracy, availability, latency
and execution cost of a composite data intensive service, each of which can be
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Algorithm 1. GP-Tabu for QoS-aware data intensive service composition

Require: available inputs, required outputs, QoS constraints and a service repository
Ensure: a service composition that meets both functional and non-functional require-

ments
1: Initialize the parameters of GA and TS, and set g=1
2: Generate an initial population P randomly
3: Evaluate each individual i in P using the fitness function
4: while g < gmax do
5: Select two parents from the population P . Perform crossover with rate Pc, and

perform mutation with rate Pm to generate a new population P ′

6: if g mod k = 0 then
7: Choose the m best individuals from the current population, and apply the TS

algorithm to generate n neighbours to substitute the worst n individuals in
the new population P ′

8: end if
9: Evaluate each individual i′ in P ′ using the fitness function
10: Set g=g+1
11: end while
12: return the individual with the best fitness

calculated using the formulae described in Table 1 and the equations proposed in
Section 3. For example, the aggregated latency for a sequence workflow structure
is L =

∑j
i=1 li. In the function, w1, w2, w3, w4, w5 and w6 are real and positive

weights. A larger weight means that that particular QoS attribute is considered
more important than others from the point of view of users. Note that the fitness
function can be easily adapted to user’s requirements, i.e., adding or removing
QoS attributes without affecting the performance of our approach. Ii and Oi

that indicate the degree to which a valid solution has been found are presented
in Equation 9.

Ii =
|inputr |

|inputr
⋃

inputa| Oi =
|outputr

⋂
outputa|

|outputr | (9)

where inputr is the list of inputs available for a composite service solution, inputa
is the list of inputs required by the solution, outputr is the list of outputs desired
by a composition task, outputa is the list of outputs that are actually produced
by the solution, and |.| represents the size of the list.

To guarantee incommensurable QoS attributes have fair impact on the cal-
culation of fitness, the value of each QoS attribute is to be normalized in the
interval [0,1]. All the weights utilized in the fitness function also falls within
the range [0, 1]. As illustrated in Equation 8, QoS-aware data intensive service
composition is converted to a maximization problem, i.e., greater fitness denotes
more satisfying solution.

5 Experimental Results and Analysis

For the purpose of evaluation, we carry out a set of experiments using the test
cases provided by the public benchmark datasets, WSC2008 and WSC2009.
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Each dataset consists of a great number of web services associated with ran-
domly generated inputs and outputs. However, QoS attributes are not included
in neither datasets. Therefore, the QoS values of web services are generated
based on the data collected in another public dataset called QWS [15]. Each test
case is made up of available inputs, required outputs, and a service repository.
The complexity of the test cases is diverse in terms of the number of atomic web
services and the number of workflow structures involved.

5.1 Parameter Settings

The experiments are conducted with the population size of 200 for maximum
100 generations (i.e., gmax=100). The crossover probability Pc=0.9, the mutation
probability Pm=0.2, and the size of the tabu list is 7. In our experiments, the top
10% individuals in the current population (i.e., m=20) will be selected for apply-
ing TS for every 10 generations (i.e., t=10), so the 20 worst (i.e., n=20) individ-
uals will be replaced with the new neighbour solutions. Assume that availability
and execution cost are considered more important than accuracy and latency.
The weights defined in the fitness function are w1 = 0.2, w2 = 0.3, w3 = 0.2,
w4 = 0.3, w5 = 0.5 and w6 = 0.5 which can give better performance indicated
by a large number of empirical trials. Since our approach is nondeterministic, 30
independent runs are performed for each test case.

To simulate the time and cost for data access and transfer in our experiments,
the amount of input data for an atomic data intensive service is randomly gen-
erated in the interval (0, 30]MB, and the amount of output data is determined
by multiplying by a random factor of 0∼10. For the sake of simplicity, the queue
time required by a service server is between 0∼10s, all server’s data write speed
(i.e., ws(Si)) and process rate (i.e., pr(Si)) are both 10MB/s, the transfer rate
between two service servers (i.e., bw(Sj , Si)) is 3MB/s, and all other costs such
as data access cost and transfer cost for per unit of data are all 1.

5.2 Experimental Results

The experimental results for the test cases are presented in Table 2. Each row
in the table shows the fitness of the solutions found by GP and GP-Tabu for
each test case. To demonstrate the superiority of our approach over the simple
GP method, a significance test (z-test) is conducted to compare the solutions
found by the two approaches. As illustrated in the table, for simple composition
tasks (i.e., WSC2008-1, WSC2008-2 and WSC2008-4), both GP and GP-Tabu
are able to make the same optimal service composition to achieve the high-level
task. However, it is observed that for more complicated test cases, the GP-Tabu
approach is capable of finding better compositions of services indicated by a
significant improvement on the fitness. In summary, our hybrid approach was
successful in computing a solution to each of the service composition tasks, and
the results showed that it is much more effective for complicated tasks.
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Table 2. The results of the test cases for GP and GP-Tabu. (↑ denotes significantly
better)

Test case GP GP-Tabu

WSC2008-1 0.9167 ± 0.0000 0.9167 ± 0.0000

WSC2008-2 0.9206 ± 0.0000 0.9206 ± 0.0000

WSC2008-3 0.9025 ± 0.0017 0.9114 ± 0.0009↑
WSC2008-4 0.8668 ± 0.0000 0.8668 ± 0.0000

WSC2008-5 0.8126 ± 0.0014 0.8135 ± 0.0008↑
WSC2008-6 0.8461 ± 0.0003 0.8556 ± 0.0002↑
WSC2008-7 0.8988 ± 0.0008 0.9052 ± 0.0013↑
WSC2008-8 0.8825 ± 0.0011 0.8857 ± 0.0007↑
WSC2009-1 0.8276 ± 0.0002 0.8311 ± 0.0006↑
WSC2009-2 0.8844 ± 0.0001 0.8982 ± 0.0011↑
WSC2009-3 0.7846 ± 0.0023 0.7931 ± 0.0009↑
WSC2009-4 0.7024 ± 0.0006 0.7546 ± 0.0019↑
WSC2009-5 0.7290 ± 0.0008 0.8449 ± 0.0023↑

5.3 Further Analysis

To further study the effectiveness and efficiency of our approach, here we conduct
a set of experiments with the same test cases on two traditional optimization
methods, i.e., TS and integer linear programming (ILP) [16]. In order to evaluate
the quality of the solutions found by different optimization methods, a unity
function that adopts the simple additive weighting approach is used as shown in
Equation 10.

U(SC) = w1 · R+ w2 · A+ w3 · L+ w4 · C (10)

where w1, w2, w3, and w4 remain the same as described in Section 5.1. I and
O are not included in the function as they are specified as constraints in all the
optimization methods, that is, the solution found must be able to generate the
desired outputs given the available inputs.

The simulation results of the experiments are shown in Table 3. The last three
columns of the table present the fitness of the solutions found by GP-Tabu, ILP
and Tabu, respectively. As can be observed from the table, the ILP method
cannot find a valid solution for most of the service composition tasks except
for tasks WSC2008-1, WSC2008-2, WSC2008-4 and WSC2008-5, and the sig-
nificance test demonstrates the superiority of the GP-Tabu approach over ILP
in this problem domain. In contrast, the TS method is able to find a service
composition solution for each task, especially when the tasks (i.e., WSC2008-1,
WSC2008-2, WSC2008-3, WSC2008-4, WSC2008-5 and WSC2009-2) are rela-
tively simple. However, in most situations where the service composition request
is very complex, our GP-Tabu approach is recommended due to its better per-
formance implied by the significant improvement from the statistical test.
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Table 3. The results of the test cases for GP-Tabu, ILP and Tabu. (↓ denotes signifi-
cantly worse, and ↑ denotes significantly better)

Test case GP-Tabu ILP Tabu search

WSC2008-1 0.5946 ± 0.0000 0.5849 ± 0.0014↓ 0.5916 ± 0.0019↓
WSC2008-2 0.4997 ± 0.0000 0.4654 ± 0.0006↓ 0.5108 ± 0.0007↑
WSC2008-3 0.4588 ± 0.0005 n/a 0.4836 ± 0.0008↑
WSC2008-4 0.4738 ± 0.0000 0.4531 ± 0.0013↓ 0.4876 ± 0.0006↑
WSC2008-5 0.4888 ± 0.0007 0.3626 ± 0.0027↓ 0.4884 ± 0.0010

WSC2008-6 0.4212 ± 0.0003 n/a 0.4192 ± 0.0014↓
WSC2008-7 0.4177 ± 0.0006 n/a 0.3791 ± 0.0006↓
WSC2008-8 0.5146 ± 0.0009 n/a 0.5033 ± 0.0012↓
WSC2009-1 0.6666 ± 0.0008 n/a 0.5779 ± 0.0007↓
WSC2009-2 0.4447 ± 0.0015 n/a 0.4441 ± 0.0009

WSC2009-3 0.5612 ± 0.0008 n/a 0.5531 ± 0.0004↓
WSC2009-4 0.4623 ± 0.0006 n/a 0.3145 ± 0.0011↓
WSC2009-5 0.4844 ± 0.0019 n/a 0.3487 ± 0.0023↓

6 Conclusions and Future Work

In this paper, a novel combination of genetic programming and tabu search
for solving the problem of QoS-aware data intensive service composition has
been presented. A time and cost aware mathematical model was developed for
describing the effect of the movement of mass data. In the proposed approach,
the local search procedure employed by TS was integrated into the global search
process of GP, in order to avoid premature convergence and getting stuck in
local optima. To verify the effectiveness and efficiency of the proposed hybrid
approach, it was successfully applied to two public benchmark datasets, i.e.,
WSC2008 and WSC2009, each of which consists of a large variety of web services
as well as diverse service composition tasks. Compared to the simple GP and two
traditional optimization methods, the analysis of the experimental results showed
the superiority of our approach in finding more satisfying service compositions.

In this study, multiple QoS constraints are transformed into one single crite-
rion to be optimized by our approach. This makes it difficult to simultaneously
optimize multiple conflicting QoS objectives. Therefore, for future work we will
investigate the use of multi-objective GP with the expectation that multiple and
often conflicting QoS properties (e.g., time and cost) can be optimized simulta-
neously to produce a set of pareto-optimal solutions. Future work also includes
applying our approach in real life situations so server load (e.g., queue time,
processing time, transfer time, etc.) can be measured with real values.
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Abstract. Continuous Estimation of Distribution Algorithms (EDAs)
commonly use a Gaussian distribution to control the search process.
For high-dimensional optimization problems, several practical issues arise
when estimating a large covariance matrix from the selected population.
Recent work in continuous EDAs has aimed to address these issues. The
Screening Estimation of Distribution Algorithm (sEDA) is one such al-
gorithm which, uniquely, utilizes the objective function values obtained
during the search. A sensitivity analysis technique is then used to reduce
the rank of the covariance matrix, according to the estimated sensitivity
of the fitness function to individual variables in the search space.

In this paper we analyze sEDA and find that it does not scale well
to very high-dimensional problems because it uses a large number of
additional fitness function evaluations per generation. A modified ver-
sion of the algorithm, named sEDA-lite is proposed which requires no
additional fitness evaluations for sensitivity analysis. Experiments on a
variety of artificial and real-world representative problems evaluate the
performance of the algorithm compared with sEDA and EDA-MCC, a
related, recently proposed algorithm.

Keywords: Estimation of Distribution algorithms, High-Dimensional
Optimization problems, Screening Technique.

1 Introduction

Estimation of Distribution Algorithms (EDAs) are a class of evolutionary opti-
mization algorithms, where probabilistic models play the key role in controlling
the search process. In EDAs, the selected population is used to learn a prob-
ability distribution and subsequent solutions obtained by sampling from this
distribution. The general procedure for an EDA is summarized in Algorithm
1. A number of different types of density estimation models have been used in
EDAs for both discrete and continuous search spaces. Probabilistic models can
be used to identify and represent interactions among the variables and can rep-
resent a priori information about the problem structure, which may assist the
search process. EDAs have been developed in both the discrete and continu-
ous setting, and have been successfully applied to solving a variety of problems.
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Algorithm 1. General pseudocode framework for an EDA

1: Initialization: set t = 0, Generate initial population uniformly in search space
2: Evaluate f(x′) for each individual x′ in the current population
3: Select promising individuals
4: Build probabilistic model p(x) based on selected individuals
5: Generate new population by sampling from p(x)
6: t = t+ 1
7: Goto step 2 until a stopping criterion is met

Reviews of EDAs can be found in [13,16,19]. This paper focuses on continuous
EDAs (x ∈ IRn).

Truncation selection is typically applied in EDAs. The parameters of p(x) are
typically fitted using maximum likelihood estimation. While several different
models have been considered for continuous optimization, a Gaussian distribu-
tion is most commonly used. The continuous Univariate Marginal Distribution
Algorithm (UMDAc)[13] uses a factorized Gaussian model (i.e. a diagonal co-
variance matrix) which assumes all the variables are independent. UMDAc is
easy to apply and computationally robust and efficient, but the model may
have difficulty in solving problems with strong dependencies between variables.
Multivariate Gaussian EDAs, such as the Estimation of Multivariate Normal
Algorithm (EMNAglobal) address this issue by modelling dependencies between
all pairs of variables using a full covariance matrix [13].

The behaviour of basic Gaussian EDAs has been shown to be sometimes
undesirable. On some fitness landscapes, performance is poor due to premature
shrinking of the model variance at an exponential rate (Eg., in slope-like regions
of the search space, described in [1] or in an elliptical region [10]). To address
such issues, a number of enhancements have been proposed. Adaptive variance
scaling (AVS) provides a way to control the rate of contraction and expansion
of the model and scale the variance to improve the progress of the EDA model.
Anticipated Mean Shift (AMS) additionally modifies sampled solutions in the
direction of mean shift of the previous generation [1,2]. Nevertheless, the task
of covariance matrix estimation remains a fundamental step in state of the art
Gaussian EDAs.

In practice, numerical issues can arise with estimating the full covariance
matrix. The covariance matrix, Σ, is by definition positive semi-definite, but
this is not guaranteed in implementation because of finite precision represen-
tation. Computational errors or numerical issues arise when the sample used
to estimate the model does not adequately span all dimensions of the search
space, which becomes likely when the sample size is relatively small compared
to the problem dimensionality. As a result of these issues, several techniques have
been proposed to avoid the covariance matrix becoming ill-posed in EDAs. The
Eigenspace EDA (EEDA) [20] was one of the first modifications in this direction
(see [7] for a discussion and comparison of variants). Dong et al. [6] developed
the Covariance Matrix Repairing (CMR) method, where a positive value (equal
to the absolute value of the smallest eigenvalue) is added to the diagonal of Σ.
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The Eigen-decomposition EDA (ED-EDA) builds on this previous work with
eigenvalue-based repairing strategies [7] . Experimental results show that these
different covariance repairing methods can avoid numerical difficulties. The al-
gorithms also show good performance results with respect to the best solution
found and because of the improved numerical properties, a smaller population
can be used.

More recently, Dong et al.[5] proposed the EDA Model Complexity Control
(EDA-MCC) to scale up continuous EDAs to high-dimensional problems us-
ing a sparse covariance matrix, with reduced computational cost and a smaller
population. EDA-MCC uses EMNAglobal for each subset of the variables. A set
of artificial test problems were used for comparing EDA-MCC with UMDAc,
EMNAglobal and EEDA [20]. While EDA-MCC does not outperform traditional
EDAs on low dimensional problems, EDA-MCC shows significantly better results
on high dimensional problems. Other existing statistical methods have also been
applied to control the amount of covariance/dependency modelling in EDAs.
In [11], regularization techniques were adopted into EDAs. The resulting algo-
rithm shows the ability to solve high dimensional problems with a comparable
quality of solutions using much smaller populations.

The screening Estimation of Distribution Algorithm (sEDA), was proposed
in [14] as an EDA to control the degree of covariance modelling. However unlike
other approaches, this algorithm explicitly uses the objective function values
obtained during the search. Using this information, a notion of variable impor-
tance is derived by adapting a screening technique from experimental design.
The algorithm also improves on numerical stability in EDAs by allowing the
level of dependency modelling to be controlled. It performs better than tradi-
tional EDAs on low dimensional problems. In this paper, a modified version of
sEDA, called sEDA-lite is proposed which improves on the previous algorithm,
specifically by allowing the algorithm to scale to higher dimensional problems
using less function evaluations than sEDA.

This paper is structured as follows. In Section 2, the existing sEDA algorithm
is described. We analyse the issues arising in high dimensions when using sEDA.
In Section 3, we propose sEDA-lite to address these issues. In Section 4, we
compare the solutions of sEDA-lite with solutions of UMDAc, EEDA and EDA-
MCC on a set of artificial test problems. In addition to this, the solution of
sEDA-lite is also compared with UMDAc, EMNAglobal and sEDA on a couple of
real world problems. Conclusions of this paper are drawn in Section 6.

2 Screening Estimation of Distribution Algorithms
(sEDA)

The continuous global optimization problem is to find x∗ such that

f(x∗) ≤ f(x), ∀x ∈ S,

where S ⊆ R
n is the set of feasible solutions, f(x) is the fitness or objective

function and x = (x1, . . . , xn) is an individual or candidate solution vector.
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In the Screening EDA [14], variables are modeled based on their estimated
influence on the fitness function. From this, the most important variables are
then modeled using the EMNAglobal model (full covariance matrix), while the
variables which are least important are modeled using the UMDAc model (no
covariance), to try and capture the advantages and limit the potential problems
of both approaches. Hence, the sEDA uses a multivariate Gaussian model where
the covariance matrix contains some degree of sparseness. To select which vari-
ables to model using covariance, a technique from sensitivity analysis known as
the Morris method is used.

The Morris method [15], is based on measuring the mean and standard devi-
ation of changes in the fitness function value given perturbations of individual
variables, calculated via so-called elementary effects terms. The elementary ef-
fect for the ith variable, Ei(x), is defined as follows. Let Δ be a pre-determined
amount to perturb each variable. For a given x,

Ei(x) =
f(x1, x2, ..., xi−1, xi +Δ,xi+1, ...., xn)− f(x)

Δ
(1)

where x = (x1, x2, ...., xn) is a given starting or “baseline” vector in the solution
space. The perturbations, Δ are by default determined according to a full fac-
torial sampling grid of some fixed resolution or increment size. In other words,
for each variable xi, over some fixed range and increment size, the value of xi is
changed and f is recalculated, producing a sample or set of values of Ei(x).

Given a set of elementary effect values, the mean, Ei(x), and standard devi-
ation, std(Ei(x)) over the sample can be calculated. If this calculation is done
over an arbitrary set of points in an arbitrary order, the absolute values, |Ei| are
used [4,12] and we take this approach in sEDA. A high value of Ei(x

∗) indicates
that xi has a large average influence on the value of f . A high value of std(Ei(x))
indicates that variable xi has a fluctuating influence on the value of f , which
may indicate that it is involved in interactions with other variables [15].

In sEDA, the Morris method is adapted by calculating elementary effects val-
ues using the selected population on each generation of the algorithm rather
than being based on a predetermined grid of points. Specifically, the mean
of the selected population is calculated for each dimension xi. A new set of
candidate solutions is then generated, by creating new solution vectors where
the mean value is substituted in turn for each problem variable (e.g. xi =
xi, . . . , xi−1,mi, xi+1, . . . , xn) in each individual in the selected population. This
produces n × τ × Msel new individuals, where Msel is the size of the selected
population1, n is the dimension of the problem and τ (0 < τ < 1) is the selection
ratio, which are evaluated using f to produce a set of elementary effect values.

Given these values and their sample mean and standard deviation, sEDA
uses the concepts of dominance and Pareto optimality from multi-objective op-
timization (see, e.g. chapter 9 of [8]) to determine which variables are the most
“important”. We consider the mean and standard deviation of elementary effects
as two different (aka decision-making) criteria. One solution is said to dominate

1 Rounding if Msel · τ is not an integer.
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the other if its score is at least as high for all objectives, and is strictly better
for at least one. The set of all non-dominated solutions is called the Pareto set
or the Pareto front.

A fixed fraction η (0 < η < 1) of the variables need to be selected for covari-
ance modeling in the sEDA. Variables that belong to the Pareto set are selected
first. If more variables are required, then those which have the minimum (Eu-
clidean) distance to the Pareto front are selected. On the other hand, if the
number of variables on the Pareto front is greater than required, then a random
subset of these variables is selected. Hence at each generation, a sparse matrix is
formed that has n×η variables2 which are modeled using covariance parameters
while the remaining variables are modelled using only variance terms. The mean
vector of the selected population along with the sparse covariance matrix is then
used to generate the new population for the next generation.

2.1 Scaling of sEDA

Due to the nature of the algorithm, sEDA as described above will require a
relatively large number of function evaluations when applied to high-dimensional
problems. This is due to the fact that for each generation, the population size
is directly proportional to the dimension of the problem. Hence, the number of
function evaluations per generation is O(nMsel).

3 Scaling sEDA to High-Dimensional Problems:
sEDA-lite

In this section we describe a modified version of sEDA, called sEDA-lite. The
algorithm uses the same principles as sEDA but differs in the calculation of
the elementary effects values. As discussed in Section 2.1, using the mean of
the selected population to calculate elementary effects values in sEDA results
in significant increase in the number of fitness function evaluations required per
generation. In sEDA-lite, the main innovation is to instead use themedian of each
dimension in the selected population to calculate elementary effects values. Like
the mean, the median is representative of the center of the selected population.
However, the median is by definition located at one of the given individual points.
Hence, all calculations in Equation(1) are carried out between individuals in the
selected population (i.e. their fitness values have already been evaluated). Hence
for each generation of sEDA-lite the number of function evaluations is reduced
from Msel + (Msel × n× τ) to Msel.

The median of the selected population is taken as the central/reference point
for the elementary effect calculations. Other points in the selected population
represent perturbations around this point and hence the elementary effect values
measure the sensitivity of the objective function to changes in the solution values
in the region of the search space represented by the current selected population.

2 Rounding if n× η is not an integer.
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The mean is also still calculated, since this is used as a parameter of the EDA
model itself.

sEDA-lite uses the same Pareto optimal concept as in sEDA, to select the im-
portant variables in the problem as the ones that have the largest mean/standard
deviation of elementary effect values. After selection, the covariance matrix for
the EDA model is formed as a sparse matrix, with non-zero covariance terms
for selected variables. This is used in combination with the EDA mean vector
(estimated from the selected expanded population) and the model is then used
to generate the new population as in a standard EDA. The process is repeated
until some stopping criterion is met.

Algorithm 2. Pseudo code for sEDA-lite

1: Given: Population size M , dimensionality n, selection parameter 0 < τ < 1, model
selection parameter 0 < η < 1.

2: Begin (set t = 0)
Initialize population P by generating M individuals uniformly in S.

3: while stopping criteria not met do
4: Evaluate f for population P .
5: Truncation selection: Psel = Msel best individuals from P ;Msel = Rnd(M · τ ) .
6: Calculate mean, µ and median, m̃ of Psel

7: Calculate m̃ = median(Psel), where m̃ = m̃1, · · · , m̃n.
8: for i = 1 to n do
9: for j = 1 to Msel do
10: Calculate Eij(x) using Eqn.1, where m̃ is the baseline point and the per-

turbation value is given by jth individual
11: end for
12: end for
13: Calculate mean(E) and std(E) over Msel perturbations in Eij .
14: Determine the Pareto optimal solutions/variables for objectives abs(mean(E))

and std(E). Let this number of variables be po .
15: Let B = Round(n · η).
16: If po > B, randomly choose B variables from po.
17: If po < B, select/add the next B − po variables nearest to the Pareto front.
18: Build Σt using covariance terms for the B selected variables and variance terms

only for the remaining n−B variables
19: p(x) ← (µ, Σt).
20: Generate P new population by sampling from p(x).
21: end while

4 Experimental Design

To evaluate the performance of sEDA-lite, we have carried out experiments on
3 different sets of problems. The first is a set of commonly used artificial test
functions. The second set of problems are Circle in a square (CiaS) packing
problems and the third set are the 50-customer Location Allocation problems
with different numbers of facilities. While the artificial functions are useful for
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comparison with other algorithms, we also consider it important to evaluate the
technique on real-world representative problems. The problems used here are all
scalable in terms of dimensionality. They are also known to have features that
make them difficult to solve for many algorithms, e.g. they are not everywhere
differentiable and contain a large number of local optima.

4.1 Artificial Test Problems

The artificial test problems considered in this paper are taken from Dong et
al. [5]. The problems are categorized into separable unimodal (F1 and F2), non
separable problems (F3, · · · , F10) and multimodal problems (F11, F12, F13). The
offset values used in the test functions are same as described in [5], with the
exception of F4 and F6. For these 2 functions, the offset values were generated
randomly. While this means the results are not precisely comparable, we gener-
ated offset values for these functions using the same formula as given in [5].

The problem sizes were 50D and 100D for each artificial test function. The
maximum number of function evaluation was set at 10000× n. The population
sizes used in [5], were tested for sEDA-lite (i.e., 200, 500, 1000 and 2000). From
this, a population size of 2000 was used for all functions except F1 and F2,
where 200 was used since these very simple functions do not require a large
population. Initially, rough experiments were conducted to determine reasonable
algorithm parameter values: τ = {0.1, 0.2, 0.3, 0.5} and η = 0.1 were trialled,
though not explored exhaustively. The parameter values that seemed to work
best for each set of problems were then used. The algorithm stopped when the
difference between the global optimum and the optimal values obtained from
the algorithm is 1E-12 or it attained maximum number of function evaluations.
The results reported are based on 25 repeated trials.

4.2 Circle in a Square Problem

Given the 2D unit square and a pre-specified number of circles, nc, constrained
to be of equal size, the circles in a square (CiaS) problem is to find an optimal
packing; i.e. to position the circles and compute the radius length of the circles
such that the circles occupy the maximum possible area within the square. All
circles must remain fully enclosed within the square, and cannot overlap. The
problem can be formulated as finding the positions of nc points inside the unit
square such that their minimum pairwise distance is maximized:

dnc = maxmin
i�=j

‖ wi −wj ‖2 (2)

wi ∈ [0, 1]2, i = 1, . . . , nc (3)

The feasible search space of a CiaS problem is defined by the unit hypercube
[0, 1]2nc ⊂ IR2nc , and solutions outside this are infeasible. To ensure the gener-
ation of such candidate solutions by the EDAs, any value in a solution vector
generated that lies outside the feasible region is reset to the (nearest) boundary.
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For the (CiaS) problems, experiments were conducted on the number of cir-
cles, ranging from 2,. . . ,50. The problem dimensionality n is equal to 2 × nc.
UMDAc, EMNAglobal, sEDA and sEDA-lite were implemented on this problem.
The population size of all the algorithms was set to 2000 except sEDA, where
the population was 50 times n. The value of τ for all the algorithms is set to 0.2.
Since EMNAglobal is performing better than UMDAc in CiaS problem discussed
in [14], the value of η as 0.5 was set for sEDA and sEDA-lite. The algorithm is
stopped after 2E+06 function evaluations or if the difference between the best
fitness value and the global optimum is 1E-04. The results were computed based
on 25 repeated trials.

4.3 Location Allocation

In the continuous location allocation problem [18], the aim is to determine the
location of nf facilities in a 2D Euclidean space in order to serve customers at c
fixed points so that the distances between each customer and the nearest facility
are minimized [3]. There is no restriction on the capacity of the facilities to serve
customers.
The (uncapacitated, continuous) location-allocation problem is formulated as
follows:

min

⎛
⎝

c∑
j=1

min
i

d(Xi, Aj)

⎞
⎠

where X is the vector consisting of the coordinates of the facilities. For nf

facilities problem, there are 2nf variables for optimization. The Xith facility has
coordinate values (xi, xnf+i). A is the vector consisting of the given coordinates
of the customers in the problem. For the Ajth customer the coordinate values are
represented as (a1j , a2j). d (Xi, Aj) is the Euclidean distance from the location
of facility Xi, to the location of a customer at fixed point Aj . For nf > 1, this
problem is known to be non convex and generally contains a large number of
local minima [3].

In this paper we consider the widely used (e.g.[3,17]) 50-customer problem
with a unit weight value for all the customers. The data Ai for the problem
is given in [9]. For the 50-Customer problems, experiments were conducted
using, nf = 5, 10, 15, 20, 25, 35. The dimensionality of the problem n = 2 × nf .
UMDAc, EMNAglobal, sEDA and sEDA-lite were compared on these problems.
The population size of all the algorithms was set to 2000 except sEDA, where the
population was 50× n to allow the algorithm a sufficient number of generations
to converge. The value of τ for all the algorithms was 0.3, while the value of η
was 0.1 for sEDA and sEDA-lite. The maximum number of function evaluations
was 10000× n. The results are over 25 repeated trials.
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5 Results

5.1 Artificial Test Problems

The results of sEDA-lite are compared here with the values of UMDAc, EEDA
and EDA-MCC which are taken from [5]. The results of EMNAglobal are not
repeated since it was previously found to perform worst on the test problems [5].
Comparative results for sEDA are also not reported here since it requires a
prohibitive number of function evaluations for these larger-scale problems. The
comparative results between UMDAc, EEDA, EDA-MCC and sEDA-lite are
listed in Table 5.1.

The results of the experiments for separable problems (F1 and F2), show that
all the algorithms for 50D and 100D can solve these problems without difficulty.
Functions from F3 . . . F10 are non-separable problems with only a few local op-
tima. On these functions, UMDAc and EEDA do not show the best performance.
The performance of EDA-MCC is significantly better than rest of the algorithms
in problems F3 and F5. Since the offset values are generated randomly, the pre-
vious solutions of F4 and F6 for EEDA and EDA-MCC are not reported here.
We recomputed the results of UMDAc on these functions and compared with
sEDA-lite for the same offset values. sEDA-lite clearly outperforms UMDAc. The
results also show EDA-MCC and sEDA-lite outperformUMDAc in 50D F7 and
F8 functions. Solution comparison Table 5.1 shows that EEDA performs well
on the 50D F10 function. Overall, from functions F3 to F10, the performance of
sEDA-lite is similar to EDA-MCC.

Functions from F11 to F13 are multimodal functions. In these functions EDA-
MCC and EEDA do not perform well. The performance of UMDAc and sEDA-
lite are similar for function F11, however, on the functions F12 and F13, the
performance of sEDA-lite exceeds UMDAc. It is to be expected that there would
be some variability in the relative performance of the algorithms. Overall, sEDA-
lite is generally competitive and in some cases provides the best performance for
these problems.

5.2 Results for the Circle in a Square (CiaS) Problems

The performance of the algorithms on a large set of CiaS problems (4D - 100D)
is presented in Figure 1. The x-axis denotes the problem size (nc) while the
y-axis is a performance ratio given by dn/f(xn), where dn is the known global
optimum and f(xn) is the solution found by the algorithm.

The results show that up to nc = 16, UMDAc, sEDA and sEDA-lite perform
similarly. EMNAglobal does not perform as well, likely because it requires a larger
population size and/or number of function evaluations. When 16 < nc < 24,
sEDA actually performs slightly better than the other algorithms, but its per-
formance then quickly degrades when nc > 24. This is when the total budget
of function evaluations for this experiment means that sEDA cannot perform
sufficient generations, due to the requirement for calculating elementary effects
values during execution. However sEDA-lite does not suffer from this, maintain-
ing performance that is a little better than UMDAc up to nc = 50.
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Table 1. Solution quality comparison. Each cell contains the mean and standard de-
viation of the difference between the best fitness value and the global optimum. Bold
font represents the best result. A “+” indicates a statistically significant difference
(t-test, unequal variances, 0.05 level) when compared with sEDA-lite. A “-” sign indi-
cates no significant difference. ζ indicates previous results for the algorithms which are
incomparable due to the random values of the offset.

Prob. Dim UMDAc EEDA EDA-MCC sEDA-lite
F1 50 0±0 0±0 0±0 0±0

100 0±0 0±0 0±0 0±0
F2 50 0±0 0±0 0±0 0±0

100 0±0 5.3e-10±1.4e-09(-) 0±0 0±0
F3 50 2.6e-04±1.5e-05(+) 1.8e-08±2.4e-09(+) 0±0(+) 4.2e-07±2.7e-08

100 2.6e-02±8.3e-02(-) 1.5e-03±8.5e-04(+) 0±0(+) 2.5e-06±4.2e-06
F4 50 4.1e+01±2.3e+00(+) ζ ζ 3.6e+01±2.1e+00

100 5.3e+01±2.5e+00(+) ζ ζ 4.8e+01±2.8e+00
F5 50 1.5e+01±4.1e+00(+) 2.4e-02±3.7e-03(+) 0±0(+) 1.0e+01±4.0e+00

100 1.3e+02±2.7e+01(-) 3.8e-01±4.7e-02(+) 0±0(+) 1.2e+02±2.1e+01
F6 50 6.5e+01±1.4e+01(+) ζ ζ 3.8e+01±1.1e+01

100 1.1e+03±1.6e+02(+) ζ ζ 8.6e+02±1.6e+02
F7 50 4.8e+01±3.4e-02(+) 5.0e+01±9.2e+00(+) 4.7e+01±2.1e-01(-) 4.7e+01±2.4e-02

100 9.7e+01±6.4e-02(-) 9.7e+01±3.7e-01(-) 9.6e+01±7.5e-02(+) 9.7e+01±3.1e-02
F8 50 4.1e+02±9.1e+02(+) 5.2e+02±1.0e+03(+) 4.8e+01±1.5e-01(-) 4.8e+01±1.4e+00

100 9.3e+02±3.1e+03(-) 4.4e+04±4.4e+04(+) 9.6e+01±1.3e-01(+) 1.1e+02±2.8e+01
F9 50 4.3e+07±4.1e+06(+) 4.1e+06±1.4e+06(+) 3.6e+06±1.5e+06(+) 4.0e+08±4.6e+07

100 4.3e+07±3.1e+06(+) 2.2e+07±3.7e+06(+) 9.6e+06±2.5e+06(+) 2.5e+09±3.7e+08
F10 50 4.9e+03±1.8e+02(+) 2.0e+03±2.0e+03(+) 3.1e+03±3.4e+02(+) 4.5e+03±1.6e+02

100 5.9e+03±4.3e+02(+) 4.4e+03±6.0e+02(+) 1.9e+03±3.6e+02(+) 5.3e+03±3.4e+02
F11 50 0±0(-) 3.1e+02±1.3e+01(+) 2.9e+02±1.4e+01(+) 0±0

100 0±0(-) 7.3e+02±1.5e+01(+) 7.5e+02±1.6e+01(+) 0±0
F12 50 2.1e+00±9.5e-01(+) 3.1e+02±1.7e+01(+) 3.0e+02±1.4e+01(+) 1.5e+00±9.9e-01

100 8.6e+00±2.1e+00(+) 7.3e+02±2.5e+01(+) 7.4e+02±2.3e+01(+) 0±0
F13 50 7.8e+00±8.3e-01(+) 2.7e+01±1.1e+00(+) 2.6e+01±9.2e-01(+) 5.9e+00±5.4e-01

100 1.5e+01±2.0e+00(+) 3.8e+01±2.6e+01(+) 6.5e+01±1.6e+00(+) 1.1e+01±7.3e-01

5 10 15 20 25 30 35 40 45 50
0.9

1

1.1

1.2

1.3

1.4

1.5

n
c

d n/f(
x n)

 

 
sEDA
sEDA−lite
UMDA

c

EMNA
global

Fig. 1. Median Performance of UMDAc, EMNAglobal, sEDA and sEDA-lite on CiaS
problems
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5.3 Results for the 50-Customer Location Allocation Problem

Table 5.3 shows the results for UMDAc, EMNAglobal, sEDA and sEDA-lite. The
performance of sEDA-lite is relatively good, particularly for high-dimensional
problems. While it is possible that sEDA and EMNAglobal could give similar
(or even better) performance, the amount of function evaluations required is
prohibitive. Note however that there is some difference between these average
performance results and the known optimal values. Also, these results are not
as good as some of the previously reported results [3,17].

Table 2. Solution quality comparison (mean and standard deviation) for 50 Customer
problem. Bold font represents the best result. A “+” indicates a statistically significant
difference (t-test, unequal variances, 0.05 level) when compared with best result. A “-”
sign indicates no significant difference.

(nf ) Optimum UMDAc EMNAglobal sEDA sEDA-lite

5 72.2369 72.688±0.551(+) 77.454±3.650(+) 72.560 ±0.591 72.542±0.543(-)

10 41.6851 43.401±0.823 52.539±2.753(+) 47.930±3.809(+) 43.614±0.764(+)

15 27.6282 29.295±0.948(+) 42.991±3.171(+) 49.376±3.224(+) 28.952±1.080

20 19.3560 21.135±0.494(+) 36.292±2.559(+) 48.554±9.155(+) 20.889±0.321

25 13.3016 14.653±0.705(-) 34.402±2.772(+) 50.093 ±16.515(+) 14.218±0.492

30 8.7963 10.104±0.970(+) 31.237±2.173(+) 49.796±20.015(+) 9.592±0.538

35 5.0483 7.364±0.605(-) 29.917±2.293(+) 47.771±20.717(+) 7.246±0.757

6 Summary

This paper has proposed a modified version of the sEDA algorithm called sEDA-
lite. Like the original algorithm, sEDA-lite is a Gaussian-EDA with a sparse co-
variance matrix model, that uses a screening technique to predict the important
variables which is subsequently used to control covariance modelling. However,
sEDA-lite achieve this without using any additional objective function values
per generation to carry out the modelling. As a result, it can be effectively ap-
plied to high-dimensional problems without a prohibitive number of function
evaluations. Experimentally, sEDA-lite has been shown to be competitive with
UMDAc, EEDA, EDA-MCC, EMNAglobal and sEDA in various problems.
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Abstract. This paper analyses the data clustering problem from the
continuous black-box optimization point of view and proposes method-
ological guidelines for a standard benchmark of clustering problem
instances. Clustering problems have been used many times in the litera-
ture to evaluate evolutionary, metaheuristic and other global optimiza-
tion algorithms. However much of this work has occurred independently
and the various experimental methodologies used have produced results
which tend to be incomparable and provide little collective wisdom as to
the difficulty of the problems used, or an objective measure for compar-
ing and evaluating the performance of algorithms. This paper surveys
some of the clustering literature and results to identify issues relevant
for benchmarking. A set of 27 problem instances ranging from 4-D to
40-D and based on three well-known datasets is identified. To establish
some pilot results on this benchmark set, experiments are presented for
the Covariance Matrix Adaptation-Evolution Strategy and several other
standard algorithms. A web-repository has also been created for this
problem set to facilitate better experimental evaluations of algorithms.

Keywords: Algorithm Benchmarking, Continuous Black-box Optimiza-
tion, Clustering.

1 Introduction

In evolutionary computation and metaheuristic optimization, an enormous num-
ber of algorithms have been developed. Since no algorithm is superior in the the-
oretical, No Free Lunch sense, in practice the performance differences we observe
depend on how well the mechanisms of the algorithm match the structure of the
problem landscape. A key step towards understanding the matching between
problems and algorithms is to develop better benchmark problems and more
rigorous approaches to the experimental analysis of algorithms. Unfortunately,
the dominating paradigm in the literature has been to continually develop new
algorithm variants and to evaluate these techniques in isolation. For continuous
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black-box optimization, artificial test functions (e.g. Sphere, Rastrigin, Rosen-
brock) have been used hundereds of times, but a question such as “what is the
best performance of a black-box optimization algorithm on function f , given
105 functions evaluations?” seems to be difficult (if not impossible) to answer
using the literature. The situation is even more problematic, because subtle dif-
ferences in experimental settings in different papers (e.g. using a different bound
on the feasible search space) mean that results are often not strictly compara-
ble. Recently, research has begun to focus more on such experimental issues.
For example, the Black-Box Optimization Benchmarking (BBOB) problem set1

resolves many of these issues by standardizing many aspects of the experimental
setting. However, it is very important to also evaluate algorithms on real-world
problems, since it is difficult to know how well artificial test problems represent
real-world problems and hence to what extent algorithm performance on artificial
problems is indicative of real-world performance. It can be difficult to use real-
world problems for algorithm benchmarking because real problems may require
expert domain knowledge to configure, or may come with additional complexities
that are not part of the basic optimization algorithm (e.g. complex constraints).
Ideally, problems that are real-world “representative” while being convenient for
benchmarking should provide a valuable contribution to experimental research
practice.

This paper examines data clustering as a useful source of continuous, black-
box benchmark problems. In Section 2, the sum of squares clustering problem
is defined and its key properties discussed. Clustering problems have previously
been used in the literature to test optimization algorithms: Section 4 reviews
some of this literature and discusses why it is difficult to compare with previ-
ously reported results. A specification is proposed to describe clustering prob-
lem instances and a set of problem instances defined (and made available via
the web). To establish some baseline results for future comparison, a number of
commonly-used algorithms are applied to the clustering problem sets. The ex-
periments are described in Section 5 and Results presented in Section 6. Where
possible, the results are also compared with previous results from the literature,
revealing some surprising insights. The work is summarised in Section 7.

2 Clustering

The sum of squares clustering problem (see, e.g.[13]) can be stated as follows.
Given a set X = {x1, . . . ,xn} ⊆ IRd of n data points, find a set of k cluster
centers C = {c1, . . . , ck} ∈ IRd to minimize:

f(C|X ) =

n∑
i=1

k∑
j=1

bi,j ||xi − cj ||2

where

bi,j =

{
1 if ||xi − cj || = minj ||xi − cj ||
0 otherwise.

1 http://coco.gforge.inria.fr/doku.php

http://coco.gforge.inria.fr/doku.php
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The problem variables are the coordinates of the cluster centres in the data space.
Let the d-dimensional coordinates of ci = (yd(i−1)+1, yd(i−1)+2, . . . , ydi), then we
have an unconstrained, continuous optimization problem of dimensionality dk:

min f(y),y ∈ IRdk

A clustering problem instance is therefore defined by a dataset, X and a value
of k.

An equivalent problem from operations research is the (continuous, uncapaci-
tated) location-allocation problem , also known as facility location or multisource
Weber problem [2,9]. Given a set of customers to be serviced by a set of facilities,
the problem is to position the facilities to optimize a criterion measuring overall
service. Under the following conditions:

– the set of customer locations is given by X ,
– the set of facility locations be C,
– assuming equal customer weightings, unlimited capacity of facilities to pro-

vide service and Euclidean distances between customers and facilities,

the problem then reduces to the sum of squares clustering problem.
Clustering is a fundamental task in machine learning, data analysis and oper-

ations research. Finding a global optimum is known to be NP-hard, even in the
restricted cases where d = 2 or k = 2. A large number of algorithms have been
proposed for clustering, though there is little doubt that the k-means algorithm
is the most widely known and used [11]. From an optimization perspective, k-
means is a local iterative optimization algorithm which follows a non-increasing
trajectory over f . It is not a black-box algorithm, nevertheless its popularity
makes it frequently used in experimental comparative studies. Note also that
solving the optimization problem (i.e. locating cluster centres) is often not the
final goal of clustering. Further analysis might include studying which data points
are assigned to which cluster centre, or producing a classifier, where each cluster
represents a class in the data set and the class label of future data points can
then be predicted (e.g. using the minimum distance from the cluster centres).

3 Why Use Clustering Problems for Black-Box
Optimization Benchmarking?

Clustering problems have a number of properties which suggest that they might
provide an extremely useful source of benchmark problems for the evaluation
and comparison of algorithms:

– They seem to be generally challenging to solve.
– They are scalable in dimensionality (via d and k).
– They are “real-world” problems in data analysis (i.e. datasets can come from

real-world problems).
– They are unconstrained, meaning that black-box algorithms can be readily

applied without the need for a constraint-handling mechanism.
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– They can be implemented relatively simply and do not require a large amount
of problem-domain-specific knowledge to understand.

– The objective function is not expensive to evaluate.

There are currently few (if any) benchmark problem sets that have all of the
above properties. This suggests an exciting opportunity to improve on and in-
crease the utility of experimental black-box algorithm evaluation and comparison
by building a standardised set of clustering problem instances.

4 Black-box Optimization Approaches to Clustering

Given the fundamental nature of the clustering problem and data analysis, it is
not surprising that hundreds of clustering algorithms have been proposed in the
literature. At the same time, general-purpose metaheuristics and other optimiza-
tion techniques have also been applied to clustering problems. This paper does
not attempt an exhaustive review of all this work, but rather aims to extract
the important issues to be considered in developing a specification of clustering
problems for black-box optimization benchmarking.

4.1 Difficulties in Comparing with Previous Results

One of the major difficulties in trying to compare an algorithm with previous
work stems from the lack of standard in the way authors present their results.
Clustering results are presented in a variety of ways in the literature [13]. While
the sum of squares objective function is frequently used, the actual function
values (and the number of evaluations made by the algorithm) obtained are
sometimes not reported. Instead, measures of cluster shape around the cluster
centres produced have been used (e.g. the Rand index is used by Chang et al.
to evaluate their genetic algorithm variant [3]). When the intended application
is classification, measures such as classification accuracy on the data are used
(e.g. Liu et al.[7] evaluate a fuzzy C-means, genetic algorithm based fuzzy C-
means and an immunodominance clonal selection fuzzy C-means algorithm in
this way).

While clustering problems have been widely used to compare algorithms, the
datasets that have been used also vary from paper to paper. Some authors gen-
erate artificial datasets with known structure/distributions. There are a large
number of benchmark datasets available in machine learning, and different au-
thors select different datasets to use. Focussing on specific datasets would clearly
improve the comparability of results for black-box optimization algorithms.

Finally, there are many experimental factors that are not specific to clustering
problems that can impact on future comparisons of results. The fundamental
performance results are in terms of the best objective function values found
(or statistics of such values over multiple trials) and the number of function
evaluations used. Presenting results in figures has several advantages, but on
the other hand it is often difficult to read off numerical values from a graph
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for comparison. Full details of the experimental configuration (e.g. algorithm
parameter settings, termination criteria, number of repeated trials) are essential
to permit fair comparison and reproduction of results.

4.2 Results Selected for Comparison

The literature was further reviewed for experimental results that could be com-
pared in a black-box optimization context. A representative number of ap-
proaches were identified:

– Maulik [8] develops a real-valued genetic algorithm (GA) for clustering and
compares with k-means.

– Ye and Chen [14] apply particle swarm optimization (PSO), ant colony op-
timization (ACO) and a honey bees algorithm.

– Kao and Cheng [6] develop an ant colony optimization algorithm and com-
pare it with a previous ACO clustering algorithm (due to Shelokar et al.[10])
and k-means.

– Fathian et al.[5] present a honey bee mating algorithm and compare it with
ACO, a GA, Tabu search (TS) and simulated annealing (SA).

– Taherdangkoo et al.[12] propose a blind, naked mole-rats algorithm and com-
pare it with k-means, two GA variants, PSO, ACO, simulated annealing and
artificial bee colony algorithms.

These papers have each used different datasets to evaluate and compare algo-
rithms. One problem instance is common across all the papers - these results are
compared in Section 6.1.

4.3 Clustering Problem Instances

In the literature, many different datasets have been utilized to evaluate and
compare clustering algorithms. Sometimes, authors generate artificial test data
with known clustering structure. This can be useful, for example to visualize
results. However if the exact dataset used is not available, then results can only
be compared qualitatively. Benchmark datasets have also been widely used, such
as those from the UCI Machine Learning Repository [1]. In particular, Du Merle
et al.[4] used an interior point algorithm to compute approximate global opti-
mum values for problem based on the Iris, Ruspini and German Towns (Spath)
datasets. This is useful because we can assess the performance of algorithms
relative to the optimal value on these problems. These datasets have also been
used in other papers, therefore the following set of problem instances is used:

– The Iris dataset, with d = 4, k = 2, . . . , 10 and initial search space [0.1, 7.9]dk.
– The Ruspini dataset, with d = 2, k = 2, . . . , 10 and initial search space

[4, 156]dk.
– The German Towns dataset, with d = 3, k = 2, . . . , 10 and initial search

space [24.49, 1306024]dk.
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Clustering Problem Specification. To be useful for black-box optimization
evaluation, a clustering problem should be specified with the following elements:

1. A dataset, X of dimensionality d.
2. A value of k.
3. An initial bounded search space, which contains the global optimum. This

can be done by using the minimum and maximum value in the dataset as
the upper and lower bounds of the search space. For simplicity the overall
minimum and maximum are used for every variable. A tighter search space
could consider the minimum and maximum of each variable independently,
however the implementation would be more complex.

To facilitate future use of these problems, a web repository has been created at
http://realopt.uqcloud.net/crwr.html. The repository records the specifications
of each problem instance, the global optimum (solution vector and objective
function value) and a copy of the dataset. This will be extended to record results
on these problems from the literature.

5 Experimental Details

To make a comparison and establish some results for the selected clustering
problems, the following algorithms were evaluated:

– CMA-ES: the Matlab implementation of the Covariance Matrix Adaptation
Evolution Strategy available from
https://www.lri.fr/∼hansen/cmaes inmatlab.html was used with default pa-
rameter settings (as recommended, the initial search variance was set to 2/3
of the search space.

– CMA-ES (50,100): the same implementation of CMA-ES but with a (larger)
population size of 50.

– NM: the Nelder-Mead simplex algorithm, as implemented in the Matlab
fminsearch function. Default parameter settings were used, with termina-
tion criteria extended so that the algorith ran until a tolerance of change
in variables or function values was less than 10−10, or if 3 × 105 function
evaluations were reached. The algorithm is initialized at a random point in
the search space for each trial.

– RS: uniform random search over the search space. The algorithm was given
105 function evaluations.

– KM: the k-means clustering algorithm. Cluster centers were initialized to be
randomly selected data points (this is probably the most common method
in the literature but there are many other possibilities [11]).

The algorithms were chosen firstly because they can be applied with little set-
ting of internal parameters. In addition: CMA-ES is a well-regarded black-box
algorithm; NM is the standard Matlab solver; KM is a standard non-black-box
clustering algorithm; RS provides a useful baseline. Each algorithm was run for
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50 restarts. Note that the different algorithms ran for different numbers of func-
tion evaluations. The intention was not to impose a fixed budget of function
evaluations across the algorithms but to allow them to use the amount of re-
sources they request to“converge”. Results on these problems can be of interest
for any reasonable budget of function evaluations. Future research may choose to
focus on a “limited budget” scenario or on finding high quality solutions using a
possibly large number of function evaluations. Different algorithm specifications
will be more suitable to different budgets of function evaluations and any result
that improves upon previous results makes a worthwhile contribution.

6 Results

The experimental results are shown in Tables 1 and 2. Overall, CMA(50,100)
gave the best performance, with average values that were closer to the optimal
value that the other techniques. It required between 10000 and 50000 function
evaluations. CMA used a smaller population size (determined automatically)
and used between 2000 and 25000 function evaluations. The results were very
similar on some problems (e.g. for Ruspini n = 4, 6, 10) but an order of magni-
tude worse on others (e.g. German, n = 8−20). The NM results are considerably
worse across the problem sets than CMA(50,100) and worse than CMA for the
Iris and Ruspini problems, but (interestingly) better on the German Towns prob-
lems. As a local search algorithm, it does however use a much smaller budget
of function evaluations: between 1000 and 8000. As a completely non-local algo-
rithm, RS outperforms the standard Matlab solver (NM) on most of the Ruspini
problem instances! Finally, KM as a non-black-box solver has a considerable
advantage over the other algorithms. It converges very quickly, taking less than
20 iterations/function evaluations across the problems tested. Its performance is
relatively good, however CMA(50,100) still provides better performance on all
problem instances! This is an impressive result for a black-box solver and ex-
perimentally demonstrates that metaheuristics are able to outperform problem-
specific algorithms, and that global/population-based search would seem to lead
to results that are difficult to obtain with a local/trajectory-based algorithm.
With such small requirements for function evaluations, large amount of restarts
could be performed for KM. Nevertheless the results here over 50 runs at least
indicate that the fitness landscapes of clustering problems contain structure that
causes problems for the standard solver in this problem domain.

On most problems (shown with bold), CMA(50,100) found the global opti-
mum on at least one of the 50 trials. The exceptions were some of the larger
problems on the German Towns problems. It is an open question to establish
results on these problems to see how many functions evaluations are required
to locate the global optimum. KM finds the global optimum for around half
of the problems (lower dimensions) and CMA and NM do so for some of the
smaller problem instances. Figs 1-3 compare the average fitness performance
of the algorithms over the problems from each dataset. Results are given as a
performance ratio with the global optimum value for each problem instance.
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Table 1. Results for clustering problems. Problem instances are defined by a dataset
(D), i.e. Iris (I), Ruspini (R) or German towns (G), together with the problem dimen-
sionality (n), where n = dk. Shown are mean and standard deviations over 50 trials
of each algorithm. The mean and average number of function evaluations (#f) is also
shown for each algorithm. A result is in bold if one or more of the 50 trials located the
global optimum (f∗) to at least 15 significant figures.

D n f∗ CMA(50,100) CMA(50,100) #f CMA CMA #f
I 8 1.52348e02 1.523480e02(0.0e00) 1.1168e04(2.9e02) 2.68733e02(2.2e02) 2.41780e03(2.1e02)

12 7.88514e01 7.885144e01(0.0e00) 1.7136e04(5.7e02) 1.96530e02(1.8e02) 3.77214e03(5.3e02)
16 5.72285e01 5.922328e01(5.0e00) 2.1938e04(7.4e02) 1.26181e02(8.8e01) 4.98944e03(5.9e02)
20 4.64462e01 4.904783e01(2.3e00) 2.5092e04(9.5e02) 1.20999e02(8.9e01) 6.58952e03(9.8e02)
24 3.90400e01 4.076697e01(3.5e00) 2.7466e04(1.3e03) 1.06623e02(8.9e01) 8.39298e03(1.3e03)
28 3.42982e01 3.554887e01(1.4e00) 3.0220e04(1.1e03) 8.90713e01(3.3e01) 9.90306e03(1.2e03)
32 2.99889e01 3.232285e01(2.1e00) 3.3250e04(9.3e02) 8.84456e01(3.3e01) 1.20515e04(1.8e03)
36 2.77861e01 2.946070e01(1.9e00) 3.6432e04(1.4e03) 8.38895e01(2.9e01) 1.46102e04(2.4e03)
40 2.58341e01 2.705470e01(1.3e00) 3.9214e04(1.5e03) 8.00406e01(3.2e01) 1.67537e04(3.0e03)

R 4 8.93378e04 8.93378e04(0.0e00) 1.3842e04(4.2e03) 8.93378e04(0.0e00) 1.4188e03(3.0e02)
6 5.10635e04 5.11278e04(4.4e01) 1.9382e04(2.9e03) 5.11094e04(4.8e01) 3.2726e03(3.2e02)
8 1.28811e04 1.28811e04(0.0e00) 1.6822e04(5.1e03) 1.66519e04(1.2e04) 2.8380e03(7.9e02)
10 1.01267e04 1.10334e04(6.3e02) 2.0862e04(4.9e03) 1.14295e04(1.2e03) 3.1720e03(2.2e02)
12 8.57541e03 8.84859e03(6.8e02) 2.2022e04(1.1e03) 9.86935e03(9.6e02) 3.8949e03(2.1e02)
14 7.12620e03 7.55527e03(7.4e02) 2.5912e04(2.3e03) 8.76290e03(1.4e03) 4.9135e03(7.2e02)
16 6.14964e03 6.43566e03(3.5e02) 2.8792e04(2.7e03) 7.75958e03(1.5e03) 5.7632e03(6.7e02)
18 5.18165e03 5.64378e03(2.0e02) 3.1892e04(4.3e03) 6.67363e03(1.1e03) 6.1772e03(7.1e02)
20 4.446.28e03 4.80930e03(2.5e02) 3.1822e04(2.4e03) 6.87915e03(1.4e03) 7.2632e03(1.5e03)

G 6 6.02546e11 6.02547e11(0.0e00) 1.6282e04(4.7e03) 1.55257e12(8.2e11) 3.6002e03(4.5e02)
9 2.94506e11 3.08336e11(2.9e10) 2.2952e04(5.5e03) 1.04493e12(8.0e11) 5.4150e03(8.9e02)
12 1.04474e11 1.42481e11(8.0e10) 2.8652e04(8.1e03) 1.05834e12(7.8e11) 7.3940e03(1.7e03)
15 5.97615e10 7.46629e10(1.5e10) 3.2272e04(5.0e03) 8.33722e11(7.2e11) 1.0106e04(2.4e03)
18 3.59085e10 4.80932e10(9.0e09) 3.3402e04(1.5e03) 5.99661e11(6.0e11) 1.19768e04(1.4e03)
21 2.19832e10 4.40172e10(9.4e09) 3.9092e04(2.6e03) 4.31552e11(1.5e11) 1.44593e04(1.8e03)
24 1.33854e10 3.11688e10(1.2e10) 4.0962e04(2.6e03) 4.17723e11(1.6e11) 1.82163e04(1.4e03)
27 7.80442e09 2.26611e10(1.2e10) 4.6382e04(3.5e03) 4.05634e11(1.8e11) 2.09944e04(1.9e03)
30 6.44647e09 2.80614e10(1.2e10) 4.9872e04(5.8e03) 4.19464e11(1.7e11) 2.3522e04(3.2e03)
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Fig. 1. Performance results (mean best fitness) for the Iris (I) dataset problems, as a
ratio with the globally optimal value (e.g. a value of 2.5 means the average best solution
found by an algorithm was 2.5 times the value of the global optimum
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Table 2. Results for clustering problems. Problem instances are defined by a dataset
(D), i.e. Iris (I), Ruspini (R) or German towns (G), together with the problem dimen-
sionality (n), where n = dk. Shown are mean and standard deviations over 50 trials
of each algorithm. The mean and average number of function evaluations (#f) is also
shown for each algorithm. A result is in bold if one or more of the 50 trials located the
global optimum (f∗) to at least 15 significant figures.

D n NM NM #f RS KM KM #f
I 8 5.1208e02(2.5e02) 1.0938e03(5.8e02) 2.93656e02(4.1e01) 1.52348e02(0.0e00) 4.66e00(1.4e00)

12 3.7454e02(2.6e02) 1.6421e03(6.1e02) 2.60478e02(3.0e01) 8.79682e01(2.3e01) 6.94e00(2.9e00)
16 3.0047e02(2.4e02) 2.0770e03(5.5e02) 2.39601e02(2.8e01) 6.24359e01(6.9e00) 8.2e00(3.7e00)
20 2.6579e02(2.2e02) 2.6568e03(8.8e02) 2.2239e02(2.7e01) 5.37562e01(8.8e00) 9.18e00(3.6e00)
24 2.6285e02(2.3e02) 3.0913e03(1.3e03) 2.1431e02(1.9e01) 4.66559e01(8.7e00) 7.86e00(2.9e00)
28 2.6404e02(2.2e02) 3.8847e03(2.8e03) 2.0180e02(2.4e01) 4.09041e01(5.5e00) 8.82e00(3.4e00)
32 1.7233e02(1.3e02) 4.3597e03(1.4e03) 1.9722e02(1.8e01) 3.70879e01(7.5e00) 8.34e00(2.8e00)
36 1.6729e02(1.1e02) 5.0430e03(2.8e03) 1.9432e02(1.9e01) 3.39236e01(3.8e00) 7.78e00(2.1e00)
40 1.3556e02(3.2e01) 5.8026e03(2.3e03) 1.8527e02(1.8e01) 3.09606e01(10.3e01) 8.52e00(3.0e00)

R 4 8.9338e04(0.0e00) 5.03e02(2.5e01) 9.01376e04(4.0e02) 9.67212e04(2.3e04) 3.82e00(1.5e00)
6 6.6428e04(2.1e04) 8.004e02(1.3e02) 5.37281e04(1.0e03) 5.11096e04(4.6e01) 3.70e00(1.5e00)
8 3.5846e04(2.1e04) 1.275e03(3.3e02) 1.99433e04(2.3e03) 2.83654e04(1.8e04) 3.99e00(1.6e00)
10 3.5366e04(2.1e04) 1.9712e03(1.3e03) 1.65256e04(1.6e03) 1.86163e04(1.5e04) 4.45e00(1.6e00)
12 2.7332e04(2.0e04) 4.203e03(2.8e03) 1.50499e04(1.0e03) 1.46650e04(1.2e04) 4.66e00(1.7e00)
14 2.6147e04(2.0e04) 7.4512e03(2.8e03) 1.36176e04(1.0e03) 1.07800e04(7.7e03) 5.08e00(1.7e00)
16 2.5967e04(2.1e04) 7.5234e03(4.4e03) 1.24834e04(1.0e03) 9.58363e03(6.8e03) 5.00e00(1.7e00)
18 2.4995e04(2.1e04) 1.1427e04(3.9e03) 1.15749e04(7.4e02) 8.22721e03(5.1e03) 5.01e00(1.7e00)
20 1.0728e04(1.2e03) 5.9614e03(2.1e03) 1.09593e04(7.1e02) 6.97757e03(3.9e03) 5.30e00(1.7e00)

G 6 1.5526e12(8.7e11) 9.908e02(4.1e02) 1.08704e12(1.6e11) 6.51273e11(1.6e10) 5.95e00(1.4e00)
9 4.1772e11(1.7e11) 2.8568e03(1.4e03) 9.12653e11(1.3e11) 3.63195e11(3.7e09) 9.07e00(1.5e00)
12 5.7125e11(1.7e11) 2.1122e03(6.1e02) 8.50900e11(9.5e10) 2.73230e11(3.1e10) 1.51e01(2.8e00)
15 4.9316e11(1.5e11) 3.0132e03(1.8e03) 7.83531e11(8.3e10) 2.49510e11(4.4e10) 1.55e01(3.2e00)
18 3.3045e11(1.8e11) 7.8998e03(7.5e03) 7.50905e11(9.0e10) 2.29057e11(6.0e10) 1.53e01(5.3e00)
21 3.2013e11(3.5e10) 5.0868e03(4.4e02) 6.66544e11(8.9e10) 2.09148e11(8.1e10) 1.43e01(4.2e00)
24 4.5023e11(1.8e11) 4.2644e03(1.4e03) 6.67006e11(8.7e10) 1.79267e11(9.8e10) 1.39e01(4.3e00)
27 2.8713e11(2.1e11) 7.598e03(4.1e03) 6.50674e11(8.4e10) 1.35754e11(1.1e11) 1.33e01(3.6e00)
30 2.7033e11(9.7e10) 6.4218e03(1.5e03) 6.34447e11(8.7e10) 1.10532e11(1.0e11) 1.32e01(4.0e00)
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Fig. 2. Performance results (mean best fitness) for the Ruspini (R) dataset problems,
as a ratio with the globally optimal value
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Fig. 3. Performance results (mean best fitness) for the German towns (G) dataset
problems, as a ratio with the globally optimal value

The trends as problem dimensionality increases give some indication of the scal-
ing behaviour of the performance of each algorithm. As expected, random search
steadily increases (given a fixed budget of function evaluations). Some individual
problem instances also appear to be particularly challenging for the algorithms
tested. For example, the 8D Ruspini problem appears more difficult for KM and
CMA, than both the 6D and the 10D Ruspini problem instances (Fig.2). Note
also that the German towns problems lead to poor performance ratios for the
algorithms compared to the other datasets (in Fig.3 the y-axis is on a log scale).

The comparative results in Figs 1-3 give a general indication of performance,
but it is important to note that average fitness values are a relatively gross sum-
mary of the results and may hide important details. For example, the average
performance of CMA on the 12D and 15D German towns problems (Fig.3) is
slightly worse than random search! However, Table 1 shows that the standard
deviation of CMA results on these problems is relatively large. Further inves-
tigation of these results revealed that many trials found solutions much better
than the average, but a number of other trials converged to a poor solution
considerably worse. Hence, the average is a poor summary of such results.

6.1 Comparison with Previous Results

Table 3 shows the results reported by previous papers for one of the problem
instances tested, Iris with k = 3. A variety of algorithms have been tested on
this problem. Comparing these results with those from above, the most striking
thing is that all of these reported results are relatively poor. The average ob-
jective function values are far from optimal and are significantly outperformed
by CMA(50,100). These results tend to be based on fewer function evaluations,
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but the papers do not seem to be targetting a “low budget” scenario, but rather
evaluating the potential of the algorithms. Another significant anomaly is the
differences between the k-means (KM, SBKM) results reported in these papers
(average values between 97 and 101) and the result obtained in this paper for
KM on this problem (8.79682e01(2.3e01)). There may be a difference in the ini-
tialization technique used which is not mentioned in all papers. In any case,
there are clearly unresolved questions here, demonstrating the need for the de-
velopment of standard specifications and experimental practice when evaluating
black-box optimization algorithms.

Table 3. Previous results for the Iris (k=3, n=12) problem. A question mark (?) means
that it is not clear from the paper what value was used in the experiments.

Reference Algorithm fave Evals

[8] GA 97.10077 (5 times!) 104

[8] KM (best trial of 5) 97.204574

[14] KM 98.1872 ?
[14] Fuzzy c-means 96.9280 ?
[14] AKPSO 96.7551 ?

[6] KM 99.84 104

[6] Shelokar ACO 97.78 104

[6] ACOC 97.22 104

[5] HBM 96.95316 11214
[5] ACO 97.171546 10998
[5] GA 125.197025 38128
[5] TS 97.868008 20201
[5] SA 97.134625 29103

[12] SBKM 101.3672 3e04(?)
[12] GAPS 97.3868 3e04(?)
[12] VGAPS 96.2022 3e04(?)
[12] PSO 96.0176 3e04(?)
[12] ACO 99.9176 3e04(?)
[12] SA 101.4574 3e04(?)
[12] BNMR 95.0927 3e04(?)

7 Summary

This paper has examined sum of squares clustering problems as a source of
real-world benchmark problems for the evaluation and comparison of black-box
optimization algorithms. It was shown that clustering problems have many useful
properties for benchmarking. To facilitate better comparisons of algorithms and
experimental results, a specification was provided for clustering problems and a
web repository has been created. Experimental results were presented on a set of
27 clustering problems and some comparisons made with existing results in the
literature. It is intended that future work will build on and add to the problems
specified here, with additional datasets. Also, future research should be able to
make better use of published experimental results on clustering problems.
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Abstract. Differential evolution (DE) is a very powerful and simple
algorithm for single- and multi-objective continuous optimization prob-
lems. However, its success is highly affected by the right choice of pa-
rameters. Authors of successful multi-objective DE algorithms usually
use parameters which do not render the algorithm invariant with re-
spect to rotation of the coordinate axes in the decision space. In this
work we try to see if such a choice can bring consistently good perfor-
mance under various rotations of the problem. We do this by testing a
DE algorithm with many combinations of parameters on a testbed of
bi-objective problems with different modality and separability charac-
teristics. Then, we explore how the performance changes when we rotate
the axes in a controlled manner. We find out that our results are con-
sistent with the single-objective theory but only for unimodal problems.
On multi-modal problems, unexpectedly, parameter settings which do
not render the algorithm rotationally invariant have a consistently good
performance for all studied rotations.

Keywords: differential evolution, rotational invariance, multi-objective
optimization, parameter analysis.

1 Introduction

Differential evolution [6] started as a simple single-objective continuous optimiza-
tion heuristic. The need for a versatile multi-objective optimizer has motivated
researchers to generalize the basic algorithm for multi-objective problems. Now
we have a great number of multi-objective DE variants. Many of them use the
same mechanism to generate new individuals. In a problem with n variables a
new individual is created using a crossover variation operator which randomly
selects k; k ≤ n variables which are perturbed. The magnitude of the mutation
is generated by scaling a difference of randomly chosen individuals.

Many research papers on DE such as [1] or [9] provide little insight into how
the authors chose the parameters for their benchmarking. We find this striking
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since many authors choose their parameters such that the crossover operator
perturbs only a small number of variables in an existing individual. In other
words, the search for the Pareto optimal set proceeds along the coordinate axes.
Since these algorithms perform very well [1][9], we have a suspicion that this
may be due to some characteristic of the problem, such as separability, that
makes it easy to optimize along the axes. This would mean that if the axes are
transformed, the algorithm should lose some performance.

Very strict warning against the practice of perturbing a small number of vari-
ables at a time has been raised as soon as 1996 by Salomon [8]. Salomon empiri-
cally demonstrated that the stellar performance of many popular single-objective
genetic algorithms owes to the fact thatmost of the benchmark functions were sep-
arable and that the low mutation rate caused them to be optimized one compo-
nent at a time. Once Salomon stripped the separability by rotating the principal
axes of the benchmark functions, many algorithmswere significantly slowed down,
while some failed to converge completely. Salomon’s theoretical results state that,
in some cases, the probability of finding the global optimum can drop below that
of random search. We are concerned that the same is true for the multi-objective
realm sincemany authors perform their experimentswith separable test functions.

In DE the number of variables that are perturbed is controlled by a param-
eter. If all variables are perturbed, the algorithm has the same performance
regardless of rotation. Let us have a parameter setting, that perturbs only a
small proportion of the variables, which outperforms a setting that perturbs all
variables. In this work we attempt to answer this question: Is this exceptionally
good performance on a problem with a particular alignment of the coordinate
axes balanced by exceptionally bad performance on a different alignment?

We do this empirically by observing the performance of a simple multi-
objective algorithm DEMO (Differential evolution for multi-objective optimiza-
tion) [9] on a bi-objective subset of the WFG (Walking Fish Group) test suite [3].
We run all our experiments with a fixed population size and a fixed number of
variables, while varying the parameters. Then we gradually rotate the problems
in a controlled manner and observe the new behavior.

The answer to our question is, unexpectedly, negative. We find a statisti-
cally significant difference between the performance on the rotated problems
and the original ones. Closer inspection reveals that a systematic performance
loss happens when we rotate the separable problems, but the performance is
still significantly better than for a rotationally invariant algorithm. We find that
this happens for multi-modal problems, while single-modal problems exhibit the
behavior we would expect from the work of Salomon.

In the following section we provide background information on DE and on the
previous related work on DE parameters. In Section 3 we introduce the exper-
imental design, where we explain which problems are used and why were they
chosen. In addition we introduce a new performance metric called the relative
hypervolume, and explain the controlled manner in which the rotations are gen-
erated. In Section 4 we present our data along with a discussion. Finally, in
Section 5, we present the conclusion.
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Algorithm 1. Modified DEMO [9] algorithm

1 initialize P = {X1, ..., XN} uniformly randomly in the decision space
2 for generation := 1 to Gmax do Evolutionary loop
3 for target := 1 to N do Generational loop
4 randomly generate mutually distinct r1, r2, r3 �= target
5 Xmutant := Xr1 +F(Xr2 −Xr3)
6 randomly generate inv ∈ {1, . . . , n}
7 for i := 1 to n do
8 if rand(0.0; 1.0) < Cr or i = inv then
9 Xtrial,i := Xmutant,i

10 else
11 Xtrial,i := Xtarget,i

12 end

13 end

14 project Xtrial to decision space
15 if Xtarget dominates Xtrial then
16 discard Xtrial

17 else if Xtrial dominates Xtarget then
18 replace Xtarget with Xtrial

19 else if Xtarget and Xtrial are mutually non-dominated then
20 add Xtrial to the end of the population
21 end

22 end

23 Trim the P to size N using non-dominated sorting[9] and MNN diversity[4]

24 end

2 Background

2.1 Differential Evolution

In this section, we describe the variant of DE which we use in this work. It is a
slightly modified version of the DEMO algorithm [9] described in Algorithm 1.
The modified parts are highlighted with yellow color in lines 14 and 23. Let
us look at the algorithm in detail. First, the population of the algorithm is
randomly initialized (line 1). Then, the algorithm runs for a fixed number of
generations (evolutionary loop). In each generation, DE iterates through the
entire population generating a trial individual, which is compared to an existing
target individual. The trial is generated utilizing the traditional method in lines
4 to 13. Here we introduce the parameters of DE.

To generate a new individual, three distinct individuals are selected from
the population. By forming a difference between two of them, scaling it by
a fixed parameter F, and adding to a third individual we obtain a so called
mutant individual (line 5). The trial individual is created by crossover between
the mutant and the target. First, a randomly chosen variable from the mutant
is inherited (line 6). Next, each other variable is inherited from the mutant with
a fixed crossover probability of Cr. Otherwise it comes from the target.
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After the individual is generated we project it to the decision space. This is a
modification of the original algorithm which did not explicitly deal with domain
issues. The purpose is to keep the algorithm as simple as possible while being
able to optimize problems with simple constraints. Next the trial is compared to
the target. If one of them is dominated by the other, we discard the dominated
one. If they are mutually non-dominated, we keep them both. At the end of
the generation loop, the population is trimmed to size N using non-dominated
sorting and the M nearest neighbor diversity estimation procedure [4]. We chose
this procedure because it achieves a better distribution along the Pareto front
than the original crowding distance computation.

Note that Cr = 1 is the only value of Cr for which the DE algorithm is
rotationally invariant with probability 1. Rotational invariance does not by itself
imply good performance. Its merit is that it allows us to generalize a single
observation to an entire invariance class [2].

2.2 Crossover Probability and Separability

In this section we summarize what we know about the relationship between the
separability of the test functions and the good choice of Cr parameter.

There are many different types of separability. One of the simplest is additive
separability. A function f : D ⊆ R

n → R is called additively separable if:

∃f1, . . . , fn such that f(x1, . . . , xn) =

n∑
i=1

fi(xi)

Themost important consequence of additive separability is that the n-dimensional
problem can be optimized sequentially one variable at a time. Therefore separable
problems are not subject to the curse of dimensionality [8].

Salomon [8] illustrates the problems of algorithms which vary the individuals
one variable at a time on a quadratic function of two variables in Figure 1. The
ellipses in the left part are contours of a separable quadratic function. We can
see two individuals on one of the contours. The blue individual represents an in-
dividual in a randomized algorithm. If we mutate one variable of this individual,
the probability to get an improvement in the objective function is relatively high,
since the improvement intervals d1, d2 are long. If we rotate the coordinate axes,
thus rendering the function non-separable, the improvement intervals shrink.

One more illustration of problems which arise is using a sequential deter-
ministic algorithm which finds the optimum with respect to one variable at a
time. The red individual illustrates the path of one such an algorithm. When the
function is aligned with the axes, this algorithm achieves optimum in just two
iterations, while in the rotated case the algorithm not only progresses slower,
but never actually reaches the optimum.

Huband et al. from the Walking Fish Group (WFG) define separability from
the optimizational standpoint[3]. A variable xi is separable if the set of global
optima of a problem:

argmin
xi

f(x1, . . . , xn)
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Fig. 1. Illustration of variable-wise optimization on a rotated quadratic function

is the same for any choice of the other variables x1, . . . , xi−1, xi+1, . . . , xn. For
example, an additively separable function is WFG-separable, hence WFG-
separability is a generalization of additive separability. The authors define a
separable multi-objective problem as one where each objective is separable. The
majority of the frequently used DTLZ and ZDT problems are WFG-separable
[3], while their objective functions are not additively separable.

The multi-objective model is fundamentally different from the single-objective
model because all objectives are being optimized simultaneously. The global
optima of each optimized function constitute only a relatively small subset of
the Pareto optimal set. Therefore, it is appropriate to ask if the problems of
sequential algorithms which are illustrated in Figure 1 persist in multi-objective
optimization. Also, while additively separable unimodal functions are inherently
similar to the quadratic function in Figure 1, it is not clear if the intuition holds
for multi-modal functions or for functions which are WFG-separable but not
additively separable.

2.3 Variance as a Common Currency

Probably the most significant work on the theoretical properties of DE has been
written by Zaharie [10]. Let us collect all the trial vectors that are generated in
the course of one generational loop of Algorithm 1 into a set Ptrial. Then the
relationship between the variance in decision space of P and Ptrial is given by
the simple equation E[V ar(Ptrial)] = cE[V ar(P )] where:

c = 2F2Cr +
Cr2 − 2Cr

N
+ 1 (1)

Zaharie omits the fact that in most DE variants the individuals which generate
the trial individual are chosen distinct from the target individual (Algorithm 1
line 4). However her results hold unchanged also after adding this assumption.

The work of Zaharie is important since it transforms the two parameters into
a single number c (common currency) which has a very intuitive interpretation.
If c < 1 we see that the algorithm tends to contract the population while if c > 1
it expands the population. Based on empirical data Kukkonen concluded in [5]
[7] that a good choice of parameters is one that satisfies c ∈ [1.0; 1.5] with the
upper bound not very strict.
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3 Experimental Design

In this section, we describe which test problems we chose and why. We explain
what we mean by rotating the problem and we propose a new performance metric
which we use.

3.1 WFG Problems

In order to explore the relationship between the control parameters of DE and the
characteristics of the problem, we chose 4 problems from the WFG test suite[3].
These problems have been chosen since they have the same Pareto front and
contain all possible combinations of the WFG-separability and modality charac-
teristics. They are summarized in Table 1. We chose the number of variables to
be 10 of which one is a positional variable.

Table 1. Characteristics of the selected WFG problems

WFG4 WFG7 WFG6 WFG9

separable yes yes no no
unimodal no yes yes no

3.2 Rotations in R
n

As humans we have a very good intuitive understanding of rotation in 2 or 3
dimensional space. However in higher dimensions things are not as intuitive as
they might seem. An elementary rotation by the angle φ is characterized by the
matrix:

Re =

(
cos(φ) −sin(φ)
sin(φ) cos(φ)

)

We can generalize this rotation to n-dimensional space by taking an n-dimensional
identity matrix I and replacing Ii,i, Ii,j , Ij,i, Ij,j by Re

1,1, R
e
1,2, R

e
2,1, R

e
2,2 respec-

tively. We can see that the rotation is not executed around an axis as we might
intuitively feel, but around an n− 2 dimensional subspace which is coincidentally
a 1-dimensional axis in the intuitive 3-dimensional case. For our experiments, we
generate the rotation matrix R by applying a rotation to each n − 2 dimensional
subspace in sequence, one rotation after the other.

We rotate the entire decision space (DS). This way the entire Pareto optimal
set is always attainable since the entire decision space rotates along. In the case
of WFG problems this means rotating a n-dimensional hyper-box. For example,
in order to initialize the population in Algorithm 1 in the rotated DS (line 1),
we first initialize the population in the original DS and then multiply by R−1.
Similar process is used to project the individual to the rotated DS on line 14.
To evaluate the objective value of an individual we first multiply the decision
vector by R and evaluate the original objective functions.
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3.3 Relative Hypervolume

In our experiments, we use only one performance metric, the hypervolume (HV)
[11], since it includes information on both convergence and spread of the indi-
viduals. With WFG problems, it is not easy to choose the reference point for the
HV. Even if we choose the point as tight as possible, there are some individuals
after the initialization of DE which dominate the reference point. Therefore the
HV at the start is not zero and it is hard to say if a certain attained HV is good
or bad. Moreover, it is hard to make quantitative comparisons based on HV. If
some algorithm achieves HV of 100 and another one achieves a HV of 99.98, it
may seem that the difference is not very big, but it all depends on the HV at
initialization. If the algorithms started with HV = 0, the interpretation of the
results would be quite different from one where HV = 99.99 at the start.

We attempt to mitigate this problem by subtracting the HV at initialization
(HVinit) and normalizing the result using the maximal attainable hypervolume
(HVmax). We define the relative hypervolume (RHV) in the following equation:

RHV :=
HV −HVinit

HVmax −HVinit
(2)

We compute HVmax deterministically by integrating the space between the true
Pareto front (PF) and the reference point. From (2), we have RHV ∈ [1;−∞).
RHV = 1 implies convergence, RHV at initialization is 0 and RHV < 0 indicates
an algorithm which is receding from the Pareto front.

We use RHV since its normalized nature is more intuitive and it is more robust
with respect to the selection of the reference point. It may be more meaningful
to compare two algorithm runs in terms of RHV. If we have two algorithm
runs starting from the same randomly initialized population then the ratio of
their RHVs is independent of the choice of the reference point. 1 On the other
hand, two independent runs which produce the same final population may yield
different relative hypervolume.

4 Results and Discussion

In our experiments we varied the parameters F ∈ [0.05; 1.5], Cr ∈ [0; 1] equidis-
tantly with a resolution of 0.05. For each combination we performed 10 runs of
Algorithm 1. To simplify the setup, the population size was kept constant at
100 individuals and the length of each run was 250 generations. We explored the
rotations from 0 to 90 degrees with a resolution of 5 degrees. In the following we
discuss our results on a subset of the experimental data. To simplify the analysis,
in each section we keep either F, Cr or the rotation angle fixed.

4.1 Fixed Rotation Angle

Figure 2 shows the average RHV on non-rotated problems. For illustration, we
plot the combinations of F and Cr which result in c = 1.0, 1.5 and 3.0 according

1 Given that the reference point is dominated by all individuals in the population.
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(a) WFG4 (S-MM) (b) WFG7 (S-UM) (c) WFG6 (NS-UM) (d) WFG9 (NS-MM)

Fig. 2. Average RHV without rotation

(a) WFG4 (S-MM) (b) WFG7 (S-UM) (c) WFG6 (NS-UM) (d) WFG9 (NS-MM)

Fig. 3. Average RHV with rotation angle of 5 degrees

to (1). The circle marks the combination of parameters with the best RHV. The
data in all our figures from now on is presented from left to right in the same
order as in Table 1. The separable problems (S) are on the left, the non-separable
(NS) on the right, while the unimodal (UM) are on the inside and multi-modal
(MM) ones are near the page margins. For each problem, an L-shaped favorable
region containing RHV of 0.8 and higher, roughly corresponds to c ∈ [1; 1.5].
Low value of Cr is more robust, since it allows for a wider interval of F values.
Unexpectedly, this holds also for non-separable problems WFG6 and WFG9.

The effect of introducing a rotation by 5 degrees is shown in Figure 3. The two
figures seem identical, but the ratio of these averages in Figure 4 reveals a differ-
ence. A value of less than 1 indicates that the rotation caused the performance
to decrease. We highlighted the contour at level 1 and marked the maximal and
minimal value by circles. In order to make the results most readable we chose
a color scale of [0.5; 1.2] for separable problems and [0.6; 1.7] for non-separable
problems. The separable problems on the left half exhibit a performance loss
consistent with Salomon’s single-objective results. Performance dropped for al-
most all Cr smaller than 1. Non-separable WFG6 and WFG9 do not show such
a systematic decrease. In some areas we even see an increase of performance.

It seems that there is relatively little difference between the rotated and non-
rotated data. These result may seem not as significant as Salomon’s. However,
there is an important methodological difference. When he mentions that the
performance on the rotated benchmark is six orders of magnitude worse than
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(a) WFG4 (S-MM) (b) WFG7 (S-UM) (c) WFG6 (NS-UM) (d) WFG9 (NS-MM)

Fig. 4. Average RHV with a rotation of 5 degrees
Average RHV without a rotation

(a) WFG4 (S-MM) (b) WFG7 (S-UM) (c) WFG6 (NS-UM) (d) WFG9 (NS-MM)

Fig. 5. Average RHV with a rotation of 45 degrees
Average RHV without a rotation

the performance on the non-rotated benchmark ([8, p.273]), he means that the
minimal attained value 2.65 · 105 is six orders of magnitude worse in absolute
numbers. But the value at initialization was three orders of magnitude greater
yet. This means that both algorithms started somewhere near 2.65 · 108 and the
non-rotated one progressed to 2.65 · 10−1 while the rotated one progressed to
2.65·105. In terms of relative hypervolume, this would be a very small difference 2.
In order to provide a scale-independent comparison, we compared all data using a
two-tailed Wilcoxon signed rank test at a significance level of 0.05. For separable
problems in Figures 4 and 5 we separate the parameter space with a dashed line
into two areas. The area on the right is such that the rotated and non-rotated
data is not significantly different, while on the left there is a significant decrease
in performance. The data for non-separable problems contains areas of both
significant decrease and significant decrease, as well as areas with no significant
difference so in this case the separation cannot be plotted so compendiously.

The effects are more visible with 45 degree rotation in Figure 5. Again, there
is a systematic decrease in performance for the separable problems for Cr < 1.
However, this decrease does not imply that Cr = 1 is a good choice. Looking

2 Assuming that the minimum of the given function is 0, the difference would be on
the order of 10−3.
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(a) WFG4 (S-MM) (b) WFG7 (S-UM) (c) WFG6 (NS-UM) (d) WFG9 (NS-MM)

Fig. 6. Average RHV for F = 0.5

(a) WFG4 (S-MM) (b) WFG7 (S-UM) (c) WFG6 (NS-UM) (d) WFG9 (NS-MM)

Fig. 7. Average RHV for Cr = 0.1

at Figures 2 and 3, we see that Cr = 1 is a consistently bad choice for the
multi-modal problems WFG4 and WFG9.

4.2 Fixed F

In Figures 2 and 3 we see that F = 0.5 is compatible with many different values of
Cr and achieves consistently good performance. The average RHV for F = 0.5 is
shown in Figure 6. Formulti-modal problems WFG4 and WFG9, very low values
of Cr are consistently good for all studied rotations, while for uni-modal problems
WFG6 and WFG7 big values of Cr yield a consistently good performance. On the
other hand, poor performance is achieved with big values of Cr for multi-modal
problems and small values for uni-modal problems. The data for WFG4 and
WFG9 suggests that the exceptionally good performance of a small Cr setting
does not have to be balanced by an exceptionally bad performance after the
problem is rotated. Based on the observation from Figure 6 we see that for each
problem either Cr = 0.1 or Cr = 0.9 perform well through the observed spectrum
of rotations.

4.3 Fixed Cr

In Figures 7 and 8 we see data with a fixed value of Cr = 0.1 and Cr = 0.9
respectively. For Cr = 0.1 the regions with the best performance are for rotations
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(a) WFG4 (S-MM) (b) WFG7 (S-UM) (c) WFG6 (NS-UM) (d) WFG9 (NS-MM)

Fig. 8. Average RHV for Cr = 0.9

(a) WFG4 (S-MM) (b) WFG7 (S-UM) (c) WFG6 (NS-UM) (d) WFG9 (NS-MM)

Fig. 9. Average RHV with Cr = 0.1
Average RHV with Cr = 1

which are either close to 0 or 90 degrees. This is true also for non-separable
problems, but it is more visible for separable problems. The data for Cr = 0.9
seems different. The choice of Cr close to 1 means that the algorithm is nearly
rotationally invariant. The gained robustness with respect to coordinate rotation
is balanced by lost robustness in the choice of F. Almost in all cases the interval
with favorable values of F became shorter.

We see that for values of Cr < 1 there is a performance loss when the coordi-
nate axes are rotated, but does the performance drop bellow that of a rotationally
invariant choice of Cr = 1? The data supporting a negative answer is presented
in Figure 9. Here we divided the average RHV with Cr = 0.1 by the average RHV
attained with a rotationally invariant Cr = 1. The interpretation of the dashed
and full contour lines is the same as for Figures 4 and 5. For WFG4, the setting
of Cr = 0.1 statistically significantly outperformed Cr = 1 for all rotations and
all values of F. This means a definitive negative answer to our main question.
The results are similar for the second multi-modal problem WFG9. Here we see
a small region in which the data for Cr = 0.1 and Cr = 1 are not significantly
different and Cr = 1 is significantly better in a few isolated cases. The unimodal
problems on the other hand show that Cr = 1 is significantly better for most
rotations and for the best performing values of F.
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5 Conclusion

In this work we showed how the behavior of the differential evolution algorithm
on bi-objective problems changes when the coordinate axes of the decision space
are rotated. Our findings show that the change is significant even for small
rotations. There is a consistent drop in performance on separable problems while
the qualitative properties of the change for non-separable problems are much less
predictable. Unexpectedly, for multi-modal problems, low values of crossover
probability perform better through the observed spectrum of rotations. As a
future work we propose to see if this holds for problems other than the ones we
studied and if this is the case, to find the cause of this behavior.
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Abstract. Fuzzy c-means (FCM) is the most common fuzzy clustering model
and uses an objective function to measure the desirability of partitions. However,
if the data sets contain several noise points, or if the data sets are very high di-
mensional, the iteration process of optimization the FCM model often falls into
local optima solution. To avoid this problem, this paper proposes a new hybrid
fuzzy clustering algorithm that incorporates the Fitness Predator Optimizer (FPO)
into the FCM model. FPO is a new bionic-inspired algorithm to avoid premature
convergence for the multimodal optimization problem. The excellent probability
of finding the global optimum of FPO enhances the quality of fuzzy clustering.
Five benchmark data sets from the UCI Machine Learning Repository are used to
compare the performances of proposed FPO-FCM with FCM and a hybrid swarm
algorithm based on Quantum-behaved PSO. Experimental results show that the
proposed approach could demonstrate the desirable performance and avoid the
minimum local value of objective function for multivariate data type clustering
problems.

Keywords: Fitness Predator Optimizer, Fuzzy C-means Model, multimodal
optimization problem, hybrid fuzzy clustering algorithm.

1 Introduction

The most common popular data mining techniques discussed are clustering and classi-
fication. The clustering aims at identifying and extracting significant groups in under-
lying data, which is an unsupervised learning method. In the field of clustering, Fuzzy
c-means (FCM) is one of the most popular algorithms. Although FCM is extensively
used in literature, it suffers from several drawbacks. The objective function of the FCM
is the multimodal function which means that it may contain many local minima. Con-
sequently, while minimizing the objective function, there is possibility of getting stuck
at local minima or saddle points. In addition, the performance of the FCM depends on
the initial selection of the cluster center.

To increase the probability of finding the global optimum, various alternative meth-
ods for the optimization of clustering models were suggested in the literature. Some
researchers adopt the stochastic methods such as evolutionary or swarm-based methods
to increase the global convergence ability of fuzzy clustering. In [7], authors used a
Fuzzy c-means algorithm based on Picard iteration and PSO (PPSO-FCM) to improve
the performance of FCM. In [8], a hybrid data clustering algorithm based on PSO and

G. Dick et al. (Eds.): SEAL 2014, LNCS 8886, pp. 155–166, 2014.
c© Springer International Publishing Switzerland 2014
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KHM is proposed, which makes full use of the merits of PSO and KHM. However, to
the classical PSO, it couldn’t guarantee to convergence to the global best solution. The
QPSO algorithm proposed by [4] outperforms traditional PSO in search ability as well
as having less parameter to control. Then, [6] proposed a new hybrid fuzzy clustering
algorithm that incorporates the Quantum-behaved PSO into the FCM model.

Basically, the major problem with most of swarm intelligent algorithms in multi-
modal function is premature convergence. To avoid premature convergence by main-
taining diversity in the population, many kinds of optimization algorithms are proposed.
However, few of the swarm intelligence techniques focus on individual competition
and independent self awareness. The individual competition is more likely to reduce
the rapid social collaboration process and increase the ability of being out of the local
optimum. This motivated our attempt to present a new swarm intelligence algorithm,
called Fitness Predator Optimizer (FPO) [15]. In this paper an application of the pro-
posed FPO is presented in the field of fuzzy clustering. In FCM model, the probability
of finding the global optimum can be increased by FPO due to its outstanding global
searching ability. Consequently a new hybrid fuzzy clustering algorithm FPO-FCM is
proposed in this paper.

The outline of this paper is organized as follows. In section 2, the brief introduction
of the state of the art and the characteristics of the fuzzy clustering. In section 3, basic
conceptions and pseudocode of FPO is introduced first. Then a new hybrid fuzzy clus-
tering algorithm based on the FPO (FPO-FCM) is proposed. A hybrid FCM algorithm
based on the QPSO is also introduced in this section. In Section 4, the FPO-FCM is
verified by five widely used data sets in the pattern recognition literature. Finally, some
concluding remarks and suggestions for future research are provided in Section 5.

2 Related Work

There are three main types of fuzzy clustering - fuzzy clustering based on fuzzy relation,
fuzzy clustering based on objective function and fuzzy generalized k-nearest neighbour
rule. The fuzzy clustering based on objective function is the most popular one, because
it is quite facile, and allows the most precise formulation of the clustering criteria. The
most popular version is the Bezdek’s FCM model [1],[10] with the generalized objective
function.

Jm(U,V ) =
c

∑
i=1

n

∑
k=1

(uik)
m | xk − vi |2 (1)

Where m (m > 1) is a scalar termed the ’weighting exponent’ and controls the fuzzi-
ness of the resulting clusters. The FCM model partitions a data set X = {x1, ...,xn,n ∈
N} into c (1< c < n) number of fuzzy clusters with V = {v1,v2, ...,vc} cluster centroids
by a partition matrix U . The matrix U shows the fuzzy relation from set of data objects,
which is expressed as follows:

U =

⎡
⎣

u11 · · · u1n

· · · ui j · · ·
uc1 · · · ucn

⎤
⎦ (2)
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In which ui j is the membership function of the jth data object with the ith cluster

within the constraints of ui j ∈ [0,1] and
c
∑

i=1
ui j = 1. Clustering partitions a data set into

subsets by finding the maximum membership grade ui j of data object xi belonging to
the cluster j. This model aims to minimize the following objective function with respect
to each fuzzy membership grade ui j and each cluster centroid vi. In most of the cases,
the distance between xk and vi is assigned with the Euclidean norm and the fuzzifier
m = 2. A popular method to optimize the FCM model is Alternating Optimization (AO)
through the necessary conditions extrema of Jm(U,V ):

uik =
1

c
∑
j=1

(
| vi − xk |
| v j − xk | )

2/(m−1)
(3)

vi =

n
∑

k=1
um

ikxk

n
∑

k=1
um

ik

(4)

The subsequent computation of the partition matrix ui j can be merged to V (u(V,X),X)
in FCM algorithm. The reformulated version of Jm(U,V ) [2] is obtained by inserting
(3) into (1).

Jm(V,X) =
c

∑
i=1

n

∑
k=1

| vi − xk |2
c
∑
j=1

(
| vi − xk |
| v j − xk | )

2m/(m−1)
(5)

In this paper we consider a widely used FCM model with a number of cluster centers
prototype. Then FCM-AO-V is described in Algorithm 1.

Algorithm 1. FCM-AO-V
Initialize data: X = {x1,x2, ...,xn}
Initialize the clustering centroids V = {v1,v2, ...,vc}
Initialize the maximum iterations tmax ∈ N
while t ≤ tmax do

Generate the partition matrix ui j by (3)
Generate the new clustering center vi by (4)

end while
Output U,V

Figure 1 shows Jm(V,X) in 3-dimensional graph with two clustering centroids v1 ∈
[−1,1] and v2 ∈ [−1,1]. The reformulated function can be visualized for the trivial data
set X = {x1, ...,x100}, xi ∈ [−5,5]with the parameters m= 2,c= 2. It also shows that the
objective function Jm(V ;X) is a non-linear multimodal function with a number of local
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Fig. 1. Reformulated objective function Jm(V ;X)

minima. Obviously, the alternating optimization or gradient based methods might get
stuck in these local extrema. To avoid local minima, heuristic search algorithms can be
applied to minimize the objective function, such as evolutionary or swarm intelligence
methods.

3 Proposal of New Hybrid Fuzzy Clustering Algorithm for
Multivariate Data Type Clustering Problems

In order to overcome the shortcomings of Fuzzy C-means algorithm, various comput-
ing techniques such as artificial neural networks [12] [13], hybrid fuzzy time series
approach [11], genetic algorithms and PSO-based fuzzy clustering algorithms [9] have
been used in FCM recently. We also proposed a new hybrid fuzzy clustering algorithm
by incorporation the QPSO into the FCM model [6] in our previous work. Similarly, a
new optimization technique named as IQPSO-FCM in [14] is a combination of FCM
and improved QPSO to drive the clustering efficiency in standard medical and non-
medical data sets. However, the diversity declines rapidly in the later iteration period,
leaving the QPSO with great difficulties of escaping the local optima. In order to im-
prove the diversity of the population, we present a new swarm intelligence algorithm
called Fitness Predator Optimizer (FPO) [15].

3.1 The Fitness Predator Optimization with Competitive Predators

Fitness Predator Optimizer (FPO) is a new bionic-inspired algorithm proposed in our
previous work to avoid premature convergence for the multimodal problems. All of the
individuals in the FPO are defined as predators, whose purpose is to find the global
optimum (seen as prey) in the search space. Each individual is depicted only by its
position vector x, which determines the trajectory of the particle. Then an individual is
named as a ”position” which comprises the population in FPO. If position i has a higher
value of fitness function, then i has more power of locomotion. If position i does not
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know what is the next best place, a sensible way is to dynamically adjust it according
to its own experience and its companions’ experience. The definition of an updated
position is:

newx(i, j) = x(i, j) + (rand− 0.5)∗ µ ∗w∗ (x(k, j)− x(i, j)) (6)

To the position i, xi = {x(i,1), ...,x(i, j), ...,x(i,d)} is a vector with d (1 � j � d) dimen-
sions. newx(i) is the updated position. rand is a positive decimal randomly produced by
computer. µ is a positive constant, w is defined as inertia weight, first proposed by Y.Shi
and Eberhart [3] for PSO. It is a variable parameter in the range of [0.2,1] in this paper.
However, it must be said that the given method of w’s selection is a trial. Generally, it
is not sure whether the new position newx(i) is better than xx during the optimum search
process. In FPO, only a limited number of chances are released in each iteration. A
position with better value of fitness function has a prior possibility to access the chance
and update its next position by (6). The remaining positions keep the previous positions
until they get a chance to update. The main function of FPO is described in Algorithm 2.

Algorithm 2. Main Function
Initialize population: popsize
Initialize xi: rand(xi) ∈ (xmin,xmax)
while t ≤ ρ do

if rand1 < rand2 ∗ f itness(xi)
n
∑

i=1
f itness(xi)

then

get a chance to update its position
x(i, j) = newx(i, j)
Generate a new position by (6)
For each position use the elitism strategy

end if
end while
For all population use the elitism strategy

In Algorithm 2, the vector xi depicts a position i, popsize denotes the population of
particles, the amount of chances ρ equals to popsize on each iteration. ρ number of
chances are released in each iteration, and only the competitive position could get the
chance to update. The elitism strategy in FPO is to reserve the best optimal position as
shown in (7).

f ∗k+1 =

{
f (X) f (X)< f ∗k
f ∗k others

(7)

The f ∗k is the best optimal position fitness value after k times comparison with other
positions. X is the new position which will be compared with f ∗k in the (k+ 1)th time.
The elitism strategy function is shown in Algorithm 3.
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Algorithm 3. Elitism Strategy Function
GlobalMin = f ind(min( f (xi))
newx(i, j) = x(i, j) +(rand −0.5)∗µ∗w∗ (x(k, j) −x(i, j))
tmp = f ind(min( f (newx(i, j)))
if tmp < GlobalMin then
GlobalMin = tmp
end if

3.2 The Proposal of FPO-FCM Algorithm

In FPO-FCM, the position of particle xi represents a set of clustering centers. Which
can be expressed as follows: ⎡

⎢⎣
x11 · · · x1d
...

. . .
...

xc1 · · · xcd

⎤
⎥⎦ (8)

To the particle xi, each row of the center matrix (xi1,xi2, ...,xid) denotes the clus-
ter center with d dimensions. There are P number of particles that composed a swarm
of FPO-FCM. In FPO-FCM algorithm, we need a function for evaluating the general-
ized solutions called fitness function. In this paper, equation (5) is used for the fitness
function. The smaller is Jm(V,X), the better is the clustering effect and the better is the
individual fitness function. The FPO-FCM algorithm can be stated as follows:

Algorithm 4. FPO-FCM
Initialize population: popsize
Initialize the sample data
Initialize the total number of iteration tmax

Initialize pbest for each particle and gbest for the warm
while t ≤ tmax do

if rand <
f itness(xi)

n
∑

i=1
f itness(xi)

then

get a chance to update its position x(i, j) = newx(i, j)
for each center do

Generate a new position by (6)
end for
for each position of particle do

Use the elitism strategy function
end for

end if
For all population use the elitism strategy function
Update the clustering center

end while
Partition the data set with the final clustering centroids
Output the final clustering centroids and classified data sets

The performance of FPO-FCM is verified by several widely used data sets in the
pattern recognition literature.
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4 Experiments

4.1 Experimental Method

In this section, we compare the performances of FPO-FCM with FCM and QPSO-FCM
by using five different benchmark data sets that obtained from the UCI Machine Learn-
ing Repository. In Table 1, all of the data sets are multivariate data type. In particular,
Lung Cancer data set is a relatively higher dimensional data than the others. The num-
bers of instances and attributes are shown in third and fourth column of the table 1
respectively. Class distribution reflects the number of classes and the number of in-
stance in each class. Basically, the intra-cluster distance and inter-cluster distance are
used as clustering evaluation index in this paper.

Table 1. Benchmark data set description

Data Set Name Data Types Instances Attributes Class distribution
Iris Multivariate 150 4 (50,50,50)
Wine Multivariate 178 13 (59,71,48)
Breast Cancer Wisconsin (BCW) Multivariate 699 10 (458,241)
Wisconsin Diagnostic Breast Cancer Multivariate 569 32 (357,212)
Lung Cancer Multivariate 27 56 (8,10,9)

Intra−D = [
c

∑
i=1

∑
k∈ci

‖ xk − vi ‖2]/c (9)

Inter−D = ∑
i, j∈ci

‖ vi − v j ‖ (10)

QE =
n

∑
k=1

c

∑
i=1

(uik)
md2

ik(xk,vi) (11)

When the value of the intra-cluster distance is decreasing, it means that the data
partition is more accurate. On the contrary, when the value of inter-cluster distance is
increasing, the data partition is more accurate as well. Quantum Error equals to the
objective function of FCM which reflected the tightness of clustering.

In experiment A, four data sets (iris, wine, breast cancer wisonsin and Wisconsin
Diagnostic Breast Cancer(WDBC)) are selected to test the performance of FPO-FCM
comparing with K-means, FCM and QPSO-FCM. Each of hybrid fuzzy swarm algo-
rithms was run with 100 iterations and a population size of 30 on each data set. The test
environment and experimental execution parameters are shown in Table 2 and Table 3
respectively.
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Table 2. Evaluation test environment

OS Windows 7
Processor Intel(R) CoreT M i7 CPU 2.80GHz
Memory (RAM) 8.00GB
System type 64-bit operation system
Tool MATLAB 7.10.0

Table 3. Parameters Setting of experiment A

Experiment A Algorithm Parameters
Population=30 FCM m=2
Max iteration=100 QPSO-FCM m=2, α ∈ [0.5,1.0]
Run Number=50 FPO-FCM m=2, c=2, ω ∈ [0.2,1.0]

Table 4. Experimental results of A

Dataset� Algorithms Error Distribution Intra-D Inter-D QE Accuracy (%)

Iris

K-means (0,3,13) 0.4483 1.0942 1.2393* 89.33
FCM (0,7,6) 0.3742 1.0409 1.2701 91.33
QPSO-FCM (0,8,4) 0.0065 0.0112 1.1957 92.00
FPO-FCM (0,2,9) 0.0062 0.0122 1.1953 92.67

Wine

K-means (13,21,19) 0.0476 0.2383 0.1429* 70.22
FCM (13,20,23) 0.0570 0.1804 6.2100 68.54
QPSO-FCM (2,18,29) 0.0033 0.0117 5.6024 72.47
FPO-FCM (10,21,17) 0.0025 0.0150 5.5827 73.03

BCW

K-means (11,18) 275.6728 0.9629 551.3456* 95.85
FCM (14,4) 271.7616 0.9212 258.0470 97.42
QPSO-FCM (61,17) 335.8733 0.2877 296.6230 88.84
FPO-FCM (5,7) 266.2934 1.1054 256.6245 98.28

WDBC

K-means (83,0) 1.4610 0.1447 2.9219* 85.41
FCM (0,86) 1.7658 0.0897 1.9173 84.89
QPSO-FCM (0,77) 1.4462 0.1352 0.0018 86.47
FPO-FCM (87,0) 1.7720 0.1317 2.0719 84.71

� Each data set is normalized within a range of [0.1,0.9]

* the Quantum Error of K-means algorithm is defined as: QE =
c
∑

i=1

Ni

∑
k=1

d2
ik(xk,vi)

* Where c is the total number of clusters and Ni is the count of data in each cluster

4.2 Experimental Results

Table 4 resumes the clustering results of FPO-FCM, K-means, FCM and partly re-
sults of QPSO-FCM obtained from our previous work [6]. Error distribution reflects
the number of instances that were wrongly assigned to each class. The intra-cluster dis-
tance, inter-cluster distance and quantum error are used as clustering evaluation indexes



Fuzzy Clustering with Fitness Predator Optimizer for Multivariate Data Problems 163

for all of the algorithms. The statistical results including four kinds of clustering eval-
uation indexes and accuracy show that FPO-FCM is able to provide very competitive
results on each benchmark data set partition.

In experiment B, a relatively high dimensional data set, lung Cancer data, is selected
to evaluate the performance of FPO-FCM comparing with K-Means, FCM and QPSO-
FCM. The FPO-FCM and QPSO-FCM terminating condition are limited in 500 consec-
utive iterations and a population size of 30 for both of them. All execution parameters
in experiment B are shown in Table 5.

Table 5. Parameters setting of experiment B

Experiment B Algorithm Parameters
Population=30 FCM m=2
Max iteration=500 QPSO-FCM m=2, α ∈ [0.5,1.0]
Run Number=30 FPO-FCM m=2, c=2, ω ∈ [0.2,1.0]

The lung cancer data set described 3 types of pathological lung cancers. In the orig-
inal data, five instances were missing some feature values, as such only 27 vectors are
collected as our experimental samples. These three clusters are more likely to highly
overlap according with [5], so finding the clusters is very difficult. Figure 2 shows the
convergence curve of FCM with lung cancer data set. Obviously, the FCM model is
trapped into local minima and cannot improve the objective function value after the
fourth iteration.
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Fig. 3. Comparison of convergence curves between FPO-FCM and QPSO-FCM

Figure 3 shows the convergence curves between FPO-FCM and QPSO-FCM in lung
cancer data set. All of algorithms constantly minimize objective functions of clustering
within 500 times of the iteration. Compared with QPSO-FCM, the FPO-FCM has a
faster speed and higher convergence rate during the iteration process.

Table 6. Experimental results of B

Dataset� Algorithms Error Distribution Intra-D Inter-D QE Accuracy (%)

lung cancer

K-means (2,7,4) 19.8399 3.0913 59.5198* 51.85
FCM (4,5,4) 23.5750 1.18e-11 13.3180 51.85
QPSO-FCM (3,4,6) 23.6350 1.5895 13.1833 51.85
FPO-FCM (4,3,2) 22.8330 0.9592 12.7418 66.67

� The data set is normalized within [0.1,0.9]

* the Quantum Error of K-means algorithm is defined as: QE =
c
∑

i=1

Ni

∑
k=1

d2
ik(xk,vi)

* Where c is the total number of clusters and Ni is the count of data in each cluster

Table 6 resumes the lung cancer data’s clustering results of K-means, FCM, QPSO-
FCM and FPO-FCM. Due to the highly overlapping character of clusters in lung cancer,
the precision of all of the algorithms is dramatically decreased compared with experi-
ment A. However, the FPO-FCM has a higher clustering accuracy than the others. The
experimental results show that the proposed algorithm has a good robustness for the
high dimensional and overlapping clusters in data set.
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4.3 Discussion

According to the results of experiment A, it is easy to see that FPO-FCM shows its
competitive global search ability on the three benchmark data sets except Wisconsin
Diagnostic Breast Cancer (WDBC) data. The best classification results of WDBC in ex-
periment A is the QPSO-FCM algorithm. We think that this is because QPSO has better
global search ability for the clustering of space partition that resembles the shape of a
completely round ball. Then QPSO-FCM demonstrates its superior performance to the
WDBC that with the similar space distribution. In experiment B, the lung cancer data
set is a fairly difficult clustering problem due to its high dimensions and overlapping
clusters. In table 6, the intra-distance index and the inter-distance index of K-means
algorithm is better than the others. However, the K-means algorithm has not worked
as well as expected. One of the reasons is that using euclidean norm as similarity cal-
culation formulation may not fit for the overlapping cluster such as lung cancer data
set. Despite of it, FPO-FCM is still able to escape the trap of the suboptimal values of
objective function and to find the global minimum.

5 Conclusion

In this study, a cluster optimization methodology is proposed based on the Fitness
Predator Optimizer (FPO) algorithm. The proposed approach deals with the modified
FPO algorithm for fuzzy clustering optimization. In the proposed new hybrid fuzzy
clustering algorithm (FPO-FCM), the position of each particle represents a set of clus-
tering centroids, a number of particles composed of a swarm of FPO-FCM. The ob-
jective function Jm(U,V ) of FCM is used for evaluating the generalized solutions. The
experimentation is done with five benchmark data sets covered examples of data from
low and high dimensions. Compared with traditional algorithms (K-means and FCM)
and hybrid swarm algorithm (QPSO-FCM), FPO-FCM has a higher robustness and bet-
ter global optimization ability of clustering partition.
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Abstract. In this work, we analyze crossover and mutation operators
for traffic signals optimization aiming to understand the problem from
a system level perspective. We use MATSim to simulate the transport
system of the business district of Quito (Ecuador) with 20000 agents
moving in a one-day congested scenario. We relax the usual assumption
of common cycle length for all signals and minimize travel time focusing
on the optimization of 11 consecutive signals located in a main road. We
study individual and combined effects of crossover and mutation for cycle
length, offset, and green times. The results of this study provide valuable
insights to know better the problem, validate the mobility scenario, and
understand the effects of the operators.

1 Introduction

Population growth and urbanization trends have increased the demand of road
networks causing congestion. This adds substantial costs, increases gas emissions,
and the risk of accidents. A way to alleviate traffic congestion is to make better
use of the existing roads, which can be achieved in part by a properly setting
traffic signals. Essential parameters of a traffic signal are cycle length, green
times of the phases bounded by the cycle length, and the offset between the
beginning of the cycle of consecutive signals. Common measures to evaluate the
performance of a network are average delay, travel time through the network,
number of stops, or some combination of these. The choice of a measure of
performance depends on the type of traffic that should benefit ( e.g. private and
commercial vehicles, public transportation, pedestrians and cyclists); societal
objectives (e.g. safety, priority to businesses, reduction of emissions); and cost
of traffic congestion (e.g. delay, fuel consumption). Clearly there are tradeoffs
among these objectives.

There are many suggestions for setting traffic signals, ranging from statisti-
cally based methods developed in the early 60’s to adaptive and cooperative
methods that use actual flow information supplied by traffic detectors [12]. Here
we consider a system for offline optimization. Most works in the literature focus
on optimization for single intersections or coordination of signals along a main
road [12], where genetic algorithms are among the preferred optimizer [8,11,2,7].
A typical optimization formulation involves a common cycle length, green times
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for the phases and offsets [11,12]. Assuming a common cycle length simplifies
the complexity of the problem. Nonetheless, the search space still is vast and the
evaluation of a candidate solution could be very costly, especially when some
form of simulation is performed to compute the objective function values. Use-
ful knowledge about traffic management has been gained from previous studies.
Unfortunately, this knowledge is not readily applicable to highly congested net-
works. In addition, transport networks differ substantially from one another and
we need to understand the particularities of the system and validate the model
used for optimization.

We consider the optimization of traffic signals as one important component in
the design of a sustainable transport system, where mobility, societal and eco-
nomical aspects should be considered. In this work we relax the assumption of
common cycle length for all signals and focus on the optimization of 11 consecu-
tive signals located in a main road of a real-world scenario. We use MATSim [1],
a multi-agent transport system simulator, to simulate the transport system of
the business district of Quito (Ecuador) with 20000 agents moving in a one-day
congested scenario. We study the individual and combined effects of operators
for crossover and mutation of cycle length, offset, and green times minimizing
travel time. Analyzing congested scenarios is a complex task, especially when sev-
eral optimization objectives related to sustainability are present. Here, our main
objective is to understand the kind and range of optimal signal configurations
when travel time is optimized without considering other important objectives.
The results of this study provide valuable insights to know better the problem,
validate the mobility scenario, and understand the effects of the operators.

2 Problem Formulation

The traffic signals optimization problem aims to coordinate traffic signals in
order to provide smooth flow of traffic along streets and highways to reduce
travel times, stops and delays[10]. A transport network can be represented by a
directed graph G = (N,A), where N represents nodes and A represents links.
The travel time for a given vehicle is

tia = txia − teia a = 1, ..., A; i = 1, ..., V, (1)

where tia represents the travel time on link a for vehicle i, txia denotes the time
vehicle i exited link a (see Fig.2), teia denotes the time vehicle i entered link a, V
is the number of vehicles being simulated, A is the number of links in network,
e is the enter node and x is the exit node [9].

In this work, we minimize average travel time expressed by

min

∑V
i=1

∑A
a=1 tia

V
(2)

subject to signal timing design and feasibility constraints shown in Eq.(3)- Eq.(9)
[11].
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The principal components of a traffic signal are cycle length, phase, off-
set, stage, green and inter-green time. Cycle length is the time in seconds
required for one complete color sequence of the signal. A phase is the set of
movements that can take place simultaneously or the sequence of signal indica-
tors received by such movements. Offset is the time lapse in seconds between
the beginning of a a corresponding green phase at an intersection and the be-
ginning of a corresponding green phase at the next intersection. One stage is a
green and inter-green time sequence. The list of principal components are sum-
marized in Table 1. Fig.1 illustrates a traffic signal that models two traffic flows
in orthogonal directions.

Equations Eq.(3) - Eq.(5) represent the range for cycle length Ch, offset θh
and green time φh,r, respectively. Chmin is determined by identifying the signal
that needs the longest duration just to accommodate the inter-green times and
the minimum green times as shown in Eq.(6). Cmax is set to 120 seconds [10].
Inter-green is 3 seconds and minimum green time duration is 7 seconds for all
signals as shown in Eq.(7).

Chmin ≤ Ch ≤ Chmax (3)

0 ≤ θh ≤ Ch − 1 (4)

φh,rmin ≤ φh,r ≤ φh,rmax (5)

Cmin = Max

{(
Sh∑
r=1

φh,r +

Sh∑
r=1

Ih,r

)
: h = 1, 2..., N

}
(6)

φh,rmin = 7 sec ∀h, r (7)

Ch =

Sh∑
r=1

φh,r +

Sh∑
r=1

Ih,r ∀h (8)

φh,rmax = Ch −
Sh∑
r=1

Ih,r −
Sh∑

y=1y �=r

φh,ymin (9)

Table 1. Notation

Variable Description

Ch Cycle length at signal h
θh Offset at signal h
φh,r Green time at signal h for stage r (phase)
Ih,r Inter-green time signal h for stage r (phase)
Sh Total number of stages (phases) at signal h
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Fig. 1. Traffic Light Components

Fig. 2. Optimization System Fig. 3. Area of Study

Eq.(8) ensures that the sum of the green times in a signal together with inter-
green do not exceed the cycle length set for the signal. Eq.(9) establishes the
maximum green time for the signal phase based on the cycle time, inter-green
and minimum green time.

3 Method

3.1 Transport Simulation and Optimization Algorithm

In this work, we use evolutionary algorithms to find optimal signal settings of
a transportation system in order to minimize average travel time. Fig.2 illus-
trates the interaction of the various components of the optimization system. The
evolutionary algorithm (EA) evolves a population of candidate solutions, each
solution represents a configuration of signals (signal control) for the transporta-
tion system. At each iteration, the evolutionary algorithm calls the transport
simulator for each candidate solution in order to evaluate it. Once all solutions
are evaluated, the evolutionary algorithm continues to the next iteration.

We use the Multi-agent Transport Simulator MATSim [6]. MATSim allows
micro-simulation of the transport system producing detailed information about
the behavior of the agents being modeled. MATSim receives initial mobility



Influence of GA Operators Over Traffic Signal Settings Optimization 171

Fig. 4. Chromosome Representation

plans for a set of agents and a model of the transport infrastructure as inputs.
It simulates traffic following the plans of the agents trying various routes and
iterates to optimize plans and routes for all agents in order to provide a system
in an equilibrium state. The network equilibrium model refers to a Wardrop
user equilibrium (UE) condition [13]: A stable condition is reached only when
no traveler can improve his travel time by unilaterally changing routes. To run
a scenario with traffic lights, MATSim simulates traffic lights microscopically
using fixed-time controls [4].

Before we run the optimizer, we first run MATSim until it reaches an equilib-
rium state. When the optimizer calls MATSim to evaluate a solution, MATSim
starts from the equilibrium state setting its signals controls with the tentative
solution provided by the optimizer and runs one additional iteration. The out-
put collected from that iteration of the simulator is used to calculate travel time
using Eq.(2), which is passed as fitness of the solution to the optimizer.

3.2 Evolutionary Algorithm (EA)

Representation. A signal S in junction h is represented by set of integer
variables expressed by

Sh = (Ch, θh, φh,1, · · · , φh,r) , (10)

where Ch is cycle length, θh is the offset, and φh,1, · · · , φh,r are the green times
for the r phases of the signal. The ranges and constrains of these variables are
given in Eq.(3)-(9). Signal Sh represents one gene and a set of signals form
the chromosome of an individual; a solution with a complete specification of
the signals considered for optimization. Fig.4 illustrates the representation of a
solution with h signals, each one with two phases.

Algorithm. In this work we use a simple elitist evolutionary algorithm, which
general flow is shown in Procedure 1. The main steps of the algorithm are as
follows:

Initial Population. The populationP can be initialized as a combination of pre-
settings, mutation of the pre-settings, and randomly creating individuals. De-
tails of how the initial population is created in this work are included in
Section 4.2.

Parent Selection. Individuals are selected to reproduce using binary tourna-
ments among randomly sampled solutions from the population P . The win-
ner of a tournament is decided based on fitness.
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Procedure 1. Evolutionary Algorithm

1: P ← Initial Population()
2: Evaluation (P )
3: repeat
4: P ′ ← Parent selection(P )
5: Q ← Recombination and mutation (P ′)
6: Evaluation (Q)
7: P ← Survival selection (P , nElite, Q)
8: until condition is met

Recombination and Mutation. The offspring population Q is created apply-
ing crossover to the selected parents with probability Pc followed by muta-
tion. There is one operator of mutation per variable of the signal. Pm

(Ct),
Pm

(Ot), and Pm
(Gt) are mutation probabilities for cycle, offset and green

times, respectively. To mutate, we first decide which mutation operator will
be applied using the probabilities of the operators. Then we apply the chosen
mutation operator with probability Pm per signal.

Evaluation. To evaluate each individual we first run the traffic simulator. The
parameters of the simulation are the signals settings contained in the vari-
ables of the individual. The fitness value of the individual is calculated from
the output of the simulation using Eq.(2).

Survival Selection. The nElite best individuals from the current population
P and the offspring population Q are combined. For the next generation, we
select the best |P | individuals from this combined population.

Operators. To create offspring we follow the representation described above
and employ one crossover operator and three mutation operators for cycle length,
offset, and green times, respectively. In the following we explain each one of them.

Crossover. In this work we implement one point crossover taking each signal
as an atomic unit. The crossing point is selected randomly with equal prob-
ability in the range [1,h - 1], where h is the number of signals. Then the
crossover operator interchanges complete signals between parents.

Cycle Length Mutator. This operator increases or decreases randomly with
equal probability the cycle length of a signal using step size stepCt. If the
new cycle length is out of the specified range, we adjust it accordingly to be
either Chmin or Chmax. After that, it is necessary to check whether offset
time violates its constraint. If offset is larger than the new cycle length, it is
reset to new cycle length - stepOff , where stepOff is the offset step size.
Finally, for each signal phase the green times are adjusted proportionally to
the new cycle length. Due to the correlation of offset and green times to the
cycle length, this operator may act as a macro-mutation operator.

Green Time Mutator. This operator decreases the green time of one phase
and adds it to another phase using step size stepGt. To determine the phase
that will decrease its green time, we randomly visit the phases until we find
one in which the decrement does not violate the constraint for minimum
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green time φh,rmin. The phase to which the green time is added is also
determined randomly among all phases, except the one in which time was
reduced.

Offset Time Mutator. This operator increases or decreases randomly with
equal probability the offset time of a signal using step size stepOff . If offset
becomes negative, it is reset to 0. Likewise, if offset is greater than the
maximum cycle length Chmax, it is reset to Chmax - stepOff .

4 Simulation Results and Discussion

4.1 Mobility Scenario and MatSim Simulation

The geographical area of study is the business district of Quito (Ecuador), which
covers approximately 7x3 Km2 as shown in Fig.3. For this experiment, the area
takes into account only the primary and secondary pathways which free speeds
are in the range from 30 to 80 Km/h. The network has 1000 links approximately
and comes from Geofabrik and OpenStreetMap[3].

The number of simulated agents is 20000. The mobility plan for each agent
consists of three main trips: (1) home to work, (2) work to leisure, and (3)
leisure to home (see Fig.2). The plans are designed so that all agents move first
from south to north, completely crossing the geographical area of study. In their
second trip, the agents move from north to the central zone of the area under
study and in their last trip from the central zone to the south. Eleven signal
lights are located in a main two-way street with flows in south-north and north-
south directions. We run the multi-agent transport simulator MATSim for 500
iterations, making sure it reaches a user equilibrium state without setting any
traffic signal. The traffic simulation period is for 24 hours. It takes approximately
1 hour and 30 minutes of computation time to run MATSim for this number of
iterations. Traffic signals are optimized using the equilibrium state as an initial
condition.

4.2 Evolutionary Algorithm Experimental Setup

We set the number of elite individuals nElite=10 and use a fixed population size
of 21. The initial population is created deterministically as follows. We prepare
21 cycle lengths in the range [20, 120] seconds in steps of 5. All solutions are
set with a different cycle length, but all signals of a solution are set to the same
cycle length. The offset times of all signals are set to zero and green times per
phase are set to the same value according to the cycle length, i.e. green time
= (cycle length - inter-green) /2. That is, all signals are synchronized but not
coordinated.

We conduct 10 experiments using different settings for the probabilities of
the operators. All experiments start with the same initial population and use
the same random seed. The parameters used for each experiment are detailed in
Table 2, where Pc is the probability of recombination, Pm is the probability of
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Table 2. Experiment Settings (EA Parameters)

Exp. Pm Pm(Ct) Pm(Ot) Pm(Gt) Pc Comments

E01 0 - - - 1 only crossover

E02 2/11 0 0 1 0 only green time mutation
E03 2/11 0 1 0 0 only offset time mutation
E04 2/11 0 0.5 0.5 0 offset and green time mutation
E05 2/11 1 0 0 0 only cycle time mutation
E06 2/11 0.5 0.5 0 0 cycle and offset time mutation
E07 2/11 0.5 0 0.5 0 cycle and green time mutation
E08 2/11 0.5 0.3 0.2 0 cycle,offset and green time mutation

E09 2/11 0.5 0.3 0.2 0 mutation 100 generations
E10 2/11 0.5 0.3 0.2 1 mutation and crossover 100 generations
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mutation per signal, and Pm
(Ct), Pm

(Of) and Pm
(Gt) are mutation probability

for cycle length, offset and green time, respectively. For each experiment we
run the algorithm just once. The first eight experiments run for 50 generations,
whereas the last 2 run for 100 generations. It takes in average 70 seconds to
evaluate one individual. The mutation steps are set to stepCt=5, stepOff=10,
stepGt=3 for cycle, offset and green time respectively.

4.3 Results

Fig.5 shows the average travel time (fitness) in seconds of all solutions in the
initial population. Note that the smallest travel time is achieved when cycle
length is set to 25 seconds for all traffic lights. Increasing cycle length from 25
to 110 seconds in steps of 5 linearly increases travel time. It is well known that
shorter cycle lengths usually result in reduced delays [10]. The cycle length trend
observed for the mobility pattern studied here is in accordance with the above
statement. However, note that the minimum cycle length of 20 seconds tried
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here does not lead to the smallest travel time. Also note that the travel time
trend is reversed for cycle lengths above 110, i.e. travel time reduces linearly for
cycle length 115 and 120. Fig.6 shows the configuration (Ct, Off, G1, G2) of all
eleven signals in the solution with smallest travel time in the initial population.

Next, in order to study the impact of optimizing independently cycle length,
offset, and green times, we analyze one experiment using recombination with-
out mutation (E01) and seven experiments (E02-E08) using mutation without
recombination. All experiments start with the same initial population shown in
Fig.5 and use the same random seed.

Fig.7 shows the travel time transition of the best solution found so far over the
generations for the eight experiments and Fig.9 shows the signal configuration of
the best solution for some experiments. From these figures, it is worth mentioning
the following. Experiment E01 performs only crossover without mutation (Pc =
1, Pm = 0), which has the effect of recombining the different cycle lengths of
the signals in the initial population without changing their initially set offset
and green times. In this case, travel time improves until generation 16 and the
best solution includes signals with cycle length 20, 25, 30 and 35 as shown in
Fig.9(a). This shows that a better overall system configuration can be found
by having different signals set with different cycle lengths. This fact is crucial
because a large number of works focus on the optimization of groups of signals
that are assumed to be synchronized or coordinated, i.e. cycle length is a variable
considered for optimization but all signals are assigned the same cycle length.
The problem with these approaches is that it is not possible to know in advance
which signals have to be coordinated and assigned the same cycle, as shown by
this simple experiment.

ExperimentE02 thatmutates green times (Pm
(Gt) = 1) could not find a solution

better than the best solution of the initial population becausemutating green times
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of the best and second best initial configurations (Ct, Of, G1, G2)=(25,0,10,9) and
(20,0,7,7), respectively, violates the minimum and maximum allowed green times.
Remember that, in this work, the green time mutation step (stepGt) is set to 3
seconds. Also, improvement in other solutions is not large enough to surpass the
best configuration of the initial population.

Experiment E03 tests the effect of mutation on offset of traffic signals
(Pm

(Of) = 1). Offset parameter is the only one that is independent of the cycle
length and green times, and it is used to coordinate signals in order to induce
green waves [5]. As Fig.7 shows, travel time improves until generation 17 and
then it stagnates. Note however, that travel time is considerably better than
by experiment E01. From Fig.9(b) note that the only difference with the best
configuration of the initial population is the offset for each signal. This results
is in agreement with previous efforts where improvements are achieved by signal
coordination, i.e. common cycle and different offsets. Experiment E04 mutates
offset and green time (Pm

(Of) = 0.5 , Pm
(Gt) = 0.5), which leads to the same

solution of experiment E03, where only offset was mutated. This is because green
time mutation violates the minimum constraint, similar to experiment E02.

E05 mutates exclusive cycle length (Pm
(Ct) = 1). Note that travel time re-

duces substantially compared to the previous experiments as shown in Fig.9(c).
Although the operator is directed to cycle length it also affects green times, be-
cause when cycle changes green times must also be adjusted accordingly, up or
down, to be within the limits imposed by the newly mutated cycle length. Exper-
iment E06 mutates cycle length and offset with same probability (Pm

(Ct) = 0.5,

Pm
(Of) = 0.5), which leads to a slightly better travel time than E05 that only

mutates cycle length.
E07 mutates cycle length and green times with equal probability (Pm

(Ct) =

0.5, Pm
(Gt) = 0.5). Note that this experiment leads to the best travel time. E08

mutates cycle length, offset, and green times with larger probability for cycle
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length (Pm
(Ct) = 0.5, Pm

(Of) = 0.3, Pm
(Gt) = 0.2), which leads to the second

best travel times of the experiments included in this figure. E07 clearly shows
that mutating green times in addition to cycle length contributes to reduce travel
time, but the addition of offset mutation in E06 and E08 seems not to improve
the effectiveness of the search in the scenario studied here. Fig.9(d) shows the
signals configurations of the best solution found by experiment E07.

Next, in experiment E10 we analyze the combined effect of crossover and
the three mutation operators for cycle length, offset and green times (Pc=1.0,

Pm
(Ct) = 0.5 , Pm

(Of) = 0.3,Pm
(Gt) = 0.2). For this experiment, we allow the

algorithms to run for 100 generations instead of the 50 used in the experiments
before. For comparison, we run experiment E08 again also using 100 generations
and call it E09. Note that in E09 the three-mutation operators are used with
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the same probabilities as in E10 but no crossover is used. Results by these
experiments are shown in Fig.8. Note that the inclusion of crossover in E10
makes the algorithm converge faster. However, E09 produce a solution with a
slightly better travel time. From Fig.9(e) and Fig.9(f) note that although the
travel time only differs by six seconds the configurations for the individual signals
are different.

5 Conclusions

In this article, we have analyzed the effects of different EA operators for traffic
signals optimization. We performed a system-level optimization of 11-traffic sig-
nals simulating the mobility of 20000 agents on a 21Km2 area of Quito (Ecuador).
MATSim was used as the transport simulator. Ten experiments were configured
and tested for evaluating different combinations of operators for cycle length
mutation, offset mutation, green times mutation and crossover. We found that
operators related to cycle length show better results than the other operators
related to green times and offsets. The combination of cycle length mutation and
green times produces the best results in terms of travel time. The incorporation
of crossover did not lead to better travel time, but it speeded up convergence,
which could be important in this computationally expensive problem. An impor-
tant finding of this study is that heterogeneous cycle lengths reduce significantly
travel time compared to settings where a common cycle length is used for all
signals. The results of this study provide valuable insights to explain better the
problem, validate the mobility scenario, and understand the effects of the opera-
tors. In the future, we would like to explore other operators with more complex
mobility scenarios and extend the problem formulations to deal with multiple
objectives to design sustainable transport systems.
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Abstract. Web services are independent functionality modules that can
be used as building blocks for applications that accomplish more specific
tasks. The large and ever-growing number of Web services means that
performing this type of Web service composition manually is unfeasi-
ble, which leads to the exploration of automated techniques to achieve
this objective. Evolutionary Computation (EC) approaches, in particu-
lar, are a popular choice because they are capable of efficiently handling
the complex search space involved in this problem. Therefore, we propose
the use of a Genetic Programming (GP) technique for Web service com-
position, building upon previous work that combines the identification
of functionally correct solutions with the consideration of the Quality
of Service (QoS) properties for each atomic service. The proposed GP
technique is compared with two PSO composition techniques using the
same QoS-aware objective function, and results show that the solution
fitness values and execution times of the GP approach are inferior to
those of both PSO approaches, failing to converge for larger datasets.
This is because the fitness function employed by the GP technique does
not have complete smoothness, thus leading to unreliable behaviour dur-
ing the evolution process. Multi-objective GP and the use of functional
correctness constraints should be considered as alternatives to overcome
this in the future.

1 Introduction

With the popularisation of the Internet, Web services have become feasible build-
ing blocks for applications. Web services can be defined as independent function-
ality modules that are used for achieving specific tasks, and that can be accessed
via a network communication protocol. The combination of services in order to
create a larger application is known as Web service composition [11], a technique
that encourages component reuse and consequently leads to the expedient de-
velopment of software solutions. Even though Web service composition can be
performed manually, the number of services has been growing so quickly that
doing so could prove to be quite time-consuming, particularly when selecting
between many services with the same functionality but different non-functional
attributes. As a result, significant research efforts have been invested to identi-
fying and developing techniques for the automated composition and selection of
services.
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Applying Evolutionary Computation (EC) approaches to Web service compo-
sition and selection is a popular direction of investigation, since EC techniques
employ non-deterministic strategies for discovering solutions and thus are ca-
pable of efficiently handling large search spaces (i.e. large numbers of possible
service combinations) [13]. The goal of this work is to present an alternative
QoS-aware Web service composition approach using GP, introducing the idea
of a fitness function with separate ranges of values to differentiate between the
composition solutions that are not fully functionally correct and those that are.
This work assumes knowledge of genetic programming [6] and particle swarm op-
timisation techniques [8]. This paper is organised as follows: Section 2 presents
a brief overview of the research on GP and PSO conducted in this area. Sec-
tion 3 presents the improved GP approach. Section 4 briefly reviews the two
PSO approaches used for the comparison and presents the details of the com-
parative evaluation. Section 5 analyses the evaluation results while section 6
briefly presents further investigations that we attempted to improved our GP
approach. Section 7 concludes this paper and discusses future work possibilities.

2 Background

2.1 Problem Description

The basic idea behind Web service compositions is to meet user task require-
ments by combining services into a composition with appropriate functionality.
However, this fundamental process only takes into account how well the inputs
and outputs of the services within the composition match, meanwhile overlook-
ing important non-functional requirements such as execution time and reliability.
A more sophisticated approach is to consider the Quality of Service (QoS) mea-
sures [10] of each service when performing the composition, in what is known as
a QoS-aware Web service composition. While many different Web service quality
measures exist, four of them have appeared consistently in previous works [7,20]:
the probability of a service being available for execution (A), the probability of
a service conforming to previously estimated execution times (R), the estimated
time limit between sending requests and receiving responses (T ), and the ser-
vice’s financial execution cost (C). A and R are expressed as probabilities, where
the highest values denote the highest quality, and T and C are absolute figures,
where the lowest values denote the highest quality.

Commonly usedWeb service composition languages, including BPEL4WS and
OWL-S, support four basic constructs for configuring the interaction between
services: sequence, parallel, choice and loop [20]. A number of papers only con-
siders sequence and parallel constructs [20,5], and the same applies to this work.
These two constructs are described as follows:

– Sequence Construct: The services organised using the sequence construct
are executed sequentially, which means that the output of the first service
feeds into the input of the second in a chain. The total time (T ) and cost (C)
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of this construct can be calculated simply by adding the individual property
values from each service in the sequence. As probabilities, the availability
(A) and reliability (R) are calculated by multiplying the individual property
values from each service.

– Parallel Construct: The services organised using the parallel construct
are executed in parallel, which means that the inputs of each service must
be fulfilled independently and that the outputs are consequently also pro-
duced independently. The cost, availability and reliability (C,A,R) of this
construct are calculated in the same way as in the sequence construct. The
total time (T ), on the other hand, is calculated by selecting the highest
individual execution time out of all services.

2.2 Objective Function

An objective function must be employed to perform QoS-aware service compo-
sition. This function ensures that desirable quality properties are maximised in
the solutions to a composition task [2]. In accordance to the four QoS values cho-
sen in this work, the following objective function was employed for a candidate
solution i:

fi = w1Ai + w2Ri + w3(1− Ti) + w4(1− Ci) (1)

where
∑4

i=1 wi = 1.
The QoS attributes used in this function are calculated according to the strate-

gies described above for each sequential and parallel construct in the overall com-
position. The output of this objective function is within the range [0, 1], where
1 represents the best possible composition quality and 0 represents the worst.
As the function weights (w1 to w4) all add to 1, the T and C values must be
normalised between 0 and 1 so that the overall result falls within the required
range. To perform this normalisation, C is divided by the sum of costs in all
the services that could possibly be in the composition, and T is divided by the
sum of times of these services. The services that are possibly in the composition
can be identified using a simple discovery algorithm outlined in previous works
[17,16]. Finally, as the lowest possible T and C values represent the best quality,
the objective function must be offset using (1− T ) and (1− C).

A key aspect in the comparison performed in this work is that it utilises
the same objective function for all the techniques compared. This consistency
is important because it means that the results of the comparison are fair with
regards to the composition quality measure.

2.3 Existing GP-Based Composition Approaches

Genetic programming is a popular EC technique for performingWeb service com-
position. In [12,15] a GP approach is proposed that guarantees functional correct-
ness by generating the initial population candidates according to a context-free
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grammar. After the initial generation of candidates, any genetic operation to the
trees is also guaranteed to maintain the functional correctness by checking that
inputs and outputs match. The authors claim to have supported all composition
structures present in the OWL-S and BPEL4WS models, but the context-free
grammar upon which this work is based does not seem to support loop con-
structs. Their work was tested using a collection of composition problems and
large service repositories, with favourable results for all runs. The positive re-
sults demonstrate that this is a robust approach. An important limitation of
this work is that it does not consider QoS measurements, instead assuming that
the minimum execution path needed to achieve a solution in the measure of its
quality (e.g., the depth of the tree [12]).

Similarly, [17] proposes a technique in which all initial candidate compositions
are functionally correct, and any subsequent candidates must also be functionally
correct. This approach is more accurate than [15], since the latter may generate
candidates that are functionally correct but do not relate to the original compo-
sition task, thus requiring the imposition of additional penalties by the fitness
function. In the case of [17], on the other hand, all candidates in all populations
are both guaranteed to be functionally correct and also guaranteed to fulfil the
original task’s need. This is accomplished by utilising a greedy search algorithm
that generates suitable composition candidates and subtrees during mutation. It
must be noted that the fitness function in this work relies on the total number
of unique web services as its measure of goodness, but does not consider QoS
measurements.

[19] investigates the use of GP for Web service composition by proposing a
dedicated composition framework. This framework uses a fitness function that
incorporates the results from black-box testing using automatically generated
use cases, as well as taking into account the overlap between inputs and outputs
of each solution’s subtrees. The black-box testing ensures that the behaviour of
the generated candidates is correct, thus preventing compositions in which the
input and output names match but the behaviour of the combined services is not
logically compatible. The framework also relies on a Service Dependency Graph
to ensure that all generated candidates are functionally correct when performing
genetic operations. However, once again the proposed solution neglects to use
QoS measurements as the criteria with which to evaluate candidate compositions,
a pattern that is repeated in [4].

[20] proposes a genetic programming approach to solve the problem of Web
service composition, which is unique because it achieves both the goals of func-
tional correctness and non-functional Quality of Service through a single fitness
function. In contrast to process-driven composition approaches — where only
the input, output, and total number of services are considered —, this method
provides the benefit of evolving the final composition based on global QoS mea-
sures. Nevertheless, while this work does consider QoS measures, it does not
guarantee functional correctness for all composition candidates.
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2.4 Existing PSO-Based Composition Approaches

Web service composition using QoS-aware PSO techniques has been discussed
by several works, see [16]. In [3] a fitness function is proposed that considers the
availability, response and execution times, successful execution rate, and repu-
tation of each Web service to be included in the composition. This function is
employed in the PSO’s evolution process, where each particle dimension corre-
sponds to a Web service with the required functionality for the composition.
This approach assumes that the overall workflow in which each individual ser-
vice is to be placed has already been provided, which simply leaves particles to
discover the most suitable services for each workflow slot. While the preselection
of a workflow considerably facilitates the composition process, it requires either
a selection mechanism or a person with sufficient domain knowledge to make the
appropriate decision.

[18] carries on the idea of preselecting a workflow upon which to perform
PSO. Their main contribution lies in the utilisation of a multi-objective fitness
function to evaluate composition candidates. Multi-objectivity is ideal when the
goal is to maximise several, often conflicting, desirable attributes in a population.
For example, an ideal Web service composition would incur the lowest possible
cost while providing the highest possible availability. However, there is often a
trade-off between these two quality measures in a composition. The advantage
of a multi-objective function is that it allows the retrieval of a Pareto set of
solutions that are equivalent overall, despite being different from the perspective
of a single quality measure [14].

Despite once again preselecting a workflow to be optimised, [9] proposes a
unique method with which to update the position of the particles in the swarm.
The idea is to apply list of changes to each particle in order to update it, as
opposed to performing the usual numerical calculations. Effectively, particles
undergo a transformation process at every step of the PSO search, yielding
new workflow configurations. As this approach can lead to stagnant particles, a
technique to search solutions within the radius of a given candidate is also imple-
mented, thus diminishing the probability of early convergence on local optima.

3 Proposed GP Approach

The GP approach proposed herein is based on [20]. Candidates are represented
using trees where inner nodes consist of parallel and sequence constructs that
direct the flow of the composition, and leaf nodes consist of the Web services
used as basic components. Each parallel and sequence construct requires a set
of inputs and produces a set of outputs according to the nodes that compose its
subtree. The genetic operations employed are crossover, in which subtrees are
swapped, and mutation, in which a node is randomly selected and modified. This
particular tree representation is convenient because it allows the set of inputs,
outputs, and QoS values for each inner node to be calculated by performing a
simple depth-first tree traversal. Since this approach relies on the mutation and
crossover of the trees to explore the search space, it is capable of composing
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workflows with varying configurations while at the same time selecting the ser-
vices with the best QoS properties. However, it may generate solutions that are
not fully functional, so the fitness function that evaluates each candidate must
proportionally penalise those solutions with functionality issues.

3.1 Fitness Function

The novel contribution of the proposed approach is in its fitness function, which
maximises desirable QoS attributes while penalising solutions that are not en-
tirely functionally correct. This works similarly to the approach of [20], but
the difference is that the function produces two separate ranges of values, an
inferior range denoting partially functional solutions without considering QoS,
and a superior range denoting fully functional solutions with QoS. By creating
this separation, the fitness function priorities the achievement of full functional
correctness before considering non-functional properties.

The range of the fitness function is [−1, 1], where [−1, 0) corresponds to the
functional correctness of the solution (with 0 being a completely correct solu-
tion), and [0, 1] corresponds to the total QoS properties of a fully functional
solution, with 1 indicating the best quality. Before calculating the fitness func-
tion the candidate solution tree is traversed in a depth-first fashion, and within
each node both the functional (output and input matching) and non-functional
(QoS properties) aspects of the candidate are calculated.

In the case of the tree leaves, which represent atomic Web services, the non-
functional properties A, R, T and C are the values of those properties in that
service and the functional score is always 0 (i.e. not considered). In the case of
the inner nodes, which represent workflow configurations, the values of A, R, T
and C are calculated as explained in Subsection 2.1, treating each child node as
an atomic service.

It is impossible to evaluate the functional correctness of isolated parallel nodes
in the tree, since they simply hold services that should be simultaneously exe-
cuted and are thus unaware of the outside arguments provided to them. Because
of this, they do not contribute to the calculation of the functional score com-
ponent of a candidate’s fitness. For sequence nodes, on the other hand, the
functional score can be calculated by creating an average of the output-input
matches between each pair of child nodes, si−1, si in the sequence. This average
is calculated using the equation below, and results in a value in the range [0,1]:

average =

∑n
i=2

|outputi−1∩inputi|
|inputi|
n

(2)

where n is the number of children of the sequence node, outputi−1, inputi is the
output of service si−1, the input of services si, respectively.

This score is added to an overall running average of the candidate tree. Once
the entire tree has been visited, the match for the overall task inputs and outputs
is also calculated and added to the running average. Finally, this average is offset
using -1 and the functional score yields a value between -1 and 0. If the value



186 A.S. da Silva, H. Ma, and M. Zhang

is 0, that means that the solution is fully functional, so the objective function
introduced earlier (Eq. 1) is employed. Otherwise, the functional score is returned
as the fitness value. Thus, the fitness function for a solution i can be expressed
as follows:

fitness(i) =

{
fi if func(i) = 0

func(i) otherwise
(3)

where

func(i) = −1 +
w5(

|ini∩inreq|
|inreq | ) + w6(

|outi∩outreq|
|outreq| ) + treeScore(root)

2
,

w5 + w6 = 1 and treeScore(root) is a recursive function that traverses the tree
and calculates the average of the results obtained by applying Equation 2 to the
sequence constructs within the structure.

4 Design of Experiments

Experiments were carried out to compare the proposed GP approach with two
recent PSO approaches, graph-based PSO, and greedy-based PSO. The datasets
used for the set of experiments were generated in [20] using the QWS dataset [1]
as its basis, since currently no benchmark datasets are available for evaluating
QoS-aware web service composition. The exception to this is dataset 6, which is
based on dataset 5 but expanded with synthetically generated Web services in
order to test the scalability of the approaches. The datasets contain information
that has been collected online detailing the inputs, outputs, time, cost, reliabil-
ity, and availability of real Web services. Four different composition tasks were
used throughout this set of experiments, requiring the creation of composition
solutions of various sizes and complexities. Their details are displayed in Table 1.

Table 1. Experiment tasks

Task Inputs Outputs Dataset (No. of Services)

1 PhoneNumber Address 1(20)

2 ZipCode, Date City, WeatherInfo 2(30)

3 From, To, DepartDate,
ReturnDate

ArrivalDate, Reservation 3(60)

4 From, To, DepartDate,
ReturnDate

ArrivalDate, Reservation,
BusTicket, Map

4(150), 5(450), 6 (4500)

4.1 Two Recent PSO Approaches

The proposed GP approach was compared to two Web composition approaches
that rely on PSO. For reasons of brevity, only the key characteristics of each



A GP Approach to QoS-Aware Web Service Composition and Selection 187

PSO approach will be described here, however their full explanation can be
found in the original work from which they were reproduced [16]. For both of
these approaches, the fitness function employed in the evolutionary process is the
unchanged objective function presented in Subsection 2.2 (Eq. 1). This function
is different from that of the GP method presented in section 3 in that it does
not need to constrain functionality, so it only ranges from 0 to 1.

Greedy-Based PSO Approach. The greedy-based PSO approach [16] uses a
greedy algorithm, originally proposed in [17], to generate an initial Web service
composition workflow where services can be executed sequentially, in parallel,
or in a combination thereof. This workflow contains abstract slots for placing
services, each slot presenting a different set of available inputs and required
outputs. For each slot, a list of compatible services is compiled. PSO is then
employed to select the best possible service for each slot in order to arrive at
a solution with the best possible QoS attributes overall. Each particle is repre-
sented as having n dimensions, where n corresponds to the number of abstract
slots in the workflow, and each dimension points to a Web service from its list
of compatible services. In summary, in greedy-based PSO the structure of the
composition is determined first, and the services to populate that structure are
selected afterwards.

Graph-Based PSO Approach. The graph-based PSO approach [16] also
employs the greedy composition algorithm, but this time during the evolution-
ary process. Initially, the discovery of all services from the repository that could
possibly be used for the requested composition task is performed using a ba-
sic algorithm. Once the discovery is finished, a directed graph showing all the
input-output relationships between these services is created — this is referred
to as the master graph. The services in the master graph are represented as
nodes, and the relationships between them as edges. Each particle has k dimen-
sions, where k corresponds to the number of edges in the master graph. Each
dimension holds a value between 0 and 1, which represents a weight associated
with that edge. Since each particle only contains a series of weights, during PSO
it is necessary to extract the candidate composition workflow from the master
graph using the greedy algorithm. The algorithm is run aided by the weights in
the particle, meaning that edges with the highest weights are selected to be in
the candidate composition. After the workflow has been extracted its fitness can
finally be calculated. In summary, in graph-based PSO both the structure of the
composition and the services that populate it are selected simultaneously.

4.2 Parameters

Experiments were conducted on a personal computer with a 3.4 GHz CPU and
8 GB RAM. For GP, 50 independent runs were executed per dataset with a
population size of 1000 — smaller populations were previously attempted with
unsatisfactory convergence rates. Each run was required to continue until a fully
functional result was achieved, at which point 50 more iterations would occur and
the run would finish. The fitness function was configured with weights of 0.25 for



188 A.S. da Silva, H. Ma, and M. Zhang

all QoS properties, and of 0.5 for both w5 and w6. The crossover and mutation
probabilities were set to 0.9 and 0.1, respectively. The single best solution in one
generation was copied to the next.

For both PSO approaches, the same settings outlined in the original work were
preserved [16]. 50 independent runs were executed per dataset, all of them using
a swarm of 30 particles. Runs were allowed to execute a maximum of 100, but
were terminated earlier if the global best fitness remained the same throughout
10 iterations. The fitness function was configured with weights of 0.25 for all QoS
properties, the PSO inertia weight w was set to 1, and acceleration constants c1
and c2 were both set to 1. The greedy-based PSO approach was configured to
choose the initial composition workflow from 50 randomly generated candidates.

5 Results and Analysis

The results of the comparison are shown in Table 2, where the first column
records the dataset used and its total number of services, the second column
contains the composition task employed, and the third column shows the min-
imum number of services from that dataset which had to be used in order to
create a fully functional solution for the composition task. The fourth, fifth and
sixth columns present the fitness of the greedy-based, graph-based and GP ap-
proaches, respectively; the seventh, eighth and ninth columns show the execution
time of the greedy-based, graph-based and GP approaches, including setup times
associated with service discovery, creation of the master graph, etc. A Wilcoxon
signed-rank test at 0.95 confidence interval was carried out to verify whether
there was any statistically significant time or fitness differences between the
graph-based and the other two approaches. These differences are indicated in
the table as �, �, � and � symbols denoting significantly smaller and significantly
larger values, respectively.

The results show that our GP based approach has clearly worse execution
time than that of graph-based PSO approach and the greedy-based PSO
approach, though graph-based PSO has clearly worse execution time than that

Table 2. Average time and fitness results for each approach

Dataset
(No. of
Serv.)

Task
Min.
Cmp.
Size

Fitness Time (ms)

Greedy
PSO

Graph
PSO

GP Greedy
PSO

Graph
PSO

GP

1(20) 1 1 0.808±0 0.808±0 0.808±0 22.9±1.2 41.3±10 149.6±58.3 ��

2(30) 2 2 0.713±0 0.713±0 0.639±0.04 �� 9±0.1 13.8±2.8 346± 282 ��

3(60) 3 2 0.634±0 0.631±0.011 0.634±0 � 11±0 87.2±18 180.6±68.6 ��

4(150) 4 4 0.532±0 0.524±0.01 0.413±0.06 �� 21.7±0.5 116.1±24.5
67689.7
±109320.9

��

5(450) 4 4 0.532±0 0.525±0.01 – 33.6±1 60.4± 2.3 –

6(4500) 4 4 0.586±0.01 0.637±0.022 – 462.4±61.2 752.3±78.6 –
a � / � mean significant lower / higher in comparison with Greedy PSO
b � / � mean significant lower / higher in comparison with Graph PSO
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of greedy-based PSO. The average fitness, on the other hand, suggests that the
fitness of the GP approach becomes progressively inferior with the growth of
dataset sizes, though overall performance of the greedy-based and graph-based
approaches is equivalent. As it can be observed, the fitness and time values for
the execution of GP using datasets 5 and 6 are missing from the table. This is
because the runs using those two datasets failed to converge after a significant
amount of time. In fact, the efficiency of GP is severely reduced for dataset 4,
as seen by the sudden spike in the execution time and drop in the fitness value.

In hindsight, the fundamental problem with the proposed approach is in its
fitness function. Specifically, the division of function values into ranges is prob-
lematic because it means that the fitness of solutions does not increase smoothly
as they evolve past the threshold of functional correctness. For example, sup-
pose that the fitness for the best solution in generation k is −0.01, i.e. not fully
functionally correct. If a crossover operation occurs in generation k + 1 and
pushes descendants of that solution to the threshold of functional correctness
(0), these descendants’ QoS scores will be used as their fitness values from that
point onwards. However, these QoS values are likely to already be significantly
higher than 0, thus causing a jump in the fitness progression of these candidates
and leading to unreliable behaviour during the evolution process. In the future,
this problem could be addressed by employing a multi-objective GP approach to
adequately consider the independent goals of functional correctness and compo-
sition quality. Alternatively, functional correctness constraints could be enforced
to determine which candidates are structurally valid before applying a fitness
function that would concern itself exclusively with QoS optimisation.

6 Further Investigation

As seen from the previous section our proposed GP approach to QoS aware ser-
vice composition does not perform well comparing with two PSO approaches, due
to the fitness function we used. To further improve our GP approach we adjust
our GP approach by considering functional correctness during the process of evo-
lutions, i.e, when applying mutation and crossover operations. Correspondingly,
we change the fitness function to only measure the aggregate QoS properties of
the individuals of each generation. To show the effectiveness of our improved GP
approach, ImprGP, we have conducted a further experimental evaluation using
the same datasets and the same parameter settings as in Section 4. Table 3 below
shows the experimental results.

The results show that the fitness for all approaches is mostly equivalent, with
small variations for datasets 4 and 5, but differences are more pronounced in
dataset 6. The execution time for ImprGP is higher than for both PSO-based ap-
proaches for all datasets except dataset 6, for which ImprGP takes less time than
graph-based PSO. When looking at datasets 5 and 6, the increase in the num-
ber of services (from 450 to 4500) causes an increase in the execution time by
a factor of 15 for graph-based PSO, while the execution time for ImprGP in-
creases only by a factor of less than 2. Compared to graph-based PSO, ImprGP
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Table 3. Average time and fitness results for the improved GP and the two PSO-based
each approaches

Dataset
(No. of
Serv.)

Task
Min.
Cmp.
Size

Fitness Time (ms)

Greedy
PSO

Graph
PSO

ImprGP Greedy
PSO

Graph
PSO

ImprGP

1(20) 1 1 0.808±0 0.808±0 0.808±0 6.7±8.3 27.6±36.5 62.2±81.4 ��

2(30) 2 2 0.713±0 0.713±0 0.713±0 4.4±0.5 33.4±17.4 193.5±13.5 ��

3(60) 3 2 0.634±0 0.634±0 0.634±0 4.9±0.3 32.5±6.8 187.1±11.2 ��

4(150) 4 4 0.532±0 0.527±0.01 0.527±0.01 � 9.4±0.5 60.4±3.6 340.8±36.5 ��

5(450) 4 4 0.532±0 0.527±0.01 0.526±0.01�� 10.7±1.1 62.7±5.3 351.3±32.5��

6(4500) 4 4 0.586±0.01 0.637±0.02 0.617±0.02� 374.4±71.9 934.3±44.5 634.8±51.4 ��
a � / � mean significant lower / higher in comparison with Greedy PSO
b � / � mean significant lower / higher in comparison with Graph PSO

produces a 3% lower fitness in a 30% shorter execution time for dataset 6. This
indicates that there is a trade-off between fitness and execution time for larger
datasets, an observation that was also made in [16]. In summary, after modifying
the fitness function our improved GP approach performs better than the original
GP approach. In particular, the experiment results indicate that for large data
sets (such as dataset 6), ImprGP achieves better fitness than greedy PSO, and
executes faster than graph-based PSO.

7 Conclusions and Future Work

This paper proposed a GP approach for QoS-aware Web service composition
which builds upon previous work by employing an improved fitness function.
This approach was compared through a set of experiments against two previ-
ously defined PSO techniques for QoS-aware composition, namely greedy-based
and graph-based PSO. Results showed that while fitness values for GP oscil-
lated between noteworthy and undesirable when compared with the other two
approaches, its execution time was clearly higher in all instances, and conver-
gence could not be achieved for the larger datasets. The problem was that the
fitness function employed in the GP approach lacked the smoothness required
for a reliable evolution process. Further investigation has attempted to improve
our proposed GP approach. Experiments has shown that our further improved
GP approach shows its efficiency for large datasets. For future work we will
evaluate our GP approach using larger datasets to test its scalability. Finally,
further work will investigate to apply evolutionary multi-objective optimization
(EMO) techniques to QoS aware service composition.
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Abstract. Multi-objective Evolutionary Algorithms (MOEAs) are popular ap-
proaches for solving multi-objective problems (MOPs). One representative me-
thod is Non-dominated Sorting Genetic Algorithm II (NSGA-II), which has 
achieved great success in the field by introducing non-dominated sorting into 
survival selection. However, as a common issue for dominance-based algo-
rithms, the performance of NSGA-II will decline in solving problems with 3 or 
more objectives. This paper aims to circumvent this issue by incorporating the 
concept of decomposition into NSGA-II. A grouping-based hybrid multi-
objective optimization framework is proposed for tackling 3-objective prob-
lems. Original MOP is decomposed into several scalar subproblems, and each 
group of population is assigned with two scalar subproblems as new objectives. 
In order to better cover the whole objective space, new objective spaces are 
formulated via rotating the original objective space. Simulation results show 
that the performance of the proposed algorithm is competitive when dealing 
with 3-objective problems. 

Keywords: Multi-objective evolutionary algorithm, hybrid, decomposition. 

1 Introduction 

Problems in reality usually have multi-objectives instead of one single objective. A 
Multi-Objective Optimization Problem (MOP) can be defined as follows: max min ሻݔሺܨ ൌ ൫ ଵ݂ሺݔሻ, … , ௠݂ሺݔሻ൯்⁄ ݔ ݋ݐ ݐ݆ܾܿ݁ݑݏ (1)                      ∈ Ω 

where ݔ refers to the decision variables which lie in the decision (variable) space Ω. 
The MOP consists of m objective functions and it maps the decision space Ω into an 
m-dimensional objective space ܴ௠, i.e. ܨ: Ω ՜ ܴ௠. 

Objectives of a MOP are often conflicting with each other, meaning that the  
optimized solution in one objective does not produce optimal result for the other  
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objectives. Thus, there are many or even infinite Pareto Optimal solutions for a MOP 
instead of a single solution to optimize all the objectives simultaneously. The best 
tradeoff among objectives is defined as the Pareto Front (PF). 

In real life applications, the task of solving MOP eventually becomes a task of pro-
viding a good approximation of PF in the objective space for decision makers [1]. 
Therefore, it is desired to have optimization algorithms to produce a good approxima-
tion of the real PF with manageable number of Pareto optimal solutions which are 
evenly distributed along the real PF. NSGA-II [2] is one of the most famous evolutio-
nary algorithms for multi-objective optimization. Non-dominated sorting and density 
estimation is utilized in the survival selection process to help maintain the diversity of 
the population. According to empirical results in literatures [3-5], NSGA-II is able to 
provide powerful performance in 2-objective problems. However, when the number 
of objectives increases, the quality of the solution set obtained by NSGA-II will  
impair. To seek the reason, it becomes more difficult for non-dominated sorting to 
decide which individual should survive to next generation as most solutions are non-
dominated, which is a common issue for dominance-based approaches. To circumvent 
such issue, this paper proposes a new algorithm that combines the concept of decom-
position used in MOEA/D [1] with the current NSGA-II framework. The whole popu-
lation is divided into several groups and the MOP is decomposed into a number of 
scalar subproblems. Each group will then be assigned with two scalar subproblem as 
new objectives. Non-dominated sorting and density estimation is conducted within the 
group based on the new objectives. To better cover the whole objective space, new 
objective spaces are formulated for each group by rotating the original objective 
space. Simulation results demonstrate that the proposed algorithm is competitive in 
solving 3-objective problems. 

The rest of the paper is organized as follows. Section 2 reviews some related work. 
Section 3 provides the details of the proposed framework. Section 4 presents the ex-
perimental results and compares the performance of the new framework with that of 
original NSGA-II. Conclusions are drawn in Section 5. 

2 Related Work 

2.1 NSGA-II 

NSGA-II makes use of the important techniques of non-dominated sorting and density 
estimation in the survival selection process [2].  

The concept of domination can be explained as follows. 
In a maximization problem, let u and v be two points in an m-dimensional objec-

tive space R୫, i.e. u, v  ∈ R୫, u is said to dominate v if and only if: 

௜ݑ .1 ൐ ∋ ௜ for at least one index iݒ  {1, 2, … , m} 
௝ݑ .2 ൒ ∋ ௝ for every index jݒ ሼ1, 2, … , ݉ሽ  

This is to say, performance of u must be better than v in at least one objective (i.e. 
condition 1) and cannot be worse than v in any of the m objectives (i.e. condition 2) in 
order for us to say u dominates v. 
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NSGA-II makes use of the non-dominated sorting technique to give every individ-
ual solution a rank. The improved fast non-dominated sort is a sorting method that 
helps to separate the combined parents and child population into different fronts of 
dominance level. To achieve the first non-dominated front, each individual is com-
pared with others to see whether it is being dominated. The best set of individual 
which dominates over other population will made up the first non-dominated front. 
The process repeats itself until every individual is allocated to a non-dominated front.  

Density estimation computes the distance between individual solutions. In the case 
that there are more than required number of individuals with the same rank in a selec-
tion process, the algorithm considers the contribution of the individuals in diversity 
maintenance as well. The solution set that presents better diversity in objective space 
will have a higher chance to be selected for the next generation.  

Evaluation of the overall fitness in NSGA-II is based on the rank as well as density 
estimation results. From the second generation onwards, each individual is to generate 
its own offspring through crossover and mutation. Survival selection is conducted 
among parents as well as offspring. Population for the next generation is selected 
through non-dominated sorting as well as density estimation. 

2.2 MOEA/D 

Essentially, MOEA/D decomposes a MOP into a set of scalar subproblems using 
uniformly distributed aggregation weight vectors and optimizes all of them simulta-
neously. Throughout the searching process, each individual solution is assigned with a 
scalar subproblem as its new objective. By doing so, individual solutions are in fact 
assigned with specified searching directions in the objective space. Uniformly distri-
buted aggregation weight vectors are utilized to ensure the searching directions are 
evenly distributed in the objective space. Thus, a good approximation of PF with in-
dividual solutions evenly distributed along the real PF can be expected. The most 
common decomposition approaches that have been adopted are weight sum approach 
and Tchebycheff approach. 

Weighted Sum Approach [6]. Weighted sum approach involves a convex combina-
tion of the different objectives in a MOP. In this case, each scalar subproblem is in 
fact a linear combination of the original objectives in the MOP with all the coeffi-
cients to be non-negative and sum to 1. Let ࣅ ൌ ሺߣଵ, … , ௠ሻ்ߣ  be a weight vector of a 
MOP with m objectives, ߣ௜ ൒ 0 for ݅ ൌ 0, 1, … , ݉; and ∑ ௜ߣ ൌ 1௠௜ୀଵ . The correspond-
ing scalar function g(x) produced with this weight vector ࣅ would be: 

min ݃ሺࣅ|ݔሻ ൌ ∑ ௜ߣ · ௜݂ሺݔሻ௠௜ୀଵ                         (2) 

where ௜݂ሺݔሻ is the real objective value obtained on objective i. 

Tchebycheff Approach [7]. In the Tchebycheff approach, the scalar optimization 
problem with weight vector ࣅ is the difference between the current performance on 
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objective ݅ and the optimal result obtained on the same objective, while ݅ is decided 
to be the objective producing the maximum value of such difference. 

min ݃ሺࣅ|ݔሻ ൌ maxଵஸ௜ஸ௠ሼߣ௜| ௜݂ሺݔሻ െ  ሽ                   (3)|כ௜ݖ

where ݖ௜כ is the reference point storing the optimal value found so far for objective ݅ 
and | ௜݂ሺݔሻ െ  gives the absolute difference between the performance of decision |כ௜ݖ
variable x on objective ݅ and the optimal result on objective ݅ stored in the refer-
ence point. 

3 Proposed Framework 

The new framework proposed in this paper is a grouping approach combining the 
non-dominated sorting technique from NSGA-II and the decomposition concept from 
MOEA/D. After the very first initialization of the population, the overall population is 
immediately grouped into N groups. The original objectives from the MOP are  
decomposed into a fixed number of scalar subproblems and every group will be as-
signed with two of the scalar subproblems. Non-dominated sorting will thus be  
conducted within each group with the 2 scalar functions as the new objectives.  

The essence of the new approach is to assign groups of individuals to look for dif-
ferent sections of the real PF while expecting the overall coverage by all the sections 
is a good approximation of the real PF. 

3.1 Basic Concepts 

Optimal Points for a Scalar Function. For a specific scalar function given, there 
always exists a corresponding point in the objective space representing the intersec-
tion of the specified searching direction by the scalar function with the real PF. This 
point is referred as the optimal solution for the specific scalar function [8].  

Group Solution Lines. In the 3-D objective space corresponding to a 3-objective 
MOP, a section of PF eventually found by a group of individual solutions with two 
specific scalar functions assigned is expected to be a line, which is distributed along 
the real Pareto surface connecting the two optimal points in the objective space cor-
responding to the two scalar functions given. For the rest of the paper, such lines will 
be referred as the group solution lines. 

3.2 Distribution of Group Solution Lines 

The goal of the new framework in solving 3-objective MOPs is to cover the Pareto 
surface with group solution lines as evenly as possible. There are quite a number of 
ways to do so. One of the possible assignment scheme shown in Fig. 1 is eventually 
chosen to implement the new framework to deal with 3-objective MOP.  

As shown in Fig. 1, twelve group lines are necessary in this case implying the 
group number in the new framework is fixed to be twelve (i.e. N=12). Essentially,  
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the implementation of the new framework to solve 3-objective MOPs is a reversed 
process in which we identify the way to cover the Pareto surface with group solution 
lines first. Corresponding scalar functions are in turn identified according to the points 
predefined in the objective space. Each group is assigned with two scalar functions as 
the new objective to conduct non-dominated sorting within the group. 

 

Fig. 1. Distribution of group solution lines on Pareto surface 

One of the difficulties faced is about the scalar functions identification. Scalar 
functions corresponding to vertex points A, B and C are easy to be identified. Ob-
viously, these three points imply the best performances on two of the objectives and 
the worst performance on the other. Due to the conflicting nature of the three objec-
tives, we can interpret that the weight vectors assigned to the two objectives with best 
performance are 0.5 while the one assigned to the other objective with worst perfor-
mance is 0 in order to generate such points in the objective space. 

It is very difficult if not impossible to get the scalar functions to represent the other 
points in our group lines assignment scheme. The common feature for these points is 
that they perform extremely well on one of the three objectives. Taking points H, D 
and G as examples, they all have the best performance on the third objective ଷ݂. The 
difficulty comes from the fact that it is hard to give an exact ratio to the importance 
among the three objectives for these points. Generally they could all be generated by 
scalar functions 0 ଵ݂ ൅ 0 ଶ݂ ൅ 1 ଷ݂. However, due to the conflicting nature of the three 
objectives, point D would eventually be generated with this scalar function. The same 
idea can be applied to points E and F. 

The rest of the points are approximated with the points that are extremely close to 
them. Taking point G as an example, approximated point G’ would be a point that is 
extremely near point G with position slightly lifted up with respect to the third  
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objective ଷ݂. Weight vector assignment is found through solution mapping vector. The 
concept of solution mapping vector is proposed in [8]. The coordinates of the optimal 
point corresponding to a specific scalar function is found through the solution map-
ping vector λ', while λ' is expressed as follows: 

ᇱߣ ൌ ൮ ∑ଵߣ1 ௜௠௜ୀଵߣ1 , ∑ଶߣ1 ௜௠௜ୀଵߣ1 , … , ∑௠ߣ1 ௜௠௜ୀଵߣ1  ൲                                  ሺ4ሻ 

Thus, with weight vector λ given, we are in fact able to find out the searching di-
rection through the solution mapping vectors as calculated above. While in our case, it 
is a reversed process in which we predefined the points of intersection of the search-
ing direction with PF, and calculate for the weight vector λ correspondingly. The 
coordinates are obtained based on the assumption that the PF of the problem is the 
simple case as the one show in Fig.1. Table 1 below shows the corresponding weight 
vectors to generate the points. 

Table 1.  

Point 
Coordinates in Objective Space Weight Vector Assignment  

f1 f2 f3 f1 f2 f3 

A 0 0 1 0.5 0.5 0 

B 1 0 0 0 0.5 0.5 

C 0 1 0 0.5 0 0.5 

D 0.5 0.5 0 0 0 1 

E 0 0.5 0.5 1 0 0 

F 0.5 0 0.5 0 1 0 

G 0.25 0.75 0 0.07 0.02 0.9 

H 0.75 0.25 0 0.02 0.07 0.9 

I 0 0.25 0.75 0.9 0.07 0.02 

J 0 0.75 0.25 0.9 0.02 0.07 

K 0.25 0 0.75 0.07 0.9 0.02 

L 0.75 0 0.25 0.02 0.9 0.07 

With the knowledge of the weight vectors corresponding to the points, group  
solution lines can be obtained by assigning designated scalar functions to the groups. 
The scalar function assignment scheme employed during implementation is shown in 
Table 2. 
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3.3 Rotating the Objective Space 

Both weighted sum and Tchebycheff decomposition approaches are employed in the 
new framework to deal with 3-objective MOP. Experimental results demonstrated that 
weighted sum approach is good at searching for the solution lines that are at the edge 
of Pareto surface (i.e. solution line AD, BE and CF in Fig. 1). Tchebycheff approach 
is good at looking for the central lines (i.e. solution line AB, BC and CA in Fig. 1) but 
not able to look for those lines at the edge of the Pareto surface. Unfortunately there 
are no good ways to obtain the rest of the group lines with the current available de-
composition schemes. 

Table 2.  

Group Index Line Assignment 
scalar function 1 scalar function 2 

f1 f2 f3 f1 f2 f3 

0 AB 0.5 0.5 0 0 0.5 0.5 

1 AD 0.5 0.5 0 0 0 1 

2 AG 0.5 0.5 0 0.07 0.02 0.9 

3 AH 0.5 0.5 0 0.02 0.07 0.9 

4 BC 0 0.5 0.5 0.5 0 0.5 

5 BE 0 0.5 0.5 1 0 0 

6 BI 0 0.5 0.5 0.9 0.07 0.02 

7 BJ 0 0.5 0.5 0.9 0.02 0.07 

8 CA 0.5 0 0.5 0.5 0.5 0 

9 CF 0.5 0 0.5 0 1 0 

10 CL 0.5 0 0.5 0.02 0.9 0.07 

11 CK 0.5 0 0.5 0.07 0.9 0.02 

 

Fig. 2. Rotation of the Objective Space 
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However, given that Tchebycheff approach is good at searching for central lines, 
one possible way to tackle this problem is to rotate the coordinate system of the objec-
tive space so that desired group lines can be rotated to the position of a central line. 
Tchebycheff decomposition approach can thus be adopted to obtain that line easily. 

The idea is illustrated with group solution line AG in Fig. 2. Basically we rotate the 
coordinate system and input the updated objective values into the fitness evaluation 
process while adopting Tchebycheff approach. Decomposition scheme in fact works 
in a rotated objective space in which AG is at the central position. Thus Tchebycheff 
is adopted to obtain AG easily. Throughout the process, the real objective space is not 
rotated. 

In our implementation, we are actually trying to rotate the coordinate system of the 
objective space. Thus rotation with angle θ about f1 axis in fact means to rotate the 
coordinate system with an angle of θ degrees about f1 axis. 

Assuming that the shape of true Pareto Front is an equilateral triangle as shown in 
Fig. 1, and then the angle of rotation to obtain AG at the central position is calculated 
to be 26.565° about f3 axis. This angle of rotation is in fact the universal angle that 
can be used to obtain all the missing group lines. The differences are about the axis of 
rotation as well as the direction of rotation. The latter could be either clockwise (i.e. 
θ=26.565°) or anticlockwise (i.e. θ=-26.565°). 

Table 3.  

Group 
Index 

Line As-
signment 

Group 
Index Decomposition Scheme 

Rotate 
Axis 

Angle of 
rotation 
(degree) /4 %4 

0 AB 0 0 weighted sum NA 

1 AD 0 1 Tchebycheff NA 

2 AG 0 2 Tchebycheff with rotation f3 26.565 

3 AH 0 3 Tchebycheff with rotation f3 -26.565 

4 BC 1 0 weighted sum NA 

5 BE 1 1 Tchebycheff NA 

6 BI 1 2 Tchebycheff with rotation f1 26.565 

7 BJ 1 3 Tchebycheff with rotation f1 -26.565 

8 CA 2 0 weighted sum NA 

9 CF 2 1 Tchebycheff NA 

10 CL 2 2 Tchebycheff with rotation f2 26.565 

11 CK 2 3 Tchebycheff with rotation f2 -26.565 
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The new framework targeting at 3-objective MOPs is eventually implemented as 
follows. The first four groups (i.e. Group 0, 1, 2, 3) look for lines starting with point 
A. The axis of rotation is ଷ݂ for groups looking for AH and AG. The second four 
groups (i.e. Group 4, 5, 6, 7) look for lines starting with point B. The axis of rotation 
is ଵ݂ for groups looking for BI and BJ. The last four groups (i.e. Group 8, 9, 10, 11) 
look for lines starting with point C. The axis of rotation is ଶ݂ for groups looking for 
CK and BL. A summary is given in Table3. 

4 Experimental Results 

Performance of the proposed algorithm is evaluated with various representative 
benchmark problems [9][10]. The experimental setting is fixed with 150,000 evalua-
tion times for all the 3-objective problems. Population size is taken to be 300 for all 
the simulation runs. The Inverted Generational Distance (IGD) [11][12] is utilized to 
provide a quantitative evaluation of the performance. Table 4 shows the mean of IGD 
values of the proposed framework and traditional NSGA-II algorithm over 30  
independent runs. Best entries are marked in boldface. Same offspring reproducing 
mechanisms (i.e. simulated binary crossover (SBX) [13]) were adopted by all the 
algorithms in this evaluation of their performance. This is to avoid the effects from 
different offspring reproducing mechanisms on the performance, thus to ensure the 
performances are solely based on the frameworks. 

Table 4. Mean of IGD values over 30 independent runs 

Benchmark Problems
(3-objective) 

Average IGD values for 30 runs 

NSGA-II(SBX) 
New framework

(SBX) 

DTLZ cases 

DTLZ1 0.01451 0.01394 

DTLZ2 0.04040 0.04143 

DTLZ3 0.04040 0.04309 

DTLZ4 0.78061 0.75946 

UF cases 

UF8 0.21940 0.19853 

UF9 0.16350 0.15094 

UF10 0.32360 0.22053 

According to the experimental results, the proposed framework performs better 
than the original NSGA-II in 5 out 7 benchmark problems, which demonstrates that 
the new mechanism is able to obtain better diversity and convergence in handling 3-
objective problems. 
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Fig. 3. Overall performance of the new framework for 30 runs on DTLZ1 

 

Fig. 4. Single run performance on DTLZ1 by the new framework 

 
In order to give a more comprehensive picture of the resulted performance, Fig. 3 

plots all the solutions obtained by the proposed framework for DTLZ1 over 30 runs. 
The green dots represent the true Pareto Front, and the red dots represent the obtained 
solutions. From Fig. 3, it could be observed that the new framework is able to produce 
the group lines to cover the Pareto surface in the expected way, given the PF of the 
problem is a regular surface in the 3-D objective space. To visually show the differ-
ence between the proposed framework and traditional NSGA-II method, Fig. 4 and 
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Fig. 5 plot the final solution sets obtained by both methods on DTLZ1 for a single 
run. Based on the plots, the solutions obtained by NSGA-II are relatively random with 
regard to the allocation pattern on the Pareto surface, while the solutions found by the 
new framework follows exactly the predefined group solution lines as expected. The 
new framework is able to find the edge lines of the Pareto surface in the 3-D objective 
space and thus to provide the outline of the real Pareto surface to the decision makers. 
From this perspective, the new framework is able to produce a better approximation 
of the real PF compared to the current existing algorithms in 3-objective problems. 

 

 

Fig. 5. Single run performance on DTLZ1 by NSGA-II 

5 Conclusion 

This paper proposes a new multi-objective optimization framework that incorporates 
the concepts of decomposition into NSGA-II. By rotating the objective space, the 
whole objective space is better covered by the evolved solutions in a more reasonable 
manner. Empirical results demonstrate that the proposed algorithm outperforms tradi-
tional NSGA-II in handling 3-objective problems. Future work could be working on 
MOPs with disparately scaled objectives, in which rotation angles of new objective 
spaces need to be calculated correspondingly. Moreover, performance comparison 
with MOEA/D and other state-of-the-art MOEAs are expected for further investiga-
tion. 
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Abstract. In multi-objective problems, it is desirable to use a fast algorithm that
gains coverage over large parts of the Pareto front. The simplest multi-objective
method is a linear combination of objectives given to a single-objective optimizer.
However, it is proven that this method cannot support solutions on the concave
areas of the Pareto front: one of the points on the convex parts of the Pareto
front or an extreme solution is always more desirable to an optimizer. This is a
significant drawback of the linear combination.

In this work we provide the Pareto Concavity Elimination Transformation
(PaCcET), a novel, iterative objective space transformation that allows a linear
combination (in this transformed objective space) to find solutions on concave
areas of the Pareto front (in the original objective space). The transformation en-
sures that an optimizer will always value a non-dominated solution over any dom-
inated solution, and can be used by any single-objective optimizer. We demon-
strate the efficacy of this method in two multi-objective benchmark problems with
known concave Pareto fronts. Instead of the poor coverage created by a simple
linear sum, PaCcET produces a superior spread across the Pareto front, including
concave areas, similar to those discovered by more computationally-expensive
multi-objective algorithms like SPEA2 and NSGA-II.

1 Introduction

Multi-objective optimization is very important in the real world [12]. Multiple compet-
ing objectives must be balanced in applications like the design of high-speed transport
planes [13], the design of trusses [2], job shop scheduling [21], urban planning [1], and
greywater reuse [16]. In these, the “best” solutions characterize a tradeoff between the
multiple objectives. This array of solutions is known as the “Pareto optimal set”, and is
a commonly sought-after solution type for a multi-objective problems [3].

Successful methods function on arbitrarily-shaped Pareto fronts, as the shape is un-
known before optimization. One simple method is to use a linear combination of all ob-
jectives, which has the benefits of being easy to understand and computationally cheap,
but this is unable to find the concave areas of a Pareto front [3,4,11,12,15,17,18,19],
because a convex part (or an extreme point) will be more desirable than the concave
region [12].

G. Dick et al. (Eds.): SEAL 2014, LNCS 8886, pp. 204–215, 2014.
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The primary contribution of this work is to present the Pareto Concavity Elimitation
Transformation (PaCcET), a novel, optimizer-independent, iterative multi-objective
transformation. It transforms the objective space so that the Pareto Front is convex, and
requires only a single user-defined parameter. This allows an linear combination with
unit weights (in the transformed objective space) to find concave areas of the Pareto front
(in the original objective space), removing the major drawbacks of a linear combination,
and allowing a simple linear combination to be used instead of more computationally
expensive multi-objective evolutionary algorithms, and produce similar results.

This work is organized as follows: Section 2 provides background on multi-objective
problems and multi-objective methods. Section 3 describes PaCcET. Section 4 provides
theoretical guarantees for PaCcET. Sections 5 and 6 describe two test domains and show
results using PaCcET. Section 7 discusses the work and concludes.

2 Background

This work draws from many distinct concepts from within multi-objective research,
which we introduce in this section. We assume (without loss of generality) pure mini-
mization of k objectives Λ ∈ R

k through the control of the n design variables Ω ∈ R
n.

Dominance: A solution u dominates another solution v (u ≺ v) if it scores lower on
all criteria (objectives c ∈ C): ∀c ∈ C[fc(u) < fc(v)]. A solution u weakly dominates
another solution v (u � v) if it scores equal on some objectives, but less on others:
∀c ∈ C[fc(u) ≤ fc(v)] ∧ ∃j ∈ C[fj(u) < fj(v)] [20].

Pareto optimal set: A solution which is not dominated by any other feasible solution is
part of the Pareto optimal set P∗. As an incomplete optimizer solves a problem, it will
approximate P∗ with a Pareto approximate set P ∗

I at iteration I .

Multi-objective spaces: Ω ∈ R
n is the design variable space (domain). Λ ∈ R

k is
objective space (range or codomain) [20]. The mapping from Ω → Λ is unknown to
the chosen optimizer Ξ , but is usually repeatable with some stochastic error. We also
use Λnorm, a normalized version of Λ, which places P ∗

I elements ∈ [0:1], and Λτ , the
post-PaCcET analogue to Λ. Additionally, we break Λ into three sub-spaces, ΛD, ΛN,
and ΛB. ΛD is the subspace in Λ that is strongly dominated by the current P ∗

I . ΛN is
the subspace of Λ that is non-dominated.ΛB forms the border between the two (Fig. 1),
and includes P ∗

I and all points weakly dominated by P ∗
I .

Utopia and nadir vectors: Two important concepts in multi-objective problems are the
utopia and nadir points. The utopia point takes on the best possible value for each ob-
jective, minus some small amount so that it is always infeasible. This point is difficult to
find, requiring an optimization for each objective individually. Instead, we approximate:

û◦(c) = min(P ∗
I (c))−Δ (1)

where û◦(c) is the cth element in the estimated utopia vector, min(P ∗
I (c)) is the mini-

mum cth element of any vector in P ∗
I , and Δ is a small value [5]. The nadir point takes
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the worst value for each objective in the Pareto optimal set, which we approximate:

ûnad(c) = max(P ∗
I (c)) (2)

but it is very important to note that this is a distinct concept from the worst feasible
vector; it is instead the upper bound of the objective values for solutions within P ∗

I [5].

2.1 Multi-objective Methods

Many successful multi-objective algorithms have been developed. In this work we ad-
dress linear combinations since they are a component of PaCcET, as well as NSGA-II
and SPEA2, two successful multi-objective evolutionary algorithms.

Linear Combination: a simple metric that is sufficient, but not necessary, for finding
Pareto optimal points [12]:

LC(w, v) =
∑
c

w(c)v(c) (3)

where LC(w, v) is the linear combination evaluation or L1 norm of vector v, v(c) is
the evaluation of vector v on the cth objective, w is the vector of weights, and w(c) is
the weight for the cth objective.

This method is computationally cheap when paired with typical optimizers like an
evolutionary algorithm [19], but presents three primary problems. First, as the number
of objectives increases, the choice of weights can become difficult. Second, this method
is incapable of finding certain areas of the Pareto Front, those that are non-convex.
Third, incrementing the weights evenly to converge to different parts of the Pareto front
does not necessarily lead to evenly-spaced solutions along the front [4].

NSGA-II: is an evolutionary algorithm which sorts solutions into a series of successive
fronts. Those solutions on the less-dominated fronts are more desirable and are kept. To
break ties, a local density measure is used. Details can be found in [6].

SPEA2: is an evolutionary algorithm which assigns each vector a “strength” equal to
the number of vectors in the current population it dominates. Each vector then sums
the strengths of all vectors which dominate it, and this forms a raw fitness evaluation.
This is altered by a local k-nearest neighbor density calculation, and the best solutions
survive. Details can be found in [8].

3 Pareto Concavity Elimination Transformation (PaCcET)

Each point in the current Pareto-approximate set, P ∗
I represents a tradeoff between

which we are indifferent [9]. PaCcET makes each solution on ΛB (includingP ∗
I ) equally

valuable to a linear combination in Λτ through a two step transformation, which first
transforms from Λ to Λnorm, and then transforms from Λnorm to Λτ , where the τ super-
script on any space or set denotes the transformed space or set. This means that any
Pareto-approximate solution will have a linear combination evaluation of (k− 1) when
all weights are set to 1. All solutions in Λτ

N will have a linear combination evaluation
< (k− 1), and all solutions in Λτ

D will have a linear combination evaluation > (k− 1).
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Fig. 1. Visualization of quantities used in transformation (left) and partitions in the multi-
objective space (right). The vector vnorm is represented by the hollow green X mark, and vτ

by the solid red X mark. vnorm lies outside of the dominated hypervolume, so is a desirable point
to discover. Green dots correspond to vectors in P ∗,norm

I (which form the border, ΛB, between
the non-dominated hyperspace ΛN and the dominated hyperspace, ΛD). Red correspond to their
transformations in P ∗τ

I . All measurements are Manhattan Distance (L1 norm) along r.

Algorithm: To determine the transformed evaluation for a given solution vector v, we
require the current Pareto approximate set P ∗

I , from which we can calculate the approx-
imate utopia point û◦ based on P ∗

I (Eq. 1), and the matching nadir approximation ûnad

(Eq. 2).
The first step is to normalize the target vector v such that each objective takes on a

value not less than 0, transforming Λ to Λnorm [5,12]:

vnorm(c) =
v(c)− û◦(c)

ûnad(c)− û◦(c)
(4)

By definition ûnad,norm ≡ 1 and û◦,norm ≡ 0, and each element of a member of P ∗
I

will be in the range [0:1].
The second step is to perform the transformation from Λnorm to Λτ . Within this pro-

cess, we use the unit vector r that points from û◦,norm toward vnorm:

r =
vnorm

|vnorm| (5)

All distance measurements in the transformation process are taken along the direc-
tion of r. We measure three distances for use in PaCcET:

Algorithm 1. PaCcET for iteration I

Require: Set of solutions V
Require: Pareto Approximate Set P ∗

I

1: Find û◦, ûnad (Eq. 1–2)
2: ∀c wc = 1
3: for all Solutions i ∈ V do
4: Find vnorm

i (Eq. 4)
5: Find r (Eq. 5)

6: Find ||vnorm||1 (Eq. 6)
7: Find ||v||B (Eq. 7)
8: Find ||v||hp (Eq. 8)
9: Find dτ (Eq. 9)

10: Find vτi (Eq. 10)
11: FitPaCcET(vi) = LC(vτi ) (Eq. 3)
12: end for
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– L1 distance (linear combination or Manhattan Distance) from û◦,norm to vnorm:

||vnorm||1 =
∑
i

vnorm
i (6)

– L1 distance from û◦,norm to the normalized dominated border Λnorm
B along r:

||v||B = min(γ) � γr � P ∗
I (7)

– L1 distance from û◦,norm to the normalized utopia hyperplane Λτ
B [14] along r:

||v||hp = β �
∑
i

βri = (k − 1) (8)

We then calculate dτ , which determines where vτ is located:

dτ = ||v||hp
||vnorm||1
||v||B (9)

And finally we determine the location of vτ , enclosing the whole process:

vτ = dτr = PaCcET (v) (10)

Choosing the Maximum Size of P ∗
I , the Pareto approximate set: P ∗

I is maintained in the
same way as any Pareto optimality calculation. However, for computation and memory
concerns, its size must be limited. The size of P ∗

I is the only user-defined parameter in
PaCcET, and corresponds directly to the granularity of the Pareto front estimation. In
our experiments we use 250 as the size. We ran tests with a size as small as 50, in which
the algorithm still functions, but provides a very coarse approximation of the true Pareto
front. Once over the chosen size, we used random elimination of non-extreme elements.
We also tested with nearest-neighbor elimination and k-nearest neighbor elimination,
the performance of PaCcET was not sensitive.

4 Theoretical Properties of PaCcET

In this section we provide two theorems which together prove that PaCcET finds Pareto
optimal solutions, even in concave areas of the Pareto front. We begin by assuming:

Assumption A1. The system designer specifies k points that are incomparable to the
Pareto front, which describe a hyper-prism that completely bounds the Pareto Front.

Assumption A2. Optimizer Ξ solves the PaCcET problem exactly in a single iteration.

Assumption A3. The feasible region has no solutions that are weakly dominated by the
Pareto Front.

Assumption A4. The Pareto Front is continuous.
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A1 provides us vectors with which we seed P ∗
I , and assures PaCcET is calculable in

the whole feasible objective space. A2 allows us to use the exact solution to the PaCcET
minimization problem to determine how P ∗

I changes over iterations. A3 and A4 allow
us to draw conclusions in k-objective space without any other restrictions on the shape
of the Pareto Front.

Theorem 1. The solution to the PaCcET optimization problem will be Pareto Optimal.

Proof. There exists an infinite number of possible rays r ∈ R (where R is the set of all
rays originating from 0) on which the true solution may exist. This solution exists only
along one of those rays, which must pass through the feasible space. We do not seek to
determine which r it lies on. For any individual r, the PaCcET optimization problem
takes the form (Eq. 9, reorganized):

min(dτ ) = min

(
||v||hp

||vnorm||1
||v||B

)
(11)

And for a constant r, ||v||B and ||v||hp are constant on a given iteration:

min(dτ ) = min(α||vnorm||1) (12)

where α is some positive constant. ||vnorm||1 increases monotonically as distance from
the origin increases, therefore dτ does as well. The minimum of dτ , then, will be on
the border of the feasible space, a Pareto Optimal Solution or a weakly dominated
solution [12]. By A3 and A4, this is a Pareto optimal solution. This can also be assured
by the same logic as [4], since it is equivalent to a scaled linear combination. 
�
Theorem 2. PaCcET finds solutions in concave areas of the Pareto front.

Proof. We prove this by contradiction. Assume a globally concave search space. By
theorem 1, in the worst case, the solution to the PaCcET optimization problem will
lead to the k anchor points (single objective extremes) in the first k iterations. By A4,
we know additional Pareto optimal points exist. We show that the dτ calculations for
those points in the current P ∗

I is greater than those in ΛN (super/sub-scripts denoting
the calculation for a member of the set named in the super/sub-script):

dτP∗
I
> dτΛN

(13)

||v||P∗
I

hp

||vnorm
P∗

I
||1

||v||P∗
I

B

> ||v||ΛN
hp

||vnorm
ΛN

||1
||v||ΛN

B

(14)

(k − 1)
||vnorm

P∗
I

||1
||v||P∗

I

B

> (k − 1)
||vnorm

ΛN
||1

||v||ΛN
B

(15)

By definition ||v||P∗
I

hp = (k − 1). Also,
||vnorm

P∗
I
||1

||v||
P∗
I

B

= 1 because ||vnorm
P∗

I
||1 = ||v||P∗

I

B ,

and the quantity
||vnorm

ΛN
||1

||v||ΛN
B

∈ [0 : 1), because it is in the non-dominated subspace (so

||vnorm
ΛN

||1 < ||v||ΛN
B ), and the inequality in Eq. 15 holds. Because of Theorem 1, we

know that the solution will be Pareto Optimal, and because of the globally concave
assumption, we know this point is on a concave region of the Pareto front. 
�
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Fig. 2. Visualization of PaCcET procedure over iterations. The left column is the normalized ob-
jective space Λnorm. The right column is the transformed objective space, Λτ . The rows show, in
turn, the optimizer working at the 1st, 2nd, 3rd, and 200th iteration. In the left column, Black
points are candidate solutions. Red points are solutions in P ∗

I , the Pareto approximate set. The
green solid line denotes Λnorm

B The blue square denotes the true solution to the PaCcET optimiza-
tion problem at that iteration. The blue dashed line is the level curve of the PaCcET evaluation
on which all solutions are as valuable as the discovered solution. In the right column, the colors
and symbols map to the transformed versions of the same points as described previously, in Λτ .
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Implications: The significance of these two theorems is as follows: the true solution
to the PaCcET problem will always be a Pareto optimal solution, and PaCcET will be
able to find concave areas of the Pareto front. Because the assumptions used to generate
these conclusions are restrictive, in the following empirical results sections, we take
steps to violate each of the assumptions categorically, and PaCcET is still able to find
good coverage over concave Pareto fronts.

5 Experiment: KUR

As a first experimental domain, we use a test problem (KUR) from multi-objective op-
timization with a discontinuous and locally concave Pareto front (which breaks A4) [5]:

f1(x) =

2∑
i=1

[
−10 exp

(
(−0.2)

√
x2
i + x2

i+1

)]
(16)

f2(x) =

3∑
i=1

[|xi|0.8 + 5 sin(xi)
3
]

(17)

Where f1 and f2 are to be minimized by controlling the decision variables:

xi ∈ [−5, 5] ; i ∈ {1, 2, 3} (18)

A vector x is evaluated:
FitLC(x) = w1f1 + w2f2 (19)

where in this experiment, w1 = w2 = 1 (other values lead to different portions of the
Pareto front being better covered, but similar overall performance). For PaCcET:

FitPaCcET(x) = f τ
1 + f τ

2 (20)

where f τ
1 and f τ

2 represent the transformed objectives, within Λτ , calculated as:

{f τ
1 , f

τ
2 } = PaCcET ({f1, f2}) (21)

As the optimizer Ξ , we use an evolutionary algorithm (which breaks A2), in which
the population members are vectors of length 3 that meet the criteria set forth in Eq. 18.
We maintain a population of 100 solutions, with the 50 worst-performing solutions re-
moved after each generation, replaced by copies of the winner of 50 binary tournaments,
with each element of the vector changed by a random number chosen by a normal dis-
tribution centered around 0 with standard deviation 0.25. We do not seed P ∗

I (which
breaks A1).

Figure 3 shows the Empirical Attainment Function (EAF) [10] for each method,
respectively. It shows PaCcET’s worst performance exceeds that of the linear combina-
tion’s median performance, and PaCcET’s worst performance exceeds NSGA-II’s worst
performance. SPEA2 and PaCcET perform comparably after 5000 generations.

Figure 4 shows the percent of dominated hypervolume by PaCcET and two success-
ful multi-objective methods, SPEA2 and NSGA-II, as a function of number of individ-
ual fitness evaluations. PaCcET proceeds faster than the other two methods toward the
Pareto front. All methods shown eventually converge to a good approximation of the
Pareto front, and dominate a similar amount of hypervolume.
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6 Experiment: DTLZ2

As a second experimental domain, we use one of the test problems out of the battery
developed by Deb, Thiele, Laumanns and Zitzler, DTLZ2 [7]. A solution is described
by a vector (x = {x1, x2,xM}) of length 12, where 2 elements (x1, x2) determine at
what angles in the 3 dimensional objective space evaluation v will lie and the remaining
10 elements (xM) determine the distance from the origin at which v will lie. The three
functions to be minimized are:

f1(x) = (1 + g(xM )) cos
(
x1

π

2

)
cos

(
x2

π

2

)
(22)

f2(x) = (1 + g(xM )) cos
(
x1

π

2

)
sin

(
x2

π

2

)
(23)

f3(x) = (1 + g(xM )) sin
(
x1

π

2

)
(24)

Fig. 3. KUR Empirical Attainment Functions, shown in Λ
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subject to each element of x remaining in the range [0:1], and the evaluation g(xM )
calculated as:

g(xM ) =
∑

xi∈xM

(xi − 0.5)2 (25)

This results in a known Pareto front that can be described by the octant of a sphere
of radius 1 for which f1, f2, and f3 are all positive. The feasible space has a large area
that is weakly dominated by the Pareto front (which breaks A3).

The fitness of a vector x is calculated as:

FitLC(x) = w1f
norm
1 + w2f

norm
2 + w3f

norm
3 (26)

and for PaCcET,
FitPaCcET(x) = f τ

1 + f τ
2 + f τ

3 (27)

where f τ
1 , f τ

2 , and f τ
3 represent the transformed objectives, within Λτ , calculated as:

{f τ
1 , f

τ
2 , f

τ
3 } = PaCcET ({f1, f2, f3}) (28)

We use the same optimizer Ξ for DTLZ2 as for KUR (which breaks A2), except
members are vectors of length 12 with each element in the range [0:1], and the mutation
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operator alters each element by a random number drawn from a normal distribution
centered around 0 with standard deviation 0.05. We do not seed P ∗

I (which breaks A1).
Figure 5 shows the results on DTLZ2 for a typical experimental run of 5000 genera-

tions for each method (simulated annealing allowed the same number of global function
calls as the EAs), reporting the non-dominated points found through the entire experi-
mental run (Note that this is distinct from P ∗

I , which was kept at a size of 250). SPEA2
and PaCcET using an evolutionary algorithm (PaCcET – EA) both find a similar num-
ber of solutions spread all across the Pareto front. PaCcET using simulated annealing
(PaCcET – SA) is slightly less successful but still generates good coverage, even though
it is not using a population-based optimizer. NSGA-II produces fewer Pareto optimal
points, but still maintains coverage. The linear combination (not shown) converges to
one of the extremes very quickly, producing very poor coverage, regardless of the choice
of weights.

7 Discussion and Conclusion

In this work we have presented a low computational cost way to improve the perfor-
mance of a linear combination in multi-objective problems. PaCcET convexities con-
cave regions of the Pareto front for the sake of training, and allows for solutions in these
areas to be found by an optimizer using a linear combination of transformed objectives.

The primary benefits of PaCcET displayed in this work are:

1. It allows a linear combination of transformed objectives to find concave areas of
the Pareto front in the original objective space.

2. It acts independently of the chosen optimizer.
3. It creates a wide spread of solutions along the Pareto front on concave or discon-

tinuous fronts.
4. It removes the need for the system designer to choose weights.
5. It functions in higher-than-two objective problems.

The first benefit (1) allows a simple linear combination to be applied to a much broader
class of multi-objective problems than it could be otherwise. Benefit (2) means that
optimizers like evolutionary algorithms, A* search, simulated annealing, or particle
swarm optimization can be applied to multi-objective problems through PaCcET with
little alteration; it also means that future developments in single-objective optimizers
are immediately useful to a large class of multi-objective problem, but comes at the
cost that PaCcET is limited by the quality of the optimizer. Benefit (3) reinforces (1):
Even on challenging Pareto fronts, PaCcET develops a desirable array of solutions to
choose between. Benefits (4,5) remove one of the primary challenges in using a linear
combination on more-than-two objective problems.

PaCcET offers a fundamentally different possible avenue for multi-objective re-
search: the elimination of concavity as opposed to the development of methods that
deal well with concave Pareto fronts. Future work in this area includes testing the PaC-
cET on a large testbed of multi-objective problems including many-objective problems,
examining how reference points can be used in the τ -objective space to steer the search
or otherwise altering the method so that it is steerable, and developing guarantees for
complete Pareto front coverage.
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Abstract. It becomes a great challenge in the research area of meta-
heuristics to predict the hardness of combinatorial optimization problem
instances for a given algorithm. In this study, we focus on the hardness
of the traveling salesman problem (TSP) for 2-opt. In the existing lit-
erature, two approaches are available to measure the hardness of TSP
instances for 2-opt based on the single objective: the efficiency or the ef-
fectiveness of 2-opt. However, these two objectives may conflict with each
other. To address this issue, we combine both objectives to evaluate the
hardness of TSP instances, and evolve instances by a multi-objective op-
timization algorithm. Experiments demonstrate that the multi-objective
approach discovers new relationships between features and hardness of
the instances. Meanwhile, this new approach facilitates us to predict the
distribution of instances in the objective space.

Keywords: TSP · 2-opt · multi-objective optimization algorithm · ran-
dom forest.

1 Introduction

Many metaheuristics such as genetic algorithms [12], local search [1], simulated
annealing [11], tabu search algorithm [7], and ant colony optimization [9] have
been used to solve NP-hard combinatorial optimization problems (COPs). For
a particular NP-hard problem, there exist easy instances and hard instances
for distinct algorithms. Hereafter, an instance could be obtained by specifying
all the problem parameters with the given problem formulations [10]. With the
development of metaheuristics, it becomes a hot topic to select an appropriate
algorithm to resolve a given instance of a NP-hard COP. In [18], Rice first pro-
posed the problem of algorithm selection, which seeks to predict which algorithm
is likely to perform best on one given instance.

What exactly makes an optimization problem instance hard or easy? To an-
swer this question, Macready [14] makes it clear that the features of an in-
stance determine its hardness for a particular algorithm. Some recent survey
papers [4] [15] point out that the instance features might influence algorithm
performance which is denoted as exploratory landscape analysis. Researches
in [13] [17] study the problem hardness to an algorithm by analyzing the ex-
pected running time.
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In this study, we focus on the hardness of the Traveling Salesman Problem
(TSP), which aims at finding a shortest tour visiting each of N cities once and
returning to the starting city in the end. There have been a great number of
metaheuristics to solve the TSP. We choose 2-opt [8], one of the most popular
local search algorithms, to analyze the hardness of TSP instances based on their
feature vectors. For a large-scale TSP instance, we calculate its features to predict
its hardness for 2-opt, then we can know whether it is cost-effective to select 2-
opt. More precisely, if the instance is hard for 2-opt, it is considerable to choose
some other metaheuristics instead. However, it is still a challenge to measure
the hardness of TSP instances for 2-opt. Two different approaches have been
proposed to evaluate the hardness of TSP instances. One adopts the efficiency
of 2-opt obtaining a local optimum to measure the hardness of TSP instances
when solving these instances [19], while the other employs the effectiveness of
the solutions achieved by 2-opt to evaluate the hardness of the instances [16].
Accordingly, each of them only considers one objective, either the efficiency
or the effectiveness of 2-opt respectively. However, there exist some conflicts
between two objectives [16]. For example, 2-opt possesses high efficiency but
may achieve poor effectiveness with bad solutions on some instances, whereas it
obtains desired effectiveness with low efficiency on some other instances.

To address this challenge, we evaluate the hardness of TSP instances by com-
bining both the effectiveness and the efficiency objectives. More precisely, for
2-opt, one instance is easier than another if 2-opt achieves higher efficiency and
better effectiveness on the former instance. Based on this evaluation formulation,
we evolve easy and hard instances by a multi-objective optimization algorithm
following NSGA-II [2]. For the purpose of straightforward illustration and signif-
icant analysis, all the instances are mapped into a 2-dimension objective space.
Results show that the easy instances and the hard instances are distributed
within different areas in the objective space. To study which features mainly af-
fect the distribution of the instances in the objective space, we get the influence
coefficient of each feature by training a prediction model. New relationships are
discovered by the multi-objective approach that at least six features have a ma-
jor influence on the hardness of TSP instances. The distribution of random TSP
instances and TSPLIB instances in the objective space can be well predicted
based on these relationships.

The remainder of this paper is organized as follows. Section 2 analyzes the
relationships between two existing evaluation approaches to the hardness of TSP
instances. Section 3 generates instances based on the multi-objective approach.
Section 4 investigates the relationships between features and hardness. We eval-
uate the relationships on random TSP instances and sampled TSPLIB instances
in Section 5. We conclude this paper in Section 6.

2 Traditional Evaluations of Hardness of TSP Instances

In this section, we demonstrate the conflicts between two existing approaches for
evaluating the hardness of TSP instances. There are two approaches to evaluate
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the hardness of TSP instances in the literature based on single objective: effi-
ciency or effectiveness. Smith-Miles et al. [19] measure the hardness of a given
TSP instance by the efficiency of 2-opt on this instance, which is calculated by
the number of 2-opt swaps to reach a local optimum. They consider that 2-opt
has high efficiency on easy instances and low efficiency on hard instances. Mean-
while, Mersemann et al. [16] evaluate the hardness of a given instance for 2-opt
by the effectiveness of 2-opt on this instance, which is presented by the quality of
the solution achieved by 2-opt. To measure the quality of a solution obtained by
2-opt, they compare the solution against the global optimal solution achieved by
the concorde solver [3]. Both researches use an evolutionary algorithm to evolve
hard and easy TSP instances, and analyze the relationships between the fea-
tures and the hardness. We adopt the genetic algorithm with the same crossover
and mutation operators used in [16] to evolve instances based on the efficiency
objective or the effectiveness objective. Moreover, we denote the corresponding
collections of instances as “swaps instances” and “quality instances”, respec-
tively. A TSP instance is represented by a list of N (x, y) city coordinates on
a 1 × 1 grid. To validate our finding on the instances provided on TSPLIB, we
rescale the city coordinates of TSPLIB instances to a 1× 1 grid as well.

2.1 Evolving TSP Instances by Traditional Evaluations of Hardness

We generate swaps instances and quality instances with fixed sizes of 25, respec-
tively [16]. The size of an instance means the number of cities in the instance.
We choose the 2-opt in [8] whose main idea is that making an initial solution
randomly and obtaining a local optimum after a few of 2-opt swaps. Accordingly,
we adopt 2-opt on each TSP instance and take the number of 2-opt swaps to
reach a local optimum as the fitness of the instance for the genetic algorithm
when generating swaps instances. It is obvious that the fitness of each instance
depends on the random initial solution, which makes the fitness of instances un-
certain. To make the fitness of instances more reasonable, we use 2-opt to solve
each instance 500 times, and take the average of the number of 2-opt swaps to
reach a local optimum as the fitness of the instance.

We generate TSP instances randomly for the initial population. When evolv-
ing an easy swaps instance, the instance which takes less 2-opt swaps for 2-
opt to reach a local optimum has higher fitness. We select the instances with
higher fitness from the current generation for the next generation, and the
instance with the highest fitness in the last generation will be choosed as an
easy swaps instance. We repeat this process until we get the expected number of
easy swaps instances. In contrast, the instance taking more 2-opt swaps to reach
a local optimum has higher fitness when evolving hard swaps instances, and we
choose the instance with the highest fitness after generations of optimization
as a hard swaps instance. Repeat this process until the desired number of hard
swaps instances are evolved.

In addition, we evolve quality instances based on the effectiveness objective
which is measured by the approximation ratio of path length that 2-opt achieves
for a given TSP instance to the length of global optimal path achieved by the
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concorde solver. The approximation ratio equals to 1 means that 2-opt has the
same effectiveness as the concorde solver when solving an instance. Therefore, the
closer the approximation ratio of a given instance is to 1, the easier the instance
is for 2-opt. Similar to the process of evolving swaps instances, we generate the
quality instances by taking the approximation ratio instead of the 2-opt swaps
as the fitness of instances for the genetic algorithm.

100 swaps instances and 100 quality instances of either easy or hard with
fixed sizes of 25 are evolved. Genetic algorithm parameters are set as follows.
The size of initial population is 100, and the number of generations is 1000. The
uniform mutation rate is 0.001, while the normal mutation rate is 0.01. We use
a 1-elitism strategy that the best individual survives and will be contained in
the next population, while the other instances for the next population will be
generated by uniform crossover of the instances with high fitness.

2.2 The Conflicts between Two Single Objective Approaches

To observe whether there exist conflicts between two objectives, we get the effi-
ciency of 2-opt on quality instances and the effectiveness of 2-opt on
swaps instances. Then each of quality instances and swaps instances can be
mapped into a 2-dimensional objective space.
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Fig. 1. The distribution of swaps instances and quality instances in the 2-dimensional
objective space

In Fig.1, instances are denoted as points, the x -axis represents the effectiveness
of 2-opt on each instance, and the y-axis indicates the efficiency of 2-opt on each
instance. Swaps instances are represented in blue color, and quality instances are
in green color. Hard instances are denoted by triangles, while easy instances are
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denoted as squares. It is shown in Fig.1 that 2-opt has lower efficiency on easy
quality instances than that on hard quality instances, and has higher effectiveness
on hard swaps instances than that on easy swaps instances. Therefore, there raise
some conflicts that the instances which are considered as easy instances by one ob-
jectivemaybe judged as hard ones based on the other objective, which implies eval-
uating the hardness of instances based on separate consideration of the efficiency
objective or the effectiveness objective might be insufficient. To address this issue,
we present a new approach to evaluate the hardness of instances which considers
both the efficiency objective and the effectiveness objective. More precisely, for
2-opt, one instance is easier than another for 2-opt if 2-opt has higher efficiency
and better effectiveness on the former, and vice versa. Based on the concept of
Pareto optimality [6], we also evolve easy and hard instances which are denoted as
“mul instances” by a multi-objective optimization algorithm, and discover which
features achieve the most influence on the hardness of instances for 2-opt.

3 Evolving TSP Instances byMulti-objective Optimization

Since we evaluate the hardness of instances based on a multi-objective approach,
we evolve TSP instances by a multi-objective optimization algorithm in this sec-
tion. We first impose an additional concept into the multi-objective optimization
algorithm as follows.
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Fig. 2. The distribution of instances in the 2-dimensional objective space

Given two individuals p and q in the population Pop, p dominates q ( denoted
by p � q ) if they satisfy the following conditions, where fk(∗) is the kth objective
of individual ∗:
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– For all the objectives, p is not worse than q, i.e., fk(p) ≤ fk(q), (k = 1, 2).
– There exists at least one objective such that p is better than q. That is,

∃l ∈ {1, 2}, s.t. fl(p) < fl(q).

Algorithm 1. The construction of non-dominated individual set

1: for each p ∈ Pop do
2: for each q ∈ Pop do
3: if p dominates q then
4: sq = sq ∪ {q} //the set of individuals dominated by the individual q
5: end if
6: if q dominates p then
7: np = np + 1 //the number of individuals dominating the individual p
8: end if
9: end for
10: if np = 0 then
11: P1 = P1 ∪ {p}
12: end if
13: end for
14: i = 1
15: while Pi �= ∅ do
16: H = ∅
17: for each p ∈ Pi do
18: for each q ∈ sp do
19: nq = nq − 1 //the number of individuals dominating the individual q
20: if nq = 0 then
21: H = H ∪ {q}
22: end if
23: end for
24: end for
25: i = i+ 1
26: Pi = H //the set of non-dominated individuals after the ith generation
27: end while

2-opt is also conducted on each instance 500 times, and we take the average
number of swaps as the efficiency of 2-opt on the instance, while the average of
approximation ratio is taken as the effectiveness of 2-opt on the instance. The pa-
rameters of the multi-objective optimization algorithm are also the same as the
genetic algorithm used in the previous section. The key difference between the
genetic algorithm [16] and the multi-objective optimization algorithm proposed
in this paper is that we choose two instances from a non-dominated individual
set randomly to evolve new instances by uniform crossover. We obtain the easy
instances or the hard instances from the non-dominated individual set in the last
generation. The pseudo-code (Algorithm 1) is used to build the non-dominated
individual set in each generation.

Finally, we generate 100 easy instances and 100 hard instances with fixed sizes
of 25 which are mapped into the objective space as well. Fig.2 shows that the easy
and the hard instances locate in different regions and the mul instances present
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convex distribution as expected. Some hard mul instances locate in those regions
that hard swaps instances or hard quality instances locate in, which illustrates
that the instances considered to be hard by the single objective approaches are
also considered to be hard by the multi-objective approach.

4 The Influential Features to the Hardness of Instances

In this section, we investigate whether there are different combinations of fea-
tures that affect the efficiency and the effectiveness of 2-opt most. We choose
the features used in [16]. There are totally 47 features classified into 8 groups,
including Distance Features, Mode Features, Cluster Features, Nearest Neighbor
Distance Features, Centroid Features, MST Features, Angle Features, and Con-
vex Hull Features. We calculate the features of all evolved instances and then
conduct comparative analysis between the single objective approaches and the
multi-objective approach.
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We discover the features that affect the hardness of instances most by training
a prediction model based on the random forest [5]. The training set consists of 75
easy and 75 hard mul instances, and the other 25 easy and 25 hard mul instances
compose the test set. We use the features of the test set to predict the corre-
sponding efficiency and effectiveness of 2-opt. Root Mean Squared Error (RMSE)
is used to indicate prediction error, which is defined as follow:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2, (1)

where yi is the true value and ŷi is the predicted value of the ith element.
Then we delete each feature in turn, and record the percentage of error increase
when removing a certain feature which is denoted as the importance score of
this feature to the hardness. To find the features that affect the hardness of
instances most, we select the features whose importance scores to the hardness
are greater than 10%. Using the same approach on swaps instances, we can get
another combination of features that influence the efficiency of 2-opt most. The
combination of features that influence the effectiveness of 2-opt most can be
discovered on quality instances as well.

Considering Fig.3, we can find the features that affect the effectiveness and
the efficiency of 2-opt most discovered by the multi-objective approach are quite
different from those discovered by the single objective approaches, which im-
plies that new relationships between features and hardness are discovered by the
multi-objective approach. The features that affect the efficiency of 2-opt most
are also different from those affect the effectiveness of 2-opt most, which also
explains that separately considering the efficiency objective or the effectiveness
objective to evaluate the hardness of instances might be insufficient.

5 Validating the Features on TSP Instances

To clarify whether the new relationships discovered by the multi-objective ap-
proach are practically useful, we use the prediction model trained by mul instances
to predict the effectiveness and the efficiency of 2-opt on random TSP instances
and TSPLIB instances based on the feature vectors of these instances in this sec-
tion. In order to compare with the relationships discovered by the single objective
approaches, the prediction model trained by quality instances is used to predict
the effectiveness of 2-opt and the prediction model trained by swaps instances
is used to predict the efficiency of 2-opt on these instances, respectively. In this
section, RMSE is also used to indicate prediction error.

5.1 Validating the Features on Random TSP Instances

We generate 50 TSP instances with fixed sizes of 25 randomly which compose
the test set. There are three groups of training sets for building random forest:
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– Mul Training Set: consisting of 75 easy mul instances and 75 hard mul
instances;

– Quality Training Set: consisting of 75 easy quality instances and 75 hard
quality instances;

– Swaps Training Set: consisting of 75 easy swaps instances and 75 hard swaps
instances.
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Fig. 4. Prediction comparision on random TSP instances

We achieve a RMSE of 0.0253 when using the prediction model trained by
Mul Training Set to predict the effectiveness of 2-opt on random instances, and
the RMSE for the prediction model trained by Quality Training Set is 0.0523.
The RMSE for the prediction model trained by Mul Training Set to predict the
efficiency of 2-opt on random instances is 2.32, which is lower than that of 12.37
obtained by the prediction model trained by Swaps Training Set. The RMSE
values in the two different objective dimensions are not in the same order of
magnitude. This is because there exists a big gap between the magnitudes of the
2-opt swaps and the approximation ratio. Fig.4 shows that the prediction model
trained by Mul Training Set is better to predict the efficiency and the effective-
ness of 2-opt on random instances, which illustrates that the multi-objective
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approach can better discover the relationships between the features and the
hardness than the single objective approaches.

5.2 Validating the Features on Sampled TSPLIB Instances

In order to further validate the new relationships between features and hardness,
we use the prediction models trained by these three groups of training sets to pre-
dict the efficiency and the effectiveness of 2-opt on sampled TSPLIB instances.
The instances on TSPLIB have different sizes. However, the training instances
are all with the fixed sizes of 25. To be coincident with the training instances, we
select 50 TSP instances from TSPLIB whose size is larger than 25 and extract
25 coordinates of cities from each of the TSPLIB instances randomly. Then we
will obtain a test set with 50 sampled TSPLIB instances.
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the efficiency objective

Fig. 5. Prediction comparision on sampled TSPLIB instances.

The prediction results are shown in Fig.5. The RMSE is 0.0464 for the
prediction model trained by Quality Training Set, and RMSE obtained by the
prediction model trained by Mul Training Set is 0.0247 when predicting the ef-
fectiveness of 2-opt on sampled TSPLIB instances. The prediction model trained
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by Mul Training Set achieves a better prediction with RMSE of 3.26 than the
RMSE of 10.93 obtained by the prediction model trained by Swaps Training Set,
which also implies that the model trained by Mul Training Set can better pre-
dict the efficiency of 2-opt on sampled TSPLIB instances. Overall, the multi-
objective approach achieves higher accuracy in predicting the distribution of
TSP instances in the objective space, which illustrates that the multi-objective
approach can better discover the relationships between the features and the
hardness of instances for 2-opt.

In this section, we validate the features on the sampled TSPLIB instances
with fixed sizes of 25. Further investigation needs to be conducted on TSPLIB
instances with real sizes, which needs us to evolve training instances with differ-
ent sizes.

6 Conclusion

There are two existing approaches to evaluate the hardness of TSP instances
for 2-opt based on single objective. However, the objectives may conflict with
each other. The instances which are considered as easy instances by one sin-
gle objective may be judged as hard ones w.r.t. the other objective. To address
this challenge, we propose a new evaluation approach by combining both objec-
tives. For 2-opt, one instance is easier than another instance if 2-opt has higher
efficiency and better effectiveness on the former, and vice versa.

We use a multi-objective optimization algorithm to evolve hard and easy TSP
instances. Then we study the relationships between features and hardness. To
find the combinations of features that affect the efficiency and the effectiveness
of 2-opt most, we employ the random forest to get the importance score of each
feature. Experimental results show that the relationships between features and
hardness discovered by the multi-objective approach is quite different from those
discovered by single objective approaches. There are at least six features with
the most effect on the efficiency and the effectiveness of 2-opt discovered by
the multi-objective approach. In the end, we verify our finding on random TSP
instances and TSPLIB instances, and the results show that the relationships
discovered by the multi-objective approach can provide more help for us to
predict the distribution of TSP instances in the objective space.
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Abstract. This paper present a Non-dominated Sorting based Multi Ob-
jective A∗ Search (NSMOA∗) algorithm for multi-objective search prob-
lem. It is an extension of the New Approach for Multi Objective A∗ Search
(NAMOA∗). This study aims to improve the selection phase of the
NAMOA∗ algorithm which can affect the performance of the algorithm
considerably, especially when the number of non-dominated solutions in-
creases to a large number during the search. This research proposes a new
sorting method that allows selection and expansion of the partial solutions
be carried outmore efficiently. The results demonstrate that our algorithm
expands fewer nodes and explores a smaller region of solution space using
the same heuristic.

Keywords: A∗ Search, Multi-Objective Optimization, Non-dominated
Sorting.

1 Introduction

Finding the shortest path in a graph is a classical optimization problem with a
large number of applications. For instance, shortest path algorithms are applied
to automatically find the shortest route between two different locations. In this
scenario, travel time is usually considered as the main objective. However, it
is sometimes necessary to have more than just one objective. For example, you
may be interested in routes that are not only faster but also cheaper. People who
want to use public transportation have several criteria for their journey as well
(i.e. number of transfers, monetary cost, comfort of the journey etc.). The multi-
objective shortest path problem considers more than one objective that need to
be optimized simultaneously, and these objectives may be in conflict with each
other. In multi-objective search the aim is to find the Pareto optimal solutions,
i.e., paths that are not dominated by any other solutions in the search space
with respect to all objective functions. Real-world multi-objective optimization
problems are often NP-hard even for bi-criteria problems [10].

Selection and expansion of open nodes are the basic operations in A∗ . In the
original A∗ , each open node is a partial solution which can be expanded. How-
ever, this cannot be directly applied to multi-objective problems; where paths
may reach the same node at the different times. Moreover, solution costs in
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c© Springer International Publishing Switzerland 2014



A Multi-Objective A* Search Based on Non-dominated Sorting 229

multi-objective search is not a scalar value and cannot be fully ordered. There-
fore, selecting one of the partial solutions (which may or may not be on the same
node) is one of the most important tasks in multi-objective path finding. Select-
ing a solution from non-dominated set is an important issue in MOA∗ . If the
selection is done in an efficient way the number of nodes that we have to expand
decreases (due to the elimination based on solutions that we have already found)
and the overall complexity of the algorithm can be reduced as well. In selection
phase of the NAMOA∗ algorithm [9], a partial solution is selected randomly
from all the non-dominated solutions to expand.

Multi-objective path finding problems have received tremendous attention in
the past few decades. An extension of Dijkestras algorithm [3] to the multi-
objective case is presented by Hansen[4]. In [6] Loui demonstrated that some of
the stochastic search problems could be mapped to multi-objective ones. Stew-
art and White [2], described MOA∗, a multi-objective augmentation of A∗ [5],
and also provided proofs on admissibility, node expansion, as well as comparison
of various heuristics’ efficiencies. In [1] Dasgupta extended the MOA∗ and pre-
sented versions for non-consistent heuristic A∗ (MOA∗∗) with limited memory
A∗ (MOMA∗). In [10, 11] Perny and Spanjaard presented a generalization of
MOA∗ focusing on a specific application for a Web access problem. Mandow
and Perez de la Cruz considered the extension of A∗ to the multi-objective case,
outlined a new algorithm (NAMOA∗ -New Approach to Multi-objective A∗),
and briefly discussed its admissibility in [8]. More recently, Mandow presented
a revision on NAMOA∗ and presented new proofs on its admissibility, node
expansion. [9].

This paper presents an extension to the algorithm which was presented by
Mandow [9]. The algorithm is fully described, and an example is presented to
explain the algorithm. For proofs of admissibility and optimality of NAMOA∗,
we highly recommend the readers to take a look at NAMOA∗ presented by
Mandow [9].

This paper is organized as follows: Section 2 reviews previous relevant studies
in scalar search and points out analogies and differences with the multi-objective
search problem. Section 3 presents NSMOA∗ algorithm and illustrates its be-
haviour with an example to demonstrate its differences from NAMOA∗. Sec-
tion 4 provides an experimental comparison of results between NSMOA∗ and
NAMOA∗. Finally, conclusions are summarized in section 5.

2 Preliminaries

This section presents an overview of A∗ search as well as non-dominated sorting
algorithms. At first, we describe the scalar A∗ search and discuss its properties.
The extension to multi-Objective A∗ is discussed, and then the differences are
identified. We will also describe the crowding distance which is the parameter
that we used for non-dominated sorting phase of our algorithm.
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2.1 A* Definition

A shortest path problem can be represented by graphs which may be directed,
undirected or mixed. In this article, we consider undirected graphs, G = (V,E)
where V and E represent the vertices and edges of the graph respectively.

Two nodes are adjacent when they both share a common edge. A path in an
undirected graph is a sequence of nodes P = (V1, V2, ..., Vn) ∈ V such that Vi is
adjacent to Vi+1 for 1 ≤ i ≤ n . The path P is called a path of length n from V1

to Vn.
Let ei,j be the edge shared between both Vi and Vj . Given a weight function

f : E → R , and an undirected graph, the shortest path from V to V
′
is the

path P = (V1, V2, ..., Vn) where V1 = V and Vn = V
′
which minimizes the sum∑n−1

i=1 f(ei,i+1).
A∗ uses best-first search algorithm and finds a least-cost path from an initial

node to the goal node. As A∗ explores the graph, it expands the nodes with
lowest expected total cost or distance. It uses a knowledge based heuristic cost
function of node x, usually expressed as f(x), to determine the order of nodes
which the algorithm expands in the tree. The cost function is a summation of
two functions:

– The past path-cost function, which is the associated distance between the
starting node and the current node x, usually denoted as g(x).

– A planned cost function which is an admissible heuristic estimate of the
distance from x to the goal node and is indicated as h(x).

The h(x) part of the f(x) function must be an admissible heuristic. Therefore,
it must not overestimate the distance to the goal. If the heuristic function h is
admissible, it means that it never overestimates the true cost of reaching the goal,
then A∗ is admissible as well. A∗ is also optimally efficient, and that means no
other search algorithm using the same heuristic will expand fewer nodes than A∗.

2.2 An Extension on Multi-Objective Search

In multi-objective optimization, an optimization problem is usually involved
more than one objective functions that need to be optimized simultaneously
[12, 13]. A multi-objective optimization problem can be expressed as:

min(f1(x), f2(x), ..., fk(x)) s.t. x ∈ X (1)

where k > 2 is the number of objectives and X is the feasible set of decision
variables. The feasible set is defined by some constraint functions. In addition,
the vector-valued objective function is usually represented as:

f : X → R, f(x) = (f1(x), f2(x), ..., fk(x))
T (2)

An element x ∈ X is called a feasible solution. A vector z := f(x) ∈ R
k

for a feasible solution x denotes an objective vector. Usually in multi-objective
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optimization, a feasible solution which can minimize all objective functions si-
multaneously cannot be found. Therefore, the optimizer should find a set of
solutions which are called Pareto optimal solutions, i.e., solutions that cannot
be improved in any of the objectives without degrading at least one of the other
objectives. In mathematical terms, a feasible solution a ∈ X dominate another
solution b ∈ X , if:

fi(a) ≤ fi(b) for all i ∈ {1, 2, ..., k} (3)

fj(a) < fj(b) for at least one j ∈ {1, 2, ..., k} (4)

A solution x∗ ∈ X is called Pareto optimal, if there is no other solution that
dominates it. The set of Pareto optimal solutions is called the Pareto front.

The aim of any multi-objective optimization algorithm is to find the set of
solutions that converge as closely as possible to the true Pareto front, and also
as evenly distributed along the front as possible. Therefore, the goal for MOA∗

is to find all optimal paths to the goal nodes. However, a few key differences
from the scalar search should be considered [9].

1. The search which A∗ uses to record the best known path to the nodes is
no longer applicable. As it is presented in the next section, in NAMOA∗ a
directed acyclic graph is used to record the set of non-dominated paths to
generated nodes.

2. All arcs and non-dominated cost vectors reaching each node have to be
recorded. Therefore, the number of generated nodes may no longer be a fair
estimation of the memory that the algorithm needs.

3. Each time a new path is generated to a known node, its cost should be tested
for dominance with the rest of all path reaching the node.

4. The heuristic functions for all objectives should be admissible.

2.3 Crowding Distance

In A∗ algorithm, there might be several non-dominated solutions at each iter-
ation. However, only one of them should be selected to expand. Therefore, one
auxiliary parameter should be added to the A∗s Priority queue to sort the non-
dominated solutions. in this study we used crowding distance value to sort the
open solutions.

The crowding distance value of a solution gives an assessment of the density of
solutions encompassing that solution [7]. Figure 1 demonstrates the computation
of the crowding distance of the point i which is an assessment of the measure of
the biggest cuboid walling i in without including other points. Crowding distance
is computed by first sorting the set of solutions in ascending objective function
values. The crowding distance value of a specific solution is the normal distance
of its two neighbors. This procedure is done for each objective function. The
overall crowding distance for a solution is calculated by averaging the individual
crowding distance values for every objective functions.
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Fig. 1. Crowding distance computation

3 NAMOA* and Proposed Method

This section describes the proposed method for NSMOA∗. First the algorithm
of NAMOA∗ is presented and then the method for sorting open partial solutions
is explained. at the end of this section, an example is provided to illustrate the
steps of the algorithm.

3.1 NAMOA* Algorithm

The NAMOA∗ algorithm presented in [9] can be briefly described as follows:
The algorithm uses an acyclic graph named SG to record partial solution

path. For each node n in SG there is an entry in Gcl(n) and Gop(n) to store sets
of non-dominated solutions reaching to n. Gcl and Gop illustrates that solution
have or have not been explored respectively. Initially, the start node (S) is the
only node in SG.

In the algorithm, the partial solutions which need to be expanded later are
stored in the OPEN set. The OPEN is a set of triples such (n, gn, F (n, gn))
where gs denotes the actual cost for reaching n and F is the heuristic approxi-
mation of the cost to reach V .

In the selection phase of the algorithm, it selects randomly one of the non-
dominated solutions in the OPEN set to expand. GOALN and COSTN sets
record all goal nodes and corresponding non-dominated costs for reaching that
goal node respectively. Once the algorithm reaches a goal node, it updates
GOALN and COSTN set and uses the COSTN set to prune the OPEN set as
well. The algorithm uses a backward procedure to produce the actual path for
the corresponding cost based on nodes and costs in GOALN and COSTN sets
as well as SG graph. COSTN vector is also utilised for pruning the search space.
When a cost vector enters to COSTN all the partial solutions in the OPEN
set that their F (n, gn) vector is dominated by COSTN will be removed from
the OPEN set. The algorithm only terminates when the OPEN set is empty.
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Notice that all the partial solutions in the OPEN has to be either expanded or
filtered.

3.2 Extension to NSMOA* Algorithm

As mentioned before, the main contribution in this study is on selection phase
of the NAMOA∗ algorithm. A∗ is a single individual search algorithm and it
means that at each iteration of the algorithm we have to select only one solution
to expand. Moreover, the number of non-dominated solutions in the OPEN set
can grow during the algorithm. Therefore, selecting one of the non-dominated
solutions may not be wise enough in in practice especially when number of nodes
and edges in the graph increase to some large number.

In NSMOA∗ algorithm, at each iteration, the algorithm selects the partial
solutions from OPEN set which has the lowest crowding distance value among
all non-dominated solutions. As mentioned before the lower crowding distance
value shows that the distance between a particular solution and its neighbours is
close. In other words, it shows that in that region of the solution space, solution
density is high. Therefore, the chance of searching for a more worthy solution in
that region is higher than the other regions. In the next section, an example is
provided to demonstrate steps of the algorithm.

3.3 An Example

Let us consider the graph presented in figure 2. The start node is S and the
only goal node is V . The heuristic function for each node H(n) is presented at
table 1. Figure 3 to 7 illustrate the trace of the algorithm. Each figure shows
the distribution of the OPEN set in objective space. Triangles and squares
represent non-dominated and dominated solutions respectively. As mentioned
earlier, every solution is represented by a set of triples such (n, gn, F (n, gn)).
The first two numbers (gn show the actual cost for reaching a particular node
(a number for each objective) and the last two numbers F (n, gn) represent the
estimation of the cost to reach the goal node from this particular node. Finally,
evolution of the SG graph through the algorithm is presented at figure 8.

At iteration 1 there is only one node in the SG (S) and one partial solution
in the OPEN set (s, gs, F (s, gs)). Therefore, it will be selected, and its three
adjacent nodes (n1, n2, n4) are added to the OPEN set. At iteration 2, since
the only non-dominated solution is n2, this solution is selected, and its neigh-
bors are added to the OPEN set. At the same time, the SG graph updates as
well (figure 2 (a)). In the third iteration, since between two non-dominated solu-
tions ([n1, (6, 1), (8, 3)]and[n4, (3, 5), (4, 8)]) n1 has the lower crowding distance
value. Therefore, the solution [n1, (6, 1), (8, 3)] will be selected to expand and its
adjacent nodes will be added to the OPEN set as well.

At iteration4, after theOPEN set is sorted, thepartial solution [n6, (8, 2), (9, 3)]
is picked since it is a non-dominated solution with lowest crowding distance value
and its neighbor (V ) are added to the OPEN set. At iteration 5, the solution
[V, (9, 3), (9, 3)] has the lowest crowding distance betweennon-dominated solutions
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Fig. 2. A sample directed graph where edge labels present cost for each objective

Table 1. Heuristic estimates for sample graph

and become selected. Since the V is the goal node, it will be added toGOALN ar-
ray and its corresponding cost adds toCOSTN array as well. At this point there is
a value in COSTN and can be used to prune theOPEN set. As explained earlier,
all the solutions where their F function is dominated by the solutions in COSTN
will be eliminated from theOPEN set. Since theF function is admissible, these so-
lutions cannot reach the goal nodes with a cost lower than their F function values,
hence removing them from the OPEN set will not eliminate any interesting so-
lutions. The solution [(n4, (9, 3), (10, 4))], [(n4, (8, 4), (9, 5)], [(n6, (9, 9), (9, 9)] and
[(V, (10, 10), (10, 10)]will be eliminated from theOPEN set and their correspond-
ing values in Gop and Gcl will be removed as well.

At iteration 6, solution [n4, (3, 5)(4, 6)] is selected but since all the path which
pass through its neighbours are dominated by the solution we have already
found, just one new solution will be added to the OPEN set. In iteration 7,
solution [V, (4, 10), (4, 10)] is selected, and since V is the goal node, we add it to
GOALN and COSTN . Now we eliminate the OPEN and since all the solutions
in OPEN is dominated by the costs in COSTN , all the solutions in OPEN set
will be removed and the main loop of the algorithm is finished. Now the actual
path related to the elements in GOALS and COSTN is generated based on
information in SG, Gop, Gcl sets.

4 Expriments

In this section, we compare the results of NSMOA∗ with the originalNAMOA∗

which was presented in [9]. Since our main contribution is in node selection phase
of the algorithm, we compare the algorithms by the number of nodes which have
to be expanded to find the solutions. figure 8 and 9 present the number of
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Fig. 3. Solution space and SG graph at iteration 2

Fig. 4. Solution space and SG graph at iteration 3

Fig. 5. Solution space and SG graph at iteration 4

Fig. 6. Solution space and SG graph at iteration 5
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Fig. 7. (a) to (d) - SG graph at iteration 2-5 respectively

solutions in the OPEN set (size of the OPEN set) before the first solution
is found as well as the number of solutions which is expanded, respectively.
The information of some of the graphs and their correspondence results for
NAMOA∗ and NSMOA∗ is presented in table 2 and 3 respectively. Finding
the first solution is critical in this algorithm since we cannot prune any solution
until we find at least one solution. We compare the number of solutions that the
algorithms have to expand until the first solution is found.

As mentioned earlier, we select a solution from the OPEN solution set which
has the lowest crowding distance. In other words, we picked a non-dominated
solution which has a lot of solutions around; therefore, it must be in a decent
region to explore. The results shows that in average, our algorithm has to expand
only half of the nodes that the NAMOA∗ expands.

Table 2. NAMOA* results [9]
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Table 3. NSMOA* results

Fig. 8. Number of iterations before the first solution is found

Fig. 9. Number of open solutions before the first solution is found

5 Conclusion

In this paper, a new extension on multi-objective A∗ is presented. The main
contribution of this paper is in the selection phase of the algorithm. The crowding
distance value has been used to sort the OPEN solutions set. The idea behind
this method is that the solution which has a lower crowding distance is in a dense
region of the solution space and therefore is superior to the other solutions for
expansion. The results demonstrated a significant improvement over the amount
of the solution space which the algorithm has to explore to find the Pareto front.
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8. Mandow, L., Pérez, J.L.: A new approach to multiobjective A* search. In: Proceed-
ings of the XIX International Joint Conference on Artificial Intelligence (IJCAI
2005), pp. 218–223 (2005)

9. Mandow, L., Péerez, J.L.: Multiobjective A* Search with Consistent Heuristics.
Journal of the ACM 57(5), Article 27 (2010)

10. Perny, P., Spanjaard, O.: On preference-based search in state space graphs. In: Pro-
ceedings of the 18th National Conference on Artificial Intelligence, pp. 751–756.
AAAI Press (2002)

11. Perny, P., Spanjaard, O.: A preference-based approach to spanning trees and short-
est paths problems. European Journal of Operational Research 162(3), 584–601
(2005)

12. Milettinen, K.: Nonlinear Multiobjective Optimization. Springer (1999)
13. Hwang, C., Masud, A.: Multiple objective decision making, methods and applica-

tions: a state-of-the-art survey. Springer (1979)



Extending AεSεH from Many-objective

to Multi-objective Optimization

Hernán Aguirre1, Yuki Yazawa1, Akira Oyama2, and Kiyoshi Tanaka1

1 Faculty of Engineering, Shinshu University
4-17-1 Wakasato, Nagano, 380-8553 Japan

2 Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency
{ahernan@,yazawa@iplab,ktanaka@}shinshu-u.ac.jp

oyama@flab.isas.jaxa.jp

Abstract. This work analyzes the dynamics of dominance based multi-
objective evolutionary algorithms and extends a many-objective evolu-
tionary algorithm so that it can also work effectively in multi-objective
problems. The many-objective algorithm incorporates in its selection
mechanism a density sampling approach based on ε-dominance and per-
forms recombination within neighborhoods created by another
ε-dominance based procedure. The many-objective algorithm works well
during the stage of the search where there are too many non-dominated
solutions and dominance is not capable of ranking solutions. Here we
modify the selection mechanism of the algorithm to also work effectively
during the early stage of the search where dominance can be used to bias
selection. This allows the algorithm to solve multi- or many-objective
problems formulations using the same framework.

1 Introduction

Evolutionary algorithms are being successfully applied to solve single-, multi- and
many-objective optimization problems. In many real world application domains,
like design innovation [1] and sustainability, the problems we aim to solve are
usually ill-defined and complex. Thus, an important stage of the problem solving
task is to gain insights about the problem itself and to collect knowledge about
the trade-offs in objective and variable space in order to help the decision maker.
We gain insights and knowledge by solving simple versions of the problem, use
them to adjust the problem formulation and try to solve more detailed versions
of it. In this process we might change, add or eliminate objective functions,
variables and constraints. Even if the problem is well-defined, we still might want
to solve it incrementally to better understand the outcome of the optimization,
especially in the case of multi- and many-objective optimization.

There are effective algorithms for single- and multi-objective optimization
[2,3]. Lately, some effective algorithms are also being proposed for many-objective
optimization [4,5]. However, in most cases we need yo use different algorithms de-
pending on whether the formulation of the problem is multi- or many-objective,
small or large-scale. This imposes a heavy burden in the user. Therefore it is

G. Dick et al. (Eds.): SEAL 2014, LNCS 8886, pp. 239–250, 2014.
c© Springer International Publishing Switzerland 2014
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desirable to have scalable algorithms, within a same framework, that can be
applied to any formulation of the problem.

From this standpoint, in this work, we extend the many-objective evolutionary
algorithm AεSεH [5] so that it can also work effectively in multi-objective prob-
lems. We first analyze the dynamics of dominance-based algorithms in multi- and
many-objective problems showing that them usually face two clearly recognizable
stages of search regardless of the number of objective functions. One stage based
on Pareto dominance and the other one based on density-estimation. Then, we
modify the selection mechanism of AεSεH to work in the different stages of the
search the algorithm goes through. Experimental results show that the proposed
algorithm can perform significantly better than conventionalmulti-objective algo-
rithms when applied to multi-objective problems while retaining its effectiveness
for many-objective problems.

2 Two Search Stages in Dominance-Based Multi-objective
Evolutionary Algorithms

Let us assume a conventional elitist multi-objective algorithm evolving a pop-
ulation P . At each generation t, individuals are selected from Pt to reproduce
and create an offspring population Qt using recombination and mutation. The
surviving population for the next generation Pt+1 is selected from the com-
bined population Pt ∪ Qt. Dominance based evolutionary multi-objective algo-
rithms use Pareto dominance to establish a primary rank among solutions. This
implies that non-dominated solutions are assigned the same dominance-based
rank. Thus, these algorithms also compute a secondary rank based on density
estimation to discriminate among non-dominated solutions. These primary and
secondary ranks are used to select parents and to select the surviving population
as well.

Fig.1 (a)-(d) illustrates the dynamics of a dominance-based algorithm by
showing the number of non-dominated solutions F1 over the generations, ob-
tained from the instantaneous combined population of parents and offspring
Pt ∪ Qt before survival selection. Results are shown for DTLZ2 and DTLZ3
problems [6] with 2, 3 and 4 objectives using population sizes P = Q = 300 and
P = Q = 1000. In the figures, the horizontal lines at 300 and 1000 show the size
of the surviving population P for the next generation.

First, looking at the dynamics in problem DTLZ2 where fitness functions
are unimodal, it can be seen that the search process goes through two clearly
defined stages as generations pass by. That is, a first stage in which the number
of non-dominated solutions grows but is still smaller than the population size
followed by a second stage in which the number of non-dominated solutions is
larger than the population size. Consequently, in the first stage, only a part
of the surviving population Pt+1 after truncating Pt ∪Qt is non-dominated and
parent selection can effectively use the primary rank based on dominance to favor
dominant solutions over dominated ones. On the contrary, in the second stage all
solutions in the surviving population Pt+1 are non-dominated, i.e. are a subset
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Fig. 1. Number of non-dominated solutions obtained from the combined population of
parents and offspring for m = 2, 3, 4 objectives and population sizes 300 and 1000

of the non-dominated solutions present in the combined population Pt ∪ Qt;
the primary rank becomes useless and parent selection relies exclusively in the
secondary rank based on density estimation. We call these stages of the search as
dominance-based search and density-based search, respectively. Note that
when the number of objectives increases the transition from dominance-based
to density-based search happens earlier. Also, larger populations slightly delays
this transition.

In the case of DTLZ3, a problem in which each objective function is mul-
timodal with a large number of local optima, it can be seen that for 2 and 3
objectives problems the search is governed by the dominance-based stage. In
4 objectives, the density-based stage also plays a predominant role in a large
number of generations, although a clearly defined two stage search cannot be
seen for the population sizes used here. Similar to DTLZ2, earlier transitions are
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expected when the number of objectives increase and larger populations delays
the transition from dominance-based to density-based search.

Similar behavior to the one observed forDTLZ2 andDTLZ3 canbe seen in other
continuous and discrete problems. In general, it can be said that the dynamics of
dominance-basedmulti-objective evolutionary algorithms is characterized byboth
dominance- and density-based search when applied to multi-objective problems
and by density-based search when applied to many-objective problems. More pre-
cisely, it has been observed that the transition from dominance- to density-based
search depends on the ratio of the population size to the number of optimal solu-
tions of the landscape [7,8] . It is well known that the number of optimal solutions
increases exponentially with the number of objectives and it also depends strongly
on the correlation between objectives and the ruggedness of the landscape (multi-
modality) [9,10]. Usually in 2 and 3 objective problems we use population sizes
that are large enough to guarantee a dominance-based stage for some generations.
However, if a sufficiently small population is used, the dynamics of the algorithm
will be governed by density-based search even in bi-objective problems [7]. Thus,
population size is a determinant factor related to the dynamics of the algorithm in
multi- and many-objective optimization. The robustness of the algorithm to small
populations and its performance scalability in larger populations becomes an im-
portant factor of algorithm evaluation.

AεSεH is an effective many-objective optimizer which good performance com-
pared to conventional multi-objective optimizers and other many-objective op-
timizers has been shown in problems with 4 or more objectives [8]. Its design is
based on the assumption that for most generations all solutions in the instan-
taneous population are non-dominated, i.e. the algorithm mostly operates in a
density-based search stage. In this work we extend AεSεH to search effectively
also in the dominance-based stage of the search, so that the algorithm can be
used for multi- and many-objective optimization.

The lack of scalability of conventional dominance-based multi-objective evo-
lutionary algorithms is attributed to the incapability of the algorithm to rank
solutions in many-objective problems, which happens during a density-based
search stage. However, as we showed above, this density-based search stage also
appears when we optimize multi-objective problems after evolving the popula-
tion for some generations. Thus, it is expected that in multi-objective problems
the improved AεSεH would perform better than widely used conventional multi-
objective evolutionary algorithms such NSGA-II [11].

3 The AεSεH EMyO

Adaptive ε-Sampling and ε-Hood (AεSεH) [5] is an elitist evolutionary many-
objective algorithm that applies ε-dominance principles for survival selection and
parent selection. In ε-dominance, the objective vector f (x) of a solution x is first

mapped to another point f
′
(x) in objective space and dominance is calculated us-

ing the mapped point. Let us consider, without loss of generality, a maximization
multi-objective problem with M objectives f(x) = (f1(x), f2(x), · · · , fM (x)), a
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Procedure 1. AεSεH EMyO

Require: Population size Psize, reference neighborhood size HRef
size

Ensure: F1, set of Pareto non-dominated solutions

1: NRef
H ← Psize/H

Ref
size // set reference number of neighborhoods

2: εs ← 0, Δs ← Δ0 // set εs-dominance factor and its step of adaptation
3: εh ← 0, Δh ← Δ0 // set εh-dominance factor and its step of adaptation
4: P ← random, Q ← ∅ // initial populations P and Q, |P| = Psize

5: evaluation( P )
6: repeat
7: // Parent selection
8: {H, NH} ← ε-hood creation ( P , εh ) // H = {Hj}, j = 1, 2, · · · , NH

9: {εh,Δh} ← adapt ( εh, Δh, N
Ref
H , NH )

10: P ′ ← ε-hood mating( H, Psize )
11: // Offspring creation

12: Q ← recombination and mutation( P ′
) // |Q| = |P| = Psize

13: // Evaluation and front sorting
14: evaluation( Q )
15: F ← non-dominated sorting( P ∪ Q ) // F = {Fi}, i = 1, 2, · · · , NF

16: // Survival selection
17: {P , NS} ← ε-sampling truncation( F , εs, Psize ) // NS, number of samples
18: {εs,Δs} ← adapt ( εs, Δs, Psize, NS )
19: until termination criterion is met
20: return F1

solution x is said to ε-dominate another solution y, denoted by x �ε y, if the
following conditions are satisfied:

f(x) �→ε f
′
(x)

∀i ∈ {1, · · · ,M} f
′
i (x) ≥ fi(y) ∧

∃i ∈ {1, · · · ,M} f
′
i (x) > fi(y),

(1)

where f(x) �→ε f
′
(x) is a mapping function that depends on a parameter ε.

The general flow of the AεSεH is illustrated in Procedure 1. The main steps
of the algorithm at each generation t can be summarized as follows.

Parent Selection. For parent selection the algorithm first uses a procedure
called ε-hood creation to cluster solutions in objective space. This procedure
randomly selects an individual from the surviving population and applies ε-
dominance with parameter εh. A neighborhood is formed by the selected solution
and its εh-dominated solutions. Neighborhood creation is repeated until all so-
lutions in the surviving population have been assigned to a neighborhood. Then,
parents are selected by the procedure ε-hood mating, which sees neighborhoods
as elements of a list than can be visited one at the time in a round-robin sched-
ule. The first two parents are selected randomly from the first neighborhood
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in the list. The next two parents will be selected randomly from the second
neighborhood in the list, and so on. When the end of the list is reached, parent
selection continues with the first neighborhood in the list. Thus, all individuals
have the same probability of being selected within a specified neighborhood, but
due to the round-robin schedule individuals belonging to neighborhoods with
fewer members have more reproduction opportunities that those belonging to
neighborhoods with more members.

Offspring Creation. Once the pool of mates has been formed, recombination
and mutation is applied to the selected parent individuals to create the offspring
population Qt.

Evaluation and Front Sorting. The newly created offspring population is
evaluated. Then, the current population Pt and its offspring Qt are joined and
divided into non-dominated fronts F = {Fi}, i = 1, 2, · · · ,NF using the
non-dominated sorting procedure.

Survival Selection. Next, survival selection is performed using the ε-sampling
truncation procedure, which applies two different procedures according to the
number of non-dominated solutions. In the rare case in many-objective optimiza-
tion where the number of non-dominated solutions is smaller than the population
size |F1| < Psize, the sets of solutions Fi are copied iteratively to Pt+1 until
it is filled; if set Fi, i > 1, overfills Pt+1, the required number of solutions
are chosen randomly from it. On the other hand, in the common case in many-
objective optimization where |F1| > Psize, it calls ε-sampling with parameter
εs. This procedure samples solutions randomly from the set F1, inserting the
sample in Pt+1 and eliminating from F1 the sample itself and the solutions
ε-dominated by the sample. Sampling is repeated until there are no remaining
solutions inF1. After sampling, if Pt+1 is overfilled solutions are randomly elim-
inated from it. Otherwise, if there is still room in Pt+1, the required number
of solutions are randomly chosen from the initially ε-dominated solutions and
added to Pt+1. This guarantees that the size of Pt+1 is exactly Psize. The

mapping functions f(x) �→ε f
′
(x) used for ε-dominance in ε-sampling and

ε-hood creation determine the distribution of solutions the algorithm aims to
find.

Adaptation. Both epsilon parameters εs and εh used in survival selection and
neighborhood creation, respectively, are dynamically adapted during the run of
the algorithm. Further details about AεSεH can be found in [5].

4 Extension of AεSεH for Dominance-Based Search Stage

AεSεH was designed for many-objective optimization and assumes that in most
generations all solutions in the population will be non-dominated, i.e. all solu-
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tions are equally good. Consequently, in its original formulation ε-hood creation
randomly selects a solution to create a neighborhood with its ε-dominated solu-
tions and ε-hood mating also selects parents randomly within each neighborhood.
Density-estimation based on ε-dominance combined with local recombination
after clustering solutions in objective space based on ε-dominance allows the
algorithm an effective search in many-objective problems, where a density-based
search is predominant. However, during a dominance-based search stage, there
will also be dominated solutions in the population. Thus, in order to extend
AεSεH to work effectively during this stage, two slight changes are required for
neighborhood creation and parent selection.

First, ε-hood creation is modified so that solutions chosen to initiate a neigh-
borhood are among the non-dominated solutions in the population. The rest of
the procedure remains the same. In this way, we make sure that each neighbor-
hood contains at least one non-dominated solution in it, eliminating the pos-
sibility that a neighborhood contains only dominated solutions. Procedure 2
shows the extended ε-hood creation, where line 4 replaces the following in the
original formulation

z ← xr ∈ P | r = rand( 1, |P| ) // z, a randomly chosen solution

Second, to select parents, in the extended ε-hood creation procedure we re-
place random selection with binary tournaments between solutions within the
neighborhood. Solutions with better dominance rank win a tournament. If two
solutions have the same rank, the winner is decided randomly. Thus, selection
favors dominant solutions over dominated ones within each neighborhood. Pro-
cedure 3 shows the extended ε-hood mating procedure, where lines 5-8 replace
the following in the original formulation

{y, z} ← {xr1 , xr2 ∈ Hi | r1 ∧ r2 = rand( 1, |Hi| ), r1 �= r2}

5 Experimental Setup, Test Problems, and Performance
Indicators

In this work we study the performance of the extended AεSεH algorithm com-
paring with NSGA-II, a widely used algorithm for multi-objective optimization.
We use DTLZ2, DTLZ3, and DTLZ4 [6] continuous functions as benchmark
problems. In our experiments, we vary the number of objectives from m = 2 to
4 and set the total number of variables to n = (m − 1) + 10. DTLZ2 has a
non-convex Pareto-optimal surface that lies inside the first quadrant of the unit
hyper-sphere. DTLZ3 and DTLZ4 are variations of DTLZ2. DTLZ3 introduces
a large number of local Pareto-optimal fronts in order to test the convergence
ability of the algorithm. DTLZ4 introduces biases on the density of solutions to
some of the objective-space planes in order to test the ability of the algorithms
to maintain a good distribution of solutions.
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Procedure 2. Extended ε-hood creation ( P, εh )

Require: Population P, ε-dominance parameter εh for neighborhood creation
Ensure: Neighborhoods H = {Hi}, i = 1, 2, · · · ,NH

1: H ← ∅
2: i ← 0
3: while P �= ∅ do
4: z ← xr ∈ F1 | r = rand( 1, |F1| ) // z, a randomly chosen solution

from the non-dominated set F1 ∈ P
5: Y ← {y ∈ P | z �εh y, z �= y} // solutions εh-dominated by z
6: i ← i + 1
7: Hi ← {{z} ∪Y} // z and its εh-dominated solutions form the hood
8: H ← H ∪ Hi

9: P ← P\Hi // update P and therefore the non-dominated set F1 ∈ P
10: end while
11: NH ← i
12: return H, NH

Procedure 3. Extended ε-hood mating ( H, Psize )

Require: Neighborhoods H = {Hi}, i = 1, 2, · · · ,NH , and population size
Psize

Ensure: Pool of mated parents P′
, |P′ | = 2Psize

1: P′ ← ∅
2: i ← 1
3: j ← 0
4: while j < Psize do
5: {xr1 , xr2 ∈ Hi | r1 ∧ r2 = rand( 1, |Hi| ), r1 �= r2}
6: y ← tournament(xr1 , xr2) // decide based on dominance rank
7: {xr3 , xr4 ∈ Hi | r3 ∧ r4 = rand( 1, |Hi| ), r3 �= r4}
8: z ← tournament(xr3 , xr4) // decide based on dominance rank

9: P′ ← P′ ∪ {y, z}
10: i ← 1 + (i mod NH)
11: j ← j + 1
12: end while
13: return P′

We run the algorithms 30 times and present average results. We use a different
random seed in each run, but all algorithms use the same seeds. The number
of generations is set to 100 generations, and population size varies from 100 to
3000, |P| = |Q|. As variation operators, the algorithms use SBX crossover and
polynomial mutation, setting their distribution exponents to ηc = 15 and ηm =
20, respectively. Crossover rate is pc = 1.0, crossover rate per variable pcv =
0.5, and mutation rate per variable is pm = 1/n. The reference neighborhood

size HRef
size in AεSεH is set to 20 individuals. The mapping function f(x) �→ε
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Fig. 2. GD at generations 100 for various population sizes, DTLZ2 and DTLZ3
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Fig. 3. GD at generations 100 for various population sizes, DTLZ4

f
′
(x) used for ε-dominance in ε-sampling truncation and ε-hood creation is as

follows

f
′
i(x) = fi(x)+(ε×(max

y∈P
fi(y)−median

y∈P
fi(y))), i = 1, 2, · · · ,m (2)

To evaluate the Pareto optimal solutions obtained by the algorithms we use
Generational Distance (GD) [12], which measures the convergence of solutions
to the true Pareto front using Eq.(3), where P denotes the set of Pareto optimal
solutions found by the algorithm and x a solution in the set. Smaller values of
GD indicate that the set P is closer to the Pareto optimal front.

GD = average
x∈P

⎧
⎨
⎩

[
m∑
i=1

(fi(x))
2

] 1
2

− 1

⎫
⎬
⎭ (3)

6 Simulation Results and Discussion

Fig.2 shows the average GD by AεSεH and NSGA-II computed at the last gener-
ation for various population sizes in problems DTLZ2 and DTLZ3 with 2, 3 and
4 objectives. Similarly, Fig.3 shows results in DTLZ4 with 2 and 3 objectives.
Error bars show 95% confidence intervals around the mean. From these figures
it can be seen that AεSεH achieves smaller GD than NSGA-II for all population
sizes and number of objectives in DTLZ2 and DTLZ4 problems. AεSεH also
achieves overall smaller GD than NSGA-II in DTLZ3 problem, except for pop-
ulation size 500 or less in 2 objectives. These results show that convergence by
AεSεH is significantly better, confirming the superiority of the proposed algo-
rithm over NSGA-II when dominance-based search constitutes a significant part
of the run of the algorithm. As expected, when density-based search becomes
predominant in problems with a larger number of objectives the superiority of
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the proposed algorithm becomes clearer, as shown in [1,5] for an even larger num-
ber of objectives. It should be noticed that here we run the algorithms for 100
generations. Running the algorithms for a larger number of generations would
make the density-based search the predominant stage and it is expected a larger
performance gap in favor of the proposed algorithm.

It is worth mentioning the behavior of the algorithm in DTLZ3, a problem
with multi-modal fitness functions and a large number of local optima. As illus-
trated in Fig.1 (b) and (d), in 2 objective DTLZ3 the number of non-dominated
solutions is a small fraction of the population size when population size is 300
and 1000. Thus, in these cases the algorithm performs a dominance-based search
from the start to the end of the run. NSGA-II and the proposed algorithm set
the dominance rank of solutions using non-dominated sorting and apply the
same operators for crossover and recombination. However, NSGA-II achieves a
slightly better GD than the proposed algorithm in the 2 objective DTLZ3 for
population size 500 or less, as shown in Fig.2 (b), whereas the proposed al-
gorithm significantly outperforms NSGA-II for population size 1000 or greater.
These performance differences are attributed to recombination performed locally
within the neighborhood.

In general, small populations in highly multi-modal problems make the algo-
rithm prone to get trapped in local optima. This can be seen in the large values
of GD for small populations. When neighborhoods are created in the proposed
algorithm, if there are very few non-dominated solutions, each one of them will
most likely be placed in a different neighborhood. This reduces the chances of
recombining non-dominated solutions. In addition, clustering solutions in objec-
tive space would group together solutions located in the same basin of attraction
or in a near one. This will increase the chances of exploiting local optima, but
it will reduce the changes of escaping them. This explains the slightly worse
GD by the proposed algorithm when population sizes 500 or less is used. Using
larger populations in 2 objective DTLZ3 would not increase substantially the
number of non-dominated solutions. However, it increases the chances of having
a better coverage of the search space with solutions located in promising basins
of attraction, where recombination within the neighborhood could exploit them.
It also increases the chances of having within the same neighborhood solutions
located in different basins of attraction, which could be recombined to escape
local optima. Once the algorithm finds promising regions, recombination within
the neighborhood would quickly improve convergence. This explains the striking
GD gap difference in favor of the proposed algorithm observed for population
size larger than 500.

7 Conclusions

In this work we analyzed the dynamics of dominance-based multi-objective al-
gorithms in order to clarify the search stages the algorithm goes through. We
showed that dominance-based multi-objective algorithms make a transition from
a dominance-based search stage to a density-based search stage. Also, we argued
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that the transition time depends on the ratio between population size and the
number of optimal solutions of the landscape, which in turn depends strongly
on the number of objectives, correlation between objectives, and ruggedness
(multi-modality) of the landscape. Then the many-objective algorithm AεSεH
algorithm was extended for multi-objective optimization. This algorithm works
very well for density-based search, so selection was modified to make the al-
gorithm effective also for a dominance-based search. We used multi-objective
benchmark problems with 2, 3, and 4 objectives and showed that in a large
range of population sizes the overall performance of the extended algorithm is
superior to NSGA-II in multi-objective problems.

In the future we would like to study deeper the behavior of the algorithm in
highly-multimodal landscapes to adapt neighborhood creation accordingly.
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Abstract. Incorporating user preferences into evolutionary multi-ob-
jective evolutionary algorithms has been an important topic in recent
research in the area of evolutionary multi-objective optimization. We
present a very simple and yet very effective modification to the Approx-
imation-Guided Evolution (AGE) algorithm to incorporate user prefer-
ences. Over a wide range of test functions, we observed that the resulting
algorithm called iAGE is just as good at finding evenly distributed so-
lutions as similarly modified NSGA-II and SPEA2 variants. However,
in particular for ”difficult” two-objective problems and for all three-
objective problems we see more evenly distributed solutions in the user
preferred region when using iAGE.

Keywords: Multi-objective optimisation, approximation, user prefer-
ence.

1 Introduction

Many real-world optimization problems consist of multiple objectives that con-
flict with each other. Solving a multi-objective optimization (MOO) problem
usually means finding a set of trade-offs regarding the given objective functions.
The set of all trade-offs according to the given objective functions is called the
Pareto front of the underlying MOO problem. Since the size of the Pareto front
can grow exponentially for discrete problems and can even be infinite for con-
tinuous problems, evolutionary algorithms on MOO problems have to restrict
themselves to a smaller set of solutions which should be a good approxima-
tion of the Pareto front. There are different algorithms such as NSGA-II [4],
SPEA2 [21], or IBEA [19] which try to solve two main goals of a MOO problem:
find the Pareto front or a good approximation thereof by preferring a diversity
of non-dominated solutions.

Motivated by the studies of multiplicative and additive approximations for
multi-objective problems [3, 7, 16], the algorithm Approximation-Guided Evo-
lution (AGE) has been introduced in [2]. AGE works with a formal notion of
approximation and improves the approximation quality during its runtime with-
out having a full knowledge about the true Pareto front. The results in [2, 17]
show that, given a fixed number of evaluation, AGE outperforms state-of-the-art
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algorithms in terms of additive approximation and covered hypervolume. AGE
has later been improved in [18] to overcome the problem of over growth archive
size in high dimensional objective spaces by adapting the ε-dominance approach
and a non-random selection of parents used for next generation of population.

Recently, great efforts have been made in order to incorporate user preferences
into evolutionary multi-objective optimization (EMO) where specific regions in
the objective space have higher priority than others. For NSGA-II, a reference
point approach has been presented in [6]. Later on, the crowding distance assign-
ment function has been changed in order to meet the requirement of non-even
distribution of solutions along the Pareto front [10]. Zitzler et al. [22] have shown
that the weighted hypervolume indicator is a good method to integrate user
preferences and showed that their results are superior than the ones obtained
by NSGA-II and SPEA2, where no user preference information is considered.
However, all of these hypervolume-based approaches have a negative effect on
the runtime of the algorithm because they require exponential runtime in the
number of dimensions [1]. To overcome that problem, Friedrich et al. [9] pro-
posed a simple approach to integrate the weight function into a wide range of
EMO algorithms, including NSGA-II and SPEA2, and showed that their results
now match the ones in [22] without changing the performance of the algorithms.

In relation to our series of works of integrating preferences into existing algo-
rithms is that presented in [13–15]. There, the authors focus on reference points
and on a performance metric for comparing algorithms with reference points.
The preference functions that are considered in our article here, however, go
beyond reference points.

We propose a new variant of AGE [2, 18] called iAGE which incorporates user
preferences into the algorithm. iAGE widens the range of preference functions
by using not only reference points but also preferred regions and spaces. Fur-
thermore, we change the selection process of AGE by considering the preference
functions as a factor to keep or discard solutions from the population while still
keep the complexity remaining unchanged. Our experimental results show that
iAGE is fast and works just as well as integrated NSGA-II and SPEA2. Further-
more, iAGE provides more evenly distributed solutions in the preferred region
of the objective space.

The outline of this paper is structured as follows. In Section 2, we introduce
some basic definitions of multi-objective optimization and the AGE algorithm.
Section 3 shows how user preferences are incorporated into AGE and how input
parameters can affect the distribution of solutions. In Section 4, we report on
our experimental results, and compare them with the ones from NSGA-II and
SPEA2. Finally, we finish with some conclusions.

2 Preliminaries

In this section, we give a basic introduction into the setting for multi-objective
optimization, the approach of using weight function to incorporate user prefer-
ences, and the approximation-guided evolution approach.
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2.1 Multi-objective Optimization

In multi-objective optimization the task is to optimize a function f = (f1, . . . , fd)
: S → Rd

+ with d ≥ 2, which assigns to each element s ∈ S a d-dimensional
objective vector. Each objective function fi : S �→ R, 1 ≤ i ≤ d, maps from
the considered search space S into the positive real values. Elements from S are
called search points and the corresponding elements f(s) with s ∈ S are called
objective vectors.

Throughout this paper, we consider the minimization problems of d objec-
tives. In multi-objective optimization the given objective functions fi are usually
conflicting, which implies that there is no single optimal objective vector. Instead
of this the Pareto dominance relation is defined, which is a partial order. In order
to simplify the presentation we only work with the Pareto dominance relation on
the objective space and mention that this relation transfers to the corresponding
elements of S.

The Pareto dominance relation � between two objective vectors x = (x1, . . .,
xd) and y = (y1, . . . , yd), with x, y ∈ Rd is defined as

x � y :⇔ xi ≤ yi for all 1 ≤ i ≤ d.

We say that x dominates y iff x � y. If

x ≺ y :⇔ x � y and x 
= y

holds, we say that x strictly dominates y as x is not worse than y with respect
to any objective, and at least better with respect to one of the d objectives.

The objective vectors x and y are called incomparable if

x ‖ y :⇔ ¬(x � y ∨ y � x)

holds. Two objective vectors are therefore incomparable if there are at least
two (out of the d) objectives where they mutually beat each other. An objective
vector x is called Pareto optimal if there is no y = f(s) with s ∈ S for which y ≺ x
holds. The set of all Pareto optimal objective vectors is called the Pareto front
of the problem given by f . Note that the Pareto front is a set of incomparable
objective vectors.

Even for two objectives the Pareto front might grow exponentially with re-
spect to the problem size. Therefore, algorithms for multi-objective optimization
usually have to restrict themselves to a smaller set of solutions. This smaller set
is then the output of the algorithm.

We make the notion of approximation precise by considering a weaker relation
on the objective vectors called additive ε-dominance. It is defined as

x �ε+ y :⇔ xi + ε ≤ yi for all 1 ≤ i ≤ d.

Furthermore, we also define additive approximation of a set of objective vectors
T with respect to another set of objective vectors S.
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Definition 1. For finite sets S, T ⊂ R
d, the additive approximation of T with

respect to S is defined as

α(S, T ) := max
s∈S

min
t∈T

max
1≤i≤d

(si − ti).

We will use Definition 1 in order to judge the quality of a population P
with respect to a given archive A that contains all non-dominated solutions seen
so far (or an approximation thereof)—effectively, the value of α(S, T ) is the
approximation value achieved for the worst-approximated solution. In this way,
we can measure how good the current population is with respect to the search
points seen during the run of the algorithm.

Although, we are only using the notion of additive approximation, we would
like to mention that our approaches can be easily adapted to multiplicative
approximation. This can be done by adjusting the definitions accordingly.

2.2 User Preferences as Weight Functions in the Objective Space

User preferences provide information that guides the search process of the algo-
rithm and tells the differences among incomparable solutions. In this article, we
denote a weight function w : Rd → R which represents user preferences. In gen-
eral, w can be an arbitrary function that specifies preferences to certain regions
or points in the objective space.

In this article, we will use different weight functions for both 2- and 3-
dimensional problems, which calculate the weight of a solution based on a given
scheme value. Given a solution x = {x1, x2, · · · , xd}, the weight functions for
2-objectives problems, originally introduced in [22] and investigated in [9, 22],
are defined as follows:

– scheme = 1: Both objectives are treated equally and the weight of a solution
x is given by

w(x) = (e20x1 + e20x2)/(2 · e20)
– scheme = 2: The user preference is based on only the second objective and

the weight of a solution x is given by

w(x) = (e20x2)(e20)

– scheme = 3: Given a reference point r = {r1, r2}, solutions closer to this
point have higher user preference than the further ones. The weight of a
solution x is given by

w(x) =

{
10−5 + (3−((x1−r1)

2+(x2−r2)
2))

(0.001+(2(x1−r1)−2(x2−r2))2)

10−5 otherwise

For 3-objective problems, no weight functions had previously been defined. We
extended the above-defined schemes 1 and 3:
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Algorithm 1. Outline of AGE [18]

Initialize population P with μ random individuals;1

Set εgrid the resolution of the approximative archive Aεgrid ;2

foreach p ∈ P do3

Insert offspring floor(p) in the approximative archive Aεgrid such that only4

non-dominated solutions remain;

foreach generation do5

Initialize offspring population O ← ∅;6

for j ← 1 to λ do7

Select two individuals from P (see Section 3.2 in [18]);8

Apply crossover and mutation;9

Add new individual to O;10

foreach p ∈ O do11

Insert offspring floor(p) in the approximative archive Aεgrid such that12

only non-dominated solutions remain;
Discard offspring p if it is dominated by any point increment(a), a ∈ A;13

Add offsprings to population, i.e., P ← P ∪O;14

while |P | > μ do15

Remove p from P that is of least importance to the approximation (for16

details on this step see [2]);

– scheme = 1:

w(x) = (e20x1 + e20x2 + e20x3)/(3 · e20)
– scheme = 3: Given a reference point r = (r1, r2, r3), the weight of a solution

x is given by

w(x) =

⎧
⎨
⎩
10−5 + (3−((x1−r1)

2+(x2−r2)
2+(x3−r3)

2))

0.001+(
(x1−r1)+(x2−r2)+(x3−r3)

3 )2

10−5 otherwise

For scheme = 3 we selected a reference point of (0.5, 0.6) for the two-
dimensional problems, and (0.5, 0.6, 07) for the three-dimensional ones.

How these weight functions will be incorporated into AGE will be shown in
Section 3

2.3 Approximation-Guided Evolution

Definition 1 allows us to measure the quality of the population of an evolution-
ary algorithm with respect to a given set of objective vectors. AGE [2] is an
evolutionary multi-objective algorithm that works with this formal notion of ap-
proximation. It stores an archive A consisting of the non-dominated objectives
vectors found so far. Its aim is to minimize the additive approximation α(A,P )
of the population P with respect to the archive A.
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Algorithm 2. Function floor [18]

input : d-dimensional objective vector x, archive parameter εgrid
output: Corresponding vector v on the ε-grid

for i = 1 to d do v[i] ←
⌊

x[i]
εgrid

⌋

1

Algorithm 3. Function increment [18]

input : d-dimensional vector x, archive parameter εgrid
output: Corresponding vector v that has each of its components increased by 1

for i = 1 to d do v[i] ← o[i] + 11

We consider the further developed version of AGE (called AGE-II in [18]).
This algorithm is parametrized by the desired approximation quality εgrid ≥ 0
of the archive with respect to the seen objective vectors. The algorithm is shown
in Algorithm 1, and it uses the helper functions given in Algorithms 2 and 3. The
latter is used to perform a relaxed dominance check on the offspring p in Line 13.
A strict dominance check here would require an offspring to be not dominated
by any point in the entire archive. However, as the archive approximates all
the solutions seen so far (via the flooring), it might be very unlikely, or even
impossible, to find solutions that pass the strict dominance test.

3 Adding User Preferences

Interactive AGE (iAGE) is a variant of AGE that considers user preferences as
one of its parameters called scheme along with using the corresponding weight
functions, which is mentioned in Section 3.2. The selection process of iAGE
follows the same structure as the original AGE [2]. Let P be the current popu-
lation where we need to remove an individual and A be the current archive. For
each solution a ∈ A, we denote the best and second best approximation α1(a),
α2(a) accordingly while p1(a) and p2(a) are solutions p ∈ P that approximates
a best and second best. In case of AGE, p ∈ P with minimum β(p) is removed
from the population where β(p) is known as the importance of solution p and
defined as

β(p) := maxa∈A{α2(a)|p1(a) = p}.
iAGE integrates the weight function into the selection process of the algorithm
to ensure that user preference is one of the factors that decides whether a solu-
tion is removed or accepted to the next generation.We use a combination between
the weight, w(p), and the approximation to determine the importance of a given
solution p given by expression

β(p) := maxa∈A{w(p) · α2(a)|p1(a) = p}.
Let βmin := minp∈P β(p) be the minimum β-value among all individuals of

the population. The selection process removes a p from P for which β(p) = βmin
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Algorithm 4. Outline of iAGE selection process.

See lines 12-16 in [2], Algorithm 412

foreach solution p ∈ P do17

β(p) := maxa∈A{w(p) · α2(a)|p1(a) = p}18

while |P | > μ do19

Remove an individual p∗ = argminp∈P (β(p), w(p)) chosen uniformly at20

random from P .
See lines 21-23 in [2], Algorithm 421

holds. If there are multiple solutions p of value βmin, one with the smallest weight
w value is discarded. If there are multiple solutions p with the same βmin and w
value, then the removed solution is chosen at random. Therefore, the selection
process removes an individual p from P that has the smallest vector (β(p), w(p))
according lexicographic order. The detail of the changes from Algorithm 4 in [2]
is shown in Algorithm 4 where min is taken according to lexicographic order of
the vector (β(p), w(p)).

The choice of iAGE’s parameter εgrid influences how well the set of solutions
seen so far is approximated. Interestingly, this parameter also has a small but
noticeable impact on the distribution of solutions. Some results are shown in
Figure 1. As we can see, the solutions are packed more densely with decreasing
grid size. The explanation is that the number of potential points in the archive
increases, and consequently solutions in the population are more likely to be
“responsible” for the approximation of an archive point. This, in combination
with the increasing preference, results in a higher density of solutions.

We also investigate the impact of user preference on the distribution of solu-
tions in the final population by providing different adjustments to the weight
function. In particular, given the calculated β value for each p ∈ P , we want
to study how different adjusted weight functions overwhelm the approximation
and hence affect the selection process of the algorithm. In the following example,
three adjustment strategies d are used:

– weight strategy 1 : w(x) = w(x)
– weight strategy 2 : w(x) = sqrt(w(x))
– weight strategy 3: w(x) = ln(1 + w(x))

We show some results in Figure 2. It can be seen that the choice of the adjust-
ment strategy has hardly any impact on the distribution of points. The reason is
that the weight remains its high impact even after a logarithmic scale-down. In
addition, the approximation part of the adjustment only ensures that the archive
points are better and better approximated; the slight change in the relative posi-
tioning of “the best population point for an archive point” (after considering the
weight and the adjustment strategy) is barely noticeable in the final population
and within the typical variations of results of randomized algorithms.
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Fig. 1. Influence of εgrid on the distributions of the solutions. The underlying problem
is ZDT 1.
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Fig. 2. Influence of different adjustment strategies to the weight function of iAGE with
εgrid = 0.0005
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Fig. 3. LZ F5, 100.000 evaluations

4 Comparison with Other Algorithms

In our study, we investigate the performance of iAGE (using weight strategy 2)
on problems with two and three objectives. We use the jMetal framework [8] to
compare iAGE with the established algorithms NSGA-II [4], and SPEA2 [21].
Both algorithms are used as described in [9]: the weight functions are used mul-
tiplicatively to adjust either the crowding distance (NSGA-II) or the density
(SPEA2). As benchmarks, we use the benchmark families WFG [11] and LZ [12],
DTLZ [5], and ZDT [20].1

Note that we compare the final populations only visually. For the computation
of indicator values, we would need reference sets: these are available for the true
Pareto fronts in the “preference free” case, but not when non-linear preferences
schemes are considered.

For many problems (mostly for the ZDT family and for DTLZ 1/2/3) we
notice very few differences between the final distributions of the three algorithms.
In stark contrast to this, we notice for several other problems that all algorithms
would have immense problems to achieve good approximations of the true Pareto

1 The code is available on our project page
http://cs.adelaide.edu.au/~optlog/research/foundations.php

http://cs.adelaide.edu.au/~optlog/research/foundations.php
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Fig. 4. DTLZ 2, d=3, 100.000 evaluations

front when a preference function was used. Some results are shown in Figure 3.
The top row shows that all three algorithms have problems to cover the lower
right sections of the Pareto front, even though this was a preferred region just as
the top left section was. In the bottom row, we can observe that all algorithms
find solutions close to the reference point. However, NSGA-II’s solutions are often
dominated by iAGE’s, and SPEA2 itself maintains many dominated solutions.

We conjecture that the use of a preference function can restrict the diversity
so much that it is not possible towards the end of the optimisation process
to “rediscover” certain parts of the objective space anymore. We observe such
difficulties for many functions, including DTLZ 4, many of the LZs and many of
the WFGs.

As an example that preferences in objective spaces with more than two di-
mensions are possible, and as another extension to existing work, Figure 4 shows
the results of the different algorithms on DTLZ 2, d=3. Because it is difficult
to compare the outcomes using indicator values, we compare them visually. All
three algorithms produce solution sets that follow the preference scheme. For
iAGE, we notice “ray-like” patterns for the second scheme, and circular pat-
terns around the reference point for the third scheme. NSGA-II and SPEA2,
without their sense of an approximated archive, produce sets without any ob-
vious visual structure. Consequently, we argue that iAGE produces the most
evenly distributed solutions, even though this is in the eye of the beholder.
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5 Conclusions

Evolutionary multi-objective methods are often considered in the unbiased case,
where no particular area of the objective space is favored. This is in contrast to
the actual decision making processes in the real world, where the decision maker
typically has a preference for a particular range of non-dominated solutions.

In this article, we presented a simple and yet very effective modification to
the algorithm AGE. The resulting algorithm iAGE differs from the original AGE
only of the consideration of the weight function in a single step—the over-
all low computational complexity of the algorithm remains unchanged. Over
a wide range of test functions, we observed that iAGE is just as good at finding
evenly distributed solutions as similarly modified NSGA-II and SPEA2 vari-
ants. However, in particular for ”difficult” two-objective problems and for all
three-objective problems we have seen more evenly distributed solutions in the
preferred regions of the objective space.
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Abstract. This paper examines the use of a linear model in combination
with a multi-objective optimisation. A simple linear model is constructed
and trained using data that has been automatically transformed based on
skewness. These transformations, and their inverse, can then be used on
the test data without having to make any assumptions of the underlying
distribution of this data. Using nsga2, the coefficients of the linear model
are optimised across a pareto front using 3 objective functions, represent-
ing 3 different error measurements. Although nsga2 produces a variety of
non-dominated models across the pareto front, we show that the use of
these models for creating an ensemble is inappropriate. Our main conclu-
sion is that the use of paretomodelling for creating ensemble methods does
not appear to be valuable, although there is some information that can be
gained from examining the change in coefficient values of a linear model
across the pareto front.

Keywords: Multi-objective optimisation, nsga2, linear model, ensem-
ble, sensitivity.

1 Introduction

The field of software effort estimation (SEE) has historically been interested
in developing robust models for predicting development costs with software
projects [15,2,1]. Significant early work included the constructive cost (CO-
COMO) model [2] and function point analysis [1]. In recent years there has
been a large number of different machine learning methods applied to the prob-
lem of effort estimation. The reader is directed to [8,4,14] for a review of machine
learning methods applied to effort estimation.

This paper is motivated by a recent publication by Minku and Yao [14], where
the weights of an artificial neural network were optimised using a multi-objective
method to produce an effort estimation model as an ensemble of solutions from
the pareto front. Our interest is in examining the use of a multi-objective method
for optimising the coefficients of a linear model. Although we will show that the
linear model performs at least as well as the more complex modelling approach
of Minku and Yao, our real interest is in examining the properties of the lin-
ear model coefficients across the pareto front. In particular, can the variation
in the coefficients be used to understand the stability and significance of the
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explanatory variables used in the model, and do the optimised linear models
outperform a standard linear model? This is of general interest to the SEE com-
munity, since linear models have often been shown to not perform as well as
other more complex machine-learning methods [5,18,16]. In particular, the non-
linear interactions between the response and explanatory variables have been
used to argue that linear models will not perform well [2]. However, there have
also been arguments that linear models do perform well, but that appropriate
transformations of the response and/or explanatory variables are required prior
to modelling. The results from this paper will also be of general interest since
we examine properties of the optimisation process, the pareto front, and the use
of ensemble models in exploratory data analysis.

2 Data and Models

The dataset used in this study is the Cocomo81 data [2] obtained from the
PROMISE repository [12]. The development mode (categorical variable) was
removed from the dataset to allow a direct comparison with the results of Minku
and Yao. This dataset describes 63 projects with 17 features (16 explanatory
variables and 1 response). The response variable is the actual effort in person-
months, ranging from a minimum of 5.9 to a maximum of 11400. A number
of the variables in the Cocomo81 dataset are skewed, suggesting that a log or
square-root transformation of these variables will be appropriate for a linear
model [11,9]. Skewness is estimated using the m1 measure [7], which has been
shown to adequately characterise skewness for small samples. Since we are only
interested in the magnitude of skewness, the absolute value of m1 is taken as the
measure of skewness, where larger values indicate a relatively greater divergence
from a normal distribution.

2.1 Error Measures as Objective Functions

The multi-objective problem is framed by the use of three error measurements
representing the objective functions. The following error measurements are com-
monly used in SEE and have been used in this study so that a direct comparison
with the work of Minku and Yao is possible. The mean magnitude of the relative
error (MMRE) measured over N examples is defined as:

MMRE =
1

N

N∑
i=1

|yi − ŷi|/yi

where yi is the ith measured value and ŷi is the ith predicted value. Note that
MMRE is biased towards prediction systems that under-estimate [10]. MMRE
is an objective (error) measure to be minimised.
PRED(25) is a measure of the percentage of predictions that are within 25
percentage of the measured value, and defined as:

PRED(25) =
1

N

N∑
i=1

{
1 if |yi − ŷi|/yi ≤ 0.25
0 otherwise



Multi-objective Optimisation and Linear Models 265

PRED(25) emphasises the precision of predictions and is an objective to be
maximised.

The logarithmic standard deviation (LSD) [6] is defined as:

LSD =

√∑N
i=1 (ei +

s2

2 )
2

N − 1

where s2 is an estimate of the variance of the logarithmic residual ei given
ei = ln(yi) − ln(ŷi). LSD is a measure suited to datasets that comply with a
log-linear model [6] and is an objective to be minimised.

2.2 Linear Models and Multi-objective Optimisation

The linear model used for these experiments is the standard lm model from the
programming environment R [17] and takes the form:

ŷi = β̂0 + β̂1x1i + β̂2x2i . . .+ β̂nxni

where the β̂i are the estimated coefficients of the linear model for the intercept
term and explanatory variables, and ŷi is the estimated response. The application
of any transformation to the response and explanatory variables is determined
by the skewness measure m1. Given some training data, the skewness of each
variable is measured and compared with the skewness after a log (base e) and
square-root transformation. If any transformation decreases the skewness this
transformation is applied to the variable prior to building the linear model. When
assessing the errors for a prediction (i.e. MMRE, PRED(25) and LSD), an inverse
transform (if applicable) is applied to the predicted values prior to calculating the
objective function errors. The multiobjective algorithm nsga2 [3],as implemented
in the R package mco, is used to search for the pareto front of solutions based
on the 3 error objective functions. The basic outline of the algorithm is shown
as Algorithm 1.

In Algorithm 1 the training data is initially analysed for transformations based
on skewness, and transformed to DT as appropriate. A linear model is then
constructed based on the (transformed) training data and a formula (F) defining
the terms of the linear model. The coefficients of this initial linear model are used
to determine the lower and upper bounds for the coefficients that will be searched
using nsga2. Note that CR = 1 for all experiments, therefore allowing coefficient
values to vary by 100% of their original values. This means that the lower bound
is zero for all coefficients and the upper bound is two times the value of the
initially discovered coefficient values found from the fit of the linear model (i.e.

�β̂i� = 2∗ β̂i). Initial experiments using larger values found that nsga2 could not
guarantee to find a pareto set, so this limitation was pragmatically set so that the
algorithm converged. The result of nsga2 is the values of the evolved coefficient
values and objective function values of the linear model for each population
member on the pareto front (Solns), along with the calculated transformation
table (Trans). The parameters for the nsga2 are shown in Table 1. Note that a
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input : Training data Data, Formula F , ResponseVar RV ,
CoefficentFactor CR

output: Pareto Front Solutions Solns, Transformations Trans

Trans ←CalcTransforms(Data);1

Trans.Data ← ApplyTransforms(Trans,Data);2

Linear.Model ←lm(F ,Trans.Data);3

β̂i ←CoefficientVals(Linear.Model);4

�β̂i� ← β̂i − (β̂i ∗ CR);5

�β̂i� ← β̂i + (β̂i ∗ CR);6

Solns ← ApplyNSGA2(Linear.Model,Trans.Data,Trans,�β̂i�,�β̂i�);7

return Solns,Trans;8

Algorithm 1. Basic algorithm for applying a linear model and nsga2

small population size was used after some initial experiments that found larger
populations could not find a non-dominated set and were quite unstable between
runs using the same data. The default values for nsga2 were taken for the search
parameters (crossover, mutation and the distribution indexes).

Table 1. Parameter values for nsga2

Parameter Value Parameter Value

Pop. Size 52 Generations 500

Constraints - Output Dims. 3

Lower Bounds 0 Upper Bounds �β̂i�
Crossover Prob. 0.7 Crossover Dist. Index 5

Mutation Prob. 0.2 Mutation Dist. Index 10

3 Experiments

The experiments are designed to show: (1) that a linear model with automatic
transformations is a suitable model for SEE; (2) that an ensemble approach can
be used with a least-squares linear model; (3) that the evolved coefficients for
a single dataset are reasonably stable between different runs of nsga2 ; and (4)
that the variation in coefficients across a pareto front allow an interpretation of
explanatory variable importance.

The experimental design is based on the Minku and Yao paper so that a
direct comparison is possible. Although a number of SEE papers have argued
that a leave-one-out cross validation is the most appropriate format for estimat-
ing model quality (given this is the typical situation where a project manager
requires an estimate of effort just for a single project), Minku and Yao used
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a randomised training and test split with 10 test items and the remaining ex-
amples used for training. As such we initially created 30 random sampling of
training/test sets that were stored in separate files - this would allow us to re-
produce the behaviour of the system and to examine the datasets if any unusual
behaviour between test sets occurred.

Experiment (1) created a linear model for each of the 30 training/test splits,
giving an estimate of the mean and variance of the model performance. Experi-
ment (2) created a pareto front of models for each of the 30 training/test splits,
and produced a single estimate for each test split by taking the best perform-
ing model for each objective function, producing their prediction, and taking
the average effort prediction for each model and using this as the prediction of
effort. This allowed a direct comparison with the results from Experiment (1).
Experiment (3) used an arbitrary training set and produced 30 runs of the linear
pareto model. A comparison of the coefficient values for the best objective func-
tion models for each run allowed an assessment of the variation between runs of
nsga2. This could be used to assess whether variation observed in Experiment
(4) were meaningful. Experiment (4) used the same training/test set as the pre-
vious experiment and examined the coefficient values across the pareto front
to determine the stability of the coefficients as the emphasis on each objective
varied.

4 Results

All variables in the Cocomo dataset were log transformed automatically due to
skewness, for each training set, apart from the explanatory variables cplx and
turn. These variables were left in their original form (i.e. no transform applied),
apart from training set 28 where cplx was square-root transformed, and for train-
ing sets 7 and 11 where turn was also square-root transformed. In addition, turn
was log transformed based on training set 21. Figure 1 shows the resulting test
performance for the transformed linear model, and demonstrates that for this
particular dataset the results are comparable or better than the more complex
approach of Minku and Yao. Given the linear model with automatic transforms is
a simple model it would suggest that the SEE field should be using such a model
as a base measure for comparison when arguing that a new model performs well.
However, this paper is not fundamentally about baseline models or showing the
weakness in more complex methods (otherwise we would be comparing many
datasets).

Figure 2 shows the performance using the model coefficients derived from the
pareto front using the 3 error measures as objective functions. Here the best
model on the front for each of the objective functions has been selected, and
used to predict the test data. The quality of prediction is shown for each of the
error measurements (one per graph), along with the original linear model and
the combined ensemble model. The best MMRE model panel in Figure 2 shows
little difference between models, however the LSD prediction model is clearer
the most variable and overall the weakest. Note that the scales of each panel
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Fig. 1. Comparison of best results (mean and std. dev.) from Minku and Yao [14] versus
a standard linear model with automatic transformations over 30 random training/test
sets

are different since they show different error measurements. The Pred(25) model
panel again shows little difference between models, although the MMRE model
is the weakest. The LSD panel shows little difference between models except
that the MMRE model is the most variable and has the worst median LSD. The
main message from Figure 2 is that the linear model performs at least as well as
the ensemble methods or any of the other best selected models from the pareto
front.

Figure 3 shows the results for Experiment 3, where the variability of the β̂i

coefficients are shown for a single training set over 30 runs (lower panel). For
this experiment the model with the minimum MMRE is selected for each run.
The top panel shows the variability in β̂i over the entire pareto front for the
same training data. Although there is some differences in the variation between
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PRED,LSD) from the pareto front, and the combined average ensemble (ENS). The
linear model predictions are shown (labelled as lm) for comparison.
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similarity to Minku and Yao [14] (pg. 20).

panels overall the patterns are very similar, suggesting that there is significant
variability between runs of nsga2 with the same training data.

Figure 4 shows two example runs (using different training data) of the objec-
tive function values across the pareto front. Although there are differences they
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Fig. 5. Coefficient variation along the pareto front for one training run. The points
are ordered from lowest to highest MMRE, with the coefficient value for the linear
model is shown as a grey diamond. The final three plots show the ordered values of
each objective along the pareto front, and their corresponding test predictions (black
squares). The dashed line is the linear model prediction error for each objective.

are quite similar in their overall shape (especially the LSD versus MMRE). Note
that since PRED(25) is an objective to be maximised the resulting plots against
either LSD or MMRE (that are minimised) created a concave tradeoff shape,
whereas the LSD versus MMRE plot creates a classic convex pattern as would
be expected for two objectives that are minimised.

Figure 5 shows the β̂i coefficient values of each of the 52 individuals in the
population across the pareto front for one training run. Note that the models
have been ordered based on increasing MMRE error. This shows that for some
of the explanatory variables (and intercept term) there is little variation over
the population, while other coefficients have either a clear pattern of two state
values or have no discernible pattern. The lower right 3 panels show the training
errors (circles) for each objective, while the black squares are the errors using the
test data, indicating the generalisation error associated with the pareto front.
Note that the population members have been ordered based on the objective
function. The dashed line is the error for the linear model. It is clear that as
we move across the front the training error increases as would be expected. For
MMRE and PRED(25) the test error decreases as the training error increases,
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showing that for these objectives some overfitting is likely to have occurred.
In contrast, the LSD test error increases across the front as the training error
increases, suggesting that these models do not overfit, but also do not appear to
generalise. In other words, the best LSD test error occurs with the most accurate
training model for LSD. Although not considered here, this may indicate that
LSD is a more robust error measurement in terms of avoiding overfitting and
biasing towards outliers in the training data. Note that the linear model test
predictions (dashed lines) are comparable to the best test errors across the entire
front for each objective function.

5 Discussion

The results for experiments 1 and 2 (see Figures 1 and 2) indicate that the
automatically transformed linear model performs at least as well as the evolved
linear models on the pareto front. Note that all of the models are at least as good
as the more complex models presented by Minku and Xao. In addition, examining
later work using the Cocomo81 dataset and other ensemble methods [13], the
linear model presented here produces a better SA measure than the best model
presented in this work. This suggests that, for this particular dataset, complex
modelling methods are inappropriate.

The results shown in Figure 2 suggest that constructing ensemble models
based on sampling from the pareto front has little value. Since the models on
the pareto front are all using the same data for training, their variation is just
due to the tradeoff between objectives: although this produces different models,
they are not likely to learn different aspects of the problem and therefore be
valuable in combination. This implies that the use of pareto front modelling to
produce ensembles is not likely to be a useful avenue of research. In addition,
the variation in coefficient values found using nsag2 (Figure 3) shows that each
run of the multi-objective model (using the same training data) produces differ-
ent coefficient values. This suggests that it is inappropriate to compare models
between different runs, and that it is only meaningful to consider the properties
of any single population along the pareto front for a particular run. This also
raises some concerns regarding the stability of nsga2, but we cannot address this
issue in this work.

A comparison between the pareto front objective functions (Figure 4) and
the example figure (pg. 20) shown in [14] suggests that the overall patterns of
tradeoff between objectives is similar, independent of the model. Although this
is perhaps obvious, we would conjecture that any model with enough complexity
to produce a range of behaviours will produce a similar pattern for the objective
tradeoffs. We have shown this to be true when comparing a non-linear model
and a simple transformed linear model, and suggest this would be true for any
other models of reasonable complexity.

The coefficient variation (β̂i) along the pareto front (Figure 5) does allow
some interpretation of the importance of the explanatory variables in developing
a model. Those coefficients that show a random pattern of values are likely to be
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less important to the quality of the model prediction than those with a constant
or stepped set of values. For example, the explanatory variables stor, modp, and
tool show little pattern of consistent values across the front. A stepwise regression
using the automatically transformed linear model removes all of these variables
from the final model, indicating that this interpretation has some merit, although
the acap variable was found to be important even though it has a reasonable
spread of values across the front. Those variables with a consistent value (int,
cplx, vexp, loc) were also found to be the most important variables using stepwise
regression. Hence the pareto models do appear to have some value in assessing
the quality of explanatory variables. The last three panels in Figure 5 show
the training and test performance along the pareto front. The main comment
is that the linear model on the test data is at least as good as the best model on
the pareto front, once again supporting the conjecture that the pareto front does
not contain more generalised models, and is likely to just be overfitting aspects
of the training data. There is also some concern regarding the behaviour of the
LSD measure: the test error increases across the front, and therefore shows no
generalisation, unlike the MMRE and PRED(25) measures. This must be related
to the tradeoff between the three objectives that has meant LSD is incompatible
with the other error measurements, and brings into question the use of this
combination of measures when constructing objective functions.

This paper has a number of weaknesses: we have not considered behaviour
across multiple datasets; the ensemble method only considered the best training
model for each error measurement across the pareto front, rather than consider-
ing some weighted combination of all models; and the properties and interactions
between error measurements has been noted but not explored in detail. The pa-
per has allowed some initial conjectures regarding aspects of these concepts, and
they should be examined as future work to allow a more thorough assessment of
ensemble models and multi-objective approaches.

6 Conclusion

This paper has shown that a linear model using automatically transformations
based on the skewness of the training data can produce good quality predictions
for one particular dataset in SEE. The use of a multi-objective optimisation
method for tuning the coefficients of this linear model has been found to behave
in a similar manner to more complex modelling methods previously published.
However, we have argued that the use of a pareto front for constructing a group
of ensemble models is not likely to be valuable since they all use the same
training data and tend to overfit. Due to this over-fitting, unless a pareto front
can be constructed that takes different samplings of the training data, the model
variability will not be useful in producing an ensemble result, and therefore will
be no more accurate than a single linear model.
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Abstract. MOEA/D, a representative multi-objective evolutionary al-
gorithm, decomposes a multi-objective optimization problem into a num-
ber of single objective optimization problems and tries to approximate
Pareto front by simultaneously optimizing each of these single objective
problems. MOEA/D has several options to calculate a scalar value from
multiple objective function values of a solution. In many-objective opti-
mization problems including four or more objective functions, MOEA/D
using the weighted sum scalarizing function achieves high search perfor-
mance. However, the weighted sum has a serious problem that the entire
concave Pareto front cannot be approximated. To overcome this problem
of the weighted sum based MOEA/D, in this work we propose a method
to adaptively determine update ranges of solutions in the framework of
MOEA/D. The experimental results show that the weighted sum based
MOEA/D using the proposed solution update method can approximate
the entire concave Pareto front and improve the search performance.

Keywords: evolutionary multi-objective optimization, many-objective
optimization, MOEA/D.

1 Introduction

Evolutionary algorithms are particularly suited to solve multi-objective opti-
mization problems (MOPs) since Pareto optimal solutions (POS) approximat-
ing a trade-off among objective functions can be simultaneously searched with
a population of solutions in a single run of the algorithm [1]. MOEA/D (multi-
objective evolutionary algorithm based on decomposition), a representative evo-
lutionary algorithm for solving multi-objective problems, decomposes a MOP
into a number of single objective optimization problems and tries to find POS
by simultaneously optimizing each of these single objective problems with a sin-
gle population [2]. The decomposition of the objective space is one of promising
approaches for solving many-objective optimization problems (MaOPs) involving
four or more objective functions. In many-objective optimization, Pareto domi-
nance based MOEAs such as NSGA-II [3] and SPEA2 [4] deteriorate their search
performance since almost all solutions in the population become non-dominated

G. Dick et al. (Eds.): SEAL 2014, LNCS 8886, pp. 274–286, 2014.
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and the proper selection pressure to improve the convergence of solutions toward
Pareto front is weakened with increasing the number of objectives [5]. On the
other hand, since MOEA/D uses a scalar value aggregated from multiple objec-
tive function values instead of Pareto dominance when solutions are compared,
MOEA/D can easily determine the superiority of solutions even in MaOPs. Re-
cently, NSGA-III, an improved version of NSGA-II for solving MaOPs, has also
introduced the concept of decomposition of the objective space [6]. In this work
we focus on MOEA/D employing the decomposition approach and aim to im-
prove its search performance in multi and many-objective optimization problems.

MOEA/D has several options of scalarizing function to calculate a scalar
value from multiple objective function values of a solution, and each of scalar-
izing functions has its own characteristics. The weighted Tchebycheff scalar-
izing function has an advantage that both convex and concave Pareto fronts
can be approximated. On the other hand, the weighted sum scalarizing func-
tion has an advantage in many-objective optimization. The weighted sum based
MOEA/D achieves higher search performance than the weighted Tchebycheff
based MOEA/D in MaOPs. Recently, this observation was reported by Ishibuchi
et al. [7]. However, the weighted sum has a serious problem that the entire con-
cave Pareto front cannot be approximated [2]. If this problem of the weight sum
based MOEA/D is solved by a modification of MOEA/D framework, the uti-
lization of the weighted sum scalarizing function will be encouraged since the
weighted sum based MOEA/D achieves high search performance in MaOPs [7].

To approximate concave Pareto fronts while using the weighted sum scalariz-
ing function, in this work we propose a method to adaptively determine update
ranges of solutions in the framework of MOEA/D. In a MOP with a concave
Pareto front, solutions obtained by the weighted sum-based MOEA/D are dis-
tributed only in specific regions of the objective space. This problem is caused
by a mechanism that the selection range of parents and the update range of
solutions are the same in the conventional MOEA/D. Contrary, the proposed
method considers the selection range of parents and the update range of solu-
tions separately. After an offspring is generated by two parents selected from a
selection range, the proposed method adaptively determines an update range of
solutions based on the balance of the objective values of the generated offspring.

To verify the effectiveness of the proposed method, we use concave and convex
WFG4 problems [8] with 2-6 objectives and many-objective knapsack problems
[4] with 2-6 objectives and 500-1,000 bits (items) in this work.

2 MOEA/D

2.1 Algorithm

MOEA/D decomposes a MOP into a number of single-objective optimization
problems. The single-objective optimization problems are defined by scalarizing
functions g using uniformly distributed weight vectors λi (i = 1, 2, . . . , N). Each
weight vector λi determines a search direction in the m-dimensional objective
space. Each element λi

j (j = 1, 2, . . . ,m) is one of {0/H, 1/H, . . . , H/H} based
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on the decomposition parameter H , and N = Cm−1
H+m−1 kinds of weight vectors

satisfying
∑m

j=1 λ
i
j = 1.0 are used for the solution search. A similar idea was

also proposed in Murata et al [10]. In the following, the algorithm of MOEA/D
[2] is briefly described.

Step 1) Initialization:

Step 1-1) Compute the Euclidean distances between any two weight vec-
tors and find the T nearest weight vectors to each weight vector. For each
i ∈ {1, 2, . . . , N}, set the parent selection and solution update range B(i) =
{i1, i2, . . . , iT } where λi1 ,λi2 , . . . ,λiT are the T nearest weight
vectors to λi1.

Step 1-2) Randomly generate the population {x1,x2, . . . ,xN}.
Step 2) Solution Search:

For each i ∈ {1, 2, . . . , N}, perform the following procedure.

Step 2-1) Randomly choose two indexes α and β from the selection range
B(i), and then generate an offspring yi from parents xα and xβ by applying
genetic operators.

Step 2-2) For each index k in the update range B(i), if g(yi|λk) is better
than g(xk|λk), then the current solution xk is replaced by the generated
offspring yi (xk = yi) 2.

Step 3) Stopping Criteria:

If the termination criterion is satisfied, then stop and pick POS from the
population {x1,x2, . . . ,xN} as the output of the optimization. Otherwise,
go to Step 2.

2.2 Scalarizing Functions

In MOEA/D, there are several scalarizing approaches to aggregate m kinds of
objective function values [2]. This section introduces the weighted Tchebycheff
and the weighted sum scalarizing functions.

Tchebycheff

The scalar optimization problem of the weighted Tchebycheff function gtch [9]
is defined by

Minimize gtch(x|λ) = max
1≤j≤m

{λj · |fj(x)− zj |}, (1)

1 To approximate an entire Pareto front, MOEAs need to search a wide range of the
solution space with the single population. To utilize local information of solutions
having similar search directions, MOEA/D ueses the concept neighborhoods.

2 For problems with totally different ranges of objective values, in this work, g is
calculated after each objective value is normalized to the range [0, 1] by the minimum
and the maximum objective values in the current population.
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Fig. 1. The parents selection and the offspring generation in the conventional MOEA/D
using the weighted sum function (Step 2-1 in Section 2.1)

where, z is the obtained ideal point. In this work, each element zj (j = 1, 2, . . . ,m)
is set to the best3 objective function value fi in the population. The weighted
Tchebycheff approach searches a solution minimizing gtch toward z. The weighted
Tchebycheff has an advantage that both convex and concave Pareto fronts can be
approximated.

Weighted Sum
The scalar optimization problem of the weighted sum function gws is defined by

Maximize gws(x|λ) =
m∑
j=1

λj · (nj − fj(x)), (2)

where, n is the current nadir point. In this work, each element nj (j = 1, 2, . . . ,m)
is set to the worst4 objective function value fj in the population. The weighted
sum approach searches a solution maximizing gws from n. A recent study [7]
reported that the weighted sum approach achieves higher search performance
than the weighted Tchebycheff approach in MaOPs. However, the weighted sum
approach has a serious problem that the entire concave Pareto front cannot
be approximated [2]. In the next section, we briefly explain the problem of the
weighted sum based MOEA/D when we try to approximate concave Pareto front.

3 For minimization problems, the best indicates the minimum. For maximization prob-
lems, the best indicates the maximum.

4 For minimization problems, the worst indicates the maximum. For maximization
problems, the worst indicates the minimum.
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Fig. 2. The conventional solution up-
date (Step 2-2 in Section 2.1)

Fig. 3. The proposed solution update
(Step A∼C in Section 3.2)

2.3 Problem in the Weighted Sum Based MOEA/D

Figure 1 shows an example of the parent selection and the offspring generation
in Step 2-1 of the conventional weighted sum based MOEA/D in a m = 2
dimensional minimization problem with concave Pareto front. In this example,
since we focus on the index i = 5, the selection range of parents becomes indexes
B(5) = {4, 5, 6} by considering T = 3 neighbors of the index i = 5. In this figure,
α = 4 and β = 5 are randomly chosen from the selection range B(5) = {4, 5, 6},
and the offspring y5 is generated by applying the genetic operators to the parents
xα=4 and xβ=5.

Next, Fig. 2 shows the solution update in Step 2-2 of the conventional weighted
sum based MOEA/D. In the conventional MOEA/D, the update range of solu-
tions becomes B(5) = {4, 5, 6} which is the same as the selection range of parents
shown in Fig. 1. In Fig. 2, the current solutions x4, x5 and x6 are updated (re-
placed) by the generated offspring y5 because the offspring y5 achieves higher
gws than the current solutions for each weight vector λ4, λ5 and λ6, respectively.
Although the solutions x4, x5 and x6 are well-converged on a central region of
the concave Pareto front, they are discarded from the population since gws of
the generated offspring y5 is higher than the ones of x4, x5 and x6. Thus, the
weighted sum based MOEA/D has a problem that solutions approximating the
central region of concave Pareto front are discarded from the population during
the solution search.

In addition, for the search direction of the weight vector λ2, the generated
offspring y5 is better than the current x2. However, the conventional MOEA/D
does not update x2 by the generated offspring y5 because the index 2 is out
of the update range of solutions B(5) = {4, 5, 6}. It will lead to a loss in the
solution search.
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If above mentioned problems are solved by a modification of MOEA/D frame-
work, the utilization of the weighted sum function will be encouraged since the
weighted sum based MOEA/D achieves high search performance in MaOPs [7].
These problems are caused by a mechanism that the selection range of parents
and the update range of solutions are the same in the conventional MOEA/D.
To overcome these problems in the weighted sum based MOEA/D, in this work
we modify Step 2-2 of the conventional MOEA/D.

3 Proposal: Adaptive Update Range of Solutions

3.1 Concept

To approximate concave Pareto fronts and encourage the solution search for
each search direction while using the weighted sum scalarizing function, in this
work we propose a method to adaptively determine update ranges of solutions
in MOEA/D framework. In the conventional MOEA/D, the selection range of
parents and the update range of solutions are the same. Contrary, the proposed
method considers the selection range of parents and the update range of solu-
tions separately. After an offspring is generated by two parents selected from a
selection range, the proposed method adaptively determines the update range of
solutions based on the balance of the objective function values of the generated
offspring.

3.2 Method

The procedure of the proposed method adaptively determining the update range
of solutions in MOEA/D framework is described as follows. Step 2-2 in Section
2.1 is replaced by the following procedure Step A∼C. For problems with totally
different ranges of objective values, the following procedures are performed after
each objective value is normalized to the range [0, 1] by the minimum and the
maximum objective values in the current population.

Step A: Calculate the balance d(yi) of the objective function values of the
generated offspring yi by

dj(y
i) =

nj − fj(y
i)∑m

�=1 {n� − f�(yi)} (j = 1, 2, . . . ,m). (3)

Step B: Find the index min of the weight vector λmin which has the minimum
Euclidean distance from d(yi) among the all weight vectors {λ1,λ2, . . . ,λN}.

min = { q | min
q∈{1,2,...,N}

Distance(d(yi),λq) } (4)

Step C: For each index k in the update range B(min), perform the following
procedure.
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Step C-a: If d(yi) satisfies the following condition for the weight vector λk,
go to Step C-b. Otherwise, continue Step C.

∀j = {1, 2, . . . ,m} : λk
j − h

H
< dj(y

i) < λk
j +

h

H
. (5)

In this work, h = 2 is used for this condition.

Step C-b: Calculate the balance d(xk) of the objective function values of the
current solution xk by

dj(x
k) =

nj − fj(x
k)∑m

�=1 {n� − f�(xk)} (j = 1, 2, . . . ,m). (6)

Step C-c: If d(xk) does not satisfy the following condition for the weight
vector λk, xk is updated (replaced) by yi (xk = yi).

∀j = {1, 2, . . . ,m} : λk
j − h

H
< dj(x

k) < λk
j +

h

H
. (7)

Also, if the both the above and the following conditions are satisfied, xk is
updated (replaced) by yi (xk = yi).

gws(yi | λk) ≥ gws(xk | λk) (8)

3.3 Expected Effects

Figure 3 shows the expected effects of the proposed solution update method. In
the proposed method, first, the balance d(y5) of the objective function values
of the generated offspring y5 is calculated. Next, the weight vector λmin (=
λ2) having the minimum Euclidean distance from d(y5) is founded, then the
update range of solutions becomes B(min) = {1, 2, 3} by considering T = 3
neighbors of λmin (= λ2). In the update range B(min) adaptively determined
by the proposed method, the current solution x2 is updated (replaced) by the
generated offspring y5. In this way, the proposed method can maintain solutions
approximating the central region of the concave Pareto front. In addition, since
the solution x2 is updated by the generated offspring y5, we can expected that
the solution search for the weight vector λ2 is encouraged.

4 Experimental Setup

4.1 Four Algorithms

In this work, we compare four algorithms. First three algorithms are MOEA/Ds.
They are (i) the weighted Tchebycheff based MOEA/D using the conventional
solution update method, (ii) the weighted sum based MOEA/D using the conven-
tional solution update method and (iii) the weighted sum based MOEA/D using
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the proposed solution update method, respectively. The last one is (iv) NSGA-
III [6] proposed by Prof. Deb. NSGA-III is an improved version of NSGA-II and
tries to approximate Pareto front by decomposing the objective space similar
to MOEA/D. To maintain the distribution of solutions in the objective space,
NSGA-III uses distance between solutions and weight vectors instead of the
crowding distance used in NSGA-II [3].

4.2 Test Problems and Parameters

As a continuous test problem, we use WFG4 [8]. Since the conventional WFG4
has a concave Pareto front, in this paper this problem is described as ‘concave
WFG4’. Also, as an extension of the conventional WFG4, in this work ‘convex
WFG4’ problem is defined by

Minimize fWFG4
i (x)p (i = 1, 2, . . . ,m), (9)

where, fWFG4
i (i = 1, 2, . . . ,m) are the original objective functions of the con-

ventional concave WFG4 [8], and p is a problem parameter. Pareto front of this
problem with p > 2 becomes convex. In this work, p = 5 is used in the ex-
periment. For both WFG4 problems, two kinds of difficulties can be controlled
by the distance-related parameter L and the position-related parameter K. The
difficulty of the convergence toward Pareto front is increased by increasing L.
In this work, the fixed L = 10 is used. Also, the difficulty to cover the entire
Pareto front is increased by increasing K. In this work, we verify the search
performance in WFG4 problems with different K. Since assignable values of K
in WFG4 is restricted, we set K = k + (m − 1) − k mod (m − 1) by varying
k = {50, 100, 200, 400}. Therefore, the number of variables is n = L +K. Also,
the number of objectives is set to m = {2, 4, 6}. To generate offspring, we adopt
SBX [11] with the crossover ratio 0.8 and ηc = 15, and apply polynomial muta-
tion [11] with the mutation ratio 4/n and ηm = 20. The termination criterion is
set to 3, 000 generations.

As a discrete test problem,we usemany-objective knapsackproblems (MOKPs)
[4] with m = {2, 4, 6} objectives, n = {500, 750, 1000} bits (items) and feasibility
raio φ = 0.5. Infeasible solutions are repaired by the greedy repair algorithm [4].
To generate offspring, uniform crossover with the crossover ratio 0.8 and bit-flip
mutation with the mutation ratio 4/n are used. The termination criterion is set to
10, 000 generations.

The decomposition parameters to generate weight vectors in MOEA/D are
set to H = {200, 9, 5} for m = {2, 4, 6} objectives, respectively. Therefore, the
population sizes are N = {201, 220, 252} for m = {2, 4, 6}, respectively. Three
MOEA/Ds and NSGA-III use the same weight vectors and the population size. In
MOEA/Ds, the neighborhood size is set to T = 20. In the following experiments,
we show the average performance with 30 runs.

4.3 Performance Metric

To evaluate the search performance, Hypervolume (HV ) [12] is used in this
work. HV measures the m-dimensional volume of the region enclosed by the
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Fig. 4. The obtained POS on concave WFG4 with the problem difficulty k = 50

f  1

f  2

MOEA/D using 

 - Tchebycheff

 - Conventional solution update

0 10 20 30

0

500

1000

(i) MOEA/D using
the Tchebycheff &

the conventional update

f  1

f  2

MOEA/D using 

 - Weight sum

 - Conventional solution update

0 10 20 30

0

500

1000

(ii) MOEA/D using
the weighted sum &

the conventional update

f  1

f  2

MOEA/D using 

 - Weight sum

 - Proposed solution update

0 10 20 30

0

500

1000

(iii) MOEA/D using
the weighted sum &
the proposed update

Fig. 5. The obtained POS on convex WFG4 with the problem difficulty k = 50

obtained POS and a dominated reference point r in the objective space. A Higher
HV indicates better POS in terms of both the convergence and the diversity.
For MOKPs, r = {0, 0, . . . , 0} is used to calculate HV . For both concave and
convex WFG4 problems, r = {1.1, 1.1, . . . , 1.1} is used to calculate HV after the
objective function values are normalized as f ′

j(x) = fj(x)/2j (j = 1, 2, . . . ,m)
for concave WFG4 and f ′

j(x) = fj(x)/2j
p (j = 1, 2, . . . ,m) for convex WFG4,

respectively.

5 Experimental Results and Discussion

5.1 The Obtained POS on Concave and Convex WFG4s

Figure 4 shows the obtained Pareto optimal solutions by three MOEA/Ds on con-
cave WFG4 problem with m = 2 objectives. Note that both objective functions
should be minimized in this problem. From these results, first we can see that



Adaptive Update Range of Solutions in MOEA/D 283

  
  
  
  
  
  
  
  
  
  
  
  
  
 H
yp
er
vo
lu
m
e

    Problem parameter k

(i)  Tchebycheff & Conventional
(ii) Weighted sum & Conventional
(iii)Weighted sum & Proposed
(iv) NSGA-III

100 200 300 400

0.2

0.25

0.3

0.35

(a) m = 2 objectives
  
  
  
  
  
  
  
  
  
  
  
  
  
 H
yp
er
vo
lu
m
e

    Problem parameter k

(i)  Tchebycheff & Conventional
(ii) Weighted sum & Conventional
(iii)Weighted sum & Proposed
(iv) NSGA-III

100 200 300 400

0.1

0.2

0.3

0.4

0.5

0.6

(b) m = 4 objectives

  
  
  
  
  
  
  
  
  
  
  
  
  
 H
yp
er
vo
lu
m
e

    Problem parameter k

(i)  Tchebycheff & Conventional
(ii) Weighted sum & Conventional
(iii)Weighted sum & Proposed
(iv) NSGA-III

100 200 300 400

0.2

0.4

0.6

(c) m = 6 objectives

Fig. 6. Results of HV on concave WFG4 problems
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Fig. 7. Results of HV on convex WFG4 problems

MOEA/D using the weighted Tchebycheff function can approximate concave
Pareto front. However, MOEA/D using the weighted sum and the conventional
solution update method cannot approximate the central region of the concave
Pareto front. On the other hand, we can see that MOEA/D using the weighted
sum and the proposed solution update method can approximate the entire con-
cave Pareto front. This result reveals that the proposed solution update method
can approximate the entire concave Pareto front while using the weighted sum
scalarizing function.

Similarly, Fig. 5 shows the obtained Pareto optimal solutions on convex
WFG4 problem with m = 2 objectives. The convex WFG4 is also minimization
problem. From these results, we can see that all three algorithms can obtain POS
approximating the entire convex Pareto front. We can see the tendency that the
distribution of POS obtained by the weighted Tchebycheff is sparse in the two
extreme regions of convex Pareto front. On the other hand, the distributions of
POS obtained by two MOEA/Ds using the weighted sum are dense in the two
extreme regions of convex Pareto front.

5.2 The Search Performance on Concave and Convex WFG4s

Figure 6 shows results of HV achieved by four algorithms at the final generation
on concave WFG4 problems when the problem difficulty parameter k is varied.
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Fig. 8. Results of HV on MOKPs

The difficulty to obtain a widely spread POS is increased by increasing the
problem difficulty parameter k. From these results, we can see that MOEA/D
using the weighted sum and the conventional solution update method shows the
lowest HV on all problems except the case of the problem with m = 6 and
k = 400. This is because, as shown in Fig. 4 (ii), the solutions evolved by the
weighted sum and the conventional solution update method are distributed only
in specific regions in the objective space. Also, we can see that NSGA-III achieves
the highest HV among four algorithms on problems with m = {4, 6} objectives
and small k = 50. On the other hand, in problems with large k, MOEA/D using
the weighted sum and the proposed solution update method achieves the highest
HV among four algorithms compared in this work. These results reveal that the
proposed method can approximate concave Pareto front and improves the search
performance especially in problems with the difficulty to obtain a widely spread
solutions.

Similarly, Fig. 7 shows results of HV achieved by four algorithms on convex
WFG4 problems. From this results, in problems with m = {2, 4} objectives,
we can see that values of HV achieved by two MOEA/Ds using the weighted
sum function are comparable. However, in problems with m = 6 objectives,
the weighted sum based MOEA/D using the proposed solution update method
achieves higherHV than the one using the conventional solution update method.
These results reveal that the effectiveness of the proposed method is significant
especially in problems with a large number of objectives.

5.3 The Search Performance on MOKPs

Figure 8 shows results of HV achieved by four algorithms at the final generation
on MOKPs. In each figure, values of HV are normalized by the results of HV
achieved by MOEA/D using the weighted Tchebycheff and the conventional
solution update method. From these results, we can see that MOEA/D using the
weighted sum and the proposed solution update method achieves the highestHV
among four algorithms on all MOKPs used in this work. Also, the effectiveness of
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the proposed solution update method becomes significant especially in problems
with large number of objectives m and large size of solution space n.

6 Conclusions

To approximate concave Pareto fronts and encourage the solution search for
each search direction in the weighted sum based MOEA/D, in this work we pro-
posed a method adaptively determining update range of solutions in the frame-
work of MOEA/D. Experimental results in WFG4 problems clearly showed that
MOEA/D using the weighted sum and the proposed solution update method
was able to approximate concave Pareto front and achieved higher search per-
formance than other MOEA/Ds and NSGA-III especially in problems with the
difficulty to obtain a widely spread Pareto optimal solutions. Also, in MOKPs,
MOEA/D using the weighted sum and the proposed solution update method
achieved the highest HV among four algorithms in all problems used in this
work, and the effectiveness of the proposed method became significant in prob-
lems with large number of objectives and large size of solution space.

As future works, we will verify the search performance of the proposed method
in problems with more large number of objectives.
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Abstract. In this paper, we propose a feature extraction and machine
learning method for the classification of ultrasound images obtained from
lumbar spine of pregnant patients in the transverse plane. A set of fea-
tures, including matching values and positions, appearance of black pix-
els within predefined windows along the midline, are extracted from the
ultrasound images using template matching and midline detection. Ar-
tificial neural network is utilized to classify the bone images and inter-
spinous images. The neural network is trained with 1000 images from 25
pregnant subjects and tested on 720 images from a separate set of 18
pregnant patients. A high success rate (96.95% on training set, 95.75%
on validation set and 94.12% on test set) is achieved with the proposed
method. The trained neural network further tested on 43 videos col-
lected from 43 pregnant subjects and successfully identified the proper
needle insertion site (interspinous region) in all of the cases. Therefore,
the proposed method is able to identify the ultrasound images of lumbar
spine in an automatic manner, so as to facilitate the anesthetists’ work
to identify the needle insertion point precisely and effectively.

1 Introduction

Epidural/spinal anesthesia (EA) is widely used in surgery and for post-surgical
pain relief. A properly performed epidural procedure is the ’gold standard’ of
treatment to reduce pain during childbirth [1]. Around 50-90% of women in
labour in developed countries choose EA for pain relief [2]. However, the failure
rate of EA has been reported to be as high as 20% [3]. One of the key challenges
for EA is the identification of the needle insertion site, which is traditionally
identified by palpating the patients’ lumbar spine [4]. This blind technique may
require multiple needle insertion attempts, leading to complications in the pro-
cess. The case is worse for patients with obesity problems, which is increasingly
prevalent in the pregnant population.

Ultrasound imaging, as a non-radioactive, convenient and inexpensive medical
imaging modality, has been introduced to EA to assist epidural needle insertion
since the 1950s [5]. Previous researches have confirmed the effectiveness of ultra-
sound imaging compared with the traditional palpation method [6]. Despite the
benefits of ultrasound, the effective interpretation of ultrasound images remains
a challenge, especially for anesthetists who received limited training in reading
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ultrasound images [7]. The low spatial resolution and severe speckle noises of ul-
trasound images results in the subtle anatomical features becoming indiscernible
from the surrounding background [8]. It requires professional training to fully
interpret the ultrasound images and the learning curve is steep. Therefore, a
large proportion of anesthetists are reluctant to adopt ultrasound imaging in
the common practice.

In order to ease the ultrasound image interpretation and facilitate the ap-
plicability of ultrasound in epidural needle insertion, automatic interpretation
of lumbar ultrasound images has been investigated by researchers. Train et al.
utilized phase symmetry and template matching to extract the lamina and liga-
mentum flavum in the paramedian images [9]. Kerby et. al proposed to label the
lumbar level automatically with panorama images obtained from the paramedian
view [10]. Furthermore, an augmented reality system (AREA) which projected
the identified lumbar vertebra levels on the patients back was developed so as
to assist spinal needle insertion [11].

Although automatic interpretation of lumbar ultrasound images has been ex-
plored, it is mainly focused on the paramedian view. Ultrasound images in the
transverse view, which reveal important anatomical information and frequently
been used by anesthetists for precise pre-puncture localization of needle insertion
site, are less researched from the automatic image interpretation perspective. In
our previous research, an image processing and identification procedure was de-
veloped for the automatic interpretation of ultrasound images in the transverse
view [12]. Template matching combined with position correlator (PC) was pro-
posed to identify the interspinous images and achieved a success rate of 100% on
ultrasound images obtained from lumbar spine of healthy volunteers. However,
since the clarity of anatomical feature of lumbar spine might degrade during
pregnancy [13], the original position correlator designed for healthy volunteer is
not effectively applicable to the pregnant patient.

In order to improve the identification accuracy for pregnant patients and make
the classification algorithm more generally applicable, a feature extraction and
classification procedure is developed. Three contributions are achieved with this
paper. First, a set of features, which are composed of important parameters,
are extracted from the lumbar ultrasound images with template matching and
midline detection methods. Secondly, a multi-layer neural network is utilized
to classify the interspinous images and bone images with the extracted feature
vector. A high success rate is achieved with the proposed feature extraction and
neural network structure on images collected from the pregnant patients. Last
but not least, the trained neural network model is also tested on 43 videos and it
successfully identify the interspinous region and bone region on all of the cases
collected, with a computational speed fast enough for real-time processing.
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Fig. 1. Ultrasound Image of Lumbar Spine. (a) typical ultrasound image when the
probe is placed above spinous process, featured by the triangular anechoic window;
(b) ultrasound image when probe is placed on interspinous space, where the articular
processes, epidural space and vertebra body are visible.

2 Materials and Methods

2.1 Ultrasound Image Feature of Lumbar Spine

The ultrasound images taken at different region of the lumbar spine have different
features, determined by the region where the probe is placed. When the probe
is placed directly on the spinous process (not proper for needle insertion), the
ultrasound wave will be impeded by bones, creating a long triangular hypo-echoic
acoustic shadow Fig 1(a)). The ultrasound image will be dark with a triangular
dark window along the midline, which is the main feature of bony images. When
the probe is moved to the interspinous region (proper for needle insertion), more
details beneath the skin can be noted, as shown in Fig 1(b). The ’flying bat’
alike shape on the ultrasound image indicates that the location of the probe is
a suitable site for needle insertion [14].

2.2 Feature Extraction

Before feature extraction, raw ultrasound images are pre-processed with differ-
ence of Gaussian enhanced local normalization, so as to remove the speckle noises
and extract the anatomical structure [12]. After pre-processing, local intensity
variance induced by uneven ultrasound wave reflection rate are also eliminated.
Therefore, a potential element which might deteriorate the image classification
is removed.

Feature extraction procedure is extraordinarily important for image classifica-
tion. Medical images generally suffer from limited training samples, thus the fea-
ture vector length shall be limited. Otherwise, the learning models will have high
variance and cannot be optimally trained. In this paper, image features are ex-
tracted with two approaches, the template matching method to detect the key
anatomical features and midline detection approached to obtain image features
along midline.
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Template Matching. The visibility of ’flying bat’ shape is the criterion adopted
by anesthetists to recognize interspinous images [14]. However, in computer vi-
sion, due to the variation and distribution extent of the ’flying bat’ shape in the
image, the recognition of the entire ’flying bat’ shape is not a easy task. In our
previous research, we proposed to decompose the ’flying bat’ shape into three
sub-features: the ’bat ear’ (articular process), epidural space and vertebra body.
The decomposed sub-features recognized the articular process and vertebra body
with high accuracy on images obtained from volunteers [12].

Fig. 2. Feature Extraction with Template Matching. (a) Sub-templates for anatomical
features, from left to right: Vertebra body and epidural space, left articular process
and right articular process; (b) Matching result of key anatomical features: The left
column: matching result of vertebra body sub-template; the right column: matching
result for articular process sub-templates; the upper row: interspinous image; the lower
row: bone image. The optimal matching position is marked by a circle.

In this paper, similar decomposition is employed. Template matching is used
to obtain the matching position and matching value between the sub-features and
the images. Among the three sub-features, the appearance of the epidural space
and the vertebra body both resemble a line. Thus, the same linear sub-template
(as shown on Fig 2(a)) is employed for the recognition of both vertebra body
and epidural space. Of the two maximum matching blobs, the one that locates
lower in the image is vertebra body and the superior one is epidural space,
which follows the anatomical structure of the lumbar spine. In the interspinous
images, the visibility of vertebra body and epidural space is clear and both
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of them can be correctly recognized. While in the bone images, the maximum
matching of the sub-template will occur at different regions in the image; and the
matching values for both epidural space and vertebra body are low, as indicated
by Fig 2(b). The situation is the same for the matching of articular processes,
except that the maximum matching of articular processes will appear on the left
and right side of the midline. Therefore, based on the matching position and
matching value, it is possible to partially discriminate the interspinous images
and bone images.

Fig 2(b) shows the template matching results of the epidural space, verte-
bra body and left & right articular process, with the optimal matching position
been marked. The parameters obtained with template matching can be utilized
to constitute part of the feature vector for the purpose of image classification,
including the retrospective depth measurement of epidural space (D1) and ver-
tebra body (D2), their matching values (V1 and V2), matching position of two
articular processes (P3, D3 for left articular process and P4, D4 for right articular
process) and their matching values (V3 and V4).

Midline Detection. The image features along the midline of the ultrasound
image is different for interspinous images and bone images. For the bone images,
ultrasound wave is impeded by the spinous process, resulting in an anechoic
region along the midline (Fig 1(a)); while for interspinous images, the epidural
space and vertebra body along the midline will be visible (Fig 1(b)). Therefore,
the appearance of black pixels along the midline serve as an important feature
for the classification of interspinous / bone images.

 

 

Fig. 3. Feature Extraction with Midline Detection. (Note: the background image is the
pre-processed binary image; The horizontal dashed line is the depth threshold used to
calculate the white pixels rateRw . x0 denotes the center of scanning window along the
horizontal axis and ϑ denotes the angle of scanning window against the vertical axis.).

For the detection of midline, a cost function J(ϑ, x0) based on the summation
of white pixels within a predefined scanning window is formulated. The window
scanned though the entire image within [-45, +45] degrees. The position and
degree that gives the minimum cost function value will locate the midline, as
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demonstrated by Fig 3. In order to increase the accuracy of midline detection for
interspinous images, a penalty which decreases its weight as a function of depth
is imposed on the cost function, so as to allow the appearance of epidural space
and vertebra body to be less penalized in the cost function. The cost function is
formulated in Equation 1.

J(ϑ, x0) =
n∑

i=1

C∑

j=−C

[0.5+ exp(−0.05i)]× f(i, itanϑ+x0+ j)×
√

(1 + 0.3|ϑ||x0 − n/2|)

(1)

The first part of the Equation 1 is the penalty term for the appearance of
white pixels at different depths. The third part is the penalty term if the detected
midline is not near the middle of the ultrasound image or that it is not vertical.
In equation 1, f(i, j) denotes the binary image of the pre-processed ultrasound
image with a dimension of n×m; C represents half size of the predefined window,
which can be optimally set between 5 - 10.

After optimal ϑ′ and x′
0 is obtained and midline is located, the rate of black

pixels within the predefined scanning window can be calculated using the fol-
lowing equation:

Rb = 1−
∑n

i=1

∑C
j=−C f(i, itanϑ′ + x′

0 + j)

2Cn
(2)

The depth of epidural space is reported to range from 3-8 cm, indicat-
ing that the epidural space and vertebra body appear deeper than 3cm in the
image. Thus, the rate of potential epidural space and vertebra body within the
scanning window can be calculated with:

Rw =

∑n
i>=3cm

∑C
j=−C f(i, itanϑ′ + x′

0 + j)

2Cn
(3)

Because of the presence of epidural space and vertebra body at the lower part
of the interspinous image, the parameter Rw is bigger than 0. On the contrary,
for the images obtained from bone regions, the lower part of the image is black.
Thus, Rw approximates 0 for bone images.

After the midline is located via the cost function approach, symmetry mea-
surement is utilized to double confirm the accuracy of midline detection. The
introduction of symmetrical parameter is based on the fact that the anatomical
structure of lumbar spine exhibits mirror symmetry with respect to the midline.
The symmetrical parameter S is simply calculated with Equation 4

S =

∑ |f(x, y)− f(x′, y′)|
nx′

0

(4)

where (x, y)and(x′, y′) represent the coordinates of one pair of pixels which are
symmetrical to each other against the detected midline.
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Rb, Rw and S add another three parameters for the feature vector. Therefore,
combining the 10 parameters obtained from template matching and 3 parameters
from midline detection, a feature vector of length 13 is formulated. A detailed
description of template matching and midline detection on lumbar ultrasound
image processing can be further approached at [15].

2.3 Multi-Layer Neural Network

After the feature set has been extracted and normalized, the multi-layer neural
network (MLP) is employed for the classification of the interspinous images
and bone images. The MLP contains three or more layers, with an input layer,
an output layer and one or more hidden layers of nonlinearly-activating nodes
(usually sigmoid or tanh function). Theoretically, MLP can approximate any
bounded continuous function [16]. In order to simplify the network structure,
only one hidden layer is utilized in this paper, as shown in Fig 4.
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Bone Image 

  ( ) 

( ) 

Fig. 4. Multi-layer Neural Network Structure: on input layer with 13 neurons, one
hidden layer with k neurons and one output layer with 2 neurons

The learning procedure of MLP is fulfilled by changing synaptic weights of
neurons after training data is processed. The most popular method for training
of MLP is the back-propagation (BP) algorithm, witch provides a computation-
ally efficient approach for MLP training [17]. The training processing using BP
algorithm can be divided into two phases: the forward phase and the backward
phase. In the forward phase, the synaptic weights are fixed and the training
samples are propagated through the network. In the backward phase, the result-
ing error produced by comparing the output with desired output is propagated
through the network backwards, during which successive adjustments are made
to the synaptic weights [18].

2.4 Evolutionary Neural Network

Back Propagation is computationally efficient for the training of feed forward
neural network. However, it is prone to be trapped in local minimum [18].
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For the complex problems, evolutionary computation, e.g. genetic algorithm,
can be involved in the training of neural network to obtain the global optimum
by performing searches over a complex and multi-mode space [19]. For the classi-
fication problem, firstly, calculate the fitness function, usually the misclassifica-
tion rate with the generated neural network; select the individuals with largest
fitness and reserve them to the next generation; then perform the crossover
and mutation with the current population to generate the new generation. The
above procedure is repeated to evolve the inital weights until the training goal
is achieved. Another commonly used evolutionary neural network training is hy-
brid algorithm, which combine genetic algorithm and back propagation together.
The hybrid training fist use genetic algorithm to optimize the initial weight dis-
tribution and locate certain search spaces in the solution space. Then use back
propagation to search the optimal solution in the small solution spaces [20].

In this paper, the problem is not very complex, since only two classes are
involved and the dimension of the input vector is not high. Back propagation is
good enough to train the neural network. However, in order to avoid the local
minimum problem, the neural network is trained 5 times consequently.

2.5 Materials and Image Acquisition

The ultrasound video streams utilized in this research were collected from KK
Women’s and Children’s Hospital (Singapore), with institutional review board
(IRB) approval and patients’ consent obtained. Pregnant women scheduled for
a caesarean procedure were recruited before they were sent to the operation
theater (OT). During the study, 43 ultrasound video streams are collected from
43 different subjects. After video streams are collected, the image database is
obtained by extracting still images from the video streams. 40 images are ran-
domly extracted from each of the video streams, constituting 1720 ultrasound
images in the training and test database in total. The extracted images are then
labelled by an experienced sonographer: ’1’ for interspinous images, ’0’ for bone
images and other images not proper for needle insertion.

Table 1. Statistics of Training Set, Validation Set and Test Set

Training Set Validation Set Test Set

Subject Number 21 10 12
Image Number 840 400 480
Interspinous 404 182 204
Bone Images 436 218 276

3 Results and Discussions

Of the 43 video streams collected, 21 (49%) of them are randomly selected as
training set, another randomly selected 10 subjects (23%) are used for validation
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Fig. 5. Parameter Tuning of the Multi-layer Neural Network. (a). Fix the regularization
term as 1 and change the hidden neuron numbers. (b). Fix the hidden neuron number
as 20 and change the regularization term.

set and the reset 12 (28%) are used as test set. The training, validation and test
sets are divided on the level of subjects instead of extracted images, which follows
the assumption that in the clinical setting the detailed lumbar spine structure of
individuals are not given neither examined with MRI or other imaging modalities
before the epidural anesthesia. Since 40 images are extracted from each video,
thus there are in total 840 images in the training set, 400 images in the validation
set and 480 images in the test set. The detailed statistical information of the
images is listed in Table 1.

3.1 Performance of Neural Network

The multi-layer neural network model is trained with the training set and then
validated on the validation set to get the optimal parameters. There are two
parameters involved in the neural network structure with one hidden layer: the
number of neurons in the hidden layer and the regularization term to avoid
over-fitting. Since the BP training might get trapped in local minimum, thus the
network is trained 5 times so as to get the estimation of the mean performance.

In order to get the optimal performance, the test is conducted in two steps.
First, the regularization term is fixed as 1 and then get the number of hidden
layer neurons. As shown in Fig 5(a) when the regularization term is set as 1, the
optimal performance is obtained when the hidden neuron number is 20. Then
the hidden neuron number is set as 20 and then tune the regularization term.
Minimal error rate is achieved when regularization term is 1.4.

Therefore, the optimal performance on the validation set is achieved when
the hidden neuron number is 20 and the regulation term is 1.4. The trained
network models with the obtained parameters is further tested on the test set.
The performance of the trained model is listed on Table 2.
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Table 2. Performance of Neural Network

Training Set (%) Validation Set (%) Test Set (%)

Accuracy 96.95 95.75 94.12
Precision 97.11 95.00 94.35
Recall 97.02 97.71 95.51
F0.5 97.09 95.53 94.58

Fig 6 demonstrates the receiver operating characteristic curve (ROC) of the
trained model on the test set. The area under the curve (AUC) of the neural
network model is 0.981 for the test set, indicating that the neural network model
is properly trained and has good predictability [21].

Fig. 6. Receiver Operating Characteristic Curve of the Trained Neural Network Model
on Test Set

3.2 Video Processing

The trained neural network model is further tested on the ultrasound video
streams collected to identify the interspinous region and bone region. In the video
processing, the interspinous region is defined by the continuous appearance of
more than 5 interspinous images; while for the negative detections, if it is in the
interspinous region, no more than 2 bone images shall be detected by the image;
vice versa for bone region. According to the definition above, the neural network
model is able to identify the interspinous region and bone region correctly on all
of the 43/43 video streams collected.

Table 3 lists the computation time for major operations in the pre-processing,
feature extraction and classification procedure. Matlab (R2012a) was used for
the implementation of the algorithm. The computation time for each frame is
67.58 ms. Given that the video is collected at the frame rate of 15 FPS, thus
the computation speed is a little bit slower for real-time processing and may
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result in frame loss for real time processing. However, improvement in computa-
tional speed has been realized by implementing the program using Python (with
OpenCV library), which shortened the computation time to 32.85 ms per frame.
Therefore, the proposed image processing procedure is applicable to real time
processing.

Table 3. Computation Cost of Video Processing with Matlab

Operation Computation Cost(ms)

Preprocessing 9.10
Template Matching 17.21
Midline Detection 17.65

Symmetry Detection 15.32
Neural Network Classification 0.08

Others 8.25

Processing Time Per Frame 67.58

4 Conclusion

In this paper, we propose a feature extraction procedure for the ultrasound im-
ages collected from lumbar spine. The important anatomical features, including
epidural space, vertebra body and articular processes are extracted from the ul-
trasound images. Moreover, the rate of black pixels along with midline are also
extracted with midline detection. Based on the features extracted from training
samples and test samples, neural network is used to classify the interspinous/
bone images with maximal margin. The trained neural network model is also
tested on the 43 ultrasound video streams collected from pregnant patients, and
successfully identified the interspinous region / bone region on all of the videos
collected.

This research is part of a bigger project which aims to insert the needle for the
epidural anesthesia procedure automatically under the guidance of ultrasound
imaging. This paper fulfills the purpose of automatic interpretation and identi-
fication of ultrasound images, so that anesthetists are relieved from reading raw
ultrasound images. It also proves that the proposed algorithms are fast enough
for real-time video processing. In a future work of this research, the algorithm
will be implemented in real-time manner to detect epidural needle insertion site.
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Abstract. We introduce the schemata bandits algorithm to solve binary combi-
natorial optimisation problems, like the trap functions and NK landscape, where
potential solutions are represented as bit strings. Schemata bandits are influenced
by two different areas in machine learning, evolutionary computation and multi-
armed bandits. The schemata from the schema theorem for genetic algorithms
are structured as hierarchical multi-armed bandits in order to focus the optimi-
sation in promising areas of the search space. The proposed algorithm is not a
standard genetic algorithm because there are no genetic operators involved. The
schemata bandits are non standard schemata nets because one node can contain
one or more schemata and the value of a node is computed using information
from the schemata contained in that node. We show the efficiency of the designed
algorithms for two binary encoded combinatorial optimisation problems.

1 Introduction

A recent trend is to transfer expertise between machine learning (ML) areas, i.e. multi-
armed bandits (MAB) and evolutionary computation algorithms (ECs) [15]. There are
many similarities between multi-armed bandits and evolutionary computation mainly
because they are both optimisation algorithms. The main difference between the two
techniques is that MAB is used to optimise stochastic environments [5], whereas the
majority of EC based methods are for optimisation of very large but deterministic envi-
ronments. We want to use the similarities and differences between the two techniques
to design new efficient hybrid optimisation algorithms.

Schema Theorem. Genetic algorithms (GAs) [11] are powerful optimisation and search
techniques that have been applied with great success to a wide range of applications
[6,1]. Let’s consider the standard GAs with a binary string encoding of length � for each
solution. There are 2� possible strings. The GA processes a population of individuals
by the successive application of fitness evaluation, selection of the better individuals
followed by recombination of the genotypes of the selected individuals.

The common part in the representation of several individuals is called a schema
[7,11]. According to John Holland, the schema theorem [7] explains the success of ge-
netic algorithms in general. It basically states that although the GA operates at the level
of individuals, GA implicitly and in parallel processes information about schemata,
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subsets of the search space. Moreover, it samples the most interesting schemata called
building blocks in a near-optimal way using the analogy between schemata and arms
in the bandit problem. That is schemata with the fitness mean above the average are
grouped as a bandit arm and the schemata with the fitness below the average are con-
sidered to be a second arm. The schema theorem shows that selection increasingly fo-
cuses on the schemata with the fitness average above the mean. This brings us to the
multi-armed bandit problem (MAB).

The exploration (the search for new useful solutions) versus exploitation (the use and
propagation of such solutions) trade-off is an attribute of successful adaptation. The ex-
ploration implies the evaluation of new solutions that could have low fitness and the
exploitation means the usage of already known good solutions. Holland modelled the
exploration vs exploitation trade-off in ECs with multi-armed bandits. The higher fit-
ness solutions are considered (or grouped) as an arm, and the lower fitness solutions are
considered as a second arm. Mixing of good building blocks in GAs, i.e. the propagation
of good schema in GAs, was studied in [14].

Multi-armed bandits (MAB) problems [4] have been studied since the 1930s and
they arise in diverse domains, like the online profit-seeking automated market mak-
ers [13] and yahoo recommendation system [10]. In the stochastic MAB-problem, there
are K arms and each time an arm i, where the set of arms in 1, · · · , i, · · · ,K is selected,
a reward ri is drawn according to the probability distribution with fixed but unknown
mean μi. The goal is to maximise the total expected reward r̂i. If the true means of
all arms where known, this task would be trivial. One selects the arm with the highest
mean reward all the time. A MAB algorithm starts by uniformly exploring the K-arms,
and, then, gradually focuses on the arm with the best observed performance. Since, the
means are unknown one has to allocate a number of trials over the different arms so
that, based on the obtained rewards, the optimal arm is identified as soon as possible
and this with (very) high confidence.

To reach this goal, a tradeoff between exploration and exploitation has to be found.
Exploration means that one tries a suboptimal arm to improve the estimate its mean
reward while exploitation means that one tries the best observed arm which is not nec-
essary the true best one. An arm selection policy determines what arm is selected at
what time step based on the rewards obtained so far. The research question is what
are (near)-optimal arm selection policies for the MAB-problem. An important heuristic
that has emerged is that good policies, e.g. variants of the upper confidence bound (or
UCB) policy, are optimistic in the face of uncertainty [12].

Thus, the trade-off between exploitation and exploration is important for both MAB
and EC algorithms. MAB should pull all arms using an exploration strategy, to estimate
their performance and it returns feasible, close to optimal, solutions using an exploita-
tion strategy. Exploration in EC means to generate solutions in unexplored regions of
the search space, and exploitation means to generate new solutions in promising regions
of the search space using structural information about the current solutions. Selecting
and using these strategies are not trivial and actually, the trade-off between them can
increase the time needed to find an acceptable solution.

One MAB variant is the hierarchical bandit approach where the reward of one arm
in the hierarchy is the reward of another one at one level deeper in the hierarchy [12].
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Monte Carlo Tree Search (MCTS) is a recently proposed search method that builds
a search tree in an incremental and asymmetric manner accordingly to a tree policy
that selects the node with the highest priority to expand [3]. The tree policy needs
to balance exploration versus exploitation, which for MCTS methods resembles the
same trade-off in ECs. Exploration means to search in areas not sampled yet, whereas
exploitation means to search in promising areas. Each round in MCTS consists of four
steps: selection, expansion, simulation, and back-propagation.

Selection starts from the root, it selects successive expandable child nodes down to
a leaf node. It selects child nodes that expand the tree towards most promising moves,
which is the essence of MCTS. A node is expandable if it represents a non-terminal
state and is unvisited. Expansion: unless a stopping criteria is met, MCTS creates one
or more child nodes and choses from them a node, designated as the current node, using
a tree policy. If no child was created, the simulation starts from a leaf node. Simulation
plays at random from the current node using a default policy. Backpropagation uses the
results from the previous steps to update the information in the nodes on the path from
the current node to the root. MCTS is a statistical anytime algorithm for which more
computing power means better results.

MCTS using upper confidence bound (UCB1) [2] as arm selection policy is called
Upper Confidence Trees (or UCT). UCB1 is a very simple and efficient stochastic MAB
with appealing theoretical properties, i.e. UCB1 is upper bounds the lost in choosing
non-optimal arms. Each promising node of MCTS is evaluated accordingly to the UCB1
policy. UCT builds incrementally a search tree using random samples in the search
space by expanding the nodes selected by the arm selection policy [3]. This approach
is largely responsible for the success of Monte Carlo Tree Search (MCTS) where other
methods fail, e.g. the game of GO [3].

The Designed Algorithms. We want to steer the optimisation in ECs using MCTS by
making an analogy with schema representation of solutions. In Section 2, the search
space of ECs is structured as a schemata net with 3� possible schemata. We reveal some
of the properties of the schemata net. Section 3 presents a baseline schemata bandits
algorithm where each node in the net, thus each schema, is an arm. This bandit searches
in a 3� dimensional search space for the optimal solution.

Section 4 proposes a condensed representation of the net for the schemata bandits
that searches over a reduced search space of 2�. Each node is itself a bandit of schemata
and we denote this algorithm as the bilevel schemata bandits.

Experimental Results. Section 5 tests the performance of the proposed schemata ban-
dits on two binary encoded problems: i) a deceptive trap function, and ii) a version of
NK landscape that uses the deceptive trap functions and has best known solution. We
show that the baseline schemata bandits performs better in terms of best found so far
solution but the bilevel schemata bandits perform better in terms of minimising the ex-
pected regret and the computational efficiency. Alternative parameters are considered
for the UCB1 algorithms in the schemata nets. Section 6 concludes the paper.

2 A Schemata Net Structure

In this section, we present a schemata net structure and its properties.
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Fig. 1. An example of schemata net for a 5 dimensional strings

We focus on search spaces that are �-dimensional hypercubes, i.e. B� where B =
{0, 1} is the set of booleans and � is the length of the bitstrings in the search space. A
schema H represented as H ∈ {0, 1, ∗} is a subspace of B� that is also a hypercube.
The don’t care symbol ∗ can take on any value in B. The order o(H) of a schema H is
the number of instantiated values, i.e. either 0 or 1. Here, we will also use the dimension
d(H) of a schema H : it is the number of don’t care symbols and d(H) = � − o(H).
There are in total 3� schemata of which the most general schema ∗∗· · ·∗∗ has dimension
� and of which all the 2� fully instantiated schemata, i.e. bit strings of the search space,
have dimension 0. Note that the intersection of 2 schemata is again a schema.

Example 1. Let B5 be the 5-dimensional hypercube, see Figure 1. Then the schema
H1 = 11 ∗ ∗∗ has order 2 and represents the 3-dimensional hypercube of all bit strings
of length 5 starting with 11, i.e. H1 contains 8 elements including 11001. And, H2 =
1 ∗ ∗ ∗ ∗ has dimension 4 and the schemata H1 and H2 share the element 11001.

Each node in the schemata net has the following attributes: i) a value, ii) children,
and iii) parents. Let H be a schema of dimension d = d(H), where d are the number of
symbols ∗, and order o(H) = �− d(H), where o(H) is the number of positions where
the value of bits is fixed to either 1 or 0.

Children: If we replace any don’t care symbol ∗ by either 0 or 1 then we obtain one
of the 2 · d children of schema H . Each child has dimension d − 1. The leave nodes
have no children.

In Example 1, schema H2 = 1 ∗ ∗ ∗ ∗ has 2 · 4 = 8 children, that are 10 ∗ ∗∗, 11 ∗ ∗∗,
1 ∗ 0 ∗ ∗, 1 ∗ 1 ∗ ∗, 1 ∗ ∗0∗, 1 ∗ ∗1∗, 1 ∗ ∗ ∗ 0 and 1 ∗ ∗ ∗ 1. The schema H1 = 11 ∗ ∗∗ that
has dimension d − 3 has 2 · 3 = 6 children, that are 110 ∗ ∗, 111 ∗ ∗, 11 ∗ 0∗, 11 ∗ 1∗,
11 ∗ ∗0 and 11 ∗ ∗1.

Parents: A parent for the schema H has one fixed position replaced with the symbol
∗. If we replace any of the instantiated values 0 or 1 by a don’t care ∗ then we obtain
one of the o parents of H . Each parent has the order o − 1. The fully uninstantiated
schemata have no parents.

For example, the schema H2 has 1 parent, that is the fully uninstantiated schema,
because it has the order o = 1, and the schema H1 has two parents, i.e. 1 ∗ ∗ ∗ ∗ and
∗1 ∗ ∗∗ with the order 1.

The value of a node: Let b1, · · · , bi, · · · , bn ∈ H be the bit strings, or individuals,
evaluated for their common schema H . The values of function f (to be optimised) for
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the set of bitstrings bi are f(bi), where i = 1, · · · , n. Then

f(H) =
1

n

n∑
i=1

f(bi) (1)

is the estimated mean value of f on the hypercube H , or simpler the value of H , and
depends on the samples bi used. The variance of f(H) on H will depend on its dimen-
sion d(H): the higher the dimension the higher the variance and if the dimension is 0
then the variance is also 0.

There are two special types of nodes: i) the root, and ii) leaves.
The root is the fully uninstantiated schema, i.e. with the symbol ∗ everywhere. This

node has no parents and it has 2 · � children corresponding with the replacement of each
position with a fixed value, 1 or 0.

A leaf is the node H that instantiate all its children, where each leaf has a fixed
dimensionality d ← |leaf |. There are 2d bitstrings for leaf schema corresponding with
the d symbols ∗. The value of a leaf is fixed to the mean fitness values of the bitstrings
generated for that schema. Let b1, · · · , bi, · · · , b2d ∈ H be the bitstring evaluated for
the leaf schema H . Then

f(H) =
1

2d

2d∑
i=1

f(bi) (2)

is the value of the leaf node on the hypercube H .
Because the size of a complete net is usually two large to be of a practical use,

we expand the net given new solutions up to a given dimension d > threshold. The
schemata with a higher dimension d ≤ threshold are structured in a tree where only
the children but not the entire set of parents are further investigated and stored. For
threshold � �, there are considerable more schemata in a schemata bandits, 3�, than
total number of individual solutions, 2�. If threshold is close to 1 the schemata net is
small and the learning properties of the algorithm, e.g. generate bits strings from the
best schema, are limited.

3 A Baseline Schemata Bandits Algorithm

The baseline schemata bandits algorithm builds a tree where each node is a schema.
The starting point for each iteration of this algorithm is the root that is the most general
schema. The pseudo-code for this algorithm is presented in Algorithm 1.

Considering the steps specific for the Monte Carlo tree search algorithm, cf MCTS,
the schemata bandits algorithm consists of three steps:

Selection: Starting from the root, select successively child nodes down to a leaf node.
As in UCT , we select each time the child node that expands the tree towards the most
promising parts of the search space. A node is expandable if it is unvisited. A popular
policy to select the next node to expand is UCB1 [2] that upper bounds the loss result-
ing from choosing non-optimal arms. The UCB1 goal is to play often the optimal arm,
in our case the optimal schema.

Let H be the selected node. The reward corresponding with each schema H , the
arms or bandits in UCT , is the estimated mean f(H) over H based on all bitstrings
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Algorithm 1. A baseline schemata bandits algorithm
Initialise the schemata bandits algorithm with n random individuals
for a fixed number of schemata net iterations do

Select the root schemata, H ← root
while a leaf node is NOT reached do

Select the most promising child Hi of the current schema H using the UCB1

algorithm, cf. argmaxif(Hi) +C ·
√

2 log(t)
ti

Update the counters of the current and selected child schemata, cf t ← t+ 1,
ti ← ti + 1
Update the current schema H ← Hi

end while
if the leaf node L was not expanded before then

Expand all the individual solutions 2d(L) in the leaf node L
Update value of the parents of the schemata on the path between the root and the
leaf node with the 2d(L) bitstrings

end if
end for
return the best found solution

b ∈ H generated so far as in Equation 1. If a schema H has dimension d, then H has
2 · d child schemata denoted as Hi, i = 1, · · · , 2 · d, and ti is the number of times that
Hi was evaluated so far. In order to play UCB1, we initialise the child schemata Hi as
follows: for each child schema Hi the number of trials is set to one, ti ← 1, and the
estimated mean value is set to its minimum value, f(Hi) ← 0.01. Thus, the number of
trials t of the parent schema H is set to t ← ∑2d

i=1 ti. UCB1 selects the child node Hi

with the maximum index

f(Hi) + C ·
√

2 log(t)

ti
(3)

where the second term C ·
√

2 log(t)
ti

represents the confidence term and encourage
exploration of suboptimal schemata, and C is a constant scalar value, C > 0, usually
set to 1. A larger value for C > 1 would encourage the exploration of new (possible)
suboptimal schemata, and a smaller value C < 1 would promote almost exclusively
the schema with the optimal expected mean even though this expected mean depends
on the already generated bitstrings.

In the beginning, all children will be played equally often. As the number of samples
t increase towards ∞, the confidence term increases and the suboptimal schemata that
were not visited for a long time will attain the maximum value. The schema with the
maximum expected mean is played the most. Note that the mean value of a more general
schema vary less than the mean value of a less general one.

Expansion: If in the selection step, a child node Hi that is not in the schemata graph
is selected, i.e. ti ← 1, a node in the net is created. If the selected child node Hi is
already in the schemata graph, the counters are incremented, ti ← ti + 1 and t ←
t+1, and a child of this schema is selected. The expansion finishes with the generation
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of a leaf node L. When a leaf node is reached, all the corresponding 2d(L) bitstrings
are generated and evaluated. Thus, the set of bitstrings {b1, . . . , b2d(L)} is evaluated to
{f(b1), . . . , f(b2d(L))}. These bitstrings update the expected mean of each matching
child and parent of the schemata on the path between the root and the leaf L schemata.

Propagation: Using each of the generated solutions, bi where 1 ≤ i ≤ 2d(L), we
update the mean values of all the schemata in the schemata graph that contain that
solution. Thus, if bi belongs to the schema H , bi ∈ H , than its expected mean is updated

f(H) ← nf(H)+f(bi)
n+1 and the sample counter n is also updated, n ← n+1. This means

that, in the propagation step, the schemata (and thus the inner nodes) that contain an
individual solution are created if they do not already exists in the schemata bandits
and if their dimension is smaller than threshold. The root schema is updated for all
bitstrings. A higer dimensional schema is updated more often than a lower dimensional
schema because there are more bitstrings that match to a higher dimensional schema
than to a lower dimensional schema.

Related Work. There are some important differences between the schemata bandits al-
gorithm and the standard UCT -algorithm [8,3]. We actually define a graph where each
node is the child of several parents. Because of the strong overlap between schemata,
the rewards of the corresponding nodes are strongly correlated while UCT assumes
that the rewards independent. The creation of a schema can occur both during expan-
sion and propagation. Therefore one way to improve the performance of the proposed
algorithm is to prune the unpromising branches of the graph.

The schemata bandits algorithm also relates to Estimation Distribution Algorithms [9]
since no genetic operator is needed to generate new individuals. In addition, the schemata
bandits approach could offer theoretical guaranties on the convergence to the optimal
solution.

Discussion. The version of schemata bandits introduced here is designed for bistrings.
The extension of this algorithm to a representation with k-valued strings is straightfor-
ward, where k ≤ 2. However, the dimensionality of such schemata net would grow
exponentially to k�, where � is the size of the string as before. Although the number of
schemata in the net increases, the sparsity of the net decreases because a schema has
the same number of children regardless of the value of k.

Note that, in principle this algorithm is a parameter free optimisation algorithm.
However, to increase the practical implications of this algorithm, we consider several
parameters that decrease the computational complexity of the algorithm or tune the ex-
ploration / exploitation trade-off of the UCB1 algorithm. To decrease the search space of
the schemata net, we have introduced the parameter threshold that separates schemata
net, which is very densely connected, to the schemata tree that is sparse. The param-
eter d(L) decreases the computational time to run a schemata net by generating more
that one bitstrings from a good schema. This problem is also recognisable in the stan-
dard UCT algorithms with alternative solutions proposed in [12]. The constant value
C gives the exploration / exploitation component of the UCB1 algorithm, but in the
standard setting of UCB1 is set to 1.

A alternative version of this algorithm could select a random schema from the net
to start the net iteration. UCB1 could be again considered to select a schema, but this
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Fig. 2. An example of a bilevel schemata net for a 5 dimensional strings

time the number of arms is much larger means that the algorithm would require a longer
time to learn good schemata. New schemata added recently to the net are more often
selected than the schemata that were created close the initialisation of the net even
though the former schemata have a better expected mean compared with the newly
generated schemata. Note that in this case we have two UCB1 algorithms, one UCB1
algorithm over all schemata in the net and another UCB1 algorithm only for the children
of a schema.

4 A Bilevel Schemata Bandits Algorithm

The dimensionality of the schemata net, i.e. the number of total schemata in the net,
is a problem to a search algorithm as it is much larger than the dimensionality of the
problem itself, i.e. a schemata net has a 3� search space whereas the search space of the
initial problem is only 2�. The reduction of the dimensionality of the schemata net could
mean the increase in this algorithm efficiency. In this section, we propose a version of
the schemata bandits that groups the schemata with the same indifferent ∗ positions
such that the search space is 2�.

A Schemata Group Net. Consider G a set of schemata with dimension g ← d(G)
corresponding the number of symbols ∗. There are o(G) ← 2�−g schemata contained
in this node corresponding to the all schemata where the fixed positions are assigned one
of the values 0 or 1. The root node contains only one schema, the most general schema
with only symbols ∗. The root’s children contains 2 schemata corresponding with one
fixed position, and the children for the root children contains 4 schemata corresponding
with the 2 fixed positions.

Example 2. Figure 2 shows with a simple example of such schemata bandits. A schemata
group of order o(G) ← 2, i.e. there are two bits that can be fixed, has 22 = 4 component
schemata. Thus 00 ∗ ∗∗, 01 ∗ ∗∗, 10 ∗ ∗∗, and 11 ∗ ∗∗ are schemata in the same schemata
group. Similarly, the schemata ∗0 ∗ ∗0, ∗0 ∗ ∗1, ∗1 ∗ ∗0 and ∗1 ∗ ∗1 also belong to the
same schemata group.

There are fundamental differences between the two schemata bandits approaches.
With this approach, each bit string will match exactly one schema from a schemata
group. Thus all the bitstrings match all schemata group. Each schema has an expected
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mean value given in Equation 1. The value of a schemata group is given by the best
expected mean value for that group of schemata. Each group schemata of dimension g
has g children and g parents.

Note that the leaf nodes contains 2�−L schemata, which for L = 1 means 2�−1

schemata where only one position has the symbol ∗. Therefore, for computational effi-
ciency reasons, we set L > 2 on a high value. The variance in the expected mean values
of schemata is larger for the leaf nodes than for the root node. In general, a schemata
group with a higher dimension has a larger variance then a schemata group from a lower
dimension.

The Algorithm. In the following, we introduce the bilevel schemata bandits algorithms
that has only two steps unlike the baseline schemata bandits introduced in Section 3
which has three steps. The expansion step is not necessarily in this implementation
because each bitstring matches each node in the net. We then generate upfront all the
nodes of the net up to leaves. There will be

∑L
i=0 g

i group nodes, each node containing
2i schemata. Thus, in total, there will be a fixed number of

∑L
i=0 g

i · 2i schemata in the
net.

Selection: Each iteration, the search in the net starts with the root node. Using an
UCB1 algorithm, a child is selected from the current node and the selection process
continues until a leaf node. When a leaf node is reached, there are sampled 2th bitstrings
from that leaf node proportional with the expected mean value of each schema, where
th > 0 is a constant.

Propagation: We update the matching schema in each node with each generated
bitstring, and the expected mean value for the matching schema is updated.

Performance of Schemata Bandits. The goal of the schemata bandits algorithms is to
generate the optimal solution. The schemata bandits is a combination of evolutionary al-
gorithms and multi-armed bandits thus measuring the performance of these algorithms
is a complex task. To assess the quality of a schemata bandits algorithm, we evaluate the
number of times each algorithm found the optimal solution and the mean of the gener-
ated solutions. Since storing and generating a schemata net is computational expensive,
we need adequate performance metrics to compare the standard GAs and the schemata
bandits algorithms. To measure its computational complexity, we take into account the
number of schemata generated and the number of function evaluations.

To measure the performance of the UCB1-algorithm, we evaluate the expected re-
gret of each schema that is the loss resulting from selecting suboptimal children of that
schema. Each schema s has a regret that is calculated as

Rs =

g∑
i=1

E[Ti(N)] · (f∗
(N)− f i(N))

where Ti(N) is the number of times the child node i was selected in N tree iterations
and f i(N) is the performance of a child node as before. We denote with f

∗
(N) the

performance of the optimal child node, i.e. the node with the maximum expected mean
value. We argue that the performance of the schemata bandits algorithms is an issue that
needs further investigation.
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Table 1. Performance of the schemata bandits for 10 deceptive trap functions where the block
size is 5

Nr block � best sol mean nr schemata fun eval regret
1 5 1.00 ± 0 0.34 ± 0 210 ± 0 32 ± 0 58 ± 0
2 10 1.00 ± 0 0.34 ± 0 35870 ± 70 1024 ± 0.45 3598 ± 0
3 15 1.00 ± 0 0.34 ± 0 171104 ± 0 31818 ± 0 169063 ± 0
4 20 0.95 ± 0.05 0.34 ± 0.01 127019 ± 5 276017 ± 46 1926978 ± 8507
5 25 0.92 ± 0.04 0.34 ± 0.01 179329 ± 32 318433 ± 54 2786122 ± 10451
6 30 0.88 ± 0.02 0.34 ± 0.01 230715 ± 6 319954 ± 4 3312440 ± 31333
7 35 0.86 ± 0.03 0.33 ± 0.01 281795 ± 0 319998 ± 0 3865973 ± 35264
8 40 0.85 ± 0.05 0.33 ± 0.01 332736 ± 20 320000 ± 0 4434108 ± 35609
9 45 0.76 ± 0.01 0.34 ± 0.01 383740 ± 14 320000 ± 0 5025488 ± 26731

10 50 0.73 ± 0.01 0.34 ± 0.01 434779 ± 9 320000 ± 0 5483765 ± 48880

5 Experimental Results

In this section, we experimentally compare the performance of the two versions of
schemata bandits on two binary encoded functions: i) deceptive trap functions and ii)
an NK problem.

Deceptive Trap Functions. As test functions, we concatenate deceptive trap functions
of 5 bits. The maximum value is for all bits 1s is 5, and the deceptive local maximum
for all bits 0s is 4. If there is only a single bit 1, the value is 3, for two bits 1, the value
is 2, for three bits 1 the value is 1, and for four bits 1 the value is 0. Let b be a bitstring,
where b = b1, b2, . . . , b� and � is a multiple of 5. We have that f(1) = 3, f(2) = 2,
f(3) = 1, f(4) = 0, the deceptive optimum is f(0) = 4 and the global optimum for 5
bits is f(5) = 5. Let b is the number of deceptive blocks and b ∈ {1, . . . , 10} and the
size of a deceptive block k = 5. Then, the normalised value of the fitness function is

f(b) =
1

b ∗max1≤j≤kf(j)

b−1∑
i=0

f(

k∑
j=1

bi·b+j)

The trap functions are considered a difficult test problem for GAs because the large
basin of attraction of the deceptive local optimum.

Table 1 gives the values of the above enumerated performance measures for the de-
ceptive trap function. We run each experiment for 30 times and the schemata bandits
is iterated, i.e. selection, expansion and propagation, for 104 times. A leaf node evalu-
ates 25 = 32 solutions, i.e. leaf ← 32. Because of computational reasons related to
memory usage, we set threshold ← 3. For example, for � = 30, there are (2 · 30)3 =
216000 schemata in the net to be stored and evaluated in the propagation step. A value
0.8 of mean fitness means that the algorithm reaches the deceptive optima, and value
0.9 of mean fitness means that 50% of the component tap functions found the global
optimum. Note that the deceptive optimum is (almost always) reached in less than
320.000 function evaluations, and for � ≤ 40 at least a quarter of the trap functions
reach their optimal value.

For the bilevel schemata bandits, we set th ← 5 and leaf ← 5. We repeat each
experiment 30 times and we iterate each schemata bandits for 103 times. In Table 2,
the results in terms of finding the global optimum are not drastically deteriorated by the
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Table 2. Performance of the bilevel schemata bandits for the deceptive trap function where the
block size is 5

Nr block � best sol mean nr nodes fun eval regret
3 15 0.98 ± 0.03 0.61 ± 0.05 2523 ± 10 32000 ± 0 162305 ± 9551
4 20 0.94 ± 0.02 0.59 ± 0.05 6957 ± 11 32000 ± 0 341496 ± 19586
5 25 0.92 ± 0.04 0.49 ± 0.01 16128 ± 10 32000 ± 0 635886 ± 40376
6 30 0.86 ± 0.02 0.44 ± 0.01 32824 ± 10 32000 ± 0 3312440 ± 31333
7 35 0.79 ± 0.02 0.44 ± 0.01 60465 ± 9 32000 ± 0 3865973 ± 35264
8 40 0.73 ± 0.05 0.42 ± 0.01 103039 ± 3 32000 ± 0 2752405 ± 401730

Table 3. Performance of the baseline (top half) and bilevel (bottom half) schemata bandits for the
deceptive NK problem where the block size is 5 and for 103 schemata net iterations

Alg � best sol mean nr nodes fun eval regret
Baseline 15 1.0 ± 0.0 0.35 ± 0.0 114426 ± 15 32000 ± 0 184406 ± 4140
schemata 20 0.84 ± 0.03 0.35 ± 0.00 560380 ± 12 32000 ± 0 245091 ± 9037
Bilevel 15 0.99 ± 0.03 0.63 ± 0.01 2434 ± 5 32000 ± 0 141655 ± 12068

schemata 20 0.83 ± 0.03 0.65 ± 0.01 8295 ± 10 32000 ± 0 374702 ± 41451

10 times less iterations of the bilevel schemata bandits. Furthermore, the mean fitness
value, which is computed over the best mean fitness value for all the schemata in a
node, is much higher than the mean fitness value of the baseline schemata bandits. Also
the regret is smaller and a reason might be the smaller number of children arms for a
single node. The number of fitness evaluation is also 10 smaller than in Table 1 and the
number of nodes is about three times smaller.

The Deceptive NK Problem. We propose to use a NK problem that overlaps several
deceptive trap functions. The fitness function is a sum of deceptive trap functions that
overlap in k − 1 positions, here k = 5. Let b be a bitstring, where b = b1, b2, . . . , b�.
Then, the fitness function of the deceptive NK problem is

f(b) =
1

(�− k) ·max1≤j≤kf(j)

�−k∑
i=1

f(
k∑

j=1

bi+j)

Note that the resulting NK problem is more complex that the initial deceptive trap func-
tions since all the bits should be set at once in order to obtain the global maximum. This
fact is reflected in the experimental results by seldom identifying the optimal solution,
see Table 3. Comparing the two algorithms, the performance is similar, but the num-
ber of nodes generated is 2 orders smaller for the bilevel schemata bandits than for the
standard algorithm.

In conclusion, the baseline and the bilevel schemata bandits have a similar perfor-
mance on the two tested combinatorial problems. The advantage of baseline schemata
bandits is the good performance in terms of the best found solution, but the bilevel
schemata bandits have the advantage of grouping similar schemata and thus of a more
compact net structure.

6 Conclusions

We combine techniques from evolutionary computation and Monte Carlo Tree Search
paradigms in order to create new efficient optimisation algorithms. The schemata
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bandits algorithm combines the schema theory with multi-armed bandits and its goal
is to generate the optimum solution. The baseline schemata bandits algorithm con-
siders that each schema is a node in the schemata net which is connected both with
schemata that are more general that the current schema, denoted as parents, and
with schemata that are more specialised than the current schema, denoted as children.
The main drawback of this schemata bandits is the dimensionality of the net, i.e. 3�

where � is the size of the bitstrings, for a smaller search space 2�. The bilevel schemata
bandits is the second proposed algorithm with a reduced dimension net of 2� nodes,
where each node is the group of schemata with the same positions for the symbol ∗. We
test and compare the two proposed algorithms on two binary combinatorial optimisa-
tion problems. The experimental showed that the baseline schemata bandits is better in
finding optimal solutions whereas the bilevel schemata bandits are performing better in
terms of optimising the regret. We conclude that schemata bandits is a viable alterna-
tive for the genetic algorithms that deserve further investigation towards a very efficient
optimisation algorithm.
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Abstract. Anomaly detection aims to find patterns in data that are
significantly different from what is defined as normal. One of the chal-
lenges of anomaly detection is the lack of labelled examples, especially
for the anomalous classes. We describe a neural network based approach
to detect anomalous instances using only examples of the normal class
in training. In this work we train the net to build a model of the normal
examples, which is then used to predict the class of previously unseen
instances based on reconstruction error rate. The input to this network
is also the desired output. We have tested the method on six benchmark
data sets commonly used in the anomaly detection community. The re-
sults demonstrate that the proposed method is promising for anomaly
detection. We achieve F-score of more than 90% on 3 data sets and out-
perform the original work of Hawkins et al. on the Wisconsin breast
cancer set.

Keywords: artificial neural networks, replicator neural network, auto-
encoder, anomaly detection, one-class learning.

1 Introduction

The term anomaly or outlier has come from the field of statistics, wherein
anomaly detection has been studied since at least the 19th century. Anoma-
lies are also referred to as an outlier in the literature. The most quoted defini-
tion of anomaly comes from Hawkins’ 1980 book: “An outlier is an observation
which deviates so much from other observations as to arouse suspicions that
it was generated by a different mechanism” [1]. Many real world problems can
be formulated as an anomaly detection task. For example, one way to detect
possible network intrusion is to look for abnormal patterns in network traffic.
Detecting anomalies is important because anomalous data often implies nega-
tive or even destructive consequences. Alternatively it may represent a positive
thing such as rich mineral deposit in magnetic field data. Detecting and then
removing anomalies can improve the performance of classification, clustering
and regression algorithms, because even a single anomalous value can significant
bias these algorithms. For example, Chen recently showed that a single anoma-
lously smooth exemplar will condemn semi-supervised time series classification
algorithms to fail [2].
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Different names for the anomaly detection problem as used in literature are:
outlier detection, surprise detection, discord detection, deviation detection, ex-
ception detection and one-class classification. The machine learning version of
anomaly detection aims to build a model that can differentiate anomalous in-
stances from the rest of the data. Techniques can operate in one class or multi-
class setting. In one class setting, all anomalous instances are treated as one
class. In contrast, in multi-class setting, the goal is to learn different classes of
an anomalous nature. Various methods have been proposed for anomaly detec-
tion, using concepts drawn from multiple disciplines.

Anomaly detection remains a challenging research topic. It is often difficult to
specify a concrete definition of normal regions as opposed to abnormal regions.
For that reason, techniques in anomaly detection are usually domain-specific.
The lack of labelled data is a common problem. This gives rise to the popularity
of techniques operating in unsupervised or semi-supervised mode. Unsupervised
anomaly detection does not require training data. However, it makes implicit
assumption about the unbalanced distribution of the data set. Thus, the tech-
niques report high false alarm rate if this condition does not hold. On the other
hand, techniques that operate in semi-supervised mode require only normal ex-
amples for training. In practice, it is often more feasible to collect instances of
the normal class than to obtain a comprehensive set of anomalies. This is the
approach that our method uses.

Our method is inspired by studies of Hawkins et al., who first proposed Repli-
cator Neural Network (RNN) for anomaly detection [3], [4]. The idea is to train
a network capable of replicating the input as its output through a data compres-
sion and decompression process. The technique can detect most of the outliers
in large multi-variate data sets and can work directly on raw data. However, the
network that Hawkins et al. employed consists of 3 hidden layers and this in-
creases the number of parameters to tune considerably. Furthermore, the method
only produces an anomaly score, which gives an estimation of the anomalous de-
gree of the pattern. It, however, does not enable direct decision-making without
specific domain knowledge. In our study, we show that a network with only one
single hidden layer can perform just as well or even better. The outputs of our
method offers both an anomaly score and a corresponding threshold value for
label assignment.

Our method considers the detection of a point anomaly in a single class set-
ting. The goal is to decide whether an individual instance is anomalous with
respect to the rest of the data. To achieve that objective, we train the neural
networks to reconstruct instances of the normal class. In testing, we expose the
trained network to examples of both classes. We expect the network to replicate
the normal instances with marginal error while handling anomalous instances
poorly, indicating by the high error rate. Therefore the error value can guide the
judgement on the anomalous degree of each observation. We then apply cut-off
on sorted error values to assign an anomaly label. We tested the technique on
a collection of 6 data sets published in anomaly detection literature. The result
shows that our method is competitive or better than other published results.
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1.1 Research Questions

1. How can replicator neural network with only one hidden layer be used to
detect anomalies?

2. How well does this technique work on different data sets?

Our original intention was to apply the replicator neural network technique to
data sets used in previously published works on anomaly detection and compare
the performance with that of the previously published methods. This proved to
be surprisingly difficult. Many data sets are not available or poorly described.
Measures of performance were ad hoc and inconsistent with authors choosing
metrics that favour their technique.

2 Related Work

2.1 Anomaly Detection

The broader spectrum of anomaly detection techniques employs concepts from
various disciplines Each technique has relative strengths andweaknesses.Anomaly
detection techniques can be categorised in differentways. In terms of outputs, some
techniques produce an anomaly score while the others produce an anomaly label.
In terms of data type, broadly speaking, there are two groups, one works on cate-
gorical data whilst the other works on continuous data. There exists techniques to
convert data between symbolic and continuous, which enable anomaly detection
methodswhich are not originally designed for one kind of data towork on the other.
Almost all anomaly detection techniques require some kinds of distance measures.
An instance is assessed based on its relative distance from other instances. A com-
prehensive survey of research on anomaly detection is presented in [5].

2.2 One-Class Learning

Moya et al provided one of the first papers on one-class learning [6]. One-class
classification is similar to binary classification, in which the goal is to catego-
rize the instances into two distinct groups. The difference is that in one-class
learning, the training set contains the objects of one class only. Training set of
traditional classification problem, on the other hand, must include objects from
all the classes. The machine learning version of anomaly detection problem is
fundamentally one-class learning. The detector is trained to learn the normal
examples and everything else can be classified as outliers.

2.3 Neural Network for Anomaly Detection

Artificial Neural networks (ANN) have been used for classification-based anomaly
detection [5]. One of the main advantages is that the technique makes no assump-
tion about the data distribution. Moreover, it is capable of inducing a predictive
non-linear model and handles well data sets of high dimension. ANN has been



314 H.A. Dau, V. Ciesielski, and A. Song

used for for both one-class and multi-class anomaly detection. A basic anomaly
detection technique using ANN in one-class setting operates in two steps. A neural
network is first trained on normal examples to learn the different normal classes.
Each test instance is then provided as input to this trained network. The network
is supposed to reject an input if it is an outlier.

2.4 Replicator Neural Network for Anomaly Detection

The term replicator neural networks (RNN) is intended for all auto-associative
neural networks with compressed internal representations. RNN is also known in
literature as autoencoder. The basic idea of RNN is that the input vector is also
the target vector; we simply duplicate the input to be the output. The output
layer therefore has equally many nodes as the input layer. Instead of training to
predict a target value y given an input x, the network is trained to reconstruct
its own input x. The weights of the RNN is driven by the goal to minimize the
reconstruction error rate. Fig.1 displays a visualisation of a RNN network. One
of the early studies of RNN is done by Hecht-Nielsen almost two decades ago
[7], in which the author discusses two theorems regarding the data compression
capability of the 3-hidden-layer RNN. Hecht-Nielsen himself credited the first
serious study of RNN to Kohonen with the work on Self-Organizing Map.

Input Layer Hidden Layer Output Layer

Fig. 1. A replicator neural network with one hidden layer consisting of 3 units. The
input and output layer have 5 units each.

RNN was first proposed for outlier detection by Hawskin et al [3]. Their
network is a feed-forward multi-layer perceptron with three hidden layers sand-
wiched between an input layer and an output layer. They use the tanh activation
function for the two outer hidden layers and a staircase-like activation function
for the middle hidden layer, which fit the data points into a number of clus-
ters. They train the net to reconstruct the normal instances and reason that
the trained net should replicate the unseen normal instances relatively well.
Therefore if an input pattern is poorly reconstructed, indicating by the high
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reconstruction error, it is likely to be an anomaly. Their method produces an
anomaly score for each record, which is the reconstruction error value. They test
the technique on two public data sets, namely the Wisconsin breast cancer set
and the 1999 KDD Cup network intrusion detection set.

Toth et al. used RNN for outlier modelling in speech recognition [8]. Without
RNN, they face the lack of labelled anomaly for training and therefore have to
generate synthetic outlier examples. RNN eliminates this task and still offers
comparable performance. They point out that using three hidden layers is un-
necessary and that the 3 and 4-layer version RNN produce similar result. They
find the traditional sigmoid activation function converge the best and use it for
all layers.

In a study on texture retrieval but can be easily formulated as an anomaly
detection problem, Ciesielski et al. [9] use RNN to find regions of a texture of
interest in arbitrary images. This study also finds that using only 1 hidden layer
gives smallest train error and test error. The number of units in the hidden layer
gave varied accuracies; generally choosing approximately the same number of
hidden nodes as the number of inputs gave a good trade off between accuracy
and training time.

3 Learning an Anomaly Detector

3.1 Problem Definition

We formulate anomaly detection with RNN as a one-class learning problem.
The network is trained to learn what is normal in order to detect the abnormal.
The trained network should have little problem reconstructing normal examples,
showing by the low reconstruction error. On the other hand, it should encounter
difficulty in reconstructing anomalous instances, indicating by the high recon-
struction error. The reconstruction error therefore can be used as the anomaly
score for each instance. The maximum error at the end of the training process
can be used as a threshold value for outputting binary predicate. All the in-
stances with corresponding outlier score below this cut-off value belong to the
normal class and the rest is anomalous.

3.2 Data Preparation

We use raw data directly without any feature extraction. For some public data
sets, the data may have gone through some kinds of pre-processing. All the
attributes are normalized to the range [0, 1] using the Weka software tool-kit [10].
A pattern to be given to the network is created by representing each instance
as a feature vector and duplicate the input as output. Instances with missing
values and data label entries are removed.

For each data set, the normal instances and anomalous instances are separated
to form a normal set and a anomalous set. A training set is created by randomly
sampling a number of instances from the normal set. A validation set is created
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by randomly sampling a number of instances from the normal set (excluding the
ones used in training). A test set is created by randomly sampling a number of
instances from the normal set (excluding the one used for training and validation)
and a number of instances from the anomalous set. Ground-truth is only used
after the testing phase to evaluate the performance.

3.3 The Training Algorithm

Generating an anomaly detector involves training a neural network and then
finding a suitable threshold. The methodology is:

1. Generate a training set of N normal examples.
2. Generate a validation set of M normal examples.
3. Create a three-layer feed-forward network with random initial weights. The

number of units in the input-output layer is equal to the number of variables in
the data set. The number of hidden neurons is determined empirically.

4. Use back-propagation to train the network. Training ceases when the error
on the validation set begins to rise.

5. Choose the maximum error in training to be the threshold.

4 Experiments and Results

We use the JavaNNS system (Java Neural Network Simulator) [11] for all the
experiments. We leave most of the default parameter setting untouched.

4.1 Evaluation Metrics

For each data set, we report a range of evaluation metrics including the F-score,
accuracy, true positive rate, true negative rate and top-p accuracy. The choice
of F-score is to take into account the possible unbalanced distribution of some
data sets. Top-p accuracy is a metric used in [5] to evaluate 10 state-of-the-art
anomaly detection techniques. Take p to be the number of true anomalies in the
entire test set and t to be the number of true anomalies in the top p records
based on anomaly score, top-p accuracy is equal to t

p .

4.2 Data Sets

One of our research goals is to see how the technique performs on a wide range
of real data sets, and provide a relative comparison with other techniques. For
this reason, we selected data sets that have been used in published anomaly
detection literature. Table 2 lists the statistic summary for each data set and
Table 3 displays the test result.
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Table 1. Summary of each data set including name, number of attributes, attribute
type, total number of instances, number of instances in training set, validation set and
test set respectively. All data sets are of numeric value. These data sets were used in
published anomaly detection works.

Name Patterns Attributes Anomalies Training Validation Test

Breast Cancer 683 9 239 150 50 483

Ionosphere 351 34 126 100 30 221

Musk 7074 166 1224 3000 1000 3074

Biomed 194 4 67 50 50 94

Shape1 30 162 10 7 3 20

Shape2 70 162 10 20 10 40

Winscosin Breast Cancer Data Set [12]. The data set consists of 699
instances, of which 458 are benign (65.5%) and 241 malignant (34.5%). The
data has 9 real-valued features. In the context of this paper, we consider benign
to be of normal class and malignant to be of the anomalous class.

Ionosphere Data Set [13]. This is radar data collected by a system in Goose
Bay, Labrador. “Good” radar returns shows some types of structure in the iono-
sphere while “bad” radar returns do not. We label 251 good radar as normal
instances and 126 bad radar as anomalies. All 34 attributes are numeric.

Musk Data Set [14]. The data set consists of 7074 instances. Each is a 166-
dimensional feature vector representing a conformation of a molecule. We label
the musk instances as anomalies (1255) and non-musk ones as normal (5857).

Biomed Data Set [15]. This data set consists of 194 examples with 4 attributes
corresponding to measurements made on blood samples. Normal examples are
observations from healthy patients. Abnormal examples are from patients with
a rare genetic disease.

Shape Anomaly Data Set [16]. The full data set is originally from the UCR
time series database [17]. We only consider two subsets used in [5] and available at
[16]. Each instance represents a shape converted into one dimensional time series.
The normal time series correspond to one or more shapes, while the anomalous
time series correspond to other shapes. Shape2 is considered more complex
than Shape1. Each shape time series is 1614 data-point long. We decide to
down sample the features as their number is too large (more than 1000). Instead
of using all 1614 features, we choose every 10th data points, resulting in 161
attributes left.
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Table 2. Result for all data sets: F-score, Accuracy, True Positive Rate, True Negative
Rate, the threshold value based on maximum error, Top-p Accuracy and the network
architecture used. The numbers in bold indicate high performance.

Name F-score Accuracy TPR TNR Thresh. Top-p A. Network

Cancer 94.29% 94.36% 93.30% 95.42% 0.0634 94.53% 9-9-9
Ionosphere 92.00% 90.74% 91.27% 90.00% 0.2138 91.27% 34-34-34
Musk 41.93% 67.76% 28.76% 94.28% 0.4453 54.49% 166-166-166
Biomed 55.67% 54.25% 40.30% 88.89% 0.0238 74.63% 4-7-4
Shape1 95.24% 95.00% 100.00% 90.00% 1.1901 100.00% 162-162-162
Shape2 51.28% 52.50% 100.00% 36.67% 2.3580 70.00% 162-162-162

4.3 Choosing the Number of Units for the Single Hidden Layer

The selection of the number of hidden neurons has a couple of implications. If it
is too large, the system will be over specified. Conversely, if it is too small, the
system can become over-generalized and therefore poorly infers specific cases.

We find that the choice of hidden unit quantity significantly affect the tech-
nique accuracy. Table 4 shows varied measurement metrics for different network
architectures on the breast cancer data set. For each scenario, we run the exper-
iments 5 times and notice the result stays consistent. Generally, having approx-
imately the same number of hidden units as the number of input-output units
give high performance (F-score of more than 90%). Interestingly, further experi-
ments on different data sets show that having the number of hidden units equal
to the input-output units consistently yields good detection rate even though
depending on the data set, it may not be the optimum architecture.

Table 3. Test result for the breast cancer data set with different network architectures,
training uses standard back-propagation and stops at 2000 epochs. The numbers in bold
indicate high performance.

Network F-score Accuracy TPR TNR Top-p A.

9-0-9 net 78.16% 81.21% 67.37% 95.00% 76.00%

9-1-9 net 61.85% 72.44% 44.77% 100.00% 96.00%

9-3-9 net 89.00% 90.00% 81.17% 98.75% 95.80%

9-9-9 net 94.29% 94.36% 93.30% 95.42% 94.34%

9-12-9 net 93.53% 93.53% 93.73% 93.33% 93.70%

4.4 Comparison with Other Works

We find it hard to systematically compare different techniques because the com-
munity has not converged on a single quality metric. For comparison purpose,
we compute the same metrics as the original authors when possible.
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When the comparison is impossible, we refer to the baseline accuracy used in
[18]. Baseline accuracy for a given data set is the ratio n

(m+n) , in which n is the

number of anomalies and m is the number of normal instances in the test set
respectively. For the method to be considered effective, its top-p accuracy must
be significantly better than its corresponding baseline accuracy.

Breast Cancer Data Set Used by Hawkins et al. [3]. We recreate their
version of the breast cancer data by choosing one in every six malignant records
to form an unbalanced distribution. The resultant data set has 39 malignant
(8%) and 444 benign (92%). The authors, however, do not mention the specific
number of instances used for training, validation and test respectively. For our
experiment, we use 150 normal patterns for training, 50 normal patterns for vali-
dation. The test set includes 244 normal patterns and all 39 anomalous patterns.
Overall, our method is better at detecting anomalies for this data set. We report
the best result in Table 6. Our top 16 records are all anomalies while Hawkins’
only contains 11 true anomalies. Our technique captures all the malignant in the
top 48 records while Hawkins’ method only detects 89.74%. They instead need
to examine the top 112 to cover all the malignant cases present.

The Musk and Ionosphere Data Set Used by Aggarwal et al. [19]. The
authors’ original purpose is to compare performance of brute-forte search and
evolutionary search in detecting anomaly. Only the search time for each algo-
rithm is reported and no other detection rate was given. We therefore turn to
baseline accuracy described in the Evaluation Metrics section to assess the tech-
nique’s effectiveness. We achieved 54.49% top-p accuracy for the Musk set given
the baseline accuracy of 39.81%. Our technique captures most of the anomalies
in the top ranked records of the Ionosphere set, gaining 91.27% top-p accuracy
given the baseline accuracy of 57.01%.

The Biomed Data Set Used by Bennett et al. [20]. The authors report
performance as a variable dependent on the σ value. The best case is when
σ = 1.1, for which the technique correctly labels 2 out of 27 normal instances
and 57 out of 67 anomalous instances. According to our calculation, this gives a
F-score of 76.50%. Our technique scores 55.67%. However, it does not necessarily
means their technique is better than ours. Reporting performance for different
σ value is no different from reporting performance for different threshold values.
We can simply adjust the threshold to have a better detection rate. Note that
our threshold is a product of the training process, not a value tuned in testing.

Shape1 and Shape2 Data Set Used by Varun [18]. These are among
19 data sets used to evaluate 10 existing state of the art anomaly detection
techniques for time series data. Shape1 is relatively easy and most techniques
give 100% top-p accuracy. The worst result is around 90%. Our method also
obtains 100% top-p accuracy for this set. Shape2 is harder and most techniques
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Table 4. A comparison of Hawkins et al. result and our method’s result on the breast
cancer data set. The first and the second column show the number of malignant present
in the top ranked records. The third column displays the corresponding percentage of
malignant out of all malignant there are in the whole data set. Our network is trained
by standard backpropagation through 500 iterations, 9-9-9 network architecture.

Hawkins’ method result Our method’s result

Malignant Record % Malignant Malignant Record % Malignant
0 0 0.00% 0 0 0.00%
3 4 7.69% 4 4 10.25%
6 8 15.38% 8 8 20.51%
11 16 28.21% 16 16 41.02%
18 24 46.15% 23 24 58.97%
25 32 64.10% 29 32 74.36%
30 40 76.92% 36 40 92.30%
35 48 89.74% 39 48 100.00%
36 56 92.31% 39 56 100.00%
36 64 92.31% 39 64 100.00%
38 72 97.44% 39 72 100.00%
38 80 97.44% 39 80 100.00%
38 100 97.44% 39 100 100.00%
39 112 100.00% 39 112 100.00%

struggle. The best performance is around 90% and the worst is only around 20%.
Our method stays competitive with 70% top-p accuracy. Note that our method
is not specifically designed for detecting anomaly in a time series database. Time
series data has the temporal correlation between data points which does not exist
in normal record data.

4.5 Discussion

We notice the lack of benchmark data for anomaly detection. Each paper uses
distinct data sets and evaluation metrics, making a fair assessment challenging.
One recent paper describes an anomaly detection benchmark from real data [21].
With 19 data sets from the UCI repository, the authors generate 4,369 problem
set replicates of various difficulty levels. Unfortunately, these problem sets are
not publicly available.

The experiment result demonstrates that using RNN with only one hidden
layer is a promising approach for anomaly detection. Even though the optimum
number of hidden neurons is dependent on the data dimensionality, we have
managed to narrow down to an optimum range. We suggest having this number
slightly fewer than, equal to or slightly higher than the number of input-output
units are all reasonably good options. When an exhaustive search is impossible,
we recommend using the same number of units for all three RNN layers. This
finding is somewhat surprising because the intuition is that the number of units
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in the hidden layer should be smaller than that of the two outer layers to enable
data compression and helps the network generalises unseen examples.

In terms of training iteration, we note that most of the time the network
converges at 2000 epochs or less. The maximum reconstruction error in training
varies for each data set. Therefore, there is no universal threshold value for
all. At the same time, we see no correlation between the performance and the
corresponding threshold value. We speculate that the threshold intensity may
just reflect the diversity of the training examples. We find that threshold alone
cannot effectively distinguish all the anomalies because some atypical instances
consistently has low reconstruction error.

5 Conclusions

We have shown how replicator neural networks can be used for anomaly detec-
tion. This can be done with a three layer feed-forward network with one single
hidden layer. The input to this network is also the desired output. The number
of units in the input and output layer corresponds to the number of the data at-
tributes. Only normal instances are used for training. The output of the training
process is a predictive model and a corresponding threshold value. Our method
not only gives a ranked estimation of the anomalous degree of each instance but
also provides anomaly label for direct decision-making.

While our original intention was to examine the performance of the method
on a wide range of previously used data sets, this proved to be very difficult.
We, however, were able to perform comparisons on 6 data sets published in the
anomaly detection literature. The technique achieves high F-score of above 90%
on 3 out of 6 data sets. Comparison with other works shows that our method is
competitive and sometimes better. Our method outperforms the Hawkins et al.
original work on using RNN for anomaly detection with the Wisconsin breast
cancer set.

Future work would be to investigate other alternatives of choosing a threshold
value. For the data sets that the technique does not work quite well, we plan
to investigate whether increasing the number of hidden layers can help. We also
would like to have the method tested on more data sets of different dimensions
and application domains.
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Abstract. In this paper, walking motion learning of quadrupedal walk-
ing robot is realized by the Profit Sharing that can learn deterministic
policy for POMDPs environments. In this research, we used the Profit
Sharing that can learn deterministic policy for POMDPs environments
which can obtain the deterministic policy by using the history of observa-
tions. We carried out a series of experiments using quadrupedal walking
robot, and confirmed that walking motion learning can be realized by
the Profit Sharing that can learn deterministic policy for POMDPs en-
vironments.

1 Introduction

Reinforcement learning is a sub-area of machine learning concerned with how an
agent ought to take actions in an environment so as to maximize some notion of
long-term reward[1]. Reinforcement learning algorithms attempt to find a policy
that maps states of the world to the actions the agent ought to take in those
states. Recently, we have proposed the Profit Sharing that can learn deterministic
policy for POMDPs environments[2]. This method can obtain the deterministic
policy by using the history of observations. However, in this method, robustness
for noise does not guaranteed.

In this paper, walking motion learning of quadrupedal walking robot is re-
alized by the Profit Sharing that can learn deterministic policy for POMDPs
environments. In this research, we used the Profit Sharing that can learn deter-
ministic policy for POMDPs environments which can obtain the deterministic
policy by using the history of observations.

2 Profit Sharing That Can Learn Deterministic Policy
for POMDPs Environments

Here, the Profit Sharing that can learn deterministic policy for POMDPs envi-
ronments [2] which is used in this research. In the method, if the observation is
judged as perceptual aliasing, the action is selected based on the history of obser-
vations. In the observation judged as perceptual aliasing, if enough observation
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Fig. 1. Flow of Profit Sharing that can Learn Deterministic Policy for POMDPs
Environments

sequences are not considered when the action is selected, observation sequences
including past observation are also considered. Moreover, in this method, the
deterministic rate of actions of each observation and the progress of learning in
order to detect perceptual aliasing. Figure 1 shows the flow of the method.

2.1 Action Selection

In this method, for the state which is not judged as perceptual aliasing, the
action is selected based on the ratio of rule values of the current observation by
the Boltzmann selection. For the state which is judged as perceptual aliasing,
the action is selected based on the ratio of rule values of observation sequences
by the Boltzmann selection.

The action a in the observation ox at the time x is selected based on the
probability P (ox, a, x) and it is given by

P (ox, a, x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp(qn(ox, a)/T (ox))
∑

b∈CA

exp(qn(ox, b)/T (ox)),
(ox �∈ CPA)

exp(qn(ox, a)/T (ox)) +Q(ox, a, x)
∑

b∈CA

(
exp(qn(ox, b)/T (ox)) +Q(ox, b, x)

)
,

(ox ∈ CPA)

(1)

where qn(ox, a) shows the normalized value for the rule (ox, a), T (ox) shows the
temperature in the observation ox, C

PA is the set of observations and observation
sequences which are judged as perceptual aliasing, and CA is the set of actions.
And, Q(ox, a, x) is the summation of values for the rules on the observation ox
at the time x considering observation sequences, and is given by

Q(ox, a, x) =
∑

oi→O∈Cref (x)

exp(qn(oi → O, a)/T (O)) (2)

where oi → O is the observation sequence which includes the observation oi
before the observation sequence O, and Cref (x) is the set of observations and
observation sequences which are used for the action selection at the time x.
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2.2 Judgment of Perceptual Aliasing

(1) Judgment for Each Observation in Episode

In this method, it is judged whether each observation in perceptual aliasing using
the deterministic rate of actions in each observation and the progress of learning.

(a) Deterministic Rate of Actions in Each Observation

In the learning process, if the plural actions to be selected in order to obtain
the reward in the same observation, the action is selected stochastically. In this
method, the deterministic rate of actions in each observation which is used in the
Extended On-line Profit Sharing with Judgment (EOPSwJ)[3] is used in order
to detect perceptual aliasing.

The deterministic rate of actions in the observation ox at the time x, d(ox, x)
(0 ≤ d(ox, x) ≤ 1) is given by the following equation:

d(ox, x) =

∑
a∈CA

(P (ox, a, x)− Pini)
2

N
(3)

where CA shows the set of actions, P (ox, a, x) is the action selection probability
for the action a in the observation ox at the time x, Pini is the initial action
selection probability, and N is the normalization constant.

The deterministic rate of actions in each observation d(ox, x) is close to 1
when the action selection in the observation ox at the time x is deterministic. In
contrast, the deterministic rate of actions in each observation d(ox, x) is close to
0 when the action selection in the observation ox at the time x is stochastic.

(b) Progress of Learning

The progress of learning in the observation ox at the time x, l(ox, x) is given by
the following equation:

l(ox, x) =

{
I(ox), (ox �∈ CPA)
min{I(O)|O ∈ Cref (x)}, (ox ∈ CPA)

(4)

where I(ox) is the update times of the value of the rules for the observation ox,
I(O) is the update times of the value of the rules for the observation sequence
O. And Cref (x) shows the set of observations and observation sequences which
are used for the action selection at the time x in the last episode.

(c) Total Judgment

The observation whose progress of learning is high and deterministic rate of
actions is low (that is, the action selection is stochastic) is judged as perceptual
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aliasing. That is, for the observation ox at the time x in the last episode which
satisfies the following condition:

φ(l(ox, x))(1 − d(ox, x)) > θPA, (5)

the observation ox is regarded as perceptual aliasing. Here, θPA means the
threshold for judgment of perceptual aliasing. And φ(·) is given by

φ(u) =
1

1 + exp(−(u− θl))
(6)

where θl is the threshold.

(2) Update of Set of Observations and Observation Sequences Which
Are Judged as Perceptual Aliasing CPA

The set of observations and observation sequences which are judged as perceptual
aliasing CPA is updated based on the information of the observations which are
judged as perceptual aliasing.

(a) Decision of Observation Sequence Which Is Added to CPA

If the condition given by Eq.(7) is satisfied, the observation sequence which is
added to the set CPA is determined.

ox ∈ CPA ∩ CPA E (7)

Here, CPA E is the set of observations which are judged as perceptual aliasing
in the last episode.

The observation sequence which is added to the set CPA for the observation
ox, O

PA(x) is given by

OPA(x) = argmax
(o→O)∈{Cref (x)∩CPA}

{d(o → O)} (8)

where Cref (x) ∩ CPA shows the set union of the set of observation sequences
which are considered in the action selection at the time x and the set of the
observations which are not judged as perceptual aliasing. d(o → O) is the de-
terministic rate of actions for the observation sequence o → O and it is given
by

d(o → O) =

∑
a∈CA

(P (o → O, a) − Pini)
2

N
(9)

where Pini is the action selection probability and N is the normalized constant.
P (o → O, a) shows the probability that the action a is selected for the observa-
tion sequence o → O and it is given by

P (o → O, a) =
exp(qn(o → O, a)/T (O))∑

b∈CA

exp(qn(o → O, b)/T (O))
(10)
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where qn(o → O, a) is the normalized value of the rule (o → O, a) and T (O) is
the temperature in the observation sequence O.

(b) Update Set of Observations and Observation Sequences Which
Are Judged as Perceptual Aliasing CPA

Next, the observation sequences determined in (a) and the observations judged
as perceptual aliasing are added to the set CPA.

CPA ← CPA ∪ CPA E

∪{OPA(x)|x : ox ∈ CPA ∩CPA E} (11)

2.3 Learning

When the agent obtains the reward, the rule values are updated after the judg-
ment of perceptual aliasing.

(1) Update of Value of Rule q(o, a)

The update times of value of the rules (o, a) (I(o, a)) and the value of rule q(o, a)
are updated as follows.

q(o, a) ←
(
1− 1

I(o, a)

)
q(o, a) +

r · F (o)

I(o, a)
(12)

((o, a) ∈ {(ox, ax)|x = 1, · · · ,W})
Here, r is the reward, and F (o) is the reinforcement value for the rules in the
observation o and it is given by

F (o) =
1

W − xo
(13)

where W is the episode length, and xo is first time when the observation o is
observed.

(2) Update of Value of Rule q(O, a)

If there are some observations judged as perceptual aliasing in the last episode,
values of the rules for these observations and the observation sequences including
these observations are updated.

If it is considered that the observation sequence O → ox(∈ Cref (x)) is used
for only action selection at the time x, the update time of value of the rule
(O → ox, ax) (I(O → ox, ax)) and the value of the rule q(O → ox, ax) are
updated as follows.

q(O → ox, ax) ←
(
1− 1

I(O → ox, ax)

)
q(O → ox, ax)

+
r · F (ox)

I(O → ox, ax)
(14)
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where r is the reward. F (ox) is the reinforcement value for the observation
sequence (O → ox) whose last is the observation ox.

If it is considered that the observation sequence O → ox(∈ Cref (x)) is used
for action selection at plural times, the update time of the value of the rule
(O → ox, ay) (I(O → ox, ay)) and the value of the rule q(O → ox, ay) are
updated as follows.

q(O → ox, ay) ←
(
1− 1

I(O → ox, ay)

)
q(O → ox, ay)

+
r · F (ox)

I(O → ox, ay)
(15)

Here, ay is the action at the time y which satisfy

ox = oy (16)

and

argmin
x=1,···,W

{(O → ox) ∈ (Cref (x) ∩ Cref (x′)) (17)

|x �= x′} ≤ y.

If the action ay appears plural times in that episode, the values of all rules for
the action are updated one time.

If the observation sequence O → ox appears in plural times in an episode,
the values of all rules for the pair of the action and the observation ox after the
observation sequence O → ox appears first in the episode are updated equally.

2.4 Observation Sequences Which Are Used for Action Selection

In this method, the set of observations and observation sequences Cref (x) are
used when the action is selected, the judgment of perceptual aliasing and the
update of the rule values.

If ox ∈ CA, Cref (x) is determined by the following procedure.

(1) The set Cref (x) is set to

Cref (x) = {ox}. (18)

(2) The set Cadd whose elements are the observation sequences to be added to
the set Cref (x) is given by

Cadd = {oi → ox|h(x) ≤ i < x} (19)

where h(x) is the last time when the observation ox appears before the time
x and is given by

h(x) =

{
1, (min{i|oi = ox} = x)
max{i|oi = ox and i < x}, (otherwise).

(20)
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Fig. 2. Quadrupedal Walking Robot

(3) The set Cpast of the observation sequences which have to consider more past
observation is obtained by

Cpast = Cadd ∩ CPA. (21)

(4) The elements of the set Cadd are added to the set Cref (x).

Cref (x) ← Cref (x) ∪ Cadd (22)

(5) If there is no observation or observation sequence which has to consider more
past observation ((Cpast = φ)), the procedure is finished. If Cpast �= φ, go
to (6).

(6) The set Cadd is obtained by

Cadd = {oi → oj → O

|h(j) ≤ i < j and oj → O ∈ Cpast}. (23)

(7) Back to (3).

3 Walking Motion Learning of Quadrupedal Walking
Robot

Here, we explain the proposed walking motion learning of quadrupedal walking
robot.Y

3.1 Qaudrupedal Walking Robot

Figure 2 shows the quadrupedal walking robot which has nine axes. In Fig.2,
red circles show yaw axes and blue circles show pitch axes. The robot has PSD
(Position Sensitive Detector) distance sensor as shown in Fig.3.

3.2 Observations

In this research, PSD distance sensor value is used as the observation. The used
PSD sensor can be detected 10∼ 80 cm, and sensor value is between 60 and 170.
So, the quatized value shown in Table 1 is used as the observation.
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Fig. 3. PSD Distance Sensor

Table 1. Value of PSD Distance Sensor and Observation Number

Observation No. Sensor Value

0 ∼60
1 61∼90
2 91∼120
3 121∼150
4 151∼

Table 2. Angle of Servomotors.

MP1 MY1 MP2 MY2 MY3 MP3 MY4 MP5 MY5

(a) −20 ±10, ±20 0 0 −20 0 0 0 ±10, ±20
−40 ±30, ±40 ±30, ±40

MP1 MY1 MP2 MY2 MY3 MP3 MY4 MP5 MY5

(b) 0 0 20 ±10, ±20 20 0 ±10, ±20 0 0
40 ±30, ±40 ±30, ±40

3.3 Actions

In this research. only angles of servomotors are obtained by the learning. Walking
motion is composed of following four steps.

(a) Move left forward leg and right rear leg.

(b) Back to original porision.

(c) Move right forward leg and left rear leg.

(d) Back to original porision.

Table 2 shows the angles of servomotors.

3.4 Episode

In this research, (a)∼(d) described in 3.3 are treated as one episode. The
quadrupedal walking robot moves from the initial position to the goal until
it rearches the goal or it is off its own course.
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(a) Environment (1)
(Wood)

(b) Environment (2)
(Rubber))

Fig. 4. Environments (1) & (2)

Table 3. Experimantal Conditions

Initial Temperture Tini 1.0
Minumum Temperture Tmin 0.005
Decay Rate of Temperture γ 0.92
Threshold θPA 0.6

Thresshold θl 30
Parameter in Perceptual Aliasing Judgement p 13
Initial Value of Rules 5

3.5 Reward

In each episode, the robot obtained the reward. The reward r is calculated based
on the difference between the PSD sensor valued before and after each episode.

r =

{
da − db (da − db > 5)
0 (otherwise)

(24)

where da is the PSD sensor value after episode and db is the PSD sensor value
before episode.

4 Experiment Results

Here, we examined walking motion learning of quadrupedal walking robot is
realized by the Profit Sharing that can learn deterministic policy for POMDPs
environments.

In this experiment, euqadrupedal walking robot starts the initial position
located from the goal in 80 cm position. Experimants were carried out in two
environments (1) on woody plate and (2) on robber plate. Table 3 shows the
parameters in the Profit Sharing that can learn deterministic policy for POMDPs
environments.
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Fig. 5. Reward Transition in Environ-
ment 1

Table 4. Obtained Rules (Environ-
ment (1))

Obs. No. Action No. Rule Value
1 44 8.25833
1 62 9.83333
1 137 9.00000
1 149 8.50000
1 228 8.58333

Table 5. Angle of Servomotors in Each Action (Table 4)

Act. No. 44 62 137 149 228
MP1 −40 −40 0 0 0
MY1 20 40 0 0 0
MP2 0 0 40 40 20
MY2 0 0 −20 −30 10
MY3 −20 −20 20 20 20
MP3 0 0 0 0 0
MY4 0 0 −10 30 30
MP5 0 0 0 0 0
MY5 −30 −30 0 0 0

4.1 Experment in Environment (1)

Figure 5 shows the transition of the obtained reward in the environment (1).
This figure shows the average reward per 30 episodes.

As shown in Fig.5, the quadrupedal walking robot can be obtained the walking
motion.

Table 4 shows the observation number and the action number in the rules
whose value is high after 450 episodes. And angles of servomoters are shown in
Table 5.

4.2 Experment in Environment (2)

Figure 6 shows the transition of the obtained reward in the environment (2).
This figure shows the average reward per 30 episodes.

As shown in Fig.6, the quadrupedal walking robot can be obtained the walking
motion.

Table 6 shows the observation number and the action number in the rules
whose value is high after 450 episodes. And angles of servomoters are shown in
Table 7.
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Fig. 6. Reward Transition in Environment (2)

Table 6. Obtained Rules (Environment (2))

Obs. No. Action No. Rule Value Obs. No. Action No. Rule Value

1 7 9.00000 1 48 13.00000

1 13 8.08333 1 53 10.50000

1 17 11.72917 1 63 9.58333

1 27 10.50000 1 179 8.08333

1 31 10.00000 1 181 7.91667

1 33 9.71667 1 183 9.58333

1 35 8.50000 1 191 8.50000

1 43 8.10417

Table 7. Angle of Servomotors in Each Action (Table 6)

Act. No. 7 13 17 27 31 33 35 43 48 53 63 179 181 183 191

MP1 −40 −40 −40 40 40 40 −40 −40 −20 −20 −20 0 0 0 0

MY1 10 20 30 40 40 10 10 30 20 20 20 0 0 0 0

MP2 0 0 0 0 0 0 0 0 0 0 0 40 40 40 40

MY2 0 0 0 0 0 0 0 0 0 0 0 −30 −30 −30 −40

MY3 −20 −20 −20 20 20 20 −20 −20 −20 −20 −20 20 20 20 20

MP3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MY4 0 0 0 0 0 0 0 0 0 0 0 20 30 40 40

MP5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MY5 −40 30 10 20 40 10 −20 −20 −30 −40 −40 0 0 0 0

4.3 Learning in Envirnonment (2) After Environment (1)

Figure 7 shows the transition of the obtained reward in the environment (2).
In this experiment, the robot which learns in the environment (1) is used. This
figure shows the average reward per 30 episodes.

As shown in Fig.7, the quadrupedal walking robot can be obtained the walking
motion in this experiment.

Table 8 shows angles of servomoters in rules whose value are high.
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Fig. 7. Reward Transition in Environment (2) After Learning in Environment (1)

Table 8. Angle of Servomotors in Each Action)

Act. No. 54 56 98 111 137 142 149 156 172 189

MP1 −20 −20 −20 40 0 0 0 0 0 0

MY1 30 40 −10 20 0 0 0 0 0 0

MP2 0 0 0 0 0 20 40 20 20 40

MY2 0 0 0 0 20 20 −40 −40 −20 −40

MY3 −20 −20 −20 20 20 20 20 20 20 20

MP3 0 0 0 0 0 0 0 0 0 0

MY4 0 0 0 0 10 40 −30 −30 20 30

MP5 0 0 0 0 0 0 0 0 0 0

MY5 −40 −10 −20 40 0 0 0 0 0 0

5 Conclusions

In this paper, walking motion learning of quadrupedal walking robot has been
realized by the Profit Sharing that can learn deterministic policy for POMDPs
environments. In this research, we used the Profit Sharing that can learn deter-
ministic policy for POMDPs environments which can obtain the deterministic
policy by using the history of observations. We carried out a series of experiments
using quadrupedal walking robot, and confirmed that walking motion learning
can be realized by the Profit Sharing that can learn deterministic policy for
POMDPs environments.
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Abstract. The task of image classification has been extensively studied
due to its importance in a variety of domains such as computer vision and
pattern recognition. Generally, the methods developed to perform this
task require a large number of instances in order to build effective models.
Moreover, the majority of those methods require human intervention
to design and extract some good features. In this paper, we propose a
Genetic Programming (GP) based method that evolves a program to
perform the task of multiclass classification in texture images using only
two instances of each class. The proposed method operates directly on
raw pixel values, and does not require human intervention to perform
feature extraction. The method is tested on two widely used texture
data sets, and compared with two GP-based methods that also operate
on raw pixel values, and six non-GP methods using three different types
of domain-specific features. The results show that the proposed method
significantly outperforms the other methods on both data sets.

Keywords: Genetic Programming, Texture Classification, Multiclass.

1 Introduction

In the fields of computer vision and pattern recognition, image classification
represents one of the most important tasks. However, developing a program that
is capable of performing image classification with good performance is a very
challenging task, particularly for difficult problems. Even discriminating between
instances of two classes (binary classification) can be difficult. The difficulty of
this task increases with a large number of classes due to the increased complexity
of detecting a good set of features. The majority of the proposed methods for
multiclass classification in the literature suffer one or both of the following issues:
(1) some human intervention to design and extract a good set of features is
required prior to the training phase [6]; and (2) a large number of instances are
required in order to reach a suitable level of performance. In terms of the first
issue, an expert with background knowledge of the domain is required to perform
the task of detecting a set of distinctive features. It is not always feasible to find
such a person or it can be very expensive. Similarly, in terms of the second

G. Dick et al. (Eds.): SEAL 2014, LNCS 8886, pp. 335–346, 2014.
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issue, acquiring a sufficiently large number of instances can be expensive, hard,
or infeasible in many cases.

Genetic Programming (GP) is an evolutionary search method inspired by the
principles of natural selection [12]. GP aims at evolving a computer program for
a user-defined problem. Starting from a randomly generated initial population of
solutions, GP uses genetic operators and a fitness function to evolve a solution.
The fitness function is used to measure the goodness of each program, which
reflects the performance level or the ability of that program to solve the prob-
lem. The genetic operators allow the system to explore or introduce different
combinations of the genetic materials.

In tree-based GP [12], an evolved program is represented as a tree where all
non-leaf nodes are drawn from the function set, while leaves are taken from
the terminal set. The program evolved by GP produces a single value from the
root node for each instance. For binary classification, the resulting value can
be naturally translated to a class label such that all negative values represent
one class and all non-negative values represent the other class.

There are at least four approaches that can be adopted to extend GP to
perform multiclass classification tasks. In the first, a wrapper approach can be
adopted where a multiclass classifier (e.g. nearest-neighbour) is used to perform
the classification task, while GP is used to perform feature selection, extraction,
or construction [15]. The second approach is to change the mapping scheme
such that the real number line is divided into more than two intervals and the
single value resulting from the root node is mapped to one of those intervals [13].
The third approach is to use a different program representation that produces
multiple values instead of only a single value obtained from the root node [18].
Building a composite solution via breaking the multiclass classification task into
a number of binary classification problems is the fourth approach [7].

Song et al. [13] utilised GP to perform multiclass texture classification by
using static range selection (SRS) [16] and dynamic range selection (DRS) [7].
In SRS, the real number line is divided into a predefined number of equally
sized intervals, each of which represents one class. This method requires N − 1
thresholding values, where N is the number of classes. Selecting a good set
of threshold values introduces an extra complexity that is an interesting research
topic itself. In DRS, the idea is to dynamically divide the real number line
during the program evolving phase (training). Their experiments reveal that
both methods are capable of handling the multiclass classification task on texture
images using the raw pixel values. SRS and DRS methods are used as baseline
methods in this study.

A method that decomposes the multiclass classification task into a number of
binary classification tasks was used by Loveared et al. [7]. The idea is to evolve a
single program for each of the pairwise class combinations. The cost of evolving
a complete set of sub-classifiers represents the main drawback of this approach.

Changing the representation of the GP program to produce multiple values
from the internal nodes rather than the single value of the root node represents
another approach that has been adopted to tackle the problem of multiclass
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classification in [18]. The idea is to use a special type of node that make decisions
to discriminate between instances of the different classes, and then a voting
approach is used to predict the class label of the instance being evaluated.

In this paper, a wrapper-based approach is adopted via combining a nearest-
neighbour classifier and GP to evolve a model. The main idea of the proposed
method is to evolve a program that applies different operations on the instance
being evaluated such that the response to a bank of filters (i.e. set of convolution
masks) will be different depending on the textures of the different class instances.
Therefore, a single program is evolved to handle the multiclass classification task
rather than breaking the task into a number of sub-tasks.

The overall goal of this paper is to use GP to evolve a program for the task of
multiclass image classification using a small number of instances. Precisely, we
are interested in addressing the following questions:

– what GP representation and fitness function can be used to tackle the limited
number of instances for multiclass image classification;

– whether the evolved program can compete with other GP-based methods
that were also utilised to automatically handle the multiclass image classifi-
cation task; and

– whether the evolved program can achieve better performance than the use
of domain-specific features with commonly used classification methods.

The remainder of this paper is organised as follows. Section 2 provides a de-
tailed discussion of the proposed method. The data sets, baseline methods, and
evaluation procedure are presented in Section 3. The results of the experiments
are presented and discussed in Section 4. Finally, the conclusions and recom-
mendations for future research directions are given in Section 5.

2 The New Method

For presentation convenience, we call the proposed GP method Tree-of-Filters
(ToFs). This section describes the terminal and function sets, fitness function,
and the procedure to measure the fitness of an evolved program.

2.1 Terminal Set

The proposed method operates directly on the raw pixel values of the image, and
does not require a prior step to perform feature detection and extraction. There-
fore, the first component of the terminal set is the instance (image) represented
as a 2D matrix. The second type in the terminal set is a list of filters that can
be used to transform the image into another image via convolution. The major
issue here is which filters to select as the literature shows that there are many
filters of different types and sizes. We have decided to limit our scope to filters
that can help in revealing the texture primitives such as lines, as presented in
Figure 1. In addition to those filters, the Gaussian and Laplacian-of-Gaussian
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Fig. 1. The 29 filters used in this study. The blue cells are those cells having the value
−1, grey cells are 0, and white cells are set to a positive value equal to the number of
blue cells in order to make the sum of the filter coefficients equal to 0.

(LoG) filters were also used. The size of the Gaussian and LoG filters depends
on a σ value. The size is calculated using:

size = (2�3σ�) + 1 (1)

where �·� returns the smallest integer value greater than or equal to the argu-
ment. The value of σ is randomly chosen from the set {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4}.

The third type of terminal is a randomly generated constant value in the
closed interval [−10,+10].

In summary, the terminal set is made up of {I, Fi, Gσ, Lσ, C}, where I is the
image being evaluated, Fi is the i

th predefined filter, Gσ and Lσ are respectively
the Gaussian and LoG filter of the specified σ value, and C are constant values.

2.2 Function Set

The function set consists of twelve operators that can be categorised into five
groups based on the number and type of the input arguments. The first group
consists of the {Add I(·, ·) , SubI(·, ·), Mul I(·, ·), Div I(·, ·), Min I(·, ·), Max I(·, ·)}
functions that operates on two images and return an image. The first four func-
tions of this group are the regular mathematical operators {+,−,×,÷}, where
the ÷ is protected; it returns zero when the second value (divisor) is zero. The
Min I(·, ·) and Max I(·, ·) functions respectively return the minimum and max-
imum of the arguments. The functions of this group work in a pixel-by-pixel
fashion; therefore, the input and returned images are of the same size. Similarly,
the second group of functions, {AddC(·, ·) , SubC(·, ·), MulC(·, ·), DivC(·, ·)}, op-
erate on an image and a constant value. The third group is the Conv(·, ·) function
that convolves the first argument (image) using the second argument (filter). The
fourth group is the single function Coder(·), which takes only one argument of
type image, and returns a feature vector. This is only used at the root of the
evolved program. Each function of the first three groups normalises the result-
ing image to have pixel values between 0 and 255 (inclusive) before passing it
to the parent node. Moreover, those functions, apart from Coder(·), can form
long chains in different orders due to type matching between their outputs and
at least one of the input arguments. Figure 3 shows two examples of programs
evolved by the ToFs method.
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Algorithm 1. Distance ratios (DRdiff and DRsame)

Input: Ω : list of lists of Imprints
Output: Set of double-precision values
Σdiffer ←− 01

Σsame ←− 02

ξ ←− 0; // ξ is a counter3

foreach ω1 ∈ Ω do // ω1 is a list of Imprint objects4

foreach ν1 ∈ ω1 do // ν1 is an Imprint object5

Ddiffer ←− 26

Dsame ←− −17

foreach ω2 ∈ Ω do // ω2 is a list of Imprint objects8

foreach ν2 ∈ ω2 do // ν2 is an Imprint object9

λ ←− dist(ν1,ν2)10

if (ω1 �= ω2) ∧ (λ < Ddiffer) then Ddiffer ←− λ11

else if (ν1 �= ν2) ∧ (λ > Dsame) then Dsame ←− λ12

end13

end14

Σdiffer ←− Σdiffer +Ddiffer15

Σsame ←− Σsame +Dsame16

end17

ξ ←− ξ +
∣
∣ω1

∣
∣18

end19

return
{
Σdiffer

/
ξ,Σsame

/
ξ
}

20

2.3 Fitness Measure

The fitness function of the ToFs performs multiple tasks simultaneously as shown
in Equation (2).

Fitness = DRsame +
(
2− (DRdiff + Accuracy)

)
(2)

Accuracy =
Hits

Total
(3)

Here Accuracy measures the performance (accuracy) of the individual on the
training set, and Hits and Total are respectively the number of correctly clas-
sified instances and total number of instances. The DRsame and DRdiff are the
distance ratio to instances of the same and different class respectively. Algorithm
1 presents the procedure for calculating the DRsame and DRdiff values.

The dist(·, ·) function in Algorithm 1 calculates the distance between two
feature vectors of the same length:

dist
(
a, b

)
= 1−

⎛

⎝
2
(∑|a|

i=1 min (ai, bi)
)

∑|a|
i=1 ai +

∑|b|
i=1 bi

⎞

⎠ (4)

where a and b are the two feature vectors, the | · | function returns the length
(i.e. number of elements or items) of a vector, min(·, ·) returns the minimum
value of the two arguments, ai and bi are the value of the ith feature of a and
b respectively. This distance measure returns a value between 0 and 1, where a
smaller value means a higher similarity between the two feature vectors.

2.4 Fitness Measuring Procedure

The training phase aims at evolving a program that has high accuracy on the
training set, high distance ratio between the instances of different classes, and
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low distance ratio between instances of the same class. The evaluation of the
program starts from the terminal nodes as they represent the inputs of the
program’s tree, and ends at the root node (i.e. Coder). For each instance in
the training set, the system applies the operations in a bottom-up order. At
each non-terminal node, an image is generated depending on the inputs and the
specified operation. Then this image is normalised (to have values between 0
and 255) and passed to the parent node. The Coder node then receives the final
image and transforms it to a feature vector. The Coder node has a filter-bank
(list of filters) identical to those of the terminal set apart from the Gaussian and
LoG filters. This node constructs a new feature vector (all elements have zero
value) which consists of a number of elements equivalent to the number of filters
in the filter-bank (one element for each filter). A dot product is then performed
at each pixel of the image argument, along with the neighbouring pixels, with
each of the filters in the filter-bank, and the responses (resulting values) are
reported. The corresponding element of the filter that has the highest response
(largest value) is incremented by one. Finally, the generated feature vector is
normalised to have values between 0 and 1.

The system uses the feature vector generated by the Coder node along with
the actual class label of the instance being evaluated to construct an Imprint
object. The constructed imprint objects of the training set instances are stored
in a list named knowledge base that will be used for two tasks: (1) to measure
the fitness of the evolved program; and (2) to serve as a knowledge base during
the testing phase. The DRsame and DRdiff values are first calculated using the
procedure presented in Algorithm 1. Meanwhile, the accuracy is measured us-
ing the-nearest-neighbour (1NN) [2] method. Using those three values (DRsame,
DRdiff , and accuracy), the fitness of the evolved program can be measured using
the formula presented in Equation (2).

2.5 Performance Measuring Procedure

The aim of the testing phase is to measure the generalisation ability of the best
evolved program on the unseen data. Therefore, the best evolved program at the
end of the training phase is tested on the instances of the test set (unseen data).
For each instance, a feature vector is generated from the Coder node in a similar
way to that in the training phase. The distance between the generated feature
vector and each imprint object of the knowledge base list is calculated. The class
label of the closest imprint object is returned to serve as the predicted class label
for the instance being evaluated. Then the accuracy formula (Equation (3)) is
used to measure the generalisation ability of the best evolved program.

3 Experimental Design

In this section, discussions of the data sets, data set preparation, baseline meth-
ods, parameter settings, and the evaluation process are provided.
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(a)

(b)

Fig. 2. Samples of the (a) Textures-1 data set; and (b) Textures-2 data set

3.1 Data Sets

In this study, two data sets are used to evaluate the performance of the ToFs
method. The first data set is taken from the Kylberg Texture data set [5], which
is made up of 28 grey-scale texture classes. Each class consists of 160 instances of
size 576×576 pixels. The instances of this data set are fixed in terms of rotation
and scale, but not illumination. This data set comes in another flavour where the
instances are captured under different rotation angles (not used in this study).
Only 20 classes of the 28 have been selected to form the first data set of this
study Textures-1 as presented in Figure 2(a). The instances of this data set have
been resampled (i.e. resized) to 115×115 pixels to reduce the computation costs.

In computer vision and signal processing, the Brodatz textures data set [1]
is one of the mostly used data sets. This data set is made up of 112 classes
of different textures that each consists of only one grey-scale instance of size
640 × 640 pixels. Similar to Textures-1, 20 classes have been selected to form
the second data set in this study Textures-2 as presented in Figure 2(b). The
original image of each class has been divided into 16 distinct sub-samples each
of size 160× 160 pixels.

3.2 Baseline Methods

In this study, two GP-based and four non-GP methods have been used as the
baseline methods for comparison purposes.

GP Methods

– Static Range Selection (SRS) [16]: in the SRS method, the real number line is
divided into a number of equally and fixed size intervals, where each interval
is allocated for one classes. The SRS method uses the accuracy function to
measure the fitness of an evolved program.
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– Dynamic Range Selection (DRS) [7]: the DRS method is similar to SRS
in terms of program representation, terminal and function sets, and fitness
measure. However, the real number line is divided into intervals dynamically
rather than using predefined intervals. Moreover, in the DRS method, the
training set is divided into segmentation and evaluation sets. The former is
used to define the corresponding interval of each class, while the latter is
used to measure the fitness of the evolved program.

Non-GP Methods

– Naive Bayes (NB) [14]: NB is a simple, yet powerful, classifier that uses
Bayes’ theorem to build a decision model.

– Support Vector Machines (SVM) [14]: SVM is a broadly used classifier in the
literature. A SVM is trained using algorithm of Platt [11] named sequential
minimal optimisation (SOM).

– Naive Bayes / Decision Trees (NBTree) [14]: Combines Decision Trees (DT)
with NB method to form a hybridised method that inherits the characteris-
tics of the two methods. DT is used to build the tree, whilst NB is used at
the leaves of the tree.

– K∗ (KStar) [14]: similar to 1NN, KStar predicts the class label of an instance
based on the similarity to the closest instance in the training set. The KStar
method uses an entropy-based distance measure to calculate the distance
between two instances.

– Non-nested generalized (NNge) [14]: similar to 1NN, NNge is an instance-
based classifier that operates based on similarity measure. Moreover, NNge
uses a non-nested exemplar.

– Multilayer Perceptron (MLP) [14]: A artificial multilayer neural network
trained using the back-propagation algorithm.

3.3 Data Sets Preparation

In both data sets, the total number of instances of each class has been divided
equally between the training and test sets. Moreover, the instances of the two
data sets are standardised to have zero mean and unit standard deviation. The
standardised images then are normalised to have values between 0 and 255.
The three GP-based methods do not require feature detection and extraction as
they were designed to operate directly on raw pixel values. However, all non-GP
methods require performing feature detection and extraction in a prior stage.
Three different feature extraction methods have been used in this study: (1)
domain-independent features (DIF) [17]; (2) Haralick texture features [4]; and
(3) local binary patterns (LBP) [10]. In the first method, each instance has been
divided into five regions that are the four quadrants and the center area of the
image. The mean and standard deviation values of each of these five regions and
the entire image are calculated to form the feature vector. Therefore, the feature
vector of each image consists of twelve values. The second method is based
on the use of the grey-level co-occurrence matrix (GLCM), which represents a
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Table 1. The GP Parameters of all experiments

Parameter Value Parameter Value Parameter Value

Crossover Rate 0.80 Generations 30 Selection Type Tournament
Mutation Rate 0.19 Population Size 100 Tournament size 7
Elitism Rate 0.01 Tree depth 2-10 Initial Population Ramped half-and-half

very popular method to extract texture features. In this study, the matrices are
generated using the four orientations {0◦, 45◦, 90◦, 135◦}, of one pixel distance,
and a full range (8-bits) of grey-levels. Hence, each matrix is of size 256× 256.
The third method, LBP, is a dense-based feature descriptor that has been used
extensively in the literature to extract texture features. In our experiments, each
instance has been transformed into a histogram of uniform LBP8,1 codes [10].

3.4 Parameter Settings and Implementation

To draw fair conclusions, all experiments have been conducted under the same
conditions. The parameter settings of GP-based methods are shown in Table 1.

The three GP-based methods (one proposed and two baseline) have nodes
that vary in the types of inputs and outputs, and the number of input argu-
ments. Therefore, Strongly-typed Genetic Programming (STGP) [9] is required
to implement these methods. The Evolutionary Computation Java-based (ECJ)
package [8] is used to implement STGP based methods. The Waikato Environ-
ment for Knowledge Analysis (WEKA) package [3] has been used to evaluate
the non-GP methods on the two data sets.

3.5 Evaluation

Only two instances of each class are randomly selected to form the training set.
Similar to other stochastic search methods, GP produces different results based
on the seed to the random number generator. Hence, the process of evolving a
program has been repeated 30 times independently and using different random
seeds. The average performance of the best evolved programs on the test set at
the end of the 30 runs is then reported. The non-GP methods, apart from MLP,
that were used in this study are all deterministic. Therefore, each of them has
been tested only one time; while the average performance for 30 runs of MLP is
reported. The selected instances forming the training set have a great impact on
the final result. Hence, and as only two instances are used, the same procedure of
30 independent runs has been further repeated 10 times using different instances
in the training set each time. The average performance of those 10 repetitions
along with the standard deviation is reported.

4 Results and Discussions

The results of the experiment are presented and discussed in this section. The
two-tailed unpaired t-test is used to check whether the difference between the
performance of the proposed method compared to that of the baseline methods is
significant or not. The significance level of the t-test is set to 5%. The superscript
“∗” appears if ToFs has significantly outperformed the other method.
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Table 2. Accuracies of the Textures-1 data set

SRS DRS ToFs

5.02 ± 0.21∗ 9.84 ± 8.01∗ 94.31 ± 1.39

Features NB SVM NBTree KStar NNge MLP

DIF 26.07 ± 3.51∗ 36.27 ± 4.20∗ 31.06 ± 5.60∗ 27.73 ± 2.39∗ 40.63 ± 5.12∗ 34.71 ± 3.72∗

Haralick 70.77 ± 9.12∗ 84.43 ± 3.85∗ 71.81 ± 4.10∗ 84.11 ± 4.21∗ 86.48 ± 2.86∗ 81.86 ± 3.26∗

LBP 75.80 ± 6.57∗ 82.17 ± 3.58∗ 78.52 ± 7.17∗ 86.82 ± 2.92∗ 88.68 ± 2.14∗ 85.54 ± 3.09∗

Table 3. Accuracies of the Textures-2 data set

SRS DRS ToFs

5.80 ± 1.34∗ 2.28 ± 0.21∗ 95.74 ± 1.90

Features NB SVM NBTree KStar NNge MLP

DIF 46.64 ± 5.80∗ 58.21 ± 6.36∗ 53.67 ± 10.22∗ 61.56 ± 5.49∗ 59.77 ± 4.67∗ 56.49 ± 7.42∗

Haralick 84.22 ± 4.31∗ 90.78 ± 1.73∗ 80.00 ± 5.19∗ 89.61 ± 4.01∗ 92.97 ± 2.79∗ 92.58 ± 3.97∗

LBP 83.68 ± 3.76∗ 89.53 ± 3.16∗ 84.46 ± 6.89∗ 90.86 ± 3.24∗ 90.71 ± 3.49∗ 92.19 ± 3.36∗

Each of the tables presented in this section is divided vertically into two
blocks. The upper block presents the results of the GP-based methods, while
the results of the non-GP methods are presented in the lower block. Moreover,
three values are listed under each of the non-GP methods that each corresponds
to one of the three features extraction methods were discussed in Section 3.3.

4.1 Overall Results

The results on the Textures-1 data set are presented in Table 2. The statistical
test shows that ToFs has significantly outperformed all other methods on this
data set. Both of the GP-based baseline methods show very poor performance
on this data set. The use of hand crafted features with the six non-GP meth-
ods shows a good level of performance. A lower level of performance has been
achieved when the DIF features are used by all those methods compared to LBP
and Haralick. In most of the cases, the use of LBP features results in a slightly
better performance than that of the Haralick features.

Table 3 presents the results on the Textures-2 data set. Similar to Textures-1,
ToFs has significantly outperformed all other methods on this data set. SRS and
DRS have achieved the lowest accuracies amongst all other methods. Similar to
Textures-1, the non-GP methods show poor performances when the DIF features
are used. Moreover, those methods achieved a good level of performance when
LBP features or Haralick features are used.

4.2 Analysis

The results show that the simple domain-independent features are not sufficiently
powerful for these data sets. Moreover, GP with SRS and DRS are not suitable
for classification when the number of classes is large. These two methods simply
translate the single floating number output into a set of class labels, while the
proposed method evolves a program that implicitly performs feature extraction
and generates a powerful feature vector.
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(a) (b)

Fig. 3. Sample programs evolved on (a) Textures-1, and (b) Textures-2 data sets

Figure 3(a) shows a program that was trained on the Textures-1 data set. This
program has scored 95.50% accuracy on the unseen data. Meanwhile, a program
evolved by the proposed method on the Textures-2 data set is presented in Figure
3(b). This program has scored 100% accuracy on the unseen data. It convolves
the image with a Gaussian filter with σ = 1.5, then adds it to the original image
twice. The resulting image is then multiplied by a constant value (−7.862797)
and passed over to the root node to generate the feature vector.

5 Conclusions

In this paper, a GP-based method has been proposed for the task of multiclass
classification in texture images. The proposed method uses only two instances
of each class to evolve a program that operates on raw pixel values. Two well-
known data sets have been used to evaluate the performance of the proposed
method. Moreover, the performance achieved has been compared to that of two
GP-based and six non-GP methods. Similar to the proposed method, the two
GP baseline methods operate on raw pixel values to perform multiclass texture
classification. The non-GP methods, on the other hand, require a set of pre-
extracted features to build a model. Therefore, three different feature extraction
methods have been used and the performances obtained have been compared
to that of the proposed method. The results of the experiments show that the
proposed method significantly outperformed all other methods on both of the
data sets used.

In the future, we would like to test the ability of the method to handle rotation
and scale variants, and on different domains other than textures. Analysing some
of the evolved programs to highlight some important patterns and to investigate
the costs (i.e. speed and memory) is another objective to investigate in the near
future.
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Abstract. By viewing the training of classifiers as an optimisation prob-
lem, we have developed a method in this paper to train a new type of
nearest centroid classifier with multiple centroids per class, using Particle
Swarm Optimisation (PSO). The developed method has been compared
to an earlier PSO classification algorithm, and was found to have partial
success. Additionally, both the developed algorithm, and the earlier PSO
algorithm have been implemented on the GPU, with results showing at
least one order of magnitude difference between speeds of the GPU and
sequential CPU implementations on most data sets.

1 Introduction

The training of classifiers is an optimisation problem. That is, learning a clas-
sifier from a set of labelled training examples can be seen as optimising a given
performance metric (objective) by modifying the parameters or structure of the
classifier.

Particle Swarm Optimisation (PSO) is a biologically-inspired metaheuristic
optimisation technique that is based on simulating the behaviour of swarms,
such as schools of fish or bird flocks[8]. Conceptually, the algorithm iteratively
moves a population of ‘particles’ throughout a search space, where the direction
of movement for each particle is influenced by its own memory and particles in
the local neighbourhood.

PSO is simple to implement, and does not require any derivative information,
or any additional problem structure other than an objective function. Because
of these properties, it has been applied to many different tasks[12] including
the training of classifiers. Applying PSO to classification has been achieved in
multiple ways, such as using PSO to train neural networks[5,3,6], learning sets
of hierarchical classification rules[14], or finding centroids in the feature space[2].

Sousa et al.[14] introduce a rule based approach for classifying categorical
data using PSO. A hierarchical set of if-then rules are created, where the con-
dition of each rule is a conjunction of feature values. An example meets the
condition if each relevant feature has the same feature value. The set of rules is
created by iteratively discovering new rules that classify the predominant class
in the current data set, with the current data set being updated in each iteration
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by removing examples that match the newly created rule. PSO is used as the
underlying algorithm to find the conjunction of feature values that most opti-
mally matches examples of the given class. While the above paper considered
problems consisting of categorical features, Falco et al.[2] describe a classifica-
tion algorithm using PSO for continuous data sets. For a classification problem
with C output classes, a classifier is represented by C centroids in the feature
space, where each centroid is mapped to a single output class. An example is
assigned a class by the closest centroid (in terms of euclidean distance). Given
this representation, PSO is used to optimise the position of the centroids, such
that the accuracy over the training set is maximised. However, by using only one
centroid per class, this classifier representation is limited to representing linear
boundaries between each class, which limits the types of data this classifier can
accurately classify.

While PSO has shown some success in its use for classification, convergence
of the algorithm can be slow. By taking advantage of the GPU, a processor
designed for massively-parallel computations, PSO may be more useful. The
GPU is a processor specialised for highly-parallel and compute intensive tasks,
and since the introduction of general GPU computing platforms such as CUDA
and OpenCL utilising the GPU to parallelise algorithms has become a popular
research area. In order to achieve high parallelism, the GPU devotes more tran-
sistors to data processing rather than caching and flow control. This tradeoff
limits the types of algorithms that can benefit from the GPU, and requires that
algorithms be specifically designed with these tradeoffs in mind.

Two methods of implementing PSO for the GPU have been implemented in
the literature. Zhou and Tan[16] implement PSO by parallelising each individual
stage of the PSO algorithm. This approach scaled well to more particles and
larger dimensions, although each stage of the algorithm required reading particle
data from the GPUs global memory, which has high latency. Mussi et al.[10]
implemented PSO as a single GPU function , where each thread on the GPU
performed a single step of the algorithm for a single particle. However, due to
synchronisation limitations of the GPU, a swarm was limited to a single thread
block, and hence a single GPU multiprocessor, which limits the utilisation of the
GPU if only a single swarm is being used. Additionally, because each particle is
mapped to a single thread, the number of particles in a swarm is limited by the
maximum number of threads in a thread block.

A single centroid approach to classification using PSO is limited to represent-
ing simple linear boundaries between each class in the feature space. By allowing
more than one centroid to map to each class, more complex boundaries may be
represented. Therefore, we develop a learning algorithm capable of training multi
centroid classifiers, so more complex classification problems may be handled.
Additionally, because the execution time of PSO can be prohibitive, we develop
a GPU implementation of the algorithm, and evaluate the implementation by
comparing the performance to an equivalent CPU implementation.

The organisation of the paper is as follows. The second section describes
the background. The third section describes the algorithm design. The fourth
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section describes the experimental setup, and the parameters and data sets used
in the experiments. The fifth section provides the results, and some analysis and
discussion. Finally, the sixth section gives some concluding remarks about the
developed algorithm.

2 Background

2.1 Particle Swarm Optimisation

Particle Swarm Optimisation is a population based optimisation technique in-
troduced by Kennedy and Eberhart[7]. A population of particles (a swarm) is
iteratively moved through a multi-dimensional search space until a sufficiently
‘fit’ solution is attained (or a maximum number of iterations is reached). Each
particle is defined by two multi-dimensional vectors p and v, representing the
position and velocity respectively. At each iteration the position and velocity
of each particle is updated according to the following mathematical equations,
where i is the current iteration index:[13]

vi+1 = wvi + c1r1 ⊗ (pbest
i − pi) + c2r2 ⊗ (pnbest

i − pi)

pi+1 = pi + vi+1

The velocity is updated such that the previous velocity, the best known position of
the current particle so far, pbest, and the best known position across the particles
neighbourhood, pnbest, all influence the particle’s movement. w is known as the
inertia weight, which controls the influence of the previous velocity, and c1 and c2
control the influence of the current particle’s last best position and the neighbour-
hoods best known position respectively. Finally, r1 and r2 are vectors of random
numbers uniformly distributed in the interval [0, 1], and are intended to introduce
randomness into the search. The operator ⊗ performs component-wise multipli-
cation of two vectors.

The neighbourhood of a particle is defined topologically—by viewing each
particle as a node in a graph, a particle’s neighbourhood is the set of particles
that it is connected with. In the gbest topology, the particles form a fully con-
nected graph, and thus every particle influences each other. Conversely, for lbest
topologies, each particle is influenced by a strict subset of particles in the whole
population. A popular lbest topology is the ring topology, where each particle
has two distinct neighbours[9]. The way the neighbourhood is defined affects how
the best position is communicated throughout the swarm. This appears to affect
the convergence properties of the algorithm, with experiments showing that a
ring-like topology appears to be better at exploration, whereas the star topology
converges faster (although not necessarily to a globally optimal result)[15].

Algorithm 1 gives the basic outline of the PSO algorithm as described above.
The fitness calculation is defined by the application utilising PSO, however the
other steps are independent of the problem.
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Initialise the position and velocity of all particles;1

while max iterations not reached do2

calculate fitness of each particle;3

update each particle’s personal and neighbourhood best;4

update each particle’s position and velocity;5

end6

Algorithm 1. Basic PSO Pseudocode

2.2 CUDA - GPU Programming

CUDA is a parallel computing platform and programming model developed by
NVIDIA for general purpose computing on the GPU. The GPU is specifically
designed for data parallel algorithms that can take advantage of a high degree of
parallelism without a high degree of reliance on flow control or memory caching.
More specifically, the GPU is well suited to programs which can be specified
in terms of multiple threads executing the same code across multiple different
pieces of data in parallel[11].

In the CUDA programming model, code is executed across a number of par-
allel threads, where each thread is distributed among a number of thread blocks.
Each thread block is mapped to a single multiprocessor on the GPU, which al-
lows threads that share a thread block to have the ability to synchronise with
each other, and access shared memory, but separate thread blocks are executed
independently from each other.

Within this model, coding for the GPU consists of writing kernels, which
are special C functions written to be executed in parallel on the GPU. The
kernel is executed across a number of thread blocks with each thread block
consisting of a chosen number of threads. The kernel has access to the runtime
constants threadIdx, blockIdx, blockDim, gridDim, specifying information about
the current thread executing the kernel. This gives the ability to map different
pieces of data to different threads, and have a more fine grained control over the
execution path of each thread.

A thread block is executed by a GPU’s multiprocessor by first partitioning
the threads into groups of 32 parallel threads, called warps, and then scheduling
each warp for execution. A warp executes one common instruction at a time
for every thread, so if threads in a warp diverge via data-dependent conditional
branching, the warp executes each branch serially, disabling threads which are
not on that path, and converges back to a single path once each branch has been
executed. Full efficiency in a warp is therefore achieved when all 32 threads agree
on the same execution path.

Threads have access to multiple memory spaces during execution. Figure 1
illustrates the layout of the memory spaces. Thread local memory and global
memory (along with the constant and texture memory spaces) are both stored
on-device, whereas registers and shared memory are both stored on-chip (the
multiprocessor). Shared memory and the registers therefore have much higher
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bandwidth and lower latency than local and global memory, but are not as large
as the global or local memory spaces.
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Fig. 1. CUDA Memory Hierarchy[11]

3 Design

In this section we propose a nearest centroid classification algorithm with mul-
tiple centroids per class, and introduce a stepwise learning algorithm based on
PSO. This has been developed in order to evaluate the use of PSO for find-
ing classifiers capable of classifying more complex types of data. Additionally, a
GPU implementation of the algorithm is described.

3.1 Classifier Representation

A continuous, multiple centroid classifier representation is used, in order to allow
the centroids to define more complex boundaries. That is, a classifier is repre-
sented by a set of centroids, K, in the feature space. Each centroid κi is assigned
a class cj ∈ C by the surjective map class, where |K| ≥ |C|.

C = {c1, c2, . . . , cm}
K = {κ1, κ2, . . . , κn}

class : K �→ C

κ∗ = argmin
κ∈K

d(u, κ)

h(u) = class(κ∗)
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The function h(u) defines how an example is classified given the classifier repre-
sented by K and the map class. In particular, an example u is assigned the class
of the centroid κ∗, which is the closest centroid to the given example.

By allowing multiple centroids to map to a single class, the classifier is capa-
ble of representing complex decision boundaries between individual classes of a
problem.

3.2 GPU PSO

PSO is a sequential algorithm, where each step depends on the previous steps to
have been completed, as in Algorithm 1. To parallelise this, the GPU is used as a
coprocessor. That is, each individual step of the algorithm is implemented to be
ran in parallel on the GPU, whereas the CPU manages the overall control flow
of the algorithm by scheduling when to run each individual step on the GPU.
The approach outlined here follows the same structure as Zhou and Tan[16].

The initialisation, position and velocity updating, and updating of each parti-
cles personal and neighbourhood best steps are parallelised in similar ways. Each
particle is mapped to B thread blocks, where B ≥ 1, such that B×X is greater
than the number of dimensions of the particle, where X is the number of threads
per block. In this way, an individual thread is mapped to a single dimension of
a single particle, where the block id of the thread block identifies the particle,
and the thread id identifies the particle dimension mapped to the current thread.
This ensures the algorithm can scale to larger systems of particles without being
limited to a fixed number of threads or thread blocks.

Each thread block maps to a single particle, which means the position of a
single particle may be stored in shared memory. This means individual threads
in a thread block may read the particle position data from the lower latency
shared memory, rather than global memory.

Currently, the performance of single precision arithmetic on the GPU far
outweighs the GPUs performance with double-precision arithmetic. Because of
this, PSO has been implemented to use single precision floating point arithmetic.
This trades (arithmetic) accuracy for speed. This should have limited effect on
the effectiveness of the algorithm, assuming the magnitudes of values used in
PSO are approximately equal.

3.3 Stepwise Centroid Algorithm

To learn a nearest centroid classifier with multiple centroids per class, we have
developed an iterative algorithm which is capable of utilising multiple centroids
per class in order to learn complex decision boundaries. In order to learn such a
classifier, we have developed an algorithm which iteratively adds new centroids
to an initial classifier, using PSO to reoptimise the centroid positions, until some
stopping condition is met.
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Scale features of the training data to the range [0, 1];1

Partition training data into a training set (66%), and validation set;2

Optimise position of |C| centroids, one for each class, by using PSO;3

Calculate accuracy of classifier over validation set;4

set i to 0;5

while i < n do6

Add new centroid for a randomly chosen class;7

Reoptimise positions of all centroids with current centroid added;8

Calculate accuracy of classifier over validation set;9

if validation accuracy increased then10

set i to 0;11

store currently learned classifier as the current best;12

end13

else14

set i = i + 1;15

end16

end17

Return the current best classifier18

Algorithm 2. Stepwise Centroid

Step (1) scales the training data such that every example is contained within
a hypercube with lower and upper bounds of 0 and 1. This is performed in order
to ensure the distance measure used for finding the closest centroid is not biased
by the scaling of different features. Additionally, this also bounds the search
space over which PSO finds the positions of each centroid.

To begin with, step (3) initialises a nearest centroid classifier with a single
centroid for each class by optimising the centroid positions with PSO. The po-
sition of a particle represents the positions of each centroid in a classifier, and
the fitness of a particle is defined as the accuracy of the classifier it represents.

New centroids are iteratively added to the classifier where the new centroid is
assigned a randomly chosen class. Once a new centroid is added in step (7), PSO
reoptimises the position of every centroid in the classifier, where previously found
centroids are initialised to their previous positions. This is done to allow the
boundaries within the feature space, as defined by the centroids, to potentially
adapt given the additional centroid. The while loop continues until the accuracy
(fitness) over the validation set has not increased for a number of iterations n,
and once complete, the classifier found throughout the process with the highest
accuracy is returned.

The fitness of a particle is calculated by iterating over every training example,
finding the closest centroid in the particle for each example, and then summing
the total number of examples correctly classified by the closest centroid. This
total is then divided by the total number of examples.
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3.4 GPU Stepwise Centroid Implementation

The overall structure GPU implementation of the above algorithm is very sim-
ilar. The GPU is used as a coprocessor in order to parallelise individual steps,
while the CPU is still used for the scheduling and overall control flow. In par-
ticular, the GPU PSO implementation is used for optimisation, with the fitness
function optimized by PSO also being implemented for the GPU, and the compu-
tation of accuracy over the validation set also utilises the GPU fitness function.

To calculate the fitness of every particle on the GPU, each particle is mapped to
one or more thread blocks, where each thread in the thread block is mapped to a
single example in the data set. Once the number of examples exceeds the number
of threads in a block, additional thread blocks are used. This allows for the GPU
implementation to scale as the number of training examples used increases.

Each thread classifies its example by iterating over each centroid of the current
particle, and finds the centroid closest to the example, using Euclidean distance
as the distance measure. If the class of the closest centroid matches the example,
the value 1 is written to a 1d array indexed by the current thread ID, where the
array is defined in shared memory, and each element is initialised to 0. Once each
thread in a thread block has completed, the thread block performs a parallel
reduction over the array to calculate the total number of correctly classified
examples in the thread block. The parallel reduction algorithm finds the sum of
all values in the array, by having each thread in the thread block cooperatively
sum the values together. This is achieved by the first half of the threads adding
the values of the second half in the array, therefore halving the number of values
left to sum. This same process repeats for the remaining half of values, until
the final result is stored at the first position of the array. Once the number of
correctly classified examples is known, the value is divided by the total number
of examples, and is atomically added to the output fitness in global memory,
where the atomic add ensures serialised access to global memory across multiple
thread blocks.

4 Experimental Setup

4.1 Experiment Design

We have designed an experiment to evaluate two different aspects of the pro-
posed algorithm: accuracy and speed. The accuracy of the designed algorithm is
compared to a simple nearest centroid PSO classification algorithm, where PSO
is used to find a single centroid for each class. To meaningfully compare these two
algorithms in terms of accuracy, a paired t-test with a p-value of 0.05 or less is ran
on the results of 30 different runs of both algorithms. The GPU implementation
of both classification algorithms is also compared to a sequential CPU imple-
mentation in terms of execution time over each data set. The following equation
is used to calculate the speedup achieved from the GPU implementation:

γ =
TCPU

TGPU

where TCPU and TGPU are the CPU and GPU times respectively.
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4.2 Datasets

Multiple different data sets consisting of continuous features were used to eval-
uate the performance of the developed algorithm, where each data set has a
varying number of training examples, features, and classes in order to under-
stand the performance of both the CPU and GPU implementations with respect
to different aspects of the problem. The # train and # test columns describe
the distribution of examples used when evaluating the algorithms.

Table 1. Properties of each examined dataset[1]

Dataset # features # classes # examples # train # test

Iris 4 3 150 90 60
Breast Cancer Wisconsin 9 2 683 409 274
wdbc 30 2 569 341 228
Banknote Authentication 4 3 1372 823 549
Letter Recognition 16 26 20000 12000 8000
Statlog (Shuttle) 9 7 58000 26100 17400
Magic gamma telescope 11 2 19020 11412 7608
Skin Segmentation 4 2 245057 147034 98023
SPECTF 44 2 267 80 187

4.3 Configuration Settings

The experiment has been run using a NVIDIA GTX 780 GPU, and an Intel
i5 2500k CPU. The parameters of the PSO algorithm are described in Table 2,
where the values for w, c1, and c2 have been chosen based on a paper by Eberhart
et al.[4]. Additionally, the vmax, vmin and pmax, pmin values are used to confine
each particles velocity and position respectively, to ensure particles stay within
the search space.

Table 2. Parameters of the PSO algorithm

Setting Value

Number of Particles 500
Number of Iterations 100
Particle Topology Ring
w 0.7968
c1 1.4962
c2 1.4962
vmax 1.0
vmin 0.0
pmax 1.0
pmin 0.0
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5 Results

From Table 3, we can see on most data sets, the GPU implementation is at least
an order of magnitude faster than the sequential CPU implementation for both
algorithms. This trend fails for two data sets, due to the number of examples
in each training set being very small. The speedups achieved differ between
data sets, mostly due to the size of each training set, where larger training sets
correspond to larger speedups being achieved by the GPU. This is caused by
how the calculation of the fitness of particles is parallelised, and computed on
the GPU. As the training set grows, the number of thread blocks used for the
fitness calculation increases. This means increasing the number of examples in
the data set increases the parallelism exhibited by the GPU, therefore giving a
larger speedup when compared to a sequential implementation.

A noticable outlier to this pattern is the speedup achieved over the Letter
Recognition data set (12000 training examples) for the stepwise centroid im-
plementation. This could be caused by the number of classes in the problem
increasing the number of centroids being added, which means the CPU is doing
more work overall compared to other datasets, and additionally, having a lot of
centroids increases the amount of memory reads for a particle on the GPU.

It should be noted that the speedups of the stepwise and single centroid
algorithms differ on the same datasets. The reason for this is that the stepwise
centroid algorithm can run a PSO optimize multiple times to learn the positions
for new centroids, and the amount of times this optimize stage is called depends
on the difficulty of the classification problem. If the classes in the problem are
easily discriminated, the algorithm will terminate earlier, and add less centroids
than for a difficult problem. This is in constrast to the single centroid algorithm,
which just performs a single PSO optimize and returns the result.

Table 3. GPU and CPU times in seconds for both the stepwise centroid, and single
centroid algorithms

Data set Stepwise GPU Stepwise CPU Speedup Single GPU Single CPU Speedup

Iris 0.8332 6.8957 8.28 0.0720 0.2137 30.86
Breast Cancer 1.5550 51.1669 32.90 0.0954 1.1767 12.33
wdbc 11.1900 137.4110 12.28 3.1090 0.2526 12.33
Banknote 1.4490 55.6737 38.42 0.0913 1.7202 18.84
Letter Recog. 804.3550 10125.2000 12.59 21.7417 696.4370 32.03
Shuttle 195.9270 5236.1800 26.73 6.9730 244.9380 35.13
Magic 75.6590 1620.7900 21.42 1.1908 36.7500 30.86
Skin Segment. 214.8290 7152.6900 33.29 4.8352 182.1390 37.67
SPECTF 15.9339 49.7974 3.13 0.1974 1.1007 5.58

Table 4 displays the achieved accuracy over the test set of both the developed
stepwise classifier and the single centroid classifier approach. Average accuracy
on the training set is shown in brackets, and a boldface is used to highlight the
best result for each data set. The presence or absence of * indicates whether
or not the result is statistically significant, according to a paired t-test over 30
runs, with a p-value of 0.05 or less.
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Table 4. Average accuracies of the stepwise centroid classifier and the single centroid
classifier

Data set Stepwise Centroid Classifier Single Centroid Classifier

Iris 0.9163 (0.9808) 0.9294* (1.0000)
Breast Cancer 0.9624 (0.9796) 0.9654 (0.9811)
wdbc 0.9636 (0.9846) 0.9685 (0.9841)
Banknote 0.9950* (0.9992) 0.9866 (0.9969)
Letter Recog. 0.3838* (0.3885) 0.1923 (0.1920)
Shuttle 0.9955* (0.9958) 0.9714 (0.9713)
Magic 0.8313* (0.8399) 0.7908 (0.8045)
Skin Segment. 0.9940* (0.9940) 0.9476 (0.9483)
SPECTF 0.7589 (0.8988) 0.7686 (0.9192)

The results indicate that the developed stepwise centroid algorithm has had
some success on the chosen data sets, achieving the same, or better results on
all except one dataset. The performance on the iris dataset could be explained
by the use of a validation set during training for the stepwise algorithm. The
number of examples used for training with iris is relatively small, only 90, and
34% of this is used for validation. This can mean that the algorithm cannot learn
how to correctly discriminate between the classes, due to the training data not
being representative of the problem.

6 Conclusion

This paper proposed a new learning algorithm for a nearest centroid classifier
with multiple centroids, using PSO to optimise the model, and also implemented
the algorithm on both the CPU and GPU in order to evaluate the effectiveness
of using the GPU to speed up the designed algorithm.

The developed algorithm achieved some success in terms of classification,
performing better or equal than the single centroid algorithm on all but one
of the chosen data sets.

In terms of the GPU implementation, results found for most of the data sets
tested, the GPU implementation was at least an order of magnitude faster than
the CPU implementation for both the stepwise, and single centroid classifier
learning algorithms. This indicates that a GPU implementation of PSO for clas-
sification can be useful for lowering the amount of time necessary to train a
classifier.
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Abstract. Self-adaptive mechanisms for the identification of the most
suitable variation operator in Evolutionary meta-heuristics rely almost
exclusively on the measurement of the fitness of the offspring, which
may not be sufficient to assess the optimality of an operator (e.g., in
a landscape with an high degree of neutrality). This paper proposes
a novel Adaptive Operator Selection mechanism which uses a set of
four Fitness Landscape Analysis techniques and an online learning al-
gorithm, Dynamic Weighted Majority, to provide more detailed infor-
mations about the search space in order to better determine the most
suitable crossover operator on a set of Capacitated Arc Routing Prob-
lem (CARP) instances. Extensive comparison with a state of the art
approach has proved that this technique is able to produce comparable
results on the set of benchmark problems.

1 Introduction

Parameter Setting has recently become one important area of research in the
Evolutionary Computation field. Since an a-priori identification of the optimal
configuration of the parameters is always time-consuming and often not practi-
cable, one must employ a dynamic selection strategy of the optimal configuration
which is performed while the search is being executed. In addition, a static set
of parameters is not always the optimal choice for a large number of problems
where self-adapting techniques have proven to be more effective[8].

The problem of identifying the most suitable variation operator among several,
also known as Adaptive Operator Selection (AOS), can be divided into two sub-
tasks: the Credit Assignment (CA) mechanism, used to evaluate the performance
of the operators, and the Operator Selection (OS) Rule, necessary to determine
the most suitable operator using the information provided by the CAmechanism.
The majority of the Credit Assignment approaches in literature are based on
the evaluation of the fitness of the offspring generated by the operator, which is
compared either to the current best solution [6], to the median fitness [14] or to
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the parents’ fitness[2]. A different strategy evaluating both fitness and diversity
of the offspring was proposed for multi-modal optimization in [18]. The reward
has been mostly considered as the value assessed during the last evaluation
(Instantaneous reward), as the average reward over a window of the last N
evaluations (Average reward), and as the biggest improvement achieved over a
window of the last N evaluations (Extreme reward)[9]. A different approach for
population based meta-heuristics, proposed in [4], assesses the reward as the
proportion of solutions generated by each operator which have been selected by
the ranking phase of the evolutionary algorithm. Credit Assignment mechanism
are coupled with Operator Selection rules such as Probability Matching[10],
Adaptive Pursuit[24] or Multi Armed Bandit solvers (MAB)[5].

From the analysis of the existing literature, it is clear how almost all the
existing CA strategies rely exclusively on the mere evaluation of the fitness of the
offspring. However, the information provided by the fitness may not be sufficient
to assess the optimality of an operator (e.g. in a landscape with a high degree
of neutrality). The purpose of this work is therefore to develop a new dynamic
CA mechanism which considers a suite of measures, and that can be adopted
also as an Operator Selection Rule. We consider the Memetic Algorithm with
Extended Neighborhood Search (MAENS*)[4] algorithm as a case study and
for comparison purposes. More specifically, we aim to answer to the following
research questions:

– RQ1: What kind of additional information we can provide to the Credit
Assignment technique for a more “aware” calculation of the reward and
does this information effectively help to improve the prediction ability of the
algorithm?

– RQ2: What technique would be useful to handle this data and to select the
most suitable operator in such a dynamic environment? Would the prediction
ability of the technique be better than that of MAENS*? Would the use of
this technique improve the optimization ability of MAENS*?

The contributions of this work are:

– An ensamble of four different online Fitness Landscape Analysis techniques,
performed during the execution of the MAENS* algorithm in order to give
a more accurate description the current population (RQ1);

– A Credit Assignment technique based on the use of a online learning algo-
rithm to predict the reward of the most suitable operator (RQ2).

The results of the experiments carried out show that the proposed approach is
able to produce results comparable to a state-of-the-art strategy and reveal how
in some cases the presence of a set of measures have a beneficial effect on the
optimization ability of the AOS.

The rest of the paper is divided as follows. Section 2 introduces the case
scenario and the base MAENS* algorithm. Section 3 describes the ensamble of
Fitness Landscape Techniques used in conjunction with the CA mechanism of
the MAENS* algorithm. Section 4 describes the online Learning algorithm that
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has been used and adapted for the CA system. Section 5 includes a description
of the proposed MAENS*-II algorithm. Section 6 describes the experiments that
have been carried out to verify the assumptions of this research and their results.
Finally, section 8 includes the conclusions and some future work ideas.

2 Background

2.1 Capacitated Arc Routing Problem

The Capacitated Arc Routing Problem (CARP) [11] is the problem of minimizing
the total service cost of a routing plan, given a setT of tasks (which correspond to
a subset of the arcs of a graph) and a fleet ofm vehicles with capacityC. Each task
t has a service cost sc, a demand d (the load of the vehicle necessary to service the
task), a unique id, a reference to its head and tail vertices, andmust be served once
and entirely within the same routeRi. Solutions are represented by a permutation
of the tasks, divided into several routes, which must start and end in a specific
vertex called depot. The service cost of a single route is calculated adding the service
cost of all the tasks in the route plus the cost of the shortest path sp between each
task. The problem can be formally defined as follows:

minTC(S) =

length(S)−1∑
i=1

(sc(ti) + sp(ti, ti+1))

subject to the constraints

load(Ri) ≤ C , app(ti) = 1 and ∀ti ∈ T,m <= nveh

load(Rk) =

length(Rk)∑
i=1

d(tik)

where app(ti) gives the number of appearances of tasks ti in the sequence S
and nveh is the number of available vehicles.

2.2 A Case Study: MAENS*

Among the several approaches for CARP involving Evolutionary Algorithms
existing in literature, one of the most competitive is MAENS [23], a memetic al-
gorithm which makes use of a crossover operator, a local search combining three
local move operators and a novel long move operator called MergeSplit, and a
ranking selection procedure called Stochastic Ranking (SR)[21]. The algorithm
was recently refined into the MAENS*[4] algorithm. The major differences with
the original algorithm are: (a) the crossover operator is replaced by a set of four
operators, namely GSBX, GRX, PBX, SPBX, (b) a dynamic MAB mechanism
(dMAB) [9] is adopted as an AOS rule, (c) a novel CA mechanism assigns a
reward to the operators which is proportional to the number of solutions gen-
erated by each operator that “survived” the ranking phase, (d) the Stochastic



362 P.A. Consoli, L.L. Minku, and X. Yao

Ranking is improved considering also the diversity of the solutions (dSR) using
a (e) novel diversity measure for the CARP search space.

The dMAB [9] approach, adopted in this work, combines the UCB1 algorithm
[1] with the Page-Hinckley (PH) statistical test [13] to detect changes in the
environment. When the PH test is triggered the MAB system is restarted and
the information gathered in the previous generations is discarded. The MAENS*
algorithm represents the case study of this research, as the presence of a suite
of crossover operators allows the study of several AOS approaches.

3 Online Fitness Landscape Analysis

The existing Fitness Landscape Analysis (FLA) techniques have been analysed
with the purpose to identify those that can be used in the CARP context. Such
selection has been driven by both the necessity to reduce at most the compu-
tational effort, by exploiting some calculations that are already performed by
the algorithm and the necessity to identify measures able to “capture” different
features of the landscape. We identified a set of four FLA techniques, namely
an evolvability measure, two neutrality measure and a fitness distribution mea-
sure, as they describe different features of the landscape and do not considerably
increase the computational effort. The FLA techniques are then employed dur-
ing each generation, and their results, in combination with the CA technique
of MAENS, are used to create a more accurate and informative “snapshot” of
the current population which eventually might lead to a more aware selection of
the crossover operator. A final remark is necessary about the constraints han-
dling and how it affects the fitness of the individuals. The landscape in which
MAENS* operates is that of solutions which can potentially violate the capacity
constraints of the vehicles. Therefore, we consider the following fitness function,
adopted from [23]:

f(S) = TC(S) + λ ∗ TV (S)

where λ is an adaptive parameter depending on the cost, on the violation and
on the best feasible solution found so far, TC(S) is the total cost of the solution
and TV (S) its total violation.

The rest of the section will introduce the four FLA techniques that have been
considered in this work and how they have been integrated in the MAENS*
algorithm.

Accumulated Escape Probability. The Accumulated Escape Probability[16]
(aep) is a technique which aims to measure the evolvability, which can be defined
as the capacity of the solutions to evolve into better solutions. We obtain the
Accumulated Escape Probability (aep) by averaging the mean escape rate[19]
(the proportion of solutions with equal or better fitness in the neighbourhood)
of each fitness level with the formula:

aep =

∑
fi∈F Pj

|F | , where F = f0, f1, ..., fL
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where fi is a fitness level (subset of all the solutions with fitness equal to fi),
Pj is the average Escape Rate of all samples belonging to the fj fitness level
and L is the number of possible fitness levels. Being the mean value of a set of
probabilities, the aep will be equal to 0 when the instance is hard and higher
(up to 1) in the opposite case. The calculation of the aep requires the analysis
of the neighbourhood of each solution in order to identify how many individuals
have a equal or better fitness than the original individual. We analyse therefore
the evolvability of the solutions which have been selected (with probability equal
to 0.2) for the local search. Since the calculation of the neighbourhood of each
solution corresponds to the first step of the local search, no significant additional
cost is required to compute the aep.

DispersionMetric. The analysis of the distribution of the solutions within the
landscape can be sometimes used to understand more about the difficulty that a
“jump” between fitness levels requires and to gain some information on the global
structure of the landscape. In this context, the Dispersion Metric (dm) [17] is a
technique to obtain information about the global structure of the landscape, by
measuring the dispersion of the best solutions. Ideally, if the best solutions are very
closewemight be in presence a single funnel structure. If, on the contrary, solutions
get more distant when their fitness improves, the landscape might be more like a
multi funnel structure. The technique can be described as follows:

1. A sample S of solutions is taken from the search space;
2. the best Sbest solutions are selected from the S (using a threshold value);
3. the average pairwise distances in S (d(S)) and in Sbest(d(Sbest)) are calcu-

lated;
4. the dm is obtained as the difference between d(Sbest) and d(S).

The calculation of the pairwise distance between all the individuals of the sam-
ple is already performed during the dSR and therefore requires no additional
cost. Thus, the dm can computed on the set of all the popsize∗offset individuals
created during each generation of MAENS*. More information about the dis-
tance measure can be found in [4]. Finally, it is possible to rely on the ranking
performed by the dSR operator and choose these solutions as the subset of the
best ones.

Neutrality Measures. Neutrality is the study of the width, distribution and
frequency of neutral structures within the landscape (e.g. plateaus, ridges). A
set of several neutrality measures was defined in [25]. Among these, we selected
the following:

1. average neutrality ratio (r): can be obtained averaging the neutrality ratio
(e.g. the number of solutions with equal fitness) of each individual with
respect to its neighbourhood;

2. average Δ−fitness of the neutral networks (Δ(f )): can be defined as the
average fitness gain after one mutation step of each individual belonging to
a neutral network.
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In the same fashion as in the case of the aep, the computation effort of this
technique can be absorbed by the generation of the neighbourhood of the initial
solution during the local search.

4 Online Learning

The AOS model followed in MAENS* is that of the Multi Armed Bandit sce-
nario, where the UCB1 [1] algorithm is used to balance the exploration and the
exploitation of the crossover operators and the Page-Hinckley [13] test is used
to detect when a different operator has become the most suitable.

In this work, we propose the adoption of a different model. The abrupt and
scarcely predictable changes of the most suitable operator which might happen
during the search show many similarities to the notion of concept drift [22][20]
in machine learning. Thus, in such a context, we might adopt a online learn-
ing algorithm capable of (a) predicting a reward for each operator using the
online Fitness Landscape Analysis measures and (b) detecting the changes of
the environment, relying only on a limited number of training instances. We
employ the Dynamic Weighted Majority (DWM) [15] algorithm as our online
learning algorithm, which has proved to be one of the most effective techniques
in the task of tracking the concept drift. The DWM algorithm can be described
as follows. A set of learners (called experts) are used to classify the incoming
instances {−→x , y}, where −→x is the vector of the n input features and y is the out-
put feature. Each expert ej has a own weight wj , and operates a classification
λ of the instance. The global prediction is identified as the prediction with the
largest sum of weights. All the experts which have failed to classify correctly the
instance have their weights reduced of a β factor. Moreover, every p instances,
all the experts with a weight below a certain threshold θ, are deleted and a new
expert is created if the global prediction is wrong.

DWM for the Regression Task. As the DWM algorithm was originally
conceived for a classification purpose it is necessary to adapt and modify some of
its mechanism for the regression task of predicting the reward of a given operator
based on the FLA techniques. A pseudocode of the revised DWM algorithm for
the regression task (rDWM) is available in table 1, where the grey lines indicate
the novelties introduced with respect the original algorithm previously described.
The modifications introduced are:

1. The global prediction σi is obtained calculating the weighted average of all
predictions (line 10);

2. we consider correct the predictions if the difference with the output feature
is less than a threshold τ (lines 5-6);

3. a new expert is created if the difference between the global prediction and
the output feature is less than a t factor (lines 17-18);

4. we introduce a window containing the last n instances wTS, which is used
to train the new experts upon creation (line 2).
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Table 1. Dynamic Weighted Majority algorithm for the regression task
for (each instance {−→x i, yi}) do1

update wTS(−→x i);2
for (each expert ej ) do3

λj =classify(ej,−→x i);4

if ( |λj
i

− yi| > tau ) then
5

wj = β ∗ wj ;6
end7

end8
normalize weights;9

σi= weighted average of the prediction of all the experts;10
if (p mod i = 0) then11

for (each expert ej ) do12
if (wj < θ) then13

delete expert;14
end15

end16

if ( |σi − yi| > t ) then17
create new expert and train using wTS;18

end19
end20
for (each expert ej ) do21

train(ej ,−→x i);22
end23

end24

5 MAENS*-II

The revised version of the algorithm adopting the rDWM as an AOS mechanism,
named MAENS*-II, is shown in the pseudocode included in table 2, where the
grey lines highlight the modifications over the MAENS* algorithm previously
introduced in section 2.2. Further information about MAENS* can be found in
[4]. A set of four (one for each crossover operator) rDWM instances are created
upon initialization of the algorithm (line 2). During each generation, one new
training example is created for each rDWM instance by using the current set
of FLA metrics as input features, and the reward associated to the operator

Table 2. MAENS*-II pseudocode
initialize a population pop of popsize individuals;1

initialize a set of four rDWMi instances and a set of rewards rwi (one for each crossover operator)2
while (termination condition not met) do3

choose the crossover operator opi with largest rwi4
generate a population popxof popsize∗offset individuals, choosing the parents from pop ∪ popx;5
generate popls(i) for each individual popx(i) with probability = 0.2;6
if (popls(i) is better than popx(i)) then7

overwrite popxi;8
end9

calculate aep, r, Δ(f) and the dm measures10
use d-Stochastic Ranking and overwrite pop;11
use the MAENS* CA approach to calculate the output feature outi for each opi;12

for each crossover operator opi do13

rwi = rDWMi([aep, r,Δ(f),dm,], outi)14
end15

end16
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Table 3. Parameters of the FLA-MAENS* algorithm
Name Description Value Name Description Value

psize population size 30 p expert removal period 5
ubtrial maximum attempts to generate a solution 50 β decrease factor for expert weights 0.75
opsize size of the offspring during each generation 6*psize τ expert weight reduction threshold 0.05
Pls probability of performing the local search 0.2 θ threshold for expert removal 0.05
pMS routes selected during MergeSplit 2 t threshold for expert creation 0.10

Gmax maximum generations 500
SRr1 probability of sorting solutions using diversity 0.25
SRr2 probability of sorting solutions using fitness 0.70

Table 4. Experimental results. The first two columns show the instance name (inst)
and the best known result (BK ). Further columns show the average fitness of the best
solution (avg), the standard deviation (std), the best solution (best) achieved by the
four different versions of the MAENS* algorithm. Instances in boldface show results
statistically significant between MAENS* and MAENS*-II with p < 0.05 according to
the Wilcoxon rank sum test. The avg row shows the average value of each column.
Bottom row shows the number of comparisons won (W), drawn (D), and lost (L) to
MAENS*-II in terms of average fitness of the best solution.

MAENS*-rw MAENS*-II MAENS* oracle

inst BK avg std best avg std best avg std best avg std best

C01 1590 1668.67 13.16 1660 1670.00 17.75 1660 1671.67 19.38 1660 1665.33 13.03 1660
C05 2410 2483.33 18.36 2470 2474.00 5.83 2470 2471.00 2.00 2470 2470.00 0.00 2470
C06 855 905.17 3.98 895 901.00 4.90 895 902.00 4.58 895 896.67 3.73 895
C09 1775 1840.33 20.41 1820 1824.00 10.12 1820 1830.00 16.73 1820 1829.00 15.08 1820
C10 2190 2277.33 11.53 2270 2275.17 9.53 2270 2272.17 6.54 2270 2270.67 3.59 2270
C11 1725 1832.00 27.37 1815 1817.33 2.49 1815 1816.33 3.14 1805 1815.17 2.41 1805
C18 2315 2407.17 6.91 2390 2402.76 9.27 2385 2403.67 7.74 2385 2401.17 7.82 2390
D01 725 734.83 8.99 725 742.17 5.11 725 742.83 4.02 725 739.50 6.87 725
D07 735 836.33 3.40 835 835.00 0.00 835 835.00 0.00 835 835.00 0.00 835
D08 615 692.00 4.58 685 687.67 4.42 685 685.67 2.49 685 685.67 2.49 685
D11 920 937.67 6.42 920 936.72 3.48 930 936.50 3.91 935 934.67 4.99 920
D21 695 818.67 11.47 810 814.00 4.16 805 814.83 5.24 805 810.17 3.98 805
D23 715 772.83 12.23 745 767.67 7.39 755 769.83 12.28 740 758.17 8.51 740
E01 1855 1941.00 6.11 1935 1936.50 2.93 1935 1936.17 2.11 1935 1935.50 1.50 1935
E09 2160 2266.33 25.26 2230 2249.17 21.64 2225 2252.00 21.16 2230 2250.83 21.26 2230
E11 1810 1878.00 25.68 1850 1858.00 15.03 1840 1857.00 13.52 1835 1853.83 7.71 1845
E12 1580 1741.00 17.63 1710 1722.50 14.59 1695 1717.33 13.15 1695 1719.50 11.50 1705
E15 1555 1608.67 5.91 1595 1604.33 5.59 1595 1602.50 6.68 1590 1599.50 6.24 1590
E19 1400 1444.67 1.80 1435 1442.00 4.58 1435 1442.67 4.23 1435 1438.33 4.71 1435
E21 1700 1707.67 2.49 1705 1708.10 2.39 1705 1708.00 2.45 1705 1705.67 1.70 1705
E23 1395 1440.50 7.34 1435 1435.50 1.98 1430 1435.50 1.50 1435 1434.00 2.00 1430
F01 1065 1071.43 2.54 1065 1072.59 3.32 1065 1071.83 2.73 1065 1069.50 3.73 1065
F04 930 954.67 5.31 940 954.00 4.16 940 953.67 3.64 940 951.17 3.80 940
F09 1145 1165.54 12.34 1145 1163.45 8.48 1145 1161.00 11.79 1145 1157.00 8.12 1145
F11 1015 1026.96 13.56 1015 1027.07 12.35 1015 1030.00 11.11 1015 1021.00 6.88 1015
F12 900 940.71 32.32 910 931.83 26.94 910 925.00 23.42 910 917.33 13.09 910
F14 1025 1035.83 13.17 1025 1034.50 11.86 1025 1037.33 12.23 1025 1033.00 13.52 1025
F19 685 737.67 8.73 725 732.50 9.64 725 735.17 9.35 725 726.67 3.73 725
F24 975 997.00 9.36 980 998.83 10.38 975 999.33 8.63 980 990.50 11.28 975
e1-B 4498 4509.17 11.68 4498 4504.79 10.42 4498 4501.20 8.33 4498 4502.60 8.50 4498
e2-B 6305 6329.83 13.35 6317 6323.86 9.41 6317 6323.67 9.58 6317 6320.37 6.36 6317
e4-A 6408 6464.07 5.39 6446 6463.83 5.07 6446 6462.50 3.04 6450 6462.77 2.58 6456
e4-B 8884 9023.47 16.23 8992 9021.10 17.84 8990 9022.50 16.39 8988 9011.20 11.79 8993
s1-B 6384 6407.30 19.35 6388 6397.59 12.70 6388 6399.90 16.38 6388 6399.70 14.50 6388
s2-A 9824 9943.43 32.78 9889 9934.80 29.49 9881 9931.63 26.62 9889 9928.37 27.01 9885
s2-B 12968 13217.13 44.41 13159 13171.41 29.10 13123 13179.07 26.11 13124 13179.20 29.61 13124
s2-C 16353 16516.03 46.02 16430 16505.83 51.89 16434 16510.10 43.05 16430 16498.00 41.64 16433
s3-A 10143 10293.87 29.07 10242 10290.67 25.78 10251 10282.63 29.41 10221 10276.50 26.39 10221
s3-B 13616 13874.37 59.29 13736 13821.50 47.04 13747 13820.13 57.75 13736 13823.37 60.51 13750
s3-C 17100 17325.90 46.56 17237 17309.87 37.46 17221 17289.73 42.75 17220 17296.10 33.42 17249
s4-A 12143 12403.37 47.36 12316 12388.59 41.42 12316 12400.87 47.91 12283 12382.93 41.71 12304
s4-B 16093 16454.30 42.73 16351 16437.60 54.52 16281 16421.17 50.46 16325 16414.67 47.18 16344

avg 4266.16 4355.38 17.91 4327.16 4347.37 14.58 4323.88 4346.69 14.60 4322.95 - - -

W D L W D L

6 0 36 18 2 20

as output feature (lines 10, 13-14). The set of four rDWM instances are then
used predict the reward of each operator (line 4). The algorithm adopts an
Instantaneous Reward mechanism to choose among the options, to limit the bias
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constituted by the performances of the operator in the previous generations and
facilitate, in this way, the tracking of the concept drift. All the experiments were
performed using the weka [12] implementation of REPTrees as base learners.

6 Experimental Studies

A set of experiments was designed to verify the behaviour of MAENS*-II. As
a first step, an oracle was implemented with the purpose of analysing a set of
CARP instances in order to obtain optimal crossover operator selection rates
and to exclude those instances where all the crossover operators achieve the
same results. The oracle can be briefly described as follows. Four different pop-
ulations are obtained during each generation by using each crossover operator.
All the individuals of the four generations are merged into a single population
which is sorted using the MAENS* ranking operator. The Credit Assignment
mechanism is therefore used to assess the best operator. The results achieved
by the oracle show that the predictions operated by the dMAB are not optimal,
as better results can be achieved. Besides, these results should be considered
“optimal” only when the MAENS* reward measure is considered, while they
might not be anymore when in presence of a set of multiple measures, as in the
case of MAENS*-II. The experiments were performed on instances taken from
the known benchmark test sets proposed in [7] and [3], named egl and C,D,E,F.
The analysis of the results achieved by the oracle allowed to identify a subset
of 42 instances. The set of parameters adopted in the MAENS*-II algorithm,
included in table 3, was identified with a series of test-and-trial attempts and
might not correspond to the most optimal one. All the values were obtained
by averaging the results of 30 independent runs and all the experiments are
performed on the instances selected from the two different datasets.

Effectiveness of the FLAMeasures (RQ1). A first experiment was designed
to understand whether the use of the online FLA techniques has a beneficial ef-
fect on both the optimization ability and the prediction capacity of the algorithm.
Therefore, the performances of the MAENS*-II were compared to that of a ver-
sion of the algorithm which only makes use of the original reward of MAENS* as
an input feature of the learning algorithm, named MAENS*-rw. In this context,
we are not interested in the results achieved by the algorithm but rather we want
to verify that the results are significantly different and prove, as a consequence, a
certain sensibility of the rDWM algorithm to the presence of the FLA measures.
The results are included in table 4 in columns MAENS*-rw and MAENS*-II. The
results have been tested for significance using theWilcoxon signed-rank test across
the problem instances, which confirmed that the two algorithms produce signifi-
cantly different results (respectivelyW = 26 with p < 0.05 and W = 54.5 sample
size: 42). The comparison of the average fitness shows thatMAENS*-rw produced
slightly better results in only 6 instances out of 42 and considerably worse ones
in all the rest. This can be interpreted as a signal that the rDWM is concretely
affected by the FLA measures, which influence (in a beneficial way) the decisions
made by the algorithm.
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(a) egl-s1-B: MAENS*-II
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(b) egl-s1-B: MAENS*
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(c) egl-s1-B: oracle
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(d) egl-s2-B: MAENS*-II
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(e) egl-s2-B: MAENS*
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(f) egl-s2-B: oracle

Fig. 1. Crossover operator selection rates on two CARP instances of MAENS* (first
column), MAENS*-II (central column) and the oracle (right column)

MAENS*-II vs MAENS* (RQ2). The second research question focuses on
the performance of the proposed approach with respect to the existing one.
Therefore, the MAENS*-II was tested against the MAENS* algorithm and the
oracle. A Wilcoxon signed-rank test performed on the dataset proved that the
differences between the results achieved by the two algorithms are not statisti-
cally significant (W = 375 with p > 0.05 and sample size: 40). The results are
similar also in terms of mean average fitness over all the instances, standard de-
viation and best solution. The online learning system is therefore able to achieve
results comparable to those achieved by the bandit solver. Despite this result, it
is possible to notice some significant differences between the results in some of
the instances. A Wilcoxon rank-sum test was performed on each couple of results
and 6 instances (highlighted in boldface in table 4) showed statistically signif-
icant results. A comparison of the selection rates of such instances is included
in figure 1. The ordinates axis in the figure refers to the selection rate of each
crossover operators, while the abscissas corresponds to the average fitness of the
population discretised into 50 intervals. We study, therefore, how the selection
rate of the four operator changes while the search is carried on and the average
fitness of the population decreases. In the first instance, egl-s1-B, it is possible
to notice three phases in the oracle prediction. A first phase where the GRX
operator is preferred over the others, an intermediate phase where the GRX and
GSBX operators have nearly equal selection rates and a last phase characterized
by a rise of the selection rate of the GRX operator which reaches 1 in the last
moments of the search. Both MAENS* and MAENS*-II award the GSBX oper-
ator with the highest selection rate for the whole search, missing the prediction
of the oracle. It is possible to see, however, how MAENS*-II increases the se-
lection rate of GSBX more rapidly than MAENS*. In the second instance, the
oracle clearly identifies a change in the environment halfway through the search.
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The concept drift is not detected by both MAENS* and MAENS*-II, which,
however shows an higher exploitation of the GSBX operator. The performance
of MAENS*-II instances suggests the hypothesis that despite the not enhanced
prediction ability, the availability of more than one measures has led to better
results in some instances, outperforming even the oracle, based only on the use
of the Credit Assignment system of MAENS*.

7 Conclusions and Future Work

In this work we proposed the adoption of a novel Adaptive Operator Selection
scheme to identify the optimal crossover operator. The AOS is tested against
the Multi Armed Bandit approach employed in the MAENS* algorithm for the
Capacitated Arc Routing Problem. The AOS proposed combines a set of four
Fitness Landscape Analysis measures in conjunction with the existing Credit
Assignment measure of MAENS* and an online learning algorithm, to predict
the most suitable crossover operator. The results achieved by MAENS*-II show
that this technique is able to compete with the state-of-the-art techniques and
can, in some cases, exploit the multiple measures to outperform the alternative
strategy. This work leaves space for interesting directions that can be explored,
such as the adoption of an Average or Extreme Reward strategy, the use of
different base learners or the combined use of this Credit Assignment strategy
with existing Operator Selection Rules and vice versa.
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Abstract. A state in time series can be referred as a certain signal pat-
tern occurring consistently for a long period of time. Learning such a
pattern can be useful in automatic identification of the time series state
for tasks like activity recognition. In this study we showcase the capa-
bility of our GP-based time series analysis method on learning different
types of states from multi-channel stream input. This evolutionary learn-
ing method can handle relatively complex scenarios using only raw inputs
requiring no features. The method performed very well on both artificial
time series and real world human activity data. It can be competitive
comparing with classical learning methods on features.

Keywords: Genetic Programming, Pattern Recognition, Time Series.

1 Introduction

Time series pattern refers to certain regularities in time series that may be of
user interests. There are in general two types of time series patterns. One is event
patterns which indicate the occurrence of an event, for example a heart beat on
EEG readings. Another type is patterns of states which indicate the time series
reading stabilizing during a relatively short period of time.

The main three differences between state or an event are that:

1. Occurrence: A state is usually a reflection of a stable condition, for example,
a person being standing or sitting. An event usually happens when transiting
from one condition to another, for example, a person sitting down (changing
from standing to sitting).

2. Data Characteristic: A state may show a certain form of repetition of seg-
ments over a time period, for example, a person can be in a walking state
with the repetition of leg movement. The data is often homogenous. On con-
trary, an event is heterogeneous along the time axis. Figure 1 demonstrates
the transition from standing to sitting. The 3 regions divided by 2 dotted
grey line show the subject be standing, sitting down and be sitting sequen-
tially. We can see that in both two states, the readings are similar but it is
not the case in transitions.

G. Dick et al. (Eds.): SEAL 2014, LNCS 8886, pp. 371–382, 2014.
© Springer International Publishing Switzerland 2014

http://www.rmit.edu.au/compsci
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3. Detection: The detection mechanism would be different as the occurrence of
an event can not be decided before the completion of the event while that is
not the case for detecting a state. An event usually has a certain duration
while a state may last indefinitely.

The boundary between state or an event are however subtle. As shown in
Fig 2, the short walking period is composed of 4 steps. Each step can be viewed
as an event. The repetition of such “step” events forms the a walking state.
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Fig. 1. A Person transiting from Standing to Sitting
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Fig. 2. Illustration of a walking state (4 steps)

A drawback of existing works on classifying time series patterns including
events and states is that they often require to know the pattern size in advance
[10, 8, 5, 6]. In case of state detection, the pattern size refers to the state length,
the minimum period that a state can be existing. 1 Such information is not

1 State length will be used with pattern size interchangeably through this paper.
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always available. Moreover, a suitable set of features has to be defined for each
particular task, which makes the solution usually domain-dependent. In addition,
a great number of techniques cannot work well on multi-channel time series.

Given the above complexity, a method that can automatically search the
state length and extract useful features is highly beneficial. In [12], Genetic
Programming (GP) has been shown its effectiveness in solving event detection
problem for raw, multi-channel time streams. We therefore propose to use this
GP based method for state detection problems. In particular, the three research
questions we are addressing in this paper are:

1. Is the GP-based event detection method applicable to state detection prob-
lems?

2. How does GP perform on a range of multivariate synthetic state detection
tasks?

3. How does GP perform when applied to real scenario e.g. Activity Recognition
tasks?

2 Related Work

There are mainly two categories of methods for classifying time series patterns:
1) Similarity-based techniques and 2) Features-based techniques. In the first
category, the class of a time series segment can be determined by its similarity
between segments from all classes. Nearest Neighbour, a typical distance-based
classifier is the most popular similarity-based time series classifier [10]. Another
popular choice is decision tree which uses similarity measure for the partition of
trees [8]. The key factor affecting the performance of such classifiers is the effec-
tiveness of that similarity measure [13]. The commonly used measures include
Euclidean Distance [7, 3] and Dynamic Time Warping (DTW) [1]. Similarity-
based methods assume that a time series pattern always appears similarly which
may not be true. Feature-based methods carry out classification based on time
series features. However feature extraction may be very time consuming and are
often highly problem-specific [5, 6, 9, 4, 2].

Methods of both categories mentioned above have to know the pattern size
beforehand and use it to define the window size for sampling segments. Our
approach is different as it does not require such information. Moreover, the
majority of aforementioned methods are designed for single channel time series.
Patterns over several parallel time series are very difficult to be captured by those
methods, because redundant or irrelevant channels have to be ruled out from
decision process and the dependencies between relevant channels are sometimes
complex. Our proposed method can handle multiple channel of time series.

3 A GP-Based State Detection Methodology

In this section, we present our methodology which is based on Genetic Pro-
gramming. The description mainly focuses on the function set which includes
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the window function, temporal difference function and multi-channel function.
These functions are internal nodes on a GP constructed program tree which
in this case a classifier. The higher classification accuracy the better fitness the
tree will receive.

3.1 Window Function

The Window Function defines the incoming sequential inputs, selects data points
inside the window, and applies the operations on the select data points. It takes
three parameters: i, temporal index and operation.

The first parameter (i.e. i) is the input of this function which samples a data
point at every time step. It keeps the subsequence of historical values of that
input in memory. The length of this subsequence is called “Window” function
size (denoted as S), which is manually adjustable. The reserved data points
are marked from the earliest point to the most recent one as t0, t1, ..., tS−1.
The value of S is set as 8 in this study. Greater values are not used so that the
evolved programs can be less complex for analysis. Moreover, this value does not
deteriorate the performance.

The second parameter is from terminal “temporal index” which returns an
random integer within the range of [1, 2S − 1]. First the integer is converted into
its binary form. In case that the binary is shorter than S and not sufficient to
mark all elements in the subsequence, it will be left padded with 0. For example,
assuming S is 8 and the parameter value is 5 then the binary string should
be 00000101, in which the first five 0s come from padding. This binary is then
mapped to the subsequence of time series data under the window. A bit with
“1” indicated the data point with the same index will be selected while a bit
with “0” will be discarded.

The third parameter (i.e. operation) is a randomly generated integer valued
from a range [1, 4]. Each value corresponds to one of the four operations: AVG,
STD, DIF and SKEWNESS. They are used for calculating the average, the stan-
dard deviation, the sum of absolute differences and the skewness of the selected
points under the window. The return value is the final output of the Window
Function.

3.2 Temporal-Difference Function

Temporal-Difference Function (noted as Temporal Diff ) is introduced to cap-
ture temporal change between adjacent points as it is obviously important for
identifying the occurrence of events.

It only takes one double value parameter i which defines the input. It stores the
value ti−1 which is one time stamp earlier and returns the difference between
ti−1 and the current value ti. It consequently can be considered to have an
effective window size of 2. Eventually, it calculates the first derivative of the
time series, as temporal changes can be more revealing. Higher order derivatives
can be achieved as well if this function is used iteratively.
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3.3 Multi-channel Function

The two functions mentioned earlier only handle the temporal dependence, that
is, they only work on a sequence along time axis by themselves. They can hardly
be aware of any relationship cross channels at a particular time point. Conse-
quently, a state occurring in multiple channels would not be captured by those
functions. To address this problem, Multi-Channel Function is introduced. The
function selects arbitrary collection of channels and computes characteristics
of these channels. It takes two integers as its parameters: channel index and
channel operation. No input parameter needs to be specified as the whole set
of channels are treated as input. The parameter channel index works in a simi-
lar way as to temporal index in the Window Function, except its range is from
1 to 2M − 1, where M is the total number of channels. So assuming the channel
number is 6 in total, a binary form of 13, 001101, would tell the function to
operate on the 3rd, the 4th and the 6th channels. The parameter for channel
operation also returns an integer from 1 to 4, which corresponds to the follow-
ing functions: median value which is the middle value of the selected variables
(MED), their average (AVG), their standard derivation (STD) and the distance
between the maximum and minimum values (RANGE).

The Window Function can be integrated with Multi-Channel Function by
taken the output of the latter as input data. Such combination enables GP to
find both temporal relationships and variable dependence simultaneously.

4 Synthetic State Detection

In this session, we introduce six synthetic data sets with increasing complex-
ity. They are used to verify the capability of the proposed method for states
detection. These data sets vary in the state size and the number of channels.

4.1 Single-Channel Time Series

In single-channel time series tasks, there is only one channel involved in the time
series. The time series data and the tasks are explained in following.

Box Functions. The task is to identify a state of signal at certain level. An
example is shown in Figure 4.1. The starting point and the end point of
a state are marked with red dots. It is the same in all other graphs in this
section. This stimulates voltage or temperature maintaining at a certain level
with minor fluctuations.

Oscillation. In a range of applications, constant oscillation may be viewed as
a certain state, such as vibration of a spring, which may indicate the normal
working condition of the spring. In this time series, a state is defined as
consecutive peaks of which the top value is above 180 and the bottom value
is bellow 10 (shown in Figure 4.1). Note that the state should last at least
for a period of p samples (p = 4) given each sample taking 12 time points.
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(a) An Example of Box Function
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(b) An Example of Oscillation

Fig. 3. Two Non-periodical Synthetic States

Sine Wave vs. Random Numbers. A state can be not just a constant value.
It can also be a regular signal. This task is to distinguish a signal being
generated through a periodical function versus at random. The regulated
signal is produced y = |100∗sin(x)| which is sampled at every π

30 . We define
the state size as 8. An example is given in Figure 4.1.

Sine Waves. The positive state is defined the same as last problem. The neg-
atives are however consisted of other sine waves, instead of random num-
bers. These variants are generated by several similar periodical function
y = |100 ∗ sin(x ∗ f)| (where f = 2, 3, 4, 5, 6), sampled at the same rate
as target function (shown if Figure 4.1). The aim is to investigate whether
our method can discriminate similar regularities. The state size is also set as
8 for this task.
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Fig. 4. Two Periodical Synthetic States
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4.2 Multi-channel Time Series

In the following two tasks, there are more than one channels in the time series.
The time series data and the tasks are explained in following.

Sine Wave in Two Channels. The sine wave is again y = 100 ∗ sin(x), sam-
pled at every π

7 . However, in this task, positives are only when time series
in both channels are sine waves. If one channel is random numbers the state
will be considered as negative. As shown in Figure 5, only the middle section
is considered positive.
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Fig. 5. An Example of Two-Channel Sine Waves

Box Functions in Four Out of Five Channels. The time series is in thepos-
itive state if there are more than four channels receiving signal value above 90
for at least 8 points. There is no constrain that at which channels the high read-
ing may occur.

5 Experiments and Results

GP was applied on the six synthetic tasks described in Section 4. For comparison
purposes five non-GP classifiers were also applied on those tasks, including OneR,
J48, Naive Bayes and IB1. In addition AdaBoost was used to combine multiple
classifiers as an ensemble to boost accuracy. For each task, the best conventional
classifier from the four was selected as the base classifier in AdaBoost. The
experimental settings for GP and Non-GP classifiers are shown in Section 5.1
and Section 5.2. The experimental results are presented in Section 5.3

5.1 The Experimental Settings for GP

The GP runtime parameter setting for synthetic data sets is: Population (300),
Generation (50), Maximum Depth (8), Minimum Depth (2), Mutation Rate (5),
Crossover Rate (85), Elitism Rate (10) andWindow Function Size (8). In activity
recognition task, a larger population size of 1000 and a greater Window Function
Size of 12 are used due to the complexity of the problem. Each run is repeated
10 times and the best run is taken as GP’s result.
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5.2 The Experimental Settings for Non-GP Classifiers

The time series streams are converted into a list of segments as inputs for non-
GP classifiers. For each tasks, the segments are extracted by a sliding window of
which the size equals to the state length. This ensures that each segment con-
tains sufficient amount of information while redundant information is eliminated.
The segments containing raw data can be used as inputs to classifiers directly.
We call such a segment raw input vector. Alternatively, a set of features can be
extracted based on each raw input vector and called feature set. We use both
types of inputs for non-GP classifiers. The processes of obtaining these inputs are
demonstrated in following by an example where the time series has 2 channels
and the pattern size is 3.

Raw Input Vector: A. A sliding window is moving through time series to
extract raw input vectors. For multi-channel time series, all the readings are
flattened into one row just like representing a matrix in a one-dimensional
array as shown in Figure 6.

Feature Set B: Wave Length. This feature is uniquely designed for sine func-
tions, which is calculated by equation

∑3
i=1 |ti − ti−1|. This features is not

effected by the phases of the sine wave. Therefore the feature at any time
point should have the identical feature values, hence a good feature for find-
ing a state of waves.

Feature Set C: Temporal Average and Variance. The feature setprovides
the average and standard deviation over the length of a pattern. So the size of
this feature set is the double of the number of channels.

Feature Set D: Channel Average. This feature takes averages calculations
on different points at each single channel. This feature set enumerate the
average value of all channels at each time point. The number of features
should be equal to the pattern size.

Table 1 summarizes, for each task, the state length, the numbers of attributes
in raw input vector, the type of feature set used in that task, and the numbers
of attributes in the feature set.

Stream Data  Converted Vectors 

( )   ( ) ( ), ( ), ( ), ( ), ( ), ( ) 

( )   ( ) ( ), ( ), ( ), ( ), ( ), ( ) 

( )   ( ) ( ), ( ), ( ), ( ), ( ), ( ) 

… … 

( )   ( ) ( ), ( ), ( ), ( ), ( ), ( ) 

Fig. 6. An Example showing converting a Two-Channel Time Series Stream To Raw
Data Vectors for Conventional Classifiers (Pattern Size: 3)
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Stream Data  Feature Vector B 

( )   ( ) |( ( ) - ( )) + ( ( ) - ( ))|, |( ( ) - ( )) + ( ( ) - ( )) | 

( )   ( ) |( ( ) - ( )) + ( ( ) - ( ))|, |( ( ) - ( )) + ( ( ) - ( )) | 

( )   ( ) |( ( ) - ( )) + ( ( ) - ( ))|, |( ( ) - ( )) + ( ( ) - ( )) | 

… … 

( )   ( ) |( ( ) - ( )) + ( ( ) - ( ))|, |( ( ) - ( )) + ( ( ) - ( ))| 

Fig. 7. Illustration of Extraction Feature Type B (Pattern Size: 3)

Stream Data  Feature Vector C 

( )   ( ) { ( ), ( ), ( )}, { ( ), ( ), ( )}, 
{ ( ), ( ), ( )}, { ( ), ( ), ( )}   

( )   ( ) { ( ), ( ), ( )}, { ( ), ( ), ( )}, 
{ ( ), ( ), ( )}, { ( ), ( ), ( )} 

( )   ( ) { ( ), ( ), ( )}, { ( ), ( ), ( )}, 
{ ( ), ( ), ( )}, { ( ), ( ), ( )} 

… … 

( )   ( ) { ( ), ( ), ( )}, { ( ), ( ), ( )}, 
{ ( ), ( ), ( )}, { ( ), ( ), ( )}   

Fig. 8. Illustration of Extraction Feature Type C (Pattern Size: 3)

Stream Data  Feature Vector D 

( )   ( ) { ( ), ( )}, { ( ), ( )}, { ( ), ( )} 

( )   ( ) { ( ), ( )}, { ( ), ( )}, { ( ), ( )} 

( )   ( ) { ( ), ( )}, { ( ), ( )}, { ( ), ( )} 

… … 

( )   ( ) { ( ), ( )}, { ( ), ( )}, { ( ), ( )} 

Fig. 9. Illustration of Extraction Feature Type D (Pattern Size: 3)

5.3 Experimental Results on Synthetic Tasks

Table 2 shown the results of 6 classifiers on six state detection tasks. All the
results are from test only. Considering the overall performance, GP outperformed
other classifiers. In particular, in Task 3 and 5, GP significantly outperformed
other counterparts. The performance gaps between GP and other classifiers are
not as wide as what we found in event detection.

Table 3 presents the results of conventional classifiers on pre-defined feature
sets B,C,D. The results from GP runs on raw data are also listed. Obviously
these well designed features can help the classifiers to achieve better results.
However the superior performance of GP can still be observed.
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Table 1. Training and Test Data of the Six Synthetic State Detection Tasks

Tasks Training Test
State
Size

Numbers of
Attributes

(No Features)
Feature Set

Numbers of
Attributes
(Features)

1. Box Functions 263:249 122:133 3 3 C 2
2. Oscillation 217:280 88:178 7 7 B 1
3. Sine Wave vs.
Random Numbers

279:150 112:133 8 8 B 1

4.Sine Waves 219:201 69:141 8 8 B 2
5. Sine Waves in
Two Channels

140:276 46:159 8 16 B 2

6. Box Functions
in Four out of
Five Channels

203:309 92:163 8 40 D 8

Table 2. Synthetic State Detection: Comparing GP with Non-GP Methods on Raw
Input Vector%

Tasks OneR J48 NB IB1 AdaBoost GP

1
92.09

TP: 98.4
TN: 86.3

100
TP: 100
TN: 100

100
TP: 100
TN: 100

100
TP: 100
TN: 100

100
TP: 100
TN: 100

100
TP : 100
TN : 100

2
59.84

TP: 63.7
TN: 56.8

98.46
TP: 99.1
TN: 97.9

90.73
TP: 100
TN: 83.6

99.23
TP: 100
TN: 98.6

99.23
TP: 100
TN: 98.6

100
TP : 100
TN : 100

3
56.3

TP: 92.9
TN: 23.8

91.18
TP: 100
TN: 83.3

61.76
TP: 74.1
TN: 50.8

92.86
TP: 100
TN: 86.5

91.18
TP: 100
TN: 83.3

99.58
TP : 99.11
TN : 100

4
66.5

TP: 65.2
TN: 67.2

96.55
TP: 100
TN: 94.8

66
TP: 82.6
TN: 57.5

98.52
TP: 100
TN: 97.8

97.04
TP: 100
TN: 95.5

98.52
TP: 100

TN: 97.76

5
65.15

TP : 100
TN : 54.6

87.88
TP : 56.5
TN : 97.4

82.83
TP : 100
TN : 77.6

74.75
TP : 0

TN : 97.4

85.86
TP : 43.5
TN : 98.7

100
TP: 100
TN: 100

6
74.6

TP: 51.1
TN: 88.5

96.77
TP: 97.8
TN: 96.2

90.73
TP: 79.3
TN: 97.4

99.19
TP: 100
TN: 98.7

97.18
TP: 98.9
TN: 96.2

100
TP : 100
TN : 100

The results shown in Table 2 and Table 3 demonstrate that GP has the
capability to extract features that can distinguish a state from the rest of time
series, even when a state pattern is relying in several channels. This is because
with the given functions and terminals, GP is able to combine and operate on
raw numeric values. This is actually an implicit feature construction process.

5.4 Experimental Results on a Real-world Task

To further evaluate the performance of our method, we tested it on a benchmark
data set [11] for mobile-based activity recognition 2, which includes 21-channel
sensory data collected from 5 subjects. There are four state detection tasks:
sitting, walking, running and lying flat. Note that the walking state includes dif-
ferent gaits, including going upstairs and going downstairs. A leave-one-person-
out validation is conducted in this study. That is, for each detection task, the

2 Data can be download at
http://yallara.cs.rmit.edu.au/~s3268719/AR/data.html

http://yallara.cs.rmit.edu.au/~s3268719/AR/data.html
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Table 3. Synthetic State Detection: Comparing GP with Non-GP Methods on Feature
Sets %

Tasks OneR J48 NB IB1 AdaBoost GP

1
100

TP: 100
TN:100

100
TP: 100
TN:100

100
TP: 100
TN:100

100
TP: 100
TN:100

100
TP: 100
TN:100

100
TP : 100
TN : 100

2
100

TP: 100
TN:100

100
TP: 100
TN:100

100
TP: 100
TN:100

100
TP: 100
TN:100

100
TP: 100
TN:100

100
TP : 100
TN : 100

3
100

TP: 100
TN: 100

100
TP: 100
TN: 100

99.58
TP: 74.1
TN: 99.2

100
TP: 100
TN: 100

100
TP: 100
TN: 100

A:99.58
TP: 99.11
TN: 100

4
93.6

TP: 100
TN: 90.3

98.52
TP: 100
TN: 97.8

91.13
TP: 100
TN: 86.6

98.52
TP: 100
TN: 97.8

98.52
TP: 100
TN: 97.8

98.52
TP: 100

TN: 97.76

5
77.78

TP: 100
TN: 71.1

98.99
TP: 100
TN: 98.7

100
TP: 100
TN: 100

99.49
TP: 100
TN: 99.3

100
TP: 100
TN: 100

100
TP: 100
TN: 100

6
87.1

TP: 93.5
TN: 83.3

98.79
TP: 97.8
TN: 99.4

100
TP: 100
TN: 100

100
TP: 100
TN: 100

100
TP: 100
TN: 100

100
TP : 100
TN : 100

Table 4. Leave-one-person-out: Accuracies, true Positive and true Negative rates
(trained and tested on data from the right front pant pocket)(%)

Sitting Walking Running Lying

Subject 1
91.5

TP: 100
TN: 90.1

93.7
TP: 97.5
TN: 88.5

99.7
TP: 96.9
TN: 99.9

99.6
TP: 99.2
TN: 99.6

Subject 2
97.1

TP: 79.8
TN: 99.3

94.1
TP: 96.9
TN: 87.5

99.5
TP: 94.2
TN: 99.7

97.7
TP: 98.2
TN: 97.7

Subject 3
88.7

TP: 93.4
TN: 88.1

91.2
TP: 97.8
TN: 83.6

86.0
TP: 90.3
TN: 83.3

99.6
TP: 96.4
TN: 99.9

Subject 4
95.9

TP: 94.3
TN: 96.3

93.4
TP: 95.4
TN: 91.6

96.4
TP: 94.0
TN: 96.6

98.1
TP: 94.7
TN: 98.6

Subject 5
98.5

TP: 96.3
TN: 98.9

91.0
TP: 91.2
TN: 91.0

96.0
TP: 97.5
TN: 95.7

99.7
TP: 99.1
TN: 99.8

classification is conducted for five times. For each time, the records from one
subjects are used for testing and the rest for training.

Table 4 shows the results from all four tasks on 5 subjects. Our method did
achieve consistently good accuracy over different scenarios of state detection.
These results show that GP can detect states not only from synthetic time
series but also in a complex, real-world scenario.

6 Conclusions

State and event are two main types of time series patterns. In this study, we
proposed a GP-based method for state detection from multi-channel time se-
ries. This method requires no manual feature extraction. Our experiments show
GP-based method can achieve significantly better results on raw inputs and
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competitive results when non-GP methods are provided with pre-defined fea-
tures. The good performance of the proposed method is consistent on a set of
synthetic problems as well as on real-world activity recognition problems. We
conclude that GP based time series classification method is suitable for state
detection.
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Abstract. Although it is possible to identify building blocks of knowl-
edge created by a learning classifier system in order to reuse them to solve
larger scale problems, a scaling limit was still reached in certain domains.
Furthermore, it was not possible to transfer functionality from one do-
main to another. Initial investigations have shown that it is possible and
practical to reuse learned rule sets as functions in very simple problems
in the same domain. The novel work here seeks to reuse learned knowl-
edge and functionality to scale to complex problems in the same domain
and to a related domain for the first time. The past work showed that
the reuse of knowledge through the adoption of code fragments, GP-like
sub-trees with a depth of at most two, into the XCS learning classifier
system framework could provide dividends in scaling; the technique made
it possible to solve until then intractable problems like the 135 bit mul-
tiplexer. The main contribution of this investigation is that a growing
set of learned functions reused in the inner nodes of a code fragment
tree can be beneficial. This is anticipated to lead to a reduced search
space and increased performance both in terms of instances needed to
solve a problem and classification accuracy. We show that through the
reuse of learned functionality at the root and leaf nodes of code fragment
trees, it is possible to solve complex problems such as the 18 bit hidden
multiplexer problem.

Keywords: Learning Classifier Systems, Learning, Hidden Multiplexer,
XCS, Code Fragments.

1 Introduction

Learning can be defined as,“the improvement of performance in some environ-
ment through the acquisition of knowledge resulting from experience in that
environment” [4]. The proposed work aims to show that by continually learn-
ing useful information in a domain, problems could be solved by reusing the
previously learned knowledge and relevant functionality.

G. Dick et al. (Eds.): SEAL 2014, LNCS 8886, pp. 383–394, 2014.
c© Springer International Publishing Switzerland 2014
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The hypothesis is that there exists a method for training a learning system
where useful patterns in a simple domain can be transferred to more complex
domains in order to benefit learning [9]. By presenting a learning agent with
problems in a domain the system should be able to learn smaller building blocks
which will help it to solve more complex problems in the same domain or in a
related domain. This is similar to the threshold concept in which human learning
progresses much more quickly after having learned certain crucial concepts [5].

Since their introduction by Holland 35 years ago, learning classifier systems
(LCS) have provided a beneficial platform on which to perform research about
learning [16]. Holland’s original design was the Michigan style LCS. This type of
agent evolves a population of cooperating classifiers that together constitute the
solution to the problem. The reason that the Michigan style LCS is appropriate
for this study is because the technique gathers sub-rules and combines them to
produce groups of rules that together represent the solution.

With the development of Wilson’s XCS, new improvements to the Michigan
technique made it the most popular learning classifier system to date. Some of
these improvements included a simpler architecture as well as new developments
in reinforcement learning [3]. In XCS the resulting rule sets in the solution to the
problem tend to be accurate and maximally general. Hence they encode much
of the environment information without having to list each specific rule.

The XCSCFC learning classifier system, which is an extension of XCS, is an
ideal tool for conducting this study because it is capable of learning building
blocks of information in the form of Code Fragments (CF). Code fragments
are GP-like sub-trees with a depth of at most two. The leaf nodes of the sub-
trees contain either features from the message string or previously discovered
code fragments. The condition can contain as many code fragments as there
are condition bits, however, it is also possible to have less and still solve the
problem. The first investigation involving code fragments was the introduction of
CFs to represent condition bits in a classifier rule; this was named code-fragment
conditions CFC [10]. In this approach the condition bit in a classifier was directly
replaced with a code fragment. Initially, there was a separate population of code
fragments used. Currently the code fragments are housed simply within the
rules [11], [It is now the aim to once again make use of a separate code fragment
population]. This means that the number of code fragments to be reused from a
particular level was governed by the unique code fragments in good classifiers.

According to [10], this investigation showed that the multiple genotypes to a
single phenotype issue in feature-rich encoding disabled the subsumption dele-
tion function. Further, the additional methods and increased search space also
led to much longer training times. However, this was compensated by the code
fragments containing useful knowledge; such as the importance of the address
bits in the multiplexer problems. Code fragments have enabled XCSCFC to solve
previously intractable problems, e.g. the 135 bit multiplexer problem, however,
it does not reuse information at the root nodes and this can lead to a limit in
scalability in certain domains.
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The proposed system XCSCF 2 is capable of reusing the previously learned
code fragments as well as any function rule-sets learned, see figure 1 for more
details. A rule-set can act as a function as it maps inputs (encoded as conditions)
to outputs (actions dependent on the input). For example, the system could be
trained sequentially with the boolean operators NAND, OR, AND, XOR, and
NOR. By the time this training is complete the system will have a cache of
learned function rule-sets as well as the code fragments that will have been
learned. During any subsequent runs the system can make use of these learned
function rule-sets along with their associated code fragments. To the system,
these two components constitute one object in the form of a function. During
subsequent runs the code fragments get reused at the leaf (terminal) nodes,
while the functions get reused at the root (inner) nodes. It must be clarified
that any code fragments branching from any of the root nodes would have been
created from the group of code fragments associated with the function. This
provides a tight linkage between the available rule-sets and their corresponding
code fragments. This is anticipated to produce an increase in scalability and
should enable the solution of problems in related domains [3].

TerminalCode Fragment

FunctionF1

T1CF1

Learned code 
fragment is reused 

in new problem

Learned rule-set is 

reused as a 
function in new 

problem

Code 
fragment R ule Set

0 0 : 0
1 # :1
# 1 : 1

Fig. 1. Code fragment and rule set reuse - adapted from [3]

The technique will be tested against problems from the boolean domains such
as the boolean operators: NAND, AND, OR, XOR, NOR, even parity, odd parity,
multiplexer, and hierarchical multiplexer (hidden multiplexer). These domains
were chosen because they are complex domains having a large number of relevant
features, and epistatic properties [13],[15].
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The long term goals are as follows:

∗ Determine the feasibility of reusing rule-sets as functions.
∗ Determine if learned knowledge can be transferred to a related domain.

The specific research objectives here are as follows:

∗ Determine if learned rule sets can provide scalability.
∗ Compare performance overhead or degradation on benchmark problems with

equivalent techniques.

The benefit of the research presented here is that it explores alternative train-
ing paths in order to discover potential threshold functions from one domain,
which may be used to solve problems in a different but related domain.

2 Background

A learning classifier system (LCS) is an evolutionary system first proposed by
Holland in 1976 [12]. It was originally composed of four main modules: a set
of resource reservoirs, a detector array, a classifier array, and an effector array.
The classifiers are composed of two parts: the input side and the output side.
These are currently known as the condition and the action part of a classifier. The
classifiers would evolve over time with the goal of providing a suitable solution
to the problem [12].

LCSs are a good method for solving problems because they produce a solution
composed of classifiers. Each classifier represents a portion of the solution. The
final classifiers tend to be a set of maximally general and accurate classifiers that
are easily interpretable by a human.

XCS presents numerous benefits for the research community such as: provid-
ing maximally general, accurate rules, and a human readable output. The fitness
of the individuals is gauged on how accurately they can predict their reward and
not the reward itself. This, along with niche mutation ensures that the solution
will be as general as possible while maintaining its accuracy. XCS also introduced
the notion of numerosity and subsumption deletion. Numerosity measures the
number of copies of a particular classifier in the population. when a new classifier
is created, if it already exists in the population, it is not added to the popula-
tion but the numerosity parameter of the existing classifier or macroclassifier
is increased by one. This has computational benefits because less classifiers are
processed [14]. It also dampens performance in terms of deletion effects. Sub-
sumption deletion takes place during the explore phase and consists of deleting
overly specific classifiers by more general ones. This has the benefit of reducing
the number of classifiers in the final population [10].

In spite of the aforementioned benefits, XCS contains certain limitations in
terms of scalability. One interesting characteristic of the XCS technique is the
cover and delete cycle. During this phase it is possible to register a recurring
cycle of covering and deletion during the match set creation. This is due to the
fact that the system lacks the resources or individuals to successfully cover all
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of the actions without losing valuable individuals during the delete phase. This
tends to occur when the maximum population size has been set too low [15].

The hierarchical multiplexer (hidden multiplexer) is a problem in which XCS
exhibits the cover and delete cycle. The hidden multiplexer requires effective
building block processing because they are designed in a two level hierarchy.
The lower-level is evaluated by one set of boolean functions and the output of
the lower-level is then fed as input to the higher level. In this novel work the 3
bit parity problems form the lower-level while the 6 bit multiplexer forms the
higher level of the problem giving 18 bits in total. According to Butz, the XCS
system was unable to solve the 18 bit hidden multiplexer problem with uniform
crossover. The reason is that XCS is unable to process the lower level building
blocks but merely disrupts them [15].

Another type of limitation in XCS is a direct result of the ternary alphabet
used for representing the condition in the classifiers. The tight location corre-
spondence between condition bits and the message string render XCS unable
to capture repeated abstracted patterns in problems. As a consequence it was
unable to solve certain problems like the 135 bit multiplexer without graduated
rewards.

XCSCFC used CFs instead of ternary bits in the condition of classifiers, which
created a store of knowledge reusable in the future problems of the same type.
However, the inner nodes of the CF tree used predefined functions, which re-
quired human knowledge, this did not address repeated patterns in the data and
still encountered a scaling limit.

XCSCFC has made it possible to solve previously intractable problems such
as the 135 bit multiplexer. Its other siblings have also facilitated interesting
solutions. For example, XCSCFA replaced the action part of the classifier with a
code fragment while keeping the ternary alphabet in the condition part [10]. This
tends to produce sets of rules where the optimal and sub-optimal classifiers are
grouped separately, making it easier to extract the optimal classifiers. Another
technique is XCSSMA, in which the static binary action is replaced by a Moore
state machine while retaining the ternary alphabet in the condition of a classifier
rule. This helped to discover repeated abstracted patterns in the data. The
XCSSMA technique produced compact, easily understandable solutions for any
n-bits even-parity problem. It also produced compact, easily understandable,
and general solutions for any n+n carry problem [13].

In spite of having benefits, XCSCFC contains certain limitations as well. The
fact that learned code fragments can only be reused at the leaf nodes means
that at some point the system will be incapable of solving a large problem in a
reasonable amount of time. More importantly, the functions are hard coded and
once the run ends the rule-sets learned are forgotten prior to the next problem.

The XCS with code fragment functions, XCSCF 2, is based on the XCSCFC
and aims to overcome the limitation mentioned above. Unlike XCSCFC where
the inner nodes make use of predefined functions, which are chosen at random
when the code fragment is created, XCSCF 2 opts to learn new functions online
and catalogs them along with their rule-sets and their associated code fragments.
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This newly learned functionality is then available when the next problem is pro-
cessed. It is expected that this methodology will provide dividends in increased
scalability as well as facilitating the transfer of building blocks of knowledge to
related domains.

3 The Method

The domain used in the final experiments will be the hidden multiplexer problem.
As solutions can be comprised of boolean functions it is at least feasible to learn,
albeit a complex task [8]. They are also difficult to solve due to their two-stage
nature, non-redundant features and high epistasis; and have commonly been
used in this type of experimentation.

The first step is to determine the initial functions that the system should be
given, e.g. the atomic knowledge from which to build. The more of these that
are included, the more domain bias is also included without the ability to learn
the linkage between functions and discovered building blocks. For example, for
boolean domains, NAND gates are building blocks with which it is possible to
build other gates such as the OR, AND or XOR [1], [2], [3].

The system was initially trained with the NAND function, in order to produce
the relevant rule set and the associated code fragments. Once this phase was
successful, the system had accumulated a population of rules that would replicate
the NAND function. The next step was to have the system learn the OR function
by using the rules belonging to the NAND function. At the end of this new
run, there existed the additional OR function as a rules set and also a set of
code fragments. The process then proceeded to learn the AND, XOR and NOR
functions in a similar manner. This work builds on the system after it has learned
the base boolean functions with associated code fragments (relevant building
blocks of knowledge for these functions). Thus the system addresses the hidden
multiplexer problem with a readily available cache of functions along with their
rules sets and Code Fragments [3]. The next stage consists of three branches,
see figure 2 for more details. The parity branch continues to learn the 2-bit even
parity, 2-bit odd parity, 3-bit even parity, and the 3-bit odd parity problems, in
that order. Once this phase was completed the system attempts to learn the 18
bit hidden multiplexer. The second branch also consists of learning the boolean
operators, the parity problems but then included the 6 bit multiplexer problem.
At that point the system was given the 18 bit hidden multiplexer problem. The
third, and last, branch consists of learning the boolean operators as mentioned
above and then first learning the 6 bit multiplexer problem prior to the 18 bit
hidden multiplexer problem.

Moreover all of the systems utilized two-point crossover for the rule discovery
since according to Butz uniform crossover tends to have deleterious effects on the
population and XCS is unable to solve the 18 bit hidden multiplexer problem.
This is because XCS is not able to process the lower level building blocks, but
rather disrupts them. However if two point cossover is used, XCS is able to learn
the 18 bit hidden multiplexer [15].
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Fig. 2. Training flow of learned functions for the system.

4 Results

4.1 Experimental Setup

The experiments were run 30 times and compared with an XCSCFC and a
standard XCS System. The XCSCFC system was chosen because it is the state
of the art with respect to multiplexer problems. XCS is the standard benchmark
algorithm in the field and therefore was an obvious choice for the role of the
control in the experiments. The settings for the single step experiments were
as follows: Payoff 1,000; the learning rate β = 0.2; the Probability of applying
crossover to an offspring χ = 0.8; the probability of using a don’t care symbol
when covering Pdon′tCare = 0.33; the experience required for a classifier to be
a subsumer Θsub = 20; the initial fitness value when generating a new classifier
FI = 0.01; the fraction of classifiers participating in a tournament from an action
set 0.4.

4.2 Boolean Problems

Boolean-Parity. The first problem presented to the system was the NAND op-
erator. This process continued next to learning the OR, AND, XOR and NOR
operators in a serial manner. By this time the system had recorded this small
set of learned functions. The population sizes for the boolean and parity op-
erators were much larger than the ones for the 6 multiplexer as they had to
be increased to provide enough resources for the system to solve the problem.
During this phase the system was experiencing the cover and delete cycle.

The following problems addressed by the system were the 2-bit even parity,
2-bit odd parity, 3-bit even parity, and then the 3-bit odd parity problems.
Once these experiments had completed, the systems addressed the 18 bit hidden
multiplexer.
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The population sizes used for these functions as well as the number of training
instances used for the XCSCF 2 are listed in table 1:

Table 1. Number of classifiers and training instances for XCSCF 2

Boolean Classifiers Instances Branch 1 Branch 2 Branch 3

NAND 1,000 700,000 � � �

OR 2,000 700,000 � � �

AND 2,000 700,000 � � �

XOR 2,000 800,000 � � �

NOR 2,000 900,000 � � �

2-Bit Even Parity 2,000 900,000 � � �

2-Bit Odd Parity 2,000 1,000,000 � � �

3-Bit Even Parity 2,000 1,100,000 � � �

3-Bit Odd Parity 2,000 1,200,000 � � �

6 Mux 500 500,000 � � �

Hidden Multiplexer Problems. The population size for XCS was twice as
much as for the other two systems (table 2 depicts the number of classifiers used
in the populations as well as the different training sizes for each of the systems).
The reason for this is because it was suggested in the equation by Butz [15], that
the optimal population size should be large for XCS. Our experiments utilized
a very conservative number for the population of the XCS. According to Butz,
in the k-parity-ḱ-multiplexer combination, effectively the optimal population is
of size:

|[O]| = 2(2k(k
′+1)) . (1)

XCSCF 2 was able to learn the 18 bit hidden multiplexer in all three branches
of the experimentation, however, according to table 3, it took up to approxi-
mately 31 hrs mostly due to matching rule-sets in the learned functions to the
inputs being provided by the leaf nodes in the code fragment trees. It is theo-
rized that this was due to the fact that while learning the new function rules, the
system performs sub-sampling and more importantly, the system must code all
of the possible inputs for each function. Although XCSCF 2 was able to solve
the hidden multiplexer problems utilizing less training instances than both of
the other systems, this limitation must be overcome for the system to exhibit
much greater scalability than is currently achievable by XCSCFC.

Figure 3 shows the results for the 18-bit hidden multiplexer experiments using
just the boolean and parity learned functions. According to the graphs, the
XCSCF 2 system was able to solve the problem with approximately 300,000
instances while the XCSCFC system achieved this with approximately 2,400,000
instances. The XCS system converged with approximately 800,000 instances. An
explanation for this performance difference is the fact that the XCSCF 2 system
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Table 2. Number of classifiers and training instances for XCSCF 2, XCSCFC, and
XCS

System Problem Classifiers Instances

XCSCF 2 18 Bit Hidden Multiplexer 50,000 6,000,000

XCSCFC 18 Bit Hidden Multiplexer 50,000 6,000,000

XCS 18 Bit Hidden Multiplexer 100,000 6,000,000
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Fig. 3. 18-bit Hidden Multiplexer problem. (boolean, parity)

Table 3. Time taken for XCS, XCSCFC, and XCSCF 2

System XCS XCSCFC XCSCF 2

Time Taken 8 hrs +/- 45 min 13 hrs +/- 18 min 30 hrs +/- 57 min

had a tool-set of learned functions by this time; the NAND, OR, AND, XOR,
NOR, 2-bit Even Parity, 2-bit Odd Parity, 3-bit Even Parity, and the 3-bit Odd
Parity functions, while the XCSCFC only had five hard coded boolean functions.
The XCS system required less instances to solve the problem than the XCSCFC
system and this can be attributed to the fact that the XCSCFC system did not
have any previously learned code fragments at this time; it had not encountered
a hidden multiplexer problem previously.

Figure 4 shows the results for the 18-bit hidden multiplexer experiments for
the XCSCF 2 system using all three training branches. According to the graphs,
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there exists a marginal advantage to using the parity functions as opposed to
using a combination of parity and 6 multiplexer. The former branch converged at
approximately 300,00 instances and the later at approximately 320,000 training
instances. This difference in performance is even more stark when compared to
the branch that uses only the boolean operators and the 6 multiplexer. In this
case the system converged at approximately 750,000 instances.

5 Discussion

Some of the results were as hypothesized. For example, it was likely that the
XCSCF 2 system would do well in terms of instances needed. The differences in
performance between the other two systems and XCSCF 2, however, were more
exaggerated than anticipated; it required eight fold less iterations than XC-
SCFC. The results show that XCS also outperformed XCSCFC, which was not
an expected outcome. It is hypothesized that the fact that the system counted
on only five hard-coded functions means that it lacked certain building blocks
exhibited by XCSCF 2. Also, XCSCFC utilized the NOT operator as opposed
to XCSCF 2 which was trained with the XOR operator instead. It has been
shown in informal experiments that the XOR operator has certain benefits in
helping XCS converge with less problem instances. The better than expected
performance by XCSCF 2 could be attributed to the fact that by the time the
system attempted the problem, it had accumulated a number of useful function
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rule-sets along with code fragments. It is hypothesized that upon arriving at an
optimal solution for a problem using XCSCF 2, the newly discovered functional-
ity could be used to seed the XCS or XCSCFC to help them arrive at a solution
as well.

The results emphasize the fact that certain learned functions contain more
useful building blocks than others. For instance, figure 4 clearly shows a degra-
dation in performance when the parity functions are not utilized. Moreover, it
is possible that by training the system with the 6 bit multiplexer, one is intro-
ducing possibly irrelevant building blocks for the combined problem. It is also
important to take notice that the 6 bit multiplexer learned function would con-
tain more inputs than any of the other functions being used. This could have had
an impact in the number of instances needed to converge as the system would
have been dealing with larger building blocks than if it had been using the other
functions.

Due to the inherent nature of each of the systems, a different amount of
domain knowledge is included a priori. The XCS system has no functions that it
can use, the XCSCFC has user defined functions while XCSCF 2 has the ability
to learn new functions based on the problems given to it by the user. The latter
is a more flexible approach at the cost of the larger search space and training
times.

The goal was to compare the new work with established benchmarks such
as XCS and XCSCFC. Keeping this in mind, the system parameters such as
payoff, learning rate and mutation rate were kept the same for all the systems.
However, the setting for maxPopSize in XCS was doubled from the setting for
both: XCSCFC and XCSCF 2. The reason behind this is because XCS would
have difficulty in solving this type of problem otherwise [15].

6 Conclusions

The results show that learning the building blocks from the boolean and parity
problems did translate into improved scalability for solving the 18 bit hidden
multiplexer problem. There is also an indication that omitting the parity prob-
lems can lead to a greater number of training instances needed in order to solve
the problem. It has been shown that learning rule-sets can provide scalability in
the same and related domain for a complete boolean task.

7 Future Work

Future work will involve testing on larger problem domains and scaling within
the hidden multiplexer problem as well as the sensitivity analysis with parameter
settings like payoff and learning rate.
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Abstract. Post training rule set pruning techniques are amongst one of
the approaches to improve model comprehensibility in learning classifier
systems which commonly suffer from population bloating in real-valued
classification tasks. In an earlier work we introduced the term signatures
for accurate and maximally general rules evolved by the learning clas-
sifier systems. A framework for online extraction of signatures using a
supervised classifier system was presented that allowed identification and
retrieval of signatures adaptively as soon as they are discovered. This pa-
per focuses on the analysis of theoretical bounds for learning signatures
using existing theory and the performance of the proposed algorithm in
noisy environments using benchmark synthetic data sets. The empiri-
cal results with the noisy data show that the mechanisms introduced to
adapt system parameters enable signature extraction algorithm to cope
with significant levels of noise.

Keywords: Learning Classifier Systems, LCS, UCS, Online rule reduc-
tion, Signature based LCS, Noise, Adaptive control.

1 Introduction

Learning classifier systems (LCS) [11] are leading rule-based evolutionary ma-
chine learning techniques. Accuracy based Michigan style LCS in general evolve
a single population of rules using a niche GA. The fitness of individual rules is
based on their accuracy which in supervised classification context is a simple
measure of the number of correctly classified instances covered by a particular
rule. Population bloating leading to inferior system performance, in terms of
model size and accuracy, in real-valued classification tasks is a common problem
in these systems. One of the main approaches explored to mitigate this issue in
LCS are the rule set reduction techniques which aim to prune post training rule
sets in order to find the smallest subset of rules without compromising system
performance. A number of rule set reduction techniques for LCS, specifically
Michigan style LCS, have been introduced by researchers over the years. The
focus of most of these algorithms is to find a subset of the post training rule
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population that performs equivalent to the actual population on the training
set [12][6][5][13][10].

Many recent data mining applications [7], however, require dealing with data
as it arrives such as network intrusion and fraud detection, web and network
management, etc. These data streams are often time varying in nature and a
data instance once processed is considered virtually lost because the unprece-
dented amount of data makes it impractical to either fully store or visit it mul-
tiple times. Due to the reliance on post training processing, such techniques are
thus not well suited for online rule reduction which may be necessary for such
applications. Earlier, in [9][8], the authors introduced a framework to extract
accurate and maximally general rules, referred to as signatures, from Michigan
style LCS. The framework allows extracting the best rules learnt by the under-
lying LCS dynamically, that is during the online learning as soon as they are
discovered by LCS, and adaptively, that is the reduced model is updated as bet-
ter signatures are learnt and existing signatures deteriorate. Experiments with
the binary multiplexer problem showed that the algorithm successfully retrieved
all maximally general classifiers in real time and provided a mechanism for early
stopping of the learning process. Further, it was found that for continuous-valued
feature spaces, realizing the precise decision boundaries is difficult. A modified
subsumption operator was presented to achieve minimality and reduce partial
overlapping in the signatures set. Experiments with a 2-dimensional real-valued
checkerboard problem showed that the algorithm was able to retrieve near opti-
mal decision boundaries with the help of a modified subsumption operator. The
signature extraction system was implemented on top of UCS – a Michigan style
LCS designed specifically for supervised classification tasks – and it reduced
the processing time of UCS by more than 50%.

This paper focuses on the analysis of theoretical bounds for learning signa-
tures using existing theory and the performance of the proposed algorithm in
noisy environments using benchmark binary class checkerboard problem. The
empirical results with the noisy data show that the mechanisms introduced to
adapt system parameters enable signature extraction algorithm to cope with
significant levels of noise.

The rest of the paper is organized as follows: A brief overview of the online rule
reduction or signature extraction system is provided in Section 2. The analysis
of theoretical bounds for learning signatures is provided in Section 3. In Section
4 we analyze the performance of UCS and the signature extraction algorithm in
noisy environments and the paper is concluded in Section 5.

2 Online Signature Extraction System

The online signature extraction algorithm is implemented on top of an LCS.
Its aim is to automatically detect the presence of optimal classifiers as they
are discovered by an LCS and terminate the search process as soon as a complete
maximally general solution is found. Figure 1 shows a block diagram of the
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proposed online signature extraction system using UCS [2]. For ease this system
is referred to as UCSSE denoting a UCS with online Signature Extraction. A
summary of UCSSE operation is provided below.

Fig. 1. UCS with Real time Signature Extraction System (UCSSE)

In Figure 1, Signatures (or a signature set referred as [S]) is essentially a sub-
set of [P ] (rule population in underlying UCS) and consists of optimal classifiers
extracted during the operation of UCS. An input from the environment is first
presented to [S] whereby a matchset [M ] is generated using the current input
label and the accuracy of those signatures participating in [M ] are updated sim-
ilar to UCS. The discovery component of UCS, i.e. the GA, however is bypassed
when the system is run through [S]. Thus, signatures do not preserve their nu-
merosity, fitness and nichesize parameters that they used to have in UCS. The
input is escalated to UCS only if no match is available in [S], in which case a
standard UCS takes over and runs its performance and discovery components
using [P ] for a certain number of trials.

Meanwhile, the extraction process of accurate and experienced classifiers from
[P ] to [S] is triggered in parallel periodically. Initially, [S] is empty and the
system runs mainly through [P ] getting enough exploration opportunities. The
operation is shifted gradually to [S] as it starts getting populated. The transition
completes when the system discovers the best map of the input space. This can
be determined simply by measuring the percentage of input instances handled
through [S]. For non-noisy test problems, a complete transition occurs when
100% of input instances are correctly classified by rules in [S], at which point
the evolutionary search is completely halted and the system is made to run from
[S]. A pruning step in [S] is carried out when the average experience of the
signatures in [S] reaches a threshold. In the pruning step, the signatures that
are inaccurate and have a below average experience are deleted from [S]. If the
deletion causes a covering gap, control is handed back to [P ] and the process is
repeated until the system stabilizes to run from [S] at which point the learning
process can be stopped.



398 K. Shafi and H.A. Abbass

A description of different parameters used in the online signature extraction
algorithm is provided below. For further details interested readers are referred
to [9][8].

– N[P ]: Number of standard UCS explore trials since the last extraction step.
– Text : Number of time steps since the last extraction step.
– Topt: Minimum number of time steps for which control is switched to UCS

when a [M ] through [S] is found empty.
– θxacc, θxexp: The accuracy and experience thresholds for extracting a signa-

ture to [S].
– C: A constant positive integer used in controlling the deletion experience

threshold in [S]. Deletion in [S] occurs when the average set experience
exceeds C.θxexp.

– θdacc, θdexp: The accuracy and experience thresholds for deleting a signature
from [S].

3 Analysis of Signature Learning Bounds

The essence of the signature extraction algorithm is based on the assumption
that an LCS (XCS or UCS in particular) is able to evolve optimal rules during its
search process and that these optimal rules or signatures can be extracted from
the population successfully. This obviously requires a careful choice for when
an extraction needs to occur. The second important decision in the signature
extraction system is that of switching from [P ] to [S] and back; that is, to decide
how much search opportunities should be given to LCS that will be enough to
evolve an optimal representation of the problem. Both of these decisions can be
controlled by the Topt parameter in UCSSE. To reiterate, Topt corresponds to
the number of time steps the control is switched to the normal UCS when the
match set [M ] formed out of [S] is found empty.

Topt attempts to find a balance between providing enough exploration oppor-
tunities to the classifier system using [P ] and switching back to [S] as soon as the
signatures are discovered. Ideally, we wish to run the search process using [P ] for
the entire duration of finding at least one optimal classifier before carrying out
an extraction process and switching back to [S]. Hence Topt can be formulated
as a sum of the expected time to discover an optimal classifier and the expected
time it will be evaluated θxexp times (the experience thresholds for extracting a
signature to [S]).

Butz et al. provided a time bound for finding an optimal classifier by XCS
using a domino convergence model [3]. They showed that learning time in XCS
scales polynomially in problem length and exponentially in problem complexity.
Since the evolutionary dynamics – the basis for time bound computation – in
both XCS and UCS are similar we argue that the same bounds can be applied
to both systems. Further UCS has generally shown to converge faster than XCS
thus the bounds only provide an upper bound for UCS. Using insights from Butz
et al., we derive the bounds for Topt as follows:
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Given that

Topt = E(Time to generate an optimal classifier)+

E(Time to evaluate an optimal classifier θxexp times)
(1)

From [3], for an equally probable input distribution, the time bound to generate
an optimal classifier is given by

E(Time to generate an optimal classifier)

=
1

P (generation of an optimal classifier)
<

n2o+s([P ])l

μ(1− μ)l−1

(2)

where n is the number of classes, o is the schema order, s([P ]) is the average
specificity of the population, l is the length of the string and μ is the mutation
rate.

Considering an equally probable distribution, the expected time that this
classifier will match an input θxexp times is given by:

E(Time to match θxexp times)

=
1

P (matching an input by the optimal classifier θxexp times)

=
N

N/2o
.θxexp = 2oθxexp

(3)

where N is the total number of instances in the feature space.
Substituting Equation 3 and the adjusted time bound ( O(l2o+n) ) for gener-

ating an optimal classifier from [3] in Equation 4, the expected time to generate
an optimal classifier becomes:

E(Time to generate an optimal classifier)

<
n2o+s([P ])l

μ(1− μ)l−1
+ 2oθxexp < l2o+n + 2oθxexp

= γ(l2o+n + 2oθxexp)

(4)

where γ is a constant between 0 and 1.
To test the validity of the above expression we experimented with the binary

multiplexer problem of length 6, 11, 20 and 37. The theoretical values of Topt

can be calculated by substituting the values of l and o in Equation 4 for each
of the above mentioned lengths of multiplexer and keeping γ=1. This gives us
values of 352, 1024, 3200 and 10752 for 6, 11, 20 and 37 bit multiplexer problems
respectively. The experimental values are obtained by recording the actual time
when a member of the best action map (BAM) [2] is found with an experience
equal to θxexp (set to 20 for these experiments) for different lengths of multiplexer
problems.
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Fig. 2. Theoretical and experimental bounds for Topt in the binary multiplexer problem

Figure 2 shows a comparison between the theoretical and empirical bounds.
Both curves show a similar increasing trend, although the difference between the
two bounds increases with the increase in the number of bits to be specified or the
schema order. This is somewhat expected. In contrast to the theoretical bound
which is derived assuming same parameter values for all lengths, we are using
larger population sizes and P# values for higher length multiplexer. The value
of Topt can be tuned using γ. A value of γ closer to 1 could delay the extraction
process and thus increase the processing time. On the other hand, a value closer
to 0 could lead to early switching to [S] thereby losing important exploration
opportunities to discover optimal rules.

For binary multiplexer problem, it was shown in [9] that using a value of 0.65
for γ, UCSSE was able to retrieve all optimal classifiers in real time as they are
discovered. The system also switches completely to [S] based operation and is
able to reduce the processing time by more than 50%.

4 Signature Extraction in Noisy Environments

From a classification viewpoint noise refers to the distortion or error in attribute
values or in the classification signs, i.e., the class of a data instance. In the pres-
ence of noise or imbalance class distribution in the training data, the accuracy of
a classification algorithm is expected to drop. In addition, it is often not possible
to determine a priori the best possible accuracy that a classification algorithm
can achieve on a real world data set. For these reasons, setting the extraction
and deletion thresholds (see Section 2) manually in UCSSE is not an appropriate
strategy for effective signature extraction in such environments. In this section
we first discuss the techniques used for online adaptation of these parameters
and then show the results of experiments run under noisy problem domain.
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Fig. 3. Adaptive control for extraction and deletion thresholds in UCSSE

The block diagram of UCSSE control scheme for online adaptation of ex-
traction and deletion accuracies is shown in Figure 3. Here, in control-theoretic
terminology, e refers to the setpoint error and is computed as the difference
between the desired control value and the actual output value (feedback). In
our case, the control value refers to the percentage of inputs handled through
signatures, which is ideally 100%. In other words, the extraction and deletion
thresholds are adjusted based on the load on signatures. The basic idea is to
keep the thresholds low when not many signatures can be supplied by UCS and
increase them to appropriate levels when enough signatures are available. First
let us look at the adaptation of accuracy thresholds (i.e. θxacc, θdacc). A simple
procedure to adapt the extraction accuracy is given in Algorithm 1:

Algorithm 1. Update Extraction Accuracy

1: θxacc ← ACC0
2: for each Class c do
3: Δ = GetSupplyAccuracy(c)
4: if Δ > [S]c.accuracy then
5: θxacc[c] = Δ
6: end if
7: end for

At each extraction step the update procedure searches for the most accurate rule
in [P ] which has enough experience (> θxexp) to be extracted as a signature. If
this accuracy value (referred to as SupplyAccuracy) is higher than the average
accuracy in [S] then θxacc is adjusted to the new value. Notice that the accuracy
for each class is computed independently. This allows the system to handle vary-
ing levels of noise in different classes. Similarly, the deletion accuracy threshold
θdacc is adjusted at each deletion step as follows:

θdacc(c) = [S]c.accuracy −Δc (5)
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where Δ varies between [0,[S].accuracy] based on the error signal between the
desired [S] based trials and the current feedback, i.e., the number of [S] based
trials since the last deletion step. Note that error here corresponds to the set
point error (as commonly used in controller notations) and it has nothing to do
with the classification error. At the beginning, when [S] is empty, all inputs are
sent to standard UCS and the error is maximum, hence Δ is set to minimum.
The error starts dropping as the signatures are extracted to [S] and some of
the inputs are blocked by the signatures. Accordingly, Δ is increased based on
controller’s response. Since we are dealing with a single independent variable,
the response can be given by a simple relationship of the form y = f(x), where
y corresponds to the controlled parameter and x is the current error signal. To
gain control over the rate of change of the controlled parameter, f(x) can be
modelled as a simple linear exponential function. For an upper and lower bound
of the controlled parameter the function can be written as:

y = ymin + (1/ expax−1/ expxmax)
ymax − ymin

‖1/ expxmax −1/ expxmin‖
where ymin and ymax corresponds to the lower and upper bounds of the con-
trolled parameter respectively, the error range is given by xmin and xmax and a
(set to 2 and 5 respectively for accuracy and deletion thresholds in our experi-
ments) is a constant which controls the slope of the exponential function.

Other schemes for adapting these parameters are possible and various other
techniques were tried, however, the update combination mentioned above yielded
the best outcome in terms of the test set accuracy and work load convergence.

4.1 Experiments with Noisy Checkerboard

The effect of noise is generally studied by simulating noise in the data e.g. by intro-
ducing random classification errors according to some distribution [1]. Following
this practice, we simulate noise by introducing false positives (FP) and false nega-
tives (FN) in the standard checkerboard problem. To create a noisy-checkerboard,
data instances are sampled online from the feature space according to a uniform
distribution and assigned a class 0 or 1 depending on their respective coordinates
on the checkerboard. A FP or FN is introduced by inverting the correct class of
an instance based on the noise level η. Four different noisy environments are cre-
ated with varying degrees of noise in one or both classes listed in the results tables
below.

To ensure a fair comparison between UCSSE and UCS we also implemented
Dixon et al.’s [5] rule reduction algorithm to prune the post training rule popula-
tions evolved by UCS. Dixon’s algorithm has shown to be an order of magnitude
faster than Wilson’s rule reduction algorithm [12] while achieving equivalent
performance in terms of test accuracy. The actual algorithm is proposed and
tested for XCS but we adopted it easily for UCS.

In our analysis, we compare the performance of three systems i.e. UCS,
UCS with Dixon’s rule reduction algorithm, referred to as UCSD, and UCSSE.
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The following common practice parameter setting is used for UCS (please refer
to [4] for naming convention of the parameters):

α = 0.1, β = 0.2, υ = 10, θGA = 25, χ = 0.8, μ = 0.04, θdel = 20, δ = 0.1,
ACC0 = 0.99, θsub=20, m0 = 0.2, r0 = 0.4, GASubsumption=YES,

ASSubsumption=NO, Specify=NO

The signature extraction algorithm parameters were set to:

Topt = 1200, C = 10, θxacc = 0.99, θxexp = 100, θdacc = 0.97, θdexp = 0.5 ,
θol = 0.9.

For Dixon’s rule reduction algorithm any classifiers with experience less than 15
and accuracy less than ACC0 is considered as non-qualified. This setting was
chosen carefully to give the best result for Dixon across the datasets and to be
consistent with UCSSE.

(a) Training set with 10% FP rate (b) Training set with 20% FP rate

(c) Training set with 10% FP and
10% FN rates

(d) Training set with 20% FP and
20% FN rates

Fig. 4.Decision boundaries obtained by signatures in four noisy-checkerboard problems

Table 1 compares the test accuracy, number of rules and rules coverage of
UCSSE and UCSD on 4 noisy problems. The results are averaged over 30 runs.
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A � is used if UCSD or UCSSE is significantly better (higher in accuracy and
coverage and lower in number of rules) than UCS. A � shows that UCSD or
UCSSE is significantly better than both UCS and the other system. Similarly a
� denotes that UCSD or UCSSE is significantly worse (lower in accuracy and
coverage and higher in number of rules) than UCS. A ♦ denotes that UCSD or
UCSSE is worse than the other two systems. The significance is tested using a
pairwise t-test at a significance level of 99%.
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(a) Training set with 10% FP rate
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(b) Training set with 20% FP rate
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(c) Training set with 10% FP and
10% FN rates
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(d) Training set with 20% FP and
20% FN rates

Fig. 5. Transition from [P ] to [S], 2000000 trials (30 runs average) with Adaptive
Control based UCSSE

First it can be noticed that the performance of UCS on noisy training data
is quite impressive. The test set accuracy does not degrade proportional to the
increasing noise levels. Given a uniform distribution of noise, the expected ac-
curacy on a class with 10% noise is 90% at most. However UCS performs far
better thanks to its fitness weighted voting policy during prediction. Contrary to
test accuracy which is not affected severely, the number of rules evolved by UCS
grows quickly with increasing levels of noise. Next note that UCSSE is able to
retrieve approximately correct number of signatures in all four noisy problems
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which are also significantly less than both UCS and UCSD (see Section 4 for
symbol notation). It also achieves more than 99% accuracy in all four problems
with a high test set coverage. The correctness of signatures is further verified by
Figures 4 and 5, which show the decision boundaries realized by signatures and
the load transition curves in the four noisy problems respectively.

Table 1. Comparison of UCS, UCSD and UCSSE performance on noisy checkerboard
problems. N corresponds to the noise level; 1=10% FP 0% FN , 2=10% FP 10% FN,
3=20% FP 0% FN, 4=20% FP 20% FN. Results are averages of 30 runs. See text for
the explanation of notations used in significance tests.

Test Accuracy (%)

UCS UCSD UCSSE
N Class 0 Class 1 Overall Class 0 Class 1 Overall Class 0 Class 1 Overall

1 99.83 100.00 99.93 97.10� 99.45� 98.20♦ 99.36 99.53� 99.53�

2 99.47 99.49 99.43 98.57♦ 98.83♦ 98.67♦ 99.70 99.93 99.93

3 98.32 99.96 99.17 95.92♦ 99.38� 97.70♦ 99.40� 99.13� 99.23
4 97.64 97.73 97.70 95.43♦ 96.80♦ 96.07♦ 99.14 99.26 99.17

Number of Rules

1 155.20 44.67 199.87 33.20� 11.20� 44.40� 8.67� 8.47� 17.13�

2 154.33 154.87 309.20 32.27� 32.87� 65.13� 8.77� 9.10� 17.87�

3 147.67 58.00 205.67 33.10� 13.57� 46.67� 8.63� 8.57� 17.20�

4 163.63 159.37 323.00 30.13� 32.07� 62.20� 9.07� 9.33� 18.40�

Test Set Coverage (%)

1 99.99 99.99 99.99 99.92 99.91� 99.91� 99.20 97.50� 98.35
2 100.00 100.00 100.00 99.94 99.91� 99.93� 98.43 99.55♦ 98.99♦

3 99.99 99.97 99.98 99.88 99.82� 99.85� 99.16 99.05 99.10
4 100.00 100.00 100.00 99.93� 99.88 99.90� 97.79♦ 99.20 98.49♦

5 Conclusions

In a previous work we presented a framework for online signature extraction (or
rule reduction) from LCS. An algorithm was presented to automatically identify
and extract maximally general rules during the learning of LCS, which we re-
ferred to as signatures. In this work we have shown the validity of the signature
extraction algorithm using learning time bounds in UCS and investigated the
performance of UCS and UCSSE in noisy problems. With adaptive threshold
control of accuracy parameters, UCSSE is able to retrieve near optimal deci-
sion boundaries for noisy checkerboard problems. We also extended a leading
rule reduction algorithm for XCS to UCS and compared its performance with
UCSSE. We noted that the rule reduction algorithm suffers from noise in data
because it also uses preselected fixed thresholds to prune post training rule sets.
We replaced fixed thresholds with per class average rule set accuracy. In noisy
checkerboard problems UCSSE outperforms both UCS and UCSD in the number
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of rules while achieving similar test accuracy. In future, we would like to test
the generalisation of signature extraction concept to other LCS including the
Pittsburgh style LCS.

References

1. Angluin, D., Laird, P.: Learning from noisy examples. Machine Learning 2(4),
343–370 (1988)
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Abstract. Multiagent systems have had a powerful impact on the real world.
Many of the systems it studies (air traffic, satellite coordination, rover exploration)
are inherently multi-objective, but they are often treated as single-objective prob-
lems within the research. A very important concept within multiagent systems is
that of credit assignment: clearly quantifying an individual agent’s impact on the
overall system performance. In this work we extend the concept of credit assign-
ment into multi-objective problems, broadening the traditional multiagent learn-
ing framework to account for multiple objectives. We show in two domains that
by leveraging established credit assignment principles in a multi-objective setting,
we can improve performance by (i) increasing learning speed by up to 10x (ii)
reducing sensitivity to unmodeled disturbances by up to 98.4% and (iii) produc-
ing solutions that dominate all solutions discovered by a traditional team-based
credit assignment schema. Our results suggest that in a multiagent multi-objective
problem, proper credit assignment is as important to performance as the choice of
multi-objective algorithm.

1 Introduction

Cooperative multiagent systems focuses on producing a set of autonomous agents to
achieve a system-level goal [12]. Multiagent frameworks have been used to study com-
plex, real-world systems like air traffic [10], teams of satellites [3], and extra-planetary
rover exploration [1]. In each case, the goal is to optimize a single, well-defined objec-
tive function.

But, in many of these cases, the problems lend themselves more naturally to multiple
objectives: for example, air travel should be as safe and as expedient as possible. Satel-
lites may need to make observations for multiple separate institutions. Extra-planetary
rovers should acquire multiple different types of scientific data. However, most research
in multiagent systems does not take a multi-objective viewpoint: they typically seek to
find a single usable solution, without considering the tradeoffs between potential alter-
natives that would increase one objective’s value at the cost of another. These tradeoff
solutions, which form the Pareto front, are a key solution concept in multi-objective
problems.

Developing successful agent policies in multiagent systems can be challenging. One
successful approach is to use adaptive agents with tools like reinforcement learning.

G. Dick et al. (Eds.): SEAL 2014, LNCS 8886, pp. 407–418, 2014.
c© Springer International Publishing Switzerland 2014
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Each agent seeks to maximize its own reward; with a properly designed reward signal,
the whole system will attain desirable behaviors. This is the science of credit assign-
ment: determining the contribution each agent had to the system as a whole. Clearly
quantifying this contribution on a per-agent level is essential to multiagent learning.
This is an issue that has not been studied within the context of multiple objectives. In
this work we address the challenges that arise when multiagent systems are combined
with multi-objective problems.

The primary contribution of this work is to develop the concept of credit assign-
ment for multi-objective problems. This broadens the traditional multiagent learning
framework to account for the multiple objectives present in many real world problems.
This improves system-level performance by (i) increasing learning speed by up to 10x
(ii) reducing sensitivity to unmodeled disturbances by up to 98.4% and (iii) produc-
ing solutions that dominate all solutions discovered by a traditional team-based credit
assignment schema.

The remainder of this work is organized as follows: Section 2 describes the necessary
background. Section 3 describes a stateless coordination domain, the multi-objective
bar problem (MOBP), and presents the results in this domain. Section 4 describes a
stateful, time-extended coordination domain, the collective transport domain (CTD),
and presents the results in this domain. Finally, Sec. 5 draws the conclusion to this
work and identifies future directions for this line of research.

2 Background

We limit the scope of this work to consider reinforcement learners using difference
rewards as a feedback signal with “a priori” scalarization of objectives. This allows us
to examine the performance of multi-objective difference rewards in two scenarios in
which they have been shown to out-perform a global “team” reward in a single-objective
case. “A posteriori” methods, such as multi-objective evolutionary algorithms, though
more generally successful, are explicitly out of the scope of this work.

2.1 Multi-objective Problems

In a multi-objective problem, there is typically not one “best” solution, but instead an
array of optimal tradeoffs that are incomparable. For example, a man with 1 kilogram
of bread and 1 kilogram of wine might be just as happy as a man with 0.9 kilograms of
bread and 1.2 kilograms of wine. The two are incomparable [6]. However, both of these
solutions are strictly better than a man with no bread and no wine, which is dominated
by both of the others.

Non-dominated set (NDS). The NDS is the set of discovered feasible solutions that are
not dominated by any other solution. The process for calculating the NDS is illustrated
in Figure 1. Any optimizer or search will develop a set of non-dominated solutions; the
globally best-possible NDS is known as the Pareto front, and the goal of any multi-
objective approach is to develop an NDS that is a close approximation to the Pareto
front.
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Fig. 1. Domination. The point p∗ is a point in the NDS, and all points which score worse on
all objectives than (below and to the left of) p∗ are dominated by p∗. The three grey points not
dominated by p∗ are dominated by other (black) points in the NDS.

Scalarization of objectives. Within the class of a priori methods for multi-objective
problems, there are many different ways to scalarize the objectives into a single reward
signal. In this work we examine two: a linear combination and a hypervolume calcula-
tion. In each case we normalize the objectives to the range [0:1] before combining them
in one of two ways:

R+ =
∑
c∈C

wcf
norm
c

∣∣∣∣∣ Rλ =
∏
c∈C

f norm
c (1)

where R+ is the linear combination reward delivered to the reinforcement learner, Rλ

is the hypervolume reward delivered to the reinforcement learner, C is the set of all
criteria or objectives, and f norm

c is the normalized score on objective c. In each case we
give all agents either R+ or Rλ, but never any combination of the two. The form which
f norm
c takes varies depending on the credit assignment schema used, which is discussed

in the following section. Other types of scalarizations do exist, like an exponentially
weighted set of objectives or distance from a target point, but we limit the scope of this
work to consider only these two.

2.2 Reinforcement Learning

In this work we use a team of independent reinforcement learners (Action-value learn-
ers for the MOBP and Q-learners for the CTD [5,9]), with the standard notation of a
learning rate α, a discount factor γ, and a reward R.

2.3 Multiagent Credit Assignment Structures

In a multiagent system, it is important to reward an agent based on its contribution to
the system. This is difficult due to the other agents acting in the environment, obscuring
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the agent’s individual contribution to system performance. We consider three popular
credit assignment structures for addressing these concerns.

A local reward (Li) is the reward based on the part of the system that an agent i can
directly observe. Using this reward signal often encourages “selfish” behavior, in which
the agent may act at cross-purposes with other agents while blindly increasing its own
reward, causing poor system performance.

The global reward (G) is the system performance used as a learning signal. This
encourages the agent to act in the system’s interest, but includes a large amount of noise
from other agents acting simultaneously. An agent’s own contribution to the global
reward may be dwarfed by the contribution of hundreds of other agents, resulting in a
low “signal to noise ratio” [11].

The Difference reward (Di) is a shaped reward signal that helps an agent learn the
consequences of its actions on the system objective by removing a large amount of the
noise created by the actions of other agents active in the system [11]. It is defined as

Di(z) = G(z)−G(z−i) (2)

where G(z) is the global system performance for the system considering the joint state-
action z, and G(z−i) is G(z) for a theoretical system without the contribution of agent
i. Any action taken to increase Di simultaneously increases G, while agent i’s impact
on its own reward is much higher than its relative impact on G [11].

3 Multiobjective Bar Problem (MOBP)

The first domain we consider in this work is an extension of the El Farol Bar Problem
originally introduced by Arthur [2]. In this extension, a group of agents A are each
assigned a static type m or f and must independently choose to attend one of several
bars. There are multiple objectives: first, the agents wish to attend a bar that is not too
crowded, and not too empty. Second, the agents wish to attend a bar with an even mixing
of agents of type m and f .

The first “capacity” objective for each bar is modeled as a smooth curve that takes
on a value of 0 with no agents attending, near 0 with many agents attending, and a
maximum at the ideal capacity ψ. This models the enjoyment of the agents (of quantity
xb) attending bar b. The second “mixture” objective for each bar is maximized when
Mb = Fb, where these are the number of agents of type m and f attending bar b,
regardless of the number of agents at the bar. Formally:

Lcapb = xb · e
−xb
ψ

∣∣∣∣ Lmixb =
min(Mb, Fb)

(Mb + Fb)W
(3)

where W is the number of bars available for the agents to choose from. Lmixb evaluates
to 0 if the agents are all of the same type, and 0.5/W if there is an equal mixture
of types. The number of bars, W , is a constant (and therefore does not change the
reinforcement learning process), and serves to limit Gmix to values in the range [0:0.5]
for easier interpretation of results.
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The global rewards for each of these objectives are simply the sum of the local re-
wards across all bars:

Gcap =
∑
b∈B

Lcapb

∣∣∣∣ Gmix =
∑
b∈B

Lmixb (4)

And the Difference rewards for each are calculated by Equation 2 as the global reward
minus the global reward in a fictional world had agent i never attended any of the bars:

Dcapi = xa · e
−xa
ψ − (xa − 1) · e−(xa−1)

ψ (5)

Dmixi =

⎧⎪⎨
⎪⎩

min(Ma,Fa)
(Ma+Fa)W

min(Ma,Fa)
(Ma+Fa)W

−

−

min((Ma−1),Fa)
(Ma+Fa−1)W : i ∈ m

min(Ma,(Fa−1))
(Ma+Fa−1)W : i ∈ f

(6)

where xa is the attendance in the bar attended by agent i, and Ma and Fa are the number
of agents of types m or f respectively that attended the same bar as agent i. Dmixi
depends on the type of the agent; the second term represents the system with agent i
removed from bar b.

Procedure. The procedure for running the MOBP is simple. Each agent simultane-
ously selects a bar to attend based on no sensory information. The local rewards Lcapb
and Lmixb are calculated for each bar b. Then the global rewards Gcap and Gmix are
calculated. Finally, Dcapi and Dmixi are calculated for each agent i. Once these are cal-
culated, the selected reward type (local, global, or difference) is normalized and put
through Equation 1 depending on the desired scalarization. The result is then provided
to the agent as the reward R, calculated with a value of γ = 0, because the problem is
only a single step.

Tradeoffs and independence of objectives. We take measures to prevent a trivial solu-
tion for either objective, or a single dominating solution:

– Gcap: There are many more agents (100) than capacity across all bars (a capacity of
5 for 7 bars).

– Gmix: Agent types are 70% type m, 30% type f .
– Tradeoff : Lcapi is maximized at 5 agents; Lmixi is maximized only when an even

number of agents attend a bar.
– Tradeoff : A maximum Gmix case involves many bars with one agent of each type

and the rest attending a single bar, which conflicts with Gcap.

We calculate the coefficient of determination (R2) value for the correlation between
the two objectives across 106 random Monte Carlo trials using a linear, exponential, and
polynomial fit. The maximum value was the linear fit at 0.0034, which reinforces that
the objectives are distinct, though they are coupled through the actions of the agents.
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Fig. 2. Performance on Gcap (left) and Gmix (right), for agents trained on the linear scalarization
(+,top) and hypervolume calculation (λ,bottom) of the three reward structures (D,G,L) and the
random baseline (rand). Each of these objectives is to be maximized.

3.1 MOBP Results

To exhibit the benefits of Difference rewards in multi-objective problems, we examine
4 types of results:

– Average system performance on both system objectives (Figure 2)
– Dominance and NDS (Figure 3)
– Impact of training time (Figure 3)
– Robustness to disturbances (Figure 4)

Simulation information. We execute 30 statistical runs of the MOBP for seven inde-
pendent experiments: training all agents on each structure-scalarization combination in
turn (D+, Dλ, G+, Gλ, L+, Lλ), and on a random policy (rand).

Each agent selects an action using an ε-greedy mechanism, with an initial ε = 0.05
for local and difference rewards, and ε = 0.1 for global rewards1 (both multiplied by a
factor of 0.999 every episode to reduce exploration), with a learning rate α = 0.10.

We performed a full sweep through wc values, but due to the large effect each agent
has on the overall system performance near the Pareto front, we found that an even
weight, combined with the natural exploration, resulted in a spread of solutions discov-
ered along the Pareto front.

In Fig. 2, a 100-episode moving average (across 30 statistical runs) of system per-
formance was used. Error bars report the error in the mean, calculated as σ√

N
, where N

1 These values were chosen through a parameter sweep to create the best performance for each
reward, though the results are not very sensitive to ε or α values.
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Fig. 3. The set of non-dominated episodes created over the entire training process through using
hypervolume (λ) or a linear combination (+); dotted lines show the NDS after 1500 learning
episodes; solid lines, the NDS after 15,000 episodes. Agents trained on D(+) peak in performance
before 1500 episodes, so both D(+) NDSs are identical.

is the number of statistical trials. We identify the NDS for each structure-scalarization
combination (e.g. “Hypervolume of Global Reward”, Gλ), across all 30 statistical runs,
and aggregate these into a single non-dominated set, for clarity [4].

3.2 Average Performance on System Objectives

It is informative to look at the performance of the system on each objective individu-
ally (Figure 2), as this performance drives the behavior of the non-dominated set. For
both the linear combination and hypervolume scalarization, the local reward (L+,Lλ)
performs poorly; the agents work at cross-purposes, undermining each other’s efforts
by all trying to attend low-attendance days. This leads to low performance, and will
never lead to good system behavior, even with an extreme amount of training time. The
global reward (G+,Gλ) does learn, slowly. For the hypervolume scalarization, Dλ in-
creases system performance at a slightly higher rate than Gλ. The linear combination
of difference rewards, D+, performs at a very high level very quickly, and reaches near
its final performance after only 1500 episodes.

3.3 Non-Dominated Sets (NDS) and Training Time

In addition to performing well on the individual objectives, solutions produced by D+
or Dλ produce superior NDS compared to the global and local rewards with the same
scalarization. The NDS are shown in Figure 3. In fact, every solution produced by the
local or global rewards is dominated by a solution produced by the difference reward.

The dotted lines in Figure 3 represent the NDS produced in the first 1500 episodes
(10% of the training). In all cases the NDS improve between 1500 and 15000 episodes,
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Fig. 4. The NDS produced in the 5000 training episodes after the conversion of 20% of agents to
“selfish” behavior. Compare with solid lines in Figure 3: D+ and Dλ recover well; G+ and Gλ
suffer a disastrous drop in performance.

except D+, which has already produced its best episodes (dominating all other credit
assignment/scalarization combinations). Solutions produced by Dλ dominate the solu-
tions produced by other methods in the same time, except D+.

3.4 Robustness to Disturbances

To model outside disturbances, after 15000 episodes 14 agents of type m and 6 of type
f “fail”. They have their Q-table reset to zero values and continue learning using the
local reward policy regardless of the learning signal they were using previously (acting
selfishly). The remaining 80 agents continue learning using the same signal they were
using previously. Additional exploration was found to be necessary in this case, so we
reset ε to initial values. All agents continue the learning process as before.

Figure 4 shows that D+ maintains its dominant NDS. G+ and Gλ are affected catas-
trophically by the selfish agents, while D+ loses 98.4% less dominated hypervolume.
Dλ only loses performance on Gmix.

4 Collective Transport Domain

We additionally performed experiments in a collective transport domain, modeled af-
ter [7], in which a team of small robots must cooperate to transport an item (which we
also refer to as a body or load) across a surface in much the same way that ants transport
objects.

We formulate this as a time-extended, stateful reinforcement learning problem in
which the robot agents try to (i) collectively transport the object as quickly as possible
to the goal, while (ii) expending minimum effort.
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Each robot is given discretized state information about the load’s position and ve-
locity, and is allowed to take one of nine actions, applying a force to the load in a
cardinal direction (N,S,E,W), an intermediate direction (NE,SE,SW,NW), or no force.
The robots are assumed to be attached to the object, and receive discretized state infor-
mation based on the object’s current location and speed.

The body’s acceleration (acc), velocity (vel), position (pos) at time t are found with
particle kinetics:

acc(t) =
∑
i∈A

[Fx(i)̂i] +
∑
i∈A

[Fy(i)ĵ]− Ff f̂ (7)

vel(t) = vel(t− 1) + acc(t) · tstep (8)

pos(t) = pos(t− 1) + vel(t) · tstep (9)

where A is the set of all agents, Fx(i) is the force applied by agent i in the î direction,
Fy(i) is the force applied by agent i in the ĵ direction, and Ff is the force of friction,
which acts in the f̂ direction, which points opposite the direction of motion of the body.
We omit mass from this calculation of Newton’s second law because we assume the
mass of the body and transporting robots to be 1 unit total. In this context a local reward
loses some meaning as all agents are collectively acting to move the same object, so we
only look at global and difference reward in this case.

The first objective (proximity) is to move the load close to the goal as quickly as
possible. This takes the form:

Gprox(t) = −Tdist(t) (10)

Dproxi(t) = −Tdist(t) + Tdist−i(t) (11)

where Tdist() is a function that returns the body’s Euclidian distance from the target
at time t, and Tdist−i() returns the distance from the target if agent i took no action
during timestep t.

The second objective is to minimize the effort exerted by the team to move the load
to the desired target location:

Geffort(t) =
∑
i∈A

[1− Ei,t] (12)

Defforti(t) = 1− Ei,t (13)

where Ei,t is 1 if the agent applied a force to the object at time t, and 0 if the agent did
not apply a force.

We perform a Q-update at every time step. To visualize the performance, we aggre-
gate these into one point for each time the load reaches the goal state. For the purpose
of learning, however, we use the distance to the goal state after each time step, as this
provides a smoother gradient for learning [5]. The process for conducting this experi-
ment is described in Algorithm 1. For each credit assignment schema and scalarization
combination, step 19 would use the proper evaluation (one of Li, G, or Di), and use the
desired scalarization from Equation 1.

In this domain the two objectives are in conflict with one another: minimizing the
time to deliver the load will maximize the effort required, and minimizing effort will
lead to a longer time.
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4.1 CTD Results

In the collective transport domain, we examine two types of results:

– Dominance and NDS (Figure 5, Left)
– Impact of training time (Figure 5, Right)

Simulation Information. We perform 4 different trials following Algorithm 1; one each
for G+, Gλ, D+, and Dλ. For each, we conduct 30 statistical runs of 5000 time steps
for teams of 50 agents attempting to transport a load across a surface with maximum
static force of friction Ff = 8 units and kinetic force of friction of Ff = 2 units.
The body’s starting state is initialized as (x, y) = (1, 1), with the goal as a square at
{xmin, xmax, ymin, ymax} = {900, 1000, 900, 1000}. The boundaries are a larger square
at {xmin, xmax, ymin, ymax} = {0, 1000, 0, 1000}. Though the calculations of the body’s
velocity and position are continuous, we us an approximation via tile coding [9] and
discretize into 10 states each for (xvel, yvel, xpos, ypos) creating 10,000 states. In this

Algorithm 1. Collective Transport Domain using Difference Reward of
Dominated Hypervolume (Dλ)
1: initialize Q-values to zero: Q(s, a) = 0 ∀ s, a
2: initialize body position to starting location
3: initialize velocity and acceleration to 0.
4: for timestep = 1 → max timesteps do
5: for i = 1 → total agents do
6: choose an action to take with ε-greedy action selection:
7: {none,N,NE,E,SE,S,SW,W,NW}
8: add force contribution to body (Fx(i),Fy(i))
9: end for

10: evaluate body acceleration (Equation 7)
11: evaluate body velocity (Equation 8)
12: evaluate body position (Equation 9)
13: if body position is out of bounds then
14: set body position to nearest in-bounds position
15: set body velocity to 0
16: end if
17: evaluate global reward (Equations 10, 12)
18: for i = 1 → total agents do
19: evaluate difference rewards (Equations 11, 13)
20: evaluate R ← Rλ (Equation 1)
21: update Q(s, a) values
22: end for
23: if body is in goal state then
24: set body to starting location
25: set velocity and acceleration to 0.
26: end if
27: reduce ε
28: end for
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Fig. 5. (Left) Collective Transport Domain results. D(λ) creates solutions that dominate all other
methods (solutions below and to the left are superior in this domain). D+ outperforms G+, and
creates an overlapping Pareto front with G(λ). (Right) Dotted lines denote early system perfor-
mance after 500 time steps. The denoted highlighted area is the range of the figure on the left.

domain, we find the best performance when we vary the weights for the objectives as a
function of learning step, starting by with a value of {wprox, weffort} = {1, 0} changing
linearly to {0, 1} at the final learning step. This produces policies which do find the goal
state, and learn to reduce effort over time. This produces better initial performance and
a spread of solutions along the NDS. Initial weights favoring the effort objective led to
policies of inaction, never reaching the goal.

4.2 Dominance and NDS

Figure 5 shows the final NDS for each method. The teams of agents trained on the
scalarizations of the difference reward (D+, Dλ) outperform their global counterparts
in the final produced NDS. In this domain, however, the hypervolume calculations (λ)
perform better than the linear combinations (+). We find nearly equivalent performance
between Gλ and D+, suggesting that using the proper multi-objective scalarization is
as important as proper multiagent credit assignment. The Dλ result shows that these
benefits can be symbiotic.

4.3 Impact of Training Time

We also identify the NDS produced by each solution after 10% of the training time in
Figure 5. Again, the difference reward using the preferable scalarization attains perfor-
mance close to its final performance very quickly, while the global methods are not as
near their final performance values. Dλ dominates all solutions formed by other scalar-
izations.

Additionally, in this domain we noticed that the performance of the global reward
signals was sensitive to the learning parameters, while the difference reward signals
were robust to these changes. In additional trials we found the agents trained with the
difference reward to be robust to noisy actuators, noisy sensors, failing agents, and
unmodeled disturbances (externally applied forces) as well.
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5 Conclusion

Multiagent systems are a powerful concept for dealing with complex systems. Many
multiagent systems are intrinsically multi-objective, but this has received scant atten-
tion. In this work we explicitly addressed one of the key concerns in multiagent systems
— credit assignment — under the conditions of a multi-objective problem. We found
that credit assignment is important under multi-objective conditions: our results show
(i) a 10x increase in learning speed, (ii) a 98.4% increase in robustness to unmodeled
disturbances, and (iii) the production of solutions which dominate all solutions found
by a traditional global reward. These results show that proper credit assignment is of
paramount importance in a multiagent multi-objective system. However, the choice of
multi-objective algorithm is still extremely important. Difference rewards boosted per-
formance in both domains, for both scalarizations. The gains from credit assignment
through difference rewards were independent of the scalarization used and the domain.

Difference rewards are not limited to reinforcement learning or a priori methods,
however. Future work on this topic includes an examination of the effects that credit
assignment can have on multiagent implementations of well-established a posteriori
multi-objective evolutionary algorithms.
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Abstract. Interactive evolutionary algorithms for multi-objective opti-
mization have gained an increasing interest in recent years. As multi-
objective optimization usually deals with the optimization of conflicting
objectives, a decision maker is involved in the optimization process when
encountering incomparable solutions. We study the impact of a decision
maker from a theoretical perspective and analyze the runtime of evolu-
tionary algorithms until they have produced for the first time a Pareto
optimal solution with the highest preference of the decision maker. Con-
sidering the linear decision maker, we show that many multi-objective
optimization problems are not harder than their single-objective coun-
terpart. Interestingly, this does not hold for a decision maker using the
Chebeyshev utility function. Furthermore, we point out situations where
evolutionary algorithms involving a linear decision maker have difficulties
in producing an optimal solution even if the underlying single-objective
problems are easy to be solved by simple evolutionary algorithms.

1 Introduction

Evolutionary algorithms (EAs) are frequently used for tackling multi-objective
optimization problems [5,4]. Multi-Objective problems usually allow for an ex-
ponential number of trade-offs with respect to the given objective functions.
In the usual setting, solutions representing the different trade-offs according to
given objective functions are presented to the decision maker and he then has
to decide on one of these solutions for implementation.

In order to let an EA focus on regions in the objective space that are prefer-
able to a decision maker, one can add the possibility of interacting with the
algorithm. In particular, the decision maker can make the decision which solu-
tion to prefer in the case that two solutions are incomparable with respect to
the classical Pareto dominance relation which drives most evolutionary multi-
objective algorithms.

Interactive evolutionary multi-objective optimization has gained increasing
attention during the last years [10,6]. The goal is to involve the decision maker
into the optimization process and gain knowledge about his preferences in order
to focus on the regions that he prefers during the optimization run. It should
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be mentioned that the preferences of the decision maker are usually not known
in advance as he does not know the different possibilities of solutions and their
corresponding objective vectors before starting the run of the algorithm.

The runtime analysis of interactive evolutionary multi-objective optimization
has been started recently by Brockhoff et al. [3]. The authors considered the
algorithms iRLS and (1+1) iEA which are interactive versions of randomized
local search and the (1+1) EA [8]. The algorithms iRLS and (1+1) iEA work
on the Pareto dominance relation and use the knowledge of a decision maker
to decide between incomparable search points. The influence of a linear decision
maker using the weighted sum and a decision maker working with the Chebyshev
utility function has been analyzed for two well known example problems called
LOTZ and COCZ [3].

In this paper, we investigate the setting of Brockhoff et al. [3]. Our aim is
to give a general characterization of problems where the use of a linear decision
maker makes a multi-objective optimization problem as easy as the optimiza-
tion of its single-objective functions. Here, we assume that the multi-objective
problem consists of single-objective problems of the same type, e.g. a minimum
spanning tree problem or a shortest path problem. We show that the linear
decision maker turns such problems from a structural point of view into single-
objective problems. This implies that we can translate known runtime results of
RLS and (1+1) EA to their interactive versions in the multi-objective setting.
For a decision maker using the Chebyshev utility function, we show that there
are instances of the multi-objective setting of the knapsack problem where the
interactive algorithms have an exponential expected optimization time.

After having examined multi-objective problems with linear objective
functions, we turn our attention to the LeadingOnes problem. We examine
multi-objective versions motivated by recent studies in the area of black box
complexity [7]. Our results point out situations where iRLS and (1+1) iEA have
difficulties in obtaining optimal solution according to the linear decision maker.

The outline of the paper is as follows. In Section 2 we introduce the setting
for interactive multi-objective optimization and the algorithms that are subject
to our analysis. In Section 3, we show how the decision maker may prevent
Deteriorative Cycles where a new produced solution is worst than the previously
obtained ones .In Section 4, we present a general study on a linear decision maker
for multi-objective problems having linear objective functions. For a decision
maker using the Chebyshev utility function we show in Section 5 that there
are instances of knapsack problem leading to an exponential optimization time.
Finally, we consider the general LeadingOnes problems in Section 6 in order to
point out the situations where the linear decision maker runs into difficulties and
finish with some concluding remarks.

2 Interactive Multi-objective Optimization

Throughout this paper, we investigate the impact of a decision maker who
is involved in the optimization process for a given multi-objective problem.
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A multi-objective optimization problem is given by a function f : X → Rd

that assigns to each element x ∈ X of the considered search space X a vec-
tor f(x) = (f1(x), . . . , fd(x)) consisting of d objective values. If not otherwise
stated we assume that each of the d objectives should be minimized. A search
point x weakly dominates a search point y (x � y) iff fi(x) ≤ fi(y), 1 ≤ i ≤ d.
We say that x strongly dominates y (x ≺ y) iff fi(x) ≤ fi(y), 1 ≤ i ≤ d and
there exists an j ∈ {1, . . . , d} with fj(x) < fj(y). Often the different objec-
tives are in conflict with each other which means that there is no single solution
which gives the minimal value for all objectives at the same time. We say that
x and y are incomparable (x ‖ y) if neither x � y nor y � x holds. The set
X∗ = {x ∈ X |� ∃y ∈ X with y ≺ x} is called the Pareto optimal set and the set
of corresponding objective vectors PF = {f(x) | x ∈ X∗} is called the Pareto
front.

The classical goal in multi-objective optimization is to compute a set of
solutions that contains for each element of PF a corresponding solution. An
alternative to computing such a set of trade-offs first and presenting it later on
to a decision maker who picks one of the solutions for implementation, is to in-
volve the decision maker in the optimization process. Asking the decision maker
can be in particular very helpful when making decisions between solutions that
are incomparable according to the Pareto dominance relation. Our goal is to
study such approaches from a theoretical perspective and examine the influence
of different types of decision makers on the optimization time.

Algorithm 1 ((1+1) iEA).

1. Choose x ∈ {0, 1}n uniformly at random
2. Repeat

– Obtain y by flipping each bit of x with probability 1/n.
– If y � x then x := y
– else if x ‖ y then x := D(x, y).

In this practice, we consider the interactive version of the classical (1+1) EA.
This algorithm called (1+1) iEA has been introduced in [3] and is shown in
Algorithm 1. (1+1) iEA starts with a solution chosen uniformly at random from
the search space X = {0, 1}n. In each iteration, a new solution y is produced
by flipping each bit of the current solution x with probability 1/n. The search
point x is replaced by y if y weakly dominates x (y � x). If y is dominated by
x (x ≺ y) then x remains unchanged. If x and y are incomparable (x ‖ y) then
the decision maker decides. The decision maker is a function D : X ×X → X
which takes two search points x and y and returns one of them.

We study our algorithm with respect to the number of fitness evaluations
until for the first time a Pareto optimal solution with the highest preference of
the decision maker has been obtained. We call this the optimization time of the
algorithm on a given problem. The expected number of fitness evaluations until
this goal has been achieved is called the expected optimization time. When con-
sidering single-objective optimization problems, the expected optimization time
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is defined as the expected number of fitness evaluations until the algorithm has
produced for the first time an optimal solution with respect to the given objective
function.

2.1 Decision Makers

To model the decision maker, we have to specify the function D : X ×X → X .
We examine the two decision makers modelled in [3]. In the following, we assume
that all objective functions should be minimized, but the setting can be easily
adjusted in the case that some of the given objectives should be maximized.

The first is the weighted sum approach. For a given problem, the decision
maker chooses a parameter λi ∈ [0, 1], 1 ≤ i ≤ d with

∑d
i=1 λi = 1, and sets

D(x, y) = y if
d∑

i=1

λifi(y) ≤
d∑

i=1

λifi(x),

and D(x, y) = x otherwise. We call this the linear (or weighted sum) decision
maker.

We also consider a decision maker using the Chebyshev utility function

uc(f(x)) = max
i∈{1,2,...,d}

{λi · |z∗i − fi(x)|}

where z∗ = (z∗1 , z
∗
2 , . . . , z

∗
d) is a pre-defined utopian point and λi ∈ [0, 1],

1 ≤ i ≤ d with
∑d

i=1 λi = 1 are the weights determined by the decision maker.
We have D(x, y) = y for the decision maker using the Chebyshev utility

function iff uc(f(y)) ≤ uc(f(x)), and D(x, y) = x otherwise.

3 Deteriorative Cycles

During the optimization run evolutionary algorithms for multi-objective opti-
mization may produce solutions that are worse than solutions obtained previ-
ously with respect to the Pareto dominance relation [9]. Evolutionary algorithms
for multi-objective optimization problems often encounter the problem of such
deteriorative cycles. This is, in particular, the case if the algorithm has already
obtained solutions that are close to the Pareto front. In this section, we study
how the decision maker may prevent such behaviour. For a detailed discussion
on the underlying principles of deteriorative cycles in the context of evolutionary
multi-objective optimization we refer the reader to [2].

The decision maker does not necessarily impose a total order on the search
space as it is the case for single-objective problems. The reason is that the order
among the search points may not be transitive.

As an example (see Figure 1) considers three search points a, b, c with objective
vectors f(a) = (5, 5), f(b) = (4, 4), f(c) = (3, 6) and let the preference of the
decision maker be D(b, c) = c and D(c, a) = a. In this way, an algorithm could
move from a to b to c and back to a. Hence, an arbitrary decision maker does
not prevent the presence of deteriorative cycles.
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a = (5,5) 

b = (4,4) 

c = (3,6) 

f 1 f 1ff  

f 2 f 2ff  

Fig. 1. Deteriorative cycle a → b → c → a

3.1 Linear Decision Maker and Deteriorative Cycles

In the following, we show that the linear decision maker imposes a total ordering
on the underlying search space which means that such an algorithm does not
encounter deteriorative cycles.

Theorem 2. The weighted sum decision maker induces a total order on the
search space X.

Proof. We show that an algorithm working with the Pareto dominance relation
when considering comparable search points and working with the linear decision
maker when encountering incomparable search points leads to a total order on
the search space X .

Let f : X → Rd and x � y iff fi(x) ≤ fi(y), 1 ≤ i ≤ d. We define the order
(�L) given by the Pareto dominance relation (�) and the one by the linear
decision maker as

x �L y ⇔
∑
i=1

λifi(x) ≤
∑
i=1

λifi(y)

�L is a total order as each search point is assigned a real value that is given
by the weighted sum of its objectives.

Obviously, if x ‖ y (according to the Pareto dominance relation) then the
decision maker decides according to �L.

If x � y holds, then fi(x) ≤ fi(y), 1 ≤ i ≤ d and as a consequence we have

∑
i=1

λifi(x) ≤
∑
i=1

λifi(y)

and hence x �L y. �
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The previous theorem shows that the linear decision maker prevents the pres-
ence of deteriorative cycles when working with algorithms such as (1+1) iEA.
For (1+1) iEA, it also ensures convergence to the set of optimal solutions as
the mutation operator has a positive probability of sampling any point in the
search space {0, 1}n. Having produced a solution that is minimal with respect
to �L implies that (1+1) iEA will never accept a solution that is not minimal
with respect to �L. We refer the reader to [8] for an nn upper bound on any
function defined on the search space {0, 1}n. Note, that there may be more than
one optimal solution with respect to the utility function of the linear decision
maker.

4 Linear Decision Maker and Linear Objective Functions

Many combinatorial optimization problems have a linear objective function that
has to be optimized under a given set of constraints. This includes well known
problems such as the knapsack problem or the minimum spanning tree problem.
In this section, we study binary optimization problems that have linear objective
functions.

4.1 Linear Objective Functions

Brockhoff et al. [3] have already made the observation that if the objective
functions are linear and the underlying utility function of the decision maker is
the weighted sum, then the expected optimization time of iRLS and (1+1) iEA
is Θ(n log n) (see Observation 2 in [3]).

Within this section, we want to examine this observation in greater detail
by studying problems with d linear objective functions and some additional
constraints. Our goal is to fit classical combinatorial optimization problems into
this framework. Many combinatorial optimization problems have linear objective
functions, but some additional constraints. Because of the presence of constraints
the optimization time is usually not Θ(n logn). However, we are able to relate
the expected optimization time to the corresponding single-objective variants
with using a decision maker working with the weighted sum.

Let P be a binary optimization problem, i. e. a problem consisting of r com-
ponents where the ith component is chosen iff xi = 1. We say that a binary
problem P with r components has a linear objective function iff the fitness of a
feasible search point x is given by f(x) :=

∑r
i=1 wixi.

Note, that we currently don’t assume any restrictions on the constraints that
have to be met in order to obtain a feasible solution.

W.l.o.g. we consider the case where we minimize d functions f1, f2, . . . , fd.
Cases where at least one of the objectives has to be maximized can be treated
in a similar way.

In the following, we assume that a solution x is either feasible for all objec-
tive functions or feasible for none of them. We consider evolutionary algorithms
where feasible solutions are always better than infeasible solutions. For iRLS
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and (1+1) iEA this implies that after the algorithms have obtained a feasible
solution for the first time, they will never accept an infeasible one. For the fol-
lowing theorem, we assume that the algorithms have already obtained a feasible
solution.

Theorem 3. Let P be a binary problem with a linear objective function and
T be an upper bound on the expected optimization time of (1+1) EA on any
input instance I of P when starting with an arbitrary feasible solution. Then the
expected optimization time of (1+1) iEA using a linear decision maker is upper
bounded by T when starting with a feasible solution.

Proof. Let I1, I2, . . . , Id be the single objective problems with objective functions

fj(x) :=

r∑
i=1

wj
i xi 1 ≤ j ≤ d

For a given fixed λj , 1 ≤ j ≤ d, with
∑d

j=1 λj = 1, let

g(x) =

d∑
j=1

λjfj(x) =

d∑
j=1

λj

(
r∑

i=1

wj
i xi

)

=

r∑
i=1

⎛
⎝

d∑
j=1

λjw
j
i

⎞
⎠ xi =

r∑
i=1

gixi

where gi =
∑d

j=1 λjw
j
i . Note that gi is completely determined by the input

and the linear preference of the decision maker expressed by the choice of λj ,
1 ≤ j ≤ d.

We claim that (1+1) EA working on g accepts an offspring y of x iff (1+1) iEA
working on (f1, f2, . . . fd) accepts the offspring y of x.

We first assume that x and y are incomparable (x ‖ y). In this case, the
decision maker involved in (1+1) iEA accepts y iff g(y) ≤ g(x). Hence, y is
accepted iff it is accepted by (1+1) EA working on g.

Secondly, we assume that x and y are comparable. If y � x then g(y) ≤ g(x)
and y is accepted by (1+1) EA and (1+1) iEA. If x ≺ y, then g(x) < g(y) and
y is rejected by the (1+1) EA and (1+1) iEA. �

4.2 The Knapsack Problem

In the knapsack problem the input is given by n items 1, . . . , n where each item
has a positive profit pi and a positive weight wi.

We consider the multi-objective setting for the problem where the goal is to
maximize the overall profit and minimize the overall weight of the set of chosen
items. We consider the search space {0, 1}n. For a bit-string x, item i is chosen
iff xi = 1. The fitness function f : {0, 1}n → R2 is given by
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f(x) = (p(x), w(x))

with

p(x) =

n∑
i=1

pixi and w(x) =

n∑
i=1

wixi.

In the multi-objective setting, our goal is to maximize p and minimize w which
introduces a partial order on the search points. x � y holds iff p(x) ≥ p(y) and
w(x) ≤ w(y).

In order, to put it into our framework of minimizing all objectives, we can
consider the case where we minimize w and minimize −p. If x ‖ y, the decision
maker decides whether the new solution is accepted. For a fixed λ ∈ [0, 1],
D(x,y)=y holds iff

(1− λ)w(y) − λp(y) ≤ (1 − λ)w(x) − λp(x)

and D(x, y) = x otherwise.
The multi-objective formulation of the knapsack problem consists of two linear

functions without any additional constraints. It is well-known that RLS and
(1+1) EA optimize each linear function in time O(n logn) [8]. Together with
Theorem 3, we get the following result.

Theorem 4. Using the weighted sum utility function, the expected optimization
of (1+1) iEA for the Knapsack problem is O(n log n).

Using Theorem 3, similar results can be obtained for other multi-objective
versions of classical combinatorial optimization problems having linear objective
functions. For example, the runtime results on minimum spanning trees [11] and
single-source shortest paths [1] can be transferred to the corresponding multi-
objective problems when considering a linear decision maker.

5 Chebyshev Utility Function and the Knapsack Problem

In the following, we examine the use of a decision maker using the Chebyshev
utility function. Our goal is to show that this decision maker makes it much
more difficult to find the solution with the optimal preference even if there are
two linear objective functions without any additional constraints.

We consider the following trap instance called KNAP2 which has been intro-
duced in [13] in the context of the runtime analysis of evolutionary algorithms
for constraint optimization. Let p1 = n, p2 = · · · = pn = 1 and w1 = n− 1, w2 =
· · · = wn = 1. For the weight bound W = n − 1 has been chosen in [13] which
implies that in the optimal solution only the first item is chosen.

For the multi-objective setting and the Chebyshev utility function we set the
utopian point to z∗ = (2n,−2). This meets the requirement of an utopian point
as

∑n
i=1 pi = 2n− 1 < 2n and each weight is positive and therefore greater than

−2. Furthermore, we set λ1 = λ2 = 1/2.
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The optimal solution is the string x∗ = (1, 0 . . . 0) where f(x∗) = (n, n − 1)
and uc(f(x

∗)) = max{ 1
2 · (2n − n), 1

2 · | − 2 − (n − 1)|} = n+1
2 . x∗ dominates

the search point xl = (0, 1 . . . 1) with f(xl) = (n − 1, n − 1) and uc(f(xl)) =
max{ 1

2 · (2n− (n − 1)), 1
2 · | − 2 − (n− 1)|} = n+1

2 . Furthermore, x∗ and xl are
incomparable to any other search point y ∈ {0, 1}n \ {x∗, xl}.

Consider a search point y where y = (0, y1) which starts with a 0-bit and
has i, 0 ≤ i ≤ n − 2, ones in the remaining part y1. Clearly f(x) = (i, i) and
uc(f(y)) = max{ 1

2 · (2n− i), 1
2 · (i + 2)} = 2n−i

2 ≥ n+2
2 > n+1

2 .
Consider a search point y where y = (1, y1) which starts with a 1-bit and has

i, 1 ≤ i ≤ n− 1, ones in the remaining part y1. Clearly f(x) = (n+ i, n+ i− 1)
and uc(f(y)) = max{ 1

2 · (n− i), 1
2 · (n+ i− 1 + 2)} = n+i+1

2 ≥ n+2
2 > n+1

2 .

Theorem 5. Using the weighted Chebyshev utility function uc with z∗=(2n,−2)
and λ1 = λ2 = 1/2, the optimization time of the (1+1) iEA on KNAP2 is eΩ(n)

with probability α = Ω(1).

Proof. The first bit is set with probability 1/2 to 1 and with probability 1/2 to
0 in the initial solution. We claim that this decides on whether the algorithm
ends up in the local optimum xl or the global one x∗.

Let xi = (xi
1y1) be the initial solution. Suppose that xi

1 = 0 holds (which
happens with probability 1/2). The part y1 has at least n/2 − εn, ε > 0 a
constant, 1-bits with probability 1− e−Ω(n) using Chernoff bounds.

Consider a phase of T = cn steps where c is an appropriate constant. We
claim that the number of 1-bits in y1 is at least n/2 + εn and that the bit x1

has not been flipped during this phase. A solution with a 0 at the first bit and i

1-bits in the y1 part has fitness (i, i) and utility value (2n−i)
2 . Hence, a solution

increasing the number of 1-bits in y1 is accepted.
As long as y1 does not contain at least n/2 + εn 1-bits, the probability of

increasing the number of 1-bits in y1 is at least

(n/2− εn)
1

n
· (1− 1/n)

n−1 ≥ (n/2− εn)/(en).

The expected time to have obtained a solution with at least n/2 + εn, ε > 0
a small constant, 1-bits is at most

2εn(en/(n/2− εn)) ≤ 2ε3en = 6eεn.

The probability that the bit x1 has not been flipped in T steps is

(1− 1/n)T = (1− 1/n)cn >

(
1

2e

)c

.

We set T = α1 ·6eεn. This implies that the probability of not having obtain at
least n/2+ εn 1-bits in y1 is upper bounded by 1/(α1) using Markov’s inequality
and the probability that x1 has not been flipped is at least

(
1

2e

)α1·6eε
= Ω(1).
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Having obtained this solution starting with 0 and having at least n/2 + εn
1-bits in the y1 part, the utility value is at most 1.5n−εn

2 . A solution starting
with a 1-bit and having at least n/2 1-bits in the y1-part has utility value at
least 1.5n+1

2 and is therefore not accepted as an offspring. Hence, only a solution
having a 1-bit at the first position is accepted if at least εn bits flip at the same
time in a single mutation step. The probability that εn bits flip in a single muta-
tion steps is asymptotically Poisson distributed with parameter 1 and therefore
e−Ω(εn). This implies that the optimization time of (1+1) iEA is eΩ(n) with
probability Ω(1). �

6 The Multi-Objective Leading Ones Problem

In this section, we investigate when using a linear utility function to model
the decision maker leads to problems in the optimization process. To do this,
we consider a generalization of the classical Leading Ones problem and present
exponential lower bounds for the considered multi-objective problem.

Leading Ones (LO) problem was first introduced in [12] and counts the number
of leading ones in a given bitstring. It is defined as

LO(x) =
n∑

i=1

i∏
j=1

xj

Motivated by the work in [7], where the complexity of black-box optimization on
LO was analyzed, we introduce a new problem similar to the traditional Leading
Ones. Given a predefined vector a ∈ {0, 1}n,

LOa(x) =

n∑
i=1

i∏
j=1

(1 − |xj − aj |)

counts the number of leading bits of the given solution x that agrees with a. Given
two vectors a, b ∈ {0, 1}n, we consider a bi-objective maximization problem with
objective function MLOa,b(x) = (LOa(x), LOb(x)). The goal is to maximize
both objective functions. Obviously it is possible to generalize the problem to
d objectives by having d bitstrings and measuring the agreement of a given
solution with respect to them such that d objective values are computed. In
this section, we are interested in showing lower bounds for iRLS and (1+1) iEA
when working with the linear decision maker. We will investigate the bi-objective
problem MLOa,b with a = 1t0n−t and b = 1n for a given fixed value t and
show when the algorithms are not able to obtain a solution with the maximal
preference of the decision maker. Note that the problem has two Pareto optimal
solutions, namely the strings a = 1t0n−t and b = 1n and that the weightening of
the objectives decides on which one is the string with the maximum preference
according to the linear decision maker.

As we are deadling with bi-objective problems, the weightening is decided by
one parameter λ, 0 ≤ λ ≤ 1, and utility value according to the decision maker
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is given by
λ · LOa(x) + (1− λ) · LOb(x).

As we are dealing with maximizing problems the utility value should be max-
imized as well. Note, that if λ = 1/2 then both Pareto optimal solutions have
maximum utility, whereas λ > 1/2 implies that a is the optimal solution and
λ < 1/2 implies that b is the optimal solution.

In the following, we assume that 0 < λ < 1 as λ = 0 or λ = 1 implies that one
of the objectives can be neglected and the expected optimization time would be
Θ(n2). Furthermore, we assume λ > 1/2 such that the algorithm favours a as
the optimal solution. The case λ < 1/2 can be handled in a symmetric way.

Theorem 6. Let λ > 1/2, a = 1t0n−t, and b = 1n. Then the optimization time

of (1+1) iEA on MLOa,b is at least n
k(1−λ)

2λ with probability 2−k · (1 − n−1/2)
where t = n/2 and t+ k < n holds.

Proof. If LOa(x) = LOb(x) < t holds, the probability of increasing LOa(x)
and LOb(x) is at least 1/n. Hence, after an expected number of O(nt) steps,
LOa(x) ≥ t and LOb(x) ≥ t.

Let x be the first solution in the run of the algorithm for which LOa(x) ≥ t
and LOb(x) ≥ t holds. Since all bits at positions greater than t are still uniformly
at random in x, we have x = 1t1k0[0, 1]n−k−t−1 for n−t ≥ k ≥ 2 with probability
2−k. In order to reach the optimal solution a, the algorithm has to accept an
offspring y of x that is incomparable to x. Consider a potential offspring y =
1t0c1[0, 1]n−t−c−1 of x such that x and y are incomparable. The solution y is
accepted iff

g(x)− g(y) = k − λk − λc = k(1− λ)− λc ≤ 0 ⇔ k ≤ λc

1− λ
.

This implies that in one single mutation step, c ≥ k(1−λ)
λ specific bits of the

current solution x must be flipped. The probability for such a mutation is at

most n− k(1−λ)
λ . Let T = n

k(1−λ)
2λ , then the probability to obtain such a solution

in T steps is at most n−1/2. Hence, with probability 2−k ·(1−n−1/2), the runtime

of (1+1) iEA on MLOa,b is at least n
k(1−λ)

2λ . �

The previous result shows that even multi-objective versions of simple prob-
lems such as Leading Ones can become difficult to solve when using a decision
maker with a linear utility function.

7 Conclusions

Incorporating the decision maker into the optimization process of evolutionary
multi-objective optimization has become a very popular approach. In this paper,
we have studied simple evolutionary algorithms froma theoretical perspective.Our
studies show that importantmulti-objective combinatorial optimization problems
such as the multi-objective formulation of the knapsack problems, multi-objective
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minimum spanning trees ormulti-objective shortest paths become as easy for iRLS
and (1+1) iEA as their single-objective counterparts when working with a linear
decision maker. Furthermore, we have pointed out for the knapsack problem that
this is in general not the case when working with the Chebyshev utility function.
Our studies for the multi-objective LeadingOnes problem show situations where
the algorithms using the linear decision maker fail to obtain a solution of maximal
preference in expected polynomial time.
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Abstract. The productivity of real-world systems is often limited by
so-called bottlenecks. Hence, usually companies are not only interested
in finding the best ways to schedule their current resources so that their
benefits are maximized (optimization), but, in order to increase the pro-
ductivity, they also conduct some analysis to find bottlenecks in their
system and eliminate them in the most efficient way (e.g., with the lowest
investment). We show that the current frequently used analysis (based
on average shadow price) for identifying bottlenecks has some limita-
tions: (1) it is limited to linear constraints, (2) it does not consider all
potential sources for bottlenecks in a system, and (3) it does not provide
adequate tools for decision makers to find the best way of investment to
eliminate bottlenecks and maximize the profit they can gain. We propose
a more comprehensive definition of bottlenecks that covers these limita-
tions. Based on this new definition, we propose a multi-objective model
for the benefit and investment. The solution for this model provides the
best way of investment in resources to achieve maximum profit. As the
proposed model is multi-objective and non-linear, it opens an important
opportunity for the application of evolutionary algorithms, which can
subsequently have a significant impact on the decision making process
of companies.

Keywords: Constraints, bottlenecks, what-if analysis, feasibility.

1 Introduction

Usually real-world optimization problems contain constraints in their formu-
lation. The definition of constraints in management sciences is “anything that
limits a system from achieving higher performance versus its goal” [5]. In general,
a constrained optimization problem (COP) is defined as:

find x ∈ S s.t. z = max{f(x)} subject to (1)

gi(x) ≤ 0, for i = 1 to q

hi(x) = 0, for i = q + 1 to m

where f , gi, and hi are real-valued functions on the search space S, q is the
number of inequalities, m − q is the number of equalities, and s.t. is the short
form of “such that” [2, 12]. Hereafter, the term COP refers to this formulation.
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It is believed that the optimal solution of most real-world optimization prob-
lems is found on the edge of a feasible area of the search space of the problem [15].
This belief is not limited to computer science, but it is also found in operational
research (linear programming, LP) [3] and management sciences (theory of con-
straints) [11, 14] articles. The reason behind this belief is that, in real-world
optimization problems, constraints usually represent limitations of availability
of resources. As it is usually beneficial to utilize the resources as much as pos-
sible to achieve a high-quality solution (in terms of the objective value, f), it is
expected that the optimal solution is a point where a subset of these resources is
used as much as possible, i.e., gi(x

∗) = 0 for some i and a particular high-quality
x∗ in the general formulation of COPs [1]. Thus, the best feasible point is usu-
ally located where the value of these constraints achieve their maximum values
(0 in the general formulation). The constraints whose values are maximized at
the optimum point are called active constraints. The constraints that are active
at the optimum solution can be thought of as bottlenecks that constrain the
achievement of a better objective value [11, 13].

Decision makers in industries usually use some tools, known as decision sup-
port systems (DSS) [8], as a guidance for their decisions in different areas of their
systems. Probably the most important areas that decision makers need guidance
from DSS are: (1) optimizing schedules of resources to gain more benefit (ac-
complished by an optimizer in DSS), (2) identifying bottlenecks (accomplished
by analyzing constraints in DSS), and (3) determining the best ways for future
investments to improve their profits (accomplished by an analysis for removing
bottlenecks1, known as what-if analysis in DSS). Such support tools are more
readily available than one might initially think: for example, the widespread
desktop application Microsoft Excel provides these via an add-in.2

Identification of bottlenecks and the best way of investment is at least as valu-
able as the optimization in many real-world problems from an industrial point
of view because: “An hour lost at a bottleneck is an hour lost for the entire
system. An hour saved at a non-bottleneck is a mirage” [6]. Industries are not
only after finding the best schedules of their resources (optimizing the objective
function), but they are also after understanding the tradeoffs between various
possible investments and potential benefits. During the past 30 years, evolution-
ary computation methodologies (e.g., evolutionary algorithms) have provided
appropriate tools for optimization. However, the last two areas (identifying bot-
tlenecks and removing them) that are needed in DSSs seem to have remained
untouched by evolutionary computation methodologies while it has been an ac-
tive research area in management and operations research.

In this article, we review some existing studies on identifying and remov-
ing bottlenecks. We investigate the most frequently used bottlenecks removing
analysis (the so-called average shadow price [3]) and identify its limitations.

1 The term removing a bottleneck refers to the investment in the resources related to
that bottleneck to prevent those resources from constraining the problem solver to
achieve better objective values.

2 http://tinyurl.com/msexceldss, last accessed 29th March 2014.

http://tinyurl.com/msexceldss
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We argue that the root of these limitations can be found in the interpretation of
constraints and the definition of bottlenecks. In particular, the previous studies
have assumed only linear constraints and they have related bottlenecks only to
one specific property of resources (usually the availability of resources). Further,
they have not provided appropriate tools to guide decision makers in finding
the best ways of investments in their system so that their profits are maximized
by removing the bottlenecks. We propose a more comprehensive definition for
bottlenecks that not only leads us to design a more comprehensive model for
determining the best investment in the system, but also addresses all mentioned
limitations. Because the new model is multi-objective and may lead to the for-
mulation of non-linear objective functions/constraints, evolutionary algorithms
have a good potential to be successful on this proposed model. In fact, by ap-
plying multi-objective evolutionary algorithms to the proposed model, the found
solutions represent points that optimize the objective function and the way of
investment with different budgets at the same time.

This article is structured as follows. We explain the relevant concepts in
Section 2. In Section 3, we highlight limitations of a well-known bottleneck def-
inition. In Section 4, we present our model of bottlenecks that addresses these
limitations. In Section 5 we present two first evolutionary approaches that con-
sider investments in order to remove bottlenecks. We conclude the paper in
Section 6, where we also provide directions for future research.

2 Background

In this section, we provide background information on linear programming, the
concept of shadow price, and bottlenecks in general. Let us begin with linear
programming. A Linear Programming (LP) problem is a special case of COP
(as defined in eq. 1), where f(x) and gi(x) are linear functions:

find x such that z = max{cTx} subject to Ax ≤ b (2)

where A is a m × d dimensional matrix known as coefficients matrix, m is the
number of constraints, d is the number of dimensions, c is a d-dimensional vector,
b is a m-dimensional vector known as Right Hand Side (RHS), x ∈ R

d, and
x ≥ 0. The shadow price (SP) for the ith constraint of this problem is the value
of z when bi is increased by one unit. This in fact refers to the best achievable
solution if the RHS of the ith constraint was larger, i.e., that more resources
were available [10].

The concept of SP in Integer Linear Programming (ILP) is different from the
one in LP [13]. The definition for ILP is similar to the definition of LP, except
that x ∈ Z

d. In ILP, the concept of Average Shadow Price (ASP) was introduced
in [9]. Let us define the perturbation function zi(w) as follows:

find x s.t. zi(w) = max{cTx} subject to aix ≤ bi + w, akx ≤ bk, ∀k �= i (3)

where ai is the ith row of the matrix A and x ≥ 0. Then, the ASP for the ith

constraint is defined by ASPi = supw>0{(zi(w) − zi(0))/w}. ASPi represents
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that if adding one unit of the resource i costs p and p < ASPi, then it is
beneficial (the total profit is increased) to buy w units of this resource. This
information is very valuable for the decision maker as it is helpful for removing
bottlenecks. Although the value of ASPi refers to “buying” new resources, it is
possible to similarly define a selling shadow price [9]. The concept of ASP was
extended in a way that a set of resources were considered [4] rather than only
one resource at a time. Note, however, that this set is predefined by the user
and then the analysis is conducted [4]. There, it was also shown that ASP can
be used in mixed integer LP (MILP) problems.

Now, let us take a step back from the definition of ASP in the context of
ILP, and let us see how it fits into a bigger picture of resources and bottlenecks.
As we mentioned earlier, constraints usually model availability of resources and
limit the optimizers to achieve the best possible solution which maximizes (min-
imizes) the objective function [10, 11, 14]. Although finding the best solution
with the current resources is valuable for decision makers, it is also valuable to
explore opportunities to improve solutions by adding more resources (e.g., pur-
chasing new equipment) [9]. In fact, industries are after the most efficient way of
investment (removing the bottlenecks) so that their profit is improved the most.

Let us assume that the decision maker has the option of providing some
additional resource of type i at a price p. It is clearly valuable if the problem
solver can determine if adding a unit of this resource can be beneficial in terms
of improving the best achievable objective value. It is, however, not necessarily
the case that adding a new resource of the type i improves the best achievable
objective value. As an example, consider there are some trucks that load products
into some trains for transportation. It might be the case that adding a new train
does not provide any opportunity for gaining extra benefit because the current
number of trucks is too low and they can not fill the trains in time. In this case,
we can say that the number of trucks is a bottleneck. Although it is easy to
define bottleneck intuitively, it is not trivial to define this term in general.

There are a few different definitions for bottlenecks [13]. A definition for bot-
tlenecks was proposed in [13] which was claimed to be the most comprehensive
definition: “a set of constraints with positive average shadow price”. In fact, the
average shadow price in a linear and integer linear program can be considered
as a measure for bottlenecks in a system [11].

3 Limitations of the Existing Bottleneck Definition

Although ASP can be useful in determining the bottlenecks in a system, it has
some limitations when it comes to removing bottlenecks. In this section, we
discuss some limitations of removing bottlenecks based on ASP.

Obviously, the concept of ASP has been only defined for LP and MILP, but not
for problems with non-linear objective functions and constraints. Thus, using the
concept of ASP prevents us from analyzing bottlenecks in a non-linear system.
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Let us consider the following simple problem3 (the problem is extremely simple
and it has been only given as an example to clarify limitations of the previous
definitions): in a mine operation, there are 19 trucks and two trains. Trucks are
used to fill trains with some products and trains are used to transport products
to a destination. The rate of the operation for each truck is 100 tonnes per hour
(tph) and the capacity of each train is 2,000 tonnes. What is the maximum
tonnage that can be loaded to the trains in one hour? The ILP model for this
problem is given in eq. 4:

find x and y s.t. z = max{2000y} subject to (4)

g1 : 2000y− 100x ≤ 0, g2 : x ≤ 19, g3 : y ≤ 2

where x ≥ 0 is the number of trucks and y ≥ 0 is the number of loaded trains
(y can be a floating point value which refers to partially loaded trains). The
constraint g1 limits the amount of products loaded by the trucks into the trains
(trucks can not overload the trains). The solution is obviously y = 0.95 and
x = 19 with objective value 1,900. ASPs for the constraints are as follows:

– ASP for g1 is 1: by adding one unit to the first constraint (2000y− 100x ≤ 0
becomes 2000y− 100x ≤ 1) the objective value increases by 1,

– ASP for g2 is 100: by adding 1 unit to the second constraint (x ≤ 19 becomes
x ≤ 20) the objective value increases by 100,

– ASP for g3 is 0: by adding 1 unit to the third constraint (y ≤ 2 becomes
y ≤ 3) the objective value does not increase.

Accordingly, the first and second constraints are bottlenecks as their corre-
sponding ASPs are positive. Thus, it would be beneficial if investments are con-
centrated on adding one unit to the first or second constraint to improve the
objective value. Adding one unit to the first constraint is meaningless from the
practical point of view. In fact, adding one unit to RHS of the constraint g1
means that the amount of products that is loaded into the trains can exceed the
trains’ capacities by one ton, which is not justifiable. In the above example, there
is another option for the decision maker to achieve a better solution: if it is pos-
sible to improve the operation rate of the trucks to 101 tph, the best achievable
solution is improved to 1,919 tonnes. Thus, it is clear that the bottleneck might
be a specification of a resource (the operation rate of trucks in our example) that
is expressed by a value in the coefficients matrix and not necessarily RHS. The
commonly used ASP, which only gives information about the impact of changing
RHS in a constraint, cannot formulate such bottlenecks.

Figure 1 illustrates this limitation. The value of ASP represents only the effects
of changing the value of RHS of the constraints (Figure 1, left) on the objective
value while it does not give any information about the effects the values in the
coefficients matrix might have on the objective value (constraint g1 in Figure 1,

3 We have made several such industry-inspired stories and benchmarks available:
http://cs.adelaide.edu.au/~optlog/research/bottleneck-stories.htm

http://cs.adelaide.edu.au/~optlog/research/bottleneck-stories.htm
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Fig. 1. x and y are number of trucks and number of trains respectively, gray gradient:
indication of objective value (the lighter the better), shaded area: feasible area, g1, g2, g3
are constraints, the white point is the best feasible point

right). However, as we showed in our example, it is possible to change the values
in the coefficient matrix in order to achieve better solutions.

The value of ASP does not provide any information about the best strategy
of selecting bottlenecks to remove. In fact, it only provides information about
the benefit of elevating the RHS in each constraint or a given set of constraints
and does not say anything about the order of significance of the bottlenecks. It
remains the task of the decision maker to compare different scenarios by selecting
different subset of constraints (also known as what-if analysis4). Of course one
can analyze all possible subsets of constraints to find which subset is the most
beneficial one to invest on. However, this strategy potentially leads to solving
another hard problem, that is a subset selection. From a managerial point of
view, it is important to answer the following question: is adding one unit to the
first constraint (if possible) better than adding one unit to the second constraint
(purchase a new truck)? Note that in real-world problems, there might be many
resources and constraints, and a manual analysis of different scenarios might be
prohibitively time consuming. Thus, a smart strategy is needed to find the best
set of to-be-removed bottlenecks in order to gain maximum profit with lowest
investment. In summary, the limitations of identifying bottlenecks using ASP
are:

Limitation 1. ASP is only applicable if objective and constraints are linear.
Limitation 2. ASP does not evaluate changes in the coefficients matrix (the

matrix A) and it is only limited to RHS.
Limitation 3. ASP does not provide information about the strategy for invest-

ment in resources, and the decision maker has to manually conduct analyses
to find the best investment strategy.

4 In the operational research community, there are related terms such as sensitive
analysis and post-optimality [7].
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4 A New Model for Bottleneck

In this section a new definition for bottleneck and a new model for removing bot-
tlenecks (investment) is proposed that addresses limitations listed in Section 3.

Each constraint gi in a real-world optimization problem usually models not
only the availability of resources, but also other specifications of resources such
as rates and capacities. Each of these specifications is encoded in a coefficient in
the constraints. Accordingly, we propose a new definition for bottleneck:

Definition 1. A bottleneck is a modifiable specification of resources that by
changing its value, the best achievable performance of the system is improved.

Note that this definition is a generalization of the definition of bottleneck
in [13]: “a set of constraints with positive average shadow price is defined as
a bottleneck”. In fact, the definition in [13] concentrated on RHS only (it is
just about the average shadow price) and it considers a bottleneck as a set of
constraints, while our definition is based on any modifiable coefficient in the
constraints (from capacity, to rates, or availability) and it introduces each spec-
ification of resources as a potential bottleneck. As an example, based on our
definition, the operational rate of trucks can be a bottleneck, while according to
the definition in [13], this is not possible 5 (see Limitation 2 in Section 3). Of
course the set of all modifiable specifications need to be provided by the user.

According to the proposed bottlenecks definition, in order to invest on a part
of a system to achieve maximum improvement of the objective of that system,
not only RHS of all constraints should be assessed, but also all modifiable spec-
ifications in constraints need to be processed (e.g., tuning up trucks rather than
buying new trucks) for potential changes. Hence, it is clear that the earlier
methodologies based on ASP were not able to process all opportunities for re-
moving bottlenecks and investments to maximize improvement in the objective
function (see Limitation 3 in Section 3).

We propose a new model to address the limitations of ASP for removing
bottlenecks and finding the best way of investment. We define the vector li
which contains all modifiable specifications in the constraint gi. For any COP in
the form of eq. 1, we define a Bottleneck COP (BCOP) as follows:

find x and l s.t. z =

{
max(f(x, l))

min(B(l))
subject to gi(x, li) ≤ 0 for all i (5)

where l is a vector (l might contain continuous or discrete values) which contains
li for all i and B(l) is a function that calculates the cost of modified specifications
of resources coded in the vector l. Note that in the linear case, li = {ai, bi}
where ai is the ith row of the matrix A in eq. 2. If we consider li = {bi} and

5 One can argue that the operational rate is another constraint that can be modeled
by a new variable (g4 : v = 100 in eq. 4). However, if this constraint is added to the
definition of the problem then constraint g1 becomes non-linear (g1 : 2000y−vx ≤ 0)
which then is not suitable for ASP.
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Fig. 2. The impact of an investment (B) on the achievable objective value f (max-
imization is the goal): positive/negative investments (reduction of resources) usually
results in an increase/decrease in the best achievable objective value

gi(x) = aix− bi (linear constraints) then eq.5 can express ASPi. Figure 2 shows
that, if all pieces of equipment are sold, the best achievable objective value is
zero (f = 0) because nothing can be produced anymore (this is called “objective
break” point in the figure), that is the same as the selling shadow price [9]. The
“cost cross” point shows the point where the best objective value is achieved
with the current specification of resources (B = 0). The point “bottleneck free”
is the point where the optimum solution of the search space is inside the feasible
region. From a practical point of view, in this situation, no matter how the
decision maker invests, the profit is not improved any more. Note also that
sometimes the amount of investment up to some value might not change the
best achievable objective value. As an example, any investment from B1 to B2

does not result in any improvement in the objective value.
Let us assume that the associated solution to the point (f1, B1) is x

′ and l′.
This solution can be interpreted as if the decision maker invests B1, the best
way to spend this budget is to change the specifications values to l′ (which costs
B1) and the best achievable objective value in this case is f1. Note that:

– a BCOP can be formulated for linear and non-linear systems,
– any modifiable specification of resources can be formulated in a BCOP in

the vector l and the values for this vector are examined by the solver,
– solutions for a BCOP contain best investment strategies for various budgets.

Any multi-objective optimization algorithm can be applied to solve a BCOP.
Also, as the specifications can be coefficients in the constraints, the constraints
become non-linear, which makes the problem non-linear so that linear program-
ming methodologies are not useful in solving this problem.

Let use assume that, in the example from Section 3, the decision maker can
budget $500,000 to improve the maximum loaded products per hours into the
trains. Also, the specifications that can be altered in the system are:

– the operation rate of the trucks can be increased up to 120 (i.e., l1 =
{100, 101, ..., 120}) for $100 per tph per truck,

– the capacity of trains can be increased to 2100, with the step size 20 (i.e.,
l2 = {2000, 2020, 2040, 2060, ..., 2100} tonnes) for $200 per ton per train,
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Fig. 3. Impact of an investment on the achievable objective value

– the number of trucks can be increased up to 40 (i.e. l3 = {19, 20, ..., 40}),
each truck costs $15,000,

– the number of trains can be increased up to 5 (i.e l4 = {2, 3, 4, 5}), each train
costs $100,000.

The BCOP for this example is written as:

find x and l such that z =

⎧⎪⎨
⎪⎩

max{l2y}
min{0.1l3(l1 − 100) + 0.2l4(l2 − 2000)+

15(l3 − 19) + 100(l4 − 2)}
(6)

subject to l2y − l1x ≤ 0, x ≤ l3, y ≤ l4

Note that B(l) = 0 for l = {100, 2000, 19, 2} (the current specification of
the resources). We can solve this problem by using two methods: changing the
value of RHS according to the ASP in eq. 4, or performing an exhaustive search
algorithm that solves BCOP in eq. 6. Note that only practically possible were
added to the list of solutions. Figure 3 shows the results.

It is clear that when BCOP is used more opportunities for investment are
examined, which can potentially result in higher benefits with smaller invest-
ments. As an example, with $135,000 investment, a solution with f = 2950 is
found by solving BCOP with l = {118, 2000, 25, 2}. However, the best solution
found based on the shadow price for $135,000 investment was only f = 2800 with
l = {100, 2000, 28, 2}. According to the solution of BCOP, if the decision maker
is going to invest $135,000, the best way of investment (leading to maximum
improvement in the objective function) is to buy 6 new trucks ($6× 15000) and
upgrade all trucks to carry 118 tph (18 tph tune up, which costs $18×100×25),
which all together costs $135,000. However, by using the shadow price calcula-
tions, the decision maker needs to buy 9 new trucks ($9×15000), which improves
the objective value to 2800. It is clear that better objective values can be achieved
by investing the same amount if we use BCOP.

5 An Evolutionary Algorithm for BCOP

In this section we propose two methods to solve BCOPs based on a multi-
objective genetic algorithm. As the first algorithm, we use a basic algorithm
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with tournament selection, one point crossover (pc = 0.9, set via some trials),
and uniform random mutation (pm = 0.3, set via some trials). Each individual
contains the vector l and all decision variables x. We call this first approach GA.

To handle multiple objectives, we use the following simple approach. Two
solutions x0 and x1 are compared based on G(x) =

∑m
i=1 max(g(x), 0), which

is known as constraint violation value. If G(x0) = G(x1) or G(x0) ≤ 0 and
G(x1) ≤ 0, then we use the dominance relation in multi-dimensional spaces
(if both are equal or non-dominating select one randomly, otherwise select the
dominating one). Otherwise, we select the solution that is better in terms of
constraint violation value (preferring smaller constraint violation values).

The second multi-objective algorithm GALP is based on GA. Here, the in-
dividuals contain only the vector l, and linear programming is used to find the
best vector x for each generated l.

We applied both methods to the problem defined in eq. 6 with 100 individuals
for 100 iterations (all non-dominating solutions found are reported in Fig. 4(a)).
It is clear that both evolutionary methods have found good approximations of
the Pareto front (computed by exhaustive search). It is also clear that (1) the
performance of the GALP is slightly better than that of GA, and (2) our basic
approaches outperform the established ASP based approach.

This means that both our approaches can be used to better plan the best
investment for industries. In the following, let us consider a second example,
this time from agriculture, to illustrate that our formulation is straight-forward
and that it can support the decision making processes in the real-world.

Second Scenario: Agricultural Allocation.3 A farmer owns 1,000 acres of more or
less homogeneous farmland. His options are to breed cattle, or to grow wheat,
corn, or tomatoes. Annually, 12,000 hours of labor are available. For simplicity,
we will assume here that these can be used at any time during the year, i.e.,
through hiring casual labor during seasons of high need, e.g., for harvesting.
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In the following, we list information regarding the profit, yield, and labor
needs for the four economic activities:

– cattle: $1,600/head profit, 0.25 heads/acre yield, 40 h/head annual labor
– wheat: $5/bushel profit, 50 bushels/acre yield, 10 h/acre annual labor
– corn: $6/bushel profit, 80 bushels/acre yield, 12 h/acre annual labor
– tomatoes: 50 cent/lb profit, 1,000 lbs/acre yield, 25 h/acre annual labor

It is required that at least 20% of the farmland that is cultivated in the process
is used for the purpose of cattle breeding, at most 30% of the available farmland
can be used for growing tomatoes, and the ratio between the amount of farmland
assigned to growing wheat and that left uncultivated should not exceed 2 to 1.

Now (and this is the challenging bit), the farmer can make certain investments
that can possibly increase the overall profit per year: (1) additional acres of
farmland can be rented at $200 per year, (2) additional labor can be hired at
$20 per hour, (3) a tomato packing machine can be rented for $5,000 per year,
which reduces 25 h/acre to 20 h/acres, (4) a “tomato grower’s licence” can be
bought for $10,000 per year, which increases the max ratio from 30% to 35%,
and (5) the value 0.25 heads/acre can be improved up to 0.7 heads/acres for
$10,000 (0.25 needs $0, 0.7 needs $10,000, and anything in between is linear).

The question now is: should the farmer invest, and if so, how? In Figure 4(b)
we show the results of the different approaches.6 Just as in the previous train
loading example, our evolutionary approach GALP that makes use of the BCOP
formulation clearly outperform the approach based on average shadow price. The
results of GALP are close to those of found by an exhaustive search. Note that
the approach based on average shadow price is not able to assess all cases for
investment, which makes GALP more appropriate to find best investment plan.
Note that in this example the methods were run for 1000 iterations.

6 Conclusions and Directions

In this paper we proposed a new definition for bottlenecks and a new model
to guide decision makers to make the most profitable investment. We did this
in order to narrow the gap between what is being considered in academia and
industry. Our definition for bottlenecks and model for investment overcomes
several of the drawbacks of the model that is based on average shadow prices:

1. It can work with non-linear constraints and objectives.
2. It offers changes to the coefficient matrix.
3. It can provide a guide towards optimal investments.

This more general model can form the basis for more comprehensive analytical
tools as well as improved optimization algorithms. In particular for the latter
application, we conjecture that nature-inspired approaches are adequate, due to
the multi-objective formulation of the problem and its non-linearity.

6 The construction of the BCOP formulation is straight-forward, and we omit it due
to space constraints. It is available on the above-mentioned website of our stories.
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Bottlenecks are ubiquitous and companies make significant efforts to eliminate
them to the best extent possible. To the best of our knowledge, however, there
seems to be very little published research on approaches to identify bottlenecks—
research on optimal investment strategies in the presence of bottlenecks seems to
be even non-existent. In the future, we will push this research further, in order to
improve decision support systems.We will design nature-inspired single-objective
and multi-objective algorithms with the goal to support decision makers to make
the best possible investments in their constrained systems.
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Abstract. Risks are ubiquitous in many social dilemmas. A decision to
cooperate (or invest in a common pool) is inherently “risky” when the
reward received depends on the frequency of actions displayed by other
social group members. In this paper, we study the evolutionary dynamics
of the multiple-group public goods game where the population of mobile
individuals is divided into fixed-sized groups. Agents use continuous in-
vestment strategies. This approach allows for the evolution of an inter-
mediate level of investments correlated with specific risk aversion levels.
Agents are also presented with an opportunity to switch groups at the
end of each round based on an environmental trigger. Detailed simulation
experiments using an evolutionary game theory framework show that in-
vestment levels can be maintained within groups. Over time, the mean
level of the risk aversion trait increases especially for larger groups. In
the conditional migration scenarios, levels of investment consistent with
risk aversion emerge.

1 Introduction

Social dilemmas, that is situations in which collective and private interests con-
flict, have been studied extensively in many domains, including evolutionary bi-
ology, social psychology, economics, statistical physics, and multi-agent systems
[9,25,21,4]. Evolutionary games, such as the multi-player public goods game, are
often used as an abstract mathematical framework to investigate mechanisms
used to promote and maintain cooperative behaviour in social dilemmas. Here,
groups of cooperators outperform groups of non-cooperators, but selfish individ-
uals always do better than cooperators in their group [19,21].

A number of hypotheses explaining why individuals might contribute to a
public good, including reciprocal altruism; reputation; punishment; spatial se-
lection and multi-level selection, have been proposed [18,19]. However, one im-
portant direction that requires further research is the role of risk on population
dynamics and emergent behaviour. Uncertainty and risk, including risk aver-
sion, risk seeking and risk preference, are key features of many social dilemmas
[16,20,26]. Genetic factors have been used to help explain this observation in
human experiments, together with environmental variables and individual be-
havioural histories [1,2]. From a social psychological science perspective, people
tend to be risk averse when dealing with outcomes that are gains relative to
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their reference point – they chose sure smaller gains over larger, riskier gains,
but became risk seeking when dealing with losses [15]. This is in contrast to the
widely accepted economic perspective, where a rational decision-maker is an in-
dividual who attempts to maximize their expected utility in any decision-making
scenario.

Recently, agent-based models investigating the evolution of risk taking [24]
and risk aversion [12] have appeared. Starting from an assumption that risk
seeking behaviour is not favoured by natural selection, inherent biases guid-
ing decision-making strategies have been examined. Hintze and co-workers [12]
report that beneficial risk aversion adaptations emerge in small populations, par-
ticularly when a larger population is divided into smaller groups, with limited
migration between groups. We take this particular model as the starting point
for our investigation.

In this paper, we use an evolutionary game theory framework to investigate
dynamics in the public goods game, where the population of mobile agents is
divided into fixed-sized interaction groups. Agents use continuous investment
strategies based on their risk aversion trait. Individuals with a high trait value
are considered to be risk averse, corresponding to a low chance of investing a
small amount. In contrast, individuals with a low trait value are considered to
have a risk seeking strategy, corresponding to a high chance of investing a large
amount. At each round of the game, an individual can update their risk trait
by imitating successful (fitter) individuals within their current group. We also
introduce mobility modes or group switching mechanisms into the model: (a)
random migration and (b) conditional migration, where each individual monitors
its current environmental condition and attempts to migrate to another group
if the condition is found to be undesirable.

We use Monte Carlo simulation experiments to investigate model behaviour,
as it is not practical to study this group-structured model analytically. Key
model parameters include the population size, the number of groups, and mo-
bility mode. The use of a real-value for the risk investment trait generates rich
dynamics. Instead of reporting results based on the “levels of cooperation” as
is the norm in many social dilemma papers, we report results illustrating the
evolutionary trajectory of the risk aversion trait across the population, and in-
directly the average investment level. Across the population as a whole, the
average value of the risk aversion trait is significantly lower in smaller groups
and in the random migration model. We find that lower levels of investment are
typically maintained in the conditional migration model suggesting that indi-
viduals who make decisions based on whether they are satisfied with their local
neighbourhood tend to be more risk averse.

The remainder of this paper is organized as follows. In Section 2, the public
goods game with continuous strategies is formally described. Related work de-
scribing mobility mechanisms in social dilemmas is also introduced. Our model
is introduced in Section 3. In Section 4, the simulation experiments are described
and results presented. We discuss the results, conclusions and avenues for future
work in Section 5.
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2 Background and Related Work

2.1 Public Goods Game Using Continuous Investment Strategies

In the continuous version of the public goods game, the traditional notion of
discrete strategies, is extended by considering specific circumstances and risk
orientation of individuals [13,10]. At an abstract level, this has some similarities
with the probabilistic participation framework introduced in [22].

Assume that n individuals each make an investment xi in a public good, where
each xi ∈ (i = 1, . . . , n) is a real number between 0 and some positive maximum
value V . The payoff to individual i is given by:

πi = (k/n)

n∑
j=1

xj − xi (1)

where k is a positive constant (which can be viewed as a synergy factor or interest
rate). When 1 < k < n every individual will maximize their payoff by making a
zero investment, irrespective of the investments made by the other individuals
(ie act as a free-rider). If all the players make a zero investment, they each receive
a payoff 0. If all the players invest V , each would receive (k − 1)× V

The evolutionary dynamics of the game can be described by the adaptive
replicator dynamics for a continuous strategy space [7,6]. Under such conditions,
the replicator equation assumes that the population state is described by a Borel
probability measure P over [0, V ]. The expected payoff of an individual playing
xi in a group of n players, where the other n− 1 players are chosen at random
is:

π(xi, P ) = V + (
k

n
− 1)xi +

k

n
x̄(n− 1) (2)

where x̄ =
∫
[0,V ] xjP (dxj) is the average contribution of an individual in the

population.

2.2 Mobility in Social Dilemma Models

It is now widely accepted that mobility plays an important role in affecting
evolutionary dynamics in group structured social dilemmas (see [8,19]). In ad-
dition to random mobility – or random exchange of individuals between groups
– the effectiveness of alternative mobility mechanisms have been investigated in
spatial models. Notable examples include success-driven migration [11], adaptive
migration [14] and aspiration-induced migration [28]. Success-driven migration is
based on the idea that individuals can elect to move to sites with higher expected
payoffs. The challenge of success-driven migration, however, is to determine in
advance the potential payoff of the “non-local” site. In contrast, in the adaptive
migration model individuals only make use of local information when attempting
a move. In the study presented by Jiang et al. [14], adaptive migration took place
probabilistically in proportion to the number of defectors in the neighbourhood.
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Aspiration-induced migration is a third alternative, where individuals move to
a new site if their payoff is below a certain aspiration level. Each of these mi-
gration schemes has been shown to enhance the extent of cooperative behaviour
considerably, even in a noisy environment [11] or in an environment dominated
by defectors [14].

In the context of multi-player social dilemma games, the efficacy of condi-
tional mobility mechanisms have been reported in recent work by Chiong and
Kirley [4,5]. However, that work was restricted to spatial models (regular lattice).
Notable work investigating evolutionary dynamics in populations divided into
subgroups focussed on the public goods game include the work of Killingback et
al. [17] and Janssen and Goldstone [13]. These studies report on the effects of
variable groups sizes and the impacts of random migration mechanisms on the
emergent cooperation levels.

3 Model

Our model consists of a population of agents playing a multiple-group version
of the continuous public goods game. The population is composed of g disjoint
fixed-sized interaction groups, each of size n. Each agent must decide (a) how
much to invest into the public pool, and (b) whether to switch groups or stay in
their current group. Each of these decisions is inherently risky.

Figure 1 provides a schematic overview of the multiple group public goods
game. Details of the model are discussed below.

3.1 Investment Strategy and Payoff

Each individual is defined by real value genetic trait (or strategy) χ, used to
determine the level of investment in a given round of the public goods game.
The level of investment xi depends on χ as follows:

xi =

{
(1− χ) ∗ V p = 1− χ
0 p = χ

(3)

where the probability p is any value between 0 and 1, including the two endpoints,
thereby capturing purely deterministic behaviour; and V is a parameter of the
model controlling the maximum possible investment. The strategy xi is thus
defined by a Bernoulli random variable representing the expressed behaviour or
“phenotype” of an individual given the underlying “genotype” χ. Here, χ acts
as an indicator of risk aversion. When χ > 0.5, there is a low chance of investing
a small amount – risk averse behaviour, whereas when χ < 0.5, there is a high
chance of investing a large amount – risk seeking behaviour.

After each individual i has made an investment decision xi using equation
3, the accumulated investments of the n group members are multiplied by a
factor k and evenly redistributed amongst the members of the group based on
equation 1. This payoff πi is added to an individual’s assets (initialized as V ),
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Fig. 1. The multiple group public goods game. Each agent (red square) is allocated to
a fixed size group. Agent investment is based on equation 3. Payoff is determined by
equation 1. Fitness corresponds to cumulative payoffs. At each round, every agent is
presented with an opportunity to change groups based on their “satisfaction” or fitness
level. The migration direction is illustrated via the arrow.

which serve as a function of the individual’s fitness. The cumulative asset of an
individual is simply the sum over all πi values in multiple rounds of the public
goods game.

The fitness of an individual is determined relative to the performance of their
current group. The more successful (fitter) individuals will be imitated by others,
so that the number of individuals adopting a given risk trait χ will evolve over
time. At each time step, an individual i can adopt the strategy χj from individual
j within its current groups with probability

W (χi ← χj) =
1

1 + exp[(πi − πj)/T ]
(4)

where T quantifies the uncertainty by strategy adoptions (without loss of gen-
erality we use T = 0.1). All individuals are also subject to mutation. That is,
with probability μ the offspring mutates to a random strategy; otherwise its risk
trait χ is identical to its parent.

3.2 Migration: Inter-group Mobility

Agent mobility is a key step in our model. Here, the overarching goal is to mediate
the gradual “migration” of risk aversion traits from one group to another [27,12].
We consider three migration models:

In the random migration model, a fixed proportion of individuals (migra-
tion rate λ) are randomly selected to migrate to a different group. For each mi-
grant, a randomly selected individual from a randomly selected group is simply
nominated to “swap” groups. This group-based model approximates the scenario
of individuals evolving in small groups with some level of inter-group mobility.
Such an approach is the typical mechanism used in island-based evolutionary
algorithms [3].
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In the conditional migration model, individuals playing the game use en-
vironmental feedback as a mechanism to trigger migration. Here, individuals
have the capacity to detect and leave low-quality social environments and share
specific information about past group performance. We implement a form of
the so-called walk-away-rule, which introduces a threshold value that defines the
minimal payoff (return) an individual must receive in order to stay in the same
group, otherwise the individual attempts to migrate to another group. Whether
the attempted move is successful or not depends on the relative fitness of a ran-
domly selected individual in a nominated destination group, a technique adopted
in [4,5]. Two different techniques are used to select the destination group: (a) se-
lect the “best” group, and (b) select the “worst” group, where we use the group
payoff at the previous game iteration to determine the nominated group. The
fitness value of the migrant is then compared with the randomly selected indi-
vidual from the nominated group, and if it has a higher fitness value, the swap
is complete. The aim of this assortment mechanism is to reduce exploitation by
selfish group members.

4 Simulation Experiments

A series of Monte Carlo simulation experiments were performed to examine pop-
ulation dynamics in our model. Two questions guided the experimental design:

1. Is it possible to evolve risk aversion behaviour in the multiple group public
goods game?

2. Does conditional migration offer greater opportunities for positive assort-
ment when compared to random migration?

In all simulation experiments, the value of χ was initialized randomly from a
uniform distribution at the beginning of a trial. The value of the maximum
investment V and payoff multiplier k/n were 5.0 and 0.8 respectively.1 In the
reproduction stage, the mutation rate μ was 0.01. The random migration rate λ
was set to 0.10, based on empirical search of appropriate values. In conditional
migration, the threshold value used to determine whether an agent attempts
to switch groups was simply the payoff value in the current round – a loss
corresponds to a low-quality social environments. The payoff performance from
each group was made available to all individuals.

All results listed below are mean values over 30 simulation trials with differing
seeds for the random number generators. Error bars have been omitted from
time-series plots as they are smoothed values and the standard errors are very
small. Key model parameters investigated are: group size (n), the number of
groups (g), and the mobility mechanism (random, conditional best, conditional
worse).

1 We have also run a large number of simulations using a range of V and k values. The
results were qualitatively the same across a range of values, thus we do not include
the results in this paper.
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Fig. 2. The average value of χ across the population for varying population size n when
g = 1

4.1 Evolutionary Trajectory of χ in a Single Group

We start by considering the population dynamics of a single group (g = 1) with
varying population sizes n ∈ {2, 4, 8, 16, 32, 64, 128}. Figure 2 plots time series
values for the average strategy χ vs generation number for different n values.
For all values of n, the trajectory of χ settles around the mid-range value of
0.5 corresponding to the no risk/bias preference. The number of steps required
to reach this value is correlated with the population size. Thus, the size of the
group must be considered when analyzing perceptions of risk in the continuous
public goods game.

4.2 Evolutionary Trajectory of χ in Multiple Groups

In the second set of simulation experiments, we investigate the underlying popu-
lation dynamics in each of the migration models. Figure 3 plots the average value
of χ, calculated over the final 2500 generations of a simulation trial, for each of
the different group sizes considered n ∈ {2, 4, 8, 16, 32, 64, 128} with g = 32
groups. Errors bars have been included on the plot. Based on the Wilcoxon rank
sum test, there are significant differences between each of the migration modes
considered (p < 0.01) for larger group sizes. When the group size is smaller
(n = 2 and n = 4) the differences are not as clear cut. This is to be expected
as the game is relatively “easy” (even though there is still a social dilemma) un-
der this condition. It is important to note that as the size of the group increases
there is transition to higher average χ values.

Figure 4 plots trends in the trajectory of the risk aversion trait χ. When n = 4,
the differences between the random migration and conditional worst migration
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Fig. 3. The average value of χ across the population for varying groups sizes calculated
over the last 2500 generations for each of the migration model. The yellow line indicates
the expected value of 0.5 for unbiased evolution; i.e. no risk bias/preference.

strategy are not significant, with χ fluctuating around the 0.5 value. However, in
the case of conditional migration, χ fluctuates around a value of 0.7, indicating
relative high levels of average risk aversion across the population. However, when
the group size is larger (n = 32), the evolutionary trajectory of the χ changes
considerably. In each of the migration modes, the average value of χ is greater
than the expected unbiased value of 0.5. The selection pressure embedded in the
conditional migrations results in higher χ values, with average values around 0.8
emerging in the conditional best model.

The plots for average profit (Figures 5) reinforce the effectiveness of adopting
a particular risk aversion/seeking investment level. Once again the effects are
magnified in the larger groups. However, the differences between the conditional
best and conditional worse modes are apparent in both group sizes. The results
suggest that this transition to risk averse behaviour, especially in larger groups, is
caused by the presence of “free-riders.” Since the investment decision is based on
both risk aversion trait and the expectation of other group members, we observe
a qualitatively different relationship between risk averse investment levels and
group sizes.

4.3 A Closer Look at Mobility

In the final set of simulation experiments, we investigate the effectiveness of
the conditional migration mode in more detail. Conditional migration provides
opportunities to taking advantage of potentially more beneficial social environ-
ments, while allowing for the possibility of leaving a group when that particular
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(a) n = 4 (b) n = 32

Fig. 4. The average value of χ vs generation number for each of the migration models.
The expected value of 0.5 for unbiased evolution is also plotted.

(a) n = 4 (b) n = 32

Fig. 5. The average profit vs generation number for each of the migration models

environment degrades (corresponding to low reward values, thus an individual is
being exploited). However, a constraint on conditional movement was that the
migrant must have a higher fitness value than the randomly selected individual
from the nominated group (either the best or worse group depending on the
model). This constraint was imposed to mediate the assortment effects.

Figures 6 plots time series values for the proportion of migrant “desired” and
“successful” moves respectively for a typical population size (g = 32 and n = 32
in this case). Here, desired is simply when an individual flags that they wish
to swap groups as the payoff received in the current game was not satisfactory.
A successful move is when the individual actual switches groups. As expected, the
proportion of successful moves is significantly lower than desired moves in the
conditional modes, with lowest values apparent in the conditional best mode.
This result is consistent with the expectation that potential risky moves may
have a positive effect on assortment.
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(a) Desired (b) Successful

Fig. 6. Proportions of (a) desired and (b) successful moves vs generation number for
each of the migration models when group size n=32 and g = 32

5 Discussion and Conclusions

The public goods game is a canonical group-based social dilemma game, requir-
ing individuals to decide simultaneously whether they wish to contribute to the
common pool or not. In this study, we have introduced two extensions to the
game: an individual’s investment strategy was based on a real value genetic trait
corresponding to their level of risk aversion; and it was possible for individuals
to switch between groups. Although risky, this change in group membership may
be the preferred action to take if a satisfactory level of performance (payoff or
return on investment) was not achieved in the current location.

Our model allows us to characterize differences in risk-taking behaviour be-
tween groups and individuals and among groups with different distributions of
risk preferences. The simulation results listed in Section 4 clearly show that
over time, the mean level of the risk aversion trait χ increase over time, espe-
cially for larger groups. Lower investment levels corresponding to risk adverse
behaviour induces higher survivability, a result consistent with the work of [23]
in social dilemma games and the work of [12] focussed on the adaptive benefits
of risk aversion in an evolutionary context. The corresponding investment levels
and payoff values are consistent with trends in cooperation levels typically re-
ported in the literature. The random migration mode introduces a limited level
of assortment. In contrast, conditional migration significantly affects population
assortment. It is reasonable to expect that in the conditional worse mode, the
proportion of successful switches is greater as, on average, the fitness of individu-
als in the worse pool will be relatively small, thus the chance of a successful move
increases. However, the group may contain many free-riders, which adversely af-
fect future performance. In the conditional best mode, the chance of a successful
switch is less, but if successful the positive assortment leads to higher future
returns, given the risk adverse behaviour. Regardless of the migration mode,
the group size and not the total population size determines whether agents evolve
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risk averse strategies. In our model, a dynamic perception of risk is used to guide
both investment levels and mobility.

There are a number of directions to explore in future work: In our model, we
did not impose additional costs when changing groups. Exploring the effect of
such costs and limiting the number of possible moves is an interesting direction
for future empirical research. Despite the robustness of our findings, further
applications in real social psychology settings may be problematic. If individuals
are regularly faced with fluctuations of their general environment – variable risky
situations – the proposed model should be tested experimentally to validate its
conclusions.
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Abstract. Fitness landscape analysis provides insight into the struc-
tural features of optimization problems. Landscape analysis techniques
have been individually shown to capture specific continuous landscape
features. However, results are typically for benchmark and artificial prob-
lems, and so the ability of techniques to capture real-world problem struc-
tures remains largely unknown. In this paper we experimentally examine
and compare the ability of length scale analysis, dispersion, fitness dis-
tance correlation, information content, partial information content and
information stability to characterise and distinguish instances of circle
packing problems. Circle packing problems are an important abstraction
of many real-world problems such as container loading, facility disper-
sion and sensor network layout problems. Experiments on incrementally
scaled packings show that while all of the techniques provide some prob-
lem insight, only length scale analysis and information stability were able
to clearly differentiate problem instances.

Keywords: Continuous optimization, fitness landscape analysis, circle
packing in a square.

1 Introduction

Metaheuristics research has historically been dominated by the development of al-
gorithms, but a recent focus has been to better understand both the relationship
between algorithms and problems, and the nature of the problems themselves. To
this end, fitness landscape analysis has produced theoretical frameworks and tech-
niques for studying optimization problems. A considerable number of problem-
specific and generalised analysis techniques have been proposed for combinatorial
and discrete problems (see [15] for a review). In contrast, few techniques have been
developed specifically for continuous problems, and practitioners often adapt dis-
crete techniques to the continuous setting in an effort to analyse problems.
Landscape analysis techniques have been shown to capture specific continuous
landscape features on some example problems [8,12], however systematic com-
parisons of the techniques are largely missing from the literature. Furthermore,
benchmark and artificial problems are typically utilised, and so the ability of the
techniques to capture real-world problem structures remains unexplored.
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In this paper we examine and compare the ability of length scale analysis,
dispersion, fitness distance correlation, information content, partial information
content and information stability to characterise and distinguish instances of
packing equally sized circles into a unit square. The circle-in-a-square (CiaS)
packing problem is a convenient abstraction of real-world problems including
container loading, facility dispersion and wireless network layout problems. Sec. 2
reviews the landscape analysis techniques used in this paper, and the CiaS prob-
lem is defined in Sec. 3. Analysis of the problem instances is conducted in Sec. 4,
and Sec. 5 concludes the paper.

2 Fitness Landscape Analysis Techniques

The notion of an objective function as a ‘fitness’ landscape defined over a search
space, S, has been widely used as a model in evolutionary biology and computa-
tion. Formally, a fitness landscape is defined using a set of candidate solutions,
x ∈ S, an objective function, f , and a distance function, d, between two arbitrary
solutions. Fitness landscape analysis typically uses random, statistical or other
sampling methods to obtain points of interest (and/or their fitness values) from
a landscape. Properties of the landscape are then defined in this framework, e.g.
a (strict) local optimum is a point x′ where all neighbouring solutions have a
fitness worse than f(x′).

Length scale, denoted r, is defined as the change in objective function with
respect to a step between two solutions. The length scales from all solution pairs
capture a landscape’s structural information and are amenable to statistical and
information theoretic analysis [8,9]. Length scale was developed specifically for
continuous problems, but is equally applicable in the discrete case. The distri-
bution of r uniquely characterises problems and can be used to infer problem
structure. Landscape features can be defined using measures such as the distri-
bution’s entropy, mean or median. Divergence measures such as KL-divergence
can also be used to directly compare problems. Previously, 1D toy problems and
2D, 5D, 10D and 20D problems from the Black-Box Optimization Benchmarking
(BBOB) problem set [5] have been analysed [8,9] using length scale.

Dispersion measures the degree to which high quality solutions are concen-
trated/clustered, where quality is determined by sampling m solutions and using
truncation selection to retain the fittest tm solutions, where t ∈ (0, 1] [6]. Dis-
persion was originally proposed for continuous problems, and has been shown
to be a useful metric in studying the performance of population-based and local
search algorithms relative to particular problems and their structures [6,20,14].
The dispersion values of the BBOB problem set have also been used in the
feature-set of an algorithm prediction model [12]. Recently, we showed that the
distance function and sampling methodology underlying dispersion can lead to
convergent values in high dimensions, and adjustments to the methodology were
made [10].

Landscape features conceptually similar to the discrete case can be defined
mathematically (as suggested in [15]) for continuous problems, but defining
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neighbourhood relations and appropriate distance functions can be problem-
atic. Despite these issues, some discrete landscape analysis techniques have been
adapted to the continuous setting. Fitness distance correlation (FDC) measures
the correlation between the fitness of solutions (from a finite sample) and their
distance to the global optimum. The distance metric is a crucial component of
FDC, and while the original specification used Hamming distance, Euclidean dis-
tance is typically used in the continuous setting. FDC has been used to analyse
multi-layer perceptron neural networks [2], continuous NK-landscape models,
the CEC 2005 benchmark functions [13] and the BBOB problem set [12].

Information content, partial information content and information stability
aim to characterise ruggedness by analysing local neighbourhood structures and
their interactions [19]. More specifically, information content is an entropic mea-
sure of the variety of six simplistic landscape structures, partial information
content estimates the modality by analysing fitness fluctuations and informa-
tion stability is defined as the largest fitness fluctuation between neighbours.
The measures were originally defined in the discrete setting, where the notion of
a neighbourhood is well-defined. Information content and related methods have
been adapted for the continuous setting and applied to common benchmark
problems in 1 and 30 dimensions [7] and 2D BBOB problems [11].

3 Circle Packing Problems

Packing problems have been widely studied in the mathematical and operations
research literature, and in this paper we are interested in finding the optimal
packing of n equally sized circles into a unit square. The problem can be formu-
lated as finding the positions of n points inside the unit square such that their
minimum pairwise distance, dn, is maximized:

max dn = maxmin
i�=j

‖wi −wj‖2 (1)

wi ∈ [0, 1]2 i = 1, . . . , n (2)

From the point of view of evaluating metaheuristic optimization algorithms,
the problem given by (1) simply requires placing a set of n (2D) points within
the unit square (hence the optimization problem is over 2n continuous vari-
ables). A candidate solution is then a vector of the circle coordinates, i.e. x =[
w1

1 , w
1
2 , . . . , w

n
1 , w

n
2

]
.

CiaS packing problems can be considered as a simplified version of a number
of different real-world problems and have received a large amount of attention in
the mathematical, optimization and operations research literature (see [1] for an
overview). For most values of n below 60 and for certain other values, provably
optimal packings have been found using either theoretical or computational ap-
proaches [18]. The Packomania website [17] maintains a large list of the optimal
(or best known) packings for many values of n from 2 up to 10000, along with
references and other related resources.
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CiaS packing problems represent a challenging class of optimization problems.
In general, they cannot be solved using analytical approaches or via gradient-
based mathematical optimization. These problems are also believed to generally
contain an extremely large number of local optima. For the related problem of
packing equal circles into a larger circular region, [4] estimate that the number of
local optima grows unevenly but steadily, with at least 4000 local optima for n =
25 and more than 16000 local optima for n = 40. Special-purpose metaheuristics
designed for the problem [1,18] have been applied, and recent results using basic
continuous Estimation of Distribution algorithms (UMDAC and EMNA) on
problems up to n = 30 achieved fairly modest average performance values that
were between 5 and 25% worse than the global optimum values [3].

4 Experimental Results

In the following experiments we analyse the landscapes of CiaS packing problems
and evaluate the ability of landscape features to (robustly) characterise these
problems. In particular, we are interested in how well length scale analysis, dis-
persion, FDC, information content, partial information content and information
stability can capture distinguishing landscape structures in CiaS instances for an
increasing number of circles. Matlab source code is available at https://github.
com/RachM/cias.

Given a solution of n circles, the ordering of the circles in the solution vector
may be permuted without affecting dn. Hence, for any given solution, there are
n! symmetric equivalent solutions. Generating n! permutations for each solution
sampled is computationally infeasible for large n, and so in these experiments
we do not consider permutations of candidate solutions. We believe this is a
reasonable design choice - algorithms are unlikely to generate permuted solutions,
and so the landscapes we analyse here are the landscapes metaheuristics would
typically search.

In these experiments, each feature is calculated using 2000n solutions sam-
pled from U [0, 1]

2n
where n = 2, 3, . . . , 100. To evaluate the robustness of each

feature, 30 different samples are taken for each n. In the following we anal-
yse length scale distributions, p(r), and their respective entropies, h(r). p(r) is
estimated using a kernel density estimator from length scales calculated using
all combinations of solution pairs the sample. A Gaussian kernel is used where
the bandwidth is chosen by the ‘solve-the-equation-plug-in’ method [16], and
entropy is estimated numerically from p(r). Dispersion is typically calculated
using thresholds of 5% or less [6,12,10], and so in these experiments we use a
5% threshold and normalise values using bound-normalisation [10]. FDC is cal-
culated using the globally optimal solution [17], as well as the best solution in
the sample (we denote each estimator as FDCx∗ and FDCx̂∗ respectively). The
latter gives insight into how well FDC performs when the problem is treated as
a black-box. FDC is typically interpretted in the context of minimisation, so in
our FDC analysis, dn was multiplied by -1. Many of the problems have multiple
global optima resulting from the ability to rotate and/or reflect the circles in
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the global solution without affecting dn [17], and for such packings, FDCx∗ is
estimated using the distance between solutions and their closest global optima.
Information content and its variants are based on random walks, and since we
aim to compare features based on how effectively they characterise problems
given the same sample of solutions, we treat the uniform random sample as a
random walk. That is, the first solution sampled corresponds to the first step
in the walk, the second solution sampled corresponds to the second step and so
forth. This is similar to a random walk where steps are of size U [0, 1]2n in an
isotropic, random direction, with proposed solutions ‘accepted’ if they are within
the problem bounds. Information content and partial information content are es-
timated with ε = 0, meaning transitions in objective function are ‘neutral’ if and
only if the change in objective function value is 0. All results are reported using
the mean and standard deviation (error bars) for each feature over 30 trials.

4.1 Length Scale Analysis

The entropy of the length scale distribution, shown in Fig. 1, clearly characterises
and differentiates problems of different n. In addition, h(r) has very low standard
deviation across the different samples of the packings, which suggests that for
these problems, it is a highly robust landscape feature. Since h(r) is decreasing
as n increases, the information required to describe r is decreasing, meaning that
there is an increasing frequency of ‘similar’ length scales. This indicates that as n
increases, the diversity of the changes in objective function between two random
solutions is decreasing. Fig. 2(a) and 2(b) confirm this; Fig. 2(a) has a much
heavier tail than 2(b). In particular, we see that for n = 100, p(r) favours ‘small’
length scales compared to p(r) for n = 2. To examine this more closely, the ratio
of mode and 99th percentile is shown in Fig. 3. As n increases, both the mode
and 99th percentile of p(r) decrease, with the 99th percentile decreasing at a
faster rate. The range of r in Fig. 2(b) is considerably smaller than the range in
Fig. 2(a), indicating that the magnitude of objective function values for random
solutions decreases as n increases. For CiaS problems, the objective function
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Fig. 1. h(r) for CiaS problems as n increases
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Fig. 2. The change in shape of p(r) as n increases (note the change of scale in p(r))
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Fig. 3. Ratio of the mode and 99th percentile of r, confirming the significant change
in the shape of p(r) as n increases

value assigned to a solution is the maximum of the minimum distance between
any two circle centres. As n increases, the radius of the circles decreases, and so
for a random solution, we expect the minimum distance between two (uniform)
randomly distributed circle centres to also decrease. However, our analysis of
p(r) and h(r) provides compelling evidence that the decrease is complex and non-
uniform across solutions. If the decrease across solutions was uniform, the length
scale values would merely be scaled by a factor and we would see no change in the
shape of p(r). Hence, length scale analysis has uncovered two valuable insights
into the nature of CiaS packing problems; as we increase the number of circles we
pack, we can expect that 1) the packing of a (uniform) random configuration gets
better and that 2) moving from one (uniform) random configuration to another
will produce increasingly less significant changes in quality. The latter insight
is extremely useful; potential applications include the design of more effective
restart strategies for this problem and detecting algorithm convergence.
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4.2 Dispersion

The bound-normalised dispersion values for the CiaS problems is shown in Fig. 4
and reveals a relatively large decrease in dispersion from 2 circles to 10 circles. A
decrease in dispersion indicates that high quality solutions are increasingly closer
together. Hence, Fig. 4 indicates that high quality solutions for n = 10 are closer
together in S than high quality solutions for n = 2. Following the initial decrease
in dispersion values, the dispersion increases slightly from n = 10 to n = 40. Un-
fortunately, subsequent analysis (not shown here) of the distance distributions
for the fittest 5% of solutions for n = 20, 40 and 80 did not give insight into the
increase. Fig. 4 also shows that for n > 40, dispersion is decreasing, meaning
that high quality solutions are closer together as n increases. However, the de-
crease is very slight (approximately 0.0124), indicating an insignificant change in
the landscape structure captured by dispersion. Overall, the bound-normalised
dispersion has small variability between samples, however because the values are
very similar and non-unique across problems n > 10, dispersion has extremely
limited discriminative ability.
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Fig. 4. Bound-Normalised dispersion for CiaS problems as n increases

4.3 Fitness Distance Correlation

In general, both estimators of FDC (shown in Fig. 5(a) and 5(b)) have small
standard deviation (errorbars) over trials, which decreases as the number of cir-
cles increases. FDC values are typically small and negative for small n, and as n
increases, values increases towards 0. However, an exception of this trend occurs
at the transition from n = 2 to n = 3, where the FDC decrease dramatically;
FDCx∗ transitions from 0.1048 to -0.0649, while FDCx̂∗ transitions from -0.0265
to -0.0633. In the case of FDCx̂∗ , values then steadily increase towards 0 as n
increases. On the other hand, FDCx∗ shows erratic fluctuations in FDC as n
increases, although from approximately n = 40, the values steadily increase to-
wards 0 as n increases. The fluctuations generally correlate with problems where
symmetrical global solutions exist for at least one of the problems (e.g. the tran-
sition from n = 9 to n = 10). Furthermore, for n ≥ 40 packings (where the FDC
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Fig. 5. FDC for CiaS problems. Lines show the mean of the 30 trials, while error bars
indicate one standard deviation

values are rather stable) approximately 85% of the problems have assymetri-
cal global solutions. Fig. 5(a) and 5(b) generally indicate that for low numbers
of circles (i.e. n < 20), the fitness of random solutions is negatively correlated
with their distance to the global optimum, however, as the number of circles
increases, the fitness of random solutions has no correlation with their distance
to the global optimum. Here, a negative value of FDC indicates that in general,
the fitness of the sampled solutions gets better as their distance to the nearest
global optimum increases. Such deceptive structure can be caused by many fac-
tors (and their interactions), including the presence of many local optima and
multiple global optima, which CiaS problems are known to have [1]. The FDC
values alone give no further insight into such factors, nor do they adequately
differentiate between problems of varying n (particularly for n > 40).

Summarising the complex interaction between fitness and distance with a
correlation coefficient may obviously lose important structural information, and
so fitness-distance scatter plots can be used to visualise and better understand
FDC and the landscape structure. The landscape at n = 2 has a positive FDCx∗

value and yet a negative FDCx̂∗ value, and their fitness-distance scatter plots at
n = 2 are shown in Fig. 6(a) and 6(b) respectively. Fig. 6(a) shows a general lack
of correlation between fitness and distance to x∗, however there are a few subsets
of solutions that appear to be correlated. In particular, there is one area of strong
positive correlation (i.e. solutions in Fig. 6(a) where −dn > −0.8), indicating
that the fitness gets worse as the distance from x∗ increases. There are also two
areas of weak negative correlations (i.e. solutions where −dn < −1), where the
fitness gets better as the distance from x∗ increases. The positive correlation
is much stronger than the two weaker correlations, and thus overall there is
a positive FDCx∗ value (albeit a small one). Fig. 6(b) shows quite different
structure compared to Fig. 6(a), in particular, there are much larger distances
between solutions and x̂∗. This is likely due to the presence of multiple global
optima; Fig. 6(a) shows the distance between solutions and their closest (out of
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Fig. 6. Typical fitness-distance scatter plots for n = 2 circles

8 possible) global optimum, while Fig. 6(b) shows the distance between solutions
and the single best solution sampled. We expect solutions with ‘more choice’ in
their closest global optimum to have both smaller distances and a smaller range
of distances. The overall shape and trends in the data are also substantially
different. Fig. 6(b) shows little evidence of the weak negative correlations that
are present in Fig. 6(a). While there is perhaps a small subset of solutions with
positive correlation (i.e. solutions in Fig. 6(b) where the distance to x̂∗ is less
than 1), there is a prominent subset of solutions with a negative correlation
(i.e. solutions where the distance to x̂∗ is greater than 1), thus explaining why
FDCx̂∗ is negative overall (albeit small).

In general, the interesting structure shown in Fig. 6(a) and 6(b) is absent for
n ≥ 5. For example, the fitness-distance scatter plots for n = 9 and n = 10 are
shown in Fig. 7(a) and 7(b) respectively. While there are no obvious trends in
either Fig. 7(a) or 7(b), the overall shape of the data is different. Solutions in
Fig. 7(a) have a smaller distance to x∗ as well as a smaller range in the distances
to x∗ compared to solutions in Fig. 7(b). This is not surprising; global solutions
for n = 9 have 8 symmetries, compared with 1 for n = 10. Thus, while there are
no obvious differences in the trends in Fig. 7(a) and 7(b), the difference between
the number of global optima affects the value and range of distances obtained,
which is evidence for the fluctuation between FDCx∗ values.

4.4 Information Content, Partial Information Content and
Information Stability

The information content and partial information content were found to be highly
correlated (with a sample correlation coefficient of 0.999). Consequently, we only
report information content, shown in Fig. 8(a). The value of information con-
tent is roughly constant over all of the CiaS problems, with small fluctuations
as indicated by the scale on the information content axis in Fig. 8(a). Com-
parisons with the information content and partial information content of highly
rugged landscapes in [19] suggest that the values (and fluctuations) we obtained
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Fig. 8. Information-Theoretic Analysis for CiaS problems as n increases

are reasonable. Similar to other features, the standard deviation decreases as n
increases. The information content indicates that the problems do not signifi-
cantly change in ruggedness, however the technique has no discriminative ability
across the CiaS problems. Contrary to information content and partial informa-
tion content, the information stability, shown in Fig. 8(b), shows a clear trend as
n increases and has very small standard deviation between trials. In particular,
as n increases, the information stability exponentially decays towards 0. Infor-
mation stability is simply the largest change in objective function value between
two steps in the walk, and because the expected objective function values (for
uniform random solutions) are generally decreasing as n increases, it is no sur-
prise that the information stability is also decreasing as n increases. Thus, while
information stability can robustly differentiate the problem for changing n, it
is an artifact of the objective function and sampling methodology, rather than
the landscape structure. Furthermore, analysis of individual information stabil-
ity values gives limited insight into landscape structure. For example, at n = 2,
the average information stability over the 30 trials is approximately 1.13. This
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merely indicates that the largest change in objective function values (between
a step in the walk) is 1.13; no information regarding other changes in objective
function values, the distribution of objective function values or the interaction
of solutions and objective function values is captured.

5 Conclusions

All the landscape features analysed in this paper provided some insight into the
nature of CiaS packing problems, however dispersion, both estimators of FDC,
information content and partial information content were quite limited in their
ability to characterise and differentiate the CiaS packing problems. While infor-
mation stability was able to differentiate between problem instances, no further
insights into the structural nature of the problems were gained. In contrast,
length scale analysis provided valuable insights into the nature of the problem,
was statistically robust and is adept at characterising and differentiating be-
tween packings at a given value of n. Because length scale data is amenable to a
variety of statistical and information theoretic techniques, potentially even more
problem insights can be made from further analysis. Areas for future work in-
clude exploring other length scale analysis techniques, incorporating length scale
into algorithm prediction models and linking the structural insights gained to
particular algorithm behaviours.
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Abstract. Almost all problems targeted by evolutionary computation
are black-box or heavily complex, and their fitness landscapes usually
are unknown. Selection of the appropriate search algorithm and param-
eters is a crucial topic when the landscape of a given target problem
could be unknown in advance. Although several landscape features have
been proposed in this context, examining a variety of landscape features
is useful for problem understanding. In this paper, we propose a novel
feature vector for characterizing the fitness landscape using the local
landscape patterns (LLP). The proposed feature vector is composed by
the histogram of the fitness patterns of the local candidate solutions. We
extract the proposed LLP feature vector from well-known continuous
optimization benchmark functions and BBOB 2013 benchmark set to
investigate the properties of the proposed landscape feature and discuss
about its effectiveness.

Keywords: Fitness Landscape Analysis, Local Feature, Problem Un-
derstanding, Continuous Optimization Problem

1 Introduction

The main target problems of evolutionary computation are black-box or heav-
ily complex, and the landscape and characteristics of a target search space are
usually unknown. Therefore, the users of the evolutionary computation method
have to decide which algorithm is most suitable for their target problem by trial
and error or heuristic knowledge. If we are able to know the characteristics of the
landscape for the target problem in advance or during the search, it is helpful for
the selection of the appropriate algorithm or parameter setting. In this context,
the field of fitness landscape analysis [7,19] have been developed, and several
features for characterizing the landscape are proposed such as ruggedness [24],
fitness distance correlation (FDC) [3], evolvability [1,21], fitness cloud [17], neu-
trality [20], and dispersion metric [6].

FDC is a global feature which examines the correlation between fitness values
and the distance to the global optimum. Let xg be a global optimum, d(·, ·)
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be an appropriate distance function, di = d(xi, xg), and λ candidate solutions
X = {x1, · · · , xλ} are given, then FDC is defined as

FDC =
1
λ

∑λ
i=1(f(xi)− f̄)(di − d̄)

σFσD
, (1)

where f̄ and d̄ indicate the average values of fitness and distance, respectively,
and σF and σD denote the standard deviation of fitness and distance, respec-
tively. Note that the global optimum is usually unknown, although it can be
given in the original definition of FDC. Therefore the global optimum is usually
approximated by using finite candidate solutions such as xg = argminx∈X f(x)1.
FDC is one of the useful landscape features and applied various problems such
as combinatorial [10] and continuous [14] ones.

Dispersion metric [6] is defined by average pairwise distance between the q
best points.

DISP =
1

q(q − 1)

q∑

i=1

q∑

j=1,j �=i

d(xrki , xrkj ), (2)

where xrki
denotes the i-th best point among λ samples. Dispersion metric is

mainly applied to analyze the continuous optimization problems [6,13,15]. In
order to compare the values between different search space scales, the candi-
date solutions are normalized to the [0, 1]n when the dispersion is computed in
practice [15], where n is the problem dimension.

Fitness cloud [17] is represented as a scatter plot of the fitness values of par-
ents against those of their offsprings (or neighbors), and negative slope coefficient
(nsc) [23] is a measure of the problem hardness which is extracted from a plot of
fitness cloud. Motif difficulty (MD) is introduced in [4] as a predictive difficulty
measure for evolutionary algorithms by extracting motif properties from directed
fitness landscape networks (FLNs). Concretely, the subgraphs of FLNs are classi-
fied into three types of classes, neutral, guide and deceptive, and then the predic-
tive difficulty measure is calculated based on the number of these motifs in FLN.
Recently, Morgan and Gallagher [11] have proposed a landscape feature called
length scale and applied it to the analysis of BBOB 2010 benchmark functions.
Length scale is defined by dividing the difference of the fitness of two candidate
solutions by their distance. They conclude length scale is one of the promising
features for the continuous optimization problems. Mersmann et al. propose an
approach called exploratory landscape analysis which cheaply and automatically
extracts problem properties from a concrete problem instance [9], and they inves-
tigate the relationship between low-level features and expert knowledge for the
benchmark problems [8]. Smith-Miles and Tan [22] extract various features from
traveling salesman problems (TSP) and investigate the relationship between the
performance of several search algorithms and the problems. Muñoz et al. [13]
present a neural network model for predicting the performance measure of the
search algorithm. The model is input the landscape features and the algorithm
parameters and outputs the predicted number of function evaluations for solving
a given problem.

1 This is the case of the minimization problem.
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We can combine several landscape features to investigate the characteristic
of a target problem. We, however, believe that it is an attractive approach to
directly extract the landscape feature as a vector form which represents various
characteristics of the problem. In this paper, we propose a novel feature vector for
characterizing the fitness landscape, which uses the fitness patterns of the local
candidate solutions. Then we extract the proposed feature from the well-known
benchmark functions and BBOB 2013 benchmark set for continuous optimization
problem to confirm its properties and effectiveness.

The next section of this paper presents our proposed feature, local landscape
patterns (LLP), for characterizing the fitness landscape. Then, in Section 3, we
extract the LLP feature vector from several continuous optimization problems
and discuss about the experimental results. Finally, in Section 4, we describe
our conclusions and future work.

2 Landscape Feature Using Local Landscape Patterns

Definition of Fitness Landscape. In this paper, we refer to the definition
of the fitness landscape in [19]. Let S be a set of all candidate solutions (or
a search space), f : S → R be a fitness function, and d : S × S → R be a
distance function between the candidate solutions. Then the fitness landscapeF
is defined as a pair of functions of f and d in the candidate solutions S , namely
F = (S , f, d). Let consider the continuous optimization without constraints,
then the candidate solutions are S = R

n where n is a dimension of the search
space, and the Euclidean distance is usually used as the distance function d. In
the context of evolutionary computation, it is impossible to get the analytical
form of f or check for the fitness values and distance of all candidate solutions.
We therefore consider to estimate the fitness landscape or its characteristics by
only using a given finite sample. Let X be a set of sampled candidate solu-
tions from S by the specific sampling method, then the approximated fitness
landscape can be represented as F̄ = (X, f, d).

Note that F̄ heavily depends on the sampling method of X and may be
quite different from F if the biased sampling is used. For example, the fitness
landscape is viewed as a unimodal function when all candidate solutions are
sampled from one basin area even if f is a multi-modal function. In other words,
F̄ represents the fitness landscape from the viewpoint of the finite samples. In
practice, we have to estimate the landscape using sampled candidate solutions
and exploit it for selection of algorithm or parameters. Morgan and Gallagher
discuss about the sampling issue in dispersion metric in [12].

Local Landscape Patterns. Most conventional landscape features such as
FDC and dispersion metric are summarized as a scalar value. It may be difficult
to represent the exhaustive features of the fitness landscape, and the multiple
different landscape features are used to characterize it [8,13,22]. It is, therefore,
attractive to directly extract the landscape feature as a vector which represents
various characteristics of the problem. We consider to characterize the fitness
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Fig. 1. Conceptual image of the procedure for calculating the LLP feature. λ and M
indicate the size of candidate solution sample X and the neighborhood size, respec-
tively.

landscape in a form of a feature vector by using the finite samples. The rela-
tionship between the fitness values and the distance of the candidate solutions
is the most important characteristic, and the neighborhood structure is also an
important property for almost all evolutionary algorithms. From this observa-
tion, our proposed feature focusses on the fitness patterns of the local candidate
solutions.

Let X = {x1, · · · , xλ}, xi ∈ S be a set of the λ sampled candidate solutions,
and xi:j(1 ≤ j ≤ λ − 1) denotes the j-th nearest neighbor candidate solution
of the i-th candidate solution xi measured by the distance function d. Then the
local landscape pattern (LLP) l(xi) around xi is defined by using the fitness
values of the M(> 0) nearest candidate solutions from xi as

l(xi) =

M∑

j=1

δij2
j−1, (3)

δij =

{
1 (if f(xi) better than f(xi:j))

0 (otherwise).
(4)

where f(xi:j) means the fitness value of the j-th nearest neighbor candidate
solution of xi. The value of l(xi) is an integer within the range of [0, 2M ] and in-
dicates the pattern number of xi. The pattern number corresponds to the binary
number of the fitness pattern. Let L = {l(xi)|1 ≤ i ≤ λ} be a set of the local
landscape patterns. To summarize these local landscape patterns, we construct
the histogram of L. As we employ the histogram of L as a feature vector, the
value of l(xi) is irrelevant for the eventual feature vector. Consequently, the LLP
feature vector LLP(X) is given by the normalized histogram of L, and the k-th
element of LLP(X) is computed by Hk(L)/λ, where Hk(L) denotes the k-th
element of the histogram of L. The elements of LLP(X) are divided by λ to
normalize the scale of the bin values caused by the different sample size. Note
that the number of the bins in the histogram is 2M , namely the LLP feature is
not a scalar but a vector form for representing the landscape features.

The conceptual image of the calculation of the LLP feature is shown in Fig. 1.
In this figure, the size λ of candidate solution sample X and the neighborhood
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size M are set to 7 and 2, respectively. The two nearest neighbors of x1 are x2

and x4, namely x1:1 = x2, x1:2 = x4, and f(x1:1) = f(x2) > f(x1), f(x1:2) =
f(x4) > f(x1). Then the local landscape pattern of x1 is computed by l(x1) =
1 · 20 + 1 · 21 = 3, and it is added to the histogram bin of 3. Analogously, other
local landscape patterns l(x2) · · · l(x7) are calculated, then the histogram feature
can be obtained.

In order to extract the LLP feature vector from the given finite candidate
solutions, it is only necessary to define the fitness function f and the distance
function d among the candidate solutions. It means the LLP feature can be
extracted from various problem domains such as continuous or combinatorial
optimization problems. One of the advantages of the LLP feature is its invariant
property under monotonicity-preserving transformations of f because the LLP
feature only uses the magnitude relation of the fitness values. For example, the
LLP feature vectors on such as f(x) = xTx and f(x) = exp(xTx) are same
without any normalization of the fitness function values.

The concept of the proposed method which uses the histogram of the local
patterns has succeeded in the computer vision community, e.g. bag-of-features
using SIFT descriptors [2]. The LLP feature shares the common concept with the
image feature of the local binary patterns (LBP) [18] with respect to focus on the
local relationship between the fitness values. LBP can be, however, applicable
only for the two dimensional pixel spaces but the fitness landscape is always high
dimensional and it may not even be Euclidean space.

3 Experiments and Results

To investigate the properties and the effectiveness of the LLP feature, we apply
it to the fitness landscape of the continuous minimization problems defined as
argminx∈Rn f(x) and use the Euclidean distance as the distance function between
the candidate solutions. Namely, the search space S described in Section 2 is
S = R

n and the distance function d is the Euclidean distance in the experiments.

3.1 Basic Properties of LLP

First of all, we consider two dimensional problems whose landscape can be easily
visualized. We generate λ = 100 candidate solutions by drawing random num-
bers uniformly from [−3, 3]2 and then extract the LLP feature by the setting
of the neighborhood size M = 4. Figure 2 (a) and (b) show the visualized two
dimensional landscapes, the points of the candidate solutions, and the extracted
histogram of the LLP on the sphere and Rastrigin functions, respectively. From
these figures, we can see the shapes of the histogram are different between the
unimodal (sphere) and the multi-modal (Rastrigin) functions. The pattern 0 or
15 indicates all fitness values of the neighborhood solutions are worse or better
than that of the focused candidate solution. In Rastrigin function, the patterns
of 0 and 15 (which corresponds to the binary number 0000 and 1111, respec-
tively) have a large value because the points on the basin and ridge tend to
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Fig. 2. Visualized fitness landscapes and the sampled candidate solutions for calculat-
ing the LLP feature (left), and the histogram of the LLP (right) on (a) Sphere and (b)
Rastrigin functions, respectively

become the best and the worst point in the local region, respectively. On the
other hand, the patterns which have intermediate value such as 7 (which corre-
sponds to the binary number 0101) mean that there are both better and worse
neighborhood candidate solutions than the focused one. As a lot of the local
regions in the sphere function are the monotonous landscape (i.e. the fitness
value monotonically decreases or increases toward a certain direction), the pat-
ters which have intermediate value are increased. The shape of the histogram of
the sphere function becomes like in Fig. 2 (a) in the end.

Next, we extract the LLP feature vectors from well-known six continuous
benchmark functions, Sphere, Ellipsoid, Rosenbrock, Ackley, Schaffer, and Ras-
trigin functions. In this experiment, the problem dimension of each function n
is 20, and the 100 different sets of the candidate solutions are generated for cal-
culating the proposed feature. The candidate solution set is sampled by drawing
random numbers uniformly from [−3, 3]n for all benchmark functions. And the
neighborhood size of M = 4 is employed in this experiment. Since our proposed
feature is a form of vector, principal component analysis (PCA) is applied to
reduce the dimension from 2M = 16 to 2 which is easy to be visualized.

Figure 3 illustrates the two dimensional plots using first and second principal
components with the varying sample size λ = 100, 500, 1000, 2000. When the
sample size is 100, it is difficult to discriminate each function. We can, however,
observe each function is clustered when the sample size becomes larger. Both the
sphere and ellipsoid functions are unimodal but the ellipsoid is ill-conditioning
function. Therefore, we can regard that the difference between these functions
is the range of the landscape because the LLP feature uses only the rank of
fitness values, and the size of locally monotonous (or basin) regions becomes
different if the same sampling region is used. This is the reason why the sphere
and ellipsoid functions become different plots. From this result, we can conclude
the LLP feature vector has a potential to discriminate the fitness landscape.

A large number of the candidate solutions cause the increase of computational
cost. The LLP feature uses the distance between the candidate solutions, and their
computational order is O(λ2). Of course, it requires the fitness evaluations for λ
candidate solutions.Obviously, there is a tradeoff between the computational costs
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Fig. 3. Two dimensional plots using first and second principal components of the LLP
feature vectors extracted from the 20 dimensional benchmark functions with the vary-
ing sample size λ = 100, 500, 1000, 2000. The 100 different sets of candidate solutions
with the same size are generated for each function.

and the knowledge gain. We can observe that it seems to be sufficient to discrimi-
nate the landscapes by the 2000 samples in this case. Note that it may have addi-
tional information in the hidden dimension because Fig. 3 shows the reduced two
dimensional feature by PCA.

3.2 Comparison with Conventional Landscape Features

To confirm the effectiveness of the LLP feature, we compare it with the con-
ventional landscape features, fitness distance correlation (FDC) [3] and disper-
sion metric [6]. The parameter of dispersion metric is set to q = �0.1λ�. The
sampling method of the candidate solution sample X is same as the previous
experiment. Figure 4 illustrates the plots of FDC and dispersion metric ex-
tracted from the 20 dimensional benchmark functions with the varying sample
size λ = 100, 500, 1000, 2000. The tendency of the plots is similar to that of the
LLP feature. When the sample size is small, the boundary of each function is
not clear. The ellipsoid and Rastrigin functions are clustered far away from the
other functions. Further the relative position of each plotted function in the two
dimensional space is very similar between Fig. 3 and 4. From this result, at least
the LLP feature vector has the same ability of characterizing and discriminating
the fitness landscape as that of FDC and dispersion metric.

We then conduct the experiment of clustering to quantitatively evaluate the
quality of each feature. We use k-means as the clustering method and 2M di-
mensional feature vector is used in the proposed LLP feature. The number of
the clusters is set to 6 which is the same number of the benchmark functions.
To evaluate the clustering quality, we compute purity and adjusted rand index
(ARI) [16] as the performance measure by referring to an ideal clustering result.
Purity focuses on the frequency of the most common category in each cluster,
and ARI is based on the similarity between two data clustering results. The
range of both measures is [0, 1] and the higher value of them indicates the better
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Fig. 4. Two dimensional plots using FDC and dispersion metric extracted from the 20
dimensional functions with the varying sample size λ = 100, 500, 1000, 2000. The 100
different sets of candidate solutions with the same size are generated for each function.

clustering performance. Table 1 shows the purity and ARI using the LLP and
conventional features with the varying problem dimension of n = 10, 20, 30, the
sample size of λ = 500, 1000, 2000, and the neighborhood size of M = 3, 4, 5, 6.
In all settings, the LLP feature outperforms the conventional features, FDC and
dispersion metric, in terms of purity and ARI. From this table, we can see the
most stable and best setting is M = 4 and λ = 2000. The performance basically
improves as the sample size becomes larger. This result is intuitive understand-
able because a large number of samples are useful to grasp the detailed land-
scape structure. Consequently, we can consider the LLP feature vector is one of
the promising landscape features for discriminating the continuous optimization
problems.

3.3 Fitness Landscape Analysis of BBOB 2013 Functions

Finally, we apply our LLP feature to analyze one of the major benchmark func-
tion sets, BBOB 20132, which contains the 24 noiseless benchmark functions. In
this experiment, the problem dimension of each function is 20 and the candidate
solutions are sampled by drawing random numbers uniformly from [−5, 5]n. The
range of the search space is based on the definition of BBOB 2013 benchmark
functions. The neighborhood size M = 4 and the sample size λ = 2000 are used
for extracting the LLP features.

Table 2 shows the clustering result by using k-means clustering, which the
number of the clusters is set to 6. The cluster 1 and 2 contain the unimodal func-
tions except Schwefel function (f20). The reason why the multi-modal Schwefel
function is assigned to the cluster 1 is that its landscape is macroscopically sim-
ilar to the sphere function with the exception of near the optimum. The cluster
3 consists of the multi-modal functions such as Rastrigin and Schaffers variants
and highly conditioned functions (f6, f7, and f12), and the cluster 5 is composed

2 http://coco.gforge.inria.fr/doku.php?id=bbob-2013

http://coco.gforge.inria.fr/doku.php?id=bbob-2013
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Table 1. Comparison of purity and ARI for the clustering results. Each feature is
extracted from the 10, 20, and 30 dimensional benchmark functions with the varying
sample size λ = 500, 1000, 2000. The neighborhood size varies as M = 3, 4, 5, 6 for the
LLP feature, and the 100 different sets of the candidate solutions with the same setting
are generated for each function. The bold value indicates best performance among the
varying parameters.

LLP (M=3) LLP (M=4) LLP (M=5) LLP (M=6) FDC & DISP

λ 500 1000 2000 500 1000 2000 500 1000 2000 500 1000 2000 500 1000 2000

Problem dimension = 10

Purity 0.74 0.75 0.84 0.75 0.76 0.87 0.77 0.76 0.84 0.75 0.78 0.88 0.60 0.65 0.68
ARI 0.59 0.64 0.74 0.61 0.64 0.77 0.62 0.64 0.72 0.58 0.66 0.77 0.39 0.43 0.45

Problem dimension = 20

Purity 0.70 0.81 0.86 0.67 0.82 0.88 0.70 0.82 0.88 0.71 0.80 0.88 0.65 0.72 0.75
ARI 0.50 0.66 0.75 0.46 0.70 0.79 0.51 0.68 0.79 0.52 0.66 0.79 0.46 0.53 0.61

Problem dimension = 30

Purity 0.74 0.80 0.91 0.76 0.83 0.93 0.72 0.83 0.92 0.73 0.83 0.91 0.67 0.72 0.74
ARI 0.54 0.66 0.82 0.58 0.70 0.85 0.53 0.69 0.84 0.53 0.68 0.83 0.45 0.55 0.59

by the multi-modal functions and Rosenbrock family. These two clusters contain
both the unimodal and multi-modal functions. All the functions in the cluster 4
and 6 are highly rugged multi-modal function. Original Rosenbrock (f8) and its
rotated version (f9) are assigned different clusters because the sampling region
is not rotated along with the rotation of the fitness function and then the local
landscales of the samples become different. This clustering result is similar with
the qualitative grouping by the human observation.

Table 3 shows the expected running time (ERT) of BIPOP-aCMA [5] for
reaching precision Δf = 10−7 in the BBOB 2013 result3 for 20 dimension in
BBOB 2013. BIPOP-aCMA has only succeeded to reach the target precision
at least once all benchmark functions. From Table 2 and 3, the functions in
the cluster 2 are relatively easy to solve for BIPOP-aCMA because the ERT of
these functions is less than 2.0 × 104. However, other clusters are not so easily
understandable with respect to the ERT.

At the end of this section, we investigate whether our proposed LLP feature
has the ability to predict the ERT in the manner of the supervised learning.
We construct a linear regression model and predict the values which are taken
the common logarithm of the ERT (log10 ERT). Each feature is calculated using
the 2000 candidate solutions, and the neighborhood size of the LLP is 4. The
LLP feature is reduced to two dimensions by PCA. To evaluate the general-
ized error, we adopt leave-one-out cross-validation. The generalization error of
the root mean squared error (RMSE) of the LLP feature is 0.961, while that
of the conventional landscape features (FDC and dispersion metric) is 1.13. Al-
though the LLP feature outperforms the conventional feature, it is not so large

3 http://coco.gforge.inria.fr/doku.php?id=bbob-2013-results

http://coco.gforge.inria.fr/doku.php?id=bbob-2013-results
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Table 2. Clustering result for the BBOB 2013 benchmark functions by k-means clus-
tering using the LLP feature. Each feature is extracted from the 20 dimensional bench-
mark functions with the sample size λ = 2000. The neighborhood size M is set to 4.

Cluster 1 Cluster 2 Cluster 3
Sphere (f1) Ellipsoid (f2) Rastrigin (f3)
Original Rosenbrock (f8) Linear Slope (f5) Attractive Sector (f6)
Sharp Ridge (f13) Rotated ellipsoid (f10) Step Ellipsoid (f7)
Different Powers (f14) Discus (f11) Bent Cigar (f12)
Schwefel (f20) Non-separable Rastrigin (f15)

Schaffers F7 (f17)
Ill-conditioned Schaffers (f18)

Cluster 4 Cluster 5 Cluster 6
Büche-Rastrigin (f4) Rotated Rosenbrock (f9) Weierstrass (f16)
Gallagher’s Gaussian Composite Katsuura (f23)
101-me Peaks (f21) Griewank-Rosenbrock (f19)
Gallagher’s Gaussian Lunacek bi-Rastrigin (f24)
21-hi Peaks (f22)

Table 3. Expected running time (ERT) of BIPOP-aCMA [5] for reaching the precision
Δf = 10−7 in the BBOB 2013 result. The problem dimension is 20.

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12
ERT 6.9e2 1.1e3 4.1e3 1.5e4 4.1 9.3e3 2.5e4 4.9e3 1.7e4 1.3e4 7.7e3 2.1e4

f13 f14 f15 f16 f17 f18 f19 f20 f21 f22 f23 f24
ERT 3.3e4 1.1e4 3.5e5 2.6e5 8.9e4 2.0e5 6.3e6 5.3e6 7.6e5 6.5e6 1.3e6 1.4e8

improvement. We, therefore, conclude at least the LLP feature has the compa-
rable ability for predicting the problem difficulty to the conventional features.

4 Conclusion and Future Work

In this paper, we propose a novel landscape feature vector, LLP, which focusses
on the local fitness patterns. The proposed method constructs the histogram
of the local landscape patterns and extracts the feature as a vector form. The
advantage of the LLP feature is that it is possible to extract landscape features
by unified procedure, i.e. it has sufficient characterizing performance of the fit-
ness landscape without combining the multiple landscape features. We extract
the proposed LLP feature vector from the well-known benchmark functions, and
show the effectiveness of it through the comparison with existing landscape fea-
tures. Then we extract the LLP feature vector from the BBOB 2013 benchmark
functions and present the results of the clustering and the prediction of ERT.
The clustering results are understandable from the viewpoint of the qualitative
properties of each function, and predicting the performance of the ERT outper-
forms the conventional landscape features.

In this paper, we compared the proposed LLP feature with FDC and dis-
persion metric. The comparison with other landscape features such as length
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scale [11], evolvability [1,21], and fitness cloud [17] should be conducted to verify
the effectiveness of the LLP feature. Further, overall the results depend on the
data analysis and the sampling methods used. It may be interesting to investigate
the compatibility between the LLP feature and the data analysis techniques. We
should attempt to use more sample size because the sample sizes λ used up to
2000 in the experiments might be insufficient for the 20 dimensional problems.
As we noted in Section 2, the sampling method and the sample size have a big
impact to the landscape features. One possible work is to generate the concate-
nated LLP feature using different sample sizes or sampling methods to extract
the landscape characteristics from various viewpoints.

In the future, we plan to apply the proposed LLP feature to another type of
problems such as combinatorial problems and real-world problems, and investi-
gate the properties and effectiveness of it. We are able to use and investigate the
several standard statistics as a local feature such as the number of the improving
solutions and the probability to improve instead of the fitness patterns of the
local candidate solutions. Furthermore, we will develop an efficient algorithm
which switches the strategy parameters based on the LLP feature.
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Abstract. Many advanced population initialization techniques for Evo-
lutionary Algorithms (EAs) have hitherto been proposed. Several stud-
ies claimed that the techniques significantly improve EAs’ performance.
However, recent researches show that they cannot scale well to high di-
mensional spaces. This study investigates the reasons behind the failure
of advanced population initialization techniques in large-scale problems
by adopting a wide range of population sizes. To avoid being biased to
any particular EA model or problem set, this study employs general pur-
pose tools in the experiments. Our investigations show that, in spite of
population size, uniformity of populations drops dramatically when di-
mensionality grows. The observation confirms that the uniformity loss
exist in high dimensional spaces regardless of the type of EA, initializer
or problem. Therefore, we conclude that the weak uniformity of the re-
sulting population is the main cause of the poor performance of advanced
initializers in high dimensions.

Keywords: Population Initialization, Large-Scale Optimization, Evolu-
tionary Algorithm, Uniformity.

1 Introduction

Evolutionary Algorithms (EAs), like all other population-based algorithms, start
with an initial population. There is a common belief that having better starting
points may help algorithms to achieve better final results [2]. Based on this intu-
ition, several advanced population initialization techniques have been proposed.
Some of these techniques employ domain knowledge [7]. In many others, how-
ever, no expert knowledge is involved in the algorithms. This makes the later
category more promising in dealing with general black-box problems [9]. In such
a case, researchers aim to improve existing techniques to produce more uniform
populations enhancing coverage over entire search space.

A large body of literature is devoted to compare different population initial-
ization techniques on a variety of benchmarks [8]. Although there is still little
agreement on which techniques are superior in dealing with unforeseen prob-
lems, almost all previous studies admit that advanced techniques perform at
least better than simple random number generators. It is strongly suggested
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that the performance of EAs can be significantly improved by simply switching
to more advanced population initialization techniques [2].

Recently, some researches have been published on the scalability of popula-
tion initializers to large-scale domains [8]. The studies investigate whether the
claimed advantages of using recent techniques are still significant when dimen-
sionality of problems is beyond hundred variables. In [7], for example, authors
show that even in high dimensional spaces some advanced population initializa-
tion techniques improve EAs performance. However, the effectiveness of these
techniques degrades when dimensionality increases from 100 to 1,000. Further-
more, some of the studied techniques perform significantly worse than simple
random number generators [7]. Another recent study indicates that when EA
parameters are set properly, the improvement coming from advanced initializers
becomes very marginal [8]. The study also states that size of initial population
plays a more important role than the way it is generated.

Experiments in previous studies are well conducted and some advanced sta-
tistical tests confirmed validity of the results. Nevertheless, two questions still
remain unanswered: 1) Whether the previous findings can be generalized to
other EAs and problem sets? 2) What causes the poor performance of advanced
initializers in large-scale spaces?

In this study we aim to answer the above mentioned questions. In particular,
we adopt general purpose tools to measure uniformity of populations generated
by different techniques to study the effect of dimensionality on the performance
of initializers. The employed measures are carefully selected to guarantee the
generality of the findings regardless of the type of EA or optimization problem.

The rest of the paper is as follows. Section 2 briefly introduces some of the
widely used initialization techniques in the EA domain. It also shortly presents
a few performance measures. Section 3 discusses the experimental setup and
provides a detailed discussion about obtained results. Finally, Section 4 concludes
the paper.

2 Background

This section briefly discusses advanced population initialization techniques in
EAs, as well as general measures assessing their performance. Considering the
wide variety of initialization techniques, we select some of the most widely cited
methods from each category to maximize the generality of the study. Further-
more, to avoid being biased to any particular EA model or problem set, our
main focus is on general measures. As a consequence, the findings can be easily
generalised to all EAs and real-value optimization problems.

A recent survey on population initialization techniques categorized them based
on three aspects: generality, compositionality and randomness [9]. From the gen-
erality point of view, population initialization techniques fall into generic and
application-specific categories. In this paper, we only study generic techniques
for the sake of generality. Based on the compositionality aspect, the techniques
are divided into non-compositional, only having one core component, and com-
positional, e.g., hybrid and multi-step techniques [10]. For the sake of simplicity
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and clarity, we focus more on non-compositional techniques. However, we ex-
pect almost similar results from compositional techniques as they inherit the
advantages and disadvantages of their parent techniques. Finally, initialization
techniques are categorized as stochastic or deterministic based on the level of
randomness exist in the resulting populations. The next two subsections dis-
cuss these categories in details. The third subsection, however, describes quality
measures we chose for the evaluation of all initialization categories.

2.1 Stochastic Initial Populations

Following the criterion proposed in [9], we consider an initializer as a stochastic
technique if its output depends on an initial seed. The most well-known subcate-
gory of stochastic techniques is Pseudo-Random Number Generator (PRNG) [15].
These techniques are widely used in computer programs and simulations to gen-
erate point sets reflecting some attributes of truly random sequences, e.g., high
independence and low correlation.

Many variations of PRNGs have been implemented. Indeed, at least one in-
stance of them is available in every programming language. In addition to their
versatility, the scalability of PRNGs make them the most widely used population
initialization techniques in the EA domain. WELL [6], KISS [12] and Mersenne
twister [13] are just a few examples of PRNGs to name.

The family of Chaotic Number Generators (CNGs) is another category of
stochastic point generators which has recently attracted a lot of attention in the
EA field [9]. Technically, chaos is a property of some dynamic systems which
makes them very sensitive to initial condition and hardly predictable. Gener-
ally speaking, CNGs are iterative/recursive algorithms that generate sequences
reflecting the properties of chaotic systems.

The algorithms of CNGs are very simple. They start with a randomly chosen
initial seed and apply a function (so called chaotic map) on it. Then, the map is
applied on the resulting numbers several times to generate a chaotic sequence.
More formally, a one dimensional chaotic map works as follows:

{
x0
i,j = an arbitrary initial seed,

xk+1
i,j = f(xk

i,j ;µ)
(1)

where xk
i,j is the jth variable of the point number i in the kth iteration of the

algorithm. In Equation (1), µ denotes set of parameters of chaotic map f .

2.2 Deterministic Initial Populations

Based on the criterion proposed in [9], we consider an initializer as determinis-
tic if its output does not depend on any initial seed. As a result, deterministic
algorithms are those which always produce exactly the same population. Un-
like stochastic techniques, these algorithms do not adopt any random element.
Instead, they aim to generate evenly distributed points all over space.
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There are many ways of producing uniform population. A large family of
these techniques called Quasi-Random Sequence is widely used in Monte Carlo
integration [19]. They aim to generate numbers in a unit hypercube such that
when the size of population increases, its uniformity converges to the optimum
value. Since discrepancy is the main measure used in evaluation of quasi-random
sequences, they generally known as low-discrepancy point generators. Halton [4]
and Sobol [1] sets are some of the most well-known low-discrepancy techniques.
Subsection 2.3 provides more details about discrepancy measures.

Another family of space filling algorithms, generally called Uniform Experi-
mental Design, is also widely used in initialization [17]. These techniques usually
sample a small number of points from a large number of possibilities such that
the uniformity of the sampled population is maximized. Beside the uniformity
of population, some of these algorithms can produce point sets having extra
properties such as orthogonality, i.e., meaning points are dimensionally indepen-
dent [11]. These algorithms are very popular in computer simulations both in
discrete and continuous spaces [3]. Latin hypercube [14], good lattice points [18],
uniform design [16] and orthogonal design [11] are examples of this family of
initializers. Similar to quasi-random sequences, the performance of uniform ex-
perimental designs can be assessed using discrepancy measures.

2.3 Quality Measures

Without a set of general and practical measures, population initialization tech-
niques cannot be evaluated or compared. Therefore, many different tools have
been proposed to measure quality of a given population from different aspects,
e.g., uniformity or randomness. However, many of them are not applicable in
general studies due to the following reasons:

1. Some of the quality measures are highly subjective. The values of these meth-
ods are sensitive to various factors such as the properties of benchmarked
problems, the employed EA models and other parameters (e.g., the maxi-
mum number of function evaluations) [8]. For example, final fitness value
and success rate are both of this kind. The sensitivity of the measures to
those factors causes the generality of the findings to be limited by the num-
ber of studied problems, employed EAs and levels of variation in parameter
settings. As a result, the findings from a limited number of experiments can
hardly be generalised to other situations.

2. Some quality measures are only applicable to specific algorithms. For ex-
ample, there are well-known measures of randomness, unpredictability and
incompressibility which can be used to evaluate stochastic techniques [9].
However, these measures cannot be used to assess the performance of deter-
ministic techniques due to the lack of random elements in their algorithms.

3. Some measures are computationally expensive [3]. These methods may not
be applicable in large-scale domains. Since the ultimate goal is to study the
performance of initializers in producing many high dimensional points, we
need to find measures which are efficient in terms of memory usage and time
complexity.
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Considering the above limitations, a sub-class of discrepancy measures which
has analytic formulas is studied in this research. They are selected because of
three reasons: 1) Their values are not affected by the features of benchmarked
problems, employed EAs or their parameters. 2) They can be easily applied to all
kinds of real-value populations. 3) they are faster than similar iterative/recursive
algorithms which makes them ideal for large high dimensional populations.

Discrepancy value, in general, indicates the level of non-uniformity of a point
set. This means more uniform populations have smaller discrepancy values. Note
that uniformity is a desirable property of initial population which plays an im-
portant role in the performance of EAs when dealing with black-box problems.
Therefore, many researchers try to develop new techniques to have higher unifor-
mity or less discrepancywhen no prior knowledge is available about the landscape.

One of the early versions of discrepancy measures is widely known as Lp-
discrepancy [3]. The first variants of Lp-discrepancy need many axillary random
samples to be able to measure the discrepancy of a given population. This lim-
itation makes them computationally expensive to calculate the discrepancy of
large populations in high dimensional spaces. Warnock [3], for the first time,
gave a novel analytic formula to compute L2-discrepancy which resulted in a
much faster algorithm. The formula is as follows:

(D2(P))2 = 3−D− 21−D

N

N∑
k=1

D∏
l=1

(1−x2
k,l)+

1

D2

N∑
k=1

N∑
j=1

D∏
i=1

[1−max(xk,i, xj,i)] (2)

where D and N are dimensionality and size of population P , respectively.
To improve the sensitivity and accuracy of L2-discrepancy, several expansions,

such as star, modified, symmetric, wrap-around and centred L2-discrepancies,
have been proposed [3]. In this study, we focus on centred L2-discrepancy (CD)
because it is more accurate in identification of differences between populations [5].
The analytic formula of CD is as follows:

(CD(P))2 =

(
13

12

)D

− 2

N

N∑

k=1

D∏

j=1

(

1 +
1

2
|xk,j − 0.5| − 1

2
|xk,j − 0.5|2

)

+
1

N2

N∑

k=1

N∑

j=1

D∏

i=1

[

1 +
1

2
|xk,i − 0.5| + 1

2
|xj,i − 0.5| − 1

2
|xk,i − xj,i|

]

, (3)

where D and N are dimension and population size of population P , respectively.

3 Experiments

This section discusses the experiment studies, then reports the obtained results
and finally analyzes the findings.

3.1 Experiments Setup

This study comprises of two parts. In the first part, we study the trend of
population uniformity when generated by common PRNG, i.e., the simple rand
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function. Since population size plays an important role in the uniformity of
population, we also investigate its effects. In fact, we aim to answer two questions
in this part: 1) How much the uniformity of a population can be affected by
dimensionality? 2) Is it possible to enhance the uniformity of initial population
in high dimensional spaces by increasing the population size?

In the second part of the experiments, we compare the performance of ad-
vanced initialization techniques with a commonly used PRNG technique. We
repeat this experiment in a variety of low, medium and high dimensional spaces.
The questions to be answered in this part are: 1) Can adopting advanced initial-
ization techniques significantly improve population uniformity? 2) How sensitive
are the advanced initializers to the variation in population size?

In the second part, we study three stochastic and three deterministic popu-
lation initialization techniques. Table 1 lists the chosen techniques. More infor-
mation on these techniques are provided in Section 2.

Table 1. Selected Population Initialization Techniques

Abbreviation Name Category Subcategory Ref.

RNG Mersenne twister stochastic pseudo-random [13]
SIN sine chaotic map stochastic chaotic number [20]
TNT tent chaotic map stochastic chaotic number [7]
HLT Halton set deterministic low-discrepancy [4]
SBL Sobol set deterministic low-discrepancy [19]
GLP good lattice point deterministic uniform design [18]

As mentioned earlier, each time a stochastic technique is executed, it generates
a different population due to its sensitivity to the initial random seed. Therefore,
the quality of the resulting population may slightly differ from time to time. To
achieve a more solid conclusion, we run each stochastic technique 25 times and
average their quality. Note that each run of an algorithm is independent from
the other runs due to the use of explicit initial seeds.

To have similar procedures for both categories, but avoiding the production
of exactly the same populations for several times, we follow skip scheme for
deterministic techniques. This scheme generates 25 × N points, but only uses
ith N points in the ith run. Indices of points in the ith run is easily calculated
using the following formula:

li = (i − 1)N + 1, and ui = iN. (4)

where li and ui are the lower and upper bounds on the indexes of points in run
i, respectively. Note that, in all parts of the experiments, 20 different dimen-
sion sizes (2 ≤ D ≤ 1, 000) and 20 population sizes (10 ≤ N ≤ 10, 000) were
examined.
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Fig. 1. Trend of (CD(P))2 of RNG for 2 ≤ D ≤ 1000. A part of plot (i.e., 2 ≤ D ≤ 50)
is zoomed for better demonstration.

3.2 Results and Discussions

Experiment Part (A): In this part, we compute and compare CD values of
populations generated by simple RNG to study the effects of dimensionality and
population size on the uniformity.

As Figure 1 shows, discrepancy grows (i.e., uniformity drops) exponentially
when the dimensionality increases. A closer look at the low dimensional part of
the plot (zoomed in the figure) reveals that a large population size may lessen the
undesirable effect of high dimensionality. However, the improvement may not be
very significant. For example, the discrepancy of 10,000 points in 50 dimensions
is comparable with the discrepancy of 10 points in 30 dimensions. In other words,
66% growth in dimensionality demands 100,000% increase in population size to
recover the uniformity. This issue, widely known as curse of dimensionality, is
even more severe in large-scale problems.

Figures 2-4 illustrates the effect of population size on the uniformity in small,
medium and large-scale problems, respectively. As Figure 2 indicates, population
size has no considerable effect on the uniformity of very small-sized problems,
i.e., D ≤ 10. For higher dimensions, specially for 30 ≤ D ≤ 50, population
size has a significant effect on uniformity such that it can be improved 10 to 20
times in the CD scale. However, the magnitude of improvements falls rapidly
such that increasing population size beyond 1,000 points shows only a minimal
improvement. In other words, it is reasonable to increase population size for the
problems of size 20 to 50, while keeping it around 1,000 points.

Figure 3 demonstrates similar pattern for medium-sized spaces. The only dif-
ference is the slopes of the curves which are slower for the medium-sized spaces.
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Therefore, a considerable improvement is expected even for population size be-
yond 3,000 points. In other words, having larger populations in medium-sized
problems is reasonable when computationally feasible.

Uniformity in a high dimensional space is much worse than small or medium-
sized spaces. As Figure 4 reveals, uniformity of populations in spaces of above
100 dimensions is so weak that increasing population size from 1,000 to 10,000
cannot recover it. Having a closer look at the plot shows that the reasonable pop-
ulation size for such large-scale problems is surprisingly less than 1,000 points.
Note that this does not imply the population size has no effect in large-scale
problems. Instead, it means the population size must be astronomically large to
achieve a significant enhancement in uniformity. Since evaluating high dimen-
sional populations in that magnitude is currently computationally infeasible,
keeping it around 1,000 points is more practical and reasonable.

Experiment Part (B): To compare advanced initialization techniques with a
common PRNG, we propose a simple formula reflecting relative improvement
achieved from each advanced technique:

% improvement =
log10(CD(Pc))

2 − log10(CD(Pi))
2

log10(CD(Pc))2
× 100 (5)

where Pc is the population generated by the control technique, PRNG, and Pi

is the population produced by the ith advanced initialization technique.
As Figure 5 reveals, some techniques are successful in improving the com-

mon initializer, although the biggest improvement in 2 ≤ D ≤ 50 is less than
20%. Another observation from this plot is that whilst some techniques e.g.,
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Fig. 2. Effect of population size on (CD(P))2 of RNG in low dimensions (D ≤ 50)
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Fig. 3. Effect of population size on (CD(P))2 of RNG in medium dimensions

GLP are very sensitive to population size, others including SBL are more stable.
However, with no exception, all techniques work relatively better when popu-
lation size increases. Figure 5 also shows that mixed good and bad results can
be expected from both categories of initialization techniques which confirms the
findings from [7]. Note that the negative numbers indicate detrimental effects.

Figure 6 depicts the improvements gained from advanced techniques inmedium
andhighdimensional spaces.As canbe seen in the plot, all trends converge to one of
the three values: 0%, -25% and -80%. This clearly shows that employing advanced
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Fig. 4. Effect of population size on (CD(P))2 of RNG in high dimensions
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initialization techniques provides no significant improvement in high dimensions,
at least in terms of uniformity. Even increasing population size from 10 to 10,000
does not result in a significant improvement. Figure 6 also shows SBL with 10 and
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TNTwith both 10 and 10,000 population sizes perform almost the same as PRNG.
The others, however, perform poorly in comparison with a PRNG with the same
population size.

In some cases, including SBL, increase in population size decreases relative
improvement. This should not be mistakenly interpreted as an adverse effect of
population size on those algorithms. Instead, it should be noted that the plot
illustrates relative improvements which are calculated based on the performance
of PRNG (see Equation 5). It means, enlarging population has a greater impact
on PRNG than those algorithms such that the relative improvement from them
drops when population size rises.

4 Conclusions

In this paper we investigate the reasons that causes several advanced popula-
tion initialization techniques to perform poorly in high dimensional spaces. We
use a general purpose measure to study the effect of dimensionality on com-
mon and advanced initializers where population size varies from 10 to 10,000
points. Our investigations show that the uniformity of initial population drops
exponentially when dimensionality rises linearly. Low uniformity, which can also
be interpreted as weak coverage or low diversity, degrades the quality of ini-
tial populations dramatically. Except for some small and medium-sized spaces,
even increasing population size up to a computationally feasible bound cannot
maintain uniformity.

Our experimental results reveal that the advanced initializers are as vulnerable
to the curse of dimensionality as simple random number generators. Therefore,
adopting advanced initializers in medium and large-scale spaces does not result
in any significant improvement. In this regard, some advanced techniques are
even more susceptible to the adverse effect of dimensionality than the simple
pseudo-random number generators. Accordingly, we only recommend the use of
advanced techniques when the population and dimension sizes are very small.
In higher dimensional spaces or when the population size is relatively large, no
significant improvement is excepted from advanced techniques.
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Abstract. Symbolic regression is a common application of genetic pro-
gramming (GP). Increasingly, the GP community is identifying the need
to measure the generalisation performance of the models evolved in sym-
bolic regression, and consequently the need to design operators and
methods that promote generalisation. In this paper, we explore the use
of bloat control methods as a means of promoting generalisation. The
results suggest that bloat control methods effectively reduce the com-
putational requirements of symbolic regression, but do not significantly
improve generalisation performance. Additionally, we compare the sym-
bolic regression models traditional machine learning techniques, and find
that the traditional methods produce models that generalise more effec-
tively than their GP counterparts, while also using fewer computational
resources. The results highlight the importance of contextualising GP
performance with methods outside of evolutionary computation.

1 Introduction

The field of genetic programming (GP) specialises in the evolutionary search of
solutions of arbitrary size and shape [13]. The flexibility of the representation in
GP makes it a desirable approach to solving problems where the shape of the
solution is not known a priori to search. One such domain is symbolic regres-
sion, in which a model is developed to map a set of known observation data to a
prediction of an unknown response value. Symbolic regression has received a lot
of attention in GP, with many papers identifying shortcomings in the standard
GP approach, and proposing alternative methods to make GP more suitable to
search in this domain. A key issue in any regression approach is the idea of gen-
eralisation, that is the ability of the produced model to adequately respond to
previously unseen data. Generalisation is typically correlated to model complex-
ity, and in GP, the size of the evolved program is one measure of its complexity.
Therefore, bloat, and the required bloat management, is considered to be an
important factor in promoting generalisation performance in GP regression.

This paper examines the use of bloat control methods to promote generali-
sation in symbolic regression. Results suggest that they do promote the devel-
opment of smaller programs, but that they are neither more or less prone to
over-fitting than compared to standard GP. The results are also contextualised
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with two traditional machine learning approaches to regression: a simple linear
regression and random forests [4]. On all but one of the tested problems, the
traditional methods offer equal or better generalisation performance, suggesting
that more work is needed to improve the search characteristics of GP in the
context of symbolic regression.

The remainder of this paper is structured as follows: §2 provides a brief
overview of related work; §3 outlines the methods and problems used for ex-
perimentation; §4 examines the behaviour of bloat control methods in relation
to GP and existing regression methods; finally §5 concludes the paper and sug-
gests avenues for future work to explore.

2 Generalisation in Symbolic Regression

One of the key applications of genetic programming is symbolic regression, where
the programs being evolved are expressions that map a set of observations to a
prediction of an unknown response. By its very nature, GP appears naturally
aligned with the goals of symbolic regression, so it is understandable that it
receives a significant proportion of attention in GP literature. In the process,
this research has raised several issues with the way that ‘standard’ GP handles
symbolic regression, and in particular the manner in which the evolved models
generalise to unseen data. While the majority of early work on symbolic regres-
sion did not examine the generalisation performance of the evolved models, it is
becoming an increasingly important aspect of the relevant research [15,18,6].

It is relatively simple to incorporate modifications into GP that promote gen-
eralisation. One solution is to take a multi-objective approach and split available
data into training, validation and testing. The error on the training set is used
to select parents for recombination, while the validation set is used to select the
representative model from the final set of candidate solutions. The final testing
set is then used to externally evaluate the evolved models [9].

In its basic form, GP requires exception handling for certain operators, such
as division. The solution is typically to create ‘protected’ versions of these op-
erators, that return some predetermined value when error-producing inputs are
provided. As a by-product of this, GP can exploit these arbitrary values to fit
the resulting function to the observed data points [11]. This can cause problems
when the function is applied to unseen data. A typical solution is to remove these
protected operators from the available function set, but this limits the possible
expressiveness of the evolved programs. Alternatively, one can use interval arith-
metic to reduce the need to protect mathematical operators [12].

More recently, methods that exploit statistics about tree subtree behaviour
have been introduced, such as semantically similar crossover. The idea in this
approach is that crossover points are first tested to ensure that both subtrees
exhibit a sufficiently similar behaviour over the data set before they can be
swapped between parents. This approach was shown to outperform GP using
standard subtree crossover in a number of problems [19]. Additionally, it was
later shown that trees evolved using this new crossover approach are able to
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generalise better to unseen data [23]. Recent work has also used a semantics-
driven approach to produce crossover methods that offer improvements in search
and generalisation over standard GP [14].

2.1 Bloat Control and Generalisation

Very early work on GP identified the tendency for programs to grow in size at
a rate greater than the observed improvement in fitness [13]. This phenomenon,
later known as bloat has subsequently received considerable focus in the GP
literature. Many theories as to the underlying cause of bloat have led to meth-
ods designed to control unreasonable growth of programs within the population.
Simplest among these it to place an upper bound on the size or depth of the trees
produced through crossover and mutation [13]. Alternatively, parsimony pressure
can be incorporated into the fitness of programs to punish excessively large in-
dividuals and encourage breeding between smaller programs [25]. Later research
dealt with the concept of bloat more explicitly by designing new selection opera-
tors that acknowledge size [16,17], adding size as an objective in multi-objective
search, random elimination of individuals of above-average size (the so-called
Tarpeian method) [20], applying a ‘waiting time’ to offspring in proportion to
their size that delays their entry into the population [17], and rejecting offspring
that do not align with a target size distribution for the population [8,22,21].
Additionally, recent work has focused upon the use of spatially-structured pop-
ulations that implicitly control bloat[24,10,7].

There is a strong connection between the idea of bloat and generalisation.
Typically, one expects a correlation between generalisation and model size — a
smaller model typically incorporates fewer assumptions about the domain, and
subsequently will be less prone to over-fitting [1]. Proactively reducing model size
is a common practice in machine learning (e.g., pruning decision trees, reducing
the topology and size of neural networks, eliminating high specificity rules in
rule bases). Therefore, bloat control methods have received some attention as
candidates for increasing the generalisation abilities of genetic programming. For
example, the operator equalisation (OpEq) approach has been used to explore
regression of a bio-availability problem containing hundreds of variables [22]. In-
terestingly, this approach managed to produce smaller programs, but also exhib-
ited over-fitting to training data. The authors argue that this was a consequence
of the increased number of fitness evaluations required by the approach. Subse-
quent work compared OpEq to a spatially-structured co-evolutionary approach
(called SCALP), where results suggested that it was able to discover smaller
solutions to the bio-availability problem without producing over-fitting [10].

3 Experimental Framework

The primary aim of this work is to explore the abilities of bloat control meth-
ods to promote generalisation in models evolved through symbolic regression.
In particular, research into the spatially-structured plus elitism (SS+E) method
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is to be examined, as its generalisation performance has not been explored pre-
viously. In order to assess the abilities of this method, it needs to be placed
in the context of existing bloat control methods. Therefore, this work becomes
more of a general examination of bloat control methods on regression problems
not typically explored in previous work. For point of reference, we adopted the
Double Tournament approach [17], and dynamic operator equalisation [21] as
comparative bloat control methods.

We consider five test problems from previous work: the first is the well-known
quartic problem [13]. This is a very simple problem, and is included primarily for
reference and to demonstrate ‘best case’ performance for the methods. The sec-
ond problem is a bio-availability data set from previous work, with 241 variables,
and 359 instances [22]. Finally, two problems from the UCI Machine Learning
Repository were selected [2]. These were the Auto MPG data set, with 7 features
and 398 instances, and the Wine Quality data set, with 11 features and 6498
instances [5]. The Wine Quality data set is actually supplied as two data sets,
one for white wine examples (4898 instances), and another for red wine examples
(1599 instances) — for this work, we found that there was very little difference
in the results from investigating either the red or white subsets, so we report
only the results of the red data set. The choice of these two data sets from the
repository was rather arbitrary and does not reflect any bias in their selection
— the former was the first suitable regression problem in the list when sorted
alphabetically, while the latter was the first regression problem appearing in the
‘most used’ list of the web site.

For each problem, we needed to develop a training and test data set. For the
quartic problem, we generated 20 uniform random samples from [-1,1] for both
the training and test sets. For the remaining problems, a 70-30 split was adopted:
for each run, a random sample of 70% of the available data was used as training
data, while the remaining 30% was used for testing.

The common parameters are presented in Table 1. The SS+E approach re-
quires a square toroidal population; we used a population size of 484, as it is
the nearest square number to 500 as used in previous work [21]. We also used
depth limiting in all the experiments: interestingly, we could not get any of the
bloat control methods to improve upon depth limiting alone, but they were able
to further improve the bloat properties when the two methods were combined,
in line with recommendations from previous work [17]. As the SS+E approach
uses elitist offspring replacement, there is no need to use a reproduction oper-
ator, therefore all SS+E experiments used full crossover, while the remaining
approaches used a typical 90-10 split between crossover and reproduction. In
line with previous bloat studies, no mutation was used in any experiments. Fi-
nally, the Double Tournament selection was calibrated using the recommended
parameters from previous work: a parsimony tournament size of 1.4 was used,
and a then fitness tournament of 7 was applied [17].

For the operator equalisation experiments, we used the dynamic variant
(DynOpEq) with a bin size of 1. This method rejects individuals unless they
fit a target histogram derived from the current population. If they do not fit
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Table 1. The common GP parameters used for all experiments

Parameter Value

Population Size 484
Generations 100
Selection Method Tournament
Tournament Size 7
Crossover Rate 0.9
Reproduction Rate 0.1
Maximum Tree Depth 17
Crossover Node Selection Koza-Style
Initialisation Ramped-Half & Half
Minimum Initialisation Depth 2
Maximum Initialisation Depth 6
Function Set +, ×, −, ÷, loge, sin, cos
Terminal Set Independent variables from data set

the distribution a further test is applied: if they are the best individual seen
in the current run, or failing that are the best in generation for the target his-
togram bin, then they are accepted into the population. This requires a large
number of evaluations per run, sometimes an order of magnitude more than the
population size [10]. This was argued in previous work as a potential source of
over-fitting [21], so in this work we limit DynOpEq to use the same number of
total evaluations as the other approaches. If the number of evaluations is reached
before the specified number of generations, then the run terminates early. All
other experiments run for 100 generations after the initial random population.

Most symbolic regression experiments are presented and compared internally,
that is without a comparison to traditional methods from statistics and machine
learning. To provide a suitable context, we present the results from GP exper-
imentation with two simple regression techniques — linear regression, and the
random forest approach. The latter is an ensemble approach that uses resam-
pling techniques to create a family of regression trees that combine to determine
the required response prediction [4].

With two exceptions, all data was presented in an unaltered fashion to the
given regression models. The first exception applied to the linear regression ap-
proach when modelling the bio-availability data set: due to the large number of
‘empty’ features (variables with a value of zero for every instance of the data
set), linear regression produced singular fit models frequently. Therefore, be-
fore linear regression was performed, a simple feature selection was performed
to eliminate such features from the data set. The second exception was in the
Auto MPG data set, in which three instances contained missing data. To sim-
plify the experiments, these instances were removed. No other feature selection
or transformation of data was applied.

3.1 Spatial-Structure with Elitism

Our main point of examination in this work is the SS+E approach, as it has
not been tested with respect to producing good generalisation performance. In
particular, we use the spatially-structured with lexicographic parsimonious elitism
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(SS+LPE) variant [7]. This method works in a similar manner to other spatially-
structured evolutionary algorithms: each individual in the population is located
in a cell in a two-dimensional torus. To produce a new generation, each location
in the torus is visited, two parents from the Moore neighbourhood are selected
using binary tournament selection, and crossed to produced an offspring. Once
the entire offspring population has been bred, a competition takes place within
the individuals of the current population: at each location, the offspring must
be strictly fitter, or equal in fitness but strictly smaller in size, than the current
occupant in order to survive. If the offspring fails this test, then the current
individual is copied into the new generation in its place. The reader is directed
to previous work for a more complete examination of the method [7].

4 Results

The results of applying each bloat control method to each problem are shown in
Figures 1-4. Where appropriate, each trend in the given plot is presented with
a 95% confidence interval of the measured mean. The results are summaries
produced through 100 independent runs, each using a different random number
generator seed.

The evolution of fitness, in terms of root-mean-square training error (RMSE)
over time is shown in Figure 1. In general, a common theme is shown across
all the tested problems: with the exception of Double Tournament, all methods
eventually converge at a similar fitness, and have evolved long enough to have
essentially plateaued in terms of improvement. The evolution of mean popu-
lation size (Figure 2) shows a similar, and somewhat expected, trend: all the
implemented bloat control methods offer an improvement over standard GP in
terms of mean population program size.

The behaviour of double tournament was interesting, as on all problems (in-
cluding the quartic problem) it struggled to find good general solutions. This
appears to be a consequence of bad parameter choice; despite using the ‘recom-
mended’ parameter settings for this method, it appears that, across all tested
problems, there was a tendency for double tournament to overemphasise selec-
tion for smaller programs over selection for fitness.

The operator equalisation results suggest that it was able to effectively con-
trol the population bloat, relative to standard GP. On all the tested problems,
the average program size in the population was around half of the equivalent
standard GP results, without sacrificing fitness. The early fitness performance
of OpEq requires further comment: at first glance, it would appear that OpEq
is slower than the other methods at finding fitter solutions. However, the graphs
shown are in evaluations, not generations, and the observed trend is a conse-
quence of the increased number of evaluations that dynamic OpEq uses in each
generation. Unlike previous work, we did not encounter an over-fitting phase
when using OpEq. Given that we used an early halting process when sufficient
evaluations had been used, this would support the claims of previous work that
this over-fitting process is a result of the additional evaluations that OpEq typ-
ically consumes.
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Fig. 1. Evolution of fitness of the best individual over time
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Fig. 2. Evolution of mean program growth of the population over time

Finally, the results of SS+LPE follow a similar trend to that shown by the
approach in previous work. While the average size of programs in the popula-
tion was slightly higher than that produced by OpEq, it was still around half of
that observed in standard GP. The result on the quartic problem, while being a
simple problem, is of interest here, and highlights a typical feature of SS+LPE
behaviour. In the early stages of the run, SS+LPE places a strong emphasis
on search for fitter solutions. However, once the populations begins to converge
upon individuals of similar fitness, the pressure towards size increases, and we
can observe a gradual drop in program size. Previous work suggests a possible
explanation for this [7]: the programs present in the population could maintain
proportions of code that is essentially non-functional (for example, containing
trees resembling (+ x (× (− x x) (Δ))), where the result of the subtree (Δ) is nul-
lified). Once fitness converges, SS+LPE can place emphasis on implicitly editing
out such examples by replacing them with smaller subtrees during crossover.
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The generalisation performance, in terms of the size of the final model selected
by each method, and its training and testing RMSE are shown in Figures 3 and
4. For each method, the program in the final population with the best fitness
(or in the case of a tie, the smallest size) was selected as the representative
model. As can be seen in Figure 3, all the examined bloat control methods
were able to produce final models that were typically smaller than by using
standard GP alone. In comparison to the mean population sizes, where the bloat
control methods effectively halved the mean population size, the resulting final
models using bloat are smaller, but not quite by the same margin. As mentioned
earlier, Double Tournament was possibly incorrectly configured, and placed too
much emphasis on size over fitness. This led to it producing runs with very
small representative models. Finally, with the exception of the bio-availability
problem, the models produced using SS+LPE are also slightly smaller than those
produced by OpEq, although the difference is not likely to be significant.

In terms of generalisation performance, none of the bloat control methods
was able to produce models that consistently outperformed standard GP by any
meaningful margin. As mentioned earlier, SS+LPE appears to work by reducing
the amount of redundant code in trees, and it is possible that OpEq presents
a similar behaviour. This process is somewhat analogous to code simplification,
and may explain why the programs are smaller, but functionally similar.

4.1 Performance of GP Relative to Traditional Methods

Comparisons with ‘traditional’ approaches to regression are not typically per-
formed in GP symbolic regression research. This is in contrast to GP classifica-
tion research, where it is typical to see the behaviour of GP classifiers compared
with traditional methods, such as decision trees, support vector machines, or
Bayesian methods [3]. The results presented so far are relevant in the context
of standard GP, but it is difficult to assess the effectiveness of the approaches
relative to other machine learning approaches.

To provide context, the training and testing results presented in Figure 4 in-
clude reference to two machine learning techniques: random forests and simple
linear modelling. For each of these approaches, a similar experimental configu-
ration was used to that for the GP experiments: 100 separate runs where per-
formed, each using a random sampling process to split the data into training and
testing sets, as described earlier. The regression model was trained and subse-
quently tested using the selected data sets, and training and testing errors were
recorded. The results are shown in Figure 4.

The results presented raise some interesting questions about the performance
of GP — in all but the quartic problem, GP is outperformed by traditional
methods. It is not surprising that linear regression is outperformed by GP on
the quartic problem, given the very nature of the relationship in the data and
that the regression did not have access to any polynomial terms. However, the
relative performance of GP on the other problems is surprising, and worthy of
further investigation. While there is considerable effort present in the literature
exploring improvements to GP with respect to regression, it is typically evaluated



Bloat and Generalisation in Symbolic Regression 499

0

50

100

150

Std. GP Dbl. Tourn SS+LPE OpEq
Method

S
iz

e

(a) Quartic

0

250

500

750

1000

1250

Std. GP Dbl. Tourn SS+LPE OpEq
Method

S
iz

e

(b) Bio-availability

0

250

500

750

Std. GP Dbl. Tourn SS+LPE OpEq
Method

S
iz

e

(c) Auto MPG

0

100

200

300

Std. GP Dbl. Tourn SS+LPE OpEq
Method

S
iz

e

(d) Wine Quality (Red)

Fig. 3. Box-plots of the size of the final, best trained model evolved by each method
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Fig. 4. Box-plots of the testing error of the final, best trained model evolved by each
method

solely within in the context of ‘standard GP’. The results presented here suggest
that work in GP should not limit comparisons to other GP-based methods, and
that traditional regression methods should be included to provide context.

An argument may be made in GP’s favour that its representation provides
explanatory power through direct analysis of the parse tree. 1 However, the model
size evolved through GP on the tested problems typically contains hundreds of
nodes, and this may require significant post-processing and analysis in order to
extract the required knowledge. Additionally, most machine learning techniques
provide means of knowledge extraction, so this advantage is not limited to GP.

1 As suggested in the “Open Issues in Genetic Programming” tutorial presented at
GECCO 2013 (Slide 21):
http://ncra.ucd.ie/papers/gecco2013 openissuesinGP tutorial.pdf

http://ncra.ucd.ie/papers/gecco2013_openissuesinGP_tutorial.pdf
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Although it was not explicitly measured, it should also be pointed out that
the computational effort required to build both the linear regression and random
forest models was considerably less than for any of the GP approaches. In fact,
the time required to complete all 100 runs of the random forest approach was
typically less than the time required to perform a single GP run.

5 Conclusion

Generalisation performance is important in any regression domain. Although
recent work increasingly acknowledges the need to measure generalisation, GP
has a history of not testing generalisation of the evolved programs. One proposed
approach to promoting generalisation is through the use of bloat control methods
to promote the evolution of simpler parse trees. This paper has explored the used
of several bloat control methods with an emphasis on promoting generalisation
within the symbolic regression domain. Several problems of varying complexity
were investigated, and it was shown that bloat methods could reduce the size of
the resulting methods, but this did not improve generalisation performance.

A typical framework for symbolic regression research often limits comparison
of the evolved models to other GP-based approaches. In this paper, we compared
the results of models obtained through GP with models produced using linear
regression and random forests. The results demonstrated that, on the tested
problems, the performance of GP-evolved models tends to lag behind that of
both of the traditional methods. This suggests that standard GP appears to
struggle with the symbolic regression problem, and that other operators are
needed in order to produce a better search mechanism. Most importantly, the
results suggest that bloat control methods cannot be relied upon to improve
the generalisation performance of GP regression methods. Rather, if they are
to be used, it is likely in conjunction with other specialist operators designed
to manipulate expressions in the symbolic regression domain. The results also
highlight the need for GP research to contextualise its methods in relation to
the wider machine learning community.

5.1 Future Work

The work presented here raises several areas for future consideration. In terms
of the contribution of bloat control methods to generalisation, a recent method
called approximate geometric crossover has been introduced [14]. While re-
sults using this crossover method suggest it to be more effective than standard
crossover, it also tends to produce very large trees. It would be interesting to
integrate this crossover method into SS+LPE, and see if the resulting models
are smaller and provide better generalisation characteristics.

In order to keep the analysis simple, no attempt was made at in-depth data
analysis and transformation. In other words, no feature selection was performed
on the data sets, and no attempt to normalise the feature scale to reduce issues of
scale were performed. This is likely to have impacted on the behaviour of all the
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methods examined, both traditional and GP-based. It would be an interesting
piece of work to revisit the experiments performed here, only this time with data
sets that have been fully-prepared for analysis.

Previous work has argued the need for harder test problems for GP [18]. The
data sets presented here from the UCI Machine Learning Repository certainly
appear to fulfil this requirement, and have presented challenging environments
for GP to model through symbolic regression. They would certainly form a solid
basis from which future work should perform its analysis.
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M., Gustafson, S., Ekárt, A. (eds.) EuroGP 2006. LNCS, vol. 3905, pp. 109–120.
Springer, Heidelberg (2006)

10. Harper, R.: Spatial co-evolution: Quicker, fitter and less bloated. In: Proceedings
of the Fourteenth International Conference on Genetic and Evolutionary Compu-
tation Conference, GECCO 2012, pp. 759–766. ACM, New York (2012)

11. Howard, D., Roberts, S.C.: Genetic programming solution of the convection-
diffusion equation. In: Spector, L., Goodman, E.D., Wu, A., Langdon, W.B., Voigt,
H.M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M.H., Burke, E. (eds.)
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO
2001), July 7-11, pp. 34–41. Morgan Kaufmann, San Francisco (2001)

12. Keijzer, M.: Improving symbolic regression with interval arithmetic and linear scal-
ing. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E., Poli, R., Costa, E. (eds.)
EuroGP 2003. LNCS, vol. 2610, pp. 70–82. Springer, Heidelberg (2003)

13. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge (1992)

http://archive.ics.uci.edu/ml


502 G. Dick

14. Krawiec, K., Pawlak, T.: Approximating geometric crossover by semantic back-
propagation. In: Proceeding of the Fifteenth Annual Conference on Genetic and
Evolutionary Computation Conference, GECCO 2013, pp. 941–948. ACM, New
York (2013)

15. Kushchu, I.: An evaluation of evolutionary generalisation in genetic programming.
Artif. Intell. Rev. 18(1), 3–14 (2002)

16. Luke, S., Panait, L.: Lexicographic parsimony pressure. In: Proceedings of the
Genetic and Evolutionary Computation Conference, GECCO 2002, pp. 829–836.
Morgan Kaufmann Publishers Inc., San Francisco (2002)

17. Luke, S., Panait, L.: A comparison of bloat control methods for genetic program-
ming. Evol. Comput. 14(3), 309–344 (2006)

18. McDermott, J., White, D.R., Luke, S., Manzoni, L., Castelli, M., Vanneschi, L.,
Jaskowski, W., Krawiec, K., Harper, R., De Jong, K., O’Reilly, U.M.: Genetic
programming needs better benchmarks. In: Proceedings of the Fourteenth Interna-
tional Conference on Genetic and Evolutionary Computation, GECCO 2012, pp.
791–798. ACM, New York (2012)

19. Nguyen, Q.U., Nguyen, X.H., O’Neill, M.: Semantic aware crossover for genetic
programming: The case for real-valued function regression. In: Vanneschi, L.,
Gustafson, S., Moraglio, A., De Falco, I., Ebner, M. (eds.) EuroGP 2009. LNCS,
vol. 5481, pp. 292–302. Springer, Heidelberg (2009)

20. Poli, R.: A simple but theoretically-motivated method to control bloat in genetic
programming. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E., Poli, R., Costa, E.
(eds.) EuroGP 2003. LNCS, vol. 2610, pp. 204–217. Springer, Heidelberg (2003)

21. Silva, S., Dignum, S., Vanneschi, L.: Operator equalisation for bloat free genetic
programming and a survey of bloat control methods. Genetic Programming and
Evolvable Machines 13(2), 197–238 (2012)

22. Silva, S., Vanneschi, L.: Operator equalisation, bloat and overfitting: A study on
human oral bioavailability prediction. In: Proceedings of the 11th Annual Confer-
ence on Genetic and Evolutionary Computation, GECCO 2009, pp. 1115–1122.
ACM, New York (2009)

23. Uy, N.Q., Hien, N.T., Hoai, N.X., O’Neill, M.: Improving the generalisation ability
of genetic programming with semantic similarity based crossover. In: Esparcia-
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Abstract. Classification on high-dimensional (i.e. thousands of dimensions)
data typically requires feature selection (FS) as a pre-processing step to reduce
the dimensionality. However, FS is a challenging task even on datasets with hun-
dreds of features. This paper proposes a new particle swarm optimisation (PSO)
based FS approach to classification problems with thousands or tens of thousands
of features. The proposed algorithm is examined and compared with three other
PSO based methods on five high-dimensional problems of varying difficulty. The
results show that the proposed algorithm can successfully select a much smaller
number of features and significantly increase the classification accuracy over us-
ing all features. The proposed algorithm outperforms the other three PSO meth-
ods in terms of both the classification performance and the number of features.
Meanwhile, the proposed algorithm is computationally more efficient than the
other three PSO methods because it selects a smaller number of features and em-
ploys a new fitness evaluation strategy.

Keywords: Particle swarm optimisation, Feature selection, Classification, High-
dimensional data.

1 Introduction

Learning from examples is a successful approach in machine learning and data mining.
Classification is a typical task of learning from training examples to predict the class
labels of unseen examples/instances based on given attributes or features. Many clas-
sification algorithms have been successfully applied to automatically learn classifiers
in a variety of problems, such as image classification, text categorisation and disease
classification. Recently, there are more and more classification datasets with hundreds
or even thousands features, which causes the “curse of dimensionality”. This makes the
classifier learning process become difficult because not all features are relevant to the
class labels and often contain redundant information. Such data typically needs feature
selection (FS) to remove irrelevant and redundant features [9].

Existing FS methods can be classified into wrapper approaches and filter approaches
depending on whether a classification algorithm is used to evaluate the goodness of
the feature subsets [5]. The criteria used in wrapper methods include the classification
performance of a predefined classification algorithm using only the selected feature sub-
sets. On the other hand, filter methods rely on various measures of the general charac-
teristics of the training data, such as distance, information, dependence and consistency
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measures [5] to evaluate the classification capability of the feature subsets. Filter meth-
ods are argued to be more general to different classification algorithms than wrapper
methods. Wrapper approaches usually obtain feature subsets with higher classification
accuracy than filter methods [14] because they directly use the classification perfor-
mance to guide the search. However, wrapper approaches are computationally expen-
sive because each evaluation involves a training process of the classification algorithm.
This work focus mainly on developing a new wrapper FS algorithm.

An optimal feature subset is the smallest subset, which maximises the classification
accuracy. However, finding the optimal feature subset is an NP-hard problem [14]. The
size of the search space grows exponentially with the number of features in the dataset.
Therefore, it is necessary to have an efficient global search technique to tackle FS prob-
lems. Evolutionary Computation (EC) techniques are well-known for their global search
potential. Particle swarm optimisation (PSO) [13,22] is a relatively recent EC technique
that has been successfully applied in many areas such as function optimisation [22] and
feature selection [15,29,27,30,28]. Comparing to other EC techniques, PSO has some
advantages such as simplicity, fewer parameters, lower computational cost, and fast
convergence [8].

In PSO, a swarm of candidate solutions are encoded as particles. During the search-
ing process, each particle remembers the best solution it obtained so far, i.e. the personal
best called pbest. By sharing pbest with neighbours, each particle knows the best solu-
tion that the whole population has found so far, i.e. the global best called gbest. PSO
searches for the optimal solutions based on the information from pbest and gbest. How-
ever, if gbest is near a local optimum, there is a high probability that the swarm will be
stuck in this area, especially in high-dimensional/large-scale problems, e.g. FS on gene
expression data, which has thousands or even more than ten thousands features.

To overcome this limitation, Chuang et al [4] proposed an improved PSO algorithm
(PSO-RG) in which gbest will be restarted whenever it is not improved in a number
of iterations. The proposed PSO achieved better performance than standard PSO. Re-
setting gbest could avoid being stuck in local optima by encouraging the exploration
of the search, but it may limit the algorithm further exploit the surroundings of the al-
ready found good solutions, i.e. gbest. Therefore, a new PSO algorithm is still needed
to better solve high-dimensional feature selection problems on gene expression data.

1.1 Goals

The overall goal of this paper is to develop a new PSO approach to feature selection on
high-dimensional gene expression data to significantly reduce the number of features
and increase the classification performance over using all features. To achieve this goal,
the gbest reset mechanism is used to encourage the global search (exploration) and a
new local search strategy is proposed to facilitate the exploitation of the algorithm to
further improve the performance. The local search is also designed to utilise the char-
acteristics of a simple classification algorithm, k-Nearest-Neighbour (KNN), to avoid
heavy computational cost. The proposed algorithm is examined and compared with
standard PSO, PSO only using the proposed local search (PSO-LS), and PSO-RG only
using the gbest reset mechanism on five gene datasets with more than ten thousands of
features. Specifically, we will investigate:
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– whether the proposed algorithm can reduce the number of features and achieve
similar or better classification performance than using all features,

– whether the proposed algorithm can outperform than standard PSO, PSO-LS and
PSO-RG in terms of the number of features and the classification performance, and

– whether the proposed algorithm can be more efficient than standard PSO, PSO-LS
and PSO-RG.

2 Background

2.1 Particle Swarm Optimisation (PSO)

PSO is an EC technique developed by Kennedy and Eberhart [13], which is inspired by
social behaviours found in birds flocking or fish schooling. In PSO, a swarm consists
of many individuals called particles communicating through iterations to search for
optimal solutions when moving in the search space.

In PSO, each particle has a position and a velocity. The position is a candidate solu-
tion of the problem and is usually an n-dimension vector of numerical values. Velocity
also has the same structure as position, which represents the speed and direction that
the particle should move in the next iteration. In each iteration, the velocity of a parti-
cle is updated based on the personal best (pbest) which is the best position it has been
explored so far and the global best (gbest) which is the best position it has been com-
municated from other particles. Formulae (1) and (2) are used to update the velocity
and position of each particle.

vt+1
id = w ∗ vtid + c1 ∗ r1i ∗ (pid − xt

id) + c2 ∗ r2i ∗ (pgd − xt
id) (1)

xt+1
id = xt

id + vt+1
id (2)

where vtid and xt
id are velocity and position of particle i in dimension d at time t, re-

spectively. pgd and ggd are pbest and gbest positions in dimension d. c1 and c2 are
acceleration constants, and r1 and r2 are random values. w is the inertia weight used
to control the impact of the last velocity to the current velocity. The velocity values are
usually limited by a predefined maximum velocity, vmax to the range [−vmax, vmax].

2.2 Related Works on Feature Selection

Traditional Methods for Feature Selection. Two typical wrapper FS methods are
sequential forward selection (SFS)[25] and sequential backward selection (SBS) [17],
which employs a greedy search method. SFS (SBS) starts with an empty (full) feature
subset, then gradually adds (removes) features until the classification accuracy is not
improved. However, both methods suffer from the so-called “nesting effect” because a
feature which is selected or removed cannot be removed or selected in later stage. As
a compromise between these two approaches, “plus-l-take-away-r” [24] applies SFS
l times and then SBS r times. This strategy can avoid nesting effect, but it is hard to
determine appropriate values for l and r. To avoid this, Pudil et al [21] introduced two
corresponding methods: sequential backward floating selection(SBFS) and sequential
forward floating selection (SFFS). These floating search methods are claimed to be bet-
ter than the static sequential methods, but they are still facing the problem of stagnation
in local optima.
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EC Techniques for Feature Selection. Many EC techniques have been applied to FS
problems such as Genetic algorithms (GAs) [3], Genetic programming (GP) [19], and
Ant colony optimisation (ACO)[7]. Among these, GA is probably the first popular EC
technique that has been applied in FS. Guided by Darwinian evolution principles, GAs
start with a population of candidate solutions, represented as chromosomes, and evolved
better solutions by using genetic operators like crossover, mutation. Many GA based
FS algorithms have been proposed either in filter or wrapper approaches. In the former,
feature subsets are evaluated by using inconsistency rates [16], or fuzzy sets [3]; while
in the latter, different approaches proposed with different classification algorithms for
fitness evaluation, such as ID3 [2], and artificial neural network [20]. GA based hybrid
FS algorithms that combine both filter and wrapper approaches have also been proposed
to improve the performance [10].

Using the same principles, however, instead of evolving bit strings, GP evolves com-
puter programs to generate solutions. Each program is a tree consisting of internal nodes
which are usually arithmetic operators, and leaf nodes which are constants or variables.
When using GP for FS, the variables are chosen from the original features. Selected
features are the ones used as leaf nodes of a GP tree. GP has been used in both filter FS
methods [19] and wrapper FS methods [6]. ACO is another EC technique that stands
in the same umbrella to PSO, swarm intelligence. ACO is inspired by the special com-
munication system using pheromone between real ants about favorable paths to food.
The shortest path will be the one that has most pheromone. When using ACO for FS,
each feature is considered as a node, and paths between nodes represent the choices for
next features. Many ACO algorithms are used for both filter [11,18] and wrapper [12]
feature selection. PSO has recently gained more attention in addressing FS tasks, but
most of the existing PSO based FS algorithms focus mainly on problems with a few
hundreds of features [4,26].

3 Proposed Approach

In this section, a new PSO approach (named PSO-LSRG) is proposed for wrapper fea-
ture selection, where a new local search method is applied to pbest to exploit better
solutions and a reset mechanism is applied to gbest to avoid stagnation in local optima.
These two techniques are combined to see whether they can help PSO balance between
global search and local search to improve the performance.

3.1 Overall Algorithm

PSO-LSRG mainly follows the basic steps of standard PSO. A particle represents a
feature subset, where the dimensionality is the total number of features in the dataset.
Each particle is encoded by a string of floating numbers in [0,1]. A threshold θ is used
to determine whether a feature is selected or not. If the position value is larger than the
threshold, the corresponding feature is selected. Otherwise, the corresponding feature
is not selected. The fitness function of PSO-LSRG is to maximise the classification
accuracy of the selected features, which is shown by Formula (3).
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Randomly initialise position and velocity for each 
particle

Evaluate fitness of each particle

Stopping criteria is met?
If fitness of a particle is better than pbest:

- update the pbest
- Local search for better pbest

If fitness of any pbest is better than gbest,
update the gbest

If fitness of gbest not improved for
m iterations, reset gbest to 0

Return the best solution

Yes

No

Start

Fig. 1. Flowchart of the proposed algorithm

fitness =
number of instances correctly classified

Total number of instances
(3)

Fig. 1 illustrates the overall steps of PSO-LSRG. The two techniques are highlighted
in the figure and will be described in the remaining of this section.

3.2 Reset gbest

gbest plays an important role in leading the search direction of all particles in the
swarm. Resetting gbest if it does not change for a number of iterations can help avoid
premature convergence [4], which is a limitation of PSO. Following [4], the current
gbest is reset to a vector of all “0”s if it does not improve in a few iterations.

3.3 Local Search on pbest

The local search proposed in this algorithm is basically a loop in which a predefined
number of dimensions in the pbest position will be flipped, i.e. a feature from being
“selected” to “not selected” or from being “not selected” to “selected”. To focus the
search on the area surrounding current pbest, flipping is applied to a low percentage of
the total dimensions and 2% is chosen in this work. After flipping, the new solution is
evaluated. If it has better fitness, pbest is updated. The search will stop after a predefined
number of steps.

Fig. (2a) shows an example of the flipping procedure, where pbest is converted to
a binary string using the threshold θ, where “1” in the pbest array means the corre-
sponding feature is selected while “0” means the feature is not selected. Based on the
randomly chosen flip dimensions positions, for example (1, 2, 5, 6, 9), the current pbest
can be flipped to obtain a new pbest position (flipped pbest).
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(1, 2, 5, 6, 9)Flip positions

Current pbest

Instance i

Instance j

0 0 1 0 1 1 1 1 0 0 1 0Flipped pbest

6 2 4 7 9 1 7 25 3 31 6 9

4 5 9 8 13 9 5 17 6 25 7 3

-  +  +  + - 
9 25 64 4 36

Suppose: Distance [i][j] = 325

Distance [i][j] = 325  9 + 25 + 64 + 4 -36 = 373

3 5 8 2 6
(b)

(a) 0 1 2 3 4 5 6 7 8 9 10 ...

0 1 0 0 1 0 0 1 0 1 1 0

Fig. 2. An example of one local search step and re-calculating instances’ distance

Local search usually brings more computation to the algorithm because of more
fitness evaluations. Moreover, each evaluation in a wrapper FS method is usually ex-
pensive because it involves a training process of a classification algorithm. To avoid this
problem, we proposed a new strategy to calculate the distances in KNN to find the near-
est neighbours. This strategy utilises the characteristics of the local search and KNN.
In each local search step, just a small percentage of the total dimensions (2%) will be
changed and 98% of them in the flipped pbest remain the same as in the original pbest.
In standard KNN, to calculate the distance between two instances, their differences (e.g.
the squared difference) in all dimensions need to be calculated, where 98% of the calcu-
lation is repeated because 98% of the dimensions in the flipped pbest is the same as in
the original pbest. Therefore, in the new evaluation strategy, only 2% of the dimensions
are calculated. To achieve this, at the beginning of each local search run, all the cross
distances between instances will be calculated regarding to the features selected in this
given pbest and stored in a square matrix (distance[i][j]). Since this matrix is symmet-
ric, with m instances in the dataset, the algorithm actually calculates m(m+1)

2 times. By
using the distances stored in the matrix, it can speed up the computation of finding the
nearest neighbours of a certain instance by calculating only 2% of the dimensions in
each evaluation.

Fig. (2b) shows an example of distance re-calculation between two illustrated in-
stances: instancei and instancej, where the distance is determined by summing the
squared difference of instancei and instancej in all dimensions. Suppose the distance
between instancei and instancej regarding to the original pbest (distance[i][j]) is
325, the new distance regarding to the flipped pbest can be re-calculated as follows.
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Table 1. Datasets

Data set Number of Features Number of Instances Number of Classes
DLBCL 5469 77 2
9 Tumors 5726 60 9
Prostate Tumor 10509 102 2
11 Tumors 12533 174 11
Lung Cancer 12600 203 5

With 5 chosen flipped dimensions, it only need to subtract from 325 the square differ-
ences of the features’ values that were selected (2 features: 1 and 9) and add those that
were not selected (3 features: 2, 5 and 6). The new distance therefore is 373. Having
all distances calculated, the algorithm can quickly find the new nearest neighbours for a
given instance. As a result, the proposed strategy can save a significant amount of time.

4 Experimental Design

To examine the proposed approach, four different PSO algorithms are used for feature
selection, which are the standard PSO (PSO), PSO with reset gbest only (PSO-RG)
[4], PSO with local search on pbest only (PSO-LS) and PSO with both the reset gbest
strategy and the local search on pbest (PSO-LSRG). Five datasets (Table 1) with a large
number of features are chosen to test the performance of the algorithms, which are gene
expressions profiles download from http://www.gems-system.org.

Since the datasets include a small number of instances, KNN (K=1) with leave one
out cross validation (LOOCV) is used to calculate the classification accuracy, which is
the same as in [4]. The acceleration coefficients are set as are c1 = c2 = 2.0 and iner-
tia weight linearly decreases from 0.9 to 0.4 [23]. The swarm consists of 30 particles.
The maximum number of iterations is 70 and fully connected communication topology
is used here. Maximum velocity is 6.0. The threshold θ = 0.6 is used to determine
the selection of features. Whenever the local search is applied on a given pbest, it will
try 100 times to find better pbest. In each time, 2% of the dimensions will be flipped
to create a new candidate solution. Meanwhile, if gbest is not improved for three it-
erations, it is reset to all 0, which is the same as in [4] for comparison purposes. The
experiment is conducted for 30 independent runs with different random seeds. A statis-
tical significance test, pairwise Student’s T-test, is performed between the classification
performance of different algorithms, where the significance level is set as 0.05.

5 Results and Discussions

Table 2 show the experimental results of the four PSO algorithms: PSO, PSO-RG, PSO-
LS, PSO-LSRG. In this table, “Ave-Size” means the average number of features se-
lected by each method over the 30 runs. “Best”, “Mean” and “StdDev” respectively
are the best, the average and standard deviation of the classification accuracies returned
by 1NN with LOOCV in the 30 independent runs. The “All” row shows the original
number of features and its classification accuracy when using all features. The highest
average accuracies and the smallest size of all methods in each dataset are the bold ones.
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Table 2. Experimental Results

The more “-”, the better PSO-RG, PSO-LS or PSOLSRG.
Dataset Method Ave-Size Best Mean±StdDev TRG TLS TLSRG

DLBCL

All 5469 87.01 – – –
PSO 2625.70 98.70 97.70±1.01 – – –
PSO-RG 1766.53 98.70 98.44±0.53 = =
PSO-LS 2094.70 98.70 98.40±0.56 –
PSO-LSRG 1690.13 98.70 98.66±0.24

9 Tumors

All 5726 53.33 – – –
PSO 2808.20 78.33 72.72±2.78 – – –
PSO-RG 2720.63 78.33 74.67±2.68 – –
PSO-LS 2139.10 86.67 80.72±2.13 =
PSO-LSRG 2114.57 86.67 81.39±1.76

Prostate Tumor

All 10509 76.47 – – –
PSO 5143.20 91.18 88.53±1.77 – – –
PSO-RG 2353.17 98.04 92.42±2.74 = –
PSO-LS 3825.17 95.10 92.09±1.06 –
PSO-LSRG 2148.47 98.04 94.94±1.18

11 Tumors

All 12533 84.48 – – –
PSO 6138.33 92.53 90.92±0.90 – – –
PSO-RG 5623.87 95.40 91.51±1.08 – –
PSO-LS 4671.07 95.40 93.87±1.03 =
PSO-LSRG 4293.63 95.40 93.79±0.70

Lung Cancer

All 12600 90.15 – – –
PSO 6144.03 96.55 95.78±0.50 – – –
PSO-RG 4792.83 97.54 96.40±0.61 – –
PSO-LS 4641.17 97.54 97.03±0.50 =
PSO-LSRG 3426.43 98.03 97.19±0.43

The “TRG” column shows the results of T-tests between PSO-RG and other methods,
where “+” (“–”) means the corresponding method achieves significantly better (worse)
classification performance than PSO-RG. “=” means they are similar. Similarly, “TLS”
or “TLSRG” are the results of T-tests comparing the classification performance achieved
by other methods and PSO-LS or PSO-LSRG, respectively.

5.1 The Standard PSO

As shown in Table 2, the standard PSO obtained feature subsets with higher classifica-
tion performance and smaller size than all features on all the five datasets. Using feature
subsets evolved by PSO, the 1NN classifier increases its average classification accuracy
about 20% on the 9 Tumor dataset, 10% on the DLBCL and the Prostate Tumors, and
5% on the other two datasets. The number of features selected by PSO is about 50%
of the original number of features on all the five datasets. The results show that PSO
is a suitable tool for FS problems. For the rest of this work, we will consider PSO as a
baseline to compare with other methods.

5.2 Effect of Reset gbest Technique (PSO-RG)

From all the “–”symbols in TRG column of Table 2, we can state that the classification
accuracies of feature subsets selected by PSO-RG is significantly better than using all
features and those of PSO on all the five datasets. Furthermore, the subset size of the
PSO-RG solutions is also smaller than that of PSO. It is about half on two datasets,
which are the 9 Tumor and the 11 Tumor datasets, and one-third on the DLBCL and
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Fig. 3. Average gbest fitness of PSO and PSO-LS on five datasets

Lung Cancer datasets. On the Prostate Tumor dataset, this number even further reduces,
which is less than a quarter of the original feature set size. This is possibly because
setting gbest to 0 attracts all other particles moving toward this direction, resulting to
smaller subsets. The results indicate that the reset gbest technique is useful in directing
particles to other promising areas when they seems to get stuck in a local optimum.

5.3 Effect of Local Search on pbest (PSO-LS)

According to the results of “PSO-LS” in Table 2, the feature subsets evolved by PSO
with local search on pbest can achieve significantly higher classification performance
than using all features and standard PSO. PSO-LS obtained significantly better classi-
fication performance than PSO-RG on three datasets and they are similar on the other
two datasets, which are the DLBCL and the Prostate Tumor. The overall results show
that the proposed local search technique on pbest gives particles more chances to reach
better positions in their local areas.

To have a better view of the local search effect on pbest, it is worth to observe how
gbest changes during the searching process. Fig. 3 contains five graphs for the five
datasets, where each graph shows the average fitness value of gbest over the 30 runs
in each iteration. Each graph has a dashed line and a solid line representing PSO and
PSO-LS, respectively. The figure shows that just after the first iteration, the average
value of gbest of PSO-LS shows a significant improvement comparing to the standard
PSO algorithm on all the five datasets. This indicates that the local search helps the pop-
ulation reach better solution regions and obtain feature subsets with higher classification
performance.
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Table 3. Average computation time (in minutes)

PSO PSO-RG PSO-LS PSO-LSRG
DLBCL 34.81 23.37 28.23 18.99
9 Tumors 23.64 19.79 18.85 17.40
Prostate Tumor 160.13 99.85 134.50 83.77
11 Tumors 452.14 361.68 352.26 310.06
Lung Cancer 558.17 435.01 446.47 363.59

5.4 Combination of Local Search and Reset gbest in PSO (PSO-LSRG)

As can be seen from Table 2, PSO-LSRG selected the smallest number of features on
all the five datasets, which is only around 20% of the original features on the Prostate
Tumor dataset. Meanwhile, PSO-LSRG achieved the highest classification accuracies
on four of the five datasets. The results of the significance T-tests in TLSRG show that
PSO-LSRG outperformed PSO-RG and PSO-LS on four and three of the five datasets,
respectively. For the remaining datasets, they achieved similar results.

From Table 2, we can see an interesting pattern shown in the bold pair of T-test
values in TLS and TLSRG on each dataset. The pattern of “– =” shows that for those
datasets where PSO-LS outperformed PSO-RG, which are the 9 Tumors, 11 Tumors
and Lung Cancer datasets, PSO-LSRG achieved similar classification performance to
PSO-LS. On the other hand, the “= –” shows that for those datasets where PSO-LS
only evolved similar results to PSO-RG, which are the DLBCL and Prostate Tumors,
PSO-LSRG made an improvement. From this observation, we can conclude that the
combination of reset gbest and local search on pbest can overcome the limitations
of the two techniques and help PSO balance its exploration and exploitation abilities.
Therefore, the feature subsets selected by PSO-LSRG that combines two techniques
generally have a smaller size and equal or better classification performance than the
case where only one technique is applied.

5.5 Computational Time

Table 3 shows the average CPU time used by each method in the 30 independent runs
on the five datasets, where the numbers are expressed in minutes.

From Table 3, it can be seen that PSO-RG consumes less time than the standard PSO.
Since all these PSO methods have the same settings in term of the number of particles
and iterations, they have the same number of evaluations in one run. Therefore, the
factor makes their computation time different is that the evolved feature subsets in the
former are smaller than the latter. This again confirms the big influence of the feature
subset size on the computation time in wrapper FS approaches. As a consequence, in
PSO-LS and PSO-LSRG, although the local search part adds more running time to the
standard PSO in every update of pbest, it does not make the total computation time of
one run longer. By contrast, by reaching solutions with smaller subsets, it can signifi-
cantly reduce the total computation time. Another important factor is the computation
time saved by using the cross distance matrix of the instances to evaluate a new pbest,
which was explained in Section 3.3. This new strategy successfully reduces the running
time of KNN classifier. The quick evaluation time and selecting smaller subsets make
the computation time of PSO-LSRG be the shortest in all the five different datasets.
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5.6 Further Discussions

Note that in the experimental design, this paper uses the re-substitution estimator to
evaluate the performance of the feature subsets, which is the same as in [4] and many
other existing papers. The re-substitution estimator, in other words, means the whole
dataset is used during the evolutionary feature selection process. There is no separated
unseen data to test the generality of the selected features. There is a feature selection
bias here, so we cannot claim that the selected features can be used for future unseen
data for classification.

According to Ambroise et al [1], the feature selection bias effect can be reduced
by using cross validation or bootstrap estimators in which a fraction of the original
dataset are held out for testing the performance of the selected features. We will further
investigate this in our future work.

6 Conclusions and Future Work

The goal of this paper was to develop a new PSO approach to feature selection on high-
dimensional gene datasets with thousands of features. The goal has been successfully
achieved by developing a new efficient local search on pbest and applying a reset gbest
mechanism in PSO for feature selection, where KNN with LOOCV was used to eval-
uate the classification performance. The performance of the new PSO approach with
both local search and reset gbest (PSO-LSRG) is examined and compared with stan-
dard PSO, PSO with the proposed local search only (PSO-LS), and PSO with the reset
gbest mechanism only (PSO-RG). The experiments on five gene datasets of varying
difficulty show that the feature subsets returned by PSO-LS are smaller and achieved
better classification performance than those of PSO, and better or at least similar to
those of PSO-RG. The change of gbest during searching processes also indicates that
the proposed local search on pbest is an effective strategy for PSO to improve its search
ability. The results of PSO-RG show that the reset gbest technique helped particles
divert their search to other promising regions when they seem to get stuck in a near
local optima. However, the gbest reset mechanism might also prevent particles to better
exploit their findings. Meanwhile, applying local search on pbest gives particles more
chances to obtain better solutions. Therefore, the combination of these two techniques
in PSO-LSRG further increased the performance. The results confirm that PSO-LSRG
could overcome their limitations to achieve even better results than both PSO-LS and
PSO-RG in terms of the classification performance and the number of features. Mean-
while, the proposed strategy for the fitness evaluation in local search has successfully
saved the computation time for KNN, enabling PSO-LSRG being more efficient than
the other three methods.

The proposed algorithm significantly reduced the size of the feature set, but it can
be seen that the numbers are still large. Further reducing the number of features is
still an important and challenging task. In future work, we intend to develop a new
EC approach to further reduce the number of features and improve the classification
performance without increasing the computational cost.
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Abstract. Feature selection is an important pre-processing step in classification
tasks. Feature selection aims to minimise both the classification error rate and
the number of features, which are usually two conflicting objectives. This paper
develops a differential evolution (DE) based multi-objective feature selection ap-
proach. The multi-objective approach is compared with two conventional meth-
ods and two DE based single objective methods, where the first algorithm is to
minimise the classification error rate only while the second algorithm combines
the number of features and the classification error rate into a single fitness func-
tion. Their performances are examined on nine different datasets and the results
show that the proposed multi-objective algorithm successfully evolved a number
of trade-off solutions, which reduce the number of features and keep or reduce
the classification error rate. In almost all cases, the proposed multi-objective al-
gorithm achieved better performance than all the other four methods in terms of
both the classification accuracy and the number of features.

Keywords: Differential evolution, Feature selection, Multi-objective optimisa-
tion, Classification.

1 Introduction

In machine learning and data mining tasks, such as classification, feature selection (FS),
also called dimensionality reduction, is a process of selecting a small subset of features
from a large set of original features. FS can effectively increase the classification per-
formance, speed up the training process, reduce the dimensionality of the data, and
simplify the built classifiers/models [11].

FS has been of interest for many decades [6]. One of the main challenges in FS is
the large search space. For a dataset including n features, the size of the search space
is 2n. Therefore, exhaustive search is impractical in most situations because of the long
computational time. Although many different search techniques have been applied to FS
tasks [6], most of them still have the limitations of high computational cost and being
stuck in local optima [6]. Evolutionary computation (EC) includes a group of global
search techniques in which differential evolution (DE) [20] is a simple yet powerful
algorithm. DE has been successfully used to solve problems in a variety of fields [5],
including FS [1].
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FS aims to minimise the number of features and maximise the classification accu-
racy (minimise the classification error rate). These two objectives are conflicting to each
other in most cases, which makes FS a multi-objective problem. However, there are only
a limited number of multi-objective FS algorithms and most of them are based on EC
techniques [3, 12, 27]. Those EC techniques are population based algorithms, which are
particularly suitable for multi-objective optimisation because they can produce multi-
ple solutions in a single run [4]. Multi-objective DE gains more and more attention to
solve complex multi-objective problems. Recently, Wang et al. [21] showed that DE can
achieve better performance than many other EC algorithms on single objective FS, but
there is only one initial work [24] on DE for multi-objective FS. This paper will further
investigate this topic by significantly extend the work in [24].

1.1 Goals

The overall goal is to develop a DE based multi-objective FS approach to searching for
a set of non-dominated feature subsets, which include a small subset of features and
achieve similar or better classification performance than using all features. To achieve
this goal, we propose a multi-objective FS approach (DEMOFS) by using a multi-
objective DE algorithm to simultaneously minimise the number of features and the
classification error rate. DEMOFS is compared with two conventional methods and two
DE based single objective algorithms, where the first DE algorithm aims to minimise
the classification error rate only and the second DE algorithm combines the classifica-
tion error rate and the number of features into a single fitness function. Specifically, we
will investigate:

– whether the two single objective DE algorithms can successfully reduce the number
of features and maintain or even improve the classification performance over using
all features,

– whether DEMOFS can achieve a set of non-dominated feature subsets, which can
further reduce the number of features and improve the classification performance,
and

– whether DEMOFS can outperform the two conventional FS algorithms in terms of
the number of features and the classification performance.

2 Background

2.1 Differential Evolution (DE)

Differential evolution (DE) was first developed by Storn and Price [20] in 1997. Due to
its simplicity, robustness and effectiveness, DE has attracted more and more attention of
researchers from different fields. In DE, a candidate solution is encoded as an individual
in the population. Considering there are P individuals in the population, the individual i
(1 ≤ i ≤ P ) can be shown by a vector (xi1, xi2, ...xiD), where D is the dimensionality
of the problem or search space. There is a vector (xmax1, xmax2, ...xmaxD) to define
the upper bound of the search space and a vector (xmin1, xmin2, ...xminD) to limit the
lower bound of the search space. A DE algorithm starts with randomly generated initial
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individuals. Then DE employs the mutation operation to produce a mutant candidate
solution Ci for each individual xi, which is also called the parent xi.

There are different types of mutation strategies [19]. Equation (1) takes DE/rand/1/bin
as an example to how Ci is generated.

Cid =

{
xi,r1
id + F ∗ (xi,r2

d − xi,r3
id ), if rand() < CR

xid, otherwise
(1)

where xi,r1, xi,r2, and xi,r3 are randomly selected from the population. xi, xi,r1, xi,r2,
and xi,r3 are different from each other. F ∈ (0, 1) is a scale factor, which controls the
rate at which the population evolves. rand() is a random number uniformly distributed
in (0,1). CR is the crossover probability. If Cid falls out of the lower and upper bounds,
a constraint method is usually applied to handle it. A simply way is to replace the value
in Cid that exceeds the boundary value with the closest boundary value.

2.2 Related Work on Feature Selection

EC algorithms have been applied to FS problems, such as DE [14], genetic algorithms
(GAs) [28], genetic programming (GP) [17], and particle swarm optimisation (PSO)
[2, 22, 23, 25–27]. Typical EC based FS algorithms are reviewed in this section. Zhu et
al. [28] proposed a FS method incorporating GA with local search (i.e. forms a memetic
algorithm). Meanwhile, this algorithm combines filter ranking measure into a wrapper
framework to take advantage of both filter and wrapper approaches. Fdhila et al. [8]
applied multi-swarm PSO to solve FS problems. However, the computational cost of
the proposed algorithm is high because it involves parallel evolutionary processes and
multiple sub-swarms with a relative large number of particles. He et al. [14] applied a
binary differential evolution (BDE) algorithm to filter FS, where mutual information is
used to evaluate the goodness of the selected feature subsets. However, the proposed
algorithm is not compared with any other algorithm and the datasets used in the exper-
iments include a relatively small number (maximum 56) of features. Al-Ani et al. [1]
also proposed a DE based FS method, where features are distributed to a set of wheels
and DE is employed to select features from each wheel. This algorithm can significantly
reduce the number of features and improve the classification performance.

EC algorithms have been applied to multi-objective FS. Hamdani et al. [12] devel-
oped a multi-objective FS algorithm using non-dominated sorting based multi-objective
GA II (NSGAII). Neshatian and Zhang [17] proposed a GP based filter model as a multi-
objective algorithm for FS in binary classification problems. Ke et al. [3] developed a
Pareto-based multi-objective ant colony optimisation (ACO) for FS based on rough set
theory. Xue et al. [27] proposed a PSO based multi-objective approach for wrapper FS,
which shows that the PSO based algorithm outperforms three other commonly used EC
based multi-objective algorithms. Wang et al. [21] showed that DE can achieve better
performance than GA, PSO, ACO, and harmony search on single objective FS, but the
use of DE for multi-objective FS has not been investigated to date.
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Fig. 1. Training Process of DEFS and DEFS2

3 Proposed Approach

3.1 Single Objective Algorithm 1: DEFS

To investigate the performance of DE for FS, DE is firstly used to optimise the classi-
fication performance of the selected features to form the algorithm DEFS. DEFS uses
Equation (2) as the fitness function, which is to minimise the classification error rate.

Fit1 = ErrorRate =
FP + FN

TP + TN + FP + FN
(2)

where FP, FN, TP and TN mean false positives, false negatives, true positives, and true
negatives, respectively.

Since FS needs to consider both the classification performance and the number of
features, the number of features is not considered in the fitness function but during
the evolutionary process of DEFS. If there are multiple solutions with the smallest er-
ror rate, the one with the smallest size will be reserved and others are discarded. The
representation of DE follows the continuous encoding scheme since the original DE al-
gorithm was developed for continuous problems. In DEFS, each individual in DEFS is
a vector of real numbers, xi = (xi1, xi2, .., xid, .., xiD), where D is the dimensionality
and also the total number of features in the dataset. 0 ≤ xid ≤ 1 shows the probability
of the dth feature being selected. A threshold θ is used to determine whether this fea-
ture is selected. If θ ≤ xid, the dth feature is selected. Otherwise, the dth feature is not
selected.

Fig. 1 shows the training or search process of DEFS, where the DE scheme DE/rand/
1/bin [19] is used following [18]. The blue and green dash rectangles show the detailed
steps of evaluating the fitness value and creating a new candidate individual, respec-
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tively. After this training process, the selected feature subset will be used to transform
the test set of the problem and the classification performance of the selected features
will be evaluated on the transformed test set.

3.2 Single Objective Algorithm 2: DEFS2

In DEFS, the number of features is not directly included in the fitness function, al-
though it is considered during the search process. To further investigate the use of DE
for FS, an integrated fitness function, Equation (3), which combines the two objectives
of minimising the classification error rate and the number of features, is used to develop
another algorithm named DEFS2. Although DEFS2 considers the two objectives, it is
treated as a single objective algorithm since it follows a single objective search process.

Fit2 = α ∗ ErrorRate+ (1− α) ∗ #Size

D
(3)

where α ∈ (0, 1] is a weight parameter showing the relative importance of the classifi-
cation error rate. #Size represents the number of selected features and D is the total
number of features in the dataset. #Size

D is used to scale the value to (0,1] to be in the
same range of ErrorRate. α should be larger than 0.5 to make sure α > (1 − α), i.e.
the classification performance is more important than the number of features.

Equation (3) is used to investigate whether directly considering the number of se-
lected features can further reduce the number of features without significantly reducing
the classification accuracy. The search or training process of DEFS2 can also be shown
by Fig. 1. The main difference between DEFS and DEFS2 is the fitness function.

3.3 Multi-objective Algorithm: DEMOFS

Similar to most of other EC approaches, DE was proposed to solve single objec-
tive problems. Based on a popular evolutionary multi-objective algorithm, i.e. non-
dominated sorting based genetic algorithm II (NSGAII), Robič and Bogdand [18]
developed a multi-objective DE algorithm named DEMO [18] to use DE for multi-
objective optimisation. DEMO has shown promising performance on some problems,
but it has never been applied to FS problems. In this paper, we develop a multi-objective
FS algorithm named DEMOFS based on DEMO to investigate the use of DE for multi-
objective FS. DEMOFS aims to minimise the classification error rate and the number
of features. The representation of DEMOFS is the same as DEFS and DEFS2.

Algorithm 1 shows the pseudo-code of DEMOFS, where the two key steps are the
decision of the newly constructed individual and the update of the population. In Algo-
rithm 1, Line 8 to Line 16 show the decision on the newly constructed individual. After
this procedure, the population exceeds the pre-defined maximum number of individuals.
To update the population, a truncation step is needed, which is shown in Line 19. This is
similar to that in NSGAII [7], which involves the use of the non-dominated sorting and
crowding distance metric. Specifically, the non-dominated solutions in the population
are called the first non-dominated front, which are excluded from the population. Then
the non-dominated solutions in the new population are called the second non-dominated
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Algorithm 1. Pseudo-Code of DEMOFS

1 begin
2 randomly initialise individuals;
3 while Stopping Criterion is not met do
4 evaluate the number of features selected by each individual and its Training

error rate;
5 for i=1 to Number of individuals do
6 create candidate C from parent i ; /* details as shown in

Fig. 1 */
7 evaluate the two objective values of C;
8 if C dominates i then
9 use C to replace i;

10 end
11 else if i dominates C then
12 C is discarded;
13 end
14 else if i and C are non-dominated to each other then
15 C is added to the population;
16 end
17 end
18 if the population size exceeds the maximum value then
19 truncate the population according to non-dominated sorting
20 end
21 randomly enumerate the individuals in the population;
22 end
23 end
24 calculate the testing classification error rate of the non-dominated solutions;
25 return the non-dominated solutions and their training and testing error rates.

front. The following levels of non-dominated fronts are identified by repeating this pro-
cedure. For the next generation, solutions (individuals) are selected from the top levels
of the non-dominated fronts to form a new/updated population, starting from the first
front. If the number of solutions needed is larger than the number of solutions in the
current non-dominated front, all the solutions are added into the population for the next
generation. Otherwise, the solutions in the current non-dominated front are ranked ac-
cording to the crowding distance and the highest ranked (least crowded) solutions are
added into the next generation.

4 Design of Experiments

4.1 Benchmark Techniques

The three DE based FS algorithms (i.e. DEFS, DEFS2 and DEMOFS) are examined and
compared with each other on nine datasets shown in Table 1, which were selected from
the UCI machine learning repository [9]. For each dataset, the instances are randomly
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Table 1. Datasets

Dataset NO. of Features NO. of Classes NO. of Instances
Wine 13 3 178
Australian 14 2 690
Zoo 17 7 101
Vehicle 18 4 846
German 24 2 1000
Lung Cancer 56 3 32
Sonar 60 2 208
Hillvalley 100 2 606
Musk Version 1 (Musk1) 166 2 476

divided into two sets: 70% as the training set and 30% as the test set. The nine datasets
are chosen to have different numbers of features, classes and instances to be used as
representatives of problems that the proposed algorithms can address.

All the algorithms are wrapper approaches, i.e. requiring a classification algorithm
to evaluate the classification error rate of the selected features. A commonly used clas-
sification algorithm, K-nearest neighbour (KNN), is used here and K=5. During the
training process, KNN with 10-fold cross-validation is employed to evaluate the classi-
fication error rate of the selected feature subset on the training set, and then the selected
features are evaluated on the test set to obtain the testing classification error rate [15].

Two traditional wrapper FS methods are used to compare with that of the DE based
algorithms, which are linear forward selection (LFS) [10] and greedy stepwise back-
ward selection (GSBS), which were derived from two typical greedy search based FS,
i.e. SFS and SBS, respectively. Details about LFS and GSBS can be seen from [10] and
[16]. Weka [13] is used to run the experiments of LFS and GSBS. All the settings in LFS
and GSBS are kept to the defaults. The parameters of the three DE based algorithms
are set as follows. The population size is 80 and the maximum number of generations is
100. The crossover rate is set as 0.3. All the three DE based algorithms share the same
representation. The threshold θ is set as 0.6 [27]. The parameter α in DEFS2 is set as
0.95, which means that the classification performance is much more important than the
number of features. LFS and GSBS are deterministic methods, which produce a unique
solution. The DE based algorithms are stochastic methods and each of them has been
performed for 30 independent runs on each dataset.

5 Results and Discussions

In this section, we first compare the performance of DE based stochastic algorithms,
DEFS, DEFS2 and DEMOFS, then compare their performance with that of the two
traditional (deterministic) methods, LFS and GSBS.

DEFS and DEFS2 are single objective methods producing 30 solutions for each
dataset from the 30 independent runs. DEMOFS is a multi-objective algorithm produc-
ing 30 sets of solutions for each dataset from the 30 independent runs. To compare their
results, the 30 sets of solutions are combined together to extract two sets of solutions,
which are the “best” set and the “average” set. The “best” set means the non-dominated
solutions achieved by DEMOFS across the 30 independent runs. The average set con-
tains the solutions with different numbers of features. For a certain number (e.g. m), its
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Fig. 2. Experimental Results of DEFS, DEFS2 and DEMOFS

classification error rate is the average error rate of all the available feature subsets that
include m features. Fig. 2 shows the results of DEFS, DEFS2 and DEMOFS, where
“DEMOFS-A” shows the “average” set and “DEMOFS-B” shows the “best” set. The
nine charts correspond to the nine datasets used in the experiments. In each chart, the
numbers in the bracket are the total number of features and the classification error rate
achieved by using all features. For DEFS and DEFS2, there might be fewer than 30
distinct dots shown in a chart. The reason is that many different solutions may have the
same number of features and the same classification error rate and they are plotted in
the same dot.

5.1 Results of DEFS and DEFS2

From Fig. 2, it can be seen that on all the nine datasets, DEFS reduced around half
of the features and reduced or achieved similar classification error rate to using all the
available features. The results show that DEFS uses DE as the search technique can
effectively search the solution space to reduce the number of features and maintain or
even improve the classification performance.

Fig. 2 shows that DEFS2 selected around one third of the available features and
achieved a similar or even lower classification error rate than using all features. For
example, on the Australian dataset, DEFS2 selected only three features from the 14
available features and reduced the classification error rate from 29.95% to 14.5%. Com-
paring DEFS2 with DEFS, DEFS2 which directly considers the number of features in
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Fig. 3. Further Comparisons Between DEFS, DEFS2 and DEMOFS: Non-Dominated Solutions

the fitness function can further reduce the number of features without increasing the
classification error or evening reducing it over DEFS. The main reason is that the num-
ber of features is considered but with a very small weight in the fitness function, which
on one hand results in the reduction of the number of features. On the other hand, slightly
compromising the classification performance with the number of features can also help
avoid the over-fitting problem, which may achieve better performance on the test set.

5.2 Results of DEMOFS

From Fig. 2, it can be observed that for all cases, at least one feature subset in the
“average” set included a smaller number of features and achieved similar or lower clas-
sification error rate than using all features. Note that DEMOFS reports a set of non-
dominated solutions in each run, but when combining the solutions from multiple runs,
some solutions may be dominated by others. Therefore, some of the solutions in the
“average” set dominate others. In all datasets, the “best” set included a significantly
smaller number of features and increased the classification accuracy over all features.

Fig. 2 suggests that by employing a multi-objective search mechanism, DEMOFS
can effectively explore the search space to obtain a number of non-dominated feature
subsets, which significantly reduced the number of features and improve the classifica-
tion performance over using all features.
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Table 2. Results of LFS ang GSBS
Wine Australian Zoo Vehicle German

# Features Error (%) # Features Error (%) # Features Error (%) # Features Error (%) # Features Error (%)
LFS 7 25.93 4 29.95 8 20.95 9 16.93 3 31.33
GSBS 8 14.81 12 30.43 7 20.0 16 24.21 18 35.67

Lung Sonar Hillvalley Musk1
# Features Error (%) # Features Error (%) # Features Error (%) # Features Error (%)

LFS 6 10.0 3 22.22 8 42.31 10 14.69
GSBS 33 10.0 48 31.75 90 50.55 122 23.78

5.3 Comparisons between DEFS, DEFS2 and DEMOFS

Fig. 2 also shows that the classification performance of the “average” set is often slightly
worse or similar to that of DEFS and DEFS2, but the solutions in the “best” set is
always better than DEFS and DEFS2. This is not surprised because DEFS, DEFS2 and
DEMOFS share the same (total) number of evaluations, but DEFS and DEFS2 focus
on the optimisation of the classification accuracy and return only one single solution
from each run. DEMOFS returns a set of feature subsets with trade-off between the
accuracy and the number of features. Therefore, when the error rates of feature subsets
from different runs are averaged, it may be slightly worse the DEFS and DEFS2.

The “average” set gives an overall idea of the solutions achieved by DEMOFS, espe-
cially for the number of features, but it has a potential limitation because the solutions
in the “average” set are not meaningful solutions. The reason is that in FS problems, the
solutions themselves cannot be averaged because the each solution involves a number
of features. Such individual features cannot be averaged to get an “average” solution,
although the numbers of features and their classification error rates can be averaged to
show the general performance. This is not a problem for the “best” set involving the
original non-dominated solutions only. Therefore, in order to further compare the per-
formance of DEFS, DEFS2 and DEMOFS, the non-dominated solutions obtained by
DEFS and DEFS2 over the 30 independent runs are also collected and compared with
that of DEMOFS, where the results are shown in Fig. 3.

From Fig. 3, it can be observed that DEFS2 generally achieved similar or better
performance than DEFS. This is generally consistent with the results in Fig. 2, but
shows a clearer pattern. On all the nine datasets, the solutions of DEMOFS dominate
that of DEFS. On eight of the nine datasets, the solutions of DEMOFS dominate that
of DEFS2. The only exception is the Musk1 dataset, where one of the solutions from
DEFS2 achieved a similar classification performance to that of DEMOFS, but selected
a smaller number of features. The results from Fig. 3 further show that DEMOFS has
the potential to obtain better feature subsets than DEFS and DEFS2, which included a
smaller number of features and a lower classification error rate.

5.4 Comparisons with Traditional Methods

Table 2 shows the results of the two traditional FS algorithms. Both LFS and GSBS are
deterministic algorithms that produce a unique solution.

Comparing the results in Table 2 to that in Fig. 2 and 3, it can be seen that DEFS,
DEFS2 and DEMOFS were able to outperform both LFS and GSBS in terms of both the
classification performance and the number of features on eight of the nine datasets. Only
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on the Lung dataset, LFS outperformed DEFS and DEFS2, but DEMOFS achieved bet-
ter performance than LFS. The results show that DEFS, DEFS2 and DEMOFS employ
DE as the search technique can better explore the solution space to obtain better results
than LFS and GSBS.

6 Conclusions and Future Work

This paper investigated the use of DE for multi-objective FS in classification. The algo-
rithm DEMOFS was proposed to simultaneously minimise the number of features and
the classification error rate. The experiments on the nine different datasets show that
DEMOFS successfully evolved a set of trade-off solutions to reduce both the number of
features and the classification error rate. The results show that DEMOFS outperformed
two commonly used conventional FS methods (LFS and GSBS) in terms of both the
classification performance and the number of features. DEMOFS was also compared
with two DE based single objective FS algorithms (DEFS and DEFS2), where DEFS
aimed to minimise the classification error rates and DEFS2 combined both the classi-
fication error rate and the number of features into a single fitness function. DEMOFS
outperformed both DEFS and DEFS2 by employing a multi-objective search mecha-
nism. All the three DE based algorithms achieved better classification accuracy than
the two traditional algorithms.

This work discovers that DE can be successfully used for multi-objective FS. It also
provides motivations for further investigating EC particularly DE methods for multi-
objective FS. There are many future research directions, which can be seen as follows:

1. The performance of DEMOFS needs to compare with other EC based multi-
objective FS algorithms, such as PSO and GAs, which was not conducted in this
paper due to the page limit;

2. A new multi-objective DE algorithm needs to be developed to further improve the
performance of DE for multi-objective FS;

3. DE was originally for continuous problems, but FS is a binary task. Therefore, a
binary DE is demanded to better solve the problem;

4. This paper focuses on wrapper based algorithms and the investigation of DE for
filter based multi-objective FS is still an open issue;

5. Classification on datasets with over a thousand or a few thousands of features is
still a challenge. Investigating effective and efficient multi-objective FS approaches
on such large-scale problems can help address this challenge; and

6. To investigate the trade-off between the number of features and the classification
performance and decide how to select a single solution from a set of non-dominated
solutions in multi-objective FS.
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Abstract. Product feature fatigue is a common problem in practice. At the mo-
ment of purchasing, customers prefer to choose products with more features.  
After having used these high-feature products, customers become frustrated or 
dissatisfied with the usability problems caused by too many features. To deal 
with product feature fatigue problem, this paper introduces a novel model in 
which capability and complexity are regarded as two conflicting objects, and 
NSGA-II is adopted to search for a set of Pareto solutions for this multi-objective 
optimization problem. Then, this paper establishes piecewise linear membership 
functions based on decision maker’s preferences, and a priority list of non-
dominated solutions can be provided according to the membership function val-
ues. The list can make it easier for decision makers to make final selection. A 
smart phone case study shows that the proposed method is a powerful decision-
aid tool for product designers when dealing with feature fatigue problem. 

Keywords: product feature fatigue, multi-objective optimization, decision support. 

1 Introduction 

Feature fatigue problem is a difficult problem that a company must face in the process 
of product development. In the fierce competitive market environment, it is a  
common strategy of product development to add more features for the product. Com-
panies hope that the feature-rich products could be more attractive to customers, so as 
to expand the customer groups, increase the sales, and eventually maximize the earn-
ings obtained. Although research and actual situation shows that the products with 
more features have higher overall capability, it can not be ignored that the increase of 
features will lead to the increase of the product complexity. Research indicates that, at 
the moment of purchasing, the main consideration of a customer is whether the prod-
uct is attractive or not, therefore customers tend to choose products with more  
features [1]. In the purchase process, consumers are less concerned about product 
usability. But after actual use, consumers will gradually realize the problem brought 
by the operation complexity, which can lead to dissatisfaction with the products, 
complaint or even returns, namely feature fatigue problem [2]. In general, although 
adding more features for product can increase the initial sales, feature fatigue problem 
caused by too many features will be harmful to the long-term returns of companies. 
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In recent years, feature fatigue problem has attracted wide attention in both acade-
mia and industry. To solve this problem, the causes of feature fatigue problem have 
been analyzed from the perspective of customer perception, consumer psychology and 
so on, and qualitative proposals have been put forward specifically to deal with fea-
ture fatigue problem, such as providing training guidance, reducing quantities, launch-
ing the product with a single feature, offering trials, gradual promotion, etc[3,4]. But 
these qualitative researches can not provide quantitative solutions for product design-
ers, such as how many features a product should include, and selecting which specific 
feature can eliminate or reduce the negative effects brought by feature fatigue. For 
feature fatigue problem, too many features of a product will lead to feature complexi-
ty problem, however too few will reduce the capability and competitiveness of a 
product, so the solution to this problem is essentially in need of balancing the increase 
of capability, and the decrease of usability brought by adding features, which can 
come down to a multi-objective problem. Some quantitative models existing in the 
field of feature fatigue are mainly for the study of capability or usability respectively, 
without proposing quantitative solutions considering two objectives synthetically[3], 
[5], [6]. Although researchers have explored the problem from the perspective of 
multi-objective optimization, there are still shortcomings of the existing models and 
methods. At present, there are two main methods solving feature fatigue problem 
from the perspective of multi-objective, one of which is to merge multiple objectives 
into a single objective, the other is Pareto-optimal method. Taking the classical 
Thompson model for example[2], this model establishes a feature fatigue model from 
a revenue perspective by the way of transforming capability and usability into a syn-
thetic objective, and eventually the optimal solution can be obtained. The model fo-
cuses on the number of product features, which means that only the effects of the 
feature number on feature fatigue are analyzed, while ignoring the differences among 
the various product features. The other problem is that it’s difficult for decision mak-
ers to determine the relationship between the two objectives when merging objec-
tives[7]. Different from the method of merging multiple objectives and obtaining a 
unique optimal solution, the literature[8] proposed a feature fatigue multi-objective 
model based on Pareto optimization, this model does not need to set weight for each 
objective, and it can get a set of optimal solutions for decision makers to select from 
after the optimization computation. However, there’re still some deficiencies of this 
method. Firstly, the existing models focus on product usability, while ignoring the 
effects of the feature number on product capability. Secondly, the relation functions 
of the feature number and product usability in existing models are mainly in the way 
of taking square directly, without considering the diversity of the relation functions in 
actual situation. Thirdly, the method based on Pareto optimization often gets too 
many candidate solutions, which is a burden for decision-makers to make decisions, 
and this method is completely dependent on artificial selection with too much subjec-
tivity. 

In this paper, on the basis of previous studies, a multi-objective optimization  
model for feature fatigue problem is established based on Pareto optimization.  
The model introduces a relation function of the feature number, product capability 
and complexity, in which decision-makers can choose different forms of relation 
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functions by adjusting the parameters. Using NSGA-II algorithm to solve the model, 
we can get a set of candidate solutions. According to the fuzzy set theory, this paper 
proposes a selection method based on piecewise linear membership function. By the 
way of sorting candidate solutions, the proposed method can provide a powerful deci-
sion support for decision-makers to make final choice. 

Before getting the final optimization result, there are several parameters to be de-
termined: the complexity value and capability score of each feature which can be 
obtained from questionnaire, auxiliary parameters which can be set by decision-
makers, and the acceleration and decreasing effect of the increase of feature number. 
Then using the proposed method in this paper, the optimal product feature combina-
tion for decision-makers can be obtained. 

2 Multi-objective Optimization Model for Feature Fatigue 
Problem 

2.1 General Form for Feature Fatigue Multi-objective Optimization Model 

In product feature fatigue problem, more features often means the increase of product 
capability, at the same time the complexity results in the decrease of usability. In this 
paper, product capability and complexity are two optimization objectives of the prob-
lem. According to the definition of multi-objective optimization problem, feature 
fatigue problem can be described as follows: 

 

minimize:   

maximize:   

s.t.   ( ) 0,             1, 2,..., ;

       ( ) 0,             1, 2,..., .     

j

k

FXW

FAW

g x j p

h x k q

≤ =
= =

                    (1) 

Where the two objective functions represent the minimization of product complexity 
FXW  and the maximization of product capability FAW . x  represents the decision 
variable, and for each feature iF , the corresponding values ix  can be 0 or 1. 0ix =  
indicates that the product feature combination does not include feature iF , while 

1ix =  indicates that the feature iF  is included. ( ) 0jg x ≤  represents the p  inequa-

lity constraints that the product feature combination needs to satisfy and ( ) 0kh x =  
represents the q  equality constraints of the product feature combination. The pur-

pose of solving problem under the premise of considering the two contradictory ob-
jective functions FXW and FAW , is to search for a set of solutions that satisfy the 
Pareto optimization for decision makers to choose from. 
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2.2 The Objective Functions Considering the Impact of Feature Difference 
and Feature Number 

For a product, the major negative impact of adding more features is the increase of 
complexity (that is the decrease of usability). In fact, every additional feature increas-
es an item to learn, an item that is likely to cause misunderstanding, and increases an 
item to be searched when looking for the desired feature at the using time [9].  
Research shows that the relationship between the feature number and product com-
plexity is not linear. For a product of which the feature number is increasing, the 
complexity will have acceleration effect as the feature number increases. The earlier 
models in the feature fatigue field mainly take square of the feature number to 
represent the acceleration effect [2, 3]. But actually there is diversity of the relation 
function between feature number and complexity. At the same time, considering the 
feature difference in terms of complexity, this paper uses the following equation to 
model product complexity: 

1 1

( ) +   
n n

i i i

i i

FXW a x x ωα β γ
= =

= + −∑ ∑                       (2) 

Where ix  takes the value 1 or 0 which represents whether the feature iF  is included 
in the feature combination or not. n represents the total number of features for choos-
ing. The first item in the equation ia  is the complexity value of feature iF , and the 
value of ia  represents the difference of each feature. The larger the value of ia  is, 
the greater contribution the corresponding feature makes to product complexity. The 

second item in the equation 
1

n

i

i

x
=
∑  represents the number of features which are actual-

ly included in product feature combination. 1ω >  represents that the increase of 
feature number has acceleration effect on the increase of product complexity[2]. α
、 β and γ  in the equation are auxiliary parameters which can be set by decision-

makers. 
The existing models in the feature fatigue field, mainly define the relationship as a 

linear correlation when considering the impact of feature number on product capabili-
ty [2]. However, research indicates that, in practice there is decreasing effect of the 
contribution that the increase of feature number makes to the increase of product ca-
pability[1]. At the same time, considering the different effects of the various features 
on product capability, this paper proposes the model for the product capability as 
follows: 

 '

1 1

'( ') + '   
n n

i i i

i i

FAW b x x ωα β γ
= =

= + −∑ ∑
                   

(3) 

The first item in the above equation ib  is the capability score of feature iF , and 
the higher the value of ib  is, the lager contribution this feature makes to product 
capability. The second item in the above equation 0 ' 1ω< < , indicates that there is 
decreasing effect of the contribution that the increase of feature number makes to the 
increase of product capability. 'α 、 'β and 'γ  are auxiliary parameters that deci-

sion-makers can set. 
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3 Multi-objective Optimization Based on NSGA-II 

To solve multi-objective optimization problem, a number of methods are proposed in 
academia, among which multi-objective genetic algorithms are widely used to solve 
multi-objective optimization problem with the advantage of simple generality, overall 
search, strong flexibility, fast operation speed, etc. [10]. According to the existing 
literature, non-dominated sorting genetic algorithm II(NSGA-II ,proposed by Deb, 
etc. [11]) is one of the best solving methods. NSGA-II adopts succinct and clear non-
dominated sorting mechanism to make algorithm possess the superior ability to  
approach the Pareto front, and the adoption of crowding distance sorting mechanism 
ensures that the Pareto solutions have a good distribution. According to the characte-
ristics of feature fatigue problem, in this paper, the steps using NSGA-II to solve mul-
ti-objective optimization problems are as follows: 

Step 1 Feature identification and chromosome coding. For the feature fatigue 
problem to be studied, we must first determine which features need to be studied spe-
cifically. Assuming that there are n optional features in the problem, then for multi-
objective optimization problem, a solution can be represented as a chromosome of 
length n. Each gene on the chromosome represents an optional product feature, and 
the value of each gene can be 0 or 1. 0 indicates that the individual (product feature 
combination ) does not include the corresponding feature , and 1 indicates that the 
corresponding feature is included in the individual. For feature fatigue problem, the 
advantage of using 0-1 encoding is that it can make the problem solutions one-to-one 
correspondence with the individuals in genetic space. According to the value of each 
gene on a chromosome in genetic space, bringing which into fitness equation directly 
will calculate the fitness function value for optimization problem. 

Step 2 Determine the objective functions. The general form for feature fatigue 
multi-objective optimization model is shown in Equation (1), and the objective is 
minimizing the product complexity FXW , meanwhile, maximizing the product capa-

bility FAW . The 0-1 value of the thi  gene in each chromosome is corresponding to 

the value of ix in Equation (2) and Equation (3). Therefore, taking each chromosome 
as the input, we will obtain the objective value of product complexity considering the 
impact of feature difference and feature number by Equation (2), and will obtain the 
objective value of product capability by Equation (3). Each feature score and parame-
ter in objective function can be obtained through customer surveys, experiments or 
given by experts, see Case Study for details. 

Step 3 Generate the initial population. To start the genetic algorithm, we should 
create a random parent population 0P with N individuals. 

Step 4 Selection. The selection method adopted in this paper is a binary tourna-
ment selection. The concrete method is that by selecting 2 individuals in the parent 
population randomly, determine whether it is good or bad in terms of the selection 
criteria, and then put the better individual into the crossness-pool, until the individuals 
in the crossness-pool reach the number needed. For any 2 individuals in the initial 
population 0P , the one with lower non-domination rank will be the priority selection. 
And for the non-initial population, we will select in terms of crowded-comparison 
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operator n≺ . According to the definition of n≺ , for individuals in two different 
non-domination ranks, the one with lower rank is better. And for 2 individuals in the 
same non-domination rank, the one with larger crowded distance is better. 

Step 5 Crossover and mutation. In this paper, the crossover and mutation is per-
formed based on the crossover and mutation rate. For each individual iS  in the cross-
ness-pool, a random probability rate ir  is generated. If i cr r< , a single-point cros-

sover is performed for individual iS  based on a crossover random point. If i cr r≥ , 

generate a random value kr  for each gene of individual iS  randomly, if k mr r< , 

the mutation is achieved by reversing the value of the corresponding gene. 

Step 6 Generate the next generation of parent. For the tht generation of the algo-

rithm, a parent population tP  of size N and an offspring population of size N  is 
formed, and the combined population is t t tR P Q= ∪ . Then the individuals of tR  are 
sorted according to non-domination. The sorted individuals of tR  are added into the 
next parent population 1tP +  in the increasing order of their ranking until the solution 
number of some front exceeds N . To choose N population members, all the indi-
viduals of the last front will be sorted based on crowding distance, and add individu-
als into 1tP +  based on crowding distance in descending order until the number 
reaches N . 

Step 7 If it reaches the termination condition, then take the output 1tP +  as an  
optimal solution. If not, go to Step 4 to continue the iteration. 

4 Pareto Optimization Based on Piecewise Linear Membership 

NSGA-II is adopted to solve the multi-objective optimization problem and can get a 
set of Pareto-optimal product feature combinations for decision makers to select from. 
But if the number of the obtained Pareto-optimal solutions is large, it will be a burden 
for decision makers, and it carries too much subjectivity depending on artificial selec-
tion completely. To deal with this problem, this paper establishes piecewise linear 
membership functions based on fuzzy set theory to assist Pareto optimization [12]. 

It is assumed that there are m  optimal solutions in Pareto solution set, and iS  is 

the t hi  solution, then the corresponding complexity value of iS  is iFXW , and the 
capability value is iFAW . For complexity, the lower the value of iFXW  is, the 
more satisfied the decision maker will be with iS . According to the definition of 
membership, the value of membership is 1 at the most satisfied time, and the value is 
0 at the most dissatisfied time. When we calculate FXW  using Equation(2), the 
acceleration effects caused by feature difference and feature number are considered 
comprehensively, and in this case, the relationship between FXW  value and mem-
bership is difficult to be represented by a single linear function. When decision mak-
ers propose the membership function, they can set membership values for some sub-
points to describe their preferences[13]. For complexity, the membership function 

X

i
μ can be expressed as follows: 
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Where maxFXW is the maximum value of complexity, minFXW is the minimum 
value. rg  and rf  are the complexity score of the thr  endpoint and the corresponding 

value of membership function respectively, and 1rg −  and 1rf − are respectively the 

complexity score and the value of membership function of the one point before, 
where 1r ≥  . 

For product capability, the higher the value of iFAW  is, the more satisfied the 
decision maker will be with iS , so the membership function of capability can be 
obtained according to the following equation: 
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After getting the membership X

i
μ and A

i
μ of each solution iS  by computing on 

both objectives, the total membership iμ  can be obtained through the following equ-

ation: 

1

( )

X A
i i

i m
X A
j j

j

μ μμ
μ μ

=

+
=

+∑
                       (6) 

Where m  is the solution number in Pareto solution set, the solutions with lager value 
of iμ  will possess the higher comprehensive satisfactory degree. The candidate solu-

tions are sorted based on the value of iμ  in descending order, which provides Pareto-

optimal solutions with priority order to decision makers, and this will reduce the bur-
dens of decision when searching for optimal solutions. 

5 Case Study 

5.1 Case Description 

In this paper, a case study of smart phone is presented to illustrate how the proposed 
multi-objective optimization method can be applied in real-world. In this case,  
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we select ten typical features for the feature combination study: Music, Video, Radio, 
TV, Video Conferencing, WiFi, Payment, Camera, Email, Bluetooth. Each feature 
and the corresponding score of capability and complexity are shown in Table 2. The 
capability score of each feature is based on a questionnaire survey, and the question-
naire is shown in Fig.1. Respondents were asked to choose the degree of preference 
points for each feature on a scale of 1 to 9, and the preference is normalized to value 
from 0 to 1, then the obtained evaluation data of each capability can be shown in Ta-
ble 1. The average of the preference value of all 173 copies of reasonable question-
naires is the capability value and shown in Table 2[13]. In this case, the using com-
plexity score is represented using the number of steps to finish related tasks. For a 
feature, more steps means more complicate to use[14]. 

1 2 3 4 5 6 7 8 9
.3 .5 .7 .3 .5 .7 .3 .5 .7 .3 .5 .7 .3 .5 .7 .3 .5 .7 .3 .5 .7 .3 .5 .7

I enjoy it 
that way

I expect it 
that way

I am neutral 
Dislike but can 

live with it 
Dislike but 

can’t accept it 

 

Fig. 1. The questionnaire about Functional/Dysfunctional question 

Table 1. Evaluation data of capability 

Index F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 

C1 0.778 0.333 0.222 0.333 0.222 0.333 0.222 0.222 0.111 0.333 
C2 0.111 1.000 0.333 0.667 0.556 0.556 0.111 0.333 0.333 0.556 
C3 1.000 0.444 1.000 0.444 0.333 0.556 0.111 0.556 0.778 0.778 
… … … … … … … … … … … 

C173 0.333 0.556 0.556 0.778 0.556 0.556 0.556 0.222 0.333 0.333 

Table 2. Capability and complexity scores of the product features 

Index Features Capability score Complexity score 
F1 Bluetooth 0.643 8 
F2 Music 0.587 16 
F3 WiFi 0.560 8 
F4 Email 0.500 12 
F5 Video 0.490 11 
F6 Camera 0.419 13 
F7 Radio 0.356 14 
F8 Payment 0.314 6 
F9 TV 0.276 10 
F10 Video Conferencing 0.250 12 
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5.2 Problem Solving 

In this case, each solution for the multi-objective optimization model is represented 
by a chromosome with ten genes. Each gene is a product feature combination, and the 
value of 1 means the corresponding feature is included in the solution while 0 means 
not. In the process of establishing the objective function, decision makers need to set 
the parameters to reflect the impact of the feature number on the product. In this case, 
the objective function can be obtained after computation based on Equation (2) and 
Equation (3), and the scores in Table 1 are used as the complexity score ia  and ca-
pability score ib of each feature, and set the constant term ' 0γ γ= = . The second 
items in Equation (2) and Equation (3) represent the effect of feature number. In this 
case, two sets of parameter combinations are set aiming at the effect of number to 
illustrate the difference of effect curve, which are parameter combination A (PCA) 
and parameter combination B (PCB), and the parameter values are shown in Table 3. 
Fig.2 (a) and (b) represent the effect of feature number on capability and complexity 
in the case of PCA, and Fig.2(c) and (d) are two effect curves in the case of PCB. 

Table 3. Parameters combination 

Parame-
ters• 

α  β  ω  'α  'β  'ω  

PCA 0.5 0.9 0.1 0.01 0.9 3.5 
PCB 0.3 0.5 0.05 0.1 0.5 2 

 

Fig. 2. The effect of feature number on objective function 
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After the completion of chromosome coding and the confirmation of objective 
function, we can run NSGA-II algorithm to search for optimal solutions. The detailed 
parameters of NSGA-II algorithm are as follows: Each population has 150 chromo-
somes (the initial population is generated randomly), and the crossover rate is 0.8, the 
mutation rate is 0.1 and the iteration number is 500.In the case of PCA, 37 Pareto-
optimal solutions can be obtained. In Fig.3, optimal solutions are represented by hol-
low dots, and all dots constitute the Pareto fronts. 

Based on Pareto-optimal solutions, decision makers can establish piecewise linear 
membership function to search for optimal solutions. In this case, for each objective 
function, decision makers need to give the objective function values where member-
ship is 0, 0.5 and 1.If the two extreme points of the objective value correspond to the 
extreme points of membership, the decision maker just needs to give one intermediate 
point to establish membership function. Taking the computation of X

i
μ  as an exam-

ple, we take three quarters of the largest value of each objective function as the  
corresponding objective value where the membership is 0.5, then: 

 

0 0g = • 0 1f =  

1 132.732 0.75 99.549g = × = • 1 0.5f =  

2 132.732g = • 2 0f =  

According to Equation (4), if 0 1ig FXW g< ≤ , then: 

0.5 1 1 99.549 0.5 0

99.549 0 99.549 0
0.005 1

X

i
i

i

FXW

FXW

μ − × − ×= +
− −

= − +
 

If 1 2ig FXW g< ≤ , then: 

0 0.5 0.5 132.732 0 99.549

132.732 99.549 132.732 99.549

0.015 2

X

i
i

i

FXW

FXW

μ
− × − ×

= +
− −

= − +

 

 
In the same way, we can get the value of the membership function A

i
μ  which cor-

responds to the capability of each solution, and then the total membership function 
value iμ  can be obtained based on Equation (6).The optimal solutions obtained are 

sorted according to iμ  in descending order, and the top ten solutions which are iden-

tified by arrows in Fig.3 are shown in Table 4. 
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Fig. 3. Pareto front and sorting identification 

Table 4. The sorting result 

Index Feature combination iFAW  iFXW  iμ  

S1 
1111111100 4.477 97.537 0.03009 

S2 
1111110110 4.397 93.537 0.02981 

S3 
1111110100 4.112 79.606 0.02879 

S4 
1111100111 4.228 92.537 0.02836 

S5 
1111111000 4.154 87.606 0.02825 

S6 
1011111110 4.166 91.537 0.02791 

S7 
1111111110 4.761 113.125 0.02785 

S8 
1111100110 3.969 76.606 0.02782 

S9 
1111110111 4.655 111.125 0.02757 

S10 
1011100100 3.083 46.396 0.02739 

5.3 Discussion  

The top ten solutions are listed in Table 4 according to the value of iμ in the Pareto-

optimal solution set, of which each solution represents a product feature combination. 
For example, the coding form of solution 7S  is 1111111110, which means that nine 
out of the ten features are included in this combination. The capability score of the 
product with these features is 4.761 and the complexity score is 113.125. Compared 
with the other Pareto solutions in Table 4, 7S  has the highest capability score and the 
highest complexity score as well. 7S  is easier to stimulate the customer’s purchasing 
interest compared with other feature combinations, and it is also easier to cause  
customer dissatisfaction after use because of complexity. In contrast, the coding of 

6S is 1011111110, which means one feature less than 7S , and correspondingly the 
capability score is reduced to 4.166 and the complexity score to 91.537. Both of 6S
and 7S are non-domination solutions and it is difficult to decide which one is better. 
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Although 6S  is worse than 7S  according to capability, it is better according to 
complexity. 

The model mainly focuses on feature number in literature[2], which means that on-
ly the effect of feature number on feature fatigue is analysed while the difference 
among each feature is ignored, and that’s to say, the effect of ia and ib hasn’t been 
considered in the model above. The method proposed in this paper takes the effect of 
feature number and the difference of product features into consideration comprehen-
sively. The curve in Fig. 2 mainly reflects the different effects of feature number on 
capability and complexity, while Table 4 reflects that the feature difference can result 
in the difference of final assessment result. For example, for 3S , 5S and 8S  with sev-
en features, 8S has the lowest capability and complexity score, and its membership 
value is also the lowest of the three. 3S  is moderate in both aspects, but its member-
ship value is the highest. There are only three solutions whose feature number is sev-
en in Table 4, which means a solution with seven features is either dominated by the 
member of Pareto-optimal solution set or lower than the listed solutions in Table 4 
according to the value of membership. So the method proposed in this paper can get 
the optimal feature combination when the feature number is the same.  

The relation function of the feature number and product usability established in li-
terature [8] is mainly in the way of taking square directly, but in this case the variety 
of relation function in practice has been considered. In addition, methods similar to 
the method in literature [8] will result in too many results, which is a burden for deci-
sion. One problem of using multi-objective optimization method to get Pareto-optimal 
solutions is that the obtained optimal solutions may be too many, which will be a 
burden for decision makers. As shown in Fig.3, there are 37 optimal solutions in the 
case of PCA, which is difficult for decision makers to select from directly. Using the 
method proposed in this paper, decision makers only need to give some information 
of the key membership value to establish membership functions, and obtain the sorted 
Pareto-optimal solutions. Decision makers can select the solution with the highest 
membership value in Table 4 (that is the solution with the best comprehensive effect) 
directly or take solutions of high ranking as a new set of candidate solutions for fur-
ther analysis and selection to achieve the purpose of reducing the number of candidate 
solutions. 

6 Conclusions 

This paper mainly studies multi-objective optimization methods for feature fatigue 
problem, for which capability and complexity are two conflicting objectives. In the 
objective functions established in this paper, the differences between features are 
represented by the different feature scores. The diminishing effect of feature number 
on product capability and the acceleration effect on complexity are described by  
establishing models. For the multi-objective optimization model established in this 
paper, NSGA-II is adopted to search for solutions, and based on the Pareto-optimal 
solutions ,the candidate solutions are sorted comprehensively using piecewise linear 
membership functions which represent the customer preferences. The feasibility of 
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the proposed method is evaluated by using a smart phone case study. The data result 
shows that, the proposed method can reduce the decision making burden and provide 
powerful decision support for product developers when dealing with feature fatigue 
problem. 
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Abstract. Unsafe driving behaviours can put the driver himself and
other people participating in the traffic at risk. Smart-phones with built-
in inertial sensors offer a convenient way to passively monitor the driving
patterns, from which potentially risky events can be detected. However,
it is not trivial to decide which sensor data channel is relevant for the task
without domain knowledge, given the growing number of sensors readily
available in the phone. Using too many channels can be computationally
expensive. Conversely, using too few channels may not provide sufficient
information to infer meaningful patterns. We demonstrate Genetic Pro-
gramming (GP) technique’s capability in choosing relevant data channels
directly from raw sensor data. We examine three risky driving events,
namely harsh acceleration, sudden braking and swerving in the experi-
ment. GP performance on detecting these unsafe driving behaviours is
consistently high on different channel combinations that it decides to
use.

Keywords: feature selection, channel selection, Genetic Programming,
risky driving behaviours.

1 Introduction

Most road accidents are caused by human error with the highest accident risk
group being young male drivers under 25 [1] coupled with those impaired by
alcohol or other drugs [2]. This group is known for risk-taking either due to in-
experience, peer pressure or sensory and mental degradation. Most drivers, even
those in the groups given, do not want to crash, and will take evasive manoeu-
vres to avoid a collision. These groups consequently are much more likely to put
themselves into dangerous situations by driving inappropriately on road condi-
tions, most commonly speeding. To be specific, risky driving behaviour involves
the practice of a set of risky manoeuvres. Within the scope of this paper, we
however refer to risky driving event or behaviour interchangeably as being devi-
ated from normal driving behaviours. Typical risky driving can be characterized
by a pattern of sudden braking, swerving and excessive acceleration. We address
these risky driving events in this study. The potential of this research is however
open to classifying other driving events as well.
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An onboard inertial measurement unit, or IMU, can provide a data rich
enough to classify this behaviour. They are however expensive and require ex-
tra installation. We find smart phones a much better option for these reasons.
Smartphones with built-in sensors are ubiquitous and affordable these days. They
come with many standard built-in sensors, originally driven by user experience.
For this study we have chosen to use the iPhone5 as it is one the most popular
smartphones in Australia. We solve the problem using the sensors in this phone
alone.

The iPhone5 comes with three built-in sensors: accelerometer, gyroscope and
magnetometer, each with three channels representing three orthogonal axis.
These sensors therefore collectively offer nine channels of data, from which an-
other twelve channels can be derived. The continuous reading of data provided
by each sensor over time provides a collection for observation, which is a time
series. As data is coming from more than one channel, so-called multi-channel
time series, the task of detecting risky driving behaviours can be considered a
multi-stream time series classification. Mining of this data stream can provide
interesting information. This sensor data is very close and relevant to motion
caused by abnormal manoeuvres. For example, the accelerometer reads user ac-
celeration and gravitational acceleration. The gyroscope measures the rotation
rates and angles of the device, which are clear indications of the vehicle turn
movement. An advantage of this approach is that the data is readily available
and the device can conveniently travel with the driver all the time, hence, being
handy and intrusive.

Traditional approach requires a good feature sets or sometimes manually de-
signed complicated mathematical model. Finding a good set of features for this
particular problem is not straightforward. A suitable feature set for one type
of risky driving event may not be relevant to another type. Moreover, deciding
which channels to use out of 21 data channels available on the iPhone is not easy.
Both of these tasks require domain knowledge. In this study, we leave this task
for GP to handle automatically. On the one hand, traditional machine learn-
ing algorithm may not be suitable for time series data because they ignore the
temporal dependency between data points. On the other hand, most techniques
developed for time series classification only concerns single stream time series,
hence, do not handle multi-stream time series effectively.

This study is the development of our preliminary work on detecting risky
driving behaviours [3], in which we established that this problem can be well rep-
resented as a time series classification problem and that GP is a good approach.
Our GP-based methodology works directly on raw sensor data in a supervised
learning manner without any explicit feature extraction. In this study, we focus
on exploring the capability of GP in data channel selection. Our research gives
insight into the question: Can GP choose relevant sensor reading channels for
learning risky driving behaviours?
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2 Related Work

Intelligent transport system has been an active area of research. Many stud-
ies have been done on modelling, classifying and predicting driver behaviour
for better road safety. Based on data for analysis, most of these studies fall
into vision-based approach, sensor-based approach or a mixture of two. Hidden
Markov models (HMM), a popular stochastic tool for studying time series data,
is one of the favourite techniques in this problem domain. HMM is a borrowed
technique from speech recognition research. It is naturally suitable for driver
behaviour analysis due to the capability to model stochastic events over time.

Lee et al. identifies driving patterns from the machine vision point of view [4].
Their system uses two cameras, one to capture the driver’s image and the other
to capture the front road image. From these pictures, the orientation information
such as the car heading direction, the driver’s sight line and the lane path can
be obtained and mapped, which facilitates the calculation of the driver and lane
correlation coefficients. HMM is used to train the sequences of lane correlation
coefficients. Their system can recognize four common driving patterns: driving
in a straight lane, driving in a curve lane, driving of changing lanes and driving
of making a turn. It works reasonably well in ideal conditions but does not
generalize well to some real world scenarios. For example, the lane path detection
can suffer from traffic letters and signs painted on the road. Also, the system
fails the case when the car stands for traffic light or briefly stops before making
a turn.

Mitrovic [5] uses discrete HMM to develop a driving event recognition system.
The results shows that HMMs could accurately and reliably recognize various
driving events. The data he used was collected from real vehicles in normal
driving conditions through a number of sensors. These are accelerometers, air-
bag sensor, and the GPS receiver as a velocity sensor. The limitation of this
approach is that data has to go through pre-processing (filtering and normal-
ization, waveform segmentation, vector quantization, and event segmentation).
Also, the author had to probably put a lot of effort into manually marking
hundreds of events for training, which is time consuming.

Imkamon et al. [6] propose a system to detect hazardous driving behaviour us-
ing fuzzy logic. Their system measures the unsafe behaviour from three perspec-
tives. The first is the passenger’s point of view, for this they use an accelerometer
mounted to the passenger’s seat to detect heavy jolts caused by sudden turn or
brake. The second is the driver’s point of view, for which they use a camera
mounted on the car’s console to emulate the driver’s vision. The third perspec-
tive is the vehicle’s status, for which they use an On-Board Diagnosis II reader
to obtain the velocity and the engine speed of the vehicle. All the data are sent
to a fuzzy logic systems for classification, which outputs a driving risk level
ranging from 1 to 3. The test results show that the system can be competitive
to human opinion. However, the limitation of this system is day-time operation
requirement due to the constraints of the image processing algorithm they use.
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Smartphones are ubiquitous today, with sales exceeded those of feature phones
in early 2013.1 Not just a communication tool, they have found their way into
behaviour and activity recognition research. Johnson et al. [7] propose a sys-
tem called MIROAD, that uses Dynamic Time Warping (DTW) algorithm and
smartphone based sensor-fusion to classify driving styles as aggressive or non-
aggressive. The iPhone5 is used to collect sensor data. The fusion of data from
the accelerometer and gyroscope are analyzed. The system can identify correctly
nearly 97% of the aggressive events. They conclude that the combination of three
channels, x-axis rotation rate, y-axis acceleration and pitch are the signals best
suited for DTW algorithm in this problem domain. The limitation of this study
is the requirement of manual feature reduction.

3 Learning a Risky Driving Behaviour Classifier with GP

3.1 GP Methodology

GP needs a way to initialize the population and evaluate the individuals in this
population. Each individual is an executable program tree represented in Lisp
S-expression. Terminal sets and function sets are the ingredients to create the
program trees. Functions fit in the internal nodes (branch) of the tree whilst
terminals can only serve as the outer node (leaf). A GP run is a competitive
search for all the possible combinations of terminal and function sets favouring
the fittest. The programs evolve towards complexity over generations.

3.2 GP Representation

Regarding function set, we use a set of basic arithmetic functions. Apart from
that, three functions are specially designed for multi-channel time series prob-
lem: Window, Temporal Diff and Multi Channel. Function Window samples
data points from a time series for analysis. Function Temporal Diff is similar
to the standard temporal difference function. It can be used by other functions
such as function Window. Function Multi Channel is designed to capture the
dependency between channels. It is very similar to function Window. The differ-
ence is that it operates on data channels rather than data points. The complete
function set is displayed in table IV.

In terms of terminal set, terminal Channel [m] is available to all functions (m
is the index of the channel, which starts at 0). Terminal Temporal-Index and
Temporal-Operation are designed specifically for the function Window. Termi-
nal Channel-Index and Channel-Operation are only for the function Multi −
Channel. More details of our GP representation can be found in [3].

To address the bias towards the majority class, we used AUC (Area under
the ROC (Receiver Operating Characteristics) Curve) as the fitness measure. It
is considered as a better alternative over accuracy for unbalanced data [12].

1 http://www.3news.co.nz/Smartphones-now-outsell-dumb-phones/

tabid/412/articleID/295878/Default.aspx

http://www.3news.co.nz/Smartphones-now-outsell-dumb-phones/tabid/412/articleID/295878/Default.aspx
http://www.3news.co.nz/Smartphones-now-outsell-dumb-phones/tabid/412/articleID/295878/Default.aspx
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Table 1. GP Function Set

Parameter

Function Parameter Type Value

+ 1 Double [DOUBLE MIN,DOUBLE MAX ]

2 Double [DOUBLE MIN,DOUBLE MAX ]

- 1 Double [DOUBLE MIN,DOUBLE MAX ]

2 Double [DOUBLE MIN,DOUBLE MAX ]

1 Double [DOUBLE MIN,DOUBLE MAX]

2 Double [DOUBLE MIN,DOUBLE MAX ]

/ 1 Double [DOUBLE MIN,DOUBLE MAX ]

2 Double [DOUBLE MIN,DOUBLE MAX]

Window 1 Double [DOUBLE MIN,DOUBLE MAX ]

2 Temporal-Index [1, 2window−size − 1]

3 Temporal-Operation AVG, STD, DIF, SKEWNESS

Temporal Diff 1 Double [DOUBLE MIN,DOUBLE MAX ]

Multi Channel 1 Double [DOUBLE MIN,DOUBLE MAX ]

2 Channel-Index [1, 2num−of−channels − 1]

3 Channel-Operation AVG, STD, MED, RANGE

4 Experiment

4.1 Data Sets

Data Collection. All data is from one driver controlling the 2006 Mazda 6 in a
real environment. The driver drives normally through most of the sessions with
the occasional performance of an hypothesised unsafe event. Care was taken so
that no actual unsafe conditions were presented to other road users during the
process.

An iPhone application was developed for data recording and labelling is done
in real time. The driver uses voice command to confirm when one of the pre-
registered risky driving behaviours has just occurred. The phone is attached
to the wind-shield throughout the journey. This is to ensure that the phone
is relatively fixed with respect to the car, hence any abnormal in sensor read-
ings actually reflects the driving patterns, not the effects from the phone free
movement.

The Apple CoreMotion Framework provides access to both raw and processed
sensor data. In total there are 21 data channels available (Table 2). 9 channels are
raw readings of the accelerometer, gyroscope and magnetometer (each provides
3 channels in x, y and z axis), from which the other 12 channels are derived. We
sample data 10 times every second.

Data Preparation. We consider three risky driving behaviours, namely harsh
acceleration, sudden stop and swerving. For each of these behaviours, we perform
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Table 2. 21 data channels provided by the iPhone5

Channel No. Channel

1-3 Raw Acceleration X, Y, Z (raw accelerometer reading)

4-6 Gravity X, Y, Z

7-9 User Acceleration X, Y, Z

10-12 Yaw, Pitch, Roll

13-15 Raw Rotation Rate X, Y, Z (raw gyro reading)

16-18 Unbiased Rotation Rate X, Y, Z

19-21 Magnetic Heading X, Y, Z

two separate driving sessions, one to collect the training data and one for the
test set. Summary of the data sets used are presented in Table 3. We use all the
21 data channels available from the Apple framework and do not perform any
extra feature extraction.

Table 3. Training set and test set for three types of risky driving behaviours

Training set Testing set

Driving Event Total Positive Negative Total Positive Negative

Harsh Acceleration 1182 12 1170 690 9 681

Sudden Stop 1688 9 1679 947 6 941

Swerving 1206 12 1194 828 6 822

The data is highly unbalanced. The number of positive instances is minor
compared to the massive number of negative examples. This reflects real-life
where in most circumstances a driver does not hit things or have to swerve or
brake suddenly.

4.2 Runtime Parameters

The process is terminated when a solution with 100% accuracy is found or the
50th generation is reached. The best programs evolved are then selected for test-
ing. We favour the program that has both high accuracy and high true positive
rate. This is because we do not want the classifier to miss any risky driving
event whilst a false positive can still be informative. The sliding window of size
12 and step-size of 1 is used to sample data along the y axis. The GP runtime
parameters are listed in Table 4.
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Table 4. GP runtime parameters

Population 1000

Generation 50

Maximum Depth 8

Minimum Depth 2

Mutation Rate 5%

Crossover Rate 85%

Elitism Rate 10%

Number of Runs 10

4.3 Evaluation Metrics

We report the F-score, which is a harmonic balance of precision and recall. This
is to take into account the imbalance aspect of the data, for which, accuracy
is not a suitable metric. A classifier that declares all the instances to be of the
majority class can still achieve high accuracy even though it fails to detect any
risky driving event. On the other hand, with F-score, the technique is heavily
punished for false alarm and mis-detection. We also report true positive rate and
true negative rate.

4.4 Experiment Design

All the experiments are done in a binary classification setting. We use the strat-
egy one-vs-all, where a single classifier is trained per class to distinguish that
class from the rest.

GP-21-Channels. We train GP on raw sensor data of the full 21 channels. We
call this experiment GP-21-channels.

GP-Selected-Channels. We analyse the best classifiers evolved from GP-21-
channels to see which channels GP picked up for each individual task. We then
re-train GP on these selected channels only. We call this experiment GP-selected-
channels.

GP-9-Channels. We manually select 9 data channels that we think are relevant
to the problem at hand and train GP on these channels only. The nine channels
selected here are: Channel 1-3, 10-12 and 19-21. The motivation behind this
selection is as follow. The choice of channel 1-3 (raw accelerometer reading)
represents domain knowledge involvement. In the past, most driving pattern
recognition systems have used data from the accelerometers only. The inclusion
of channel 10-12 (yaw, pitch, roll) and 19-21 (magnetic heading) is considered
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noisy elements. When we visualize the data, we notice the pattern of swerving
is hardly observable. However, if we remove the six channels mentioned above,
the pattern stands out. We would like to investigate if GP can choose relevant
features whilst ignoring the irrelevant input. We call this experiment GP-9-
channels.

4.5 Result

Table 5 displays the test result of the GP classifiers. In experiments with three
different data versions, GP manages to detect all targeted risky driving be-
haviours (100% TPR). Even though both the TPR and TNR are reasonably
high (above 90%), the F-score gives varying performance. This is because the
data is highly unbalanced as illustrated in Table 3. GP achieves 0 false negative
but is punished heavily by a false alarms. Note that the number of false alarms
is minor given the rareness of the positive class.

Table 5. Test result for GP trained on 21 channels, GP trained on channels previously
selected by GP-21-channels and GP trained on 9 manually selected channels

GP-21-channels GP-selected-channels GP-9-channels

Harsh acceleration F-score 54.54% 21.95% 60.00%
TPR 100% 100% 100%
TNR 97.76% 90.05% 98.20%

Sudden stop F-score 80.00% 75.00% 25.53%
TPR 100% 100% 100%
TNR 99.68% 99.56% 96.23%

Swerving F-score 60.00% 60.00% 85.71%
TPR 100% 100% 100%
TNR 99.01% 99.01% 99.75%

For purpose of comparison, we test some popular machine learning algorithms
on the same data sets tested with GP. We use the Weka implementation of these
classifiers and keep default configuration settings. They are Random Forest,
Näıve Bayes, k-Nearest Neighbour (IB1), Support Vector Machine (SMO) and
AdaBoost. We use the sliding window of size 12 to sample the data, the same
with the window size used by GP. The result is displayed in Table 6. Overall, all
Weka classifiers perform poorly on the three recognition task. They fail to detect
actual unsafe driving events and tend to classify every instances as negatives.

For all the experiments, the performance of GP is reliably consistent. In all
cases, GP successfully detects all risky driving events. This is not the case with
other traditional classifiers. Their performance is low in general and quite sen-
sitive to dataset (channels) used. The number of positive instances identified is
quite low. The classifiers obtain high accuracy mainly due to the bias toward
the majority class.
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Table 6. Test result of 5 traditional classifiers: Random Forest, Näıve Bayes, k-Nearest
Neighbour, Support Vector Machine and AdaBoost

21 original channels

R. Forest Näıve Bayes kNN SVM AdaBoost
Acceleration F-score 30.07% 7.36% 33.33% 0.00% 0.00%

TPR 22.22% 66.70% 33.30% 0.00% 0.00%
TNR 99.70% 77.90% 99.10% 99.90% 100%

Sudden stop F-score 0.00% 0.00% 0.00% 0.00% 0.00%
TPR 0.00% 0.00% 0.00% 0.00% 0.00%
TNR 100% 100% 100% 100% 100%

Swerving F-score 28.57% 19.23% 61.53% 0.00% 18.00%
TPR 16.70% 83.30% 66.70% 0.00% 16.70%
TNR 100% 94.90% 99.60% 98.50% 99.80%

Channels selected by GP trained on 21 original channels

R. Forest Näıve Bayes kNN SVM AdaBoost
Acceleration F-score 0.00% 6.45% 35.29% 0.00% 33.33%

TPR 0.00% 55.60% 33.30% 0.00% 22.20%
TNR 100% 78.90% 99.30% 99.90% 99.90%

Sudden stop F-score 0.00% 0.00% 0.00% 0.00% 0.00%
TPR 0.00% 0.00% 0.00% 0.00% 0.00%
TNR 100% 100% 100% 100% 100%

Swerving F-score 0.00% 12.30% 20.00% 18.18% 0.00%
TPR 0.00% 66.70% 16.70% 16.70% 0.00%
TNR 100% 93.20% 99.60% 99.50% 99.80%

9 channels manually selected based on the domain knowledge

R. Forest Näıve Bayes kNN SVM AdaBoost
Acceleration F-score 0.00% 7.27% 31.57% 0.00% 0.00%

TPR 0.00% 66.70% 33.30% 0.00% 0.00%
TNR 100% 77.60% 99.00% 99.30% 100%

Sudden stop F-score 0.00% 80.00% 60.00% 0.00% 80.00%
TPR 0.00% 66.70% 50.00% 0.00% 66.70%
TNR 100% 100% 99.90% 100% 100%

Swerving F-score 25.00% 18.18% 52.63% 0.00% 40.00%
TPR 16.70% 100% 83.30% 0.00% 33.30%
TNR 99.90% 93.30% 99.00% 100% 99.80%

5 Discussion

5.1 GP’s Capability in Channel Selection

The less channels used to fulfil the task, the better it is for the following reasons:

– It is directly translated into less computational cost.
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– It is easier to analyse the program evolved.
– It gives insight into the time series pattern.

Selecting the relevant channels from multi-stream sensor data requires domain
knowledge of the problem at hand. Instead of turning to a human expert, we
delegate this task to GP. Our experiment result has shown that GP is selective in
choosing which data channel to use for detecting each risky driving behaviours.

Table 7 shows the number of channels GP actually selected out of all the
channels given. In all cases, we notice the GP-evolved program do not use all
channels that it was given (trained on). The classifier for sudden stop is a good
example. It uses only 4 channels when given 21 channels. It uses only 2 channels
when given 4 channels. It uses only 1 channel when provided 9 channels.

Re-training GP on channels selected by the previous GP training proves to
be beneficial. When trained on channels selected by GP trained on the original
full set of 21 channels, GP only needs to use 2 channels to handle each detecting
tasks. Still, it does not miss any unsafe driving event and report little false
alarms.

Table 7. Number of channels GP selected out of the number of channels GP was given

GP Training Harsh Acceleration Sudden Stop Swerving

GP-21-channels 12 out of 21 4 out of 21 5 out of 21

GP-selected-channels 2 out of 12 2 out of 4 2 out of 5

GP-9-channels 6 out of 9 1 out of 9 7 out of 9

5.2 Analysis of the GP-evolved Programs

The output of each GP classifiers is a numerical value. The program takes reading
from sensor channel, do come calculation. Each evolved program comes with
a threshold. The program output is then compared with this threshold. The
discrimination threshold is chosen to be the closest point from the AUC curve to
the optimum curve. If the output is greater than the threshold, the risky event is
confirmed. If it is less than the threshold, the risky event is negative. Examples
of GP-evolved classifiers are shown in Figure 1.

The lest number of channels selected belongs to GP-selected-channels. It only
needs 2 channels for each classification task. For harsh acceleration, it is x-axis
gravity and y-axis gravity. For sudden stop, it is y-axis user acceleration and z-
axis user acceleration. For swerving, it is x-axis raw acceleration and y-axis raw
rotation rate. The number of channels used is less than all other cases, except
for GP-9-channels on sudden braking. It needs only 1 channel, which is z-axis
raw acceleration.

The choice of this single channel for observing braking patterns indicates there
is a pattern of this data channel associated with sudden stop behaviour. The use
of z-axis raw acceleration to detect sudden stop makes sense in reality. When
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a harsh brake happens, the car is decelerating. Everything in the car will tend
to stay in motion in accordance with Newtonian physics. There is also a second
effect, which is the air imbalance between the front and the back of the car.
This will push people and everything in the car backward. However, the first
effect is bigger. Consequently, when a car is braking, anything goes forward in
the car if the density of the object is greater than air. As a result, the phone will
move forward because of its inertia. This causes the changes in the z-axis of raw
accelerometer reading.

[1] Sudden Acceleration

(d/ (Window toper-STD tid-438 Channel_3) (Window toper-

DIF tid-1631 (dDiff Channel_2)))

[2] Sudden Braking

(Window toper-STD tid-39 (d- (d- (Multi_Channel soper-STD vid-6) 1) Channel_2))

[3] Swerving

(d+ (d* (d+ Channel_0 Channel_0) Channel_4) (Window toper-

STD tid-3116 Channel_0))

Fig. 1. Best Programs Evolved for Three Tasks with GP-selected Channels Data

6 Conclusion and Future Work

We have shown that Genetic Programming is capable of selecting relevant time
series channel for detecting risky driving behaviour task. The problem is chal-
lenging due to the stochastic nature of different driving events, the need to find
suitable feature set and select relevant data channels. We trained GP on the full
set of 21 raw channels, channels that it previously selected and on 9 manually
selected channels. We found that GP always choose less data channels than it is
given. Still, its performance is consistently high. On all three tasks, GP achieves
100% true positive rate and low false alarms.

We tested 5 traditional classifiers on three versions of the same data set: the
original version, the GP-selected channel version and the 9 manually selected
channel version. We found the performance is not consistent and low in general.
Most of the time, the classifier obtain high true negative rate but fail to detect
instances of the rare class, which is the risky driving event.

Future work would be as follows. We would like to obtain a richer and more
comprehensive data set for training and testing. We would also like to investigate
alternatives to extract the knowledge learnt by GP for better feature selection
and channel selection.



Genetic Programming for Channel Selection from Multi-stream Sensor Data 553

References

1. Clarke, D.D., Ward, P., Truman, W.: Voluntary risk taking and skill deficits in
young driver accidents in the uk. Accident Analysis & Prevention 37(3), 523–529
(2005)

2. Johnston, L.D., O’Malley, P.M., Bachman, J.G., Schulenberg, J.E.: Monitoring the
future national survey results on drug use, 1975-2010, p. 744. Institute for Social
Research, The University of Michigan, Ann Arbor (2011)

3. Xie, F., Song, A., Salim, F., Bouguettaya, A., Sellis, T., Bradbrook, D.: Learning
risky driver behaviours from multi-channel data streams using genetic program-
ming. In: Cranefield, S., Nayak, A. (eds.) AI 2013. LNCS, vol. 8272, pp. 202–213.
Springer, Heidelberg (2013)

4. Lee, J.-D., Li, J.-D., Liu, L.-C., Chen, C.-M.: A novel driving pattern recognition
and status monitoring system. In: Chang, L.-W., Lie, W.-N. (eds.) PSIVT 2006.
LNCS, vol. 4319, pp. 504–512. Springer, Heidelberg (2006)

5. Mitrovic, D.: Reliable method for driving events recognition. IEEE Transactions
on Intelligent Transportation Systems 6(2), 198–205 (2005)

6. Imkamon, T., Saensom, P., Tangamchit, P., Pongpaibool, P.: Detection of haz-
ardous driving behavior using fuzzy logic. In: 5th International Conference on
Electrical Engineering/Electronics, Computer, Telecommunications and Informa-
tion Technology, ECTI-CON 2008, vol. 2, pp. 657–660. IEEE (2008)

7. Johnson, D.A., Trivedi, M.M.: Driving style recognition using a smartphone as a
sensor platform. In: 2011 14th International IEEE Conference on Intelligent Trans-
portation Systems (ITSC), pp. 1609–1615. IEEE (2011)

8. Kaboudan, M.: Spatiotemporal forecasting of housing price by use of genetic pro-
gramming. In: The 16th Annual Meeting of the Association of Global Business
(2004)

9. Wagner, N., Michalewicz, Z.: An analysis of adaptive windowing for time series
forecasting in dynamic environments: further tests of the dyfor gp model. In: Pro-
ceedings of the 10th Annual Conference on Genetic and Evolutionary Computation,
pp. 1657–1664. ACM (2008)

10. Hetland, M.L., Sætrom, P.: Temporal rule discovery using genetic programming
and specialized hardware. Applications and Science in Soft Computing 24, 87
(2004)

11. Xie, F., Song, A., Ciesielski, V.: Event detection in time series by genetic program-
ming. In: 2012 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE
(2012)

12. Ling, C.X., Huang, J., Zhang, H.: Auc: a statistically consistent and more discrim-
inating measure than accuracy. In: IJCAI, vol. 3, pp. 519–524 (2003)



 

G. Dick et al. (Eds.): SEAL 2014, LNCS 8886, pp. 554–568, 2014. 
© Springer International Publishing Switzerland 2014 

Variable Neighbourhood Iterated Improvement Search 
Algorithm for Attribute Reduction Problems 

Yahya Z. Arajy, Salwani Abdullah, and Saif Kifah 

Data Mining and Optimisation Research Group (DMO) 
Centre for Artificial Intelligence Technology 

Universiti Kebangsaan Malaysia, 43600 Bangi Selangor, Malaysia 
{yahya.arajy,saifkc}@gmail.com, salwani@ukm.edu.my 

Abstract. Attribute reduction is one of the main contributions in Rough Set 
Theory (RST) that tries to find all possible reducts by eliminating redundant at-
tributes while maintaining the information of the problem in hand. In this paper, 
we propose a meta-heuristic approach called a Variable Neighbourhood Iterated 
Improvement Search (VNS-IIS) algorithm for attribute reduction. It is a combi-
nation of the variable neighbourhood search with the iterated search algorithm 
where two local search algorithms i.e. a random iterated local search and a se-
quential iterated local search algorithm are employed in a parallel strategy. In 
VNS-IIS, an improved solution will always be accepted. The proposed method 
has been tested on the 13 well-known datasets that are available in the UCI ma-
chine learning repository. Experimental results show that the VNS-IIS is able to 
obtain competitive results when compared with other approaches mentioned in 
the literature in terms of minimal reducts. 

Keywords: Attribute Reduction, Variable Neighbourhood Search, Iterated 
Search. 

1 Introduction 

Rough Set Theory (RST) is a part of the most useful methods for data mining and 
knowledge discovery, machine learning and imprecise knowledge[1]. The main goals of 
the rough set are: induction of approximations of concepts and offers mathematical tools 
to discover hidden patterns in data. It can be used for feature selection, feature extrac-
tion, attribute reduction, decision rule generation and approximate reasoning [2, 3]. 

Attribute reduction is one of the most important subjects of RST. It is a process of 
finding an optimal subset from a system to effectively represent the giving dataset. It 
plays an important role in reducing the problem size for clustering and classification 
problems. According to the complexity of real life data, finding all minimal attribute 
reductions is considered as an NP-hard problem[4]. Over the past years, researches 
gave a great interest in an attribute reduction domain by applying meta-heuristic algo-
rithms to find the optimal solution and show some successful signs, for instance: ant 
colony [5, 6], genetic algorithm and simulated annealing [7], scatter search[8], tabu 
search[9], composite neighbourhood structure [10], hyper-heuristic [11], and great 
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deluge algorithm [12, 13]. For further reading, readers can find other approaches and 
surveys about rough set attribute reduction in [7, 14, 15]. 

Variable neighbourhood search algorithm (VNS) is a meta-heuristic algorithm for 
solving combinatorial optimization problems that has been developed by Mladenović 
and Hansen [16]. It is based on a strategy of changing neighbourhood structures sys-
tematically from a pre-set list during a local search process. This helps the VNS to 
explore neighbourhoods which are distant from the current solution and jump to a 
new solution if the new version has better quality. In this paper, a VNS-based algo-
rithm, called a variable neighbourhood iterated improvement search algorithm (VNS-
IIS) for attribute reduction is developed. VNS-IIS extends the basic idea of Hybrid 
Variable Neighbourhood Search algorithm for attribute reduction (HVNS) [17]. The 
experimental results have shown that HVNS is a promising approach. Nevertheless, 
VNS has a good share of the researcher’s interest which it went through a rapid de-
velopment, with several published works where it shows the ability to solve several 
complicated NP-hard problems [18]. An overview of the recent attributes reduction 
methods shows that most of the meta-heuristic approaches applied to this problem 
used a small number of neighbourhood structures. This motivates the investigation of 
using a large number of neighbourhood structures in this work to solve this problem, 
which can explore the search space differently during the search process to obtain a 
minimal reduct.  

The paper is organised as follows: Section 2 presents the preliminaries of the re-
search. In Section 3, the description of VNS-IIS algorithm is presented. Section 4 
shows the experimental results, followed by the concluding remarks and future work 
in Section 5. 

2 Preliminaries  

This section emphasizes the main concept of rough set theory for attribute reduction. 

2.1 Rough Set Theory (RST) 

Rough set theory it considered as a mathematical approach to analyse the vagueness 
of information for an object [1]. Note that in this work, RST is used to measure a 
minimal reduct. 

Table 1. Example of dataset 

U/A a b c d 

u0 0 1 0 0 

u1 1 0 1 2 

u2 0 1 0 0 

u3 0 2 2 1 

u4 0 2 1 2 

u5 1 0 2 1 

u6 1 0 2 1 
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Definition 1. Let an information system be Is= (U, A), where U is a non-empty set of 
a finite object (the universe) and A is a non-empty finite set of attributes such that a: 
U → Va for every a∈A. Va represents the domain of an attribute a [19]. Let C be the 
set of condition attributes and D is the set of decision attributes. Hence, C⊂ A,  

C∪ D=A, and C∩ D = . 

Definition 2. The intersection of all equivalence relations in P for any P,A is denoted 
by IND (P) and is called as an indiscernibility relation over P. If (x,y)∈ IND(P) , then 
x and y are indiscernible by attributes from P. The IND(P) relation can be defined as: 

                (1) 

Definition 3. Attribute reduction in rough set theory rely on two basic concepts the P-
lower and P-upper approximations of X. Let W U. W can be approximated using 
only the information contained within P: 

pPW {x | [x] W}= ⊆                        (2) 

pPW {x |[x] W }= ∩ ≠ ϕ                (3) 

Using the datasets in Table 1, we have U= {u0, u1, u2, u3, u4, u5, u6}, A= {a, b, c, 
d}, C= {a, b, c}, D= {d}. The equivalence classes of the P-indiscernibility relation are 
denoted as [x]p. For example, if P = (a,b) and Q = (d), then objects u0 and u2 are 
indiscernible, objects u1, u5 and u6 are indiscernible, as are u3 and u4, with respect  
to P. Then: 

U/IND (P) = {{u0, u2}, {u3, u4}, {u1, u5, u6}}. 
U/IND (Q) = {{u0, u2}, {u1, u4}, {u3, u5, u6}}. 

By calculating the lower approximation as follows: 
- If W = {u0, u2} then PW= {u0, u2}.  
- If W = {u1, u4} then PW= Ø. 
- If W = {u3, u5, u6} then PW= Ø. 
 

Definition 4. Let P and Q be an equivalence relation over U, then the positive regions 
can be defined as:  

   
W U / Q

POSp(Q) PW
∈

= ∪                              (4) 

The positive region contains all objects of U that can be classified as classes of 
U/Q using the information in attributes P. For example, let P = (a,b) and Q = (d), 
then: 

POSP(Q) = {Ø,{u0, u2}, Ø } = {u0, u2}. 
 

 

φ

)}()(|),{()( yaxaPaUyxPIND =∈∀∈= 2

⊆

∪
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Definition 5. It is easily to notice that objects u0 and u2 are the only one can certainly 
be classified as belong to a class in attribute d, when considering attributes a and b. 
Discovering dependencies between attributes considered as one of the major issues in 
RST. The dependency degree is calculated as follows:  

                                             (5) 

If k = 1, Q totally depends on P; if 0<k<1, Q partially depends (in a degree of k) on 
P; and if k = 0 then Q does not depend on P. In the above example, the dependency 
degree of attribute {d} from the attributes {a,b}is calculated as: 

        k=γ{a,b}({d}) =   

 
Definition 6. A reduct is defined as a subset of minimal Cardinality of the conditional 
attribute set C such: γR (D) - γC (D) 

                             (6) 

                       (7) 

The Core is defined as an intersection of all the sets in Rmin 

                                                       
(8) 

The elements of the core are those attributes that not possible to omit without in-
troducing more contradiction to the data set. 

For example all possible subset of C can be calculated as follow: 

 
 

 
 
So, the minimal reduct set for this example is:  

 

3 Variable Neighbourhood Iterated Improvement Search for 
Attribute Reduction (VNS-IIS) 

VNS is an efficient meta-heuristic [16]. It has been employed in a wide variety of 
combinatorial optimisation problems. However, VNS, like other meta-heuristics, 
suffers from the slow convergence that brings about a high computational cost. Re-
cently, many approaches have been tried to speed up the convergence of local search 
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methods by developing a modified version of VNS algorithms. Most of these ap-
proaches hybridise local search methods with VNS to obtain more efficient methods 
with relatively has a faster convergence[20, 21]. Parallelisation strategy is also con-
sidered as one of the most considerable policies to overcome the problem of reaching 
a good solution within short or reasonable times [22]. Parallelisation helps in expand-
ing the search space region for the local search. In this work, we attempt to utilise the 
idea of hybridising the variable neighbourhood search with two iterated local search 
algorithms that are employed in parallel. 

This section illustrates the construction of initial solution and shows the evaluation 
of the solution quality. The basic components of VNS are discussed by presenting the 
combination of VNS with iterated search to deal with the attribute reduction problem. 

3.1 Construction and Representation of the Solution 

In this work, the construction of the initial solution is done by equalising the number 
of attributes |N| in the original datasets to a one dimensional vector, A, with a binary 
representation by randomly assigning “1” or ‘0”. If a cell Ai of A, (where i= 1…N), 
has the value “1” then the represented attribute is contained in the attribute subset. 
Otherwise, the cells with the value “0” are not contained in the attribute subset. 

3.2 Quality Measurement and Acceptance Conditions 

The solution quality is measured based on the dependency degree (i.e. Section 2.1, 
definition 5), denoted asγ. Given two solutions i.e. current solution, x, and trial solu-
tion, x’. The trial solution x’ is accepted if there is an enhancement in the dependency 
degree (i.e. if γ (x’) >γ (x)). If the dependency degree for both solutions are same (i.e. 
γ (x’) = γ (x)), then the solution with the less number of the attribute will be accepted. 

3.3 Neighbourhood Structures 

The following neighbourhood structures are employed at the local search level: 

• NS1:  Randomly add one attribute to the current solution. 
• NS2:  Randomly add two attributes to the current solution. 
• NS3:  Randomly add three attributes to the current solution. 
• NS4:  Intelligently add one attribute to the current solution (i.e. the attribute that 

has the highest priority value). 
• NS5:  Randomly remove one attribute from the current solution. 
• NS6:  Randomly remove two attributes from the current solution. 
• NS7:  Randomly remove 20% of the attributes from the current solution. 
• NS8: Randomly remove 10% of the attributes from the current solution. 
• NS9: Intelligently remove one attribute from the current solution (i.e. the attribute 

that has the lowest priority value). 
• NS10: Intelligently remove two attributes from the current solution (i.e. the attrib-

utes that have lowest priority values). 
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• NS11: Randomly swap one attribute from the current solution with another from the 
original dataset (with respect to duplication avoidance). 

• NS12: Randomly swap two attributes from the current solution with others from the 
original dataset (with respect to duplication avoidance). 

• NS13: Intelligently swap one attribute with another (i.e. swap the attribute that has 
the lowest priority value from the current solution with one that has the highest 
priority value from the original dataset). 

• NS14: Mix swap one attribute with another (i.e. swap the one that has the lowest 
priority value from the current solution with a random attribute from the original 
dataset). 

For a better understanding, the following illustration will explain the process of 
applying the intelligent selection mechanism. Let us assume that S1 is a set of all 
attributes from the original dataset. Let S2 be a set of attributes for the current solu-
tion, where: 

S1 = {A1,A2,A3,A4,A5,A6,A7}.  
S2 = {A1,A3,A4,A7}. 
Let NS4 be the selected neighbourhood structure to be applied on S2. Let Plist be 

the priority list of attributes, where each number in the list represents the total number 
of sets taken from calculating the intersections between objects (i.e. indiscernibility 
relationship in Section 2) for each individual attribute. 

PList = {2,3,1,4,2,1,1}, every number represents the priority value of each attribute 
from S1. 
The highest priority attribute will be selected and added to the current solution. In this 
case, attribute A2 from the original dataset is selected and added to S2, then update 
the current solution to be a new solution, where  

New S2 = {A1,A2,A3,A4,A7}. 
In the case of all attributes have the same number of sets, in other words, if they 

have the same priority number, then a random mechanism will be used to select the 
attributes. 

3.4 Basic Variable Neighbourhood Search Algorithm (Basic-VNS) 

The basic VNS method combines deterministic and stochastic changes of neighbour-
hood [16]. The basic procedure of VNS is presented in Algorithm 1. In the initial step, 
a set of neighbourhood structures (i.e. NS1, NS2, NS3,…, NS13) is defined as Nk 
(where k=1,...,K), and K is the total number of neighbourhood structures to be used  
in the search. Note that in the Basic-VNS, 13 neighbourhood structures are used as in 
Arajy and Abdullah (2010). Let f(x) be the quality measurement (as presented in  
Section 3.2) of the solution x. The number of attributes and the dependency degree for 
the initial solution are calculated. 
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Algorithm 1: Basic-VNS 

 

- INITIALIZATION: 

Select the set of neighbourhood structures NS
k
, k=1,…,K, 

Set initial solution as x;  
Choose a termination condition  

Repeat until termination condition is met 

Set k← 1; 

 Repeat until (k = K or Dependency degree =1); 
 - SHAKING: Randomly generate a solution x’ from the kth 

neighbourhood of   

     x(x’∈ NS
k
(x)); 

  - LOCAL SEARCH: Apply local search method on x’ until local 
optima x” is   
     obtained; 

  - MOVE OR NOT: If the f(x”) is better than f( x) then 
x←x”;k←1;               else k←k+1; 
 
End. 

The following steps explain the procedure of the Basic-VNS algorithm. 
Step 1) Randomly generate an initial solution (x). 
Step 2) Implementing shaking procedure with randomly initialising neighbouring so-

lution (x’) based on the current solution (x) from the kth neighbourhood. 
Step 3) Local search visits all neighbourhood structures (consider x’ as an input) to 

obtain the local optima (x’’). 
Step 4) Move or not the procedure is carried out for comparing the quality of new 

solution (x’’) with the current solution (x). If there is an improvement in the 
quality of the solution, then replace (x) with (x’’) (x← x’’). Then start the 
next iteration with the first neighbourhood structure. Otherwise, the algo-
rithm employed the next neighbourhood structure from the list. 

The process is repeated until the termination criterion is met. In this work, we set 
the termination criterion as a number of iterations or the dependency degree = 1. 

3.5 Hybrid Variable Neighbourhood Search Algorithm for Attribute Reduction 
(HVNS) 

The basic procedure of HVNS as presented by Arajy and Abdullah [17] as follows: 
The employed algorithm is divided into two phases. In the first phase, a basic variable 
neighbourhood search (Basic-VNS) algorithm is applied, where the number of 
neighbourhood structures is reduced from thirteen to six (i.e. NS1, NS2, NS3, NS4, 
NS11 and NS13) that involve the ‘add’ and ‘swap’ neighbourhood structures (as pre-
sented in Section 3.3) to obtain a solution with a dependency degree = 1. While in the  
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second phase, a random iterated search technique with nine neighbourhood structures 
is applied with an aim to further improve the quality of the solution in terms of the 
number of minimal reducts. The idea of the second phase is based on a random-restart 
hill climbing algorithm. The pseudo code for the iterated search is presented in  
Algorithm 2. 

Algorithm 2: HVNS Second phase 

 
Select the set of neighbourhood structures NS

k
, k=1,…,K, where 

K= 9 (i.e. NS
5
, NS

6
, NS

7
, NS

8
, NS

9
, NS

10
, NS

11
, NS

12 
and NS

13
); 

Set initial solution as x;  
Choose a termination condition  

Repeat until termination condition is met  

 - Randomly generate a solution x’ from the kth neighbourhood of 

  x(x’∈ NS
k
(x)); 

 - Move or not: If the f(x’) is better than f(x)  then x←x’; 
 

End. 

Algorithm 2 shows the process for the iterated search algorithm that is employed in 
the second phase of HVNS. Given a list of neighbourhood structures (i.e. NS5, NS6, 
NS7, NS8, NS9, NS10, NS11, NS12 and NS13) as NSk (where k=1,..,K), where K is a 
maximum number of structures, the following steps will take place. 

Step 1) Get the solution from the first phase and treated as an initial solution coded 
as x. 

Step 2) Randomly generate a new solution x’ based on the current solution x from 
the kth neighbourhood.  

Step 3) Compare the quality of the new solution x’ with the quality of the current so-
lution x. If there is an improvement in the quality of the solution, then re-
place x with x’ (x← x’). Then the search is continued with another randomly 
selected neighbourhood structure from the list. 

The process is repeated until the termination criterion is met (i.e. based on the 
number of iterations). The neighbourhood structures used in this phase are based on 
‘remove’ and ‘swap’ operations only. The maximum number of iterations was set to 
250, where 20 iterations are set for the first phase and the rest of iterations are set for 
the second phase. Note that, throughout our experiments, we are able to obtain solu-
tions with a dependency degree = 1 in all the cases from the first phase.  

3.6 Proposed Algorithm (VNS-IIS) 

Parallelisation strategy is one of the most considerable policies to overcome the prob-
lem of reaching a good solution within short or reasonable times [22]. The employed  
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strategy in this section consists in applying independent two search algorithms using a 
shared memory multiprocessor (SMP). SMP consists of using two or more central 
processing units (CPUs) within a single computer system. This method is considered 
as a parallelisation strategy that adapts several searches simultaneously to explore the 
search space, start from the same initial solution and select the best solution obtained 
by all searches at the end. It is being  described by Crainic and Toulouse [23] as: 

 “Independent multi-search methods turn out to be effective, simply because of the 
sheer quantity of computing power they allow one to apply to a given problem” 

This method was presented effectively by several papers, i.e. solving QAP using 
tabu search [24] and simulated annealing for graph partitioning problems [25]. 

The proposed approach presented here is an extension to HVNS as presented by 
Arajy and Abdullah [17] where the algorithm is divided into two phases. In the first 
phase, Basic-VNS is employed (as in Section 3.5). In the second phase, two iterated 
search algorithms that work in parallel are implemented i.e. a random iterated search 
(coded as RIS) and a sequential iterated search (coded as SIS). The idea of imple-
menting the proposed method is to use two different iterative mechanisms that work 
in parallel then exchange the information (solutions in this case) between them during 
their work. Two identical lists of neighbourhood structures are created (i.e. NS5, NS6, 
NS7, NS9, NS10, NS11, NS12, NS13 and NS14) that only contain the ‘remove’ and ‘swap’ 
neighbourhood structures. 

The RIS and SIS algorithms start with the same initial solution obtained from the 
first phase. For the RIS algorithm, a random neighbourhood structure to be employed 
at every iteration, whilst for the SIS algorithm the neighbourhood structures are se-
lected based on a pre-determined sequence (i.e. NS7, NS12, NS6, NS10, NS11, NS14, 
NS5, NS13, NS9) for each iteration. Note that from our preliminary experiments, the 
best sequence of neighbourhood structures is to order them by decreasing size.  
At each iteration, the better solution obtained from each iterated search later will be 
swapped with another iterated search algorithm with an aim to allow the algorithms to 
work on different regions of the solution space. At the end of the iteration, the final 
solution for RIS and SIS will be compared and the best solution among them will be 
chosen.  

Figure 1 shows the flowchart of the presented description above. Again, the total 
number of iterations is set to 250, where 20 iterations are set for the first phase (based 
on our preliminary experiments) and the rest of the iterations are set for the second 
phase. 
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The procedure shown in Algorithm 3 can be described as follows. 

Step 1) Get the solution from the first phase and treat it as an initial solution coded 
as x. 

Step 2) Apply RIS on solution x by employing a random selected neighbourhood 
structure to obtain x1’. 

Step 3) Get the solution from the first phase and treated as an initial solution coded 
as x. 

Step 4) Apply SIS on solution x by selecting the neighbourhood structure from the 
pre-determined sequence to obtain x2’. 

Step 5) Update the solution if there is an improvement i.e. (x1←x1’; x2←x2’).   
Step 6) Exchange the solutions between the two algorithms (x1 ↔ x2) to let the algo-

rithms work on different search spaces.  
Step 7) Repeat Step (1) to (4) until the termination criterion is met. Choose the best 

solution between x1 and x2 and return as a better solution. 

4 Experimental Results 

The algorithms were programmed in Java, and simulations were performed on the 2.1 
GHz CPU with 3 GB of RAM. We use 13 standard benchmark UCI datasets that can 
be downloaded from http://archive.ics.uci.edu/ml/. For each dataset, the algorithm 
was run 20 times also the maximum number of iterations was set to 250. These values 
were set based on most of other researchers’ work. So we can have an almost equiva-
lent environment like others. Be noted that some researchers didn’t obtain the 20 runs 
for some of the datasets (i.e. GenRSAR applied to M-of-N) for unexplained reasons. 

Table 2. Comparison on minimal reducts between VNS-IIS and other approaches 

Datasets Att. VNS-IIS TSAR HVNS IS-CNS 
NLGD-

RSAR 
GenRSAR 

ACOA

R 
CHH-RSAR 

M-of-N 13 6 6 6 6 6 6(6)7(12) 6 6(11)7(9) 

Exactly 13 6 6 6 6 6 6(10)7(10) 6 6(13)7(7) 

Exactly2 13 10 10 10 10 10 10(9)11(11) 10 10 

Heart 13 6 6 6 6 9 6(18)7(2) 6 6 

Vote 16 8 8 8 8 10(14)11(6) 8(2)9(18) 8 8 

Credit 20 8(10)9(4)10(6) 8(13) 9(5) 10(2) 8(7)9(6)10(7) 8(10)9(9) 10(1) 11 10(6)11(14) 8(16)9(4) 8(10)9(7) 10(3) 

Mushroom 22 4 4(17) 5(3) 4 4 4 5(1)6(5)7(14) 4 4 

LED 24 5 5 5 5 7(15)8(5) 6(1)7(3)8(16) 5 5 

Letters 25 8 8(17) 9(3) 8 8 9 8(8)9(12) 8 8 

Derm 34 6 6(14) 7(6) 6(16)7(4) 6(18) 7(2) 11(17)12(3) 10(6)11(14) 6 6 

Derm2 34 8(8)9(11)10(1) 8(2)9(14) 10(4) 8(5)9(12)10(3) 8(4)9(16) 11(15)12(5) 10(4)11(16) 8(4)9(16) 8(5)9(5)10(10) 

WQ 38 
12(1)13(6) 

14(12)15(1) 
12(1)13(13) 14(6) 

12(3)13(6)14(

8) 15(3) 

12(2)13(8)14(1

0) 
15(11)16(9) 16 

12(4)13(

12)14(4) 
12(13)14(7) 

Lung 56 4 4(6) 5(13) 6(1) 4(16)5(4) 4(17) 5(3) 4 6(8)7(12) 4 4(10) 5(7) 6(3) 
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We carried out a comparison with state-of-the art approaches as well the originated 
version of this work in terms of minimal reducts. The first two columns in Table 2 
show the dataset name and its original number of attributes (Att.). Rest of the entries 
in Table 2 represents the number of attributes in the minimal reducts obtained by each 
method. The superscripts in parentheses represent the number of runs that achieved 
the minimal reducts. The number of the attribute without superscripts means that the 
method able to obtain this number of attribute for all runs.  

The comparison included two categories, a comparison with single solution-based 
and population-based approaches. Single solution-based approaches in comparison 
are: Hybrid Variable Neighbourhood Search algorithm (HVNS) [7], Tabu search 
(TSAR) [9], Intelligent selection composite neighbourhood structure (IS-CNS) [10], 
Hyper-heuristic (CHH-RSAR) [11], and Great deluge algorithm (NLGD-RSAR) [12] 
. Population-based approaches in comparison as provided are Genetic algorithm 
(GenRSAR) [7] and Ant colony optimisation (ACOAR) [26]. From Table 2, we can 
discern that VNS-IIS can obtain one best result on Derm2 dataset and ties on ten data-
sets with other best known results in the literature. Note that we did not obtain any 
worst results in this case. 

In order to investigate the robustness of the proposed algorithm, it is required to do 
a further comparison with other methods from the literature. However, due to the lack 
of some information, especially on the quality of the solutions, complexity and com-
putational cost make it hard to do an equitable comparison between methods. There-
fore, we applied some statistical studies To represent the statistical significance of 
independent variables, we examined the approaches using T-Test method [27]. The 
results of t-value for VNS-IIS approach is reported in Table 3 with comparison to 
state of the art methods studied here. The purpose of this test is to assess whether the 
means of two groups are statistically different from each other. The quality of the 
produced solutions gets higher when the t-value is greater. Lower t-values indicate  
 

Table 3. T-test comparison with state-of-the art approaches 

  t-value / p-value VNS-IIS (α Level = 0.05)  

Datasets TSAR HVNS ACOAR GenRSAR IS-CNS NLGD-RSAR CHH-RSAR 

M-of-N - - - 6.66/1.1E-6 - - 3.9/4.3E-4 

Exactly - - - 4.36/0.0001 - - 2.2/0.002 

Exactly2 - - - 4.82/5.9E-5 - - - 

Heart - - - 1.45/0.081 - N/A - 

Vote - - - 13.08/2.9E-11 - 21.8/3.09 - 

Credit -1.39/0.086 0.72/0.237 0.005 8.41/1.4E-9 -1.04/0.154 11/5.5E-10 -0.58/0.283 

Mushroom 1.83/0.041 - - 20.18/1.3E-14 - - - 

LED - - - 22.36/2.0E-15 - 22.64/1.64E-15 - 

Letters 1.83/0.041 - - 5.34/1.8E-5 - N/A - 

Derm 2.85/0.005 2.18/0.021 - 44.71/5.1E-21 1.45/0.081 62.86/8.22E-24 - 

Derm2 2.50/0.008 1.29/0.103 0.177 13.42/1.9E-15 0.93/0.177 0.936/0.177 2.60/0.006 

WQ -2.06/0.023 -0.38/0.35 0.001 15.67/1.2E-12 -1.17/0.125 11.14/2.32E-13 -3.58/5.2E5 

Lung 6.1/3.6E-6 2.18/0.021 - 23.13/1.1E-15 1.83/0.041 - 3.9/4.8E-4 
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the low reliability, and it means that the two samples are not significantly different 
from each other. Table 3 also shows the exploratory test to check the probability of 
error (p-value) involved in accepting our research hypothesis about the existence of a 
difference. The p-value is compared with the actual significance level (α) of our test, 
where α = 0.05. The general rule is that a small p-value (where p < 0.05) makes the 
quality of the solutions produced with higher evidence against the null hypothesis. A 
large p-value (where p> 0.05) means that the null hypothesis has no evidence against 
it. The sign “-“ in Table 3 represents no difference between two groups compared. 

The sum up from the previous comparison shows that VNS-IIS outperforms 
GenRSAR on all datasets and 3 datasets in comparison with ACOAR as population-
based methods. Moreover it can produces  better outcomes than IS-CNS, HVNS, 
CHH-RSAR , TSAR and NLGD-RSAR on 3, 5, 5, 5 and 8 datasets, respectively 
(when compared to single solution-based approaches). The performance of ACOAR 
and VNS-ILS is comparable where our approach is able to obtain better results on 
Derm2 dataset, while ACOAR outperforms our approach on Credit and WQ datasets. 
We believe that the hybridization of variable neighbourhood search and parallelising 
iterated search has the ability to find better results due to the aptitude of the algorithm 
to explore the search space differently when applying an altered type of neighbour-
hood search, and later further improve the quality of the solution through an iterated 
search that acts as an exploitation mechanism. 

5 Conclusion and Future Work 

An attribute reduction method which is based on the variable neighbourhood search 
algorithm is proposed in this work. The overall goal is to examine the behaviour of a 
hybrid approach that combines the variable neighbourhood search with diverse iter-
ated search algorithms with applying a parallel strategy. In the presented work, the 
iterated search algorithm works in parallel where it depends on two different mecha-
nisms in choosing the neighbourhood structures making the search work into different 
regions of solution space, without accepting any worst solutions. 

Preliminary comparisons indicate that the hybrid approach is better than a basic 
variable neighbourhood search alone. Numerical and statistical experiments on 13 
well-known datasets demonstrate the strength of our work. Further comparison shows 
that our hybrid approach is competitive with other approaches in the literature and 
produced one new best solution. Our future work aims to examine different datasets 
from other machine learning repositories and consider other quality measurement 
tools to enhance the accuracy of the results. We believe that improving the solutions 
can be done by further enhancing the neighbourhood structures with applying ad-
vanced method of selection. 
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Abstract. Classification tasks often involve a large number of features, where
irrelevant or redundant features may reduce the classification performance. Such
tasks typically requires a feature selection process to choose a small subset of
relevant features for classification. This paper proposes a new representation in
particle swarm optimisation (PSO) to utilise statistical clustering information
to solve feature selection problems. The proposed algorithm is examined and
compared with two conventional feature selection algorithms and two existing
PSO based algorithms on eight benchmark datasets of varying difficulty. The ex-
perimental results show that the proposed algorithm can be successfully used
for feature selection to considerably reduce the number of features and achieve
similar or significantly higher classification accuracy than using all features. It
achieves significantly better classification accuracy than one conventional method
although the number of features is larger. Compared with the other conventional
method and the two PSO methods, the proposed algorithm achieves better perfor-
mance in terms of both the classification performance and the number of features.

Keywords: Particle swarm optimisation, Feature selection, Classification, Rep-
resentation.

1 Introduction

In recent years, with the advances of data collection techniques, machine learning
and data mining tasks such as classification often include a large number of fea-
tures/variables. This causes the problem of “the curse of dimensionality” and leads to
many issues, e.g. learning/classification algorithms fail to achieve satisfactory accuracy,
the classification process is time-consuming, and the trained classifier is too compli-
cated to understand/interpret. Feature selection can address these issues by removing
irrelevant/redundant features and selecting only a small subset of relevant features for
classification [8].

Feature selection is a challenging task due to the large search space and feature inter-
action problems. The size of the search space is 2n for a dataset with n features [8]. Ex-
isting feature selection algorithms, such as greedy search based algorithms [11], suffer
from stagnation in local optimal and/or high computational cost. Therefore, an efficient
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global search technique is needed to address feature selection problems. Evolutionary
computation (EC) techniques are a group of powerful “global” search algorithms and
have been successfully applied to a variety of fields [9]. Particle swarm optimisation
(PSO) [13, 19] is an EC technique based on social intelligence, which has fewer param-
eters and is computationally less expensive than other EC techniques, such as genetic
programming (GP) and genetic algorithms (GAs). PSO has been recently used to ad-
dress feature selection problems and shown a certain level of success [27].

Feature interaction is a common and complex problem in classification tasks [8]. Be-
cause of feature interaction, an individually relevant feature may become less useful or
redundant when combined with other features. On the other hand, a weakly relevant fea-
ture may become highly useful when used together with other features. In an “optimal”
subset, features are expected to be complementary to each other and can work together
to increase the classification performance. Therefore, during the feature selection pro-
cess, the removal or addition of features needs to consider the appearance or absence of
other features, which increases the difficulty of feature selection tasks. Finding a way
to cope with feature interaction problems is expected to increase the performance of
a feature selection algorithm. Meanwhile, feature interaction is also an important is-
sue being considered in statistical data analysis. We generalise the statistical clustering
method [15, 17] by taking feature interaction into account to group relatively homoge-
neous features into clusters. Intuitively, these ideas could be useful to address feature
interaction problems in feature selection, but this has not been seriously investigated.
The main challenge is how to incorporate the statistical clustering information in the
feature selection process.

1.1 Goals

The overall goal of this paper is to develop a new representation scheme to incorpo-
rate the statistical clustering information in PSO for feature selection. To achieve this
goal, a statistical clustering method as a preprocessing step is performed on the training
set to group features into different clusters. A new representation scheme is developed
to utilise such statistical clustering information to improve the performance of PSO
for feature selection. A new algorithm using the new representation is then developed
and compared with two existing PSO based feature selection algorithms and two con-
ventional algorithms on eight datasets with different numbers of features, classes and
instances. Specifically, we will investigate:

– whether the new algorithm can be used to reduce the number of features and in-
crease the classification performance,

– whether the new algorithm can utilise the statistical clustering information to achieve
better performance than the two existing PSO based feature selection algorithms,
and

– whether the new algorithm can achieve better performance than the two conven-
tional feature selection algorithms.
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2 Background

2.1 Particle Swarm Optimisation (PSO)

Particle swarm optimisation (PSO) [13, 19] is an evolutionary computation method,
which is inspired by social behaviours such as birds flocking and fish schooling. In
PSO, candidate solutions are represented by a population or a swarm of particles. In
order to find the optimal solutions, each particle moves around the search space by
updating its position as well as its velocity. Particularly, the current position of particle
i is represented by a vector xi = (xi1, xi2, . . . , xiD), where D is the dimensionality of
the search space. These positions are updated by using another vector, called velocity
vi = (vi1, vi2, . . . , viD). During the search process, each particle maintains a record
of the position of its previous best performance, called pbest. The best position of its
neighbours is also recoreded, which is called gbest. The position and velocity of each
particle are updated according to the following equations:

vt+1
id = w ∗ vtid + c1 ∗ ri1 ∗ (pid − xt

id) + c2 ∗ ri2 ∗ (pgd − xt
id) (1)

xt+1
id = xt

id + vt+1
id (2)

where t denotes the tth iteration in the search process, d is then dth dimension in the
search space, i is the index of particle, w is inertia weight balancing the global and local
search abilities, c1 and c2 are acceleration constants, ri1 and ri2 are random values
uniformly distributed in [0,1], pid and pgd represent the position value of pbest and
gbest in the dth dimension, respectively.

2.2 Related Work on Feature Selection

Existing feature selection algorithms can be generally classified into two categories,
filter approaches and wrapper approaches [8, 28]. Their main difference is whether a
classification/learning algorithm is used during the feature selection process. A wrap-
per algorithm typically includes a classification algorithm to measure the classification
performance of the selected features to evaluate the goodness of the selected features.
Filter approaches are independent of any classification algorithm. Filter approaches are
argued to be computationally cheaper and more general than wrappers, but wrapper
approaches can usually achieve better classification performance than filters due to the
interaction between the selected features and the classification algorithm. This work
focuses mainly on wrapper feature selection. In this section, typical wrapper feature
selection algorithms and the use of statistics in feature selection are briefly reviewed.

Traditional Feature Selection Methods. Sequential forward selection (SFS) [22] and
sequential backward selection (SBS) [14] are two commonly used wrapper feature se-
lection algorithms. Both of them use a greedy hill-climbing search strategy to search
for the optimal feature subset. However, both SFS and SBS suffer from the so-called
nesting effect, which means that once a feature is selected (discarded) it cannot be dis-
carded (selected) later. Therefore, both SFS and SBS are easily trapped in local optima.
In addition, both SFS and SBS require long computational time when the number of
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features is large. In order to avoid nesting effect, Stearns [20] proposed a “plus-l-take
away-r” method in which SFS was applied l times forward and then SBS was applied
for r back tracking steps. However, determining the best values of (l, r) is a challenging
task.

Later, Pudil et al. [18] proposed two floating selection methods, sequential backward
floating selection (SBFS) and sequential forward floating selection (SFFS) to automat-
ically determine the values of (l, r). In addition, the values of (l, r) in SBFS and SFFS
that denotes the number of forward and backtracking steps are dynamically controlled
instead of being fixed in the “plus-l-take away-r” method. Although the floating meth-
ods are claimed to be at least as good as the best sequential method, they are still likely
to become trapped in a local optima even the criterion function is monotonic and the
scale of the problem is small. Meanwhile, based on the best-first algorithm and SFFS,
Gutlein et al. [11] proposed a linear forward selection (LFS) in which the number of
features considered in each step is restricted. Experiments show that LFS improves the
computational efficiency of sequential forward methods while maintaining comparable
accuracy of the selected feature subset. However, LFS starts with ranking all the in-
dividual features without considering the presence or absence of some other features,
which in turn limits the performance of the LFS algorithm in problems where there are
interactions between features.

EC Approaches to Feature Selection. EC algorithms have been applied to feature se-
lection problems, such as PSO, GAs [31], GP [16], ant colony optimisation (ACO) [12]
and differential evolution (DE) [1]. Zhu et al. [31] proposed a feature selection method
using a memetic algorithm that is a combination of local search and GA. Experiments
show that this algorithm outperforms GA alone and other algorithms. Neshatian and
Zhang [16] proposed a GP relevance measure (GPRM) to evaluate and rank feature sub-
sets in binary classification tasks. Experiments show that the proposed method detected
subsets of relevant features in different situations, where other methods had difficulties.
Based on ACO, Kanan and Faez [12] developed a wrapper feature selection algorithm,
which outperforms GA and other ACO based algorithms on a face detection dataset, but
its performance has not been tested on other problems. Al-Ani et al. [1] also proposed
a DE based feature selection method, where features are distributed to a set of wheels
and DE is employed to select features from each wheel. This algorithm can significantly
reduce the number of features and improve the classification performance.

Recently, BPSO has been applied to feature selection problems. Yang et al. [30]
proposed two BPSO based wrapper feature selection approaches based on two inertia
weight setting methods. The results show that the two algorithms can outperform SFS,
SFFS, sequential GA and different hybrid GAs. Fdhila et al. [10] applied a multi-swarm
PSO algorithm to solve feature selection problems. However, the computational cost of
the proposed algorithm is high because it involves parallel evolutionary processes and
multiple sub-swarms with a relative large number of particles. Xue et al. [27] proposed
a PSO based two-stage feature selection algorithm to optimise the classification perfor-
mance in the first stage and consider the number of features in the second stage. Chuang
et al. [7] applied the so-called catfish effect to PSO for feature selection, which is to in-
troduce new particles into the swarm by re-initialising the worst particles when gbest
has not improved for a number of iterations. The authors claimed that the introduced
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Representation 1: X2 X3 X4 X5 X6 X8 X9 ... ... ... ... XN-1 XNX1 X7 X10

X1,2 ... X1,N1 X2,2 ... X2,N2 X3,2 ... X3,N3 X4,2 ... X4,N4

X1,1 ... X1,mSN1 X2,1 ... X2,mSN2 X3,1 ... X3,mSN3 X4,1 ... X4,mSN4

Representation 2:

New Representation:

X3,1X1,1 X2,1 X4,1

Fig. 1. Example of N features that are grouped into 4 clusters with N1, N2, N3 and N4 features,
respectively, then N = N1 + N2 + N3 + N4. mSNj is the predefined maximum number of
features selected from cluster j and mSN1 < N1, ..., mSN4 < N4.

catfish particles could help PSO avoid premature convergence and lead to better re-
sults than sequential GA, SFS, SFFS and other methods. Xue et al. [29] developed new
initialisation and pbest and gbest updating mechanisms in PSO for feature selection,
which can increase the classification accuracy and reduce both the number of features
and the computational time. Other PSO based feature selection methods can be found
from [4–6, 24–26, 29].

Many statistical methods can be used to reduce the dimensionality of a dataset, such
as principal component analysis, linear discriminant analysis, or canonical correlation
analysis [3], but most of them are not feature selection approaches because they create
new features. Clustering analysis is an important topic in statistics which aims to group
features/variables to a number of clusters. We use the statistical clustering method [15,
17] to find relatively homogeneous feature groups by taking feature interactions into
account. Therefore, the statistical grouping information could be used to develop a good
feature selection algorithm.

3 Proposed Algorithm

In this section, a new representation scheme is proposed in PSO for feature selec-
tion to utilise the statistical clustering information to reduce the number of features
selected and increase the classification performance. A newly developed clustering
method based on statistical models proposed by Pledger and Arnold [17] and Mate-
chou et. al. [15] is used to group features into different clusters. Features in the same
cluster are considered similar and features in different clusters are dissimilar to each
other. The technical detail of statistical clustering methods is not described here due to
the page limit and the scope of this paper.

Fig. 1 shows three different types of representations, where a dataset with N fea-
tures which can be grouped into 4 clusters is used as an example. N1, N2, N3 and N4

show the numbers of features in the 4 clusters, respectively. Representation 1 shows
the traditional way of using PSO for features selection without considering the feature
clustering information. Representation 2 and the proposed new representation consider
the feature clustering information. Representation 2 is different from Representation
1 by putting features in the same cluster together. The new representation is different
from Representations 1 and 2 in two main aspects. The first is the dimensionality of
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the particles (search space). In Representations 1 and 2, the dimensionality equals to
the total number of features, although Representation 2 considers the feature cluster-
ing information. In the new representation, the dimensionality equals to

∑
1≤j≤4

mSNj ,

where mSNj shows the predefined maximum number of features selected from the jth

cluster. The second difference is the meaning of each element in the position vector.
In Representations 1 and 2, each element (e.g. xi or xj,k) determines whether the cor-
responding feature is selected or not. In the new representation, each element shows
which feature is selected from the corresponding cluster. Therefore, in this new repre-
sentation, two important tasks are how to determine the value of mSN for each cluster
and how to determine which features are selected from a cluster. They will be described
as follows.

3.1 How to Determine mSNj

Since the features from the same cluster are similar features, a small proportion of these
features can be used as the representatives of this cluster. However, it is difficult to
determine how many features should be selected from each cluster. Selecting a large
number of features may contain redundant information while selecting a small number
of features may deteriorate the classification performance. Therefore, in the new repre-
sentation, we propose the use of mSNj , which means the maximum number of features
selected from the jth cluster, to limit the number of features selected. The algorithm is
expected to search for a feature subset which contains fewer than mSNj features from
cluster j, but can achieve better performance than using all features in cluster j. Since
the sizes of clusters are usually different, the value of mSNj should vary in different
clusters.

mSNj =
√
Nj (3)

Fig. 2 compares three different ways to determine mSNj , which are a square root
function of Nj shown as Eq. 3, a constant value, and a linear function of Nj . As can be
seen from the figure, Eq. 3 allows selecting more features from a cluster that contains
a larger number of features, which cannot be done by the constant function. On the
other hand, Eq. 3 is preferred over the linear scaling function, since it leads to a smaller
number of selected features from large feature clusters, which is more likely to include
redundant features. The smaller mSNj in Eq. 3 may reduce the chance of selecting
those redundant features. Therefore, in this work, Eq. 3 is used to determine the value
of mSNj .

3.2 How to Select Features

In traditional representation, the position value determine whether a feature is selected
or not, which is usually determined by a threshold. If the position value is larger than
the threshold, the corresponding feature is selected. Otherwise, it is not selected. In
the new representation, the position value in a dimension determines which feature is
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Fig. 2. Three different ways of determining mSNj

selected from a certain cluster. To achieve this, the position value is limited to [0,1].
For the dimensions corresponding to the jth cluster, [0, 1] is equally divided into (Nj+
1) intervals, where Nj is the total number of features in the jth cluster. Each interval
corresponds to one feature in the cluster, which ensures that features in the same cluster
has the equal chance to be selected. A feature is selected if the position value falls
into its corresponding interval. There are (Nj + 1) intervals rather than Nj intervals
because a virtual feature, called “Null” feature, is introduced to each cluster. The “Null”
feature allows the selection of zero feature from a cluster if all features in that cluster
are irrelevant or redundant.

f1 f2 f3 f4 Null

0 0.2 0.4 0.6 0.8 1.0

Fig. 3. Intervals for selecting features (Not PSO positions)

Fig. 3 takes a cluster with four features (f1, f2, f3, f4) showing the intervals for
selecting features. As can been seen in Fig. 3, the interval [0,1] is further divided into
five intervals, where four of them corresponds to the four features while the last interval
corresponds to the “Null” feature, i.e. no feature is selected. Suppose that its mSN1 = 2
and the position values are {x1,1 = 0.5, x1,2 = 0.96}. As x1,1 ∈ [0.4, 0.6], which is
the interval of Feature f3, f3 will be selected. Similarly, x1,2 ∈ [0.8, 1.0] that belongs
to Null feature, which means that no feature is selected. So the values are interpreted
as selecting only feature f3 from the cluster. Eq. 4 shows a general case of how to
determine which feature or no feature is selected from cluster j, where x is the position
value in a dimension.

Feature =

{
fk, if x ∈ [ k−1

Nj+1
, k
Nj+1

],where k ∈ [1, Nj ]

Null feature, if [
Nj

Nj+1
, 1]

(4)



576 H.B. Nguyen et al.

Algorithm 1. Pseudo-code of PSOR

begin
indexing features in each cluster;
define mSN for each cluster according to Eq. 3;
randomly initialise the position and velocity of each particle;
while Maximum iterations is not reached do

Collect the features selected by each particle;
evaluate the fitness of each particle according to its classification accuracy;
for i = 1 to Population size do

update pbest and gbest of particle i;

for i = 1 to Population size do
update vi of particle i according to Eq. 1;
update xi of particle i according to Eq. 2;

calculate the training and testing classification accuracy of the selected feature
subset on the test set;
return the position of gbest, the training and testing classification accuracies;

3.3 Pseudo-code of the Algorithm

By using the proposed representation, a new feature selection algorithm is proposed,
which is named PSOR. The pseudo-code of PSOR is shown in Algorithm 1. The fitness
function of PSOR is to maximise the classification accuracy of the selected features.

Table 1. Datasets
Dataset NO. of features NO. of clusters NO. of classes No of instances
Wine 13 6 3 178
Vehicle 18 6 4 846
Ionosphere 34 11 2 351
Sonar 60 12 2 208
Musk1 166 14 2 476
Arrhythmia 279 15 16 452
Madelon 500 11 2 4400
Multiple Features 649 15 10 2000

4 Experimental Design

To examine the performance of the proposed algorithm PSOR, two traditional feature
selection methods, which are linear forward selection (LFS) [11] and greedy stepwise
backward selection (GSBS), and two existing PSO based feature selection algorithms
(PSOFS [27] and PSO42 [29]) are used for comparison purposes in the experiments.
LFS and GSBS were derived from two typical feature selection algorithms, i.e. sequen-
tial forward selection (SFS) and sequential backward selection (SBS), respectively. LFS
[11] restricts the number of features that are considered in each step of the forward se-
lection. The greedy stepwise feature selection algorithm implemented in Weka [23] can
move either forward or backward. Given that LFS performs a forward selection, a back-
ward search is chosen in greedy stepwise search to form a greedy stepwise backward
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Table 2. Experimental Results

Dataset Method Ave-Size Best Ave-Test-Acc Std-Test-Acc T
All 13 76.54 -

Wine PSOFS 7.93 98.77 95.6 1.7953 -
PSO42 6.73 98.77 94.86 1.8628 -
PSOR 4.75 100 96.70 3.10
All 18 83.86 -

Vehicle PSOFS 9.5 87.01 85.03 0.8899 =
PSO42 10.33 87.01 85.44 0.8372 +
PSOR 5.87 86.22 84.72 0.8720
All 34 83.81 -

Ionosphere PSOFS 12.47 93.33 88.41 2.3079 =
PSO42 3.13 91.43 86.69 1.6444 -
PSOR 9.7 91.43 88.63 1.6765
All 60 76.19 -

Sonar PSOFS 26.1 84.13 77.3 3.5765 -
PSO42 11.23 84.13 77.94 3.2104 =
PSOR 14.33 84.13 78.94 4.0185
All 166 83.92 =

Musk1 PSOFS 85.93 88.81 84.61 2.0568 =
PSO42 77.3 89.51 84.87 2.7042 =
PSOR 35.03 90.21 83.12 3.4196
All 279 94.46 -

Arrhythmia PSOFS 118.73 95.14 94.56 0.3517 =
PSO42 69.77 95.59 94.77 0.4495 -
PSOR 44.17 95.59 94.96 0.38
All 500 70.9 -

Madelon PSOFS 259.07 78.97 76.35 1.0909 -
PSO42 206.57 84.23 78.81 3.1171 -
PSOR 54.39 85.13 83.40 2.0368
All 649 98.63 -

Multiple features PSOFS 297.07 99.2 99.0 0.0934 +
PSO42 314.5 99.2 99.0 0.0935 +
PSOR 51.07 99.23 98.84 0.1751

selection (GSBS). The algorithm PSOFS [27] selects features by using continuous PSO.
The other PSO based algorithm, PSO42 [29], introduced a new initialisation strategy
and pbest and gbest updating mechanism.

Eight datasets (Table 1) chosen from the UCI machine learning repository [2] are
used in the experiments. These datasets have a different number of fetures, classes and
instances. For each dataset, all instaces are randomly divided into a training set and a
test set, which contains 70% and 30% of the instances, respectively. Up to 500 training
instances are used in the statistical clustering method to group features into different
clusters, where the number of clusters are listed in the second column in Table 1. In
the experiments, the classification/learning algorithm is K-nearest neighbour (KNN)
where K = 5. The parameters of PSO are set as follows [21]: w =0.7298, c1 = c2 =
1.49618, vmax = 6.0, population size is 30, the maximum number of iterations is 100.
The fully connected topology is used. All the PSO based algorithms have been run for
30 independent times on each dataset. A statistical significance test, Wilcoxon signed-
rank test, is performed to compare the classification accuracies of different algorithms.
The significance level was set as 0.05.
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5 Experimental Results

Table 2 shows the experimental results of the PSO based algorithms, where “All” means
that all the available features are used for classification. “Ave-size” shows the average
number of selected features over the 30 runs. “Best”, “Ave-Test-Acc”, “Std-Test-Acc”
illustrate the best, average and standard deviation of the testing accuracies over the 30
independent runs. T shows the results of the statistical significance tests between the
accuracy of PSOR and other algorithms. “+” or “-” means that the algorithm achieved
significantly better or worse classification performance than PSOR (the more “-”, the
better PSOR is). “=” means there is no significant difference between them.

Table 3. Results of GSBS and LFS

Method
Wine Vehicle Ionosphere Sonar

# Features Accuracy(%) # Features Accuracy(%) # Features Accuracy(%) # Features Accuracy(%)
GSBS 8 85.19 16 75.79 30 78.1 48 68.25
LFS 7 74.07 9 83.07 4 86.67 3 77.78

Method
Musk1 Arrhythmia Madelon Multiple Features

# Features Accuracy(%) # Features Accuracy(%) # Features Accuracy(%) # Features Accuracy(%)
GSBS 122 76.22 130 93.55 489 51.28 - -
LFS 10 85.31 11 94.46 7 64.62 18 99.0

From Table 2, it can be observed that the number of features selected by PSOR is
significantly smaller than the total number of features, but using the selected features
only, the 5NN classification algorithm achieved significantly better or similar classifica-
tion accuracy. For example, on the Multiple Features dataset, PSOR selected on average
51 features from the original 649 features, but significantly increased the classification
accuracy. The results suggest that PSOR can be successfully used for feature selec-
tion to reduce the dimensionality of the data and significantly increase the classification
performance over using all features.

Comparing PSOR with PSOFS, the feature subsets selected by PSOR are smaller
than that of PSOFS on all the eight datasets. In terms of the classification performance,
PSOR achieved similar or significantly better classification accuracy than PSOFS on
seven of the eight datasets. Comparing PSOR with PSO42, it can be observed that
PSOR selected smaller feature subsets and achieved similar and significantly better
classification performance than PSO42 on six of the eight datasets. The results suggest
that PSOR using the new representation can effectively utilising the statistical clustering
information to improve the classification performance over PSOFS and PSO42 and
further reduce the number of features.

5.1 Further Comparisons with Traditional Methods

The results of LFS and GSBS are shown in Table 3. Since LFS and GSBS are determin-
istic algorithms, each of them produces only a single solution on each dataset. Since the
experiment of using GSBS on the Multiple Features dataset cannot finish within two
days, the results are not listed in the table.
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Comparing the results of PSOR in Table 2 with the results in Table 3, it can be seen
that LFS selected a smaller number of features than PSOR, but achieved significantly
worse classification accuracy than PSOR. PSOR outperformed GSBS in terms of both
the number of features and the classification performance on all datasets. The results
show that PSOR, which is based on PSO and the feature clustering information, can
better explore the solution space to obtain better feature subsets than LFS and GSBS.

6 Conclusions and Future Work

The goal of this paper was to develop a new approach to using the statistical clus-
tering information in PSO for feature selection. The goal was successfully achieved
by developing a new representation scheme in PSO. By using the new representation,
the dimensionality of the search space is reduced over the traditional representation
scheme and the statistical clustering information can be incorporated in the feature se-
lection process. We have conducted the experiments to compare the new algorithm with
two conventional methods and two existing PSO algorithms without using statistical
clustering information on eight datasets of varying difficulty. The results show that the
proposed algorithm can effectively utilise the statistical clustering information in PSO
for feature selection, which results in smaller feature subsets and better classification
accuracy than the existing methods.

In future work, new search mechanisms will be investigated in PSO and statistical
clustering for feature selection to further increase the classification accuracy and reduce
the number of features. Meanwhile, it will be interesting to split the data multiple times
to test the stability of the feature selection algorithms.
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Abstract. Particle swarm optimization(PSO) has been applied on fea-
ture selection with improved results. Traditional PSO methods have some
drawbacks when dealing with binary space, which may bring negative
effects on the results. In this paper, an algorithm based on fitness pro-
portionate selection binary particle swarm optimization(FPSBPSO) will
be discussed in detail aiming to overcome the problems of traditional
PSO methods. FPSBPSO will be utilized in the feature subset selec-
tion domain. The performance of feature selection will be compared in a
benchmark dataset, and experimental results prove that the FPSBPSO-
based feature selection methods can avoid premature convergence and
improve the classification accuracy at the same time.

1 Introduction

Feature Selection refers to the process of selecting a subset of relevant features in
model construction, which is often seen in classification problems. A well selected
feature subset can boost the classifier’s performance and reduce the time cost
at the same time. Feature selection has been widely studied during past years
and much work has been done trying to find the most informative features while
maintaining the performance of the classifier. Current feature selection meth-
ods include frequency-based methods, information-gain-based methods, lexicon-
based methods and so on [14] [20] [2]. Besides, some evolutionary algorithms
can be utilized for feature selection as well, such as generic algorithms [1] and
particle swarm optimization [17].

Particle swarm optimization(PSO) is an optimization technique firstly intro-
duced by Kennedy and Eberhart in 1995 [7], which was inspired by the social
behavior of birds flocking or fish schooling. Since then, PSO has attracted signif-
icant attention and it has been reported that compared with other evolutionary
algorithms like genetic algorithms(GA), PSO is computationally more efficient
[5]. The basic idea of PSO can be described as follow: a swarm is made up by

G. Dick et al. (Eds.): SEAL 2014, LNCS 8886, pp. 582–592, 2014.
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many particles, each of which represents a candidate solution. In each iteration,
particles update their position in the search space according to their own histori-
cal information and their neighbours’ information. After the iterations reach the
end, an optimal solution is supposed to be found. PSO was originally designed to
solve continuous optimization problems. In order to deal with discrete problems,
Kennedy and Eberhart proposed binary particle swarm optimization(BPSO) [8]
in 1997 where the candidate particles in the search space are presented as a
binary string.

The basic idea of PSO is that a particle can exploit its own historical position
and performance information, as well as the historical position and performance
information of the whole swarm. A particle tends to move closer to its own
historical best position and the best position found by the whole swarm during
iterations. This idea enables PSO to find an optimal solution, and it is also the
idea shared by most variations of PSO. However, as we will explain in following
sections, we found that BPSO does not necessarily follow the same idea as PSO,
or at least not in the way other PSO variations do. In fact, a particle in BPSO will
probably move away from the best position found by itself or the best position
found by the whole swarm. Therefore it is necessary to pay attention to the
theoretical basis of BPSO rather than only focusing on its applications.

In this work, we will discuss two major problems of PSO in binary space and
try to prove that the traditional way of calculating velocities is the main cause
of the two problems. A new way to calculate velocities based on fitness values
is then proposed and based on that we will propose a new binary version of
PSO called FPSBPSO. After that, we will perform feature selection in a binary
classification problem with FPSBPSO-based methods to test its efficiency. If the
selected feature subset with FPSBPSO can return better classification results
than that with traditional PSO, our proposed scheme can be regarded as an
efficient one.

The remainder of this paper is organized as follows. In section 2, we will
introduce some popular feature selection methods as well as the development
of PSO and BPSO. In section 3, we will show two problems PSO will face in
discrete space, and introduce a modified BPSO method called FPSBPSO to
deal with them. Then we will utilize FPSBPSO to deal with the task of feature
subset selection. In section 4, different experimental results will be presented to
prove FPSBPSO’s efficiency both in optimization problems and in feature subset
selection. Conclusions and future work are included in section 5.

2 Background

2.1 Feature Selection

With the rapid development of information age, there usually exists a large
amount of potentially useful features in current classification tasks. It will be
time-consuming to use all those features in the model building process, so the
feature selection process is needed to select some informative features from the
original feature set without sacrificing the quality of the classifier.
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Many feature selection methods give every candidate feature a “goodness”
value to label its usefulness in classification. Features with higher value are con-
sidered more informative and will be selected. Yang and Pederson [20] com-
pared five different goodness-based feature selection methods including docu-
ment frequency threshold(DF), information gain(IG), mutual information(MI),
χ2 statistic(CHI) and term strength(TS). Results show that DF, IG and CHI
can all bring satisfying classification accuracy and three scores of a term calcu-
lated by them are strongly correlated. In recent years, feature selection has also
caused much interest. Basu and Murthy [2] used the similarity between a feature
and a particular class as the goodness value. Song et al. [14] introduced a novel
clustering-based feature selection method for high dimensional data.

Apart from goodness-based methods, evolutionary algorithms are frequently
used in feature selection as well. Abbasi et al. [1] proposed a feature selection
method based on generic algorithm. Wang et al. [17] used rough set and binary
PSO to perform feature selection. Due to the potential limitations of BPSO, Xue
et al. [19] used PSO in continuous space to perform feature selection.

2.2 Continuous Particle Swarm Optimization

PSO was proposed by Kennedy and Eberhart in 1995 [7]. It was inspired by the
social behavior of birds flocking or fish schooling. A swarm has some particles,
each particle has a position component representing a specific solution, and a
velocity component representing the direction of a particle’s movement in the
solution space. PSO is an iterative optimization algorithm with three main steps.
The first step is to initialize the population by generating each particle’s velocity
component and position component randomly. The second step is to evaluate
solutions represented by particles’ positions. The final step is to update particles’
velocities and then update particles’ positions using the following formulas.

vt+1
i = w ∗ vti + c1 ∗ rand ∗

(
pbest− xt

i

)

+ c2 ∗ rand ∗
(
gbest− xt

i

)
(1)

xt+1
i = xt

i + vt+1
i (2)

where vt+1
i and xt+1

i represents the velocity component and the position compo-
nent of particle pi at the (t+ 1)th iteration respectively, c1 and c2 are two fixed
confidence coefficient, rnd is a uniformly distributed random variable ranging
from 0 to 1, w is the inertia weight. pbest means the position of particle pi’s
personal best while gbest means the position of particle pi’s global best.

The right side of equation (1) can be divided into three parts. w∗vti represents
the previous direction, c1 ∗rand∗ (pbest− xt

i) represents the tendency of moving
towards a particle’s personal best, c2∗rand∗(gbest− xt

i) represents the tendency
of moving towards the swarm’s global best. The three parts together guide a
particle’s movement. The following figure shows the effect of their cooperation.

Since the basic PSO was proposed, researchers have proposed many variations
aiming to improve its performance. In fact, there was no inertia weight in the
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Fig. 1. The effect of pbest and gbest

basic PSO, Shi and Eberhart introduced inertia weight into PSO in 1998 [13], and
this parameter has been adopted in almost every PSO variation. Other important
modifications to the basic PSO model include Bare Bones PSO proposed by
Kennedy [6], and the idea to clamp velocities [4] proposed by Eberhart et al..
Ioan gave a good analysis of PSO’s convergence and parameter selection problem
in [16].

2.3 Binary Particle Swarm Optimization

In order to use PSO to solve discrete problems, Kennedy proposed BPSO [8],
which became the most widely used PSO model dealing with combinatorial
optimization problems. Kennedy mainly made two changes to the continuous
PSO, and the first is the representation of a particle’s position. Unlike in the
continuous PSO where a particle’s position is a set of real values, in BPSO, a
particle’s position becomes a binary string like ′1001101′. The second change is
that the velocity of a particle no longer represents the direction of a particle’s
movement, rather, it means the possibility of choosing 1 at a specific bit of a
particle’s position component. And the update formula of the velocity component
becomes the following one.

xid =

{
1, rand < S(vid)
0, otherwise.

(3)

where

S(vid) =
1

1 + e−vid
(4)

There are many applications of BPSO, including using BPSO to solve feature
subset selection problems [11] [18], the travelling salesman problem [12], the
lot sizing problem [15], flow shop scheduling problems [10], and many other
combinatorial optimization problems.

3 Feature Selection with FPSBPSO

In this section, we will propose a modified BPSO algorithm called FPSBPSO,
which suits the nature of PSO in discrete space better. Then we will perform
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a feature subset selection with the concept of FPSBPSO and test whether our
proposed method can be beneficial to the classification process.

3.1 Problems of Traditional BPSO

One main problem in traditional BPSO is that the new position of a particle is
solely decided by its velocity while the particle’s current position hardly makes
any influence in updating its next position. This phenomenon is to some extent
contradictory to the basic idea of PSO which is inspired by the behaviour of bird
flocking. As a result, we need to define a new way to calculate a particle’s new
position in which the current position of the particle can play an important role
as well.

There is another problem PSO will have to face in discrete space. In traditional
BPSO the velocity means the possibility that a particle’s value changes between
0 and 1 respectively in every bit. But consider the following situation: a particle’s
value on the ith bit is 0 as well as the ith bit of the personal best and the global
best, and the current velocity on this bit is 0 too. In this case the ith bit will
have equal possibility to be 0 or 1 in the next iteration as the velocity on the ith
bit is 0 according to equation (1). However, if the personal best, global best and
the particle itself all have the value of 1 in the ith bit, then the particle will also
have equal possibility of being 0 or 1 in the next iteration, which is not consistent
with our intuitions because the bit should have far bigger chance to remain the
value of 1 when every related particle does. Thus in BPSO, we not only need a
new way to update the position of a particle (like in equation (3)), but also have
to change the velocity updating formula to make a particle’s position constantly
moving towards the best solution while maintaining the general diversity to avoid
premature convergence at the same time.

3.2 FPSBPSO: Fitness Proportionate Selection BPSO

Based on the two issues mentioned in the previous subsection that may reduce
the performance of BPSO, we now describe the newly designed update formulas
for position component and velocity component which are the essential part of
the new model. We adopt fitness proportionate selection to update a particle’s
position component, and that is why we call the new model FPSBPSO. The
newly designed update formulas are as follows. In the following content, when
we refer to the concept “involved particles”, we actually mean the three particles
pi, pi’s personal best particle ppbi and pi’s global best particle pgbi .

vt+1
id =

⎧⎨
⎩

mr, if n0 = 0
1−mr, if n1 = 0

f1
f1+f0

, otherwise.
(5)

xt+1
id =

{
1, rand < vt+1

id

0, otherwise.
(6)
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where n0 is the number of involved particles with xid = 0 and n1 is the number
of involved particles with xid = 1. f1 and f0 are computed as follows: First,
involved particles are divided into two sets S1 and S0 based on whether they
select 1 or 0 at the dth bit. Then, f1 and f0 are calculated by averaging the
fitness values of particles in S1 and S0 respectively. vt+1

id is the probability of
setting xt+1

id to 1. The higher f1 is, the higher probability xt+1
id will be 1.

In this new method, the update formula for velocities and positions is both
very different from that of traditional BPSO. First, in the proposed method,
the current position of a particle plays an important role in deciding its new
state by taking part in the vote-like mechanism. This solves the first problem
mentioned in the previous subsection. Besides, the vote-like mechanism ensures
that if all three involved particles have the same value in a specific bit, then
the new position will have a large possibility keeping that value unchanged (but
still have a smaller possibility to mutate), which is more consistent with people’s
intuitions and the basic ideas of PSO. By this way the second problem mentioned
in the previous subsection is also solved.

Our proposed FPSBPSO method has another advantage, which is that there
is only one free parameter in FPSBPSO mr. Fewer parameters means that the
model will be easier to be tuned because the difficulty of finding a good combina-
tion of parameter settings will increase exponentially as the number of parameter
increases. The parameter mr is introduced to prevent the problem of premature
convergence. In the proposed model, if xpb

id = xgb
id = xt

id, then xt+1
id will be fixed.

For example, if xpb
id = xgb

id = xt
id = 1, then vt+1

id will be 0, which means xt+1
id will

be set to 1 with probability 1. This will lead to premature convergence. In this
case, the parameter of mr will force the bit to mutate at times, which is often
seen in generic algorithms.

How to select a proper value of mr is an important problem in the new model.
By comparing the results of FPSBPSO using different settings of mr, we found
two basic regularities. First, if mr is set to 0 or a too small value, premature
convergence will happen. Second, if mr is set to a large value, then it will be very
difficult for the swarm to convergence. Experimental results show that 0.01 is a
good choice for many different problems. However, we suggest that it is better
to use early-exploration-late-exploitation strategy, which means setting mr to a
much larger value in the early stage so that particles can explore more space and
gradually decreasing mr to ensure that the particles can pay more attention to
exploiting the neighbourhood information in the later stage.

3.3 FPSBPSO Based Feature Subset Selection

In most classification tasks, the process of feature selection must be executed,
during which a smaller set of all features is gained in order to reach better
classification performance. There are many feature selection methods, such as
information gain based method, lexicon based method, generic algorithm based
method and so on.

PSO can be used to perform feature selection as well. Similar to the generic
algorithm based method, every feature selection result is transformed into a bit
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string in PSO based method. The length of string is equal to the size of all
different features and the value of each bit represents whether the corresponding
feature is selected or not. The detailed algorithm is shown in Table 1. As the
main aim of feature selection is to raise the classification accuracy, the fitness
value of a particle is represented by the classifier’s accuracy on a validation set
using the corresponding feature subset. Our aim is to use FPSBPSO to perform
the feature selection process to obtain a feature subset which is supposed to get
better classification results than that brought by a traditional-BPSO-based one.

Table 1. FPSBPSO Based Feature Selection

FPSBPSO Based Feature Selection

1: Initialize parameters of BPSO
2: Randomly initialize swarm
3: WHILE stopping criterion not met DO
4: calculate each particle’s fitness function
6: For i = 1 to swarmSize DO
7: update the lbest of Pi

8: update the pbest of Pi

9: END
10: FOR i = 1 to swarmSize DO
11: FOR j = 1 to dimension DO
12: update the velocity of Pi according
13: to equation (5)
14: update the position of Pi according
15: to equation (6)
16: END
17: END
18: END
19: Return the best feature subset found by the swarm

4 Experimental Results

In this section, we aim to prove FPSBPSO’s effectiveness in feature selection.
This is done through two steps. We first compare the performance of traditional
BPSO and FPSBPSO on the MKP problem to show that our modification on
traditional BPSO is reasonable. Then we utilize FPSBPSO into the feature se-
lection in a binary classification problem to test whether the feature subset can
improve the accuracy of classification.

4.1 Experiments for the Problem of MKP

First we want to prove that FPSBPSO works better than traditional BPSO in
binary space by comparing the two algorithms on the famous problem of Multi-
dimensional Knapsack Problem(MKP). MKP is an intensively studied discrete
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optimization problem because many real world problems can be formulated as
a MKP, for example, cargo loading, cutting stock problems and so on. MKP is
a constrained optimization problem, which means that there exists illegal solu-
tion space. In our tests, we will not try to ignore or avoid illegal solution space,
instead, we add a penalty term into the fitness function of FPSBPSO. The final
fitness function we used was proposed by Khuri et al. in [9].

f(x) =
n∑
1

pixi − s ∗maxpi (7)

where

s = |j|
m∑
1

wijxi > cj | (8)

where pi is the value of item i, wij is the cost of item i for knapsack j, and cj is
the size of knapsack j. n is the number of items andm is the number of constraints.

The goal is to maximize
n∑
1
pixi with the constrains ∀j,

n∑
1
wijxi <= cj .

We used 7 benchmarks named mknap1 in OR-Library [3] to test FPSBPSO’s
performance on MKP. Optimums of all the 7 benchmarks are all already known.
Detailed information of the 7 benchmark problems are given in Table 2, where
n is the number of items and m is the number of constraints and the column
titled ’Best’ shows the known best of the corresponding problem.

For standard BPSO, we use the following parameter settings: w = 0.689343,
c = 1.42694, and Vmax = 4. For FPSBPSO, mr decreases from 0.1 to 0.001 as
iteration process goes on using formula given follows.

mr = (1− iter/Max iter) ∗ 0.1 + 0.01 (9)

Where iter is the current number of iterations and Max iter is the maximum
number of iterations.

Max iteration times and population size are 1000 and 40 respectively. In order
to reduce the time cost of training, the iteration process will immediately stop
if the value of global best has kept unchanged for over 120 times.

For each problem, we run BPSO and FPSBPSO for 20 times. We record the
average and best value found during the 20 times. Experimental results are given
in Table 3. As can be seen, BPSO succeeded in finding the best solution in 4 out
of 7 problems while FPSBPSO succeeded in all 7 problems. Besides, FPSBPSO
has the best average performance in most of the problems, and its advantage over
BPSO will expand as the dimension of problems increases. In a word, FPSBPSO
has better performance than BPSO, especially in high-dimensional problems.

4.2 Feature Selection with FPSBPSO

Our next goal is to evaluate FPSBPSO’s performance in feature selection do-
main. To achieve this, we use the famous benchmark dataset of Madelon to per-
form the binary classification. The Madelon dataset consists of 4400 instances.
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Table 2. MKP Benchmark

n m Best Known n m Best Known

1 6 10 3800 5 28 10 12400
2 10 10 8706.1 6 39 5 10618
3 15 10 4015 7 50 5 16537
4 20 10 6120

Table 3. MKP Results

BPSO FPSBPSO
Best Avg. Best Avg.

1 3800 3800 3800 3800
2 8706.1 8706.1 8706.1 8706.1
3 4015 4014.5 4015 4014.5
4 6120 6107.5 6120 6117.5
5 12380 12298.5 12400 12386.5
6 10490 10431.3 10618 10564
7 16217 16150.55 16537 16481

Among them 2000 are used as training set, 600 are used as validation set and
the remaining 1800 are used as test set. In all of the three sets positive instances
and negative instances both make up 50% of the whole set. The original dataset
has 500 features in all.

Table 4. Experimental results by BPSO

time accuracy iteration times

1 0.8133 230
2 0.8200 219
3 0.8200 206
4 0.8233 310
5 0.8233 233

average 0.8200 239.6

Table 5. Experimental results by FPSBPSO

time accuracy iteration times

1 0.8417 428
2 0.8817 1000
3 0.8467 373
4 0.8600 652
5 0.8433 231

average 0.8546 536.8
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We use basic BPSO method and FPSBPSO method to get two different fea-
ture subsets, then the two subsets are separately used on the dataset to test
the classification accuracy. In both cases, the classification algorithm is CART
decision tree which is used both in particle fitness evaluation and final test. In
this experiment, we run each algorithm for 5 times with different initialization
settings.

The experimental results are shown in Table 4 and Table 5. From Table 4,
we can know that the average accuracy of results by BPSO is 0.82. From Table
5, we can see the average accuracy of results by FPSBPSO is 0.8546, which
has increased the accuracy by 3%. However, It may take more iteration time
for FPSBPSO to return the feature selection result, which can be explained
as that FPSBPSO is more precious than traditional BPSO and can avoid the
“premature convergence”.

5 Conclusions and Future Work

In this paper, we discussed the feasibility of utilizing PSO based methods to
select feature subset for classification problems. First, we investigated the detail
of traditional BPSO model and argue that BPSO is not a good binary version
of PSO as it does not follow the essence of PSO in some cases. By analysing two
major problems PSO will face in solving discrete problems, we proposed a new
binary version of PSO called FPSBPSO. We redefined the velocity component in
FPSBPSO to make it suit the character of PSO better and more computationally
efficient. Experimental results showed that the feature selection result from our
proposed FPSBPSO based method is superior to the one from traditional BPSO,
as the former one can reach better classification results than the latter one.

Although preliminary results show that the new model can provide solid per-
formance, there are still many problems to be dealt with. Firstly, in the proposed
scheme we used only three particles’ information to calculate the average per-
formance of 1 and 0 at a specific bit, it remains to be seen if more particles’
information could improve the model’s performance. Secondly, we have only
evaluated the model’s performance on only one benchmark dataset, which is not
sufficient enough. More experiments need to be taken to prove the validity and
stability of the FPSBPSO based feature selection method. In the future, we will
mainly focus on the two problems.
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Abstract. The biomarker discovery process usually produces a long
list of candidates, which need to be verified. The verification of pro-
tein biomarkers from mass spectrometry data can be done through mea-
suring the detection probability from the mass spectrometer (Peptide
detection). However, the limited size of the experimental data and lack
of a universal quantitative method make the identification of these pep-
tides challenging. In this paper, genetic programming (GP) is proposed
to measure the detection of the peptides in the mass spectrometer. This
is done through measuring the physicochemical chemicals of the pep-
tides and selecting the high responding peptides. The proposed method
performs both feature selection and classification, where feature selec-
tion is adopted to determine the important physicochemical properties
required for the prediction. The proposed GP method is tested on two
different yeast data sets with increasing complexity. It outperforms five
other state-of-the-art classification algorithms. The results also show that
GP outperforms two conventional feature selection methods, namely, Chi
Square and Information Gain Ratio.

1 Introduction

Biomarkers are indicators of a specific biological or disease state [18]. They are
important for many clinical applications and classification of different stages of
diseases. Biomarker detection methods usually produce many biomarkers [11],
and it is necessary to verify those biomarkers before passing them to clinical
validation [18]. The peptide detection (helps in verifying candidate biomarkers)
is a classification problem where the task is to classify peptides as flyers or non-
flyers [12]. The detectable peptides (referred to as quantifiable surrogates) are
the peptides that are characterised to be high responding in the body fluids (e.g.
blood) [9]. This process of discovering the quantifiable surrogates is called veri-
fication, which is a necessary process to bridge the gap between the biomarker
discovery and the clinical-validation experiments [24]. The verification process
is typically done through the absolute quantification of peptides [1]. The ver-
ification of biomarkers is a hard problem due to the high dynamic range of
proteins [18], the complexity of the data and the lack of a universal quantitative
method.
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Mass spectrometry (MS) is capable of sensitive detection, identification and
quantification of proteins. Mass spectrometer measures the molecular weight of
the peptides (with respect to a charge ratio) and its corresponding intensity.
The product spectrum is composed of the mass to charge ratio (m/z) and the
intensity of peptides. Mostly, MS is accompanied with liquid chromatography
for separation of the sample which helps decrease the complexity of the sample.
The produced LC-MS spectrum contains the m/z, the intensity and the retention
time of the peptides. MS-based quantification faces the problem of selecting the
best quantifiable peptides that can give detectable MS peak. Therefore, machine
learning methods can be useful to automatically predict the high responding
peptides.

The physicochemical properties of the peptides can represent the feature vec-
tor for predicting the detectability of peptides. Mostly, the peptide detection
data sets are composed of a large number of features (properties) some of which
can be irrelevant to the classification task. Hence, an effective and powerful
method is needed to perform two tasks. Firstly, feature selection is needed to
select important physiochemical properties. Secondly, the classification of the
data aims to determine the detection probability.

Genetic programming (GP) is an evolutionary technique which has been used
successfully for feature selection and classification [5,8]. GP solves a problem by
evolving computer programs (functions) [22]. It usually starts with a population
of random programs then modifies these programs using its genetic operators
[30]. The GP algorithm consists of the following steps [22]:

1. Initialize a random population of programs;
2. Calculate the goodness of each program through the fitness function;
3. If the stopping criteria are not met, do the following:

– Select some good programs through the selection method;
– Use the genetic operators to perform the changes on the selected pro-

grams;
– Pass the new programs to the following generation;
– Calculate the fitness of the programs in the new generation;

4. Return the program with the best fitness as the designed solution.

GP has the potential to perform feature selection and classification at the
same time [26], and due to the high dimensionality of peptide data, GP is a
good choice for solving peptide detection problem. This paper represents one of
the few attempts to use GP for selecting important features required for peptide
detection.

Goals. The main goal of this paper is to develop a new GP method for measur-
ing peptide detectability. The proposed method performs two important tasks.
Firstly, feature selection that helps in determining the important physiochemical
properties for detection of peptides. Secondly, prediction of flyers (detectable)
and non-flyers (non-detectable) peptides which will be useful for both verifica-
tion of biomarkers candidates and at the same time absolute quantification of
peptides. Precisely, we will investigate the following:
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1. What is the appropriate fitness measure which can make GP reduces the
number of selected features with preserving the maximum classification per-
formance?

2. Can GP outperform conventional feature selection and classification meth-
ods?

3. What are the important physiochemical properties selected?

Organisation. The rest of the paper is organised as follows. Section 2 discusses
the related work on using GP for feature selection and classification and also
the previous work done on peptide detection. Section 3 describes the proposed
GP approach for peptide detection. Section 4 presents the experiment setup, the
data sets description and the feature vector production process. Section 5 reports
the full experiment results and discussions. Section 6 concludes the paper and
gives some directions for future work.

2 Related Work

2.1 GP for Feature Selection and Classification

GP has been successfully used to select features in either filter or embedded ap-
proaches [27, 28]. The advantage of GP for building classification models (with-
out the need to be wrapped to another classifier) makes it a perfect choice for
performing both classification and feature selection tasks, especially in high di-
mensional data such as in [2–4]. GP has been also used to solve the problem of
classification of unbalanced data such as in [6–8]. The success of GP in feature
selection and classification has encouraged us to use it in prediction of peptide
detectability.

2.2 Peptide Detection

Previous studies have been adopted for the use of machine learning techniques
for peptide detection [32]. Decision trees and artificial neural networks (ANN)
have been used in [15] and [31] to relate the physicochemical properties of pro-
teins to their MS detectability. Evolutionary algorithms were also used in a
small number of studies to solve the peptide detection prediction problem in MS
data. For example, in [33], genetic algorithms (GAs) have been used to solve
this problem where the aim was to reach the optimum experimental conditions
for protein detection in MS. GP has been used only in two studies [12, 34] with
promising results. Most of these studies were focused on the maximisation of
the flyers peptides without taking into account the overall accuracy of predic-
tion both flyers and non-flyers peptides. Moreover, previous studies were mostly
focused in determining detectability of peptides based on the whole set of pep-
tides’ properties. The advantage of GP to perform both feature selection and
classification has not been fully investigated in those studies. In this paper, the
determination of the important physicochemical properties for detection predic-
tion is investigated. Moreover, the use of GP system as a prediction system for
peptide detectability is also investigated here.
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3 The New GP Method for Peptide Detection

3.1 Overall Structure

The proposed GP method is performing two tasks, firstly feature selection, in
order to select important physicochemical properties required for accurate pre-
diction, and secondly classification. The method first starts with data set prepa-
ration and generation of feature vectors. This is done through search of MS/MS
through SEQUEST, which produces a data set containing peptides where the
length of each peptide is chosen to be between 5-24 residues. Afterwards the fea-
ture vectors are generated, which are composed of the physicochemical properties
of each peptide in the data set. For each peptide, 544 properties are extracted
from AAindex database [19]. The data sets are divided into half for training and
half for testing. Only the training set is passed to GP to build a classifier model.
The produced model automatically selects features in the terminal nodes of the
tree. The selected features are used to form new training and test sets. Finally,
the algorithm is applied to the unseen test set to measure the detectability of
the peptides.

3.2 Feature Selection

The search space using all of the 544 features (physicochemical property) is
extremely large and hence, feature selection should be performed. GP can auto-
matically select features during the evolution process [26]. The terminal nodes of
evolved trees contain the selected features for building the classification model.
Therefore, GP has the advantage of selecting the features, which have the po-
tential to produce a classifier with better classification performance.

3.3 Peptides Detection (Classification)

Prediction of the detectability of a peptide is a non-trivial classification task
which involves complicated relationships between the classification rules and
also between the input features [12, 17]. The proposed GP method performs
classification by setting a threshold value (as a decision stump) by which the
classification decision is taken. If the GP tree output is less than or equal to this
threshold, the peptide is classified as detectable (flyer) otherwise, it is classified
as non-detectable (non-flyer).

3.4 Improved Fitness Function

The typical standard classification accuracy of the training set may be inappro-
priate for the peptide data sets due to the large number of features. We aim
to select only the most important features. Hence, the fitness function used is
designed to take into account feature selection and classification tasks.

The classification of the data as, true or false has four outcomes: true positive,
false positive, true negative, false negative. These outcomes are represented using
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Table 1. Binary Confusion Matrix

Positive class Negative class

Positive prediction True Positive (TP) False Positive(FP)

Negative prediction False Negative (FN) True Negative (TN)

a confusion matrix which is shown in Table 1. The first task is to maximise the
classification accuracy, the classification accuracy is given by:

Accuracy =
TP + TN

TP + FN + FP + FN

The second task is to reduce the number of features selected by each genetic
program. Therefore, we used the following fitness function which is inspired
by [25].

Fitness = (1 + a ∗ exp n
N )×Accuracy (1)

where n is the number of features selected by GP and N is the original num-
ber of features. The exponential factor decreases with increasing n to give more
fitness to the program with less features. a is a factor used to measure the impor-
tance between reducing the number of features and increasing the classification
accuracy. a is equal to the following:

a = (1 − Current

Total
) (2)

Current is the index of the current generation while Total is the maximum
number of generations. Therefore, the fitness function used in Equation (1) will
achieve the two tasks which are reducing the number of features, increasing
classification performance.

4 Experiments Setup

This section outlines the data sets acquisition, feature vector production, pro-
gram representation and evolutionary parameters.

4.1 Peptide Data Sets and Feature Vectors Production

Data Sets. Two tryptic peptide data sets are used to test the new method.
Both data sets were analysed using LC-ESI-MS and obtained from [12]. The
peptides of first data set were generated from 13 proteins. The proteins were
searched against NCBInr database [29] using Mascot server [20](Matrix science)
to confirm the identity and elution time. Extracted ion chromatograms were
generated for the peptides that did not yield tandem MS data. Each peptide
contains at least five amino acids and generated with either 0 or 1 missed cleavage
and the m/z values range from 300 and 1800. The class label as a flyer or non-
flyer was set by cross referencing the peptides with the generated peptides in the
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lab. This data set (DS1) contains 931 peptides (501 in flyer and 430 in non-flyer
class)

The second data set (DS2.) was downloaded from PeptideAtlas [10] and orig-
inally produced from 24 yeast experiments. The total number of proteins is
2733.The peptides’ length (number of amino acids) ranges from 6 to 42 residues
with 0-2 missed cleavage. Each peptide was assigned a flyer’s class label if it was
observed in the 24 experiments otherwise, it was assigned a non-flyer class label.
The total number of peptides examples is 21515 in which 2121 peptides are in
the flyers’ class and 19394 are in the non-flyers’ class. More details about the
data sets can be found in [12].

Feature Vectors. The data sets were obtained in the form of peptide sequences
(amino acids) and the class label. Hence, in order to use those peptides with the
machine learning techniques they should transformed to numerical feature vec-
tors. The physicochemical properties of the peptides have shown to be related to
their detectability [1]. Therefore, for each peptide, 544 properties were calculated
to transform the peptide data into numerical feature vectors. The 544 properties
were extracted from AAindex database [19] and for each peptide sequence the
average of the property value of each individual amino acid is calculated over
the whole peptide. The physicochemical properties include, for example, mass,
alpha-helical which is the predicted percentage of the secondary structure, hy-
drophobicity, gasphase basicity and isoelectric point. Therefore, each peptide is
an instance used for training and testing the GP algorithm which modeled by
544 feature values and either flyer or non-flyer class label.

4.2 GP Program Representation

The tree structure is used in the experiments as a representation of the GP
program [21]. The features and also a randomly generated constant terminal
are used in the terminal set. The function set contains the four standard math-
ematical operators +,−,%,× and a conditional operator if , a max operator
and a Abs operator. The +,−,× take two arguments and return the addition,
subtraction or multiplication of the two arguments. The % is the usual division ,
which takes two arguments, but it is protected which returns zero if the division
is by zero. max returns the maximum of two arguments while if takes three
arguments and returns the second argument if the first is negative otherwise,
returns the third one. The Abs operator takes only one argument and returns
the absolute value of this argument. The classification is performed by taking
a threshold value of zero in which if the output of the genetic program is less
than or equal to zero the peptide is classified as belonging to the flyer class.
Otherwise, it is classified as belonging to the non-flyer class.

4.3 GP Evolutionary Parameters

The initial population is generated using the ramped half and half method [21].
The number of individuals in the population is 1024. Crossover, mutation and
elitism rates are 70%, 29% and 1% , respectively. The maximum tree depth is set
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Table 2. GP evolutionary parameters

Initialization method Ramped Half-and Half
Tree Depth 8

Number of Generations 100
Mutation rate 29%
Crossover rate 70%
Elitism rate 1%

Population Size 1024
Selection type Tournament

Tournament Size 4

to 8 in order to avoid bloating. The method of selection used is the tournament
method and its size is set to 4. The evolution runs for 100 generations. 50% of
the data is randomly selected for training GP and the other 50% is kept as a
test set. These parameters are selected based on the literature [3]. Table 2 shows
the evolutionary parameters used.

4.4 Methods for Comparison

The proposed GP is compared with several state-of-the-art feature selection
and classification algorithms. The Waikato Environment for Knowledge Analysis
(WEKA) package [16] is used to run the feature selection and classification
algorithms.

Benchmark Classification Methods. Five different classifiers are used (with
both the original features and the GP’s selected features) and compared to GP
classifier. The five classifiers are commonly used in classification tasks.

1. Naive Bayes (NB): NB belongs to the category of Bayesian classifiers which
captures the behavior of the data on probability distributions. NB makes an
assumption that all the features are conditionally independent [35].

2. Support Vector Machines (SVM): SVM forms a number of hyperplanes and
classifies the instances according to the side of the hyperplane to which the
instance belongs to [35].

3. Decision Tree (J48): J48 classifies instances through sorting them in a tree
which is composed of a hierarchy of nodes. The root node first test the value
of the feature and then moves to the child nodes until the label node is
reached [35].

4. Conjunctive Rule (CR): CR builds a single conjunctive rule to predict the
class labels. It uses the “AND” logical operator to determine correlation of
features and classes [35].

5. Voted Perceptron (VP): VP is based on the perceptron algorithm and uses
kernel functions to build hyperplanes as decision boundaries [14].

4.4.1 Benchmark Feature Selection Methods
We selected two common feature selection methods to compare the impact of
the GP’s selected features on the classifiers to the impact of those benchmark
methods’ features.
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1. Chi Square (χ2) feature evaluation: In statistical analysis methods, χ2 test
is used to measure the in dependency of two events. χ2 as a feature selection
measure the association between the features and classes. A score is given
for each feature, according to its χ2 statistics with respect to the class [13].

2. Information Gain Ratio (IGR) feature evaluation: The features are evaluated
by measuring the gain ratio with respect to the class [13]. The gain ratio is
the ratio between the total entropy of the features and the intrinsic value.

5 Results and Discussions

Several sets of experiments were performed to test the effectiveness of the pro-
posed GP method. Firstly, GP was run with all the 544 physicochemical proper-
ties of the peptides. Secondly, the same GP algorithm was run with the features
selected in the terminal nodes of the GP program. The feature selection phase
resulted in an average of 5 physicochemical properties for the data set DS1

and 14 property for data set DS2. The selected features are fed to the other
benchmark classifiers. Moreover, the benchmark feature selection methods (χ2

and IGR) were used to select features and the top 5 and 14 features from both
methods are fed to the same classifiers. In Table 3, the second column gives the
performance of the new GP method (annotated as GP). The mean (x), best and
the standard deviation (s) of the 30 runs are reported in the table. The rest of
the columns give the results of using the other benchmark classifiers. As these
classifiers are deterministic methods only one result is given for each data set.
The best performance for each data set is made bold. Table 4 gives the results
of using the GP’s, χ2’s and IGR ’s selected features with the five benchmark
classifiers. As the average number of features selected by GP for DS1 and DS2

is 5 and 14, respectively, we used the top 5 and 14 features from both χ2 and
IGR to make the comparison. When using the GP’s selected features, each of
the 30 runs’ features are used with each of the classifiers and the average (x),
best and standard deviation are given in Table 4. A statistical T-test (Z-Test)
with 0.05 degrees of freedom (95% significance level) is performed to check the
significance of the results between the proposed GP method and the methods
of comparison. In Tables 3 and 4 the mark − (+) means the method of com-
parison is significantly worse (better) than GP, while the mark = means that
there is no significant difference between them. For running GP, the Java-based
Evolutionary Computation research system ECJ [23] package was used. All the
experiments were executed on a machine with an Intel(R) Core(TM) i7-3770
CPU @ 3.40GHz, running Ubuntu 4.6 and Java 1.7.0 25 with a total memory of
8GByte .

5.1 GP as a Classifier

As shown in Table 4, the best of GP managed to outperform NB, SVM, J48,
CR and VP for data set DS1. The best of GP is better than these classifiers by
2.37-9.48%, while the mean of the 30 runs is better than SVM, J48, CR and VP



Genetic Programming for Measuring Peptide Detectability 601

Table 3. Comparison of the performances of GP to benchmark classifiers.

Dataset
GP

Best x ±s NB SVM J48 CRt VP

DS1 59.48 56.62±1.00 57.11+ 56.03= 56.03= 50.00− 53.23−

DS2 90.15 90.14±0.01 67.07− 90.13− 87.91− 89.14− 90.13−

by 0.61-6.62%. For data set DS2, the average and the best of GP outperformed
all other classifiers. The results of T-test also show that GP is significantly bet-
ter than the five classifiers in the data set DS2. Furthermore, GP is significantly
better than CR and VP for data set DS2. However, there is no significant differ-
ence between GP and SVM and J48 in DS1. The only exception is NB in DS1,
where the performance of NB is slightly better than that of GP, although the
best of GP outperforms NB.

5.2 GP as a Feature Selection Method

For each GP run, we used the selected features in the terminal nodes of the GP
evolved tree with the other classifiers. The purpose is to test the capability of
GP to select the important features in addition to its capability for classifica-
tion. GP selected an average number of features of 5 for DS1 and 14 for DS2

and hence, for both χ2 and IGR the top 5 and 14 features were used. It can be
seen from Table 4 that GP managed to select the features, which achieve better
performance with most the classifiers than both χ2 and IGR on both DS1 and
DS2. The significance test shows that for DS1, GP selected features that have a
significant better performance than those of IGR when used with all the classi-
fiers. Moreover, it significantly outperformed χ2 when used with NB, SVM and
VP and they were similar when used with J48 and CR. For DS2, GP features
made a significantly better performance when used with NB and equal perfor-
mance when used with most of the rest of the classifiers. The only exception

Table 4. Comparison of the Performances of GP , χ2 and IGR Selected Features

Data
set

Classifier
GP χ2 T-test IGR T-test

Best x ± s Best Best

DS1

NB 57.11 53.87±2.34 50.96 − 52.50 −
SVM 60.56 54.71±2.19 52.90 − 52.04 −
J48 57.11 54.60±1.61 54.19 = 52.04 −
CR 57.32 53.00±2.14 52.68 = 50.04 −
VP 60.56 54.35±2.32 52.04 − 52.04 −

DS2

NB 85.77 84.59±0.55 71.24 − 71.05 −
SVM 90.15 90.15±0.0 90.14 = 90.22 =
J48 90.34 89.95±0.29 90.06 + 90.13 +
CR 90.15 90.15±0.0 90.22 = 90.22 =
VP 90.22 90.15±0.20 90.22 = 90.22 =



602 S. Ahmed et al.

here is with J48 which has a slightly better accuracy with χ2 and IGR more
than the average of GP. This is perhaps because J48 also uses IGR to further
select features, and therefore might be biased to IGR.

6 Conclusions and Future Work

The objective of this paper was to investigate the performance of GP capability
to reduce the number of redundant properties with preserving the maximum
accuracy for measuring peptide detectability. This goal was successfully achieved
by developing a GP system which selects features and at the same time performs
detection. The proposed method works by maximising the classification accuracy
and minimising the number selected features in the terminal nodes of the GP
tree, and therefore, the system is a multi-objective system. The new method is
tested against five other classifiers namely, NB, SVM, J48, CR, VP. Moreover,
in order to compare the feature selection capability of the proposed method,
it is tested against two well known feature selection methods, namely, χ2 and
IGR. The results show that GP outperformed most of these state of art feature
selection and classification algorithms.

There are many other investigations that need to be done in the future. Firstly,
the peptide data sets are mostly characterized by being unbalanced data which
means that peptides in one class (mostly flyer’s class) is much less than the
peptides in the other class. This makes the classifiers biased towards the majority
class, and hence, the specificity rate will be much higher than the sensitivity rate.
This means that the overall classification accuracy is not the only evaluation
criteria that should be used for measuring the peptide detectability and the
imbalance problem should be taken into account. The use of GP to solve the
imbalance problem will be the first future direction. Another future direction is
the verification of the candidate biomarkers detection in MS data through the
linkage of the detectability of the biomarkers in the mass spectrometer. Finally,
the absolute quantification of proteins using GP through peptide detection will
be performed in the future.
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Abstract. Feature selection is a process of selecting a subset of relevant features
from a large number of original features to achieve similar or better classification
performance and improve the computation efficiency. As an important data pre-
processing technique, research into feature selection has been carried out over the
past four decades. Determining an optimal feature subset is a complicated prob-
lem. Due to the limitations of conventional methods, evolutionary computation
(EC) has been proposed to solve feature selection problems. Particle swarm opti-
misation (PSO) is an EC technique which recently has caught much interest from
researchers in the field. This paper presents a review of PSO for feature selection
in classification. After describing the background of feature selection and PSO,
recent work involving PSO for feature selection is reviewed. Current issues and
challenges are also presented for future research.

Keywords: Particle swarm optimisation, feature selection, evolutionary compu-
tation, classification.

1 Introduction

In many fields such as data mining and machine learning, data sets may contain a large
number of features. However, the redundant or irrelevant features may reduce the clas-
sification performance. In order to solve this problem, feature selection is proposed
to pick a subset of features that are relevant to the target concept [11]. By removing
the irrelevant and redundant features, feature selection could significantly shorten the
running time, improve the classification accuracy, and/or simplify the structure of the
learned classifiers or models [11]. However, feature selection is a difficult problem, es-
pecially when the number of features is large [49,28]. Therefore, the optimal solution
cannot be guaranteed to be acquired except when an exhaustive search is performed.
However, an exhaustive search often takes a long time [50]. In real-world applications,
obtaining good solutions in a reasonable amount of time is more interested than being
obsessed with optimal solutions.

EC techniques are population-based techniques with a set of genetically motivated
operations. These operations are used by a population of candidate solutions to obtain
the optimal or near-optimal solution of the problem. Recently, different EC algorithms
have been applied to feature selection problems such as particle swarm optimisation
(PSO) [3,23,27], genetic algorithms (GAs) [30,41], genetic programming (GP) [29,32],
and ant colony optimisation (ACO) [16,35]. As a relatively new EC technique, PSO is
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Fig. 1. General Feature Selection Process [11]

inspired by social behaviour such as birds flocking and fish schooling. Compared with
other EC algorithms such as GAs, PSO is easier to implement and can converge more
quickly [19]. It has been shown to be an effective method for feature selection problems
[3,15,23,27]. This goal of this paper is to review recent work about PSO and its binary
version called binary PSO (BPSO) [18] for feature selection in classification and to
find the need for future research. The remainder of this paper is organised as follows.
Feature selection is introduced in section 2 and Section 3 describes the standard PSO
and BPSO algorithms. Section 4 reviews recent studies about PSO for feature selection
in classification. The final section discusses current issues and challenges.

2 Feature Selection

Feature selection attempts to select the minimally sized subset of features that are neces-
sary and sufficient to describe the target concept [11]. Its purposes include reducing the
amount of data needed for learning, shortening the running time, improving the system
accuracy, and increasing the comprehensibility of the learned model [24]. Fig. 1 shows
the process of a typical feature selection method [11], which consists of five basic steps:

1. Initialisation: A feature selection algorithm starts with an initialisation procedure
based on all the original features.

2. Subset discovery: A discovery procedure to generate candidate subsets. It is a
search procedure [22], which can start with no features, all features, or a random
subset of features. Many search techniques including conventional search methods
and EC techniques are applied in this generation step to search for the best subset
of features.

3. Subset evaluation: An evaluation function to measure the goodness of the generated
feature subsets.

4. Stopping criterion: The algorithm will stop according to a given criterion, which
can be based on the generation procedure or the evaluation function. The former can
be a predefined number of features selected or a predetermined maximum number
of iterations reached. The latter includes whether an optimal feature subset accord-
ing to a certain evaluation function is obtained or whether addition or deletion of
any feature does not produce a better subset.

5. Results validation: The validity of the selected subset is tested by carrying out tests
on unseen data.
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Table 1. Taxonomy of the reviewed papers

PSO for feature selection
Wrapper approach Filter approach

Continuous Sing.Obj. [3,15,23,27,45] [14]
PSO Multi.Obj. [48]
Binary Sing.Obj. [1,9,10,20,21,25,26,39,47,49,50,51][4,6,5,7,8,33,36,38,40]
PSO Multi.Obj. [44] [42,43]

Based on whether the subset evaluation process includes a learning algorithm or not,
Langley [22] grouped different feature selection methods into two broad categories: fil-
ter approaches and wrapper approaches. Filter approaches are utilized to select features
based on the evaluation criterion without using a learning algorithm. They are argued
to be computationally less expensive and more general [7,50]. On the other hand, wrap-
per approaches implement a learning algorithm to construct a classifier in the evalu-
ation procedure. They add or delete features to produce various feature subsets, and
then measure the subsets depending on the performance of the developed classifier.
Compared with filter approaches, wrapper approaches usually produce better results,
especially when the classifier is designed to solve a particular problem. However, they
are computationally expensive when the number of features is large [32]. In order to
take advantage of both wrapper and filter approaches, recent studies proposed a hybrid
approach in which filter methods were first used to select informative features before
transferring to wrapper methods.

Naturally, an optimal feature subset is the smallest one that can obtain the highest
classification quality, which makes feature selection a multi-objective problem [37].
Single-objective approaches can only produce one subset of features. Feature selec-
tion as a multi-objective problem producing several trade-off subsets can meet different
user requirements in real-world applications. This paper briefly reviewed different PSO
based feature selection algorithms, which can be seen in Table 1.

3 Particle Swarm Optimisation

3.1 Continuous Particle Swarm Optimisation

Particle swarm optimisation (PSO) is an evolutionary computation technique proposed
by Kennedy and Eberhart in 1995 [12,17]. In PSO, each potential solution is called a
bird or particle with no weight and no volume. The ith particle flies in a D-dimensional
search space to find the optimal solution. There is a vector xi = (xi1, xi2, ..., xiD) pre-
senting the position of particle i, where xid∈[ld,ud], d ∈ [1, D], ld and ud are the lower
and upper bounds of the dth dimension. The velocity of the ith particle is represented
as vi = (vi1, vi2, ..., viD). The best previous position of any particle is recorded as the
personal best called pbest. The best solution visited by the whole swarm so far is the
global best called gbest. The swarm is initialised with a population of random solutions.
According to the pbest and the gbest, the algorithm searches for the best solution by
updating particles’ positions and velocities using the following formulae:
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vt+1
id = w ∗ vtid + c1 ∗ r1 ∗ (pid − xt

id) + c2 ∗ r2 ∗ (pgd − xt
id) (1)

xt+1
id = xt

id + vt+1
id (2)

where t means that the algorithm is going on the tth iteration. c1 and c2 are acceleration
constants. r1 and r2 are random values uniformly distributed in [0, 1]. pid presents the
pbest while pgd presents the gbest. w is the inertia weight first introduced by Shi and
Eberhart [34]. w can make a balance between the global search and the local search to
improve the performance of PSO. The velocity vtid is limited by a maximum velocity,
vt+1
id ∈ [−vmax, vmax] and vmax is predefined based on the problem to be solved.

Eberhart and Shi [13] suggested vmax to be set at about 10−20% of the dynamic range
of the variable in each dimension.

3.2 Binary Particle Swarm Optimisation

PSO was originally proposed for continuous optimisation. Kennedy and Eberhart [18]
developed a binary PSO (BPSO), which can be used for discrete problems. In BPSO,
the position of each particle is encoded by a binary string. xid, pid and pgd are restricted
to 0 or 1. The velocity in BPSO represents the probability of an element in the position
taking value 1. Equation (1) is still applied to update the velocity. A sigmoid function
s(vid) is introduced to transform vid into the range of 0 and 1. BPSO updates the posi-
tion of the particle according to the following formulae:

xid =

{
1, if rand() <

1

1 + e−vid

0, otherwise
(3)

where rand() is a random number selected from a uniform distribution in [0,1]. vid is
transformed to [0,1] by a sigmoid limiting function.

4 PSO for Feature Selection

PSO shares many similarities with EC algorithms like GAs, but compared with GAs,
PSO has its own advantages such as converging quickly and computationally inexpen-
sive [52]. Both continuous PSO and binary PSO have been used for feature selection.
Generally, when a continuous PSO algorithm is applied to feature selection problems,
a particle in the swarm is formed by a vector of n real numbers, where n is the total
number available features. In order to determine whether a feature will be selected or
not, a threshold is needed to compare with the value in the vector. In BPSO, the rep-
resentation of a particle is a n-bit binary string. The feature mask is Boolean that “1”
represents that the feature is selected and “0” otherwise. A short review of recent work
on PSO for feature selection will be presented in this section.
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4.1 PSO Based Wrapper Feature Selection

Azevedo et al. [3] proposed a wrapper feature selection algorithm using PSO and sup-
port vector machines (SVM) for personal identification in a keystroke dynamic system.
Experimental results showed that the proposed approach produced better performance
than a GA with SVM regarding the classification error, processing time and the feature
reduction rate. However, the false acceptance rate of the program was still high.

As a relatively new EC technique, PSO cannot avoid to have some disadvantages. Its
high possibility to get stuck in local optima can be a typical example. Different strate-
gies have been proposed to solve this problem. Yang et al. [50] proposed two BPSO
based algorithms using two chaotic maps, a logistic map and a tent map to determine
the inertia weights dynamically. The K-nearest neighbor (KNN) method with leave-
one-out cross-validation (LOOCV) was applied in the wrapper models to evaluate the
classification accuracies. Experiments showed that the proposed methods, especially
BPSO with tent map, produced slightly higher classification accuracy than other meth-
ods, including sequential forward search (SFS), plus and take away (PTA), sequential
forward floating search (SFFS), sequential genetic algorithm (SGA) and different hy-
brid genetic algorithms (HGAs).

Yang et al. [49] constructed a strategy for gbest using Boolean operator to im-
prove BPSO. When gbest fitness was identical after three iterations, a Boolean operator
‘and(.)’would ‘and’ each bit of the pbest of all particles to create a new binary string.
This new binary string would replace the old gbest. KNN with LOOCV was also ap-
plied to evaluate the classification accuracies in the experiments. Results illustrated that
the proposed method usually achieved higher classification accuracy with fewer features
than GA and BPSO. However, proposed BPSOs were not compared with other varia-
tions of PSO, which might produce better results. Chuang et al. [9] developed another
resetting strategy for gbest to improve the performance of BPSO for feature selection.
gbest would be reset to zero if the gbest fitness maintained the same value after several
iterations. The fitness of each particle was evaluated by KNN with LOOCV. Experi-
ments were conducted on gene expression data sets. Results showed that this method
effectively reduced the number of needed features and got the higher classification ac-
curacy than the method created by Yang et al [49] in most cases.

Chuang et al [10] also applied another resetting strategy called catfish effect to im-
prove BPSO. Similar to [9], if the fitness of gbest stayed the same for a predefined num-
ber of iterations, ten percent of the population with the worst fitness would be forced
to extreme positions which were either all 0s or all 1s randomly. The reported results
of this method were better than BPSO and those such deterministic algorithms as SFS,
PTA, SFFS and current stochastic algorithms for feature selection including simple GA
and hybrid GAs on all data sets. However, only 5 runs were conducted for stochastic al-
gorithms. Another improved BPSO algorithm was proposed in [26] for gene expression
data. Speed concept was introduced to update particles’ positions instead of velocity
to increase the probability of not choosing a feature. In this way, PSO was able to
find much smaller feature subsets than [9] and other compared methods. However, this
method also reduced the accuracy in the cases, which might require a higher number
of features in order to create a good prediction. Therefore, there were only six out of
the ten data sets which had a higher average accuracy than [9]. Furthermore, except for
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some data sets which have 100% accuracy in all the runs, with a 10-run experiment, the
standard deviations of the results on the remaining data sets were quite high (ranging
from 0.3 to 0.9). There was also no statistical significance test done for the results.

In order to simultaneously maximise the classification accuracy and minimize the
number of features selected, an aggregate fitness function was proposed for BPSO in
[47]. This BPSO evolved in two stages. Classification error rate was the only measure
used in the fitness function of the first stage. In the second stage, the subset size was
added into the fitness function with an adaptive weight. This method evolved smaller
feature subsets and higher classification performance than the standard BPSO and the
PSO using only stage one. Alba et al. [1] combined geometric BPSO with SVM for fea-
ture selection where current position, pbest and gbest were used as three parents in a
three-parent mask-based crossover operator to determine the new position for each par-
ticle. SVM with 10-fold cross-validation was applied in the fitness evaluation process.
An aggregate fitness function was used to simultaneously maximise the classification
accuracy and minimize the number of features with different weights. Compared to the
second algorithm proposed in this paper which combined GA with SVM, this method
performed slightly better with smaller feature subsets. Experiments also showed that
the initialisation of the PSO produced a great influence in the performance, since it
introduced an early subset of acceptable solutions in the evolution process.

Based on this motivation, Xue et al [45] proposed three mechanisms to initialize par-
ticles in PSO for feature selection in classification. While small initialisation method
generated particles with a small number of roughly 10% of features selected, the large
initialisation method generated particles with a random large number of more than 50%
of features selected. The mixed method used the small initialisation for most of the
particles (about two-thirds) and the large initialisation for the remainders. The mixed
initialisation gave the best results of the three methods. Although achieving as a good
classification performance as that of standard PSO, the feature subsets evolved by the
mixed method are smaller than those of PSO in eight out of 14 data sets, thereby, reduc-
ing the computation time. Additionally, the paper also introduced three new updating
mechanisms for pbest, gbest. Combining the mixed initialisation method with the new
updating method achieved much smaller subsets and better or at least similar accuracy
as the standard PSO and the two-stage algorithm [46,47].

Unler et al. [39] proposed a wrapper feature selection method for binary classifica-
tion problems based on a modified BPSO and a logistic regression model. In this study,
BPSO was modified by extending social learning to update the velocity of the particles.
An adaptive feature subset selection strategy was developed, where the features were
selected not only according to their independent likelihood calculated by BPSO, but
also according to their contribution to the subset of features already selected. Mean-
while, this strategy maintained a list of features, which had already been considered for
feature addition. Only a limited number of features were considered to be selected in the
feature subset, thus the computational effort for the classification learning was reduced.
Experimental results indicated that the proposed method outperformed tabu search and
scatter search algorithms.

Based on a statistical clustering method and BPSO, Lane et al. [20] developed a new
wrapper feature selection algorithm, where features are grouped into different clusters
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by the statistical clustering method based on their similarity, i.e. relatively homogeneous
features in the same group. The proposed algorithm aimed to select one representative
features from each cluster. The results show that by selecting only a very small number
of features, the algorithm can achieve similar or even better classification performance
than using all features. Later, multiple or zero features are allowed to be selected from
each cluster in [21] to further improve the classification performance.

A wrapper multi-objective PSO was proposed by Xue et al [48] using the non-
dominated sorting concept (NSPSOFS) and the crowding, mutation and dominance
concept (CMDPSOFS) to evolve non-dominated solutions for feature selection in clas-
sification. The results showed that both algorithms achieved more and better solutions
than existing deterministic feature selection algorithms, i.e. linear forward selection
(LFS), greedy stepwise backward selection (GSBS), and stochastic algorithms as the
standard PSO, and the two-stage PSO [47]. By using the strategies of maintaining the
diversity of the swarm, CMDPSOFS outperformed NSPSOFS and other three well-
known evolutionary multi-objective algorithms, namely non-dominated sorting-based
multi-objective GA II, strength Pareto evolutionary algorithm 2 and Pareto archived
evolutionary strategy on 12 benchmark data sets. The performance of continuous PSO
and binary PSO for multi-objective feature selection is compared in [44]. The results
show that continuous PSO generally achieved better performance than binary PSO.
More PSO based filter feature selection algorithms can be seen from [2,25,51].

4.2 PSO Based Filter Feature Selection

Wang et al [40] proposed a filter feature selection approach based on an improved BPSO
and rough sets theory. In this BPSO method, velocity was used to determine the number
of bits should be changed in the binary position of the particle. The fitness function com-
bined the dependency degree of classes on features calculated according to the rough
sets theory and the proportion of the selected features. Experimental results showed that
the improved BPSO was computationally less expensive than a GA using rough sets in
terms of both memory and running time. However, the classification performance of the
feature subsets was only tested on LEM2 algorithm, which had some bias for rough set
based algorithms. A fuzzy sets based fitness function was introduced by Chakraborty
[7] to build a BPSO based filter feature selection algorithm. Feature evaluation index
[31] was used in the fitness function. It aimed to find a feature subset which had min-
imum intraclass ambiguity and maximum interclass ambiguity. Experiments with the
Iris and Sonar data sets illustrated that the proposed BPSO performed better than GA
did. However, both Iris and Sonar include a relatively small number of features.

Cervante et al. [6] developed two filter based approaches using BPSO. In the first
algorithm, mutual information was used to measure the relevance between features and
the class labels and the redundancy between a pair of features. Meanwhile, entropy was
employed in the second method to measure the relevance of a group of features to the
class labels and the redundancy within a group of features. Both algorithms used an
aggregate fitness function combining the relevance level and the redundancy level with
different weights. The results showed that the first algorithm evolved smaller subsets
while the second one produced better classification accuracy. However, the classifica-
tion performance using the feature subsets evolved by both algorithms was just as good
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as using all the features in three out of four data sets. This confirms one of the drawbacks
of filter based approaches. Xue et al [43] further explored the effectiveness of mutual
information and entropy in multi-objective feature selection. These two measures were
combined with non-dominated sorting concept and the crowding, mutation and domi-
nance concept as in [48] to form four different multi-objective BPSO algorithms: NSf-
sMI, NSfsE, CMDfsMI, CMDfsE. The results showed that the proposed multi-objective
approaches achieved better solutions than the single-objective BPSO using the same
measures [6]. The algorithms using entropy achieved better classification performance
than those using mutual information. Although algorithms using mutual information
selected a smaller number of features than those using entropy in single-objective al-
gorithms, this observation did not appear in multi-objective algorithms. CMDfsMI and
CMDfsE outperformed all the other methods in terms of both the number of features
and the classification performance.

Some studies not only used PSO for feature selection but also employed PSO to
optimize parameters for the classification algorithm used to evaluate the feature sub-
sets. Lin et al. [23] proposed a wrapper feature selection approach (PSO+SVM), which
simultaneously determined the parameters and picked a subset of features using contin-
uous PSO. Radial basis kernel function (RBF) with two parameters was used in SVM.
In PSO+SVM, each particle with (n+2) variables represents n features and 2 parame-
ters. Experiments with 10-fold crossover validation demonstrated that the classification
accuracy of PSO+SVM outperformed that of a grid search, a newton SVM and a La-
grangian SVM. The PSO+SVM approach could simultaneously determine the parame-
ter values and find a subset of features without the lowering the classification accuracy.

Similarly, Huang et al. [15] also developed a wrapper method (PSO-SVM) for fea-
ture selection and parameters determination in one process. The difference between
PSO-SVM and PSO+SVM [23] was that PSO-SVM used binary PSO and continuous
PSO to simultaneously optimize the feature subset and SVM kernel parameters, re-
spectively. Experiments with 10-fold crossover validation showed that PSO-SVM could
determine the parameters, search the discriminating feature subset simultaneously and
also achieve high classification accuracy.

Mohemmed et al. [27] proposed a hybrid method (PSOAdaBoost), which incorpo-
rated PSO with an AdaBoost framework for face detection. The PSOAdaBoost algo-
rithm picked the best feature subset and determined the decision thresholds of
AdaBoost simultaneously, so it could speed up the process of the training and increase
the accuracy of weak classifiers. The method encoded the particle with the feature pa-
rameters and two centroids which were used to label an instance into the positive or
negative class. Experimental results showed that PSOAdaBoost could be trained in a
much shorter time and improve the performance of feature selection. This method used
different learning algorithms and test problems with PSO+SVM [23] and PSO-SVM
[15], but all of them could optimize the feature subset and parameters in one process.

A filter-based PSO was introduced by Guan et al [14] for feature selection in mi-
croarray data sets. Two informativeness metrics constructed based on ANOVA statistics
were used to evaluate feature subsets. The experiment results on two binary-class data
sets were compared with six methods including the Two-Phase EA/KNN, the SVM, the
GA-SVM, the EA, the Redundancy based and the PSO-SVM. Although the proposed
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method always evolved the smallest subsets, it can only achieved the best accuracy on
one dataset. More than ten independent runs should be conducted and statistical signifi-
cant test should be done in order to have a stronger conclusion. A two-stage based filter
feature selection algorithm using BPSO was proposed in [33], where k-means tech-
nique was used in the first stage to cluster features into k clusters. Then, signal-to-noise
ratio score was used as a filter approach to select the best feature from each cluster.
The k selected features were transfered into the second stage for PSO to search for the
optimal subset. SVM, KNN and Probabilistic Neural Network were used to evaluate
the goodness of the selected features. The results showed that the proposed method
achieved higher accuracy with much smaller subsets than using all features. However,
the experiment was applied on only four binary-class gene data sets. The efficiency of
the proposed method were not discussed and compared with any other EC techniques.
The different setting values of k used in k-means technique for different data sets might
require some expert knowledge about microarray data. The work in [33] is similar to
that in [20,21], but use different clustering methods to group features. It will be inter-
esting to investigate their advantages and disadvantages by comparing with each other.
More PSO based filter feature selection algorithms can be seen from [4,5,8,36,38,42].

5 Conclusions: Current Issues and Challenges

Many different EC algorithms have been applied to feature selection problems. In recent
work, both filter and wrapper approaches were developed and feature selection was also
regarded as multi-objective problems. This paper mainly reviewed recent PSO based
feature selection approaches. In conclusion, some discussions about current issues and
challenges as well as some possible research directions of PSO for feature selection are
given as follows:

– Feature selection for large-scale classification with thousands or tens of thousands
of features is still a challenging task, since most of the existing methods have diffi-
culties to scale up to such high dimensions. These problems typical require a novel
search mechanism and evaluation methods;

– High computational cost is one of the main problems in feature selection. Efficient
evaluation or fitness measures can significantly speed up the feature selection pro-
cess. This can be achieved by developing new filter measures, such as information
theory measures, consistency measures, statistical measures, and fuzzy or rough
sets based measures;

– In PSO or other EC based feature selection methods, the traditional representation
is one of the issues limiting their performance on large-scale complex problems.
Developing a novel representation is also an open issue but with very few existing
works. The novel representation can be continuous or discrete (or binary) and fixed-
length or variable length;

– Feature selection is an NP hard problem which requires a powerful global search
technique. To improve the performance of an EC based approach, new search mech-
anisms are needed to develop, which may involve local search, hybrid different EC
search mechanisms and so on;
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– The number of features and the classification performance are often conflicting
objectives, but only a small number of multi-objective feature works have been
conducted. Meanwhile, developing new evaluation metrics and further selection
method to choose a single solutions from a set of trade-off solutions are also an
interesting topics, and

– Feature selection is not only important in classification, but also for other problems,
such as clustering and regression problems. Feature selection in such domains will
also be interesting.
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Abstract. Developing and managing a general method of solving com-
binatorial optimisation problems reduces the need for expensive human
experts when solving previously unseen variations to common optimisa-
tion problems. A hyper-heuristic provides such a method. Each hyper-
heuristic has its own strengths and weaknesses and we research how
these properties can be managed. We construct and compare simplified
versions of two existing hyper-heuristics (adaptive and grammar-based),
and analyse how each handles the trade-off between computation speed
and quality of the solution. We test the two hyper-heuristics on seven
different problem domains using the HyFlex framework. We conclude
that both hyper-heuristics successfully identify and manipulate low-level
heuristics to generate “good” solutions of comparable quality, but the
adaptive hyper-heuristic consistently achieves this in a shorter computa-
tional time than the grammar based hyper-heuristic.

1 Introduction
Suppose you are given the task of solving a combinatorial optimisation problem
within a time limit with only outline knowledge of the problem domain, and
with only high-level details of the heuristics and operators you have at your dis-
posal. Traditional methods of solving combinatorial optimisation problems use
algorithms and heuristics, such as a branch-and-bound algorithm [6] or meta-
heuristic search, e.g., tabu search [7]. In general, these methods achieve good
results but often require detailed domain information and can be complex and
time consuming to design and execute. A hyper-heuristic is useful where a more
general (domain independent) method is required. It requires only outline knowl-
edge of the problem domain and is particularly useful when dealing with specific
variations to common optimisation problems.

The term hyper-heuristic was defined by Cowling et al. [5] as “heuristics to
choose heuristics”. Ochoa et al. [15] note that the focus in hyper-heuristic re-
search is to adaptively find a solution method rather than producing a solution
for the particular problem instance at hand. They repeat the observation by
Ross [16] that the difference between hyper-heuristics and (meta-)heuristics is

G. Dick et al. (Eds.): SEAL 2014, LNCS 8886, pp. 618–630, 2014.
c© Springer International Publishing Switzerland 2014



A Comparison between Two Evolutionary Hyper-Heuristics 619

Fig. 1. The relationship between a hyper-heuristic and heuristics

that it is the search space of heuristics, rather than the search space of problem
solutions, that is traversed.

The motivation for our research is to understand the major design properties
required when developing or selecting a hyper-heuristic. The goal of this paper
is to identify and report the strengths and weaknesses of two different evolution-
ary hyper-heuristics when solving previously unseen problem instances in one
of several possible problem domains. Each hyper-heuristic is required to select
and execute operators from an unseen set of low-level (domain specific) opera-
tors (heuristics), which in turn incrementally build and/or modify a solution to
each problem instance. Understanding what makes a particular hyper-heuristic
efficient and effective enables the trade-off between computational speed and
quality of the result to be managed when faced with larger problem instances
and more complex problem domains.

The remainder of this paper is organised as follows. A brief overview of hyper-
heuristic research is given in Section 2 followed by our method in Section 3. The
design, results and discussion of our experiments are detailed in Sections 4 and
5 followed by our conclusions in Section 6.

2 Background

A heuristic can be described as a method that iteratively applies one or more
operators which build or modify a (possibly empty) solution, which is either
accepted for the next iteration or discarded.

Burke et al. [2,4,3] analyse the various hyper-heuristic approaches published
in the literature. They note that in some respects, genetic programming (GP)
[8] can be regarded as a hyper-heuristic to select or generate heuristics. They
identified two general hyper-heuristic categories (see Figure 1):

1. Selection: Hyper-heuristics which dynamically select one or more exist-
ing heuristics or operators (heuristic components) from a set of candidate
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heuristics and operators suitable for the problem domain. Should a heuristic
or operator require one or more parameters, the parameters can be adjusted
dynamically based on feedback during the run (on-line learning) or fixed dur-
ing a preliminary training phase using a separate set of problem instances
to determine the parameter values (off-line learning). Each selected heuris-
tic or operator is applied in turn to the current solution to generate a new
solution, which is accepted or discarded. A hyper-heuristic differs from a
meta-heuristic in that the latter requires detailed knowledge of the problem
domain. The sequence of heuristics and operators applied during an on-line
learning process is customised to the problem instance and is not usually
effective when reused on a different problem instance.

2. Generation: Hyper-heuristics which generate new heuristics by recombin-
ing the operators (or components) of existing heuristics. An on-line learning
process adjusts the operator combinations as well as setting any parameters.
An on-line learning process can also be applied to a set of training instances
to determine a reusable sequence of one or more heuristics and any relevant
parameters. The sequence of heuristics is stored for future application on
unseen problem instances in the same problem domain. If application of the
heuristic does not involve further training (e.g. parameter modification), this
two-stage combination of training and application is usually referred to as
off-line learning.

A comparison of hyper-heuristics was undertaken in 2011 as part of the First
Cross-domain Heuristic Search Challenge (CHeSC) [13]. The winning entry of
the first CHeSC was the hyper-heuristic developed by Misir et al. [12]. The first
hyper-heuristic used in this paper (see Section 3.2) is a simplified version of
the multi-phase adaptive approach used by Misir et al. [12]. The proposed adap-
tive hyper-heuristic (AdaptiveHH) is a selection approach using on-line learning.
Firstly, the hyper-heuristic generates a heuristic/operator selection vector, which
is updated at the start of the second and subsequent phases based on the perfor-
mance of each low-level heuristic or operator in the previous phase. The second
step iteratively chooses and applies a heuristic/operator to a solution selected
from a small population of solutions. The new solution replaces an existing so-
lution in the population. The third step adjusts operator parameters depending
on the frequency of improving solutions.

The second hyper-heuristic we use in this paper is based on the grammar
guided GP [22] approach taken by Sabar et al. [18] which uses GP [8] in the
manner described by Burke et al.[2]. The grammar guided genetic programming
(GGGP) [22,11] hyper-heuristic (GrammarHH) is a generation approach using
on-line learning during training and no learning when applied to a new problem
instance (see Section 3.3), i.e., it is a generation approach with off-line learning.
GrammarHH evolves a single heuristic, with parameter values, suitable for solv-
ing comparable problem instances. We use a separate set of six different sized
problem instances for training.

The two hyper-heuristics are almost complete opposites in terms of hyper-
heuristic classification [2,4]. Our choice of two different hyper-heuristics enables
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us to test the hypothesis that, when compared to AdaptiveHH, the knowledge
gained (i.e. which operators are productive) during the GrammarHH training
phase leads to a reduced computational time to achieve (or better) a target
solution for a given problem instance.

3 Method

3.1 HyFlex Framework

The HyFlex (Hyper-heuristic Flexible) framework [14] was originally developed
in 2011 for the First Cross-domain Heuristic Search Challenge (CHeSC) [13]. The
framework includes six in-built optimisation problem domains, to which we add
a standard Capacitated Vehicle Routing Problem (CVRP) [20] domain:

1. Maximum satisfiability (MAX-SAT).
2. One-dimensional bin packing.
3. Permutation flow shop.
4. Personnel scheduling.
5. Travelling salesman (TSP).
6. Capacitated vehicle routing (CVRP) with time windows [19].
7. Standard CVRP [20] (added domain).

Associated with each problem domain is a set of between 8 and 15 unseen low-
level operators (heuristics). Each set contains at least one operator belonging to
each of the four defined operator types: mutation, ruin-recreate, local search
and crossover. A crossover operator takes part of one solution and uses non-
duplicating parts of another solution to complete a new solution. The HyFlex
mutation and crossover operator types should not be confused with the identi-
cally named functions used with Genetic Programming [8].

Each operator can use (if appropriate) the two HyFlex parameters α and β,
where (0 ≤ α, β ≤ 1 ). The Intensity of Mutation parameter, α, affects the
scale of any mutation or ruin operation, e.g., 0.5 would mean half the current
solution would be altered by an operator using this parameter. The Depth of
Search parameter, β, defines a range or number of repetitions an operator will
undertake to find an improved solution in a single execution of the operator.

To enable a more detailed investigation, we implement a new CVRP (with-
out time windows) problem domain compatible with the HyFlex framework.
This additional problem domain helps us to undertake more detailed analysis
on whether performance outcomes are due to the quality of the hyper-heuristic
or the effectiveness of the chosen low-level operators. For the CVRP domain
we develop twelve appropriate low-level operators (see Table 3) similar (but not
identical) to those proposed by Walker et al. [21].

3.2 Adaptive On-line Learning Hyper-Heuristic (AdaptiveHH)

This is a simplified variation of the adaptive on-line learning approach developed
by Misir et al. [12]. This hyper-heuristic is similar to a meta-heuristic process,
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and manipulates the unseen low-level operators to find a solution to a single
problem instance. AdaptiveHH is only suitable for on-line learning since the
process is dynamically customised for a given problem instance.

The original multi-phase approach, and our modification thereof, is as follows:

1. Operator Selection Probability Vector. Selection of operators is based
on a probability vector. In the first phase, all operators have an equal chance
of being randomly selected at each iteration. After a defined number of
iterations, AdaptiveHH starts a new phase and the probability vector is
recalculated and normalised based on each operator’s success rate (number
of improving solutions ÷ operator calls) in the previous phase. The modified
vector improves the chances of operators with a higher success rate being
selected during the new phase. Misir et al. [12] use more complex formulae
to recalculate the vector, incorporating operator execution time and time
remaining. The selection probability of an operator which consistently fails
to improve the solution is gradually reduced to a specified minimum.

2. Operator Selection and Execution. To facilitate the crossover operator
type (see Section 3.1), which uses two parent solutions, a small population
of solutions is maintained at any one time. Initially the population consists
of, say, 6 solutions generated using the unseen construction method defined
for the relevant problem domain. An operator is selected and executed on a
solution in the current population of solutions. Misir et al. [12] use the best
solution found so far as the primary parent solution whereas we randomly
select a parent solution from the population at each iteration.

3. Reinitialisation. If no improved solutions are achieved for a specified num-
ber of iterations (i1) then the parameters α,β (see Section 3.1) are increased
in steps of 0.025 to a maximum of 0.8. If no improved solutions are achieved
for a larger specified number of iterations (i2, where i2 � i1), then the popu-
lation of solutions (other than the best found so far) is reinitialised using the
construction method defined for the relevant problem domain. In the latter
case, the parameters α and β are reset to the defined minimum values.

4. “Relay” Hybridisation. Misir et al. [12] include a step which selects and
executes operators in pairs. We omit this step in the interests of simplicity
and to enable later evaluation of the usefulness of this step.

5. Adaptive Move Acceptance. In the event no improving solutions are
found for a defined number of iterations, Misir et al. [12] incorporate a step
which enables selection of a solution other than the best found so far as the
primary parent solution for the next iteration. We omit this step as it is
unnecessary when randomly selecting the primary parent solution.

The hyper-heuristic is repeated until a pre-determined time limit or early
termination condition (i.e. attainment of a target value) is reached.

3.3 Grammar Guided Genetic Programming Hyper-Heuristic
(GrammarHH)

GrammarHH develops a reusable heuristic which can be applied to any problem
instance in the same domain. The GP population consists of low-level heuristics
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Table 1. Grammar used with GrammarHH on the CVRP domain. The HyFlex pa-
rameters, α and β, are set by the < global > production rule.

LHS Options

< heuristic > < global >< alter >< localsearch >
< global > < range >< range >
< alter > < mutate > | < mutate >< alter >
< localsearch > < search > | < search >< crossover > | < crossover >< search >
< range > 0.2| 0.25| 0.3| 0.35| 0.4| 0.45| 0.5| 0.55| 0.6| 0.65| 0.7| 0.75| 0.8
< mutate > m0| m1| m2| m3| r0| r1
< crossover > x0| x1
< search > s0| s1| s2| s3

evolved from component operators in one of the sequences in the “language” de-
fined by the domain independent grammar (see Table 1). Each heuristic consists
of one or more operators from the mutation and/or ruin-recreate operator types
(see Section 3.1) which are applied in sequence. This is followed by a search
operator which may be preceded or succeeded by a crossover operator.

Each type of operator in the grammar is identified by a letter prefix followed by
a identification number. For convenience, and to avoid use of modular arithmetic,
the < mutate >, < crossover > and < search > rules are customised for each
problem domain to match the number of operators of each operator type. A
domain independent grammar can be generated by omitting this customisation
and using modular arithmetic to map the selected rule to the operator.

Tournament selection is used at each new GP generation to choose the heuris-
tics on which GP crossover and mutation operators are to be applied to create
the next generation. Sabar et al. [18] used Grammatical Evolution [17] to manage
the GP process, whereas we use a generic Grammar Guided Genetic Program-
ming (GGGP) [22,11] approach.

The evolved heuristic is repeatedly applied to each problem instance until a
time limit or early termination condition is reached. During the training phase
we apply the evolved heuristic to six problem instances selected in advance.

With GrammarHH, only improving or equal solutions are accepted, whereas
Sabar et al. [18] include a choice of eight different acceptance options. We repeat
training 30 times and store every generated heuristic that delivers a fitness on
the six training instances within a specified target threshold (within 1.5% of the
aggregate of the best found solutions to each instance).

Both hyper-heuristics were implemented using the HyFlex HyperHeuristic [14]
template. GGGP is implemented as strongly-typed GP within the ECJ [9,10]
software package.

4 Experiment Design

We evaluate the operator selection process and the quality of the solution achieved
when the chosen operators are applied. The quality of the solution is measured
against two target values set for each of 58 CVRP instances [1].
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Table 2. Parameters used for experiments

Parameter AdaptiveHH GrammarHH

Time limit 2 mins. 2 mins.
Parameter value range 0.2 ≤ α, β ≤ 0.8 0.2 ≤ α, β ≤ 0.8
Parameter adjustment threshold 500 calls n/a
Parameter increment on threshold 0.025 n/a
No progress reinitialisation threshold 10,000 calls 10,000 calls
Hyflex Solution Population 6 6
GP Heuristic Population n/a 25
GP Generations n/a 8
GP Crossover probability n/a 0.8
GP Mutation probability n/a 0.2

Both hyper-heuristics will endeavour to select the best performing operators
from an unseen set of operators applicable to the problem domain. The problem
domains we use contain between 8 and 15 operators. We analyse the frequency
with which each operator is selected by AdaptiveHH in the seven problem do-
mains, and, in the case of the CVRP domain, compare the frequency with the
number of times the operator is selected as part of a “good” heuristic generated
by GrammarHH.

To test our hypothesis we measure the speed of each hyper-heuristic in finding
(if possible) a solution equal to, or better than, one of two targets set at 0.5%
and 1.5% above the best solution found during preliminary runs on each of 58
CVRP instances. The instances range in size between 32 and 262 customers.
Due to the small number of instances in the six in-built HyFlex domains, we do
not extend this test to those domains.

After some preliminary experimentation we use the parameter settings shown
in Table 2.

5 Results and Discussion

We evaluate performance of the operator selection process and the attainment
of the solution target values. Preliminary runs established a best found solu-
tion (bfs) for each CVRP instance (minimisation objective) and target values
established, being bfs + 0.5% and bfs + 1.5%. The preliminary runs used a
fixed computational time of 2 minutes per run. We omit the results from the
fixed computational time runs from this paper as the two hyper-heuristics suc-
cessfully manipulated the low-level operators to deliver solutions of comparable
quality to all instances.

5.1 Operator Selection and Performance

We compare the number of times a particular operator is called, its relative suc-
cess rate, and failed run rate (i.e. zero improving solutions in a run) when using
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Table 3. CVRP Domain: Operator call (selection) and execution record. Runs: 1,920
(30 runs × 64 instances). Total operator calls (AdaptiveHH): 724.7 million. A failed run
is recorded if an individual operator fails to deliver a single improved solution during
an entire run.

Operator Operator Calls per Failed AdaptiveHH GrammarHH
Name Type Improvement Run Call Rate Selection

Swap within route mutation 10,669 54.9% 3.0% 5.8%
Move within route mutation 18,117 83.9% 0.9% 1.9%
Swap routes mutation 14,332 42.4% 3.6% 6.7%
Move to route mutation 18,028 85.6% 0.7% 4.8%
Band ruin ruin rec. 6,727 0.5% 16.1% 15.4%
Ring ruin ruin rec. 5,926 0.7% 17.6% 10.6%
Move if better search 4,280 2.5% 16.4% 13.5%
Swap if better search 9,688 38.1% 4.4% 8.6%
2-opt swap search 6,360 20.2% 9.5% 8.6%
Move to best search 6,610 13.6% 8.3% 4.8%
Random combine crossover 6,572 7.9% 14.0% 13.5%
Longest combine crossover 20,586 0.6% 5.4% 5.8%

AdaptiveHH and GrammarHH. We conduct this experiment using a maximum
computation time of 2 minutes per run to achieve two target solution values. If,
during the run, improving solutions cease to be achieved for 10,000 consecutive
operator executions, the population of solutions (other than the best solution
found so far) is reinitialised. The run continues with a fresh set of solutions, gen-
erated using the unseen construction method defined for the problem domain.

We observe each operator’s average execution time but, unlike Misir et al. [12],
we do not use the execution time to adjust the operation selection vector. In the
CVRP domain the local search operators have an execution time approximately
36 times longer, and the ruin-recreate and crossover operators approximately 12
times longer, than the mutation operators.

Table 3 records the results from AdaptiveHH across 1,920 runs (30 repetitions
× 64 CVRP instances (58 + 6 GrammarHH training instances)) with the CVRP
problem domain using a maximum computation time of 2 minutes per run. We
record a success against an operator each time the operator delivers an improved
solution when executed (which may not be on the best solution to date). A
failed run is recorded against an operator if the operator fails to deliver a single
improved solution during the entire run.

The GrammarHH selection results in Table 3 are based on the number of
times an operator is contained in the 47 different heuristics that achieved a
fitness within a defined threshold during training.

A total of 724.7 million operator executions were made during the 1,920 runs
with AdaptiveHH when allowing a maximum computation time of 2 minutes
per run. A run was terminated early if the current solution for the CVRP in-
stance was within a target value of 0.5% above the best solution found during
preliminary runs. Overall computation time for the 1,920 runs was 30.5 hours.
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Table 4. Low-level operator type performance across 300 or 360 runs using Adap-
tiveHH on in-built HyFlex [14] domains. A failed run is recorded if an individual op-
erator fails to deliver a single improved solution during an entire run. Note that the
in-built crossover operator in the Bin Packing domain fails to capture usage data.

Domain Op.Type Num. Ops. Call Rate Calls/improvement Failed Run

CVRP+TW mutation 3 22.5% 299 29.3%
ruin-rec. 2 20.2% 503 1.7%
search 3 39.3% 69 6.2%

crossover 2 18.0% 229 0.0%

TSP mutation 5 7.7% 34,482 99.6%
ruin-rec. 1 1.0% ∞ 100%
search 3 87.1% 5,881 46.0%

crossover 4 4.2% 75,578 99.9%

MaxSAT mutation 5 62.4% 88 6.3%
ruin-rec. 1 3.2% 1,508 81.9%
search 2 28.3% 84 0.0%

crossover 2 6.1% 2,565 89.2%

Bin Packing mutation 3 n/a 146 39.7%
ruin-rec. 2 n/a 113 11.0%
search 2 n/a 56 1.5%

crossover 1 n/a n/a 35.3%

Flow Shop mutation 5 8.4% 62,472 99.8%
ruin-rec. 2 16.9% 770 81.0%
search 4 68.0% 1,265 5.9%

crossover 4 6.7% 20,305 99.7%

Psnl Sched mutation 1 8.9% ∞ 100%
ruin-rec. 3 25.9% 9 76.6%
search 5 36.8% 2 34.5%

crossover 3 28.4% ∞ 100%

Comparable operator call results for the six in-built Hyflex problem domains,
(see Section 3.1), grouped by operator type, are shown in Table 4. The in-built
domains each contain 10 or 12 problem instances. Each problem instance is solved
30 times using different random number generator seeds. The data is therefore
based on 300 or 360 runs for each domain.

5.2 Speed to Target Solution

We assess the speed at which each hyper-heuristic reaches (if possible) two target
solution values for each of 58 CVRP instances ranging in size between 32 and
262 customers. A maximum time of 2 minutes is allowed to achieve the target
value, after which the run is classified as out of time. Each instance is run 30
times, and the time to reach (if possible) a solution equal to, or better than, the
two target values recorded. The two target values are based on the best solution
to each CVRP instance found during previous experiments. GrammarHH uses
the best performing heuristic obtained from the training phase. The results are
shown in Table 5.
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Table 5. Time to achieve (if possible) target solution on 58 CVRP instances run 30
times. Maximum 2 minute time limit. Target based on best found solution (bfs) to each
instance during preliminary test runs.

Time AdaptiveHH GrammarHH AdaptiveHH GrammarHH
(seconds) bfs+ 0.5% bfs+ 0.5% bfs+ 1.5% bfs+ 1.5%

0 → 1 491 266 726 453
1 → 5 150 192 228 311
5 → 10 93 98 104 138
10 → 20 91 94 101 122
20 → 30 43 47 60 50
30 → 60 71 77 92 91
60 → 120 99 87 88 102
out of time 702 879 341 473

≤ 5 secs.(all) 37% 26% 55% 44%
.. small instances 79% 62% 94% 79%
.. mid size inst. 48% 35% 68% 62%
.. large instances 6% 4% 26% 20%

out of time (all) 40% 51% 20% 27%
.. small instances 11% 23% 1% 8%
.. mid size inst. 34% 47% 15% 20%
.. large instances 71% 77% 40% 50%

5.3 Discussion

Because AdaptiveHH adjusts the probability of an operator being selected based
on its performance, selections become biased towards operators which have a
higher success rate. Table 3 illustrates that both hyper-heuristics select opera-
tors in roughly the same proportion. However, AdaptiveHH uses the full range
of operators during each run, whereas GrammarHH uses only one generated
heuristic (of 47) containing a small subset of operators. The low success rate of
mutation operators is offset by the relative speed of execution. However, some
mutation operators have a very high failed run rate meaning additional calls
of this type of operator may not achieve improving solutions regardless of the
number of calls made. By comparison, the two ruin-recreate type operators in
the CVRP domain have a relatively high success rate and a very low failed run
rate, suggesting additional calls of either of these two operators might achieve
improved solutions faster. The call rate shown in Table 3 illustrates that Adap-
tiveHH has progressively biased the selection towards the ruin-recreate operators
and the first of the local search operators.

Table 4 illustrates that operators of a particular type do not perform con-
sistently across domains and in some cases individual operators may have a
very high failed run rate (100% in some cases). This leaves some domains with
only a few productive operators, e.g., the Flow Shop domain. The challenge for
the hyper-heuristic is to quickly identify and focus on applying those operators
which perform well. The call rate results in Table 4 indicates that AdaptiveHH



628 R.J. Marshall, M. Johnston, and M. Zhang

has, in general, successfully identified the best performing operators and biased
selection accordingly.

Generally, AdaptiveHH outperforms GrammarHH in both speed and number
of times the target value is attained. This relative performance between the
two hyper-heuristics is consistent across all sizes of problem instance. Repeat
experiments using the next three best heuristics developed during GrammarHH
training achieve similar outcomes. Allowing more computational time enables
some out-of-time runs to achieve the target value.

The hypothesis that knowledge gained (i.e. which domain-specific operators
are productive) during the training phase of GrammarHH can improve the com-
putation speed compared to AdaptiveHH is shown to be incorrect. There is
evidence that the flexibility of AdaptiveHH outperforms the more rigid struc-
ture of GrammarHH when applied to new problem instances. This is possibly
due to the variable performance of the mutation operators, which periodically
fail for the entire run. In such cases, AdaptiveHH applies alternative operators,
whereas GrammarHH is unable to adjust its approach. However the difference
in performance may also be due to numerous factors ranging from the struc-
ture and content of the GrammarHH grammar to the arbitrary setting of the
parameters both hyper-heuristics require.

Deciding whether to terminate a run early, or allow execution to continue until
the time limit is reached, is a trade-off between speed and quality. In our research
we use attainment of a target value to trigger early termination. However it may
not always be possible to specify a realistic target when dealing with previously
unseen problem instances. As shown in Table 5, some runs find a “good” solution
in under 1 second. With AdaptiveHH at least one (in some cases, all) of the thirty
runs with each instance attained the target solution within one second with 50
of the 58 CVRP instances.

6 Conclusions

These experiments indicate that both hyper-heuristics can successfully manipu-
late unseen low-level operators in different problem domains to deliver solutions
of a reasonable quality. With hindsight, there appears to be a good case for
including execution time in the vector adjustment process when using Adap-
tiveHH. The flexibility of AdaptiveHH outperforms the more rigid structure of
GrammarHH in both computational speed and solution quality.

Our future research will investigate ways to improve the efficiency of the
operator selection process. We shall also investigate ways in which the differ-
ent hyper-heuristics can assist each other to automatically and intelligently set
the hyper-heuristic environmental parameters and manage the trade-off between
computational speed, solution quality, knowledge transferability, and scalability.
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Abstract. The Traveling Thief Problem (TTP) is a novel problem that
combines the well-known Traveling Salesman Problem (TSP) and Knap-
sack Problem (KP). In this paper, the complexity of the local-search-
based heuristics for solving TTP is analyzed, and complexity reduction
strategies for TTP are proposed to speed up the heuristics. Then, a
two-stage local search process with fitness approximation schemes is de-
signed to further improve the efficiency of heuristics. Finally, an efficient
Memetic Algorithm (MA) with the two-stage local search is proposed
to solve the large scale TTP. The experimental results on the tested
large scale TTP benchmark instances showed that the proposed MA can
obtain competitive results within a very short time frame for the large
scale TTP. This suggests the potential benefits of designing intelligent
divide-and-conquer strategies that solves the sub-problems separately
while taking the interdependence between them into account.

1 Introduction

The Traveling Thief Problem (TTP) is a novel composite problem proposed
by Bonyadi et al. [1] in order to investigate the effect of interdependence be-
tween sub-problems in a complicated problem. TTP is a combination of two
well-known combinatorial optimization problems, i.e., the Travelling Salesman
Problem (TSP) and Knapsack Problem (KP). Specifically, a thief is to visit a set
of cities and pick some items from the cities to put in a rented knapsack. Each
item has a value and a weight. The knapsack has a limited capacity that cannot
be exceeded by the total weight of the picked items. In the end, the thief has to
pay the rent for the knapsack, which depends on the travel time. TTP aims to
find a tour for the thief to visit all the cities exactly once, pick some items along
the way and finally return to the starting city, so that the profit of the visit,
which is the total value of the picked items minus the rent of the knapsack, is
maximized. Since the TSP and KP have been intensively investigated, the TTP
facilitates studies on analysing the interdependence between sub-problems.

A potential real-world applications of TTP is the capacitated arc routing
problem with service profit, where each customer has a demand and a service

G. Dick et al. (Eds.): SEAL 2014, LNCS 8886, pp. 631–643, 2014.
c© Springer International Publishing Switzerland 2014
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profit, and the travel cost (e.g., the petrol consumption) depends on the load of
the vehicle. This novel form of problem is more practical and closer to reality
than the models that have been studied intensively [2] [3] [4] [5].

In this paper, the challenges caused by the interdependence between the TSP
and KP components are discussed. In particular, the computational complexities
of the search-based heuristics are analyzed in the context of TTP and compared
with that for TSP and KP, respectively. It is found that the combination of
TSP and KP in TTP can lead to a much higher computational complexity of
the search. Such issue becomes much more severe for large scale instances with
thousands or tens of thousands of cities and items.

To address the computational complexity issue and to speed up the algorithm,
a two-stage local search with novel fitness approximation schemes for TTP is pro-
posed, and embedded into a Memetic Algorithm (MA) framework to solve the
large scale TTP. The resultant MA is tested on the CEC’2014 TTP competi-
tion benchmarks and the results showed that it managed to achieve competitive
solution quality with a limited computational budget.

The rest of the paper is as follows: In Section 2, TTP is described in details. In
Section 3, the computational complexities of the commonly used heuristics such
as 2-opt operator for TSP and single flip for KP are analyzed in the context of
TTP. Then, the complexity reduction strategies for TTP are derived from that
for TSP and KP in Section 4. The proposed two-stage local search that further
improves the efficiency is described in Section 5.

2 Travelling Thief Problem

The TTP is a combination of TSP and KP. In TSP, n cities with the distance
matrix of Dn×n are given, where d(i, j) is the distance from city i to j. In KP,
there are m items. Each item i has a weight wi, a value bi and an available city
ai. A thief aims to visit all the cities exactly once, pick items on the way and
finally come back to the starting city. The thief rents a knapsack to carry the
items, which has a capacity of Q. The rent of the knapsack is R per time unit.
The speed of the thief decreases linearly with the increase of the total weight of
carried items, and is computed by the following formula:

v = vmax − νw̄, (1)

ν =
vmax − vmin

Q
, (2)

where 0 ≤ w̄ ≤ Q is the current total weight of the picked items. When the
knapsack is empty (w̄ = 0), the speed is maximized (v = vmax). When the
knapsack is full (w̄ = Q), the speed is minimized (v = vmin). Then, the profit
gained by the thief is defined as the total value of the picked items minus the rent
of the knapsack. Let a TTP solution be represented by a tour x and a picking
plan z, where x = (x1, . . . , xn) is a permutation of the cities and z = (z1, . . . , zm)
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is a 0-1 vector of the items. zi takes 1 if item i is picked, and 0 otherwise. Then,
the TTP problem can be stated as follows:

max
m∑
j=1

bjzj −R ·
(

n−1∑
i=1

d(xi, xi+1)

v(i)
+

d(xn, x1)

v(n)

)
, (3)

s.t. : v(i) = vmax − νw̄(i), 1 ≤ i ≤ n, (4)

w̄(i) =
i−1∑
k=1

w̄(k) + cw(xi), 1 ≤ i ≤ n, (5)

cw(i) =

m∑
j=1

wjzj [aj = i], 1 ≤ i ≤ n, (6)

xi �= xj , 1 ≤ i �= j ≤ n, (7)
m∑
j=1

wjzj ≤ Q, (8)

xi ∈ {1, . . . , n}, zj ∈ {0, 1}. (9)

Eq. (3) is the objective function, which is to maximize the profit. v(i) is the
velocity at xi, and is calculated by Eq. (4). w̄(i) is the accumulated weight from
the beginning of the tour to xi. It is computed by Eq. (5), where cw(xi) indicates
the total weight of the items picked at xi, and is obtained by Eq. (6). [aj = i]
takes 1 if aj = i, and 0 otherwise. Eqs. (7) and (9) ensures that x is a valid tour,
i.e., each city appears exactly once in the permutation. Eq. (8) indicates that
the total weight of the picked items cannot exceed the capacity.

Fig. 1 illustrates an example of a TTP solution that travels through the path
A-B-C-D-A, picking items 1 and 2 at cities A and C, respectively. The weights
and values of the items are w1 = b1 = 2 and w2 = b2 = 1. The numbers
associated with the arcs indicate the distances between the cities. The total
value of the picked items is b1 + b2 = 3. The travel speeds between each pair of
cities are vAB = vBC = 4 − 3 · 2/3 = 2 and vCD = vDA = 1. Then, the total
travel time is (2 + 1.5)/2+ (1 + 1.5)/1 = 4.25. Finally, the profit of the travel is
3− 1 · 4.25 = −1.25 (a loss of 1.25).

3 Complexity of Heuristics in TTP

It is obvious that TTP is NP-hard, as it can be reduced to TSP when there are
no items. Therefore, the exact methods are not applicable in practice, where the
problem has a large size. The heuristics are commonly used for they can provide
near-optimal solutions in a short time.

The heuristics can be categorized into two types. The former includes the so-
called constructive heuristics that construct a solution based on domain knowl-
edge. For example, the Christofides’s heuristic [6] is the best-so-far TSP heuristic
that can construct tours whose lengths are no larger than 1.5 times of the op-
timum. The latter includes the search-based algorithms that start from one or
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Fig. 1. An example of a TTP solution

more initial solutions, and then modify it/them by some operators to search
for improvements. The well-known search-based heuristics for TSP include the
chained Lin-Kernighan (LK) heuristic [7], the efficient LK Heuristic [8], and Ant
Colony Optimization [9]. Obviously, the search-based heuristics can perform no
worse than the constructive heuristics, since they can take the solutions gener-
ated by the constructive heuristics as the initial solutions. Thus, we focus on
the search-based heuristics in this paper. Specifically, we focus on the local-
search-based heuristics, which iteratively move the current solution to one of its
neighbors (e.g., the LK heuristic for TSP). To facilitate the analysis, the sim-
plest 2-opt operator for the tour and flip operator for the picking plan is chosen
as an example. The 2-opt operator selects two cities and reverse the sub-tour
between them. The flip operator selects an item and flip its status (from picked
to unpicked, or from unpicked to picked).

Assuming that the local search has T steps, and enumerates all the neighbors
at each step. The neighborhood consists of the TSP neighborhood generated by
the 2-opt operator and the KP neighborhood generated by the flip operator.
Then, the TSP neighborhood size is n(n−1)/2 and the KP neighborhood size is
m, where n and m are the number of cities and items, respectively. The fitness
evaluation of a TTP solution is given in Algorithm 1. Without any efficiency
optimization, the complexity of the evaluation of a neighbor is O(n +m). The
complexity of moving the current solution to the next one (modification) can
be ignored compared with the enumeration of the neighborhood. Therefore, the
complexity of the entire local search is:

O(LS) = T

((
n(n− 1)

2
+m

)
O(m+ n)

)
(10)

= O(T (n2 +m)(n+m)) (11)

= O(T (n3 + n2m+m2)). (12)

Although the complexity is polynomial, the preliminary studies showed that
it still makes the algorithm slow in practice, especially when n and m are large.
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Algorithm 1. The evaluation of a TTP solution

1: for i = 1 → n do
2: cw(i) = 0, cb(i) = 0;
3: end for
4: for i = 1 → m do
5: if item i is picked in city ai then
6: cw(ai) ← cw(ai) + wi;
7: cb(ai) ← cb(ai) + bi;
8: end if
9: end for
10: Set w̄ = 0, t̄ = 0, b̄ = 0;
11: for i = 1 → n− 1 do
12: w̄ ← w̄ + cw(tour(i));
13: b̄ ← b̄+ cb(tour(i));

14: t̄ ← t̄+ d(tour(i),tour(i+1))
vmax−νw̄

;
15: end for
16: t̄ ← t̄+ d(tour(n),tour(1))

vmax−νw̄
;

17: return b̄−R · t̄;

4 Complexity Reduction Strategies for TTP

The following strategies are commonly used to reduce the complexity of the local
search:

Neighborhood Size. It is obvious that there are a large number of poor neigh-
bors which are not worth evaluating during the local search. For example, it
is highly unlikely to link the cities that are far away from each other in the
tour. Substantial efforts have been done to reduce the neighborhood size (e.g.,
the kNN strategy, K-d tree [10] [11], Delaunay triangulation [12] and Delau-
nay candidate set [13]). There are a number of works on dynamic neighborhood
structures to adaptively choose the neighborhood that is the most suitable for
the current region [14] [15] [16] [17]. In this paper, the Delaunay triangulation
is chosen to reduce the TSP neighborhood, since it has been empirically shown
that the edges in the optimal TSP tour are highly likely to be in the Delaunay
triangulation [18]. In the Delaunay triangulation, the number of edges is reduced
from n(n− 1)/2 to at most 3n− 6, and each city has on average 6 surrounding
triangles. The Delaunay triangulation is obtained by an efficient 2-D sweepline
algorithm [19], which has a complexity of O(n logn).

Incremental Evaluation. In Algorithm 1, lines 1–9 compute the total weight
and value of the items picked in each city, and lines 10–16 computes the to-
tal travel time of the tour. It is clear that the complexity of the evaluation is
O(m + n). However, when evaluating neighbors during the local search, most
information required for the evaluation is maintained, and thus does not have
to be re-calculated. The incremental evaluation is thus designed to prevent such
redundant computations. It is obvious that the incremental evaluation for TSP
and KP both reduces the complexity to O(1). In TTP, all the cw(ai)’s and
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cb(ai)’s are the same for the neighbors generated by the 2-opt operators (and
all the operators that only modify the tour), and only the cw(ai) and cb(ai) of
the city of the flipped items (and all the items whose status are changed) need
to be updated. Therefore, it is easy to reduce the complexity of the lines 1–9 to
O(1), and thus reduce the complexity of the evaluation to O(n). However, the
complexity of computing the travel time can hardly be reduced, since one needs
to recalculate w̄, b̄ and t̄ for each city behind the cities moved in the tour. To
the best of our knowledge, one can only keep the information of the unchanged
subtour, which does not reduce the complexity. In summary, the incremental
evaluation of a TTP solution has a complexity of O(n).

Efficient Solution Modification. The modification of the tour has a worst-
case complexity of O(n). However, when changing the data structure of the
tour, the complexity can be reduced. For example, the splay tree [20] reaches
the amortized time of O(log n).

When applying all the above strategies to TTP, the complexity of the local
search is reduced to:

O(LS) = T (O(S1 + S2)O(n) +O(log n)) (13)

= O(T (S1 + S2)n), (14)

where S1 and S2 are the size of the reduced neighborhood of the 2-opt and flip
operators, respectively.

Without any neighborhood reduction for the flip operator, it is known that
S2 = O(m), where m is the number of items. After reducing the TSP neigh-
borhood with the Delaunay triangulation, S1 is reduced to O(n). Therefore, we
have

O(LS) = O(T (m+ n)n) = O(T (n2 +mn)) (15)

It can be seen that the reduced complexity is much lower than the original
one (O(T (n3 + n2m+m2) shown in Eq. (12)).

5 A More Efficient Two-Stage Local Search

The reduced complexity of the local-search-based heuristics for TTP shown in
Eq. (15) is still high for the large scale problems encountered in practice. It
is no less than n times of the complexity of the TSP and KP heuristics due
to the incremental evaluation complexity of O(n) (O(1) for the TSP and KP
heuristics). This will lead to a much longer computational time. For example,
assuming that the LK heuristic takes 30 seconds to obtain a near-optimal for a
30, 000-city large scale TSP instance. With the TTP incremental evaluation, the
computational time will become roughly 30, 000 × 30 = 900, 000 seconds, i.e.,
250 hours. Therefore, the complexity needs to be further improved. To this end,
a two-stage local search is proposed. It simply divides the entire search into two
stages. The first stage is the TSP search for improving the TSP tour, and the
second stage is the KP search for finding the improved picking plan under the
given TSP tour.
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To further reduce the complexity, the approximated fitness evaluations are
designed for the two stages, respectively. During the first stage, the objective
of maximizing the profit is approximated by minimizing the tour length. The
approximation is motivated by maximizing the profit under the condition that
no item is picked, i.e., zj = 0, ∀j = 1, . . . ,m. In this situation, Eqs. (3)–(9) can
be simplified as follows:

max −R ·
∑n−1

i=1 d(xi, xi+1) + d(xn, x1)

vmax
, (16)

s.t. : xi �= xj , 1 ≤ i �= j ≤ n, (17)

xi ∈ {1, . . . , n}. (18)

It is obvious that the objective Eq. (16) is equivalent to minimizing the tour

length
∑n−1

i=1 d(xi, xi+1) + d(xn, x1).
The TSP search provides a TTP solution with a promising empty tour (with-

out picking any item), which is a lower bound of the optimal TTP solution.
Then, during the second stage, the items are inserted into the empty tour to
improve the profit. The insertion of the items in TTP is different from that is
in KP, because the profit of the insertion depends not only on the value of the
inserted item, but also on the location of its inserted city in the tour. Specifically,
given a tour x and the current picking plan z, the change of profit caused by
inserting an item j is given as follow:

Δp(j,x, z) = bj −R ·Δt(j,x, z), (19)

Δt(j,x, z) =
n−1∑

i=loc(aj)

(
d(xi, xi+1)

v′(i)
− d(xi, xi+1)

v(i)

)
+
d(xn, x1)

v′(n)
− d(xn, x1)

v(n)
, (20)

v′(i) = vmax − ν(w̄(i) + wj) = v(i)− νwj , 1 ≤ i ≤ n, (21)

where loc(aj) is the location index of the city aj in the tour. From Eq. (19), one
can see that the insertion of an item j leads to a profit gain of its value bj and a
profit loss of R ·Δt(j,x, z) due to the increased travel time. Δt(j,x, z) depends
on the w̄(i)’s along the subtour after loc(aj), i.e., all the items picked in the
subtour. Therefore, it is impossible to precisely evaluate each item separately,
as it is in KP.

To address the above issue, three approximations to Δt(j,x, z) are proposed
to separately estimate the priority of the items to be inserted into the tour. The
first one is the called the empty-tour increased time, which is the increased time
when inserting the item into an empty tour. It can be calculated as follows:

Δt1(j,x) = L(x, loc(aj))

(
1

vmax − νwj
− 1

vmax

)
, (22)
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where

L(x, loc(aj)) =
n−1∑

i=loc(aj)

d(xi, xi+1) + d(xn, x1) (23)

is the length of the subtour of x from loc(aj) to the end.
The second approximation is called the worst-case increased time under a

given total weight. It is known that given a total weight W , the worst-case
increased time by inserting the item j is when all the weights are picked before
its picked city aj . Therefore, the worst-case increased time under a given total
weight W is calculated as follows:

Δt2(j,x,W ) = L(x, loc(aj))

(
1

vmax − ν(W + wj)
− 1

vmax − νW

)
. (24)

When inserting an item into the tour x with the total weight of W , it is
clear that Δt1(j,x) ≤ Δt(j,x, z) ≤ Δt2(j,x,W ). In other words, Δt1(j,x) and
Δt2(j,x,W ) provide the lower and upper bounds of Δt(j,x, z) for each item.

The last approximation is called the expected increased time under a given
total weight. This approximation is based on the assumption that the total
weight W is uniformly distributed along the tour. Under this assumption, given
a location l, where l indicates the distance from the location to the end of the
tour, then the accumulated weight w̄(l) at location l can be calculated as follows:

w̄(l) =

(
1− l

L(x)

)
W, (25)

where L(x) is the length of the tour x. Therefore, the expected increased time
under the given total weight of W is calculated as follows:

Δt3(j,x,W ) =

∫ L(x)

L(x)−L(x,loc(aj))

(
1

vmax − ν(w̄(l) + wj)
− 1

vmax − νw̄(l)

)
dl

(26)

=
1

a
ln

(
(aL(x) + b1) · (a(L(x) − L(x, loc(aj))) + b2)

(a(L(x) − L(x, loc(aj))) + b1) · (aL(x) + b2)

)
, (27)

where

a =
W

L(x)
, b1 = vmax − γ(W + wj), b2 = vmax − γW. (28)

Based on the above three approximations, a heuristic of inserting the items is
designed and described in Algorithm 2.

The idea of Algorithm 2 can be explained as follows: At first, the priorities of

the items are determined by
bj−R·Δt1(j,x)

wj
, which is the profit change when the

tour is empty (Line 1. This approximation is more precise when the total weight
of the tour is not large relative to the capacity, and works better in the early
stage of the insertion. Then, as more and more items are inserted and the total
weight of the tour increases, it becomes more and more important to evaluate
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Algorithm 2. The insertion heuristic of the items given a tour

1: Sort the items by the decreasing order of
bj−R·Δt1(j,x)

wj
;

2: Let the sorted item list be (s(1), . . . , s(m)), and set W = 0;
3: for j = 1 → m do
4: if W + ws(j) ≤ Q then
5: if bs(j) > R ·Δt2(s(j),x,W ) then
6: zs(j) = 1, W ← W + ws(j); � Insert this item
7: else if bs(j) > R ·Δt3(s(j),x,W ) then
8: zs(j) = 1, W ← W + ws(j); � Insert this item
9: end if
10: end if
11: end for

the items given the total weight of the tour. First, the worst-case approximation
is evaluated (Line 5). If it is positive, then the item is inserted since its insertion
must lead to a profit gain. Otherwise, the expected approximation is evaluated
(Line 7). If it is positive, then the item should be more likely to have a profit gain
rather than a profit loss. Thus, it is inserted into the tour as well. The capacity
constraint is imposed as a global constraint. That is, any insertion that leads to
the violation of the capacity constraint will be abandoned.

After Algorithm 2, a subsequent local search is conducted on the generated
picking plan by applying the flip operator only to the inserted items. The pre-
liminary studies showed that the local search was very fast in practice because
the generated picking plan is usually good enough and there is nearly no space
for the improvement by local search.

The complexity of the two-stage local search consists of that of the TSP search
and the KP search. The TSP search has a complexity of T1O(n), where T1 is the
number of steps of the search, since the evaluation approximation reduces the
complexity of evaluation from O(n) to O(1). Then, the complexity of the KP
search is O(m)+T2O(nm), where the former term is the complexity of Algorithm
2, and the latter one is the complexity of the subsequent local search. Therefore,
the complexity of the proposed two-stage local search is as follows:

O(TSLS) = T1O(n) + T2O(nm) (29)

Since T2 is usually small (T2 = 1 for most of the cases in the experimen-
tal studies), the practical complexity of the two-stage local search is usually
T1O(n) +O(nm).

6 A Memetic Algorithm with the Two-Stage Local
Search

The proposed Memetic Algorithm with the Two-stage Local Search (MATLS)
starts from an initial population consisting of individuals with tours generated
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Table 1. The performance of the compared algorithms on the large scale TTP bench-
mark instances with bounded strongly correlated item weights. The best results are
marked in bold.

Name n m RLS EA MATLS

brd14051 14051 140500 -5.50e+7(1.22e+6) -6.30e+7(2.52e+6) 2.66e+7(2.07e+5)
d15112 15112 151110 -6.42e+7(2.52e+6) -7.01e+7(1.63e+6) 2.85e+7(5.35e+5)
d18512 18512 185110 -8.18e+7(1.27e+6) -8.89e+7(3.98e+6) 3.07e+7(2.73e+5)
pla33810 33810 338090 -1.71e+8(1.49e+6) -1.80e+8(1.64e+6) 6.34e+7(4.59e+5)
rl11849 11849 118480 -4.38e+7(7.58e+5) -5.05e+7(2.76e+5) 1.97e+7(8.29e+4)
usa13509 13509 135080 -5.45e+7(7.57e+5) -6.17e+7(2.95e+5) 2.92e+7(2.60e+5)

by the chained LK heuristic, and picking plans by the insertion heuristic (Algo-
rithm 2). In each generation, two parents are randomly selected and undergo the
ordered crossover [21] to obtain the tour of the offspring, which is then improved
by the TSP search. After that, the picking plan of the offspring is initialized by
Algorithm 2 and improved by the KP search. Finally, the offspring is added into
the population to replace the worst individual.

7 Experimental Studies

To evaluate the proposed MATLS, it is tested on a subset of large scale TTP
benchmark instances developed by Polyakovskiy et al. [22] and compared with
the RLS and EA proposed in the same paper. RLS generates a decent tour by the
chain LK heuristic, and then does a simple local search on the picking plan with
the single flip operator. EA takes the same search process except that the status
of each item has a probability of 1/m (m is the number of items) to be flipped
in each generation. Since the investigation of TTP is still in its infancy, the
two compared algorithms are the state-of-the-art published algorithms although
they are relatively simple. The time budget of MATLS is set to 10 minutes, the
same as that of RLS and EA. The population size is set to 30. The tours of
10 individuals are initialized by the more time-consuming chained LK heuristic,
and tours of the remaining 20 individuals are initialized by the minimal spanning
tree heuristic.

Tables 1–3 show the average performance (mean and standard deviation) of
the compared algorithms on the selected benchmark problems, where n and m
stand for the number of cities and items, respectively. It can be seen that the
selected benchmark instances all have more than 10,000 cities, and 100,000 items.
From the tables, it can be seen that for all the large scale instances, MATLS
performed significantly better than RLS and EA. In fact, both RLS had highly
negative profits, while MATLS managed to obtain highly positive profits for all
the instances. This verifies the advantage of MATLS and thus the efficacy of the
proposed two-stage local search. Since all the compared algorithms generated the
tours of the solutions by the chained LK heuristic, the efficacy of the proposed
item insertion heuristic is verified by the outperformance of MATLS over RLS
and EA.
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Table 2. The performance of the compared algorithms on the large scale TTP bench-
mark instances with bounded uncorrelated item weights. The best results are marked
in bold.

Name n m RLS EA MATLS

brd14051 14051 140500 -4.12e+7(7.68e+5) -4.73e+7(1.64e+5) 1.69e+7(2.09e+5)
d15112 15112 151110 -4.56e+7(7.44e+5) -5.18e+7(1.08e+5) 1.83e+7(2.43e+5)
d18512 18512 185110 -5.98e+7(6.12e+5) -6.62e+7(8.82e+5) 1.94e+7(2.47e+5)
pla33810 33810 338090 -1.22e+8(8.40e+5) -1.28e+8(1.01e+6) 4.10e+7(2.38e+5)
rl11849 11849 118480 -3.23e+7(1.79e+6) -3.81e+7(2.12e+6) 1.29e+7(4.47e+4)
usa13509 13509 135080 -4.00e+7(5.79e+5) -4.55e+7(1.29e+5) 1.88e+7(1.69e+5)

Table 3. The performance of the compared algorithms on the large scale TTP bench-
mark instances with bounded uncorrelated but similar item weights. The best results
are marked in bold.

Name n m RLS EA MATLS

brd14051 14051 140500 -3.88e+7(1.86e+6) -4.32e+7(1.82e+5) 1.31e+7(2.28e+5)
d15112 15112 151110 -4.30e+7(1.43e+6) -4.74e+7(7.51e+5) 1.38e+7(2.64e+5)
d18512 18512 185110 -5.50e+7(5.86e+5) -6.00e+7(1.09e+5) 1.42e+7(3.39e+5)
pla33810 33810 338090 -1.10e+8(7.47e+5) -1.15e+8(6.16e+5) 3.10e+7(3.38e+5)
rl11849 11849 118480 -3.10e+7(4.54e+5) -3.51e+7(1.70e+5) 9.15e+6(4.31e+4)
usa13509 13509 135080 -3.77e+7(1.18e+6) -4.20e+7(6.38e+5) 1.52e+7(1.70e+5)

8 Conclusion

In this paper, the complexity of large scale Traveling Thief Problem (TTP)
is analyzed, and the complexity reduction strategies are proposed to solve the
complex problem within a given limited computational budget. The resultant
Memetic Algorithm with Two-stage Local Search (MATLS) is evaluated on the
large scale TTP benchmark instances with more than 10,000 cities and 100,000
items, and our results demonstrate the efficacy of MATLS on large scale TTP.

The success of MATLS implies the importance of complexity reduction for
solving large scale problems to speed up the search process significantly with-
out losing much of its accuracy, e.g., by means of neighborhood filtering and
surrogate models. However, this needs to exploit domain knowledge, and the
strategy may vary from problem to problem. In the case of TTP, the efficacy of
the two-stage local search gives an insight that an intelligent divide-and-conquer
approach taking into account the interdependence between the sub-problems
(TSP and KP) can perform better than the extreme approaches, i.e., solving the
problem as a whole and solving the sub-problems separately.
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Abstract. This paper proposes to solve the task scheduling problem in cloud 
computing by using a load balance aware genetic algorithm (LAGA) with Min-
min and Max-min methods. Task scheduling problems are of great importance 
in cloud computing, and become especially challenging when taking load 
balance into account. Our proposed LAGA algorithm has several advantages 
when solving this kind of problems. Firstly, by introducing the time load 
balance (TLB) model to help establish the fitness function with makespan, the 
algorithm benefits from the ability to find the solution that performs best on 
load balance among a set of solutions with the same makespan. More 
importantly, the interaction between makespan and TLB helps the algorithm to 
minimize makespan in the same time. Secondly, Min-min and Max-min 
methods are used to produce promising individuals at the beginning of 
evolution, leading to noticeable improvement of evolution efficiency. We 
evaluated LAGA on several task scheduling problems and compared with a 
Min-min, Max-min improved version of genetic algorithm (MMGA), which 
does not use the TLB strategy. The results show that LAGA can obtain very 
competitive results with good load balancing properties, and outperform 
MMGA in both makespan and TLB objectives. 
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1 Introduction 

In today’s society, one of the hottest emerging fields in the information technology is 
cloud computing [1]. Cloud computing is a concept that reorganizes the physical 
resources, platforms, and software applications through Internet as a kind of service to 
satisfy users requests [2]. 

Task scheduling is the critical problem in cloud computing. The number of users of 
a cloud system could be billions and the users may come from all over the world. 
Therefore, large-scale task scheduling happens frequently among the cloud providers 
and the requesting users, which is becoming an urgent problem. Whether the schedule 
is efficient or not will significantly impact the performance of a cloud system. 
Therefore, scheduling is one of the most important concerns when establishing cloud 
computing systems. Task scheduling is to find a way to assign a certain number of 
tasks to the appropriate resources, and make the total completion time as small as 
possible, which is an NP-complete problem [3]. In this paper, we consider the 
problem of scheduling a large amount of independent tasks in the heterogeneous 
collection of cloud resources, i.e., the virtual machines (VMs), so as to reduce the 
total completion time of the tasks. 

Some heuristic methods like evolutionary computation (EC) algorithms are very 
useful to solve NP-complete problems, such as task scheduling problems.  EC 
algorithms are referred to a kind of heuristic stochastic search methods used for 
optimization problems, and typical EC algorithms include genetic algorithm (GA) [4], 
ant colony optimization (ACO) [5], and particle swarm optimization (PSO) [6][7]. 
Among these methods, we choose GA for extensive study due to its simple concept, 
potential parallelism and strong searching capability. 

Many researchers have already applied various EC algorithms for task scheduling 
problems. For example, Kumar et al. [8] proposed an improved GA based on Min-
min, Max-min techniques for cloud computing scheduling. Their approach greatly 
improves the evolutionary speed and shortens the generations of GA process. 
However, their approach has short comes when considering load balancing. Ying et 
al. [9] proposed an energy-aware GA to find a compromise solution between 
makespan and energy consumption. And the comparison between List heuristics and 
GA made by Loukopoulos et al. states [10] that an improved version of GA can better 
deal with task computation when involved large data transfers. Their experiments 
analyzed from three view of completion time, including makespan, average 
completion time of the tasks and the nodes. There is also an ACO with service flow 
model [11] to handle QoS requirements from users. Liu et al. [12] used ACO for VM 
scheduling on physical machine for reducing energy consumption. Moreover, a 
simulated annealing (SA) algorithm considered scheduling for different types of tasks 
[13][12], and another mutation based SA [14][12] was developed to minimize 
makespan and meanwhile improves utility of resources.  

There are many different scheduling goals set by users and cloud providers, 
besides the most common makespan criterion, objectives like efficient utilization of 
resources, load balance, quality of service (QoS) [15], and minimizing total cost with 
a budget constrain [16][16] are also considered. Among these, load balance is 



646 Z.-H. Zhan et al. 

 

especially an objective of great importance. Therefore, this paper takes load balance 
into account with the makespan criterion. As for the implement of load balance 
evaluation, most of the existing researches focus on CPU and memory utilities as 
indicators of load balance. For example, Multi-agent GA [17] is a GA-based heuristic 
merged with load balance model, which mimicked the competition and learning 
ability of multi-agent environment to improve the performance, and also select more 
balanced schedules through the observation of CPU and memory utilization rate. 
However, because of the fundamental role of the completion time in the practical 
application of scheduling, to calculate the degree of load balance from the view of 
completion time is a more convenient and meaningful way to conduct. Hence, the 
time load balance (TLB) model is developed and adopted in the proposed Load 
Balance Aware Genetic Algorithm (LAGA) of this paper. 

LAGA uses the TLB model to optimize the makespan while considering the load 
balance simultaneously, for that the TLB model is introduced to help establishing a 
new fitness function so as to discover suitable schedules that are more load balanced 
while maintains the makespan. Moreover, the Min-min, Max-min methods, which can 
increase the evolution efficiency of GA are used in the population initialization 
[18][19]. We conducted experiments to test the performance of LAGA, and compared 
it with a Min-min, Max-min improved GA (MMGA) [8], the results show that LAGA 
can successfully pick up the more balancing schedules among those fair schedules 
with similar makespan, and also outperforms MMGA in the optimization of 
makespan. 

The rest of the paper is organized as follows. In Section 2, the background 
including problem description and TLB model are described. Section 3 presents 
LAGA algorithm in details. Experiments and comparisons are conducted in Section 4, 
followed by conclusions in Section 5. 

2 Background 

2.1 Task Scheduling Problem 

Task scheduling problem is a kind of problem that map n tasks to m resources for 
completion, each task is independent and there is an expected completion time for 
every possible resource that can accomplish it. The same task has different 
completion time for different resources when considering heterogeneous system, 
which makes the scheduling problem more complex. 

The scheduling aims to minimize the total completion time of the task set, which is 
defined as makespan: ݉ܽ݇݁݊ܽ݌ݏ ൌ max௝∈௠  ሺ݆ሻ                 (1)݊݋݅ݐ݈݁݌݉݋ܿ

where completion(j) denotes the total time that resource Rj need to perform the 
assigned tasks.  

The makespan is the fundamental objective for most scheduling problems. 
Moreover, we also consider load balance as the other objective and evaluate it from 
the view of time load balance. 
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The n×m task scheduling problem is represented by the corresponding Resource-
Task Model, and the characteristics of this problem can be described as an Expected 
Time of Completion (ETC) matrix which contains completion time of each task with 
each resource. There is another matrix called Expected Scheduling to Compute (ESC) 
matrix, which each describes a solution to the task scheduling problem by recording 
the matching of tasks and resources. The three concepts mentioned above are defined 
as follows: 

2.1.1 Resource-Task Model 
Define T={T1, T2, T3,…,Tn} as a set of independent tasks, where Ti is the i-th task, 
0≤i≤n, n is the total number of tasks. And R={R1, R2, R3, …,Rm} as a set of resources, 
where Rj is the j-th resource, 0≤j≤m, m is the total number of resources. 

Then, we define C={T, R} as a n×m Resource-Task model with n tasks and m 
resources, where T is a task set and R is a resource set.  

2.1.2 Expected Time of Completion (ETC) 
Define ETC={ETCij}n×m as a matrix of expected time of completion for each tasks in 
every resources corresponding to a n×m Resource-Task model, where ETCij is the 
expected time of completion for task Ti to be executed by resource Rj. 

For each Resource-Task Model, there is an ETC serving as fundamental attribute, 
and helps to describe the problem in mathematics view. 

2.1.3 Expected Scheduling to Compute (ESC) 
Define ESC={ESCij}n×m as a matrix of expected scheduling to compute for a n×m 
Resource-Task model, also known as a solution to the n×m task scheduling problem, 
where ESCij=1 if  task Ti  is scheduled on resource Rj, otherwise ESCij=0. 

Each ESC represents a possible solution to a n×m task scheduling problem, and 
every matrix can be different from each other. To find the optimal ESC for a given 
ETC is the process of solving task scheduling problem. 

2.2 Task Load Balance Model 

Load balance refers to a situation that most of the resources are expected to be 
occupied according to a schedule, and finally contributes to a balanced system, 
instead of most resources being idle or overload. In other words, only when every 
resource is occupied and load balancing, the ideal load balance situation comes true, 
results in adequate and efficient use of computing resources, and the minimum total 
completion time. 

Load balance model aims to build a measurable model to determine the load 
balancing degree of a cloud system. In this paper we consider load balancing from the 
view of task completion time, so the new model is called time balance load (TLB) 
model. To be noted, the balance value computed by this model is mentioned below as 
TLB value (TLBV). The comparison between TLBVs can easily tell which schedule 
is better load balanced. 
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Assume that for a n×m Resource-Task model, every task can only be assigned to 
one resource and can never be interrupted. The total time load of resource Rj is 
defined as: ܮ௝ ൌ ∑ ௜௝௡௜ୀ଴ܥܶܧ ൈ ௜௝ܥܵܧ                        (2) 

where ETCij is the matrix denotes the completion time of each task assigned to each 
resource, ESCij is the matrix decides which task should be assigned to which resource, 
0 ≤ i ≤ n and 0≤ j ≤ m. 

The average time load of all the resources is defined as: ܮܧ௝ ൌ ଵ௠ ∑ ௝       ௠௝ୀ଴ܮ                          (3) 

where Lj  is defined by Eqs. (2), 0 ≤ j ≤ m. 
The difference between time load of resource Rj and the average time load is: หܮ௝ െ  ௝ห. After that we add up the differences, the time load balance value (TLBV)ܮܧ

can be defined as follows: ݁ݑ݈ܽݒ ݈ܾ݁ܿ݊ܽܽ ݀ܽ݋݈ ݁݉݅ݐ ൌ ∑ หܮ௝ െ ௝ห       ௠௝ୀ଴ܮܧ             (4) 

where Lj and ELj are defined by Eqs. (2) and (3), 0 ≤ j ≤ m. 

3 Proposed LAGA Algorithm 

LAGA is an improved version of GA that takes not only makespan but also load 
balance into consideration. First we adopt Min-min, Max-min methods for population 
initialization, makes the algorithm more efficient. Then, the TLB model is introduced 
and combined with makespan to establish new fitness function. The chromosome 
coding, fitness function, LAGA evolutionary operators, and the whole LAGA 
flowchart are described as follows. 

3.1 Chromosome Coding 

We use resource-task representation for coding, the length of chromosome is the 
number of tasks, and each gene in the chromosome represents the index of the 
resource that is used to accomplish the corresponding task, shown as: 

Xi=[Xi1, Xi2,……, Xin]                                (5) 

where i is the chromosome index, n is the number of tasks, and Xij (0 ≤ j ≤ n) is an 
integer to indicate which VM the task j is scheduled on. 
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3.2 Fitness Function 

As defined, the individual with larger fitness is better to survive, and because we aim 
to find individuals with smaller makespan and smaller time load balance value 
(TLBV), the fitness function is formulated as follows: ݂ ൌ ଵ௠௔௞௘௦௣௔௡ ൅ ଵ௧௜௠௘ ௟௢௔ௗ ௕௔௟௔௡௖௘ ௩௔௟௨௘                       (6) 

3.3 Population Initialization 

A population is a set of individuals, every individual has its own chromosome, and 
each represents a schedule in the scheduling problem. Individuals are randomly 
generated within the scope of gene value, which make sure they are valid schedules. 

Moreover, in LAGA, both the Min-min method and Max-min method are used in 
the initialization to enhance the initialization quality. 

Min-min first finds the minimum completion time for each task in each resource, 
and among these minimum times for all tasks, the minimum value is selected and the 
corresponding task should be scheduled to the resource which can complete it in 
minimum time. Then, the expected completion time matrix is updated for every other 
task in this resource, and the task which is already assigned will not be considered 
again. The same process repeats until all tasks are scheduled. 

Max-min is almost the same as Min-min, except it selects the maximum value 
among the minimum completion times for all tasks, then schedule the task to the 
resource, update the completion time matrix in the same manner, and repeat until all 
tasks are scheduled. 

Therefore, in the population initialization process, we use the Min-min method to 
generate one chromosome, and use the Max-min methods to generate another 
chromosome, while all the other chromosomes are generated randomly. This way, the 
average fitness of the initial population is improved significantly, helping the 
efficiency in evolution. 

3.4 Selection 

Selection operator determines whether the individual will enter the next generation or 
not, we use proportion selection to calculate the probability which is proportional to 
individual’s fitness in the population. 

3.5 Crossover 

We use single-point crossover operator, which means the intersection only happens in 
one single point and the part of chromosome is exchanged, the crossover point is 
chose in random. 



650 Z.-H. Zhan et al. 

 

3.6 Mutation 

Mutation is a process that value of some genes was replaced by random value 
accidentally, which will generate new individuals for the next generation.  

3.7 Flowchart 

The flowchart of LAGA is shown in Fig. 1. In the step that first apply fitness function, 
the best individuals of current population is saved, and then the best individual is 
updated in the whole evolution process. 

 

Fig. 1. The flowchart of LAGA 

4 Experiments and Analysis 

4.1 Parameter Analysis 

Before the main experiment, we conduct parameter analysis for two main parameters 
named crossover rate and mutation rate in GA [20][20]. Therefore, a scheduling 
problem which has 20 tasks and 10 resources is used as instance to test the 
performance of LAGA and MMGA when the parameter values are different. For test 
of crossover rate, there are 11 sets of experiment and the value varying from 0.4 to 0.9 
with a difference of 0.05, while the mutation rate is fixed as 0.01. For test of mutation 
rate, there are 9 sets of experiment, the value varying from 0.01 to 0.1 and being 
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separated as octiles, the crossover rate is fixed as 0.5. In both tests, other parameters 
remain the same and set as Table I shows. And to be noted, each algorithm repeated 
to run 30 times for the given scheduling problem and the average of 30 independent 
runs is showed as results. 

Table 1. Parameter Settings of Parameter Ananlysis 

Name Value 
Population 50 

Evolution Generation 200 

Crossover Rate [0.4,0.9] 

Mutation Rate [0.001,0.1] 

Chromosome Length 20 

Gene Value [0,9] 

 
For different crossover rates, the results of makespan and time load balance value 

are shown in Fig. 2. 
 

0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90
6000

6500

7000

7500

8000

8500

9000

9500

10000

10500

11000

11500

m
ak

es
pa

n

Crossover rate

 MMGA
 LAGA

 
0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

5000

7500

10000

12500

15000

17500

20000

22500

25000

27500

30000

tim
e 

lo
ad

 b
al

an
ce

 v
al

ue
 (

T
L

B
V

)

Crossover rate

 MMGA
 LAGA

 
(a) makespan                    (b) time load balance value 

Fig. 2. Comparison of different crossover rates 

For different mutation rate, the results of makespan and time load balance value are 
shown in Fig. 3. 
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Fig. 3. Comparison of different mutation rates 



652 Z.-H. Zhan et al. 

 

From the two figures, it can be observed that the makespan and time load balance 
value of LAGA are both less than that of MMGA in two tests. Moreover, the best 
value of crossover rate for both algorithms is 0.5, the best value of mutation rate for 
LAGA is 0.01, and for MMGA is 0.005. 

4.2 Experimental Settings 

To test the performance of the proposed algorithm, we use 2 groups of task 
scheduling problems. In the first group, we fix the number of resources as 10, while 
the number of tasks varying from 10 to 40 with a different of 5. In the second group, 
we fix the number of tasks as 40 and vary the number of resources from 10 to 40 with 
a difference of 5. Thus, each group contains 7 different scheduling problems, and in 
total there are 14 problems in the two groups. All these problems are generated 
randomly, the setting of the scope of completion time for each tasks, and the 
heterogeneous degree of the cloud resources are showed in Table 2. 

In order to show the advantages of the proposed LAGA, we use the MMGA 
proposed in [8] as comparison. The other parameters such as parameters of genetic 
algorithms, range of completion time, degree of heterogeneity, are remain the same as 
to make fair comparisons. The detailed parameter settings are showed in Table 2. 
Moreover, each algorithm run 30 times for each problem and the average of 30 
independent runs is showed as results. The terminate condition is reached when the 
evolution process is carried to the maximum generation, which is 200 generation as 
defined in Table 2. 

Table 2. Parameter Settings of Algorithm Experiment 

Name Value 

Population 50

Evolution Generation 200

Crossover Rate 0.5 

Mutation Rate 0.01 

Completion Time [200, 4426] 

Heterogeneous Degree [0, 198] 

4.3 Experimental Results 

For the first test group, by using LAGA and MMGA, the results of makespan and 
time load balance value for different number of tasks are shown in Fig. 4. 
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Fig. 4. Comparison of LAGA and MMGA on the first test group with different number of 
tasks. (a) makespan. (b) time load balance value. 

For the second test group, by using LAGA and MMGA, the results of makespan 
and time load balance value for different number of resources are shown in Fig. 5. 
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Fig. 5. Comparison of LAGA and MMGA on the second test group with different number of 
resources. (a) makespan. (b) time load balance value. 

The results in the four figures show that both makespan and time load balance 
value that LAGA obtained are much better than that of MMGA, especially the load 
balancing of systems improves significantly, which indicates that LAGA is an 
effective algorithm for solving task scheduling problem. 

Besides, LAGA has better performance than MMGA as load balance aware 
method, so the greatly more balancing results are as expected, and also indicates the 
advantage of load balance model. Moreover, LAGA better minimizes the makespan 
than MMGA does, claiming the advantage of combining makespan with load balance 
in the time view. In conclusion, LAGA outperforms MMGA and it obtains best 
results of makespan and load balance in most of the cases. 

There is another observation that the performance of LAGA gets to be much better 
as the task-resource ratio get closer to 1. In other words, while the number of tasks 
that need to be scheduled is much more than the number of resources that can perform 
them, the proposed LAGA tends to perform better. This advantage makes LAGA 
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suitable for complex situations. Imagine that when the ratio is high, the system is 
more likely to be seriously unbalanced if the algorithm cannot deal with load 
balancing scheduling, which might be the reason why LAGA is prominent there. It 
should be noted that no matter the task-resource ratio is high or low, the performance 
of LAGA remain better than that of MMGA. 

To sum up, LAGA performs better than MMGA in cases with different 
characteristics. The makespan and load balance objectives are both achieved in the same 
time, the performance is much better especially when dealing with the load balance. 

5 Conclusions 

This paper mainly proposes a LAGA, which is developed to solve task scheduling 
problems in cloud computing environment. As an improved version of existing 
algorithms, it is suitable for complex problems and is capable of finding more load 
balancing solutions while maintain good performance of the makespan. Through the 
introduced time load balance model to modify the fitness function, and the Min-min, 
Max-min methods used for population initialization, the algorithm is proved to be 
efficient and useful. Experimental results show that this proposed algorithm can 
successfully optimize makespan and time load balance at the same time. 

In the future work, we will try to model the problem by other code schemes for 
real-world application [21]. Moreover, multi-objective model and approach can be 
considered [22]. Another promising future work direction is to apply other EC related 
approach to solve the problem [23][24]. 
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Abstract. Designing effective dispatching rules is particularly impor-
tant for dynamic job shop scheduling (JSS) problems. Recently, genetic
programming (GP) and computer simulation have been combined to au-
tomatically design effective dispatching rules for different JSS problems.
Although the literature has shown some success, expensive performance
assessments or fitness evaluations still cause difficulty for design tasks,
especially for very complicated and large-scale manufacturing systems.
Therefore, it is important to effectively utilise the computational budget.
The goal of this paper is to investigate the influence of surrogate models
and the use of simulation replications on the performance of GP. The
results show that the combination of the two techniques can enhance the
quality of evolved dispatching rules. Analyses also show the advantages
and disadvantages of different selection schemes in surrogate-assisted GP.

Keywords: genetic programming, job shop scheduling, heuristic.

1 Introduction

Dispatching rules are a simple and efficient approach to dealing with scheduling
problems in dynamic job shops. The goal of dispatching rules is to prioritise jobs
waiting in the manufacturing system based on the attributes of jobs (e.g. process-
ing time, due date) and machines (e.g. workload, position). Jobs will be processed
based on their assigned priorities. As dispatching rules are only applied at the
moment machines decide which jobs to process next, they can take into account
the current system status and cope with dynamic changes more easily. Many
studies on dispatching rules, particularly for job shops, have been conducted in
the scheduling literature to investigate the behaviour of different rules and to
propose new ways to improve their performance. In the current highly competi-
tive market, manufacturing systems need to adapt quickly to cope with changes
and dispatching rules also need to be customised to deal with special require-
ments and production processes. Unfortunately, designing effective dispatching
rules is not an easy task and involves a lot of trial and error. To avoid wast-
ing manufacturing resources, computer simulation has often been used to assess

G. Dick et al. (Eds.): SEAL 2014, LNCS 8886, pp. 656–667, 2014.
c© Springer International Publishing Switzerland 2014
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the quality of dispatching rules before applying them to the real manufacturing
systems. However, the design process is still difficult and requires extensive prob-
lem domain knowledge. Recent advances in machine learning and optimisation
have offered different ways to facilitate the design process. Genetic programming
(GP) is currently one of the most promising approaches to automatically design
of competitive and robust dispatching rules for different scheduling problems,
especially for job shop-like environments.

GP is an evolutionary computation (EC) method which is usually used to
evolve programs to solve particular computational problems. In recent years, GP
has been successfully used to evolve dispatching rules or scheduling heuristics
for job shop scheduling (JSS) [1–3]. Different variants of GP such as tree-based
GP [4], grammar-based GP [4], and gene expression programming (GEP) [5]
are capable of evolving rules that outperform most rules manually designed by
human experts in the literature [6]. As compared to other machine learning
methods, GP has some advantages for these design tasks: (1) dispatching rules
can be represented easily with GP’s flexible representations; (2) GP can explore
very complex combinations of attributes and discover unknown and effective
dispatching rules; (3) many advanced techniques in EC can be applied to GP to
enhance the quality of obtained dispatching rules. One of the key drawbacks of
GP for evolving dispatching rules is long computational times. Because GP has
to rely on discrete event simulation, which is computationally expensive, to assess
the quality of evolved rules, the automatic design process is time-consuming.

Some strategies have been proposed to improve the efficiency of GP, particu-
larly by focusing on effectively utilising the computation budget (i.e. the num-
ber of simulation replications). Hildebrandt et al. [2] investigated the balance
between the number of simulation replications and the number of generations in
GP. In their experiments, the fitness of evolved rules is measured using a prede-
fined number of replications with fixed or changing random seeds (per genera-
tion) and the best individual of a generation will be fully evaluated. The analysis
shows that using one simulation replication with different random seeds at dif-
ferent generations produces the best results. Nevertheless, there are two main
drawbacks with this approach. First, because of the changes of random seeds
at different generations, GP can explore diverse solutions (exploration ability)
but it may have difficulty to fine-tune potential solutions (exploitation ability).
This might prevent GP from finding high-performance rules. Second, GP tends
to evolve large programs in this case because more genetic materials are needed
to help evolve rules that can cope with new simulation replications. The large
evolved dispatching rules will be more difficult to analyse and interprete.

Another way to cope with expensive fitness evaluations is to use surrogate
models. Hildebrandt and Branke [7] investigated two surrogate models for evolv-
ing dispatching rules to minimise mean flowtime. In their approach, a large
number of individuals are generated through genetic operations and the fitness
of these rules is approximated by using the fitness of the most similar rules gen-
erated in the previous generations. Then, only rules with the top approximated
fitness are selected for the next generation and receive real fitness evaluations.



658 S. Nguyen et al.

The experimental results showed that surrogate-assisted GP (SGP) is more ef-
fective than the simple GP method for evolving dispatching rules. Specifically,
SGP can converge to good dispatching rules faster than GP given that the same
computational budget is used.

However, they have used fixed replications (across all generations) for fitness
evaluations and have not taken the advantage of changing replications [2] to
further improve the effectiveness of SGP. Also, how to build the population of
rules selected based on their approximated fitness has not been investigated. In
this paper, we explore two research questions regarding SGP. Firstly, can SGP
be combined with changing replications to enhance the performance of GP?
Secondly, what is the influence of selection scheme in SGP for choosing rules for
the next generation? Moreover, this paper also investigates the effectiveness of
SGP when dealing with different scheduling performance measures.

The remainder of this paper is organised as follows. Section 2 gives a brief
description of job shop scheduling (JSS) and the existing studies on GP for JSS.
Section 3 presents SGP methods and the two selection schemes investigated in
our experiments. The results and analyses are shown in Section 4. Section 5
provides the conclusions and discusses future work directions.

2 Background

A brief introduction to JSS is provided here to show its key characteristics and
the traditional methods to deal with this problem. Then, an overview of GP for
JSS is presented.

2.1 Job Shop Scheduling

The general JSS problem could be simply defined as the scheduling of differ-
ent jobs to be processed on different machines to satisfy certain objectives. In
this case, a job is a sequence of operations, each of which is to be performed
on a particular machine. In JSS, the routes of jobs are fixed, but not neces-
sarily the same for each job [8]. For the static JSS problem, the shop (or the
working/manufacturing environment) includes a set of m machines and n jobs
that need to be scheduled. Each job has its own pre-determined route through
a sequence of machines to follow and its own processing time at each machine it
visits. In static JSS, processing information of all jobs is available. In the dynamic
JSS problem, jobs arrive randomly over time and the processing information of
jobs is unknown before their arrival.

A majority of past research focuses on developing effective and efficient op-
timisation methods for static JSS problems. As JSS is NP-hard, heuristics and
meta-heuristics such as tabu search [9], evolutionary algorithms [10], and parti-
cle swarm optimisation [11] are usually employed to find acceptable solutions in
reasonable computational times. For dynamic JSS, dispatching rules are more
popular due to their ability to cope with dynamic changes and ease of imple-
mentation. A large number of rules have been developed in the literature to deal
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with both general job shops as well as specialised job shops (e.g. assembly, batch
processing). Dispatching rules are usually classified based on the information
used to make scheduling decisions (e.g. static, dynamic, local, global) [8] and
how these pieces of information are combined. The effectiveness of a dispatching
rule depends on how it reacts to dynamic changes of the shops and the ability to
take into account different factors that can affect the considered objective to be
optimised. Due to specific characteristics of each manufacturing system, there is
no universal dispatching rule that can dominate in all situations. Thus, practi-
tioners have to manually adapt their dispatching rules to deal with their specific
operating conditions [12]. This suggests the need for automatic approaches to
facilitating the selection or design of dispatching rules.

2.2 GP for JSS

Recently, GP has also been applied to evolve dispatching rules for JSS prob-
lems [1, 13]. Miyashita [14] proposed a hyper-heuristic that is based on a pre-
determined classification of machines into bottlenecks and non-bottlenecks and
evolves one rule for each class of machine. Similarly, Jakobović and Budin [15]
designed a hyper-heuristic that optimises the classification of machines while
searching for good dispatching rules for each class. More specifically, each indi-
vidual consists of three functions, where one of them is a discriminating func-
tion of attributes relating to the workload of a machine that determines which
of the two dispatching rules, encoded by the other two (priority) functions, to
apply. The best rule sets evolved by these hyper-heuristics are generally shown
to outperform single benchmark rules. Nguyen et al. [16] investigated different
representations of dispatching rules with GP. The experiments showed that a
mixed representation, based on decision-tree like representation and arithmetic
representations, provided the best results. However, they mainly examined their
rules on static scheduling instances.

Tay and Ho [17] performed a study on using GP for multi-objective JSS
problems. In their method, three objectives are linearly combined (with the
same weights) into an aggregate objective, which is used as the fitness function
in the GP method. The experiments showed that the evolved rules are quite
competitive as compared to simple rules but still have trouble dominating the
best rule for each single objective. Hildebrandt et al. [2] evolved dispatching
rules by training them on different simulation scenarios and only minimised the
mean flow time. Some aspects of the simulation models were also discussed in
their study. The experimental results showed that the evolved rules were quite
effective (although complicated) as compared to other existing rules. Moreover,
Nguyen et al. [3] proposed a cooperative coevolution GPHH for multi-objective
dynamic JSS problems. In that work, two scheduling rules (dispatching rule and
due date assignment rule) are simultaneously considered in order to develop
effective scheduling policies. More details about GP for JSS can be found in
[7, 3].
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3 Surrogate-Assisted Genetic Programming (SGP)

This section first presents the simulation model used in this paper. Then, we
describe the overall algorithm for SGP and details for each components in SGP
such as representation, genetic operations, and selection schemes.

3.1 Simulation Model

All experiments in this paper are based on the simulation model of a symmetrical
job shop which has been used in previous studies on dispatching rules [18, 6, 19].
Here are the simulation configurations:

– 10 machines
– Each job has 2 to 14 operations (re-entry is allowed)
– Processing times follow discrete uniform distribution U [1, 99]
– Job arrivals follow Poisson process
– Due date = current time + allowance factor × total processing time (al-

lowance factor of 4 is used in our experiments)
– Utilisation of the shop is 95%
– No machines break-down; preemption is not allowed
– Weights of jobs are assigned based on the 4 : 2 : 1 rule [20, 21].

In each simulation replication, we start with an empty shop and the interval
from the beginning of the simulation until the arrival of the 500th job is consid-
ered as the warm-up time and the statistics from the next completed 2000 jobs
[22] will be used to calculate performance measures. Three scheduling perfor-
mance measures examined in our experiments are (1) mean flowtime, (2) mean
tardiness, (3) total weighted tardiness. Although this simulation model is rela-
tively simple, it still reflects key issues of real manufacturing systems such as
dynamic changes and complex job flows. This section only considers a shop with
high utilisation (95%) and tight due date (allowance factor of 4) because schedul-
ing in this scenario is more challenging, and therefore easier to demonstrate the
usefulness of GP. In order to reliably measure the effectiveness of evolved rules,
a large number of simulation replications are usually needed (e.g. 30 to 50 sim-
ulation replications are usually needed to accurately estimate the performance
of rules in the scenario described here). However, using simulation to evaluate
the fitness of the evolved rules is also the most time-consuming part in GP for
JSS. Therefore, only a small number of replications are usually used for fitness
evaluations during the training process. As suggested by Hildebrandt et al. [2],
we will use only one replication (corresponding to one random seed) for each
fitness evaluation; however, we will change the replication (use a different ran-
dom seed for simulation) when moving to a new generation. This strategy has
been shown to be beneficial to prevent GP from overfitting to certain situations
(replications). Two sets, each with 50 simulation replications, are used for deter-
mining full training performance and testing performance. The full training set
is used to verify effectiveness of evolved rules and the test set is used to examine
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Fig. 1. Overall algorithm of SGP

the performance of rules on unseen situations. In this dynamic case, we cannot
identify the best rule with the training performance or fitness functions, because
they are changing across generations and they cannot accurately estimate the
effectiveness of evolved rules.

3.2 Overall Algorithm

Fig. 1 shows how SGP can evolve dispatching rules for a particular simulation
scenario. Similar to most EC methods, SGP starts by randomly initialising a
population (ramped-half-and-half). Each rule will be evaluated using simulation.
The fitness of an evolved rule depends on the performance measure achieved by
the rule when applied to the training replication (e.g. mean flowtime). The rule
with the best fitness will be evaluated with the full training set (refer to [2]
for detailed discussions of this strategy). If the best rule of the generation has
better full training performance than the current best rule, it will be assigned as
the current best rule of the run. If the stopping condition is met (i.e. maximum
generation in GP), SGP will stop; otherwise, we perform the next steps to build
the population for the next generation.

First, a intermediate population is created using genetic operations. This in-
termediate population has a larger population size as compared to the original
population to increase the diversity in the population as well as improve the
chance to find better rules. The fitness of all rules in the intermediate pop-
ulation is approximated by using the surrogate model proposed in [7], which
estimates the fitness of an evolved rule by using the fitness of the most similar
rules generated in the previous generations. SGP in [7] used fixed
simulation replications and utilised individuals in the last two generations to
approximate fitness of newly generated rules. For the surrogate model, the be-
haviour of an evolved rule is characterised by a decision vector based on a ref-
erence rule (2PT+WINQ+NPT) and the similarity of two rules is measured by
the distances of their corresponding decision vectors (see [7] for a detailed de-
scription). Different from [7], because fitness of rules in different generations is
not compatible in our paper (as different replications are used), we only use rules
in the most recent generation for fitness approximation. A selection scheme is
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Table 1. Terminal and function sets of GP

Symbol Description

rJ job release time (arrival time)
RJ operation ready time
RO number of remaining operation within the job.
RT work remaining of the job
PT operation processing time
DD due date of the job
RM machine ready time
SL slack of the job = DD− (t + RT)
WT is the current waiting time of the job = max(0, t− RJ)
# Random number from 0 to 1

NPT processing time of the next operation
WINQ work in the next queue
APR average operation processing time of jobs in the queue

Function set +,−,×, %, min, max

∗t is the time when the sequencing decision is made.

then used to select rules in the intermediate population for the next generation
(see details in Section 3.4).

3.3 Representation and Genetic Operations

This paper uses the traditional GP tree to represent dispatching rules, the same
as previous studies [1, 2, 16]. Table 1 shows the terminal set and function set
used by GP to construct priority functions. The attributes in the tables have
been extensively used in the existing dispatching rules as well as GP for JSS. For
the function set, four basic arithmetic operators and min/max are used to con-
struct composite dispatching rules (the protected division is similar to normal
division but returns a value of 1 when division by 0 is attempted). For genetic
operations, we employ the standard subtree crossover and subtree mutation. The
subtree crossover creates new individuals for the next generation by randomly
recombining subtrees from two selected parents. Meanwhile, the subtree muta-
tion is performed by selecting a node of a chosen individual and replacing the
subtree rooted by that node with a newly randomly-generated subtree.

3.4 Selection Scheme

One key aspect of SGP is how can we decide which rules in the intermediate
population should be put into the next generation. Of course we want rules with
top approximated fitness to be in the next generation to increase the chance to
find more competitive rules. However, we also need to think of how diversity can
be maintained. In our experiments, we will examine two selection schemes:

a. No duplication [7]: we will sweep through all rules in the intermediate pop-
ulation and eliminate duplicate rules. Two rules are considered the same if
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Table 2. Parameter settings

Parameter Description

Initialisation ramped-half-and-half
Crossover/mutation/reproduction rates 80%/15%/5%
Maximum depth 8
Number of generations 100
Population size 500
Size of intermediate population 500×5=2500
Selection tournament selection (size = 5)

they have exactly the same decision vector. The rationale of this scheme is to
promote the diversity in the population.

b. No previous match: this scheme is little bit less extreme than the previous
scheme. Basically, we only ignore rules which are exactly the same as the one
in the previous population (used for fitness approximation). This scheme tries
to create a balance between the diversity strategy and elitism. Therefore, the
same rules can still exist in the population and have higher chances to pass
their genetic materials to the next generation.

3.5 Experimental Settings

The parameters used in GP are presented in Table 2. In the experiments, we
compare three GP methods: (1) simple GP with changing replications, (2) SGP
with no-duplicate scheme (SGP-NODUP), and (3) SGP with no-previous-match
scheme (SGP-NOMAT). The results for each GP method are based on 30 inde-
pendent runs. All methods have the computational budgets of (500× 1 + 50)×
100 = 55000 simulation replications. It is noted that the best rule of a generation
and the current best rule based on full training performance are always copied
to the next generation.

4 Results

This section compares the effectiveness of three GP methods based on their test-
ing performance measures, lengths of obtained rules, and computational times.
The comparisons are shown in Fig. 2 to Fig. 4. For each figure, the first and sec-
ond boxplots respectively show the testing performance measures and lengths
(number of nodes) of rules obtained by the three GP methods. For presenta-
tion purposes, the total weighted tardiness is normalised in Fig. 4 by dividing it
by the number of (recorded) jobs. The third boxplot shows the computational
times for GP runs. The behaviours of the three methods are shown in Fig. 5
to Fig. 7 where the plots show the progress of the best evolved rules and the
average length of programs in the population over generations (averaged across
all independent runs).
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Fig. 2. Performance of GP methods - Minimise mean flowtime
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Fig. 3. Performance of GP methods - Minimise mean tardiness
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Fig. 4. Performance of GP methods - Minimise total weighted tardiness
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Fig. 6. Behaviours of GP methods - Minimise mean tardiness
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Fig. 7. Behaviours of GP methods - Minimise total weighted tardiness

From the results, it is obvious that SGPmethods can findmore competitive dis-
patching rules as compared to GP for all performancemeasures. As we observe the
performance of the best rules over generations, we can see that SGP methods can
find good rules significantly faster than GP given that they all start with the same
populations. In the early generations, the gap between the GP and SGP methods
widen very quickly. Then, the improvement rates of SGP decrease but they still
continue to find better rules rather than prematurely converging. For the three
performance measures, SGP methods tend to evolve effective rules twice as fast
than GP (e.g. SGP methods only need 20 generations to find the best rules ob-
tained by GP in 40 generations). These results suggest that SGP can successfully
incorporate changing replications to further enhance the effectiveness of GP.

For the two selection schemes, there is no significant difference between them
regarding the testing performance for minimising mean flowtime and mean tar-
diness. SGP-NODUP is only significantly better than SGP-NOMAT when total
weighted tardiness is used as the performance measure. However, SGP-NODUP
tends to evolve larger rules and it is also slightly slower than SGP-NOMAT in
most cases. In the case with mean flowtime as the performance measure, the
running time of SGP-NODUP is quite unpredictable as compared to GP and
SGP-NOMAT.
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The detailed results from Fig. 5 to Fig. 7 indicate that both SGP-NODUP and
SGP-NOMAT make quite similar progress during the evolution. SGP-NODUP
tends to perform slightly better than SGP-NOMAT in the later generations, espe-
cially for the case with total weighted tardiness as the performance measure. This
observation shows that the no-duplicate scheme can be more effective when we
deal with complex scheduling problems where sophisticated rules are needed and
diversity is required to help SGP finding those rules. Nevertheless, the downside
of the no-duplicate scheme is that it can also significantly increase the lengths of
evolved rules as shown in the right plot of Fig. 5 to Fig. 7. In the three cases, SGP-
NODUP tends to evolve larger rules than GP and SGP-NOMAT. For minimis-
ing mean flowtime, it is very clear that SGP-NODUP evolves rules much larger
than they should be, which make the fitness evaluations slower as discussed. SGP-
NOMAT performs quite well in most cases and it is able to maintain the length of
evolved rules reasonably well. For minimising mean tardiness, the evolved rules of
SGP-NOMAT are even slightly smaller than those of GP. Therefore, no-previous-
match is a promising selection scheme in SGP; however, it still needs to be further
improved to cope better with complex environments. Probably a hybrid between
the two selection schemes will provide us the most favourable results.

5 Conclusions

In this paper, we have investigated different techniques to deal with expensive
fitness evaluations which is one of the most critical aspects of evolving dispatch-
ing rules with GP. The experimental results indicate that surrogate models can
be applied successfully along with changing replications to significantly enhance
the performance of GP. The combination of the two techniques allows GP to
evolve more effective rules using the same computation budget. We also investi-
gate the influence of selection schemes in this study to see how they govern the
behaviours as well as the performance GP. The results suggest that diversity is
one of the key factors to help GP explore better rules, especially for complicated
JSS problems. However, care must be taken to ensure that rules will not grow
too large, which can slow down fitness evaluations in GP.

For future work, we want to further build better surrogate models for GP to
cope with different scheduling problems. Furthermore, it would be interesting to
see how surrogate models can be used to cope with multiple conflicting objectives.
We also want to develop smarter selection schemes in order to help GP cope better
with complicated situations and hopefully generate more compact rules.
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Abstract. A common problem when applying heuristics is that they
often perform well on some problem instances, but poorly on others. We
work towards developing a hyper-heuristic that manages delivery of good
quality solutions to Vehicle Routing Problem instances with only limited
prior knowledge of the problem domain to be solved. This paper develops
a hyper-heuristic, using Grammatical Evolution, to generate and apply
heuristics that develop good solutions. Through a series of experiments
we expand and refine the technique, achieving good quality results on 40
well known Capacitated Vehicle Routing Problem instances.

1 Introduction

A common problem when applying heuristics to an optimisation problem is that
they often perform well on some problem instances, but poorly on others. Helping
to identify which heuristic to apply to a particular problem instance is one of the
objectives of hyper-heuristic research. Here we develop a hyper-heuristic, using
Grammatical Evolution (GE) [25], to generate heuristics for the Vehicle Routing
Problem (VRP). The VRP has wide ranging application in the transport and
logistics industry. Generating a good solution, and possibly several alternatives,
to a VRP instance can have significant operational and cost benefits to the
industry.

The Capacitated Vehicle Routing Problem (CVRP) [28] contains a single
depot holding a fleet of identical vehicles. A set of customers, each at a known
location and with a known demand, are to be serviced. The objective is to
service all customers while travelling the shortest possible total distance. Each
customer must be serviced only once (split deliveries across multiple routes are
not permitted), and the capacity of each vehicle must not be exceeded at any
time.

The goal in this paper is to use a hyper-heuristic to evolve heuristics that
progressively construct and improve a partial solution until a complete solution
to a CVRP instance is achieved. We demonstrate that a compact heuristic can

G. Dick et al. (Eds.): SEAL 2014, LNCS 8886, pp. 668–679, 2014.
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be generated from a small set of operators (heuristic components) which con-
sistently deliver “good” quality solutions to CVRP instances in a reasonable
computation time.

In the remainder of this paper we discuss the background and prior research
in Section 2, followed by details of the experimentation method and design in
Sections 3 and 4. The results of this research and discussion are presented in
Section 5 followed by our conclusions in Section 6.

2 Background

In this section we review the relevant background literature.

2.1 Vehicle Routing Problem

The VRP was introduced in 1959 by Dantzig and Ramser [8], which Lenstra
and Rinnooy Kan [17] show is a NP-hard combinatorial optimisation problem.
The problem has been well studied and comes in many variations [11,13,16,28].
A VRP normally includes constraints on the capacity of each vehicle, and/or
the duration or distance a vehicle may travel. Further features may be added,
such as time windows for servicing a particular customer, or allowing multiple
depots, split deliveries or interchanges to be considered.

Solving the VRP often requires a trade-off between computation speed and
achieving the best possible solution. Only relatively small CVRP instances are
able to be solved optimally in reasonable computation time (e.g. using branch-
and-bound [10]). Consequently heuristics are used to quickly find an acceptable
solution. Because of its speed and simplicity, the Clarke and Wright Savings
(CWS) heuristic [28] is a frequently used heuristic. Where extra computational
effort is acceptable, the solutions generated by the CWS heuristic can often be
improved by applying a search technique such as Tabu Search [12] or Iterated
Local Search [18].

2.2 Meta-Heuristics and Hyper-Heuristics

Meta-heuristics have been developed over the last 40 years using different tech-
niques which seek improvements to an initial solution by searching the adjacent
and/or wider solution space. Many of these achieve good results but are often
complex and time consuming to design and execute. More recent research has
looked at hyper-heuristics which Cowling et al. [6] define as “heuristics to choose
heuristics”. Ross [23] modifies this definition to say hyper-heuristics are heuris-
tics which search a space of heuristics, as opposed to searching the space of
solutions directly.

Developing a hyper-heuristic, using GE, for the VRP is a relatively new field of
research. Existing approaches have focussed on either building a VRP solution
step by step from scratch [3] or, more commonly, commence with an initial
solution developed using an existing fast heuristic (such as the CWS heuristic)
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and evolve a search heuristic to improve the solution [9,26]. Here we use a hyper-
heuristic to progressively build and search for improvements in parallel. This
enables application of a search operation to a partially built solution.

We follow the example of Burke et al. [4,3] and generate new heuristics from
the operators (or components) of existing heuristics. The choice of operators are
guided by work in recent years by Bader el Den and Poli [2], Drake et al. [9] and
Sabar et al. [26]. Unlike Drake et al. [9], who study several variations of VRP to
evolve the components for a variable neighbourhood search (VNS) framework,
we use operators that both construct and modify a solution.

2.3 Grammatical Evolution

Grammatical Evolution (GE) is an evolutionary computation technique pio-
neered by Ryan et al. [25]. A key feature of GE is the separation between the
search engine and the problem. This enables different classes of problem to be
solved using the same search engine, and conversely, an alternative engine can be
employed to create and evolve a ‘genotype’. The linking element is a grammar
relevant to the class of problem (i.e. CVRP in this case) which is applied through
a mapper to the output of the search engine. Defining a good grammar requires
a degree of inspiration and experimentation as the structure and content of the
grammar can influence the quality of the result, much in the way the grammar
of a natural language defines the richness of that language.

McKay et al. [20] note that GE belongs to a wider family of Grammar Guided
Genetic Programming (GGGP) approaches which emerged in the mid 1990s [29].
They note that in GE the genotype is linear, as opposed to the tree structure
used in both standard Genetic Programming (GP) [15] and other grammar based
GP. The linear genotype enables a range of theory and practice applicable to
Genetic Algorithms and Evolution Strategies to be employed. The benefits of
GGGP over standard GP include the ability of the grammar to restrict the
search space and reduce the likelihood of generating semantically meaningless
output.

Over the last decade there has been research into the benefits and challenges of
using GE. Rothlauf andOetzel [24] have investigated the mapping of the genotype
to the output (phenotype) in GE and find genotype neighbours in the population
do not correspond well with phenotype neighbours produced by the grammar, a
phenomenon they refer to as a low degree of locality. The consensus among re-
searchers, notably in the works of Rothlauf et al. [24,27], is that there needs to be
a close correlation (high locality) between genotype neighbours and phenotype
neighbours for an efficient search process. Sub-Tree crossover and Sub-Tree mu-
tation [14] are regarded as the best means of achieving this in GE. This requires
a reverse mapping of the phenotype to the genotype to ensure a crossover is only
performed between compatible points. Thorhauer and Rothlauf [27] note that the
single point crossover operation has a very different effect when applied in GE than
when applied in standard GP, resulting in GE swaps involving, on average, half
of the tree structure as illustrated in Figure 1.
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Fig. 1. The effect of GE Single Point Crossover on a Derivation Tree

Another known feature of GE is redundancy in both the encoding and length
of the genotypes. GE uses variable length integer (or bit) strings (codon strings)
which are mapped with the grammar using modular arithmetic. This means
numerous different encodings will map to the same sentence in the grammar.
Also, since the length of genotype can be longer (possibly by a considerable
amount) than that needed by the grammarmapper, the population may comprise
of many different individuals who only differ from each other in the unused
portion of the genotype.

The use of tree-adjunct or tree-adjoining grammars as suggested by McKay
et al. [20] and Murphy et al. [21] may remedy some of these issues, although
the technique does not scale well and a grammar such as the one we use would
generate an unmanageable number of tree elements.

3 Method

In this section we describe how a heuristic is developed by the proposed hyper-
heuristic and illustrate in Algorithm 1 how the operators are selected and pro-
cessed.

A CVRP solution consists of a set of one or more vehicle routes, beginning and
ending at the depot, with each route listing the customers in the order in which
they are visited. The solution is complete if all customers are visited exactly
once, and feasible if each vehicle’s capacity is never exceeded. Each operator we
use performs an action on the current partial solution that selects a customer
and/or modifies one or more routes.

A successful heuristic need not be intuitive, so a range of build, modify and
destroy operators are enabled with few constraints on the selection of an operator
or the number of times it is executed.

Each heuristic consists of four distinct elements:

1. A strategy which defines how the heuristic is to be developed. A build strat-
egy starts with an empty solution and routes are developed step by step.
An improvement strategy starts with a complete and feasible, but possibly
sub-optimal, solution developed using a fast heuristic.
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Algorithm 1. Heuristic structure

T ← set strategy (build or improve)
k ← randomly select number of operators
if T is build then

i ← select initial seeding method
si0 ← initialise (partial) solution
for n ← 1 to k do

optypen ← select build or improve operator
oprepeatn ← select number of repetitions
opparamn ← select parameter
end

end if
else if T is improve then

s0 ← initialise (complete) solution (out-and-back routes)
for n ← 1 to k do

optypen ← select improve operator
oprepeatn ← select number of repetitions
opparamn ← select parameter
end

end if
searchtype ← select local search operator
searchparam ← select parameter(s)
r ← 0
while (r < 1) or (sr < sr−1) or (sr is incomplete) then

increment r
sr ← sr−1

for n ← 1 to k do
sr ← sr+ execute optypen

end
sr ← sr+ execute searchtype

evaluate sr
repeat

return sr−1

end

2. A sequence of one or more operators (excluding a search operator) to con-
struct or modify the current solution.

3. A search operator to improve the current solution.

4. The number of times the whole sequence of operators (including the search
operator) is repeated to deliver a complete and feasible solution. We refer to
each repetition of the sequence of operators as a cycle.

3.1 Operators

An operator manipulates the current partial solution. Application of some op-
erators may result in a customer being returned to the pool of unallocated cus-
tomers.
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Build operators define the method of selecting the next customer from the
pool of unallocated customers. The chosen customer is inserted into the least-
cost feasible route and location in the current partial solution. A new route is
created if the customer cannot be inserted into an existing route and retain
feasibility. A build operator has two parameters:

1. How many times execution of the operator is repeated.
2. Whether replacement of one existing customer in a route is permitted when

considering insertion of a new customer into that route. A replaced customer
is blocked from being reinserted in the same route for the remaining repe-
titions of the current operator. However the customer may be reinserted by
another operator or by the same operator in a later cycle.

Perturbation operators manipulate all or part of the solution. We use a se-
lection of simple move, swap, and ruin-recreate operators. With two exceptions,
individual perturbation operators are executed no more than once in each cycle.

The local search operator we use is a deterministic variation of Iterated Local
Search (ILS) [18]. A brief description of the search is shown in Algorithm 2. We
limit the search operator to one execution per cycle to keep the computational
time within reasonable bounds.

Algorithm 2. Deterministic Iterated Local Search

let N be the set of customers allocated to a route in the current solution.
range ← parameter sets the range of search
pair each ni and nj ∈ N where distancei,j ≤ range
sort pair(ni, nj) by ascending distancei,j
while queue of pair(ni, nj) is not empty.

let Ra and Rb be the routes containing ni and nj respectively
if Ra �= Rb then Ra ← concatenate Ra, Rb (including depot)
swap positions of ni and nj in Ra

improve Ra using either a 2opt [7] or 3opt algorithm
if depot appears in intermediate position within Ra, divide Ra into two routes
if better feasible routes result, update current solution.
repeat

return solution

3.2 GE Grammar

We use GE to select the operators and their respective parameters. To achieve
this we define a grammar that maps the output of the search engine (the geno-
type) to a syntactically correct and semantically meaningful sequence of opera-
tors.

The only element of a heuristic that is not specified in the grammar is the
number of cycles. Instead, the sequence of operators (up to a pre-defined maxi-
mum number of cycles) are repeated until a cycle ends with a complete solution
to the CVRP instance.
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The grammar is structured so a strategy is specified as the first element.
Thereafter selected operators, and any required parameters, are added in se-
quence, terminating with a search operator. The Backus Naur Form [22] gram-
mar we use is detailed below.

<strategy> ::= build, <seed>; <action1> <search>; | improve; <action2> <search>;
<action1> ::= <build>; | <build>; <action1> | <build>; <action2>
<action2> ::= <improve>; | <improve>; <action2>
<build> ::= <select>,<num>,<replace>
<improve> ::= <improve1>,<num> | <improve2>
<improve1> ::= mergeBestSaving | mergeNextNearest
<improve2> ::= splitRoutes, 1, <num> | redoRoute, 1 | removeLowestDemand, 1
<search> ::= 2opt | 3opt | ILSearch,<num>,<optType>
<select> ::= cheapest | largestDemand | farthest | nearest | remotest
<seed> ::= blank | cheapest | largestDemand | farthest | nearest
<num> ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10
<replace> ::= 0 | 1
<optType> ::= 2 | 3

A typical phenotype from the mapper takes the following form.
build, farthest; largestDemand, 3, 0; cheapest, 6, 1; . . .; ILSearch, 8, 3;
The output is passed to a parser application which interprets and processes it.

If a complete solution is not achieved within the pre-defined maximum number
of cycles, the distance is set to ∞. The total distance of the solution is passed
back to the fitness evaluation function.

We adopt the requirement that applying a given heuristic to a particular
CVRP instance will always generate the same solution. To this end, all random
number generation occurs within the search engine and is passed to the parser
as a parameter(s) with each operator. This includes the local search operator
which follows a deterministic sequence when seeking improvements.

4 Experiment Design

We use 30 replications for each of 40 CVRP instances developed by Augerat
et al. and Eilon et al. [1]. The experiments are repeated twice, firstly using an
on-line learning process to dynamically customise the heuristic for the problem
instance being solved, and secondly using off-line learning with a separate set
of six problem instances for training, and applying the resulting heuristic to
the 40 CVRP instances. We test different numbers of GP generations (between
10 and 1,000) and population size (between 40 and 100). Additionally we test
different combinations of crossover and mutation functions. The best heuristic
from each experiment is accepted and the performance compared to the best
known published solution for each problem instance.
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Table 1. Results from on-line learning and off-line learning experiments compared to
published best solution (recalculated to ensure rounding consistency)

CVRP Off-line On-line Best [1] CVRP Off-line On-line Best [1]

A-n32-k5 787 787 788 A-n33-k5 668 662 663
A-n33-k6 743 743 743 A-n34-k5 790 781 781
A-n36-k5 802 802 802 A-n37-k5 672 672 673
A-n37-k6 958 951 952 A-n38-k5 742 734 734
A-n39-k5 829 829 829 A-n39-k6 835 833 833
A-n44-k7 938 938 n/a A-n45-k6 954 950 945
A-n45-k7 1160 1147 1147 A-n46-k7 918 918 918
A-n48-k7 1093 1074 1074 A-n53-k7 1020 1012 1013
A-n54-k7 1186 1172 1172 A-n55-k9 1075 1075 1074
A-n60-k9 1356 1356 1356 A-n61-k9 1051 1048 1039
A-n62-k8 1303 1302 1294 A-n63-k9 1638 1634 1622
A-n63-k10 1323 1319 1314 A-n64-k9 1428 1416 1401
A-n65-k9 1192 1185 1182 A-n69-k9 1180 1166 1166
A-n80-k10 1792 1770 1767 E-n13-k4 290 290 n/a
E-n22-k4 375 375 375 E-n23-k3 569 569 569
E-n30-k4 505 505 n/a E-n31-k7 1239 1205 n/a
E-n33-k4 838 838 839 E-n51-k5 543 525 525
E-n76-k7 697 688 688 E-n76-k8 762 741 n/a
E-n76-k10 842 837 837 E-n76-k15 1047 1038 n/a
E-n101-k8 852 829 n/a E-n101-k14 1105 1095 n/a

5 Results and Discussion

We now detail and discuss the results from these experiments. The labelling of
the test instances [1] can be identified as being from the set produced by Augerat
et al. (prefixed A) or Eilon et al. (E), with n nodes (n−1 customers plus a depot)
and a minimum of k routes required.

5.1 Overall Results

Since generation of a CWS heuristic from individual operators is enabled by the
grammar, the solution generated by the CWS heuristic should, if discovered by
the search engine, represent an upper bound on generated solutions.

Reducing the number of GP generations means the resulting heuristic contains
significantly fewer operators. When using 1,000 GP generations, the resulting
heuristic can contain a sequence of up to 200 operators, whereas limiting the run
to 10 generations means a heuristic rarely contains more than a dozen operators.
The heuristics with only a few operators prove to be just as effective as those
with numerous operators indicating that increasing the number of operators in
a sequence does not necessarily improve performance.

The solution distances from our research are given in Table 1 and compared
to the best known results [1] (recalculated to ensure rounding consistency).
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5.2 Discussion

Our research shows that it is possible to apply a hyper-heuristic to select op-
erators to develop a heuristic for a CVRP instance that delivers a high quality
solution. As regards a general CVRP heuristic capable of consistently delivering
a “good” solution to any CVRP instance, our research shows that the CWS
heuristic followed by the application the 2-opt algorithm will produce a reason-
able result that cannot be consistently matched or beaten by any single heuristic
discovered in our research. The failure to locate a previously undiscovered solve-
all heuristic from these experiments is consistent with the results observed by
Bader el Den and Poli [2], who applied a similar technique on exam timetabling
problems. Applying the best outcome from a small number of general heuristics
achieves much better results, but still falls short of what can be achieved by
applying the proposed hyper-heuristic to generate a heuristic for an individual
CVRP instance.

Analysis of the results from our research indicate that some of the operators,
such as the splitRoutes and redoRoute, can be simplified or omitted. Also, inter-
preting the number of operator repetitions relative to the size of the problem
instance rather than as an absolute number may improve the computation time
of the heuristic on larger CVRP instances.

The decision to use GE has provided challenges, including many of those
discussed in Section 2. While we have achieved good results using GE it is difficult
to avoid the impression that the search process is not as efficient as it could be.
Analysis suggests the problem lies in the nature of the feedback provided from the
fitness evaluation function. A CVRP contains two interdependent sub-problems:
vehicle loading and travel distance. The single score based on distance alone does
not adequately assist the search engine. Further, as identified by Rothlauf and
Oetzel [24], the low degree of locality between genotype and phenotype hinders
an efficient search process. Applying the proposed hyper-heuristic using GE on
the CVRP reveals there are a number of barriers to achieving high locality, which
we discuss further in Section 5.4.

5.3 Crossover and Mutation Operators

When using the sub-tree crossover and mutation operators recommended by
Manrique et al. [5,19], we observe an early and rapid decline in the diversity of
the population. This favours those heuristics that develop a good solution using
relatively few operators. Equally it means the best solution that the search engine
is likely to deliver in this run is found in relatively few generations. Although
this is not necessarily a bad situation, it means that more complex combinations
of operators, which may produce a better solution, are prematurely pushed out
of the population by pseudo-clones of the same good solution found so far. The
mergeBestSaving operator (which is the core operator of the CWS heuristic)
is a case in point as this develops a reasonably good solution using a minimal
number of operators.

We also trialled three different combinations of crossover and mutation op-
erators. As illustrated in Figure 2 the performance of these operators is quite
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Fig. 2. Comparison between Sub-Tree and Single Point crossover and Sub-Tree and
IntFlip mutation operators. Showing average population fitness per generation on the
A-n37-k6.vrp [1] problem instance. Population size = 80.

different although all eventually arrived at similar results in every case. The
difference between the operators lies in the speed of execution and the average
fitness of the current population of the search engine.

Figure 2 illustrates the difference in the performance of the crossover and
mutation operators by measuring the average fitness of the individuals in the
population in the first 100 generations of a typical example (CVRP instance
A-n37-k6.vrp [1]). The upper line records the average fitness from using single
point crossover and intFlip mutation operators. This results in a wider variance
in the fitness of the individuals in the population compared to sub-tree crossover
and sub-tree mutation operators (lowest line). The population created by the
latter combination rapidly converges towards the best fitness found so far and
thereafter shows little diversity. The hybrid single point crossover and sub-tree
mutation combination retains diversity in the population for longer, but then
converges on the best fitness found so far.

5.4 Hyper-Heuristics and Capacitated Vehicle Routing

If, as discussed in Section 2, high locality is a desirable feature, then we need to
be able to define what makes two solutions neighbours. With hyper-heuristics
the elements used are operators to be processed rather than the raw data of
the problem to be solved. If we were solving a CVRP directly we could identify
neighbouring solutions by the similarity of routes or commonality of arcs between
customers.
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With a hyper-heuristic, the sequence of operators and parameters cannot be
easily identified as neighbours. A minor change to the sequence of operators, or a
parameter, will likely result in a radically different solution when the heuristic is
applied to a problem instance. It is therefore inappropriate to refer to a sequence
of operators as neighbours simply because they appear similar. This raises the
question of whether the feedback needs to be more complex than a single numeric
score and, if so, how should the search engine interpret such feedback.

6 Conclusions

We have shown that good heuristics can be delivered from a GE-based hyper-
heuristic that use operators that enable both construction and improvement of
a solution to a CVRP instance. However, elements of the hyper-heuristic search
process show scope for considerable improvement. Indeed, a different evolution-
ary computation approach may be desirable. Further research will examine to
what extent those improvements can be found in modifying the feedback pro-
vided to the search engine, streamlining the search operator, and/or using a
different evolutionary search process.
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Abstract. In recent years, the resource-constrained project scheduling problem
(RCPSP) with multiple execution modes is becoming more and more popular. In
this paper, a new cooperative coevolutionary algorithm based on the concept of
organizations, namely Organizational Cooperative Coevolutionary Algorithm for
MRCPSPs (OCCA-MRCPSPs), is proposed for solving this problem. The ob-
jective is to find a schedule of activities together with their execution modes so
that the makespan is minimized. In the OCCA-MRCPSPs, the population is di-
vided into two subpopulations, for activities execution modes, respectively. The
two subpopulations evolve independently, and each subpopulation is composed
of organizations. During the evolutionary process, the global searching and the lo-
cal searching are combined efficiently by conducting different operators. At first,
each subpopulation searches the whole space of its domain through the splitting
operator, the annexing operator, and the cooperation operator. Afterwards, the
two subpopulations are combined to form complete solutions, and a local search
operator is performed. In the experiments, the performance of OCCA-MRCPSPs
is validated on benchmark problem sets J10, J12, J14, and J16 from the PLPSIB,
and the experimental results show that the OCCA-MRCPSPs obtains a good per-
formance not only in terms of the optimal solutions found but also in terms of the
average deviations from optimal solutions.

Keywords: Resource-constrained project scheduling problems, Multimode,
Cooperative coevolutionary algorithms, Organizations.

1 Introduction

The resource-constrained project scheduling problem (RCPSP) is a popular problem
that interests lots of researchers. In RCPSPs, a project is consisted of several activities,
and each activity needs a related duration and several different resources to complete.
The resources can be divided into two kinds, namely renewable resources (RR) and
nonrenewable resources (NR). In addition to the resource capacity constraints, there are
precedence constraints among these activities. Usually, once an activity starts, it can not
be interrupted.

The multimode RCPSP (MRCPSP) is an extension of the RCPSP [1]. The most
important difference between them is that there are several execution modes for each
activity in the MRCPSP and each execution mode may need different types of and
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amounts of resources, while in the RCPSP, each activity has only one execution mode.
The objective is to find a schedule of activities and modes with minimum makespan
which also satisfy both resource constraints and precedence constraints.

The MRCPSP is strongly NP-hard. Researchers tried to solve it with different kinds
of methods. Jozefowska et al. [2] and Bouleimen et al. [3] proposed the algorithms
based on simulated annealing. Slowiński et al. [4] proposed a single-pass approach,
a multi-pass approach as well as a simulated annealing algorithm. A biased random
sampling approach was proposed by Drexl and Grünewald [5]. A local search strategy
was proposed by Kolisch and Drexl [6]. Hartmann et al. used genetic algorithms to solve
the MRCPSP [7,8]. Sprecher et al. [9] proposed an exact algorithm based on the branch-
and-branch strategy. A new mathematical formulation for the MRCPSP is proposed by
Maniezzo and Mingozzi and two new lower bounds were derived [10]. Boctor presented
heuristics to solve the MRCPSP without the nonrenewable resources [11–13]. Tseng et
al. proposed a two-phase genetic local search algorithm in [1], which first search the
whole solution space to find a set of elite solutions, and then most solutions in the elite
set are selected to construct the initial population of the second phase. This method
improves the search efficiency and performs well on the benchmark problems.

Coase explained the sizing and formation of organization from the framework of
transaction cost in economic [14]. The basic idea is that the organization exists be-
cause it reduces the overhead transaction costs associated with exchanging goods and
services. Wilcox introduced this concept into learning classifiers based on genetic algo-
rithms [15]. Inspired by the idea of organizations, in our previous work, we proposed an
organizational coevolutionary algorithm for classification [16], which achieved a higher
predictive accuracy and lower computational cost, and an organizational evolutionary
algorithm (OEA) for numerical optimization problems [17], which showed a good per-
formance in terms of both the solution quality and the computational cost. In [18], we
also applied OEA to general floorplanning problems, which can obtain high quality
solutions for various and large-scale problems.

All our previous work shows that OEA has a huge potential in solving complex
problems. Therefore, in this paper, with the intrinsic properties of MRCPSPs in mind,
we combine the OEA with cooperative coevolutionary algorithm to solve MRCPSPs,
and the algorithm is named as OCCA-MRCPSPs. During the evolutionary process of
OCCA-MRCPSPs, the global searching and the local searching are combined efficiently
by conducting different operators. The performance of OCCA-MRCPSPs is tested upon
the benchmark problem sets J10, J12, J14, and J16, and the results show that OCCA-
MRCPSPs obtains a good performance not only in the optimal solutions found but also
in the average deviations from optimal solutions or critical path lower bounds.

The rest of the paper is organized as follows. Section II gives a brief introduction on
MRCPSPs. Section III describe the proposed algorithm in details. The experiments are
given in Section IV. Finally, Section V summarizes the work in this paper.

2 Problem Definition

In MRCPSPs, the activities of a project are marked by 1, 2, . . . , n. For an arbitrary activ-
ity i, its execution modes are represented by a set EMi = {1, 2, . . . ,Mi}, and a mode
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means a group of different kinds and quantities of resources, and it costs a related dura-
tion. If activity i executes in mode mi, then it needs rRR

imik
units of renewable resource

k, and rRR
imik

units of nonrenewable resource k, dimi indicates its related duration.
As indicated above, there are two kinds of constraints in the MRCPSP, one is the

precedence constraint, and the other is the resource constraint. The precedence con-
straint can be described by a graph in Fig. 1, where each node represents an activity,
and if there is an arrow from node i to j, it means that activity i is the immediate pre-
decessor of activity j, similarly, activity j is called the immediate successor of activity
i. An activity can not be arranged before all of its immediate predecessors have been
completed. Image resource k belongs to renewable resources, and its gross is a constant
QRR

k , which means no matter at which moment, the total amount of resource k is equal
to QRR

k , while if k is a nonrenewable resource and its gross is a constant QRR
k , which

means in the overall process, the total amount of resource k is stationary.
The objective of MRCPSPs is to optimize the start time and the execution mode

for each activity so that the makespan of the whole project is minimized. At the same
time, the precedence and resource constraints must be satisfied. In Fig. 1., there are
two dummy activities called fictitious initial activity and fictitious finish activity that
do not need any resources and their durations are zeros. Suppose each activity has two
execution modes except the dummy activities, and there are one type of renewable
resources and one type of nonrenewable resources. The data above node i mean the
duration, the renewable resource cost, and the nonrenewable resource cost for activity i
when it is executed under mode 1. Similarly, the data below node i mean the duration,
the renewable resource cost, and the nonrenewable resource cost for activity i when it
is executed under mode 2.

Fig. 1. An instance of the MRCPSP

3 Organizational Cooperative Coevolutionary Algorithm for
MRCPSPs

3.1 Preprocessing

In order to reduce the search space, a reduction procedure for MRCPSP introduced
by Sprecher et al. in [19] is first used. If an execution mode exceeds the renewable
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resource constraints, it is called a non-executable mode. When executing a mode, if its
duration is not shorter than another mode, and its costs of resources are not less than
this mode, then it is an inefficient mode. Besides, if a nonrenewable resources total
amount is not less than the sum of the largest requirements of each activity, then it is
said to be redundant. Obviously, the non-executable and inefficient modes as well as
the redundant resources can be deleted from the data, and this not only has no effect on
the optima, but also can reduce the search space.

As described in [19] and [7], the remove of modes and nonrenewable resources can
affect each other. For example, deleting a nonrenewable resource may cause some
modes inefficient, while removing a mode can make some resources be redundant.
Thus, the data can be recomposed by the following steps. First, remove all of the
non-executable modes from data. Second, delete all of the redundant nonrenewable
resources and, subsequently, all inefficient modes. Conduct the second step repeatedly
until no redundant nonrenewable resource is left. After these steps, both the number of
feasible solutions and the search space is reduced.

3.2 Populations and Organizations for MRCPSPs

In the OCCA-MRCPSPs, the population is divided into two subpopulations, labeled as
popa and popo. popa means the population of activities and popo means the pop-
ulation of modes. Besides, each subpopulation is composed by several organizations,
and an organization is composed by members. A complete solution is constructed by
combining a member in popa and a member in popo. Thus, we first introduce the
definition of members and then define organizations.

Definition 1. A member in popa is labeled as M〈A〉, and a member popo is labeled
as M〈O〉. M〈A〉 is a permutation of all activities, and all activities in this permutation
are arranged according to the precedence constraints,

M〈A〉 = {π1, π2, . . . , πn} (1)

where (π1, π2, . . . , πn) is a permutation of (1, 2, . . . , n), and for πi, i = 1, 2, . . . , n −
1, no immediate predecessors of πi is in {πi+1, πi+2, . . . , πn}. M〈O〉 is the set of
execution modes for each activity,

M〈O〉 = {o1, o2, . . . , on} (2)

where oj ∈ EMπi , j = 1, 2, . . . , n, and stand for the execution mode of activity πi.
After the preprocessing, the execution modes that violate renewable resource con-

strains are already removed. In addition, the permutation of activities in a member of
popa strictly obeys the precedence constraints. Therefore, a solution M =
{M〈A〉,M〈O〉} is an infeasible solution only if it violates the nonrenewable resource
constraints. In this paper, we use the fitness function proposed in [8] to evaluate the
quality of a solution, which is defined as follows,

f =

⎧
⎪⎨
⎪⎩

mak(M) if M is feasible

max fea pop mak +mak(M)

−min project CC + SFT (M) Others

(3)
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where mak(M ) indicates the makespan of M . max fea pop mak expresses the max-
imum makespan among all feasible solutions in current population, which should be
updated in every generation. min project CC is the critical path using the minimum
durations of activities, which is smaller than the makespan of any infeasible schedul-
ing. SFT (M) represents the amount of the nonrenewable resources that exceeds the
capacities. For an infeasible solution, SFT (M) is undoubtedly larger than zero, and
the length of critical path is smaller than any of the makespans of feasible solutions.
Therefore, the makespans of infeasible solutions are greater than that of feasible ones.

Here, a simple example is given to show the meaning of (3). For the instance in
Fig. 1, let the maximum makespan of all feasible solutions in current population be 12.
min project CC is 7. Suppose there is a solution M , where M〈A〉={1, 2, 3, 4, 5,
6, 7, 8} and M〈O〉={1, 1, 2, 1, 2, 1, 2, 1}, and the total capacity of nonrenewable
resources is 16. Then, we can see that the solution is infeasible, because the cost of
nonrenewable resources is 20, which is larger than 16. SFT (M) is 4 and mak(M) is
10. Therefore, f(M) is 19.

Based on the members, an organization is defined as follows,

Definition 2. An organization orga in popa is a set of M〈A〉, while an organization
orgo in popo is a set of M〈O〉. The best member of an organization is the leader.
The fitness value of an organization is equal to that of its leader.

When two organizations are compared, only their leaders are considered; that is, one
organization is better than another when its leader is better than another ones leader.

3.3 Evolutionary Operators for Members

There are three types of operators which can be conducted on members directly, namely
crossover, mutation, and local search operators.

1)CrossoverOperator: The crossover operator is used by the activity subpopula-
tion popa. This operator is based on two-point crossover operators that operator on two
parent membersMp1〈A〉 andMp2〈A〉, and generate two child membersMc1〈A〉 and
Mc2〈A〉.

First, two cut-points r1 and r2 are randomly drawn. Then, the first r1 elements of
Mc1〈A〉 are inherited from the first r1 elements of Mp1〈A〉. The following r2 − r1
elements of Mc1〈A〉 are inherited from the first r2 − r1 elements of Mp2〈A〉 which
do not appear in the first section of Mc1〈A〉. The remaining elements of Mc1〈A〉 are
inherited from the remaining elements of Mp1〈A〉 which do not appear in the first two
sections of Mc1〈A〉. All elements of Mc1〈A〉 inherited from the parents must keep
the order as they appear in Mp1〈A〉 or Mp2〈A〉.Mc2〈A〉 is constructed in the same
way with the roles of Mp1〈A〉 or Mp2〈A〉 being exchanged.

2)MutationOperators: Since the ways of mutation for the two subpopulations are
different, there are two kinds of mutation operators used. The mutation operator that
employed by the activity subpopulation popa is labeled as Mutation1. First, n1 ac-
tivities are randomly selected, where n1 is smaller than one thirds of the total number
of activities. Then, each activity of the n1 ones is randomly moved to another position
without violating the precedence constrains. That is, an activity can move to any posi-
tion as long as it is behind all of its immediate predecessors at the same time before all
of its immediate successors.
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A simple example is given here to further explain Mutation1. Suppose Mutation1

is performed on Mp〈A〉, where Mp〈A〉={1, 2, 3, 4, 5, 6, 7, 8}, and n1 is equal to 1.
Suppose the activity selected is 4, then its positions is changed; that is, Mp〈A〉 can be
changed to {1, 4, 2, 3, 5, 6, 7, 8} or {1, 2, 4, 3, 5, 6, 7, 8}.

The mode subpopulation popo uses a different kind of mutation method, which is
labeled as Mutation2. Firstly, n2 activities are randomly selected, where n2 is smaller
than one thirds of the total number of activities. Then for each of the n2 activities,
change its execution mode to another one.

3)LocalSearchOperator: In order to improve the search efficiency, a local search
operator is designed based on Mutation1 and Mutation2. This operator works as
follows. First, the best members among popa and popo are selected and combined to
form a complete solution. Then, Mutation1 and Mutation2 are alternatively executed
on this complete solution. If the new solution is better than the previous one, it is used
to replace the previous one. The above process is repeated until the upper bound times
T is reached.

3.4 Evolutionary Operators for Organizations

In the real-world situation, there exists a severe competition among organizations, and
the weak ones are always annexed by the strong ones. Besides, the organizations also
have a cooperative relationship. As the strength of an organization is represented by
the fitness value of its leader, the purpose of each organization is to make the fitness of
its leader be better. Based on these, three evolutionary operators, namely the splitting
operator, the annexing operator, and the cooperating operator which are performed on
organizations directly are designed.

1)SplittingOperator: In human societies, when the size of an organization is too
large, it will be split into small ones in order to be managed easily. In the OCCA-
MRCPSPs, if one organization is too large, it will affect the search efficiency. Therefore,
an upper bound size, labeled as max os (>1), is set to prevent an organization being
too large. When the size of an organization exceeds the upper bound or satisfies the
other condition in (4), the organization will be split.

(|org| > maxos or ((|org| ≤ maxos) and (U(0, 1) < |org|/N0))) (4)

where U(0, 1) is a uniformly distributed random number between 0 and 1, and N0 is
the initial number of organizations. Then, randomly generate an integer M satisfying
|org|/3 < M < 2|org|/3, then divide the individuals randomly into the two sub-
organizations until one of them has M members, and the other one has |org| − M
members. After the two child organizations are generated, their best members are se-
lected to be their leaders, and the original organization is removed from the population.

2)AnnexingOperator: The annexing operator reflects the competition between two
organizations. The organization with stronger strength will defeat the weak one and an-
nex it to construct a larger organization. Suppose the annexing operator is performed
on two parent organizations, orgp1 and orgp2, which come from popa or popo, and
f(Leaderorgp1) < f(Leaderorgp2). That is, the fitness of orgp1 is worse than that
of orgp2. The method for computing the fitness of members in each subpopulation



686 L. Wang, J. Liu, and M. Zhou

will be introduced in the next subsection. Then, orgp2 will be annexed by orgp1 in the
following way to generate a new organization orgnew. First, all members of orgp1
are moved to orgnew without any change. Then, if the two organizations come from
popa, Mutation1 is performed on Leaderorgp1 to generate |orgp2| new members
for orgnew; otherwise, Mutation2 is used. Finally, orgnew is added to the subpop-
ulation and orgp1 and orgp2 are removed. After performing the annexing operator, the
two organizations become a larger organization and the leader of the new organization
needs to be selected again.

3)CooperatingOperator: The cooperating operator reflects the cooperative rela-
tionship between two organizations. Suppose the cooperating operator is performed
on two parent organizations, orgp1 and orgp2 , which come from popa or popo

. If the two organizations come from orga , then crossover operator is performed on
Leaderorgp1 and Leaderorgp2 ; otherwise, Mutation2 is conducted on
Leaderorgp1 and Leaderorgp2 separately. After performing the cooperating oper-
ator, two new members are generated, and the two old leaders are replaced by the new
members.

3.5 Implementation of OCCA-MRCPSPs

In the OCCA-MRCPSPs, the population is divided into two subpopulations, popa and
popo, and each subpopulation is composed of organizations. In the initialization, each
subpopulation has N0 organizations and each organization has only one member. Mem-
bers in popa are generated used the method in [19], and members in popo are gener-
ated randomly based on the activities after the preprocessing. After the initialization,
the fitness of each member in the two subpopulations are calculated as follows. For
each member in popa, randomly choose a member from popo, and combine the two
members to form a complete solution, then calculate its fitness according to (3). The re-
sult will be the fitness of the member from popa. The fitness of each member in popo

is calculated in the same way.
Next, in each generation, the two subpopulations evolve independently. For each sub-

population, the size of each organization is first checked. If it satisfies (4), the organiza-
tion will be split. Then, two organizations are randomly selected from the corresponding
subpopulation, and the annexing operator or the cooperating operator will conduct on
them with the same probability. Afterwards, update the fitness of each member. To be
different from the process of calculate fitness in the initialization, now, for each member
in popa, first combine it with the best member in popo to form a complete solution,
then combine it with a random member in popo to form another complete solution,
choose the better one to be the fitness of this member. The fitness of members in popo

are updated in the same way.
Then, choose two members from popa and popo separately and form a complete

solution, and conduct the local search operator on it. The population evolves generation
by generation. During the evolutionary process, the number of organizations increases
or decreases through the splitting operator or the annexing operator. Although the num-
ber of organizations in the population varies from generation to generation, the total
number of members remains constants. The details of OCCA-MRCPSPs are summa-
rized in Algorithm 1.
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Algorithm 1. Organizational cooperative coevolutionary algorithm for MRCPSPs

Conduct the preprocessing;
Initialize the subpopulations with N0 organizations separately, and each organization has
one member;
Calculate the fitness value of each member;
while the termination criteria are not satisfied do

for each subpopulation do
For each organization, if it satisfies (4), then conduct the splitting operator
on it;
Randomly select two organizations from the current subpopulation, and
conduct the annexing operator or the cooperating operator on them with the
same probability;

end
Update the fitness of each member;
Conduct the local search operator on the current population;

end

4 Experiments

In this section, benchmark problem sets J10, J12, J14 and J16 from the PSPLIB [20]
are used to test the performance of OCCA-MRCPSPs. The total number of instances in
J10, J12, J14 and J16 are 536, 547, 551, and 550, respectively. In each instance of J10
data set, there are 10 non-dummy activities; for J12, each instance has 12 non-dummy
activities, and so on. Each instance in these sets has two kinds of renewable resources
and two kinds of nonrenewable resources.

The OCCA-MRCPSPs is tested upon the four data sets, for each instance, 30 inde-
pendent runs are conducted. The optimal solutions of these instances are known, so we
use the two indexes namely the percentage of the optimal solution found and the aver-
age deviation from the optimal solutions to evaluate the performance of the algorithm.
The average deviation from the optimal solutions is calculated according to (5).

Average deviation =

∑
instancei

( best makespani

optimal makespani
− 1)

number of feasible instances
(5)

Tables 1 and 2 show the results for J10 and J12 while the maximum number of sched-
ules evaluated varies from 5000 to 50000. As can be seen, with the increasing of the
maximum number of schedules evaluated, the performance of the OCCA-MRCPSPs is
getting better. While the maximum schedules become 50000, the percentages of opti-
mal solutions found for both J10 and J12 is large than 98% and the average deviation
from optimal solutions is smaller than 0.1%.

In existing literature on MRCPSPs, we find that most of them show the performance
by calculating the average deviation from optimal solutions evaluated being a fixed
number, while majority of these set the maximum schedules to 5000. Therefore, Table
3 compares the performance of OCCA-MRCPSPs with that of another method for J10
to J16 under 5000 schedules.
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Table 1. The percentage of optimal solutions found (%) for J10 and J12

Set\Size 5000 10000 20000 50000

J10 95.44 97.76 99.03 99.67
J12 86.15 92.00 96.01 98.59

Table 2. The average deviation (%) from optimal solutions for J10 and J20

Set\Size 5000 10000 20000 50000

J10 0.275 0.141 0.070 0.035
J12 0.786 0.408 0.199 0.076

Table 3. Comparison in terms of average deviation (%) from optimal solutions between OCCA-
MRCPSP and another Method under 5000 schedules

Method\Set J10 J12 J14 J16
OCCA-MRCPSPs 0.28 0.79 1.18 2.75

Jozefowska et al.[2] 1.16 1.73 2.6 4.07

Table 4. The comparison in terms of optimal solutions found (%) for J10 and J12 between OCCA-
MRCPSP and another Method under 5000 schedules

Set Method\Size 5000 10000 20000 50000
J10 OCCA-MRCPSPs 95.44 97.76 99.03 99.67

Jozefowska et al.[2] 85.60 93.70 96.60 97.20
J12 OCCA-MRCPSPs 86.15 92.00 96.01 98.59

Jozefowska et al.[2] 80.30 91.60 96.70 97.60

Tables 4 and 5 compare the performance of OCCA-MRCPSPs and another method
with the maximum schedules evaluated fixed to 5000, 10000, 20000, and 50000. As can
be seen, the OCCA-MRCPSPs outperforms the algorithm proposed by Jozefowska et
al. [2].

Table 5. The comparison in terms of average deviation (%) from optimal solutions for J10 and
J12 between OCCA-MRCPSP and another Method

Set Method\Size 5000 10000 20000 50000
J10 OCCA-MRCPSPs 0.275 0.141 0.070 0.035

Jozefowska et al.[2] 1.160 0.470 0.270 0.230
J12 OCCA-MRCPSPs 0.786 0.408 0.199 0.076

Jozefowska et al.[2] 1.730 0.740 0.420 0.370
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5 Conclusion

The OCCA-MRCPSPs, a new organizational cooperative coevolutionary algorithm for
solving project scheduling problems with multiple modes, is proposed in this paper. In
the OCCA-MRCPSPs, the population is divided into two subpopulations, namely the
activity subpopulation and mode sub-population. Each subpopulation is composed by
several organizations and organizations are composed by members. In the earlier stage
of each generation, the two subpopulations evolve independently through the splitting
operator, the annexing operator, and the cooperating operator, which realize the global
search. Then in the later stage of each generation, combine the individuals of the two
subpopulations to form complete solutions, and a local search strategy is executed in
order to further improve the quality of members.

In the experiments, we have tested the OCCA-MRCPSPs upon the benchmark prob-
lem sets J10, J12, J14, and J16. The results show that when the number of maximum
schedules evaluated increases, the percentages of optimal solution found increase ob-
viously and the average deviations from optimal solutions decrease obviously, while
compare with other algorithms, the OCCA-MRCPSPs obtains a better performance.
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Abstract. The Storage Location Assignment Problem (SLAP) is to find an op-
timal stock arrangement in a warehouse. This study presents a scalable method
for solving large-scale SLAPs utilizing Genetic Programming (GP) and two sam-
pling strategies. Given a large scale problem, a sub-problem is sampled from the
original problem for our GP method to learn an allocation rule (in the form of a
matching function). Then this rule can be applied to the original problem to gen-
erate solutions. By this approach, the allocation rule can be obtained in a much
shorter time. When sampling the problem, the representativeness is a key factor
that can largely affect the generalizability of the trained allocation rule. To investi-
gate the effect of representativeness, two sampling strategies, namely the random
sampling and filtered sampling, are proposed and compared in this paper. The
filtered sampling strategy adopts more information about the problem structure
to increase the similarity of the sampled problem and the entire problem. The re-
sults show that the filtered sampling performs significantly better than the random
sampling in terms of both solution quality and success rate (i.e., the probability
of generating feasible solutions for the large problem). The good performance
of filtered strategy indicates the importance of sample representativeness on the
scalability of the GP generated rules.

Keywords: Scalability, Storage Location Assignment Problem, Sampling Strat-
egy, Genetic Programming.

1 Introduction

The Storage Location Assignment Problem (SLAP) [1] is an important optimization
problem in warehouse management. It improves the overall operational efficiency (e.g.
space utilization [2], total picking effort [3], relocation effort [4] or peak picking load
[5]) by rearranging the inventory layout in warehouses. There are many factors to be
considered in this problem. The popularity of products is crucial and has been used
to determine whether a product can be placed to locations close to a loading zone or
not. Also, products frequently ordered simultaneously are considered to have stronger
demand dependencies and should be assigned to closer locations [6]. Other factors such
as picking strategies [7], resource availability [5] or warehouse maintenance cost [8]
may also be included and the problem can be extremely hard to solve.
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There are many approaches for solving SLAPs in literature. Comprehensive surveys
are presented in [1] and [9]. The majority of the work in this area is focused on find-
ing the exact location for each product in a warehouse. Deterministic methods such as
branch-and-bound have been successfully applied to small instances [10]. Stochastic
approaches such as Simulated Annealing [11], Tabu Search [4] or Genetic Algorithms
[12] are more widely used for larger problems to get near-optimal results. These meth-
ods usually find a good trade-off between solution quality and computational budget.
However, the solution found is only applicable to particular scenarios. In reality, the
scenario can change dramatically and frequently. To cope with such changes, one of-
ten has to repeat the whole optimization procedure and get a completely new solution.
Undoubtedly, this is expensive in both time and resource. As a result, a Genetic Pro-
gramming (GP) approach has recently been proposed, which searches in the space of
allocation rules in the form of matching functions instead of solutions for this problem
[13]. In this way, one can optimize the matching functions for the past or current sce-
narios, and then apply it to any future scenario to generate decent solutions efficiently.
In contrast to the traditional Integer Linear Programming (ILP), where the size of the
search space becomes prohibitive when the problem size reaches 400, the GP method
can still achieve good optimization performance. However, the average elapsed time
increases from around 300 seconds to about 1700 seconds when the number of items
increases from 400 to 900. In other words, the efficiency of this method deteriorates
rapidly with increasing problem size. Based on the above preliminary studies, large
scale problems are defined as the problems with more than 1000 items.

Unlike the solutions obtained by other methods in literature, the matching function
obtained by this GP approach is reusable and efficient and in most of the cases it can
get feasible and good solutions for similar sized unseen problems. In this paper, we
attempt to extend the GP approach to problems with distinct problem sizes and inves-
tigate the re-usability of the obtained matching function in this case. Specifically, a
subset of items is sampled from the entire item set to represent the original problem.
Then, the GP method is applied to the representative problem so as to obtain the allo-
cation rule in a much shorter time. Finally, the obtained allocation rule is applied to the
original problem to generate the corresponding solution for it. A similar approach has
been explored in [14] for bin packing problems on data drawn uniformly from one dis-
tribution. This experimental setup is not applicable when the representative problems
are sampled from the original problem. To investigate the representativeness of these
smaller problems, two sampling methods are developed and compared, namely the ran-
dom sampling and filtered sampling. As the name indicates, the random sampling is a
pure random sampling technique for the items. The filtered sampling, on the other hand,
filters the items based on some criteria before the sampling to obtain a more represen-
tative subset of items. The comparative results show that the filtered sampling performs
much better than the random sampling. This demonstrates the importance to consider
the characteristics of the representative problem when sampling the subset of items.

The rest of the paper is organized as follows: first, the problem description of SLAP
and the recently proposed GP approach are briefly introduced in Section 2. Section 3
discusses the two proposed sampling techniques that are used to generate the
representative problem. The experimental studies are carried out in Section 4. Finally,
the conclusions and future work are described in Section 5.
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2 Background

Our research is conducted in a warehouse storing garments. This section presents a brief
description of the problem and the recently proposed GP approach, which will be used
to solve the large-scale SLAPs in this paper.

2.1 Problem Description

Suppose we have a set of products, each consisting of a number of items in different col-
ors and sizes with their own picking frequencies, to be assigned to a set of locations in
the given warehouse. Intuitively, the same products are preferred to be stored together,
while putting items with huge popularity difference together can lead to inefficient so-
lutions. The grouping constraint was introduced to get rid of this dilemma by allowing
the split of one product into several subgroups so that they can be stored to different ar-
eas. The total picking-frequency-weighted distance is used as the approximation of the
overall picking effort. Frequently picked items are expected to be assigned to locations
that are closer to the loading zone of the warehouse. The Integer Linear Programming
(ILP) model [15] of the problem is stated in Eqs. (1) – (9).

min ς(x) =

N∑
i=1

N∑
l=1

2Pi (Vl +Hl)xil (1)

s.t.

N∑
i=1

xil = 1, l = 1, ..., N (2)

N∑
l=1

xil = 1, i = 1, ..., N (3)

N∑
l=1

ysl ≤ 2, s = 1, ..., S (4)

xil ≤
S∑

s=1

Ais

⎛
⎝ysl +

N∑
j=1

Ajsxj,l−1

⎞
⎠ , i, l = 1, ..., N (5)

S∑
s=1

ysl = 1, ∀ lmod C = 1 (6)

S∑
s=1

Bisxil ≤
S∑

s=1

Bis

(
S∑

s=1

Aisysl

)
, i = 1, ..., N (7)

N∑
i=1

Aisxil ≥ ysl, s = 1, ..., S, l = 1, ..., N (8)

xil, ysl ∈ {0, 1}. (9)
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Eq. (1) is the objective function, which is to minimize the total picking frequency-
weighted distance. Eqs. (2) and (3) indicate that each location is occupied by a unique
item. Eq. (4) means that each product can be split into at most two subgroups, where ysl
takes 1 if location l is the starting point of a subgroup of the product s, and 0 otherwise.
Eq. (5) ensures that items from the same subgroup are stored to adjacent locations,
where Ais equals 1 if item i belongs to product s, and 0 otherwise. Eq. (6) indicates
that the first bin of a shelf must be the staring point of a product. Eq. (7) is a tightening
constraint that states that the most popular item of a product is always at the start of a
subgroup. Finally Eq. (8) states that the start of a product group should actually have an
item from that product (this constraint is not strictly speaking necessary to get a valid
bound, but ensures that the y variables have the correct meaning). Table 1 lists all the
notations involved in this ILP model.

Table 1. Notations for the ILP Model

Notation Meaning Notation Meaning

i Index of items, i = 1, ...,N l Index of locations, l = 1, ...,N

s Index of products, s = 1, ..., S Pi Picking frequency of item i

M Number of shelves C Number of bins on a shelf

Vl Vertical distance of location l to the

loading zone

Hl Horizontal distance of location l to

the loading zone

Ais equals to 1 if item i is in product s;

0, otherwise.

Bis equals to 1 if item i is the most pop-

ular item in product s; 0, otherwise

xil equals 1 if item i is assigned to

location l, and 0 otherwise. (i =

1, ...,N ; l = 1, ...,N)

ysl equals 1 if location l is a starting

point of product s, and 0 otherwise.

(s = 1, ..., S; l = 1, ...,N)

2.2 A Genetic Programming Approach

The general idea of the GP approach is relatively simple. GP is used to evolve matching
functions which help to identify the most suitable subsets of product to an equally sized
set of locations. A matching function takes the set of items and consecutive locations
as input, and returns a value to reflect the degree of suitability to assign the given items
to the corresponding locations. Given a matching function, the solution is constructed
from scratch. At each step, the best-fit set of items to the nearest available location
is identified and allocated to the set of locations starting from the nearest available
location. The solution generation is completed after all the items have been assigned
into the locations. When evolving the matching functions, the fitness of a matching
function is set to the objective function value of the solution generated by it.

A standard tree-based representation is adopted by the GP. To handle item sets with
arbitrary size, statistical data of the picking frequencies of these items and distances
of locations to the loading zone are used as the terminal set of the GP method. Simple
arithmetic and logic operators are applied to connect these terminals to form the GP
tree. Details of this method can be found in [13].
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3 Methodology

The complexity of the optimization process of the allocation rule by GP depends on the
problem size, and is time consuming for large scale problems. Thus, it is impractical to
apply the proposed GP directly on the large scale problems. To address this scalability
issue, smaller sized problems are generated by sampling subsets of items out of the item
set of the original large scale problem as its representatives. The allocation rules are
evolved on the smaller sized representative problems, and then applied to the original
problems to obtain the solution. For example, given an 1000-item problem, one can
sample 200 items out of the total 1000 items to form a 200-item problem, and evolve
the allocation rules for this smaller problem by the GP. In this way, the allocation rule
can be obtained in a much shorter time.

As demonstrated in [13], the evolved allocation rules managed to obtain promising
performance on unseen problems with the same sizes. However, it is unknown whether
such property is maintained for those have different sizes, since the difference in prob-
lem size may lead to distinct problem structures, and thus different desirable properties
of the allocation rules. Therefore, one cannot guarantee that an allocation rule opti-
mized on smaller problems can be generalized well to larger problems. To evolve a
more generic allocation rule with better re-usability regardless of the problem size, we
propose and compare two sampling techniques, namely the random sampling and fil-
tered sampling, to generate representative problems for the original problem. Here, the
re-usability of an allocation rule is defined as its ability of getting feasible and high
quality solutions when applied to problems with different sizes.

3.1 Random Sampling

Random sampling is the most intuitive way of sampling. Given a list I of the items,
the algorithm of random sampling is as described in Algorithm 1. For example, given
the 8-item list shown in Table 2, a subset {1, 5} consisting of the first and fifth item
is randomly sampled. Ease of implementation is the main advantage of this method.
It simply places all the items in a giant sequence and picks the items randomly until
the size limitation Limit has been reached. The algorithm starts with an empty list X ,
the number of sampled items Limit and the original list of items. In each iteration,
a random number r is generated, and the rth item in the current item list is selected.
Then, the selected item is removed from the item list and is inserted into list X . The
procedure terminates after Limit iterations.

3.2 Filtered Sampling

In our previous study [13], we have observed the following behaviours of the proposed
GP:

1. It consistently obtained feasible solutions during the optimization.
2. It can obtain feasible and good solutions on most of the unseen problems.
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Table 2. Example Data Set

Item No. SKU Color Size Picking Frequency

1 AK001 BLACK S 221

2 AK001 BLACK M 1070

3 AK001 BLACK L 293

4 AK001 WHITE S 15

5 AK001 WHITE M 2200

6 AK001 WHITE L 378

7 BL78 BLUE XS 735

8 BL78 BLUE S 467

- - - - -

Algorithm 1. Random Sampling Procedure

1: Initialize an empty item list X;

2: Initialize Limit to a positive integer;

3: repeat

4: Assign r with a random number between [0 , size(I )];

5: Add Ir to item list X;

6: Remove Ir from I ;

7: Limit := Limit − 1;

8: until Limit == 0;

9: return X;

3. When there exists a product containing a large number of items, and if a smaller
number of items in this product is firstly picked and the rest is not allowed to be
split. Then none of the shelves is capable of holding the rest items without violating
any constraint. As a result, an infeasible solution occurs.

Based on the above observations, we deduce that the number of items in the products
plays an important role in the generalizability of the obtained allocation rule. In order
to increase the probability of obtaining an allocation rule that can deal with products
with a large number of items, a filtered sampling method is proposed to remove the
products with single item. It is described in Algorithm 2. In Step 3, products with one
item are firstly deleted as those products are not required to be split and thus can hardly
provide information for the learning procedure. In the algorithm, at each step, a set of
λ consecutive items are picked instead of only one item so as to increase the probabil-
ity of selecting the items in the same product. The parameter λ can be specified to a
sufficiently large integer, e.g., 20 or 30, in practice.

4 Experiments and Results

The test problems are generated from two raw data sets, each with more than 10, 000
items. Each raw data set is randomly split into five exclusive subsets of items, each
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Algorithm 2. Filtered Sampling Procedure
1: Initialize X to an empty item list and I to the list of all items;

2: Initialize Limit to a positive integer;

3: Delete from I those products with only one item;

4: Initialize parameter λ;

5: inter = λ;

6: repeat

7: Assign r with a random number between [0 , size(I )− inter ];

8: Add Ir , ..., Ir+inter to item list X;

9: Remove Ir , ..., Ir+inter from I;

10: Limit := Limit − inter;

11: inter := min{inter , Limit};

12: until Limit == 0 ;

13: return X;

consisting of over 2, 000 items. Overall, 10 test problems have been generated for ex-
perimental studies, labelled from p1 to p10 (p1 ∼ p5 for the first raw data set, and
p6 ∼ p10 for the second). When sampling the subsets to form the representative prob-
lem for each test problem, the number of sampled items is set to 400. The sampling
is repeated five times and thus five representative problems are generated. During the
optimization process, the fitness of an allocation rule is defined as the average fitness of
the solutions generated by applying the rule to the five representative problems. Finally,
the obtained best-fit allocation rule is evaluated by applying it to the original problem
and calculating the objective value of the corresponding solution. Thirty independent
runs were conducted for each test problem, and the best, worst and average results are
recorded.

4.1 Random Sampling

Table 3 shows the experimental results for the random sampling method. It lists the
number of infeasible solutions obtained in the 30 independent runs and the best, worst
and average fitnesses achieved when applying the allocation rule obtained from the
representative problems to the original problem. For each test problem, the best known
fitness α is obtained by optimizing the allocation rules on the full problem without using
representative subproblems. It can be seen that on p6 ∼ p8, the obtained allocation
rules failed to get feasible solutions in all the 30 runs. p10 shows the best performance
in terms of feasibility. In terms of the percentage deviation of the best fitness from
the best-known fitness Diff α

Min , it can be observed that the random sampling obtained
promising results on p1, p3 and p5, which are less than 1%. Due to the high success
rate, the random sampling achieved the best average results on p10.
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Table 3. The Results of Random Sampling

Set α β Min Diff α
Min Max Diff α

Max Avg ± (Stdv) Diff α
Avg

p1 3059169 23 3078208 0.62% 6673130 118.14% 3716687.90 ± (3.48E05) 21.49%

p2 2977428 24 3029585 1.75% 3877362 30.23% 3133622.43 ± (2.73E06) 5.25%

p3 3092760 25 3120909 0.91% 4463370 44.32% 3254232.40 ± (5.10E06) 5.22%

p4 2912623 27 2943177 1.05% 4259747 46.25% 3036241.17 ± (1.91E06) 4.24%

p5 3114503 12 3130649 0.52% 10086239 223.85% 3530287.10 ± (1.42E05) 13.35%

p6 1900213 30 2337416 23.01% 3898660 105.17% 2788313.30 ± (9.90E05) 46.74%

p7 3265076 30 4135615 26.66% 17004364 420.80% 7389082.73 ± (1.92E05) 126.31%

p8 3686151 30 4339916 17.74% 23698704 542.91% 7331767.53 ± (2.32E05) 98.90%

p9 3400729 27 3436107 1.04% 13076871 284.53% 4313234.23 ± (2.38E05) 26.83%

p10 3006363 8 3059604 1.77% 3844230 27.87% 3118322.03 ± (1.32E06) 3.72%

1. α is the best fitness known so far, obtained by optimizing the set directly.
2. β is the number of infeasible solutions achieved in total 30 runs.
3. Diff B

A = A−B
B

× 100%.

4.2 Filtered Sampling

Tables 4 and 5 give the results using the filtered sampling method. Four experiments
with λ = 10, 20, 50 and 100 are conducted for each set to compare with random
sampling. The tables record the number of infeasible solutions in 30 runs for each set
and for each λ configuration. The λ value of the row for random sampling is denoted
by “−”. The minimum, maximum and average fitness values and the differences of
these fitnesses to the best known result for the corresponding test problem are also
calculated. In addition, some statistical data related to the representative problems are
presented for further discussion. Each representative problem is to allocate 400 items
into a warehouse with 8 shelves, each consisting of 50 bins.

To have a clearer understanding of the results in Table 4 and 5, we firstly compare the
overall performance of the random sampling method and the filtered sampling method.
Table 6 shows the average number of infeasible solutions, the average difference of the
best, worst and average fitness obtained by the filtered sampling with different λ set-
tings. It shows that the filtered sampling can get more feasible solutions in general. For
p1, p2, p3, p4, p5, p6 and p9, the number of infeasible solutions obtained by the filtered
sampling is nearly half of that of random sampling. In addition, the solution quality is
much better when using filtered sampling. This can be observed by columns Diff α

Min ,
Diff α

Max and Diff α
Avg as the filtered method consistently achieved smaller percentage

deviation from the best known results.
Then we investigate the impact of parameter λ on the performance of the method.

This parameter is used in Algorithm 2 to determine the size of chunks taken after ran-
domly selecting a start point in the data set. The larger the λ is set, the more likely it
can generate representative problems with products containing larger number of items.
This can be observed in Table 4 and 5 where γ3 increases with λ for most of the test
problems.
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Table 4. Performance Comparison Using Different Representative Problems Generated using
Different λ Configurations for Filtered Sampling Method

Results for the Original Sets Representative Problems

set λ β Min Diff α
Min Max Diff α

Max Avg Diff α
Avg γ1 γ2 γ3 γ4 γ5

p1

10 19 3049702 −0.31% 3256170 6.44% 3144771.80 2.80% 123.00 3.26 16.60 21 13

20 19 3044269 −0.49% 4719413 54.27% 3261829.43 6.62% 115.40 3.49 21.20 25 18

50 7 3031050 −0.92% 3106600 1.55% 3066181.73 0.23% 103.60 3.97 25.40 31 22

100 5 3046582 −0.41% 3100820 1.36% 3062909.17 0.12% 64.80 6.20 34.00 37 32

− 23 3078208 0.62% 6673130 118.14% 3716687.90 21.49% 210.20 1.92 8.20 9 8

p2

10 1 3004222 0.90% 3064512 2.92% 3037839.73 2.03% 130.80 3.07 16.20 21 11

20 4 2996131 0.63% 3051311 2.48% 3025666.50 1.62% 129.00 3.14 18.80 25 15

50 26 3020389 1.44% 3745966 25.81% 3145886.40 5.66% 125.40 3.29 18.40 22 15

100 7 2989703 0.41% 3072195 3.18% 3034130.20 1.90% 60.00 6.69 34.60 38 28

− 24 3029585 1.75% 3877362 30.23% 3133622.43 5.25% 202.40 1.99 8.20 10 7

p3

10 13 3109296 0.53% 4278922 38.35% 3223621.93 4.23% 134.40 2.99 13.40 17 11

20 10 3106868 0.46% 7285031 135.55% 3342338.00 8.07% 130.60 3.09 19.40 23 17

50 20 3099309 0.21% 3261410 5.45% 3177372.20 2.74% 124.40 3.24 18.40 28 15

100 13 3102046 0.30% 3756533 21.46% 3171127.93 2.53% 62.00 6.51 32.80 35 30

− 25 3120909 0.91% 4463370 44.32% 3254232.40 5.22% 204.80 1.97 8.80 11 7

p4

10 22 2926350 0.47% 3307064 13.54% 2990174.07 2.66% 134.60 2.97 15.60 18 12

20 22 2919410 0.23% 3177614 9.10% 2964727.20 1.79% 123.80 3.29 17.40 22 15

50 11 2926303 0.47% 3257099 11.83% 2962987.50 1.73% 122.80 3.30 22.20 28 17

100 3 2925870 0.45% 2967114 1.87% 2942840.63 1.04% 63.00 6.38 31.00 34 27

− 27 2943177 1.05% 4259747 46.25% 3036241.17 4.24% 213.60 1.89 8.60 10 7

p5

10 7 3129402 0.48% 3446347 10.65% 3161727.47 1.52% 132.80 3.05 15.60 18 12

20 7 3128977 0.46% 3403266 9.27% 3168708.33 1.74% 124.40 3.23 20.80 26 16

50 5 3131274 0.54% 3732355 19.84% 3166259.27 1.66% 127.60 3.20 21.00 33 16

100 1 3131965 0.56% 3165643 1.64% 3148795.97 1.10% 65.00 6.18 34.60 37 28

− 12 3130649 0.52% 10086239 223.85% 3530287.10 13.35% 211.60 1.91 8.00 9 7

1. For each representative problem, the number of products, the average number of items a product has and the maximum
number of items a product contains are already known and can be denoted as φ, ϕ and Ω correspondingly. γ1 is the average
of φ for 5 representative problems. γ2 is the average ϕ for 5 representative problems. γ3, γ4 and γ5 are respectively the
average, maximum and minimum of Ω.
2. The definition for α, β and Diff are the same as in Table 3.

The assumption of proposing filtered sampling is that the GP method can learn to
deal with grouping constraints if enough information is provided in representative prob-
lems. In other words, when the representative problems include products containing a
larger number of items, the GP method can handle the grouping constraint better. The
results shown in Tables 4 and 5 are consistent with this assumption. For each of the test
problems, we have four rows for different λ configuration in filtered sampling. In terms
of β, Diff Min

α ,Diff α
Max and Diff α

Avg , the row with the smallest value is considered as
the winner. The comparative results are shown in Table 7. It is obvious that λ = 100 ob-
tained the best performance, as it was the winner for 7 out of the total 10 test problems
in terms of β, Diff α

Max and Diff α
Avg .
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Table 5. Performance Comparison Using Different Representative Problems Generated using
Different λ Configurations for Filtered Sampling Method (Cont.)

Results for the Original Sets Representative Problems

Set λ β Min Diff α
Min Max Diff α

Max Avg Diff α
Avg γ1 γ2 γ3 γ4 γ5

p6

10 30 2015539 6.07% 3338767 75.70% 2853695.37 50.18% 74.40 5.39 25.40 31 21

20 20 1911381 0.59% 2709338 42.58% 2008070.67 5.68% 66.40 6.07 28.40 40 23

50 15 1923527 1.23% 2034104 7.05% 1953522.73 2.81% 57.20 7.28 42.20 52 29

100 4 1924827 1.30% 4206497 121.37% 2024823.67 6.56% 25.60 15.77 69.40 77 57

− 30 2337416 23.01% 3898660 105.17% 2788313.30 46.74% 107.60 3.75 16.60 19 15

p7

10 30 3386434 3.72% 13010004 298.46% 5235240.37 60.34% 60.20 6.66 33.00 38 29

20 30 3348193 2.55% 8896970 172.49% 4538060.60 38.99% 59.20 6.86 39.60 53 28

50 30 3285883 0.64% 6158601 88.62% 3900587.93 19.46% 50.60 8.25 52.80 66 41

100 24 3325634 1.85% 5276951 61.62% 3624195.83 11.00% 21.80 18.51 85.20 100 70

− 30 4135615 26.66% 17004364 420.80% 7389082.73 126.31% 83.80 4.81 23.80 31 19

p8

10 30 4004036 8.62% 26155280 609.56% 6869958.07 86.37% 47.00 8.52 35.40 47 27

20 30 3908860 6.04% 23733476 543.86% 6821483.63 85.06% 47.20 8.55 35.40 43 30

50 30 3797211 3.01% 14658422 297.66% 5387505.03 46.16% 41.60 9.91 50.60 55 44

100 18 3873500 5.08% 6886889 86.83% 4343174.63 17.82% 17.40 23.07 82.60 92 76

− 30 4339916 17.74% 23698704 542.91% 7331767.53 98.90% 54.40 7.41 20.80 22 20

p9

10 7 3428812 0.83% 4178877 22.88% 3485899.07 2.50% 85.40 4.69 22.80 30 19

20 10 3415128 0.42% 3690611 8.52% 3454856.63 1.59% 76.00 5.33 29.00 39 23

50 10 3414876 0.42% 3830894 12.65% 3472938.93 2.12% 91.80 4.38 29.40 33 23

100 6 3425275 0.72% 3606875 6.06% 3460712.57 1.76% 33.40 12.22 65.40 74 54

− 27 3436107 1.04% 13076871 284.53% 4313234.23 26.83% 128.00 3.15 16.20 21 14

p10

10 6 3041814 1.18% 3476412 15.64% 3083405.33 2.56% 127.60 3.15 15.00 21 12

20 12 3028730 0.74% 3555192 18.26% 3097883.93 3.04% 128.60 3.17 16.00 20 14

50 14 3027124 0.69% 3709570 23.39% 3089759.90 2.77% 106.20 3.90 22.00 27 18

100 11 3022651 0.54% 3097094 3.02% 3049117.07 1.42% 63.60 6.34 31.60 38 30

− 8 3059604 1.77% 3844230 27.87% 3118322.03 3.72% 213.00 1.89 8.60 10 8

1. For each representative problem, the number of products, the average number of items a product has and the maximum
number of items a product contains are already known and can be denoted as φ, ϕ and Ω correspondingly. γ1 is the average
of φ for 5 representative problems. γ2 is the average ϕ for 5 representative problems. γ3, γ4 and γ5 are respectively the
average, maximum and minimum of Ω.
2. The definition for α, β and Diff are the same as in Table 3.

In summary, the experimental studies demonstrate that the filtered sampling strategy
performs much better than random sampling on the large scale test problems in terms
of both the capability of generating feasible solutions and the quality of the generated
solutions. The improvement of the filtered sampling with increasing λ values indicates
the importance of keeping products with larger numbers of items in the representative
problems. In other words, the consistency in the product size is playing an important
role in retaining the re-usability of the allocation rules obtained by the GP approach.
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Table 6. Comparison of Overall Performance of Random and Filtered Sampling

No.
Average of Filtered Sampling (λ = 10, 20, 50, 100) / Random Sampling

β Diff α
Min Diff α

Max Diff α
Avg

p1 12.5 / 23 −0.53% / 0.62% 15.91% / 118.14% 2.44% / 21.49%

p2 9.5 / 24 0.85% / 1.75% 8.60% / 30.23% 2.80% / 5.25%

p3 14 / 25 0.38% / 0.91% 50.20% / 44.32% 4.39% / 5.22%

p4 14.5 / 27 0.41% / 1.05% 9.08% / 46.25% 1.80% / 4.24%

p5 5 / 12 0.51% / 0.52% 10.35% / 223.85% 1.50% / 13.35%

p6 17.25 / 30 2.29% / 23.01% 61.68% / 105.17% 16.30% / 46.74%

p7 28.5 / 30 2.19% / 26.66% 155.30% / 420.80% 32.45% / 126.31%

p8 27 / 30 5.69% / 17.74% 384.48% / 542.91% 58.85% / 98.90%

p9 8.25 / 27 0.60% / 1.04% 12.53% / 284.53% 2.00% / 26.83%

p10 10.75 / 8 0.79% / 1.77% 15.07% / 27.87% 2.45% / 3.72%

1. The definition for α, β and Diff are the same as in Table 3.

Table 7. Numbers of Wins for Different λ Configuration

λ β Diff α
Min Diff α

Max Diff α
Avg

10 2 0 0 0

20 1 3 1 2

50 0 5 2 1

100 7 2 7 7

1. The definition for α, β and Diff are the

same as in Table 3.

5 Conclusions and Future Work

This paper extends the GP approach with two sampling methods to solve a SLAP with
grouping constraints. It adopts a relatively simple concept of generalization from sub-
problem to the original problem for the purpose of using the GP approach for handling
large-scale SLAPs efficiently. The major idea is to evolve the allocation rules on smaller
sized representative problems sampled from the original problem. Two sampling meth-
ods, random sampling and filtered sampling, are developed to generate the representa-
tive problems. This paper conducts a comprehensive experimental study of these two
sampling methods and the results demonstrate that the filtered sampling performs better
in terms of both feasibility and solution quality. It also shows that the GP method can
learn to deal with hard constraints regardless of the problem size if adequate critical
information is provided.

In future, several possible extensions of this study could be developed. The size of
products in representative problems has been identified as an important factor for the re-
usability of the allocation rules obtained by the GP method in this paper. More factors
are to be determined to develop an automatic procedure for generating better representa-
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tive problems. For example, the size of representative problems affects the efficiency of
the training procedure and the performance of the evolved allocation rules. Besides, the
proposed method has only applied to a SLAP with grouping constraints. More realistic
models are to be developed by including the constraints that have not been considered
in the current model. For example, more accurate approximations of operational effort
rather than the simple picking-frequency-weighted distance will be designed in the fu-
ture. This can be achieved by using order information instead of picking frequency. We
may also consider routing problems in warehouse instead of simply Manhattan distance
between two points. In addition, developing new techniques for solving this problem in
dynamic environments is another promising direction.
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Abstract. Portfolio Selection (PS) is to allocate a given amount of investment 
fund across a set of assets in such a way that the return is maximized and  
the risk is minimized. PS is a challenging financial engineering problem and op-
timization problem. GA is well known for its effectiveness in solving optimiza-
tion problems. However it may experience slow convergence especially when 
dealing with constrained optimization problems. To address this issue, we pro-
pose a variation of genetic algorithm (GA), which utilizes dual populations to 
solve PS problems. The first population is responsible for exploration in the 
search space, whilst the second one is for exploitation to speed up the conver-
gence process. These two populations share individuals periodically. The pro-
posed algorithm has been tested on the standard PS benchmark instances. The 
results reveal that our method can obtain very good results compared to the 
state of the art methods. More importantly, this dual population method is much 
faster than other methods. 

Keywords: genetic algorithm, financial marketing, portfolio selection. 

1 Introduction 

The amount of investment in the world financial market every year is enormous.  
Investors are usually seeking for maximizing their returns which naturally associate 
with high risks [1], [2], [3]. Thus, a tradeoff between maximizing the return and mi-
nimizing the risk should be considered. That is the challenge faced by portfolio man-
agers in providing high quality services for their customers, the investors. An efficient 
optimization method which can find the best point would be highly desirable [2]. 

Portfolio Selection (PS) is a key task of portfolio managers. It can be defined as the 
problem of how to select a subset of assets to form a single portfolio that could max-
imize the return and minimize the risk [2]. PS is a challenging and important problem 
that plays a pivotal role in financial engineering. PS seeks for allocate a given amount 
of money across a set of assets in such a way that the return is maximized and the risk 
is minimized. Manually selecting a good portfolio of assets is usually intractable es-
pecially when considering the complexity of the asset and the fast changing market 
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dynamics. Formulate an appropriate model first and then try to solve the model based 
on a good optimization algorithm is critical in PS. 

The Markowitz mean–variance PS model [1], [4] has been widely used to form a 
single portfolio as it captures the expected return and the risk of the formed portfolio. 
Although this model has been the core of PS theory, it has been criticized for being 
impractical in real world application as it is based on assumptions that might not rea-
listic. Among many extensions and improvements that aims to make Markowitz 
mean–variance PS model more practical, cardinality and boundary constraints are 
notable and have been widely used in the literature [2]. Cardinality constraint limits 
the number of assets to be included in the formed portfolio, while the boundary con-
straint determines lower and upper bounds for each asset of the formed portfolio. In 
this paper, we consider the extended Markowitz mean–variance PS model that in-
cludes cardinality and boundary constraints which is known as cardinality constrained 
portfolio selection problem. 

Traditionally, Markowitz mean–variance PS model has been formulated as a qua-
dratic programming problem and thus, despite being an NP-hard problem [2], a model 
with a small number of variables can be optimally solved using exact methods. How-
ever, when the number of variables is increased or some constraints are introduced, it 
becomes much more difficult, if not impossible, to use exact methods to find an op-
timal solution within a realistic amount of time frame. Therefore, researchers adopted 
meta-heuristic algorithms instead of exact methods because a good quality solution 
can be generated within a reasonable period of time [5]. Examples of meta-heuristic 
algorithms that have been adopted in the literature for PS are: Genetic Algorithm [2],  
Tabu Search [2], Simulated Annealing [2], Particle Swarm Optimization [6],  
Harmony Search [7] and hybrid algorithms [8], [9].  

In this study, we propose a variation of genetic algorithm (GA) for PS with cardi-
nality and boundary constraints. GA is a nature inspired population based meta-
heuristic that simulates the process of natural selection [5], [10]. It has been proven as 
an efficient and effective solution method for various optimization problems. Howev-
er, despite its success on solving many hard optimization problems, GA suffers from 
the slow convergence problem, which may prevent it from getting good results for 
constrained optimization problems such as PS. This tendency is usually due to the use 
of a single population and the lack of using an appropriate exploitation operator [11]. 
To enhance the convergence process of GA, we propose a GA that utilizes dual popu-
lations (denoted as DPGA). The first population is responsible for exploring the 
search space, whilst the second one acting as a local search operator to speed up  
the convergence process. The second population exploits around the explored area. 
These two populations periodically exchange individuals to share promising solu-
tions. The performance of the proposed algorithm has been evaluated over the classic 
PS benchmark widely used in literature. The results demonstrate the effectiveness of 
the proposed DPGA compared to the existing algorithms that are popular among re-
searchers and PS practitioners. 
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2 Problem Description 

This paper focuses on the cardinality constrained portfolio selection problem which is 
an extension of the Markowitz mean–variance model. Two constraints are added to 
the model, cardinality and boundary constraints. These constraints are mainly to  
reduce the transaction cost and avoid holdings that are too small or too large. Cardi-
nality constraint limits the number of assets to be included in the formed portfolio. 
Boundary constraint set a lower bound and upper bound for each asset of the formed 
portfolio. The formulation of the PS model is proposed by [2], [12]: 

                     (1) 

Subject to                                 (2) 

                                    (3) 

                         (4) 

                          (5) 

where n is the total number of assets, wi is the proportion of the budget invested in 
the  i-th asset, αij is the covariance between i-th and j-th assets, λ is the risk aversion, 
λ in [0, 1], μi is the expected return of the i-th asset, K is is the number of assets to be 
invested in assets in a portfolio, si is a decision variable represents whether the i-th 
asset has been selected or not, and εi and δi respectively are the upper and lower 
bounds. The cardinality constrained PS model involves two sub-problems: (1) the 
selection problem that seeks to select a subset of assets and (2) the allocating problem 
which aims at determining the proportion for each of the selected asset. In the litera-
ture, PS formulations are treated as a mixed integer programming [2]. Thus, when the 
number of variables is increased or some constraints are introduced, whether the op-
timal solution can be found in a realistic amount of time would be unknown. There-
fore, in this paper, we propose a meta-heuristic based method (genetic algorithm) for 
the PS problem.  

3 The Proposed Method 

In this section, we first briefly describe the basics of genetic algorithm followed the 
proposed dual population variation DPGA. 

3.1 Genetic Algorithm 

Genetic algorithm (GA) is a meta-heuristic introduced by [10]. GA is a well-known 
nature inspired population based meta-heuristic that simulates the process of natural 
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selection. It operates on a population of solutions and iteratively improves them by 
invoking the selection procedure, crossover procedure, mutation procedure and update 
procedure for a certain number of generations [5]. The pseudocode of the canonical 
GA is presented in Algorithm 1. 

 
Algorithm 1. The canonical GA 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

Set the number of generations, MaxG, population size, Ps, Crossover rate, 
CR, Mutation rate, MR, G=0; 
Population← initializepopulation(Ps) 
FitnessCalculation (Population)  
while (G< MaxG) do 

   parent1← SelectParents (Ps) 
        parent2← SelectParents (Ps) 

   child1←Crossover (parent1, parent2, CR) 
        child2←Crossover (parent2, parent1, CR) 

   child1m← Mutation (child1,  MR) 
        child2m←Mutation (child2, MR) 

  population ← populationUpdate (child1m, child2m) 
      G=G+1; 
end while 
Return the best solution 

 
It starts by setting GA parameters (Lines 1 and 2), generates a population of solu-

tions (Line 3) and then assigns a fitness value for each solution in the population 
(Line 4).  Next, the while-loop is executed for a certain number of generations (Lines 
5 to 14). At each generation, a selection mechanism is invoked to select two parents 
(Lines 6 and 7). The selected parents are passed together with the crossover rate to the 
employed crossover operator in order to generate two children (Lines 8 and 9). Next, 
the generated children are mutated by the utilized mutation operator according to the 
assigned mutation rate (Lines 10 and 11). The updating procedure (Line 12) replaces 
the new children with the worse solutions in the population if they are better in term 
of fitness value. If the stopping condition is satisfied, stop (Line 14) and return the 
best solution (Line 15). Otherwise, starts a new generation.  

3.2 The Proposed Dual-Population Genetic Algorithm 

The basic GA has proven as an effective algorithm for dealing with various optimiza-
tion problems. However, when dealing with constrained and high dimensional prob-
lems, basic GA suffers from the slow convergence tendency, which may due to the use 
of population of solutions and thus it may produce uncompetitive results. Thus, to 
improve the effectiveness of the basic GA as well as the convergence process, the basic 
GA has been hybridized with one or a few local search algorithms, as local search 
algorithms are very good in exploiting the search process [11]. This kind of hybridiza-
tion is called memetic algorithms, in which the local search take places at every gener-
ation to further improve the generated solutions [5], [11]. However, calling the local 
search algorithm at every generation would be computationally expansive and may 
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lead to a premature convergence. To address this issue, in this paper, we propose dual-
population GA (DPGA) that utilizes two types of populations (denoted as POP1 and 
POP2). POP1 is responsible for exploring the search space. POP2 is act as a local 
search method that focuses the search around the explored area. These two populations 
are periodically updated to share the search experience and exchange promising solu-
tions. The flowchart of the proposed dual populations GA is shown in Figure 2.  

In this paper, the solution is represented by a two-dimensional array where the  
array size is equal to the total number of assets. Figure 1 shows an example of a solu-
tion representation.  

 
Asset index 1 2 3 . . . n 

The cardinality 1 1 0 0 0 1 1 

The boundary value 0.3 0.5 0 0 0 0.4 0.1 

Fig. 1. An example of solution representation 

 

Fig. 2. The Flowchart of DPGA 
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In Figure 1, first row represents the cardinality that takes either “0” or “1”, where 
“1” means the corresponding asset is selected and “0” is not. The second row 
represents the boundary value of the chosen asset, which takes a real value within the 
prescribed lower and upper boundary constraint. In this paper, the population of solu-
tions is randomly created by assigning for each array cell of the first row either “0” or 
“1” while makes sure that the cardinality constraint is not violated. Next, the selected 
assets are randomly assigned a real number within the predefined boundary  
constraints that is represented by the second row of the array. The fitness value of 
each solution is calculated using Equation (1).  

The proposed dual populations GA first divide the population into POP1 and POP2 
where 30% of the worst solutions from the main population are assigned to POP2, 
while the rest are assigned to POP1. Then, each one is independently executed for a 
certain number of generations. Both POP1 and POP2 use roulette wheel as a selection 
mechanism, one point crossover operator, one point mutation operators and steady 
state updating rule [5]. POP1 follow the general procedure of the basic GA. While, 
POP2 is acting as a local search method as follows: first the crossover operator is 
associated with low crossover rate, whilst the mutation operator is assigned a higher 
probability. Crossover operator generates only one child and the best among the se-
lected parents is the dominated one. The mutation operator accepts only positive 
changes and thus focuses on improving the generated solution. When the update con-
dition is satisfied, both populations of POP1 and POP2 are combined to share the 
search outcome and then re-divided again to start a new searching period. The process 
is repeated until the stopping condition is satisfied. 

4 Experimental Settings 

In this section, we first discuss the main characteristics of adopted PS benchmark 
instances and then the parameter settings of the proposed DPGA.   

4.1 Benchmark Instances 

The performance of the proposed DPGA is assessed using the PS benchmark in-
stances that are available from the OR-library and have been used by other research-
ers in the literature [13]. The benchmark consists of five instances that represent the 
weekly prices for five different countries. Table 1 shows the main characteristics of 
these five instances [13].  In this table, n is the number of the assets, K is the maxi-
mum number of assets in a formed portfolio (cardinality), εi (i=1,…,n) is the lower 
bound of the asset and δi (i=1,…,n) is the upper bound of the asset. 

Table 1. The characteristics of PS benchmark 

# Name Country n K ε δ 
1- Hang Seng Hong Kong 31 10 0.01 1 
2- DAX 100 Germany 85 10 0.01 1 
3- FTSM 100 UK 89 10 0.01 1 
4- S&P 100 USA 98 10 0.01 1 
5- Nikkei Japan 255 10 0.01 1 
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4.2 Parameter Settings 

The parameter setting of the proposed DPGA is presented in Table 2. These parame-
ters were set based on the empirical results from a set of preliminary experiments.  
The parameter λ of Equation (1) was tested using 51 different values and each value 
is tested for 1000*n fitness evaluations same as [2] and [6]. 

Table 2. DPGA parameter settings 

# Parameter name 
POP1 POP2 
Value Value 

1- Population size, Ps 70 30 
2- Crossover rate, CR 0.8 0.2 
3- Mutation rate, MR 0.3 0.85 
4- POP1 and POP2 populations update Every 100 fitness evaluations 
5- Maximum number of generations, MaxG 1000*n fitness evaluations 

5 Results and Comparisons 

Two sets of experiments were conducted. The goal of the first experiment is to eva-
luate the effectiveness of using dual populations within GA instead of single popula-
tion. The second one compares the results of the proposed DPGA against the best 
known methods in the literature.   

5.1 Evaluation of Effectiveness 

In this section, we evaluate the effectiveness of using dual populations within GA by 
comparing the results of DPGA against POP1 as the canonical single population GA 
and using POP2 in single population GA. Each algorithm in this comparison (namely 
DPGA, POP1 and POP2) has been executed 51 independent runs with different ran-
dom seeds using the same population of solutions, stopping condition and computer 
resources. 

A Wilcoxon test with 0.05 critical level is conducted to statistically compared the 
results of the DPGA against POP1 and POP2. The p-value results are shown in Table 
3, where a p-value < 0.05 indicates that the DPGA is statistically better than the com-
pared methods (indicated in bold font).  

Table 3. Comparison between DPGA and using POP1 and POP2 as single-population GA 

 DPGA vs. POP1 POP2 
# Name p-value p-value 
1- Hang Seng 0.047 0.063 
2- DAX 100 0.001 0.024 
3- FTSM 100 0.004 0.045 
4- S&P 100 0.001 0.037 
5- Nikkei 0.006 0.041 
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The p-values listed in Table 3 reveal that the proposed DPGA is statistically better 
than POP1 on all tested instances (as shown in bold font) and statistically better than 
POP2 on four out of five tested instances. The results verify that the use of dual popu-
lations within GA significantly improves the performance of the basic GA and im-
prove the convergence process.  

5.2 The Computational Results of DPGA against the State-of-Art Methods 

In this section, we compare the computational results of DPGA with the following 
algorithms: 

- Tabu search based algorithm (TS) proposed in [2] 
- Simulated annealing based (SA) proposed in [2] 
- Genetic algorithm based method (GA) proposed in [2] 
- Particle swarm optimization based approach (PSO) proposed in [6] 

The minimum mean percentage error (MP%) of 51 independent runs of the DPGA 
is compared against TS, SA, GA and PSO. The results are presented in Table 4, where 
bold font indicates the best results. As can be seen from Table 4, DPGA is better than 
the compared algorithms on all tested instances. Furthermore, the overall average 
result (last row in Table 4) of DPGA is lower than the compared algorithms. The 
comparison did not involve statistical tests, as the aim is not to claim the superior 
performance of DPGA, but to show the capability of this method. The key compari-
son is on computational time. 

Table 4. The results of DPGA compared to GA, SA, TS and PSO 

# Name DPGA GA SA TS PSO 

1 Hang Seng 1.0810 1.0974 1.0957 1.1217 1.0953 

2 DAX 100 2.2124 2.5424 2.9297 3.3049 2.5417 

3 FTSM 100 1.0457 1.1076 1.4623 1.6080 1.0628 

4 S&P 100 1.6269 1.9328 3.0696 3.3092 1.6890 

5 Nikkei 0.6771 0.7961 0.6732 0.8975 0.6870 

Average overall 1.32862 1.49526 1.8461 2.04826 1.41516 

 
The computational time (seconds) of DPGA as well as GA, SA, TS and PSO are 

presented in Table 5. Result in bold indicates the best computational time. The figures 
in Table 5 show that, on all test instances, the computational time of DPGA is signifi-
cantly lower than the running time required by GA, SA, TS and PSO.  

Table 5. Computation time (in seconds) of DPGA compared to GA, SA, TS and PSO 

# Name DPGA GA SA TS PSO 

1- Hang Seng 0.86 172 79 74 4.8 

2- DAX 100 15.41 544 210 199 26.8 

3- FTSM 100 27.28 573 215 246 31.4 

4- S&P 100 28.63 638 242 225 36.6 

5- Nikkei 70.95 1964 553 545 75.8 
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The set of comparisons of DPGA with GA, SA, TS and PSO reveal that the pro-
posed DPGA is an effective solution method for portfolio selection, as it can produce 
good quality solutions on all test instances. More importantly good results can be 
obtained within shorter period of time. 

6 Conclusion and Future Work 

This work proposed a variation of genetic algorithm for the cardinality constrained 
portfolio selection problem. In order to improve the convergence of the search 
process, the proposed genetic algorithm utilizes dual populations, first population for 
exploring the search space, whilst second acting as a local search method. To evaluate 
the effectiveness of the propped algorithm, the cardinality constrained portfolio selec-
tion problem benchmark instances is used. The results show that the proposed algo-
rithm produced very good results on all test instances when compared to existing 
algorithms. More importantly the computational time of the proposed algorithm is 
much lower than existing algorithms. We conclude that the proposed DPGA is effec-
tive method for the cardinality constrained portfolio selection problem. The use of 
dual population can significantly improve search performance. This work is the first 
step of establishing dual population GA for portfolio selection. There is a long list of 
issues that we would like to investigate and to improve. For example we will study 
further on memetic algorithms of PS and its similarity with DPGA approach. Multi-
objective approaches will be also included in our next study. 
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Abstract. In Time Division Long Term Evolution(TD-LTE) system,
decreasing the cross time slot interference is very important to improve
the system throughput. Accordingly, we will propose a multi-cells Or-
thogonal Frequency Division Multiplexing(OFDM) resource allocation
model for TD-LTE system in this paper, which considers the cross time
slot interference and the fairness. Subsequently, a TD-LTE resource
allocation evolutionary algorithm based on adaptive fairness threshold
is proposed to solve this model through introducing adaptive fairness
threshold. Empirical studies show that the proposed model and algorithm
can effectively decrease the cross time slot interference and improve the
transmit rate of OFDM system under the same fairness.

Keywords: TD-LTE, Evolutionary Algorithm, Cross Slot, Adaptive
Fairness Threshold.

1 Introduction

Recent years, TD-LTE system has received much attention in the wireless com-
munication community. Along with the increase of the number of users, the
demand for wireless system capacity inevitably grows. Therefore, it is becom-
ing a major issue to allocate wireless resource for TD-LTE system, which could
greatly improve the utilization of radio resources and thus improve the user’s
experiences.

During the scheduling process, the major resources of OFDM in TD-LTE
system involve subcarriers, power, and time slot resources. Most of the cur-
rent OFDM resource scheduling models focus on the relationship between power
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and the system transmission rate, dealing with the scheduling of subcarrier and
power. For example, they optimize the transmission power under the limit of the
transmission rate of the system [8-19], or optimize the system capacity under
the constrain of the case [11]. In the literature, paper [12] puts the transmis-
sion power and rate into an objective function using the weighted sum and then
solves the model using an improved particle swarm algorithm. Paper [13] sets the
transmission rate and the total system transmission power as a multi-objective
model and NSGA-II is used to solve it. Furthermore, [14] formulates the OFDM
resource allocation problem as a graph model. However, these models only al-
locate subcarrier and power without considering the resource allocation under
certain conditions.

To this end, papers [14-15] have built the models in the case of limited bit error
rate for the OFDM resource allocation problem. Also, [14] takes the limited bit
error rate into account by adding a constraint about bit error rate. Furthermore,
[15] builds a model for OFDM resource allocation problem under the condition of
forward delay. Although these models take some specific transmission conditions
into account, they are not very effective for the scheduling time slots.

Cross time slot interference of TD-LTE is due to different time slots ratios be-
tween different channels and along with the gradual increase of the network size,
the system cross-slot interference becomes more and more serious. The above
OFDM models focus on subcarrier and power scheduling problem. Thus, these
models hardly solve the problem of resource scheduling in TD-LTE systems. Cur-
rently, there are some researches on slot resource allocation for TD-LTE system.
For instance, paper [3] proposes a new slot allocation strategy for each cell us-
ing different transmission modes. [4] adopts a dispersion slot allocation strategy.
Also, a fixed time slot allocation ratio is used in [1-7], which fixes the slots ra-
tio between uplink and downlink within each cell. This strategy cannot respond
flexibly to changing environments. That is, when a user’s business requirements
change, the slot resource is wasted if the slot allocating ratio cannot change in
time. Most of the current researches estimate the transmission conditions for
some time in a cell, and then fix the uplink and downlink slot ratio according
to the estimation rather than adopting a dynamic strategy slot resources allo-
cation. If the transmission conditions change within a short time and the slot
allocation cannot respond in time, this will inevitably result in an increase in
cross time slot interference.

In recent years, the fairness issue of OFDM resource allocation has attracted
much more attention. In communication system, to maximize system through-
put, the higher the quality of a radio channel is, the more resources it will get,
and vice verse. This will affect the channel quality of other users.

This paper proposes a dynamic model dealing with time slot allocation issues
of OFDM resources in TD-LTE system. The cross time slot interference among
different cells is taken into account in this model. In order to facilitate the calcu-
lation of cross time slot interference, a time slot interference ratio corresponding
mapping table is created. Furthermore, the model can allocate subcarrier, power
and time slot simultaneously, which will significantly improve the allocation
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efficiency for the entire system. In order to solve the fairness issue described
above, this paper presents an adaptive fairness strategy which can be combined
with evolutionary algorithm. In the proposed algorithm, an adaptive fairness
constraint value is set initially. In each generation, the best individual’s fair-
ness degree is calculated. If it meets the constraint, the algorithm will continue.
Otherwise, it adopts the best individual on the direction of increasing fairness
degree, and the constraint value will increase with the evolution generations.
The motivation is that we want to focus on optimizing systems transmission
capacity in the early phase and optimizing system’s fairness which avoids the
algorithm’s performance shortcomings caused by fixed fairness threshold. In or-
der to improve computational efficiency of the algorithm, we also design a local
search strategy to improve the performance of the algorithm. Comparison exper-
iments are implemented on cross-slot interference and the fairness among users.
The results show that the proposed model and algorithm can effectively reduce
system cross-slot interference and improve system fairness.

The remainder of the paper is organized as follows: OFDM resource allocation
mathematic model in TD-LTE system and Evolutionary algorithm for TD-LTE
resource allocation based on adaptive fairness threshold are described in Sec-
tion II and Section III, respectively. Simulation results are given in Section IV.
Finally, we draw a conclusion in Section V.

2 OFDM Resource Allocation Model in TD-LTE System

For TD-LTE system, we assume that there are I cells, K users, N subcarriers,
and each eNodeB’s total power is Pmax. The channel gain on the kth channel in
jth cell to the nth user in ith cell is gji,k,n. Ti is the time slot type of ith cell, i =
1, 2, 3, ..., I. In order to get the system throughput, every sub-channel SNR should
be firstly calculated. For TD-LTE system, since cross-time slot interference needs
to be taken into account, the SNR of nth channel for kth user which belongs to
ith cell can be calculated as follows:

SNRi,k,n =
gji,k,n × pi,k,n

Δ
(1)

where pi,k,n is the power of the nth channel on kth user of ith cell;

Δ =

I∑
j=1j �=i

K∑
k=1

gji,k,npj,k,n +

I∑
j=1j �=i

K∑
k=1

gji,k,np
cts
ji,k,n + σ2 (2)

pctsji,k,n is the cross time slot interference, which is a function between Ti and Tj .

The detail of pctsji,k,n can refer to literature [9]; σ2 is additional white Gaussian
noise.

The kth user’s capacity in ith cell can be expressed as follows:

N∑
n=1

wi,k,n
B

N
log2(1 + SNRi,k,n) (3)
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where wi,k,n∈ {0,1}. The model of TD-LTE system resource allocation is:

max

I∑
i=1

K∑
k=1

N∑
n=1

wi,k,nB

N
log2(1 +

SNRi,k,n

Γ
) (4)

s.t
K∑

k=1

N∑
n=1

pi,k,n ≤ PT , i = 1, 2, 3, · · · , I (5)

K∑
k=1

wi,k,n ≤ 1, i = 1, 2, · · · , I;n = 1, 2, · · · , N (6)

pk,n ≥ 0, wk,n ≥ 0 (7)

where Γ is SNR gap, which is a constant; The more details of this model can be
referred to [9].

3 Evolutionary Algorithm for TD-LTE Resource
Allocation Based on Adaptive Fairness Threshold

In our proposed TD-LTE resource allocation model, subcarrier and time slot
allocation are discrete and power allocation is continuous. Firstly, subcarriers
are allocated using the criteria of [10]. Then, there are only power and time slot
allocation variables in the model. Considering the system fairness and the time
slot allocation are discrete variables, a TD-LTE resource allocation evolutionary
algorithm based on adaptive fairness threshold (EAAF) is proposed to optimize
the model. In this section, we firstly introduce the definition of system fairness,
and then EAAF’s framework will be shown.

In proposed algorithm, firstly, the adaptive fairness threshold ϕ in each gen-
eration is obtained (In the next subsection, we will show the details of the
adaptive fairness threshold). In each generation, before mutation operation is
implemented, the fairness of some selected individuals for mutation is obtained.
If fairness is larger than current adaptive fairness threshold, perform ordinal
mutation operation on these individuals. Otherwise, fixed mutation operation
is performed. The fixed mutation operation is to find the user with maximal
throughput, then decrease its power, meanwhile increase equal power to the
user whose throughout is minimal. During the optimization process, the adap-
tive fairness threshold will become larger. The motivation of adaptive fairness
threshold is that we hope to improve the system throughput quickly in the be-
ginning of the algorithm, and at the last, we focus more attention on the issue
of system fairness.

3.1 Definition of Fairness

Assume {γ1, γ2, · · · , γk} is a group of proportional constants about users through-
put requirement, and {R1, R2, · · · , Rk} represents each users practical rate.
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The mathematical definition of fairness is given by literature [13]:

fairness =

(
K∑

k=1

Rk

γk
)2

K
K∑

k=1

(Rk

γk
)2

The range of fairness is (0,1]. When fairness equal to 1, it is clear that the
system is the most fair. A lot of works consider the fairness as a fixed constrain
in the model. However, this method is infeasible. For example, if the constraint
value is large, this method will make the improvement system throughput ability
change weak, and if the constraint value is small, the fairness of the system will be
poor. To overcome this shortcoming, we propose an adaptive fairness threshold
method in this paper. The details of adaptive fairness threshold will be shown
in the following subsection.

3.2 Adaptive Fairness Threshold

In the EAAF, the adaptive fairness threshold is set as follows:

ϕ = exp(− 1

α× gen
)

where α and gen are regulate factor and operation generation number respec-
tively. Obviously, adaptive fairness threshold is positive corresponding with op-
eration generation number, and it is close to 1 with increasing of operation
generation number.

3.3 The Framework of the Evolutionary Algorithm Based on
Adaptive Fairness Threshold for TD-LTE Resource Allocation

The framework of evolutionary algorithm based on adaptive fairness threshold
for TD-LTE resource allocation is given as follows:
Step 1. Initialize population and adaptive fairness threshold ϕ;
Step 2. Perform crossover operation to population;
Step 3. Select individuals to perform mutation operation, and calculate these

individuals’ fairness; if a certain individual’s fairness is larger than the adap-
tive fairness threshold, execute ordinary mutation operation to this individ-
ual; otherwise, this individual executes fixed mutation operation;

Step 4. Perform select operation to update population;
Step 5. If the stopping criteria is unsatisfied, go to Step 2; otherwise, stop.

4 Experimental Results and Performance Evaluation

In this section, the experimental results of fixed time slot types method and our
proposed algorithm about cross time slot interference are shown firstly. Then we
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choose round robin algorithm, EA with fixed fairness constrain (EAFC) to com-
pare with our proposed algorithm and analyze the experiment results. In the
simulation, Slow-varying Rayleigh fading channel has been used and it has been
assumed to be known to the resource allocator at base-station. The number of
users ranges from 2 to 20, and the number of cells is 7. There are 100 time slots.
The total transmit power and bandwidth have been taken as 1W and 5MHZ.

In the first simulation experiment, we simulate the ability of decreasing cross
time slot interference of our proposed model. Fig.1 shows the different cross time
slot interference of our proposed model and fixed time slot type method with
the number of users ranging from 2 to 20. It is shown by fig.1 that the cross
time slot interference of these two method are close when the number of users
is small. However, with the increasement of user number, the cross time slot
interference created by fixed time slot types method is much larger than our
proposed dynamic update time slot types model.
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Fig. 1. Cross time slot interference of our proposed dynamic update time slot types
model and fix time slot type

At the beginning of proposed algorithm, the adaptive fairness threshold is
small so that it is beneficial to solve the objective function. At the end of the
algorithm, we hope the system fairness can be enhanced. Therefore, the adaptive
fairness threshold is adjusted larger. As a result, we can achieve a good tradeoff
between system throughput and fairness.

Fig.2 shows the different system throughput of round robin, EA with fixed
fairness constrain and our proposed algorithm. From fig.2, our proposed algo-
rithm has better search ability than other two algorithms. At the beginning
of our algorithm, the algorithm’s search ability is improved since the fairness
threshold is small.
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Fig. 2. System throughput vs. number of users
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Fig. 3. Minimum user capacity vs. number of users

Minimum user capacity is also very important to wireless communication
system. If the minimum user capacity is large, the total capacity is large, and
the system fairness is good. Fig.3 shows the different minimum user capacity
using EAAF, EAFC respectively. From Fig.3, EAAF has better minimum user
capacity than EAFC.

We also compare the minimum transmit power generated by EAAF and
EAFC. Fig.4 shows the minimum transmit power calculated by EAAF is less
than EAFC with the increasement of user number.
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Fig. 4. Minimum transmit power vs. SNR
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Fig. 5. System throughput vs. SNR

Then, we compare the capacity of the proposed algorithm and EAFC under
different SNR with 4 users. The comparison result is shown in Figure 5. It is clear
that the proposed algorithm’s performance out-performs the other algorithms.

From above comparison, the performance of the proposed algorithm is better
than EFAC. Then, we compare the performance of system fairness of EAAF
and EAFC through comparing the variance of all user capacity. From Fig.6, the
variance obtained from EFFA is significantly less than EAFC.
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Fig. 6. Var of Capacity vs. number of users

5 Conclusion

In this paper, we have presented the OFDM resource allocation model for TD-
LTE system by taking into account both of the cross time slot interference and
the system fairness. Accordingly, An evolutionary algorithm based on adaptive
fairness threshold has been developed for TD-LTE resource allocation, featuring
a better trade-off between the system throughput and system fairness. Experi-
ments have shown the promising results.
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Abstract. Order acceptance and scheduling (OAS) in make-to-order
manufacturing systems is a NP-hard problem for which finding optimal
solutions for problem instances can be challenging. Because of this, sev-
eral heuristic approaches have been proposed in the literature to find
near-optimal solutions to OAS. Many previous heuristic approaches are
very effective, but require careful design and developing new heuristics
can be difficult. Genetic Programming (GP) has been used to generate
reusable and efficient heuristics in OAS and shows promising results.
However, in terms of solution quality, the evolved heuristics are still less
competitive as compared to highly customised heuristics designed by hu-
man experts. To overcome these limitations, this paper proposes two new
Particle Swarm Optimisation (PSO) approaches to OAS. Afterwards, GP
evolved rules are combined with an existing Tabu Search (TS) heuristic
and with the proposed PSO algorithms as hybrid approaches to OAS.
The experimental results show that these PSO approaches are competi-
tive with effective heuristics such as TS. In addition, TS heuristic greatly
benefits from evolved rules, whereas PSO approaches do not benefit.

1 Introduction

Order acceptance and scheduling (OAS) in make-to-order manufacturing sys-
tems is an optimisation problem that deals with the decisions of both accept-
ing/rejecting customer orders and then scheduling the accepted orders. OAS
models environments where the manufacturer has to deal with limited produc-
tion capacity and high demand. This means that it is likely that the manu-
facturer cannot meet all of the demands. As a result, the manufacturer needs
to determine the orders to accept or reject (acceptance decisions), and how it
can process all the accepted orders (scheduling decisions). This paper focuses on
OAS in single machine environments with sequence dependent setup times [1].
The problems consist of a set of N orders. Order j ∈ {1, . . . , N} in the set has
release time rj , processing time pj, due date dj , weight/penalty wj , maximum
revenue ej, and deadline dj . In addition, if an order j is processed immediately
after order i it has setup time sij . Order j has the setup time s0j if it is the first
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order to be processed. From completing an order, a profit Pj is gained by the
manufacturing system. The profit Pj is equal to the maximum revenue ej if the
order is completed before the due date dj . Otherwise, the profit Pj is reduced
by the time difference between the completion time and due date dj , denoted as
tardiness Tj , multiplied by the weight wj . If an order is completed after its dead-
line dj , then the profit Pj is zero, and the order is rejected. Overall, this gives us
Pj = max{ej − wjTj , 0}. The objective function of this problem is to maximise
the total profit TPR =

∑
j∈A Pj , where A is the set of accepted orders.

Ghosh [2] proved that OAS is NP-hard, and finding optimal solutions for OAS
problems is very challenging [3]. Therefore, many heuristic approaches have been
proposed to find near-optimal solutions. Rom and Slotnick [4] proposed a hybrid
approach of finding solutions using Genetic Algorithm (GA) and improving it
with a local search heuristic. Oguz et al. [1] developed a Simulated Annealing
method (ISFAN) for OAS with sequence dependent setup times, and found that
ISFAN can find good solutions for large problem instances. Cesaret et al. [3] then
developed a tabu search (TS) method for solving OAS problems that outperforms
ISFAN in most problem instances. Lin and Ying [5] proposed an Artificial Bee
Colony (ABC) approach with iterated greedy (IG) local search heuristic. Genetic
Programming (GP) [6] has been applied to OAS [7][8], where GP is used to evolve
reusable heuristics. A literature survey of OAS can be found in Slotnick [9].

One limitation of GP is that the evolved rules usually are not as effective
as highly customised heuristics for OAS [7]. Nguyen et al. [10] showed that the
quality of the solution generated by GP evolved rules can be improved further
by using GA to improve the quality of the solutions. Other hybrid approaches
have been proposed for OAS [3][5], but they do not use reusable heuristics.
Park et al. [8] have showed that evolved rules can outperform standard rules. In
addition, Particle Swarm Optimisation (PSO) [11], which has been applied to
other scheduling problems [12], has not been applied to OAS.

1.1 Goal

The goal of this paper is to develop new hybrid approaches to OAS that combine
GP evolved rules in conjunction with various heuristic approaches. By doing
this, we hope to improve the quality of the solutions that would otherwise be
generated either by the evolved rules or the heuristic approaches individually.
In addition, we propose novel PSO approaches to OAS, where PSO is applied
to OAS for the first time. In summary, the three objectives of this paper are as
follows.

(a) Developing two new PSO algorithms for OAS.
(b) Combining an existing TS approach with GP evolved heuristics.
(c) Combining the two PSO algorithms with GP evolved heuristics.

1.2 Organisation

The organisation of this paper is as follows. Section 2 covers the PSO algorithms,
the GP representations that are used to generate the evolved rules, and how the
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evolved rules are used with TS and PSO. Section 3 covers the parameter values
used to train the GP methods and for TS and PSO. Section 4 covers the results
and evaluations of the approaches. Finally, Section 5 gives conclusions and future
research directions.

2 Proposed Methods

In this section, we describe the proposed PSO algorithms that are used for OAS.
Afterwards, we describe the GP representations used to generate the evolved
rules for OAS, and how they are combined with the TS and PSO algorithms.

2.1 PSO for OAS

PSO is a swarm intelligence algorithm initially proposed by Kennedy and Eber-
hart [11]. Each particle i in a swarm of size S initially has a random position
xi and a random velocity vi. For subsequent iterations, the particle’s velocity is
influenced by the local best solution pi that individual particle i has discovered,
and the global best solution g found by the swarm. Coefficients ω, ϕg, and ϕp are
used to decide how the current velocity, the global best position and the local
best position affect the velocity update. The final solution generated by PSO
is g after a certain number of iterations T . In addition, for our proposed PSO
approaches, a local search heuristic proposed by Lin and Ying [5] is also applied
to each particle i at every iteration. This is discussed further below. Overall,
this gives us the pseudocode in Algorithm 1 (rg and rp are random numbers
within the interval [0, 1]). The two proposed PSO methods are based on this
algorithm. The first PSO method is denoted as Continuous Priority based PSO
(CPSO). The second PSO method is denoted as Discrete Permutation based
PSO (DPSO), and is a derivation of the discrete permutation based algorithm
proposed by Rameshkumar et al. [12].

Calculating Fitness of Particle in OAS Problems. The position xi of
the particle i undergoes two steps to transform it to a solution. The first step,
denoted as raw, converts the particle’s position to a permutation of the list of
all orders. The second step, denoted as acc, converts this permutation to a list
of accepted orders such that the solution is feasible. The fitness of the particle
is the total profit TPR.

The first step, raw, converts the position xi of particle i to a raw solution πi. A
raw solution is defined as the permutation of all the orders in the problem, i.e., a
permutation of {1, . . . , N}. It is the sequence in which orders are next considered
for processing. The definition of raw for CPSO and DPSO is defined further
below. The second step, acc, converts the raw solution πi to a solution of accepted
orders Ai which does not contain any orders that are rejected. If the projected
completion time Cj of order j is greater than deadline dj , then the order is
rejected and the next order at position k+1 is checked. This continues until all
orders have either been processed or rejected. For example, suppose that for a
particle i the position xi is converted to a raw solution πi = (6, 1, 2, 7, 3, 5, 4, 8).
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Data: S, T,N,vmin,vmax,xmin,xmax

Result: The final global best solution g

/* Initialise the particles */

t ← 0
for each particle i = 1 to S do

randomly initialise xi and vi

pi ← xi

end
set g to the position with maximum f value
/* Move the particles around the search space */

while t < T do
for i = 0 to S do

xi ← apply the local search procedure
vi ← ωvi + ϕgrg(g − xi) + ϕprp(pi − xi)
xi ← xi + vi

update pi if f(xi) > f(pi)
update g if f(xi) > f(g)

end
t ← t+ 1

end

Algorithm 1. The pseudocode for the PSO algorithms for OAS problems

This means that order 6 may be processed first, followed by order 1, 2, etc. If
order 3 is projected to complete past its deadline after processing order 7, then
order 3 is rejected and order 5 is checked next. If orders 3, 4, 8 are rejected, then
the final solution is given by Ai = (6, 1, 2, 7, 5). After we get the list of accepted
orders, we can calculate the total profit TPR.

Local Search Procedure. Cesaret et al. [3] incorporates local search heuristics
in their TS algorithm to improve the search in the solution space. Therefore, the
two proposed PSO algorithms use a local search heuristic proposed by Lin and
Ying [5] at each iteration to potentially find better solutions located around po-
sition xi for particle i. The local search procedure is carried out in two steps. The
first step finds neighbourhood solution using the iterated greedy (IG) algorithm
[13]. The IG algorithm first removes α number of orders from the raw solution
πi in a destructive phase. The removed orders are then reinserted back into the
schedule to maximise the objective function value for the partial solutions. If the
neighbourhood solution is within some threshold θIG of the global best solution,
a more in-depth search is carried out [5]. In the in-depth search, the position of
every order is interchanged with each other, and the solution of the new position
is compared against the current particle’s solution [5].

Continuous Priority Based PSO. For a problem instance with N orders,
the position of each particle i in CPSO algorithm is a vector of size N which
is defined as xi = [xi1, . . . , xiN ]. For j = 1, . . . , N , xij is a real value bounded
within the interval [xmin, xmax]. Likewise, the velocity is also a vector of size N
of real values which is defined as vi = [vi1, . . . , viN ], and vij ∈ [vmin, vmax] for
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j = 1, . . . , N . Positions and velocities are simply updated using regular vector
operation between each index of the vectors, e.g., the position is updated as
x′
i = xi + vi = [xi1 + vi1, . . . , xiN + viN ].
The transformation function raw that converts xi for particle i to the raw

solution πi is defined as follows. The value xij at each index j of the position
vector correspond to the “priority” of processing order j. Therefore, the values
in each of the indices are rearranged in a descending order, and the values in
each index of the raw solution πi corresponds to the index of xi before it is
rearranged. An example of this is shown in Figure 1.

Fig. 1. Procedure for computing πi from xi for particle i

Discrete Permutation Based PSO. DPSO is based on the algorithm pro-
posed by Rameshkumar et al. [12]. For a problem instance with N orders, the
position xi of each particle i in DPSO algorithm is a permutation of numbers
{1, . . . , N}. This means that each number j, representing order j, only occurs
once in xi to a unique index k which represents the position the order is inserted.
Therefore, transformation function raw to convert position to raw solution is
simply defined as πi = raw(xi) = xi.

Velocity vi of particle i is represented as a list of “swaps” between values
in positions k1 and k2 in xi. This results in the new position being a slightly
different permutation of the numbers {1, . . . , N}. Upon initialisation, vi is a
series of random swaps up to length L = 2. When the velocity update is applied,
the operators between velocity, position and constants are defined as follows:

Subtraction (position - position) Operator: Let x1 and x2 be the two po-
sitions. Then x2 − x1 is a list of all the “swaps” that can be applied sequen-
tially to get from x1 to x2. This results in a new velocity v.

Addition (position + velocity) Operator: Let x and v be the position and
velocity respectively. Then x + v applies the list of swaps in v to values in
x in the order that the swaps appear. Any equivalent or opposing swaps
adjacent to each other will be cancelled out. This results in a new position
xnew .

Addition (velocity + velocity) Operator: Let v1 and v2 be the two veloc-
ities. Then v1 + v2 appends the list of swap between indices from v2 to the
end of v1, such that the new velocity vnew is equivalent to applying v1 first
before v2.
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Multiplication (coefficient × velocity) Operator: Let c and v be the co-
efficient and the velocity. c is a learning coefficient on v, where the new
velocity vnew contains max{�c|v|�, |v|} number of swaps. The swaps from v
are chosen randomly without replacement and inserted into vnew , until vnew

has either c|v| number of swaps or all the swaps from v (if c ≥ 1).

In DPSO, rg and rp is removed from the velocity update. This is because
the coefficient×velocity operator chooses random swaps for the new velocity.
Instead, the velocity update for DPSO is vi ← ωvi + ϕg(g − xi) + ϕp(pi − xi).

For example, suppose that DPSO with coefficients ω = 0.1, ϕg = 0.4, ϕp =
0.4 is applied to a problem instance with N = 5 orders. Suppose that vk

i =
[(1, 3), (4, 1)], xk

i = [3, 2, 4, 5, 1], gk = [5, 2, 1, 4, 3] and pk
i = [3, 2, 4, 5, 1] for

particle i at iteration k. To find the difference between gk and xk
i , we find the

list of swaps that can be applied sequentially that convert xk
i to gk. Starting from

order 5 on index 1 of gk, since order 5 is at index 4 of the position vector xk
i , we

get the swap (1, 4) to bring order 5 from index 4 to index 1. Afterwards, we swap
order 4 at index 3 with order 1 at index 5 to get swap (3, 5). Finally, we swap order
3 with order 4, now at indices 4 and 5 respectively, to get the swap (4, 5). When
applied sequentially to xk

i , we get xk
i = [3, 2, 4, 5, 1] + (1, 4) = [5, 2, 4, 3, 1], then

[5, 2, 4, 3, 1]+(3, 5) = [5, 2, 1, 3, 4], and finally [5, 2, 1, 3, 4]+(4, 5) = [5, 2, 1, 4, 3] =
gk. On the other hand, since there is no difference between pk and xk

i , an empty
list of swaps is returned. In addition, since (gk − xk

i ) is multiplied by 0.4, we
keep �0.4 ∗ 3� = 2 swaps from the list which are chosen randomly. Therefore, at
iteration k + 1, we have the velocity and the position updated as follows:

vk+1
i = 0.1× [(1, 3), (4, 1)] + 0.4× ([5, 2, 1, 4, 3]− [3, 2, 4, 5, 1])+

0.4× ([3, 2, 4, 5, 1]− [3, 2, 4, 5, 1])

= [(4, 1)] + 0.4× [(1, 4), (3, 5), (4, 5)] + 0.4× []

= [(4, 1), (1, 4), (4, 5)] = [(4, 5)]

xk+1
i = [3, 2, 4, 5, 1] + [(4, 5)] = [3, 2, 4, 1, 5]

2.2 GP Method

For this paper, we use two existing tree-based GP methods for OAS. They are
denoted as GPOAS [7] and GPSR [8]. Both methods use a single priority rule to
assign priority values to the remaining orders that are yet to be processed. Out
of those remaining orders, only the orders that are released before the earliest
projected completion time are considered. This subset of orders are called active
orders. From the active orders, GP programs in GPOAS picks the order with
the highest priority, whereas GP programs in GPSR pick an order based on
probabilities dependent on the priorities. The output from GPOAS is then used
in a standard dispatching rule (DR) [7], whereas the output from GPSR is used
in a stochastic dispatching rule (SDR) [8].

Combining Evolved DRs with TS. One of the modification made to the TS
algorithms is how the initial solutions are generated. Cesaret et al. [3] proposed
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a DR that uses Revenue-load ratio RLR1j as priority rules for each order j to
generate an initial solution. In this paper, we use the DRs evolved using GP to
generate the initial solution before carrying out the neighbourhood search done
by TS algorithm. This allows the evolved heuristics to be used in conjunction
with TS. GP evolved rules generally perform better than the RLR1j priority
rule [7]. This can potentially allow the TS algorithm to perform better with the
higher quality initial solution. For example, using the RLR1 based priority on a
problem instance of size N = 8 may produce an initial solution (6, 1, 8, 2, 7) with
revenue 101, and using evolved DR may produce an initial solution (6, 1, 2, 7, 5)
with revenue 112. The sbest generated from the TS algorithm staring from each
initial solution can be sbest = (6, 1, 8, 3, 7) with revenue 110 for RLR1 and sbest =
(6, 1, 2, 7, 4, 5) with revenue 121 for GP evolved rule respectively.

Combining Evolved DRs with PSO. The following procedure is applied to
PSO to incorporate the rules evolved by GP. After initialising the particles in the
swarm in PSO, evolved DR is used to generate the initial global best position
that the particles could converge to. To do this, a basic kernel procedure is
carried out in two steps as described below.

Firstly, the list of accepted orders A that is generated by the evolved DR is
converted to a raw solution π. This is done by appending the rejected orders
randomly onto the end of A, i.e., if A is the set of rejected orders in random
ordering, then π = (A,A). This ensures that A = acc(π).

Secondly, a fresh position xdr is generated as position xi would be generated
initially for particle i in the swarm. From xdr, πdr is computed using raw. By
comparing πdr with π from A, we get the list of swaps W that can be applied
sequentially to convert πdr to π, and apply the swaps in W to indices in xdr.
For example, suppose that N = 8, and we have the raw solution from the DR as
π = (2, 1, 6, 8, 4, 5, 3, 7) and the fresh position and the corresponding raw solution
as xdr = (2.4, 1.9, 0.5,−2.1,−1.7, 2.9,−1.1,−2.5) and πdr = (6, 1, 2, 7, 3, 5, 4, 8).
Then the list of swaps is [(1, 3), (4, 8), (5, 7)] and xdr is updated by adding the
swaps to xdr, giving us xdr = (0.5, 1.9, 2.4,−2.5, 1.1, 2.9,−1.7,−2.1).

3 Parameter Settings

This section describes the parameters used for training the GPOAS and the
GPSR for the evolved rules. In addition, the parameters settings for the TS and
the PSO approaches are covered.

3.1 GP Parameter Settings

The GP parameter settings are based on the original parameter settings used
to evolve rules using GPOAS [7] and GPSR [8]. The population size is set to
1024. Crossover, mutation and reproduction rate are set to 80%, 10%, and 10%
respectively. The number of generations is set at 51 and the maximum depth of
a GP tree at 8. Tournament selection of size 7 is used to select individuals that
will reproduce to the next generation.
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3.2 TS Parameter Settings

The key parameters for the TS proposed by Cesaret et al. [3] are the tabu tenure,
the threshold value, and the termination criterion, where the tabu tenure is the
maximum size of the tabu list. These are kept at the same value as a benchmark,
i.e., the maximum size of the tabu list is �N/6�, TS moves to a new solution if
its revenue value is greater or equal to θTS = 0.998 times the current solution,
and the TS algorithm terminates after ε = 50 iterations without improvement.

3.3 PSO Parameter Settings

For the two proposed PSO algorithms, parameter tuning on the size of the
swarm and the number of iterations was carried out to ensure that the swarm
of particles had sufficient number of iterations to converge on a solution. After
some parameter tuning, the population sizes of both PSO approaches are set at
S = 50, and the number of iterations at T = 100.

Since the values in the position and velocity vectors for CPSO are relative to
each other, we kept the minimum and maximum values for both values fairly
small. Initially, the velocity constraints were set as vmin = −1 and vmax = 1,
and the position constraints as xmin = −3 and xmax = 3. This meant that less
than 5 components of the position vector was at the upper and lower bound for
initial tests. Finally, we have the coefficients for the velocity updates as ω = 0.7,
ϕg = 1.5 and ϕp = 1.5, which is based of Clerc’s constriction factor [14]. On the
other hand, minimum/maximum values for positions and velocities are not set
for DPSO, as positions are permutations of orders and velocities are list of swaps.
Also ω, ϕg and ϕp are set at 0.1, 0.4 and 0.4 for DPSO after some parameter
tuning. Finally, for the local search heuristic we used the same α and threshold
value θIG specified by Lin and Ying [5] in their Artificial Bee Colony (ABC)
approach to OAS, which were α = 3 and θIG = 0.01.

4 Results

To train the rules generated by the GP methods and to evaluate the algorithms,
we use the dataset introduced by Oguz et al. [1]. This dataset consists of subsets
of data that are generated using three parameter values: the number of orders
n, the tardiness factor τ and the due date range R. Each subset consists of
10 problem instances. For each problem instance, an upper bound UB is pro-
vided from the linear programming (LP) relaxations of the mixed integer linear
programming (MILP) models [1]. The rules are evolved from GPOAS [7] and
GPSR [8] by taking the first 5 problem instances from the subset generated from
n = 100, τ = 0.9 and R = 0.9 as training. This is done 30 times, and the best
performing rule out of the entire dataset is used to be combined with the TS
and PSO algorithms. The TS and PSO algorithms that use the evolved DRs and
SDRs are denoted with suffixes ‘-DR’ and ‘-SDR’ respectively. Finally, these are
compared against the existing benchmark TS [3] algorithm for the evaluation.
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Table 1. Evaluation of the modified TS and PSO algorithms to the benchmark meta-
heuristics using the best deviation

τ R TS TS-DR TS-SDR CPSO CPSO-DR CPSO-SDR DPSO DPSO-DR DPSO-SDR

a b c a b c a b c a b c a b c a b c a b c a b c a b c
0.10.1 1 2 3 1 2 2 1 1 2 2 2 3 2 3 3 2 2 3 2 2 3 2 3 4 2 2 3

0.3 1 2 3 1 1 2 1 1 2 1 2 3 2 2 3 1 2 2 1 2 2 2 2 3 1 2 2
0.5 0 1 2 0 1 1 0 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1
0.7 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
0.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1

0.30.1 1 2 3 2 2 3 1 2 3 2 3 4 2 3 4 2 3 4 2 3 3 2 3 4 2 3 4
0.3 1 2 5 2 3 5 1 2 4 2 3 5 2 3 6 1 3 5 2 3 5 2 4 6 1 3 5
0.5 1 2 3 1 2 3 1 2 2 2 3 4 2 3 4 1 2 3 2 3 3 2 3 4 1 2 3
0.7 0 1 2 1 1 2 0 1 1 0 1 2 1 2 3 0 1 2 0 1 2 1 2 3 0 1 2
0.9 0 0 2 0 1 2 0 0 1 0 1 2 0 1 3 0 1 2 0 1 2 0 1 3 0 1 2

0.50.1 2 3 5 2 4 4 2 3 4 4 4 6 4 6 8 3 5 7 3 4 6 5 6 7 3 5 6
0.3 2 3 5 3 4 5 2 3 4 4 4 5 4 6 7 3 4 6 4 4 5 5 6 7 3 4 6
0.5 2 3 4 3 4 5 2 3 4 3 5 6 4 6 7 3 4 5 3 5 6 4 5 7 3 4 5
0.7 1 2 4 1 3 4 1 2 3 2 3 5 2 4 5 1 2 4 2 4 5 2 4 5 1 2 4
0.9 0 2 4 1 2 4 1 1 3 2 3 5 2 4 6 1 2 5 2 3 5 2 4 6 1 2 5

0.70.1 2 4 6 3 5 6 3 4 6 5 6 7 6 7 10 4 6 8 5 6 7 5 7 10 4 6 8
0.3 3 6 10 3 6 9 2 5 8 3 7 9 4 8 11 3 6 10 3 7 9 4 8 11 3 6 10
0.5 4 6 12 4 6 13 3 6 14 5 7 14 6 8 15 4 8 16 5 7 14 5 8 15 4 8 16
0.7 3 7 13 4 8 11 3 6 9 4 8 11 5 9 11 5 8 12 4 8 10 5 9 11 5 8 12
0.9 5 8 12 5 8 11 4 7 9 5 8 10 6 9 12 4 8 11 5 8 10 5 9 12 4 8 11

0.90.1 7 9 11 6 8 12 7 8 12 7 9 11 8 10 12 7 10 13 7 9 11 8 10 12 7 9 13
0.3 7 13 17 8 13 15 8 11 14 8 11 13 7 12 14 10 14 18 7 11 14 8 12 15 7 12 14
0.5 10 15 18 11 15 19 11 13 18 10 13 18 10 14 18 11 16 22 10 13 17 10 13 18 11 14 18
0.7 10 15 19 11 15 17 10 13 16 10 13 15 10 13 15 12 16 19 10 13 15 10 13 16 11 14 16
0.9 11 15 22 6 14 21 5 13 19 6 13 19 7 13 19 8 16 23 6 13 18 8 13 18 7 14 19

* a b c denotes the best, average and worst % deviation from the upper bound
** x-DR/SDR represents a x algorithm which uses evolved DR/SDR rule
*** Highlighted cells show the algorithm for which it has the lowest average deviation
from the upper bound for the 〈τ, R〉

4.1 Best Deviation Evaluation

TS-DR, TS-SDR, CPSO and DPSO are run 30 times for each problem instance
and the best results are recorded. For each run, we calculate the percentage
deviation from the upper bound UB as UB = 100×(UB−TPR)/UB. The best
deviation is then used as the representative solution for the particular problem
instance, and is used to compare the algorithms against the benchmark TS
algorithm. The results are shown in Table 1, where a, b and c represent the best,
average and worst deviation of the 10 instances.

The results show lower deviations from the upper bound for the TS algorithm
that uses the evolved DR and the evolved SDR, especially for orders with high τ
and R. This is most likely due to the evolved rules for DRs and SDRs being much
more effective than the RLR1 priority based DR. Starting from a better initial
solution with the evolved rules than RLR1 may mean that the TS algorithm
has potential to find a better final solution. Therefore, we can conclude that
combining TS with rules evolved from GP is an effective method of generating
good solutions for OAS.

In addition, we can see that CPSO and DPSO are very competitive as com-
pared to the default TS algorithm. From the table, we can see that it has a
lower deviation from the upper bound for high τ and R values and having a
comparable deviation for lower τ and R values. In addition, CPSO algorithms
are marginally faster than TS algorithm with the local search, with the CPSO
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algorithm being around 1.3 times faster in terms of average computation time
compared to the TS algorithm. This shows that PSO is a very viable method of
optimisation for OAS problems.

However, contrary to our expectations, CPSO and DPSO that use evolved DR
and SDR to generate the initial global best position performs worse than CPSO
and DPSO without the use of DRs or SDRs for high τ and R values. One possible
reason is that the corresponding solution for the global best position potentially
has too high fitness value, which means that particles will prematurely converge
to the global best position and get stuck in a local optima. On the other hand,
in the default PSO the global best position would shift around quite a bit as
new solutions are found, allowing the particles to wander around more. For low
τ and R values this is not an issue, since the solutions found by the evolved DRs
are already very close to the upper bound on the problem instance. However,
since OAS problem instances with high τ and R values are more difficult to find
good solutions for, the default PSO that changes global best position often can
be better than having DR augmented PSO that has a good initial global best
position.

4.2 Average Deviation Evaluation

The algorithms are also tested on their stability by analysing the average result
for each problem instance. TS, CPSO and DPSO are evaluated 30 times for each
problem instance. The results of this is shown in Table 2, where x± s represents
the mean and standard deviation of the deviations over the 10 instances. The
version of meta-heuristics TS, CPSO and DPSO with the best average deviation
under 5% significance level is highlighted in the table, and the rule with the best
deviation under 5% significance level of all other rules for a particular problem
subset is marked with a † in the table.

For the results of the average deviation evaluation, we can see that TS-SDR
outperforms the other algorithms for subsets of low to mid τ and R values.
This shows that TS is a fairly robust algorithm and can consistently output
good results for various situations. However, for subsets of high τ and R values,
CPSO outperforms every other algorithm. This means it is likely that swarm
intelligence techniques are effective on difficult and volatile OAS problems. This
is further exemplified by the fact that the ABC algorithm proposed by Lin and
Ying [5] performs very well for problem subsets of high τ and R values.

Similar to the results of the best deviation evaluation (Section 4.1), CPSO and
DPSO augmented with evolved DRs and SDRs do not perform as well as the
basic CPSO and DPSO algorithms for high τ and R values. However, there are
some promising results for problem subsets of low τ and R values, as CPSO-SDR
and DPSO-SDR perform slightly better for low to mid τ and R values. With
adjustments to how the evolved DRs and SDRs are incorporated into the PSO
algorithm, it is likely to construct new PSO-DR hybrid model that is generally
improved for all types of OAS problem instances.
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Table 2. Evaluation of modified TS and PSO algorithm with various initial solutions
using average deviations

τ R TS TS-DR TS-SDR CPSO CPSO-DRCPSO-SDR DPSO DPSO-DRDPSO-SDR
0.10.1 4.1 ± 0.2 2.1 ± 0.1 2.1 ± 0.1 3.4 ± 0.2 2.6 ± 0.0 2.8 ± 0.1 3.4 ± 0.2 2.6 ± 0.0 2.8 ± 0.1

0.3 3.5 ± 0.3 1.8 ± 0.1 1.8 ± 0.1 2.6 ± 0.1 2.3 ± 0.1 2.2 ± 0.1 2.6 ± 0.1 2.3 ± 0.1 2.2 ± 0.1

0.5 2.2 ± 0.3 1.3 ± 0.1 1.1± 0.1† 1.5 ± 0.1 1.6 ± 0.1 1.5 ± 0.1 1.5 ± 0.1 1.6 ± 0.1 1.4 ± 0.1
0.7 1.3 ± 0.2 0.5 ± 0.1 0.5 ± 0.1 0.7 ± 0.1 0.7 ± 0.1 0.6 ± 0.0 0.7 ± 0.1 0.7 ± 0.1 0.5 ± 0.1

0.9 0.5 ± 0.1 0.3 ± 0.0 0.2± 0.1† 0.2 ± 0.1 0.3 ± 0.0 0.3 ± 0.1 0.2 ± 0.0 0.3 ± 0.0 0.3 ± 0.0

0.30.1 4.9 ± 0.3 2.9 ± 0.1 2.5± 0.1† 4.0 ± 0.2 3.3 ± 0.0 3.3 ± 0.1 4.0 ± 0.2 3.3 ± 0.0 3.3 ± 0.1

0.3 4.8 ± 0.3 3.5 ± 0.1 2.6± 0.1† 3.9 ± 0.2 4.1 ± 0.1 3.2 ± 0.1 3.9 ± 0.2 4.1 ± 0.1 3.2 ± 0.1

0.5 4.2 ± 0.3 2.6 ± 0.1 2.1± 0.1† 3.6 ± 0.2 3.2 ± 0.1 2.6 ± 0.1 3.6 ± 0.1 3.3 ± 0.1 2.6 ± 0.1

0.7 3.1 ± 0.2 1.8 ± 0.1 1.1± 0.1† 2.3 ± 0.2 2.3 ± 0.1 1.6 ± 0.1 2.3 ± 0.2 2.3 ± 0.1 1.6 ± 0.1

0.9 2.2 ± 0.2 1.1 ± 0.1 0.7± 0.1† 2.0 ± 0.1 1.6 ± 0.1 1.2 ± 0.0 1.9 ± 0.1 1.7 ± 0.1 1.1 ± 0.1

0.50.1 6.9 ± 0.3 4.7 ± 0.2 4.4± 0.2† 6.1 ± 0.2 6.4 ± 0.1 6.0 ± 0.2 6.1 ± 0.2 6.4 ± 0.1 6.0 ± 0.2

0.3 7.0 ± 0.4 4.8 ± 0.1 4.0± 0.1† 5.9 ± 0.3 6.2 ± 0.0 5.0 ± 0.1 5.9 ± 0.2 6.2 ± 0.0 5.0 ± 0.1

0.5 6.6 ± 0.4 4.9 ± 0.1 3.8± 0.2† 6.0 ± 0.3 6.1 ± 0.1 4.7 ± 0.1 6.0 ± 0.2 6.1 ± 0.1 4.7 ± 0.1

0.7 5.3 ± 0.3 3.4 ± 0.1 2.5± 0.1† 4.9 ± 0.2 4.4 ± 0.0 3.1 ± 0.1 4.9 ± 0.3 4.4 ± 0.0 3.1 ± 0.1

0.9 4.7 ± 0.3 2.9 ± 0.1 2.0± 0.1† 4.0 ± 0.2 4.4 ± 0.1 2.8 ± 0.1 4.1 ± 0.3 4.4 ± 0.1 2.8 ± 0.1

0.70.1 8.2 ± 0.3 5.8 ± 0.2 5.6± 0.2† 7.6 ± 0.3 7.2 ± 0.1 7.1 ± 0.2 7.6 ± 0.3 7.2 ± 0.1 7.1 ± 0.2

0.3 9.0 ± 0.4 6.8 ± 0.2 6.3± 0.2† 8.4 ± 0.2 8.4 ± 0.2 7.6 ± 0.1 8.3 ± 0.3 8.4 ± 0.1 7.6 ± 0.2

0.5 10.1 ± 0.5 7.5 ± 0.2 7.2± 0.2† 8.9 ± 0.3 9.1 ± 0.2 8.9 ± 0.2 8.8 ± 0.3 9.1 ± 0.2 8.8 ± 0.2

0.7 11.9 ± 0.6 9.5 ± 0.2 7.8± 0.2† 9.8 ± 0.4 10.9 ± 0.3 9.5 ± 0.2 9.9 ± 0.2 10.9 ± 0.2 9.5 ± 0.2

0.9 12.7 ± 0.6 9.6 ± 0.3 7.9± 0.2† 9.6 ± 0.3 10.6 ± 0.3 9.5 ± 0.2 9.6 ± 0.3 10.6 ± 0.3 9.5 ± 0.2

0.90.1 11.8 ± 0.510.3 ± 0.39.7± 0.2† 10.4 ± 0.3 11.6 ± 0.4 11.3 ± 0.2 10.6 ± 0.3 11.5 ± 0.2 11.1 ± 0.2

0.3 16.7 ± 0.614.4 ± 0.313.3 ± 0.2 13.1 ± 0.3† 13.6 ± 0.3 15.3 ± 0.2 13.2 ± 0.2 13.6 ± 0.4 13.8 ± 0.3

0.5 18.6 ± 0.616.7 ± 0.315.3 ± 0.3 14.8 ± 0.3† 15.3 ± 0.2 17.7 ± 0.2 14.8 ± 0.3 15.3 ± 0.4 16.1 ± 0.3

0.7 18.5 ± 0.716.8 ± 0.315.0 ± 0.3 14.9 ± 0.3 15.4 ± 0.4 17.2 ± 0.2 14.8 ± 0.3† 15.4 ± 0.3 15.8 ± 0.3
0.9 18.1 ± 0.515.6 ± 0.314.5 ± 0.2 14.6 ± 0.3 15.1 ± 0.3 17.0 ± 0.2 14.6 ± 0.3 15.1 ± 0.4 15.2 ± 0.2

* x±s represents the mean and standard deviation of the rule over the 10 instances.
** Highlighted cell means the variant of TS/CPSO/DPSO algorithm is better than
the other variants for the 〈τ,R〉 under Z-test of 5% significance level.
*** Cells marked with a cross means the corresponding algorithm is better than the
other algorithms for the 〈τ,R〉 under Z-test of 5% significance level.

5 Conclusions

Overall, the results show improvements to an existing TS algorithm by the use
of GP evolved rules generated from GP. The hybrid system outperforms the
standard TS proposed by Cesaret et al. [3] that uses the RLR1 heuristic to
generate the initial solution. Furthermore, it is possible to evolve heuristics for
problems other than OAS to generate initial solutions for TS and other meta-
heuristic algorithms.

In addition, it is shown that two different PSO approaches can be applied to
OAS in a single machine environment and that these are competitive with state
of art meta-heuristics such as TS [3]. However, the current method of incorpo-
rating evolved heuristics into PSO is still not as good as using the algorithms
by themselves. For future work, it will be interesting to try different approaches
to incorporating an evolved heuristic into PSO.
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Abstract. The need for live video transfer across networks is increas-
ingly crucial for modern day applications, ranging from video-based
surveillance systems to disarming explosives in a minefield using robots.
Some of these applications, for e.g., a tele-operated electric vehicle (EV)
as focused in this paper, involve real-time video streaming across wireless
networks, which is bandwidth-intensive and delay-sensitive at the same
time. This necessitates the need for a mechanism to adapt the data rate in
order to suit the network condition and to ensure hassle-free functioning
of the intended application. This paper proposes an adaptive streaming
mechanism which involves bandwidth estimation based on transmission
feedback and systematic adaptation of frame rate and frame quality for
a safe drive in a remotely driven EV. The algorithm is implemented in a
physical tele-operated EV and experiments are carried out to verify its
adaptation performance.

Keywords: Adaptive, Video Streaming, Remote Driving.

1 Introduction

Streaming live video over the internet has always been challenging due to the
limited bandwidth, transmission delays and packet losses. Real-time video trans-
mission typically has a minimum bandwidth requirement and is more sensitive to
end-to-end delay as compared to other data transmissions due to its continuity
requirement. Any potential loss of packets can make the presentation displeasing
to the human eyes at the receiving end. Thus there are specific requirements to
constraint the transmission delay as well as packet loss to a minimum level in
video transmission applications [1]. Furthermore, the internet traffic load con-
dition varies drastically over time, which is detrimental to video transmission.
Thus, it is a major challenge to design an efficient video delivery system that can
both maximize users’ perceived quality of service while achieving high resource
utilization of the Internet [2][3].

G. Dick et al. (Eds.): SEAL 2014, LNCS 8886, pp. 735–746, 2014.
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Although challenges are prevalent, the need for live video transfer across net-
works is increasingly crucial for modern day applications[4]. Examples include
those used in disaster response systems or real time telemetry of video imagery
using unmanned aerial vehicles [5]. Many of these applications require wireless
transfer of video that makes the development even more complex due to the
dynamic nature of the wireless network environments which can provide only
limited, time-varying quality of service for delay-sensitive, bandwidth-intensive,
and loss-tolerant multimedia applications [6]. In such regards, achieving a good
quality video transmission with the limited network conditions is a key.

Some of the applications mentioned above are delay-sensitive while some oth-
ers are more tolerant towards minor delays. Due to the fluctuating nature of
wireless networks, it is important to have some mechanism to adapt the data
rate in order to suit the network condition or else the network might be underuti-
lized or may even potentially cause the streaming to cease, which is detrimental
to the application. Many researchers have been focusing on improving the qual-
ity of video delivery across the internet by implementing novel algorithms for
optimal utilisation of effective bandwidth. Wu et al. summarised the earlier ap-
proaches to transfer real-time video over the internet in [1]. More recently, Song
and Golubchik devised an adaptive video streaming solution to deliver better
video quality among other similar technologies [7]. However, Song gave empha-
sis to video quality rather than the efficient usage of bandwidth. There are also
mainstream products such as Microsoft IIS Smooth Streaming, Adobe Flash
Dynamic Streaming and Apple HTTP Adaptive Bitrate Streaming. However,
all of these products are intended for use in broadcast for mass entertainment
purposes [8].

This paper discusses the application of adaptive streaming technology, intro-
duced in the earlier works [8]-[9] by the same authors, in remotely driven electric
vehicles (EV). Earlier works were focusing on a telemedicine application using a
low-bandwidth videoconferencing solution and here, the authors introduce the
technology in EVs. It is a solution proposed for last mile transportation problem
to provide a cost-effective and sustainable door-to-door transportation using a
shared fleet of vehicles which will be driven back to a common base by a remote
driver located in a central station using audio-visual feedback transmitted from
the vehicle [10]. The algorithm used for data rate adaptation in the dynamic
bandwidth condition is explained in the next section followed by more details
on the use of this algorithm in the last mile transport system using the EVs.

2 Adaptive Video Streaming Algorithm for Remote
Driving

Remote driving involves long distance wireless communication in which the avail-
able bandwidth is limited and highly dynamic. In this system, a driver located
in a remote location should be able to manoeuvre the EV from random localities
to a central hub from where the EVs will be made available to the public. The
remote driver should also be able to bring the EV from the central hub to the
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passengers’ locations as well upon request [10]. The entire operation will be based
on audio-visual feedback from the cameras placed on the vehicle, transmitted
through wireless medium in real-time. Due to the dynamics in wireless networks,
available bandwidth can be highly volatile and some transmitted data packets
might be lost. Although Transmission Control Protocol (TCP) can provide re-
transmission of lost data, it significantly increases transmission latency up to a
few seconds. Since remote driving is a time-sensitive application, dropping data
is preferred compared to waiting for delayed data. Therefore, User Datagram
Protocol (UDP), which can provide a higher data throughput for transmission
of large amount data with minimal latency and timely transmission of the most
recent data [11] [12], is more suitable for this application. The main drawback of
UDP is lack of network congestion control and this usually yields packet losses.
Additional mechanism is required to be implemented at the application layer in
order to avoid sending more data than the allowed bandwidth, and thus lessening
network congestion and massive packet losses.

In this application, there is a bi-directional parallel communication in which
video and sensor information are sent from EV to RS while control commands are
being sent from RS to EV as shown in Fig. 1. This two-way communication can
be utilized as a continuous feedback in monitoring network congestion, packet
drop rate and bandwidth condition.

Fig. 1. Bi-directional parallel communication between EV and RS

Motion Joint Photographic Experts Group (MJPEG) compression algorithm
is used for this remote driving application. MJPEG has advantages of clear
individual images, fast image stream recovery in the event of packet loss, low
latency, less processing overhead and better live viewing [13].

Typical frame rate provided by a standard digital video camera is 25-30 frames
per second (FPS). For MJPEG compression technique, doubling the FPS leads
to doubling the bandwidth usage and thus, it is essential to stream the video at
the right FPS count which is sufficient enough for the remote driver to safely
manoeuvre the vehicle. The right value of FPS is dependent on the distance
travelled by the vehicle between each frame. At a low vehicle speed, low fps is
good enough, while high fps is essential at a high speed, since the distance covered
is directly proportional to the vehicle speed. As per previous studies conducted
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on the effect of lower frame rates on human perception, it is pointed out that a
frame rate of 10-15 is sufficient for almost all the different tasks to be performed
unless the requirement is for sophisticated tasks; such as speech reading based
on video frames. The study also pointed out that the frame rate reduction from
25 to 15 is often perceptually similar in appearance to the viewers [14].

The proposed video streaming algorithm consists of three steps. The first
step is adapting the frame rate to the value in between 10 to 15 FPS, which
are sufficient for the human sight to create the sensation of visual continuity
[15]. The second step is estimating available bandwidth by using the continuous
feedback from RS. The third step is computing the compression parameter, Q
value, such that the transmission rate is within the available bandwidth to avoid
massive packet losses.

2.1 Frame Rate Adaptation

As mentioned earlier, the minimal required frame rate should be systematically
identified such that the safety of the remote driving operation is not compro-
mised. Consider the situation in which the remote vehicle is travelling at a speed
(v) while a camera on the vehicle is capturing at a constant frame rate (fr). The
distance (d1) which EV travels between two consecutive frames is given by:

d1 =
v

fr
(1)

If the remote driver has to clearly see up to a distance (d) from the camera,
the value of d should be greater than d1, as the driver should be able to see a
point before the vehicle reaches there. The above condition can be written as:

d > d1 =
v

fr
(2)

Eqn. 2 shows that, for maintaining a constant value for d, higher vehicle speed
requires higher frame rate. Thus, the minimal required frame rate (fr), to satisfy
this condition, can be written as:

fr >
v

d
(3)

Additionally, the remote driver requires certain number (n) of frames in order
to make vision perception in terms of the vehicle speed. This number has to
be based on the vehicle speed as well as the viewable distance from the camera
image, typically with a minimum of two to derive a speed estimate. Nonetheless,
the frame rate should not be less than 10 to maintain visual continuity. Thus, the
required frame rate (f́r) for perception and judgement of speed can be written
as:

f́r = max(10,
v

d
n) (4)
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Eqn. 4 ensures that the remote driver receives n numbers of frames which
consist of a particular position/object before the EV reaches that point and this
provides enough frames for the remote driver to react appropriately in case of
any potential road hazards. In general, low speed operations, such as parking and
passing through narrow passages, require high quality image to have better view
of obstacles and surrounding. Therefore, above equation can provide a systematic
approach in defining a minimal safe frame rate.

The viewable distance (d) from camera is dependent on its view angle as well
as the vehicle’s turning angle. Fig. 2 shows a four-wheel vehicle turning at a
radius of r.

Fig. 2. 2-D view of a four-wheel vehicle turning at a radius of r

Here, the camera is located at the point ‘D’ and its viewing angle is given by
the angle ‘FDH ’. This angle can cover the vehicle’s displacement (sFI) between
the point ’I’ and the point ’F ’ which is given by:

sFI = rΓ (5)

where, Γ = (π2 + β − tan−1 lBE

r − sin
−1 lAD sinϕ

r ), the angle formed amongst ‘F ’,

‘A’, and ‘I’, lAD =
√
lCD

2 + (r + lBC)2, ϕ = π
2 − β + tan−1 lCD

r+lBE
, lBE = the

distance between the centre of the left rear wheel ‘B’ and the front of the vehicle
‘E’, r = the vehicle circling radius, lCD = the distance between the centre of the
two rear wheels ‘C’ and the camera location ‘D’, β = half of the viewing angle
of the camera, and lBC = the distance between the centre of the left rear wheel
‘B’ and the centre of the two rear wheels ‘C’.

As there is a maximum distance, dmax, that the remote camera can see clearly,
Eqn. 4 can be rewritten as:

f́r = max(10,
v

min(dmax, SFI)
n) (6)
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2.2 Estimating Available Bandwidth

In the remote driving, the available data bandwidth is limited and dynamic at
the same time since wireless medium is utilised for the data transfer. In order
to monitor the available data bandwidth, bi-directional parallel communication
(Fig. 1) between EV and RS can be utilized as a continuous feedback. The RS
first monitor frame drop rate (FDR) and received data rate (RDR). FDR is
used to distinguish over-utilization and under-utilization of the available data
bandwidth, and RDR is used to measure the existing BW utilization. Upon
detecting frame drops, the BW will be assumed to be over-utilized and the
received data rate will be estimated as the maximum available bandwidth. Like-
wise, when all frames are being received (i.e. FDR = 0), BW will be assumed to
be under-utilized and the available bandwidth is estimated as received data rate
plus Additional Increment Value (AIV ). The Estimated Bandwidth (EBW ) is
computed as shown in Eqn. 7.

EBW =

{
RDR if FDR > 0

RDR+AIV otherwise
(7)

2.3 Computing Compression Parameter

The estimated BW (EBW ) is periodically fed back to the EV to calculate suit-
able frame size (fs) based on the suitable frame rate (Eqn. 6) as shown in
Eqn. 8.

fs =
EBW

fr
(8)

The compression parameter, Q value, is selected such that desired fs is
achieved for each frame. Based on the relationship between Q value and fs for
10 different images, captured from the same camera mounted on the EV while
operated under real-road environment, fs can be estimated as shown in Eqn. 9.
The overall flowchart for this adaptation algorithm is shown in Fig. 3.

fs = 453.51Q+ 5449.47 (9)

3 Experiment and Verification

The above algorithm is implemented in the existing remote driving system and
the details on the implementation are provided in this section. To verify the
performance of the algorithm, three different experiments have been carried out
with; 1) under-utilisation of BW, 2) over-utilisation of BW, and 3) adaptive
algorithm.
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Fig. 3. Overall Flowchart for Adaptation Algorithm

3.1 Hardware Setup

The remote driving system consists of three major sub-systems: EV, Wireless
Network and RS. The overall experiment setup is shown in Fig. 4. Cameras are
mounted on EV and are connected to the PXI controller (PCI extensions for
Instrumentation) [16]. Videos from these cameras will be transmitted from the
controller to the RS via a wireless network. The remote driver will be able to
control the EV based on the video streams received at the RS.

Fig. 4. Block Diagram of Overall System Setup

Electric Vehicle. The EV used is a single-seater vehicle manufactured by Toy-
ota Tsusho and the major components of the EV and its dimensions are shown
in Fig. 5.
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(a) Major Components (b) Dimensions

Fig. 5. Electric Vehicle

Wireless Communication. As shown in Fig. 4, a pair of TP-link TL-WA7510N
with external antenna OAN-4101 is used; one as the wireless access point (AP)
and another as the wireless transducer. This network typically can cover up to a
radius of 500m. Moreover, the remote station can be located at any place within
the campus network.

Remote Station. Fig. 1 shows the remote driving station arrangement in
which, Logitech G27 racing wheel assembly is connected to the station and
consisting of steering wheel, steel paddle shifter module, and accelerator, brake
and clutch pedals. It has 900-degrees steering angle. The remote driver uses it
to provide drive commands to manoeuvre the EV.

3.2 Algorithm Implementation Based on Electric Vehicle’s
Dimension

The bicycle model, which is a common simplification of an Ackermann steered
vehicle [17] used for geometric path tracking, is utilized to estimate rotation
radius of the EV from the steering angle. The vehicle’s trajectory is modelled
as a bicycle model in which its steering angle is parallel to that of the vehicle,
its rear wheel exists exactly in the middle point between two rear wheels of the
vehicle, and its front wheel exists exactly in the middle point between two front
wheels as shown in Fig. 6a. Its geometric model [17] is shown in Fig. 6b.

Based on the model, the geometric relationship between rotation radius R
and steering angle δ can be written as:

R =
L

tanδ
(10)

where L is the distance between the front and the rear wheels, 1.28m in this
case. With the information from fig. 6, r in Eqn. 5 can be calculated by:

r = R− lBC (11)
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(a) Bicycle Model (b) Bicycle’s Geometric Model

Fig. 6. Geometric Modeling

where lBC = 0.45m in this case. The maximum viewable distance, dmax, from
the vehicle based on the camera image is empirically measured to be 20m. The
resultant relationship between steering angle and viewable distance of vehicle
path, which is the denominator part of Eqn. 6, min(dmax, sFI), is shown in Fig.
7. When the steering angle is small, i.e. when the EV moves on a straight road,
the whole 20m is visible in the frame. However, as the angle gets bigger, i.e.
when the EV is passing through a bent road, the viewing distance gets shorter
as a result as shown in Fig. 7.

Fig. 7. Steering Angle Vs Viewable Distance of Vehicle’s Path

3.3 Experiment Results

Bandwidth Under-Utilization Scenario. In this experiment, frame rate and
Q value are set at 10 fps and 15 respectively in order to keep low bandwidth
utilization during the remote driving at the test circuit. The average bandwidth
utilization is at 125 kilo bytes per second (kBps) and the resulting measurements
are shown in Fig. 8a. In the figure, received data rate can be seen varying,
possibly due to the difference in frame size after going through the compression
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(a) Under-Utilized BW Condition

(b) Over-Utilized BW Condition

(c) Adaptive Algorithm

Fig. 8. Experiment Results
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algorithm as well as intermittent frame dropping. Due to low frame dropping
and less congestion, the bandwidth can be perceived as under-utilized. However,
the Q-value in this case is too low to deliver good quality images for safely
manoeuvring the EV through congested road conditions and thus not suitable
in all situations.

Bandwidth Over-Utilization Scenario. In this experiment, both frame rate
and Q-value are set at 15 fps and 60 respectively in order to simulate over band-
width utilization scenario. The resulting measurements are shown in Fig. 8b.
During second half of the experiment, frame drop rate becomes close to frame
transmission rate and thus, only a small percentage of frames are received by
the receiver. This arises due to the transmission bandwidth exceeding the avail-
able wireless bandwidth and such a situation is highly undesirable, especially for
time critical applications such as remote driving. However, it cannot be avoided
in wireless transmission, where available bandwidth is highly volatile, and this
demands the use of dynamic bandwidth adaptation with changing conditions.

Dynamic Bandwidth Utilization with Adaptive Algorithm. In this ex-
periment, both frame rate and Q value are adapted based on the described
algorithm. The resulting measurements are shown in below figure. The frame
rate is adjusted based on EV’s speed and viewable distance from the camera.
Available bandwidth is estimated based on the frame drop rate and Q value is
adapted such that bandwidth utilization is approximately equal to the available
bandwidth. In this way, frame drop rate is controlled to avoid the over bandwidth
utilized situation while optimally utilising the available network bandwidth, as
shown in Fig. 8c. The received data rate is able to adapt to the estimated network
bandwidth as well as Q value is seen to adapt accordingly to accommodate frame
rate variation due to variation in speed and steering angle while maintaining a
low level of frame drop rate.

4 Conclusion

In this paper, adaptive video streaming algorithm is discussed in which the frame
rate is adapted based on vehicle travel speed and steering angle. Bandwidth es-
timation is carried out by using frame drop rate via continuous feedback loop
from RS. Based on the estimated bandwidth, compression parameter ‘Q’ is ad-
justed to maintain bandwidth utilization just below the available bandwidth,
thus optimally utilising the existing network conditions. Implementation details
are provided and experiments are carried out to verify its performance. Experi-
ment results prove that, this algorithm is able to adapt the video data according
to the dynamics of wireless network efficiently, and thus provide a safe solution
for achieving acceptable performance in remote driving applications. This algo-
rithm performance can be further improved by integrating genetic algorithms in
‘Q’ estimation.
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Abstract. We describe a multi-objective evolutionary algorithm that
designs multi-device Wi-Fi installations optimised for three criteria: min-
imised cost, maximised coverage, and minimised service refusal. At the
heart of the system is a detailed simulator for Wi-Fi installations, and a
simple parallel evaluation scheme to allow these simulations to be per-
formed in reasonable time. We show that the algorithm can derive good
installations for two real-world maps requiring respectively around ten
and fifty access points. The fine-grained connectivity and mobility mod-
els used in the simulator allow us to derive results that are more realistic
than do previous methods.

Keywords: evolutionary algorithms, multi-objective optimisation,
Wi-Fi.

1 Introduction

A Wi-Fi network[1] is any wireless local area network that corresponds to the
IEEE’s 802.11 standards[2]. Wi-Fi installations have become increasingly ubiq-
uitous since the technology was originally patented by the Australian CSIRO in
the 1990s[3]: MarketsandMarkets state that the global Wi-Fi market is worth
US$40 billion in 2013, and they forecast that it will reach US$93 billion by
2018[4]. It has become common for cities around the world to offer city-wide (or
CBD-wide) municipal Wi-Fi service: [5] lists over a hundred cities that provide
such service, and many more that are planning to.

The limited range and capacity of individual Wi-Fi devices means that all
significant Wi-Fi installations are provided using multiple access points (APs)
working together. However, designing such an installation for a given area is a
difficult task for several reasons:

– suitable device-mounting points may be hard to find or sparsely distributed;
– the effective range of individual devices is affected by many factors, such as

the walls of buildings, trees, and other nearby objects;
– patterns of access vary during any given time period, due to the varying uses

of different parts of the area;
– users’ mobility makes it difficult to decide where devices should be installed.

� Corresponding author.
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[6] discusses the major issues involved, and the design principles commonly used
to address them.

The principal contribution of this paper is a new approach to designing the
layout of Wi-Fi installations that utilise multiple APs to provide service. We use
a multi-objective evolutionary algorithm (MOEA) to select a set of AP loca-
tions that optimises the coverage and service provided by a Wi-Fi installation,
whilst simultaneously minimising its cost. Experiments show that the algorithm
is able to derive a range of excellent layouts for two challenging real-world maps.
The algorithm uses detailed simulations as part of its fitness calculations, which
allows us to generate more-useful layouts than previous methods; and it incor-
porates a simple farming scheme for performing fitness calculations in parallel,
so it is scalable to much larger problem instances. Also the algorithm is easily
adaptable to optimise for other objectives, e.g. the robustness of an installation
wrt equipment failure.

The rest of the paper is structured as follows. Section 2 describes previous
approaches to designing Wi-Fi installations, and necessary background in multi-
objective optimisation. Section 3 describes the design of our multi-objective EA,
and of the network simulator used in its fitness calculations. Section 4 describes
the results achieved by our algorithm, and Section 5 concludes the paper.

2 Background

This section describes previous approaches to designing Wi-Fi installations, with
particular emphasis on attempts to optimise for physical coverage or temporal
connectivity. It also describes basic concepts and terminology in multi-objective
optimisation.

2.1 Previous Work

The problem of optimally locating finite resources is well studied. Most work on
Wi-Fi placement reports on indoor set-ups where most clients are stationary, and
where mobile clients have little impact on the network design. Many packages
enable a building’s interior to be defined, and predicted Wi-Fi signal heatmaps
to be rendered. The primary exception is Zirari et al.[7], who focus on positioning
indoor APs in shopping malls and public buildings to provide not just strong
network access, but also accurate localisation and tracking of mobile clients.

Wang et al.[8] employ the statistical mobility patterns of network users at
a university college, in an attempt to provide continuous Wi-Fi connectivity.
However, their mobility models were derived by studying an already deployed
network, and it is unclear if the mobility patterns apply to other environments.
In contrast, Zheng et al.[9] employ an unspecified approximation algorithm to
balance the bandwidth and connectivity demands of users traveling in vehicles
and using a roadside Wi-Fi network, to determine worst-case guarantees.

Wang and Kao[10] apply a genetic algorithm (GA) to the placement of APs
with heterogeneous costs and capacities, but they assume that client demand
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on the network is uniform across an obstacle-free region, and do not model
mobile client movement. Wang and Chen[11] apply a GA to the determination
of locations and heights of antennae in a cellular network, but their work also
assumes a known, fixed network demand. Agustin et al.[12] also apply a GA to
the design of city-wide Wi-Fi, but they restrict their work to static users and
they exploit pre-installed infrastructure to reduce costs.

Bulut and Szymanski[13] employ integer linear programming to position APs
for bandwidth offloading in a 3G cellular network. They employ real user mobility
traces to model the distribution and location of network traffic requests, and
report the percentage of offloading before the 3G network must be used.

The principal advantage that our work offers compared to these previous
works derives from the detailed simulations that we employ to generate realistic
solutions for mobile users.

2.2 Multi-objective Optimisation

In a multi-objective optimisation problem, potential solutions are assessed ac-
cording to two or more independent quantities. The characteristic of good solu-
tions is that improving in one objective can be achieved only by worsening in at
least one other objective. An algorithm for solving such problems returns a set
of solutions offering different trade-offs between the various objectives.

Consider a problem where a solution x is mapped to a fitness vector fx. x
dominates y iff fx is at least as good as fy in every objective, and is better in
at least one objective. x is non-dominated wrt a set X iff there is no solution in
X that dominates x. X is a non-dominated set iff every solution in X is non-
dominated wrt X . The set of fitness vectors corresponding to a non-dominated
set is a non-dominated front. x is Pareto optimal iff x is non-dominated wrt the
set of all possible solutions, and the Pareto optimal set is the set of all Pareto
optimal solutions. Multi-objective optimisation aims to find (or approximate)
this Pareto optimal set.

With multiple objectives there is only a partial order on solutions, which
causes problems for selection in an EA. The usual solution is to define a ranking
on solutions: one popular scheme[14] defines the rank of a solution x wrt a set
X to be the number of solutions in X that dominate x. Selection is then based
on ranks: a lower rank implies a better solution.

Precise definitions of all these terms can be found in [15].

3 Methodology

The key decisions required to apply evolutionary optimisation to a given problem
are the way that solutions are represented, and the design of the associated
variation operators; the choice of objectives to optimise for, and how they are
quantified; and the selection of various parameters and other components of
the algorithm. This section describes these parts of our algorithm, and also the
design, operation, and use of the network simulator in its fitness calculations.
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3.1 Representation

We assume a homogeneous deployment where the same device is deployed at
all APs (extra service can be provided by placing devices close together). This
approach is commonly used by large organisations (such as our own university)
that wish to minimise purchasing costs and to streamline operations and device
replacement. Thus an installation is specified simply as a set of locations in
the area in question. In most situations, most potential device locations are
on the outside of buildings. However, the locations available for APs on a given
building may be limited for many different reasons, e.g.:

– structural: a suitable device-mounting point must be available;
– architectural: some buildings are difficult to modify;
– regulatory: some buildings cannot be modified for legal reasons;
– aesthetic: the look of a building may be important;
– weather-related: the devices must be protected from the effects of weather;
– security-related: the devices must be safe from e.g. theft and vandalism.

Thus our algorithm assumes that the area in question has been pre-analysed
and that a set of locs suitable locations has been identified for the installation of
devices. These locations are denoted by the indices 0 . . . locs− 1, and a solution
is represented simply as a non-repeating subset of these indices.

This linear representation has an obvious shortcoming. If Locations k − 1
and k are on one building but k + 1 is on the next building, then mutating
a gene with value k up or down by 1 could have significantly different effects,
but the algorithm would be unaware of this difference. However the substantial
advantage of the linear representation is its generality: it can be applied without
modification to any situation.

3.2 Variation Operators

Variation operators determine how the solutions at one generation are used to
generate new solutions to potentially join the population. The principal tasks are
pairing up solutions as “parents”, combining parents in “crossover” to produce
children, and “mutating” the children to create new genetic material.

Parental Selection. is usually biased towards better solutions in the popu-
lation: together with non-random survival, this is one of the mechanisms by
which good genetic material is preserved and propagated. We use a fairly elitist
approach: the population is split into thirds xs, ys, zs (from best to worst), then

– solutions in xs are paired point-wise with a random permutation of xs; and
– solutions in xs are paired point-wise with a random permutation of ys; and
– solutions in ys are paired point-wise with a random permutation of zs.

Thus the respective thirds of the population get three, two, and one chance(s)
to generate children, and n parents collectively generate 2n children. We select
randomly n of these to evaluate and to consider for subsequent generations.
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Crossover is performed with a simple 1-point scheme. Given two solutions x
and y, we choose randomly a location L and we build two children: the first
contains locations in x that are less than L plus locations from y that are at
least as big as L, and the second contains locations in y that are less than L plus
locations from x that are at least as big as L. This scheme has the important
property that if both x and y are feasible, then their children are guaranteed to
be feasible. Note it is irrelevant whether L is in either x, or y, or both.

Mutation takes one of three forms, chosen randomly for each solution.

– The deletion of an AP: one of the existing APs is removed.
– The addition of an AP: a new AP is inserted that bisects one of the “gaps”

between consecutive APs in the solution, within a certain distance.
– The modification of an AP: one of the existing APs is moved to a new

location not currently in the solution, within a certain distance.

Both crossover and mutation disallow solutions that have fewer than a certain
number of APs, determined by the area of the map in question. Such solutions
may rank well in the population, due to their limited cost, but they are unlikely
to be useful, due to their lack of coverage. They are discarded and replaced
immediately.

3.3 Objectives

The system optimises three objectives, all being minimised.

Percentage of the Map with No Service. For each solution we calculate
the percentage of the area where wireless service is not available.

Percentage of Requests Unfulfilled. Even in areas where service is available,
users sometimes experience contention, where a particular AP is fully-occupied.
The rate of contention is tricky to estimate because it depends on both the
quality of the installation, and the pattern of users’ accesses. We simulate a
typical number of users (for a given map) over some period of time, and we
calculate the percentage of their requests which are unfulfilled. The simulator is
described in Section 3.5.

Number of Devices Required. We count the number of devices that a solu-
tion deploys, and we use this value as a proxy for its cost. It might be desirable
to incorporate other factors too, such as the different cost of mounting devices
at various locations, or the implied cost of using less-secure locations.

The first of these objectives acts as a so-called “constraint objective”. Solu-
tions offering insufficient coverage are allowed in the population, but they are
regarded as infeasible: only solutions with an “uncoverage” value close to zero
are regarded as adequate solutions to the problem. It has been demonstrated
elsewhere[16–18] that this is a good way to deal with such “soft” constraints.
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3.4 Other Algorithm Details

This section describes the other significant details of the operation of the MOEA,
specifically to do with selection, initialisation, and termination.

Ranking Procedure and Selection. The algorithm uses a fairly standard
ranking procedure for performing selection. Each solution x is given a rank equal
to the number of other solutions that dominate x, then ranks are promoted until
the required population-size is reached. Normally the final rank promoted must
be broken to match the population target n, but we employ a scheme whereby
the population can grow and shrink in the range [n, 2n]. This mostly eliminates
the need to break ranks, limiting it to cases where we are choosing at least n+1
solutions from the final rank, which tends to promote diversity in the population.

This variable-population-size scheme has been used previously with some
success[19]. The parallel fitness calculations (Section 3.6) mitigate against any
significant performance degradation which can arise when using this scheme.

Initialisation. We create each solution in the initial population randomly: we
determine upper and lower bounds on the number of APs in each solution based
on the area of the map, then for each solution we select some number k in this
range, and we select randomly k of the possible AP positions.

Clearly, more-systematic methods of initialisation are possible; e.g. a uniform
distribution of the k AP positions, or a deliberate over-provisioning of APs, which
may aid the search. We plan to investigate the benefits of such possibilities.

Termination. We run the algorithm for a fixed number of generations. We plan
to investigate other possibilities, such as running until improvement ceases.

3.5 The Network Simulator

The network simulator sits at the heart of our system: it is responsible initially for
analysing the given map to determine candidate AP positions, and subsequently
for calculating the three objectives for each solution generated by the MOEA.

The map provides the locations of static objects (e.g. buildings and trees)
that influence the effectiveness of an AP placement, and walkways linking the
buildings. We employ a polygon inflation algorithm to determine and enumerate
candidate AP positions every 2m around the outside walls of the building.

Given a solution, the system first determines the area covered by the APs.
The map is divided into 50cm-square cells (chosen based on typical walking
speeds), and a simple ray-tracing approach calculates the signal-strength arriving
at each cell. This is calculated using a link budget equation which includes the
Wi-Fi transmission power, antenna gains, device sensitivity, and a free-space
path-loss model of signal propagation accounting for transmission frequency and
distance[20]. For large maps the ray-tracing can take several seconds, so the
simulator pre-calculates the “footprint” of signals from each AP at each cell.
The signal-strength at each cell is the maximum of all signals from each AP.
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The second metric is calculated by the cnet network simulator[21, 22]. cnet
has been developed over twenty years to support generic wide-area networks,
IEEE802.3 LANs, and IEEE802.11b/g WLANs. cnet is invoked with a topology
file that defines the parameters of the simulation, including the locations of
the APs, the number of mobile devices, Wi-Fi transmission characteristics, and
the duration of the simulation. cnet executes the Floyd-Warshall algorithm to
determine the shortest paths between all venues and entry/exit points along the
walkways [23, 24]. For maps with several hundred locations this calculation takes
only milliseconds, but for larger maps pre-calculation is employed. The mobility
model has each device select a random entry point to the map and 2–6 venues
to visit: then it generates a route (along walkways) that visits each venue and
leaves via the same entry point. Devices move at a constant rate in the range
0.5–3.5m/s, they pause at each venue as if sitting in a lecture or tutorial, and
they leave to be at their next venue at the beginning of each hour. Stationary
devices are assumed to use APs installed inside venues.

Between venues, each mobile device tries to maintain an association with
an AP. Each AP transmits beacon frames each 1024µs, advertising itself to
prospective clients. Clients record the signal-strength of all APs within range,
and try to associate with each AP, in order of signal-strength, until successful.

Each simulated AP has a carrying capacity of twelve clients, modelled on
the recommended capacity for a Cisco Aironet 1140 device supporting 802.11b
for casual web-browsing. An AP breaks its association with a client if it has
not received any traffic for 10s, when it assumes that the client has moved out
of range. As we model only connectivity and actual wireless network data, our
clients transmit “heartbeat” packets to maintain their associations. A client
disassociates from an AP if it has not received a beacon frame for 30s, or when
it arrives at its next venue or leaves the map.

The overall run-time for a particular simulation depends primarily on the area
of the map, the number of installed APs, and the number of mobile devices. It
is roughly linear in each of the last two.

3.6 Parallelising Calls to the Simulator

The MOEA invokes multiple copies of the simulator on different machines via
a simple “farming” scheme, reducing the run-time of the system. In each gen-
eration, the MOEA creates a file describing the children which were produced
at that generation and which need to be evaluated. The farmer program dis-
tributes these jobs across a collection of Linux workstations, and it tracks when
jobs start and finish, when machines become unavailable, when jobs need to be
restarted, and all other bookkeeping information required by the system. When
the remote evaluation of all jobs is complete, farmer writes the results to an
output file for the MOEA.

Because the farmer is invoked separately in each generation, most of the lost
opportunities for parallelism in the system occur near the end of an invocation,
when it is waiting for a few jobs to finish. The farmer tries to reduce this factor
by invoking big jobs (typically those with more APs) first.
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4 Results

We report two experiments, both based on parts of UWA’s Crawley campus in
Perth, Western Australia[25]. Fig. 1 shows the map used. North.map contains
roughly the northern half of the campus, and CSSE.map contains a subset of
this, chosen to illustrate the algorithm working on a small-scale problem. The
numbers of mobile devices used in the simulations are estimates of the numbers
of internet-active users on the wireless network at any given time. The other
principal variable in the simulation is the patterns of movement and internet
access of these devices. In these experiments we use a fixed seed for the simulation
which ignores these issues: we postpone to future work the analysis of the noise
inherent in such simulations.

Table 1 gives the settings used for the experiments, and the timings that
resulted.

Table 1. The settings for and timings from the two experiments

CSSE.map Setting North.map

6,020 area of map (m2) 71,446
213 number of possible AP positions 1,237

5 minimum number of APs allowed 25
12–18 number of APs at initialisation 45–66

2 simulated time (hours) 2
10 number of mobile devices 100

50 (max 100) population size 100 (max 200)
100 number of generations 100

30 seconds average run-time per simulation 23 minutes
66 seconds maximum run-time per simulation 49 minutes
36 seconds average run-time per generation 59 minutes

21.2 average degree of parallelism 23.0

Fig. 2 shows the front from one run with CSSE.map, and Fig. 3 shows the
combined front from two runs with North.map. Both graphs plot the percent-
age of unfulfilled requests vs. the number of APs for different minimum levels
of coverage of the map in question: basically coverage is being used as a soft
constraint with cut-offs set at various values. We make several observations.

– Both graphs suggest that 99% coverage of the relevant map is possible at
reasonable cost and while fulfilling a high percentage of users’ requests. The
rightmost 99%+ solution from Fig. 3 is illustrated in Fig. 1: generally it
shows an even spread of APs, but also it shows a “doubling-up” of APs at
key locations such as the Octagon Lecture Theatre, the University Club, and
the Arts Building, all on the right-hand side of the map. 99.9% coverage is
also achievable, at higher cost and with more service refusals.

– For a given cut-off value for coverage, there is a tendency for the percentage of
unfulfilled requests to increase as the number of APs decreases, as expected.
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Fig. 1. North.map contains the northern part of UWA Crawley campus. Several build-
ings and many trees are shown. Grey lines denote walkways, yellow dots denote junc-
tions, and green dots denote entrances/exits to this part of the campus. The blue
marks on the edges of buildings denote the 1,237 possible AP locations available to the
algorithm: the 45 AP locations marked constitute the rightmost 99%+ solution from
Fig. 3. CSSE.map is a subset of North.map that contains the CSSE Building and the
two adjacent science buildings, and associated paths: it has 213 possible AP locations.
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Fig. 2. Performance when processing CSSE.map. The three lines show the best solu-
tions generated in one run for various numbers of APs, where coverage of the map
exceeds 97.5%, 99%, and 99.9% respectively.
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Fig. 3. Performance when processing North.map. The four lines combine the best so-
lutions generated in two runs for various numbers of APs, where coverage of the map
exceeds 95%, 97.5%, 99%, and 99.9% respectively. The rightmost 99%+ solution is
illustrated in Fig. 1.
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– Comparing lines for different cut-off values, higher coverage either requires
more devices, as expected, or (if the number of devices is unchanged) it re-
sults in more requests going unfulfilled. This last point needs some explana-
tion. For a fixed number of APs, achieving higher coverage means that they
must be distributed more evenly: close devices have overlapping coverage
areas. But an even distribution of APs is unlikely to match the distribution
of users’ requests, leaving more requests unfulfilled.

– It seems to be impossible to get the percentage of unfulfilled requests below
a certain level, about 2% in these experiments. It will always be the case
that sometimes the number of users’ requests in an area exceeds the offered
capacity of the installed APs: this problem is exacerbated by the fact that
sometimes after a device stops needing an AP with which it is associated, the
AP may not realise for some time that it could be servicing another device.

It is crucial to note that these patterns and trade-offs are exposed as a result of
running the algorithm: the user does not need to specify anything in advance.
This is a major strength of the multi-objective approach.

We note that whilst it would be desirable to compare the performance of our
solutions with that of UWA’s existing Wi-Fi installation, this is difficult to do
in a fair way because the existing system uses indoor APs.

5 Conclusions

We have described a multi-objective evolutionary algorithm that optimises a
multi-device Wi-Fi installation for a given map according to three criteria: min-
imising the number of APs used, minimising the area of the map that lacks
coverage, and minimising the proportion of users’ requests that are unfulfilled.
We have shown that the MOEA delivers good results for two challenging real-
world maps that respectively need around ten and fifty APs.

Future work will include improving the simulations that sit at the heart of
the system, and optimising for new objectives, such as the robustness of an
installation wrt device failure. One issue to be investigated is the noise in the
simulations: standard approaches to noise are all expensive[26, 27], so we plan
to try a new solution using our parallel evaluation scheme.
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Abstract. The internal layouts of buildings in video games are usually
designed by hand, but the increasingly expansive and realistic nature of
virtual worlds introduces scalability issues which make manual design
methods impractical. We present a new methodology that uses a multi-
objective evolutionary algorithm to automatically generate building lay-
outs. The method accepts highly versatile input constraints, encoding
layouts using a flexible binary tree representation and evaluating them
on a range of criteria to ensure authentic results. Tests demonstrate that
the method works well for a variety of problem instances representing an
apartment, a family house, and an office floor; the ability to generate so-
lutions for different types of buildings and to incorporate non-rectangular
spaces shows greater versatility than many previous methods.

Keywords: Architectural design, multi-objective optimisation, evolu-
tionary algorithms.

1 Introduction

People spend much of their time in built environments, both residential and
commercial buildings. Traditionally, building design has been performed by ar-
chitects, engineers, and other experts, in consultation with a client — a resource-
intensive process justified by the importance of obtaining good solutions and the
lack of adequate alternatives. The same approach has normally been used in on-
line worlds: however with the recent rise in popularity of open-world video games
such as the Grand Theft Auto[1] and Left 4 Dead[2] series, in which players can
freely roam expansive virtual environments that include entire cities, manually
creating unique designs in such contexts is an expensive, if not infeasible, op-
tion. It has been estimated that in games like the World of Warcraft[3] series,
the manual creation of game content (such as weapons and buildings) absorbs
up to 40% of the budget[4, 5]. Thus the automatic generation of realistic and
diverse building designs is clearly a desirable goal. Yet game developers continue
to model buildings by hand[6], at least partly because current alternatives intro-
duce undesirable compromise. Tutenel et al.[7] note that buildings incidental to
a game’s plot frequently have only their exterior facade rendered, with no interior
whatsoever. Such buildings cannot be entered, restricting what a player can and
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cannot explore. Other games use a small set of interiors replicated city-wide[7],
lessening the variety and authenticity of the virtual world.

This paper explores the use of a multi-objective evolutionary algorithm
(MOEA) to generate building floor plans autonomously. The MOEA uses a tree
representation of building interiors that describes a recursive subdivision of a given
space, and that allocates each derived subspace to a room in the building. This rep-
resentationhas been described previously[8], but it has never been used to generate
floor plans in a truly autonomous manner. We propose new genetic operators over
this representation, a flexible input system that allows a user to specify (via hard
and soft constraints) what rooms they want and the relationships between them,
and nine fitness criteria that measure how closely a design matches the specifica-
tion. The MOEA returns a set of designs that satisfy the specification, with vary-
ing trade-offs across the soft constraints. In contrast to most previous work, the
MOEA is able to generate floor plans with non-rectangular rooms, and we demon-
strate that it can generate plans for various types of buildings, whereas previous
work has tended to focus on a single type of building only. We report tests repre-
senting a small apartment, a family house, and an office floor: the MOEA delivers
a range of promising designs for each. The results show that the method has the
potential to become a valuable part of a game developer’s toolkit for creating au-
thentic virtual worlds. It may also help architects as a design tool in a traditional
setting, although the perceived need for this is less.

The rest of the paper is structured as follows. Section 2 describes relevant
background material and previous work. Section 3 specifies the problem that
we address and the options that the system currently offers to users. Section 4
describes the details of our multi-objective approach, and Section 5 describes the
experiments performed and the results achieved. Section 6 concludes the paper.

2 Background

2.1 Previous Approaches to Automating Architectural Design

Schwarz et al.[9, 10] were the first to automatically generate and evaluate build-
ing floor plans. They use two weighted, directed constraint graphs, one whose
nodes represent walls in the X direction, the other in the Y direction: thus all
rooms are rectangular. The search space is sets of edges in the graphs, and a
branch-and-bound technique is used to find good solutions based on criteria such
as total area and construction cost.

Much previous work distinguishes between the topology and the geometry of a
floor plan. A topology refers to room adjacencies, ignoring spatial coordinates or
dimensions; whereas a geometry specifies the position and shape of each room.
Medjdoub and Yannou[11] use integer constraint programming to determine fea-
sible topologies (thus reducing the search space of geometries), then they input
these to a branch-and-bound algorithm to derive optimal geometrical solutions.
Their approach is guaranteed to find optimal solutions, but it is suited only to solv-
ing small- or medium-sized problems. Michalek et al.[12] similarly use a genetic
algorithm to explore the space of topologies, then gradient-based quadratic pro-
gramming combined with simulated annealing to find geometrical solutions.
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The fitness of a topology is taken to be the fitness of the best geometry that can be
generated from that topology. Other work which finds only topological solutions
and ignores geometry[13, 14] may serve as a useful starting point for an architect
to refine manually, or as useful input to other methods.

A shape grammar[15] is based around rules that define transformations be-
tween shapes. Shape grammars are a successful and popular tool for modelling
the 3D textual features of building facades in video games[16]. They have also
been used to generate floor plans[17–19], but their success in this area is limited
to particular styles that do not reflect typical modern-day architecture.

Merrell et al.[20] train a Bayesian network to learn designs using a database
of pre-existing floor plans. They are able to generate designs that resemble real-
world floor plans, which would presumably seem authentic in a virtual setting,
but they assume the availability of existing plans that conform to the design
goals. These designs are fed into a stochastic optimisation algorithm which can
slide segments of walls horizontally or vertically and can swap the positions of
rooms, evaluating fitness using the dimensions and shape of each room.

Quiroz et al.[8] use an interactive genetic algorithm to generate floor plans.
They encode a floor plan as a binary tree, where each internal node divides a
rectangular space either horizontally or vertically, and each leaf defines the type
of room that a space represents; and they use volunteers to subjectively and
collaboratively evaluate plans throughout the evolutionary process. The lack of
autonomy and the reliance on human input make this approach ill-suited to the
task of generating a large number of building layouts for virtual worlds. Note
that a similar encoding scheme is used in our new method (see Section 4.1).

Procedural techniques generate floor plans via a set of steps, each guided by
heuristics and random numbers for design variation. These methods are usually
fast, but they are restricted to a particular type of building, they tend not to
optimise global fitness, and they consider only a limited number of constraints.
Marson and Musse[21] generate layouts using squarified treemaps[22], which it-
eratively divide a space, keeping the subspaces as square as possible. This use
of subdivided rectangles resembles the encoding used by our MOEA, but the
method is otherwise wholly different. Once rooms are assigned fixed coordinates,
a final step generates a corridor to ensure that all rooms are connected, but this
corridor necessarily reduces the area of some rooms. Their examples are limited
to small six-room apartments, and it is unclear how well the method scales.

Tutenel et al.[7] propose a framework that can theoretically integrate interior
layout generation and exterior 3D rendering techniques to create a complete,
cohesive building. Such a process could operate either inside-out or outside-in;
either way, consistency is clearly important, e.g. to avoid windows or doors that
overlap multiple rooms. A semantic moderator coordinates the 2D interior layout
algorithm and the 3D exterior rendering algorithm, without either algorithm
knowing how the other operates. We envisage that our new method could be
used as a component of such a framework, generating the interior layout for a
building while allowing other, specialised algorithms to render the 3D model.
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2.2 Multi-objective Optimisation

In a multi-objective optimisation problem, potential solutions are assessed ac-
cording to two or more independent quantities. The characteristic of good solu-
tions is that improving in one objective can be achieved only by worsening in at
least one other objective. An algorithm for solving such problems returns a set
of solutions offering different trade-offs between the various objectives.

Consider a fitness function that maps a solution x into a vector fx. x dominates
y iff fx is at least as good as fy in every objective, and is better in at least one.
x is non-dominated wrt a set X iff there is no solution in X that dominates x.
X is a non-dominated set iff every x′ ∈ X is non-dominated wrt X . The set of
fitness vectors corresponding to a non-dominated set is a non-dominated front. x
is Pareto optimal iff x is non-dominated wrt the set of all possible solutions, and
the Pareto optimal set is the set of all Pareto optimal solutions. Multi-objective
optimisation aims to find (or approximate) this Pareto optimal set.

With multiple objectives there is only a partial order on solutions, which
causes problems for selection in an evolutionary algorithm. The usual solution
is to define a ranking on solutions: one popular scheme[23] defines the rank of
a solution x wrt a set X to be the number of solutions in X that dominate x.
Selection is then based on ranks: a lower rank implies a better solution.

Precise definitions of all these terms can be found in [24].

3 Problem Specification

Building designs vary a lot, depending on many factors, e.g. the purposes for
which the building will be used, the amount of space available, the number and
types of rooms required, and the desires and tastes of the client(s). As such, an
architectural design tool needs to allow a user to provide a wide range of details
in the specification of a problem instance, otherwise the utility of the tool will
be limited. Our system allows a user to specify the footprint available, a list of
room types, e.g. Lounge, Bedroom, Hall, Office, etc, and then for each type:

– the number of those rooms required;
– whether the rooms can be used as thoroughfares between other rooms (e.g.

a lounge may be a thoroughfare, whereas a bedroom is less likely to be so);
– whether the rooms need to be publicly accessible, i.e. reachable using only

thoroughfares (e.g. a bedroom is usually accessible, but not its ensuite);
– a minimum and maximum width, length, and area;
– a maximum aspect ratio;
– a minimum length of external wall, usually to allow for windows or access.

Note that if a building is required to have (say) lounges with different specs,
that can be accommodated by having separate types LoungeA and LoungeB.

Secondly, for each pair of room types, a user can specify minimum and max-
imum ratios of their respective areas; e.g. they may say that a lounge must be
at least 20% bigger than a home office, but no more than twice as big.

Finally, the user can specify that certain room types must be adjacent.
Fig. 1 shows an example specification. Other examples are given in [25].
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Number Th’fare Access Width Length Area Max AR Min wall

Living 1 yes req 2.5– 3– 9–45 2 1m south
Home office 1 no req 2.0– 2– 6–30 2 1m any

Kitchen 1 no req 2.0– 2– 7–35 3 1m any
Bed 2 no req 2.0– 3– 7–35 2 1m any
Bath 1 no req 1.5– 2– 4–20 4 0m
Hall 1 yes req 1.0–1.5 1– 1–50 7 0m

Living Office Kitchen Bed Bath Hall

Living n/a 1.2–2.0 1.0–1.7 1.0–1.8 2.0– 2.0–
Home office n/a 0.5–1.4 0.4–1.0 1.0– 1.5–

Kitchen n/a 0.5–2.0 1.25– 1.0–
Bed 0.7–1.43 1.5– 1.4–
Bath n/a 0.0–
Hall n/a

Footprint available: 7× 7m.
Required adjacencies: Kitchen and Living; both Beds and Hall; Bath and Hall.

Fig. 1. The complete specification for an apartment design problem. The first table
gives the constraints for the individual room types, the second table gives the area ratio
constraint for each pair of room types (empty cells can be inferred from those given),
and the final statements give the footprint and adjacencies. Units used are metres.

4 Methodology

This section describes the details of our algorithm: the genetic representation
and variation operators used, the objectives and their quantification, and details
of initialisation, termination, and archiving.

4.1 Representation

The genetic representation that we use is a binary tree, where

– the root node defines the dimensions of the entire space available;
– each internal node defines a split direction (either H (splitting the X dimen-

sion) or V (splitting the Y dimension)), and a proportion 0 < p < 1: e.g.
the node V, 0.4, l, r indicates a split parallel to the X-axis 40% of the way
“down” the current space, with children l and r;

– each leaf indicates which room that node’s space belongs to.

This representation is very similar to that used in [8] and superficially similar to
that used in [21]. It offers several features that are useful in evolving floor plans:

– it is flexible enough to represent any sub-division of the space whose walls
are parallel to the axes;

– it allows the representation of non-rectangular rooms in a natural way, simply
by having multiple leaves with the same label;

– it is easy to mutate in various natural ways.
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Fig. 2. An example floor plan, and a binary tree representation of that floor plan. Each
node illustrated gives the X and Y ranges of the space available to that node, with
the origin at the top-left corner of the space. The arrows indicate the correspondence
between the tree and the three top-level divisions. Note that Hall 1 and Bed 1 are each
associated with two leaves in the tree, hence they are non-rectangular.
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Fig. 2 illustrates how a tree is turned into a floor plan. The hierarchy of splits is
applied to the available space top-down starting from the root node. Each node
d, p, l, r splits the current space according to d and p, then l is applied above or
left of the split, and r is applied below or right of the split.

4.2 Variation Operators

We employ several different types of mutation, selected probabilistically.

Insert leaf: select a node n and replace n with a new node d, p, n, l, where d,
p, and l are a direction, a proportion, and a new leaf.

Remove leaf: select a node n = d, p, l, x where l is a leaf, and replace n with
x.

Change leaf: select a leaf and change the associated room type.

Change node: select a node and either toggle its direction between H and V ,
or mutate its proportion value by up to ±0.25.

Rotate subtree: select a node and replace it with one that generates the same
floor plan, but rotated either 90◦, 180◦, or 270◦.

Reflect subtree: select a node and replace it with one that generates the same
floor plan, but reflected either horizontally, vertically, or both.

Swap subtrees: select two internal nodes and swap their positions.
Swap rooms: select two plan components a and b, and change all leaves of type

a to type b and vice versa.

[25] gives more details of these mutations and examples illustrating their use.
No crossover is currently used: using crossover did not improve the results.

4.3 Objectives

We employ nine objectives to test whether a floor plan meets a specification.

Absence: Minimise the number of missing rooms.

Disjointedness: Minimise the number of disjoint rooms: a room is disjoint if
it has two or more non-adjacent areas.

Adjacencies: Minimise the number of broken adjacencies.

Connectivity: Minimise the number of non-connected rooms: two rooms are
connected if you can get from one to the other traversing only thoroughfares.

Externality: Minimise the number of rooms with insufficient external wall.
Redundancy: Minimise the number of redundant halls: a hall is redundant if it

is adjacent to two or fewer rooms, or if it does not improve room connectivity.
Dimensions: Minimise

√
(
∑

r∈rooms

∑
d∈dimensions f(r, d)

2), where f(r, d) is
the proportion by which r is outside its set range in width, length, or area.

Aspect ratio: Minimise
∑

r∈rooms g(r), where g(r) is the amount by which r
exceeds its maximum aspect ratio. g(r) is adjusted for non-rectangular r[25].

Proportionality: Minimise
√
(
∑

r,r′∈rooms h(r, r
′)2), where h(r, r′) is the

amount by which area(r)/area(r′) is outside the set range.
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The first six of these act as hard constraint objectives: only solutionswith a value of
0 for all of these are regarded as feasible/satisfactory. It has been shown elsewhere
that this is a good way to derive solutions that satisfy such constraints[26–28]. The
other three are effectively soft constraints: we would like to minimise their values,
but it may not always be possible to derive an optimal solution.

4.4 Other Algorithm Details

Selection: We use standard Pareto ranking[23] in selection: where we need to
break ranks, we favour the hard-constraint objectives over the soft constraints,
in the order listed in Section 4.3. Thus feasible solutions are favoured,
which tends to increase the proportion of such solutions over time.

Initialisation: All initial solutions are generated using a simple heuristic pro-
cedure. Starting from a single (root) node, insert leaves repeatedly with a
room not already added, until all of the components are present. Spaces are
normally split along their longer axis.

Termination: Currently, the algorithm is run for a pre-defined number of gen-
erations. Other termination criteria could be used. A post-processing step
is applied to each solution, where adjacent halls are merged into one. Other
useful post-processing steps could also be imagined, for example lining up
walls that miss each other by only a small amount (instances of this are
discussed in Section 5).

5 Results

We report tests of our algorithm on three problem instances of different types:

– a small apartment with seven rooms;
– a family house with twelve rooms;
– an office floor with about twenty rooms, and more-complex access.

Fig. 1 gives the input specification for the apartment design problem; due to
space limitations here, the others can be found in [25].

Table 1 shows the settings and performance figures for each experiment. Nor-
mally with a MOEA we are interested in identifying the solutions which perform
best against the defined objectives. However with this problem we are interested
in the MOEA returning a range of solutions that satisfy the specifications of a
given problem instance. Thus apart from defining a feasible solution in the usual
way to be one which returns 0 for all of the hard constraints, we also specify tol-
erances on the soft constraints, and we define a usable solution to be one which
is feasible and which returns values for the other constraints which are all within
these tolerances. The maximum values allowed here were 1 for Dimensions and
Aspect Ratio, and 0.5 for Proportionality.

Table 1 shows that for all three problems, the MOEA was able to find usable
solutions in a reasonable amount of time, although naturally this time increases
with the complexity of the problem specification. The system could be used in
at least three different modes:
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Table 1. Settings and results for the experiments. All figures are averages for ten runs.

Apartment House Office

Population 500 750 1,000
Generations 500 1,000 1,500

Execution time (mins) 2.2 14.0 52.0

Usable solns. generated 122 62 23
Generation of first usable soln. 97 444 1,102

Time to first usable soln. (mins) 0.46 5.7 37

Fig. 3. Four usable solutions returned in one run for the apartment problem. Principal
access is through the hall, or directly into the living room.
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Fig. 4. Two usable solutions returned in one run for the family house problem. Principal
access is through the entrance.

– one run of the MOEA, which attempts to derive a range of usable solutions
that satisfy a given specification;

– several (much shorter) runs with the same specification, each of which stops
after deriving one or a few usable solutions;

– several (again short) runs with slightly varying specifications, again each
stopping after deriving a small number of usable solutions.

Note that even if the MOEA is stopped after returning only one usable solu-
tion, this layout could trivially be used to generate alternative solutions which
may be interesting, using combinations of rotation and reflection, or possibly by
swapping rooms with similar dimensions. Also note that in the one run scenario,
some usable solutions are likely to be fairly similar, if they share ancestry.

Figs. 3–5 show examples of the layouts derived by the MOEA.
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Fig. 5. Two usable solutions returned in one run for the office floor problem. Principal
access is through the foyer.

Each figure shows a selection of the usable solutions returned in one run for
the relevant problem. The solutions show the variation that can be achieved
even within just one run, and some of them illustrate the ability of the MOEA
to design non-rectangular rooms, especially the halls in Fig. 5. Some of the
layouts also illustrate the improvements that could be achieved using more post-
processing, e.g. aligning walls that miss each other marginally, or evening up
rooms in cases like the toilets and some of the slightly-different offices in Fig. 5.

6 Conclusions

We have described a multi-objective evolutionary algorithm that autonomously
designs floor layouts for buildings according to a user-defined specification. The
MOEA uses a tree representation that defines a recursive subdivision of the
provided space, assessing layouts against six hard constraints and three soft
constraints to determine usability. We have shown that the system works well
on three different problems, for a range of buildings. This type of system will
help developers to efficiently design large numbers of buildings for virtual worlds.

Future work will focus on enhancing the specifications available to user; on
applying post-processing to fine-tune the solutions returned by the MOEA; and
on speeding up the MOEA to investigate the possibility of generating virtual
building layouts “on-the-fly” as players proceed through a game.



Automated Design of Architectural Layouts Using a MOEA 771

References

1. Rockstar Games. Grand Theft Auto: The Official Site (2013),
http://www.rockstargames.com/grandtheftauto (viewed June 30, 2014)

2. Valve. Left 4 Dead Blog (2013), http://www.l4d.com (viewed June 30, 2014)
3. Blizzard Entertainment. World of Warcraft (2014),

http://www.worldofwarcraft.com (viewed June 30, 2014)
4. Irish, D.: The Game Producer’s Handbook. Thomson Course Technology (2005)
5. Hendrikx, M., Meijer, S., Van der Velden, J., Iosup, A.: Procedural Content Gen-

eration for Games: a Survey. ACM Transactions on Multimedia Computing, Com-
munications and Applications 9(1), 1 (2013)

6. Lopes, R., Tutenel, T., Smelik, R., de Kraker, K., Bidarra, R.: A Constrained
Growth Method for Procedural Floor Plan Generation. In: 11th International Con-
ference on Intelligent Games and Simulation, pp. 13–20 (2010)

7. Tutenel, T., Smelik, R., Lopes, R., de Kraker, K., Bidarra, R.: Generating Consis-
tent Buildings: a Semantic Approach for Integrating Procedural Techniques. IEEE
Transactions on Computational Intelligence and AI in Games 3(3), 274–288 (2011)

8. Quiroz, J., Louis, S., Banerjee, A., Dascalu, S.: Towards Creative Design using
Collaborative Interactive Genetic Algorithms. In: IEEE CEC, pp. 1849–1856 (2009)

9. Schwarz, A., Berry, D., Shaviv, E.: Representing and Solving the Automated Build-
ing Design Problem. Computer-Aided Design 26(9), 689–698 (1994)

10. Schwarz, A., Berry, D., Shaviv, E.: On the Use of the Automated Building Design
System. Computer-Aided Design 26(10), 747–762 (1994)

11. Medjdoub, B., Yannou, B.: Separating Topology and Geometry in Space Planning.
Computer-Aided Design 32(1), 39–61 (2000)

12. Michalek, J., Choudhary, R., Papalambros, P.: Architectural Layout Design Opti-
mization. Engineering Optimization 34(5), 461–484 (2002)

13. Wong, S., Chan, K.: EvoArch: an Evolutionary Algorithm for Architectural Layout
Design. Computer-Aided Design 41(9), 649–667 (2009)

14. Damski, J., Gero, J.: An Evolutionary Approach to Generating Constraint-based
Space Layout Topologies. In: CAAD Futures, pp. 855–864 (1997)

15. Stiny, G., Gips, J.: Shape Grammars and the Generative Specification of Painting
and Sculpture. Information Processing 71, 1460–1465 (1972)

16. Leblanc, L., Houle, J., Poulin, P.: Component-based Modeling of Complete Build-
ings. In: Graphics Interface, pp. 87–94 (2011)

17. Stiny, G., Mitchell, W.: The Palladian Grammar. Environment and Planning
B 5(1), 5–18 (1978)

18. Koning, H., Eizenberg, J.: The Language of the Prairie: Frank Lloyd Wright’s
Prairie Houses. Environment and Planning B 8(3), 295–323 (1981)

19. Granadeiro, V., Pisa, L., Duarte, J., Correia, J., Leal, V.: A General Indirect Rep-
resentation for Optimization of Generative Design Systems by Genetic Algorithms:
Application to a Shape Grammar-based Design System. Automation in Construc-
tion 35, 374–382 (2013)

20. Merrell, P., Schkufza, E., Koltun, V.: Computer-generated Residential Building
Layouts. ACM Transactions on Graphics 29(6), 181 (2010)

21. Marson, F., Musse, S.: Automatic Real-time Generation of Floor Plans based on
Squarified Treemaps Algorithm. International Journal of Computer Games Tech-
nology 2010, 624817 (2010)

22. Bruls, M., Huizing, K., van Wijk, J.: Squarified Treemaps. In: Joint Eurographics
and IEEE TCVG Symposium on Visualization, pp. 33–42 (1999)

http://www.rockstargames.com/grandtheftauto
http://www.l4d.com
http://www.worldofwarcraft.com


772 D. Chia and L. While

23. Fonseca, C.M., Fleming, P.J.: Genetic Algorithms for Multiobjective Optimization:
Formulation, Discussion and Generalization. In: 5th ICGA, pp. 416–423 (1993)

24. Coello Coello, C.A., Lamont, G., Van Veldhuizen, D.: Evolutionary Algorithms for
Solving Multi-objective Problems. Springer (2007)

25. Chia, D.: Generation of Interior Building Layouts using a Genetic Algorithm. Hon-
ours dissertation, Computer Science & Software Engineering. In: UWA (2014)

26. Hingston, P., Barone, L., Huband, S., While, L.: Multi-level Ranking for Con-
strained Multi-objective Evolutionary Optimisation. In: Runarsson, T.P., Beyer,
H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN
2006. LNCS, vol. 4193, pp. 563–572. Springer, Heidelberg (2006)

27. Huband, S., Tuppurainen, D., While, L., Barone, L., Hingston, P., Bearman, R.:
Maximising Overall Value in Plant Design. Minerals Eng. 19(15), 1470–1478 (2006)

28. While, L., Hingston, P.: Usefulness of Infeasible Solutions in Evolutionary Search:
an Empirical and Mathematical Study. In: IEEE CEC, pp. 1363–1370 (2013)



An Approach for Real-Time Frame Size

Adaptation in M-JPEG Streams

Kyaw Ko-Ko-Htet and Tan Kok-Kiong

Department of Electrical and Computer Engineering, Faulty of Engineering,
National University of Singapore,
21 Lower Kent Ridge Road, 119077
{A0035642,KKTan}@nus.edu.sg
http://www.ece.nus.edu.sg/

Abstract. The growth of the video traffic proliferates quickly over the
internet as well as wireless networks. With that growth, different video
compression standards have been introduced over the years. Among
them, Motion Joint Photographic Expects Group (M-JPEG) has advan-
tages of avoiding frame-to-frame error propagation and achieving low
coding/decoding latency. Due to these advantages, M-JPEG is widely
adopted in video-capture devices, wireless IP cameras and industrial
real-time applications. On the other hand, due to its nature of dynamic
frame sizes, its stream’s bit-rate is generally varying and different so-
lutions have been proposed to regulate the bit-rate. As these solutions
still persist drawbacks such as having high regulating error, this paper
aims to propose an improved approach which can regulate individual
frame size of M-JPEG stream in real-time. Experiments indicate that
the proposed approach has a straight forward implementation and yet,
outperforming in regulating frame size of M-JPEG compared to existing
solutions.

Keywords: Adaptation, M-JPEG, Video Streaming.

1 Introduction

Multimedia streaming proliferates quickly reaching 66 percent of all consumer-
internet traffic in 2013 and this amount is predicted to reach 79 percent by
2018 [1]. The growth of the video traffic is directly resulting from the increas-
ing variety of applications, such as distributed multimedia applications, medical
applications, and central monitoring and control system, all performing video
streaming over the internet [2]. Also, an increasing amount of multimedia con-
tents have been streamed over wireless communication channels such as mobile
networks and Wi-Fi.

These multimedia contents are generally compressed at servers before trans-
mission to reduce network bandwidth utilization. To fulfill diverse application
requirements for multimedia compression, different video compression standards
have been introduced over the years. Among them, M-JPEG is a video com-
pression format in which each video frame or interlaced field of a digital video

G. Dick et al. (Eds.): SEAL 2014, LNCS 8886, pp. 773–784, 2014.
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sequence is compressed separately as a JPEG image. Originally developed for
multimedia PC applications, M-JPEG is now widely used in video-capture de-
vices such as digital cameras, IP cameras, and webcams; and also in non-linear
video editing systems [3].

M-JPEG is perhaps the simplest existing video coder; it simply codes each
frame in JPEG format and transmits the coded frames sequentially while many
other more recent codecs such as MPEG and H.264 use the concept of Group of
Pictures (GOP), providing better compression rate as well as smoother transi-
tions between frames [3]. However, due to GOP, these codecs require at least 3
frames to implement the required motion coding, resulting in long latency, which
may be undesirable in certain applications. Also, these codecs do not offer much
performance margin in videos with lots of objects or scene movements such as
traffic videos since they do not provide much data saving due to greater frame-
to-frame differences. Also, as the frame-to-frame error is propagated, a single
dropped frame can disturb the decoding of subsequent frames. These factors
imply the more recent video codecs are not suitable for videos that are taken
in emergency or adhoc scenes such as battle fields and post-disaster areas, and
also for videos that are transmitted though lossy medium. On the other hand,
M-JPEG has the ability to start decoding at any particular frame and localize
the transmission errors by using frame-by-frame processing [4] [5]. Due to this
advantage, M-JPEG is widely adopted in video-capture devices and wireless IP
cameras.

Apart from the video-capture devices, due to its low coding/decoding latency,
M-JPEG is also incorporated into a growing number of industrial multimedia in-
formation processing applications such as object tracking [6], automated inspec-
tion [7], machine vision [8], and vehicle guidance system [9–11]. These industrial
media applications can be classified into two broad categories [12]; supervised
multimedia control subsystems [13] and multimedia embedded systems (MES).
In the first category, the emphasis is fundamentally on the media processing qual-
ity, while the real-time constraints are generally soft. However, the applications
in the latter category are more demanding in terms of real-time requirements
in addition to the media processing quality. Typically, these applications are
complex and heterogeneous, encompassing several real-time activities in addi-
tion to the media processing ones. Thus, the interference infiltrating into by the
multimedia handling components must be limited and predictable [14].

Many MES applications are distributed and they rely on real-time network
protocols to provide real-time communication services. However, multimedia
traffic such as video streaming generally use a variable bit rate (VBR) traffic
source which leads to conflicts with the operational framework of conventional
real-time protocols, which usually offer constant-bit-rate (CBR) channels to the
applications (e.g., ATM, PROFINET-IRT, Interbus, ControlNet or flexible time-
triggered networks (FTT) [15–18]). Fitting a VBR source to a CBR channel may
lead to either waste of bandwidth or rejection of frames [14]. Thus, regulating
the size of individual frame is vital in fitting the M-JPEG stream into CBR
channel of real-time protocols.
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Furthermore, achieving CBR stream is crucial not only for these real-time
applications but also many other applications such as video servers and medical
collaboration systems. This is because the speed bursts dynamically demands
different quality-of-service (QoS) grades from servers and networks during a
session and it may create undesired interferences to the resource availability on
heterogeneous terminals and networks. As there is a great need for reducing
speed burst of M-JPEG streams or regulating bit rate of M-JPEG stream, a
number of solutions have been proposed recently. However, there is no common
standard for M-JPEG streaming for controlling the bit rate in particular. This
paper proposes a novel and intelligent approach which can regulate individual
frame size of M-JPEG video stream in real-time.

2 Literature Review

As there is a great need to moderate the burstiness of M-JPEG streams and reg-
ulate individual frame size of M-JPEG streams, different solutions to control bit-
rate of M-JPEG stream have been proposed. These solutions can be classified into
three different groups. The first group of solutions typically propose smoothening
the bit-rate transmission by setting optimal levels in the buffers; the second one
mostly adjusts frame rate in order to achieve desired data rates and the third one
generally adapt compression quality (Q-value) of M-JPEG compression to attain
constant frame size for individual frames. The method used by the first group has
a distinct advantage in providing constant image quality and frame rate and thus,
its solutions usually aim to smoothen the burstiness in video servers [19–21]. How-
ever, buffering usually induce long latency and thus, they are not suitable for many
other applications requiring real-time streaming. The method used in the second
group can achieve less latency but, due to its frame-rate variation, it is not suitable
for applications which are time-sensitive to meet stringent real-time requirements.
In such cases, the third group of approaches, which are capable of sustaining con-
stant frame rates as well as regulating frame sizes by adapting the Q-value, are
more suitable. In the literature, three different solutions which can regulate frame
sizes of individual M-JPEG frames, by adapting the Q-value, are proposed by Nis-
hantha et al.[22], Derin et al. [23], and Silvetre-Blanes et al. [14].

Nishantha et al. [22] proposed a strategy which can regulate the frame size
according to the network bandwidth by manipulating the Q value of each indi-
vidual frame while keeping the frame-rate constant. Increasing and decreasing
the value of Q is carried out according to the observation that the frame-size is
virtually continuous with respect to Q when it is within the operating range (i.e.,
the value between 20 and 80). In this approach, the magnitude of the increment
or decrement (i.e., ΔQ) is adopted as proposed in Eqn. 1.

ΔQ =
(100−Q)

10
(1)

Derin et al. [23] recommended an adaptive algorithm which maintains three
parameters, namely QuantScaleCoeff,AggrQScaleFactor, and MildQScaleFactor
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to perform the adaptations. QuantScaleCoeff (Quantization Scaling Coefficient)
provides average compression factors between Q value and frame size. AggrQS-
caleFactor (Aggressive Quantization Scaling Factor) is the constant by which
previous value of QuantScaleCoeff will be multiplied/ divided to obtain its cur-
rent value in case of aggressive scaling. MildQScaleFactor (Mild Quantization
Scaling Factor) is the constant to which the previous value of QuantScaleCoeff
will be multiplied/ divided to obtain its current value in case of mild scaling. Scal-
ing is based on the difference between actual frame size and estimated frame size.
When the difference is relatively large, AggrQScaleFactor will be used, otherwise
MildQScaleFactor will be used. When the difference is positive, QuantScaleCoeff
will be multiplied by either AggrQScaleFactor or MildQScaleFactor to estimate
new QuantScaleCoeff. When the difference is negative, QuantScaleCoeff will be
divided by either AggrQScaleFactor or MildQScaleFactor.

Silvestre-Blanes et al. [14] suggested the adaptation of Q based on the R(Q)
frame bandwidth model shown in Eqn. 2, where α and β are parameters of a
curve in which λ regulates the curvature and Q̄ = 100 − Q is the compression
level which varies symmetrically with respect to the quantification factor

R(Q) = α+
β

Q̄λ
(2)

Each frame has its own model (α,β,λ). However, α and λ are kept at constant
values, based on the assumption that the images acquired in a monitoring appli-
cation with fixed cameras have a strong similarity between them. The β value
is adapted as in Eqn. 3. [24]

β(i + 1) = ΔR(i)Q̄λ + β(i) (3)

where ΔR(i) is the difference between targeted R value and actual R value. This
approach is constrained by the assumption that images should be acquired from
fixed cameras and must have a strong similarity. Either shifting of the camera
or changing of the background requires re-estimation of the α and λ values.
The approach proposed by Nishantha et al. [22] allows shifting of the camera or
changing of background. However, it utilizes the increment/ decrement adapta-
tion and thus, unnecessary delays are induced during the dynamic adaptation
process in which there are sudden jumps in the desired frame-size level. The
approach proposed by Derin et al. [23] makes use of average compression factors
between Q value and frame size and thus, it can provide faster adaptation in the
case of dynamic adaptations. However, this approach requires two parameters
(i.e. AggrQScaleFactor and MildQScaleFactor) to be tuned properly. Improper
tuning of these parameters can result in either a significantly large overshoot
or a significantly long settling time; both of which are undesirable for dynamic
adaptation. Therefore, this paper aims to provide a novel approach in which the
dynamic adaptation can be achieved without tuning any parameter and yet it is
able to perform better than the approaches mentioned above.
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3 Algorithms of Proposed Approach

In regulating the frame size of M-JPEG compression, the relationship between
the frame size and the Q value of JPEG compression is key as the right Q
values can provide the target frame sizes for individual frames. However, this
relationship is not stationary and it varies based on the contents of each frame.
Fig.1 shows the frame size variation of 10 random frames of a video, which
was captured from a camera mounted on a moving electric vehicle (EV), with
different Q values.

Fig. 1. Frame size vs Q value of 10 different images

According to Fig.1, it can be observed that, although the shapes of these
plots are similar, their magnitudes are different. The ratio (Kn(Q)) between
these plots with respect to that of a reference image, which is the 5th image in
this case, can be calculated by using Eqn. 4 and the resulting ratios of above 10
plots are shown in Fig. 2a.

Kn(Q) =
Sn(Q)

Sr(Q)
=

Sn(Q)

S5(Q)
(4)

where Sn(Q) and Sr(Q) are the frame size of the nth image and the reference
image respectively, with the compression quality of Q. According to Fig.2a, the
ratios can be modeled as Eqn. 5.

K̃n(Q) =

⎧⎨
⎩

(Cn − 1)Q+10
30 + 1 (1 ≤ Q < 21)

Cn (21 ≤ Q < 81)

(Cn − 1)110−Q
30 + 1 (81 ≤ Q ≤ 100)

(5)

where Cn = 1
60

∑80
Q=21 Kn(Q) is K̃n the estimated value of Kn. The model of

the Fig. 2a using Eqn. 5 can be plotted as shown in Fig. 2b.
To study the variation of Cn, a video is captured from a moving EV at 30 fps

and the corresponding Cn value of its individual frames is plotted as shown in
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(a) (b)

Fig. 2. (a)Frame size ratios vs Q values of 10 different images and (b) its model

Fig.3a. The difference (Dn) between Cn and Cn−1 can be calculated by Eqn. 6
and the trend of Dn is shown in Fig. 3b.

Dn = Cn − Cn−1 (6)

According to the experiment, Max(|Dn|) = 0.15664, Avg(|Dn|) = 0.006164
and V ar(|Dn|) = 7.6985 ∗ 10−5 where 1 ≤ n ≤ 7600. As Avg(|Dn|) << Cn and
even Max(|Dn|) << Cn, Cn+1 can be estimated by using Eqn. 7

C̃n+1 = Cn (7)

where C̃n+1 is the estimated value of Cn+1. In this way, S̃n+1(Q) can be esti-
mated by using Eqn.8 which is derived from Eqn. 4 and 5.

S̃n+1(Q) = K̃n(Q)Sr(Q) =

⎧
⎨

⎩

{(Cn − 1)Q+10
30

+ 1}Sr(Q) (1 ≤ Q < 21)
CnSr(Q) (21 ≤ Q < 81)

{(Cn − 1) 110−Q
30

+ 1}Sr(Q) (81 ≤ Q ≤ 100)

(8)

where S̃n+1(Q) is the estimated value of Sn+1(Q).

4 Applying Algorithms of Proposed Approach

Let the first frame be the reference frame and assume that the relationship
between the frame size and the Q value (i.e., S1(q)|1≤q≤100) is known. Assume
that the nth frame size (Sn(qn)), which is compressed with the value of qn, is
known as well. Kn(qn) can be calculated by using Eqn. 4 with the first frame as
a reference frame. That Kn(qn) is approximately equal to K̃n(qn) and the value
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(a) Cn (b) Dn

Fig. 3. Trends of individual frames of video captured from a moving vehicle

Fig. 4. Flowchart of proposed approach (dotted arrows show data-flow)
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(a) with approach [22] (b) with approach [23]

(c) with proposed approach

Fig. 5. Constant frame rate experiments’ results

Fig. 6. Desired frame size for dynamic frame rate experiment

of Cn can be calculated by using Eqn. 9 which is derived from Eqn. 5.

Cn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

30(K̃n(qn)−1)
qn+10 + 1 (1 ≤ qn < 21)

K̃n(qn) (21 ≤ qn < 81)

30(K̃n(qn)−1)
110−qn

+ 1 (81 ≤ qn ≤ 100)

(9)
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(a) with approach [22] (b) with approach [23]

(c) with proposed approach

Fig. 7. Dynamic frame rate experiments’ results

After knowing Cn, the value for S̃n+1(qn+1)|1≤qn+1≤100 can be calculated by
using Eqn. 8. To get the next desired frame size (fn+1), the suitable com-
pression value (qn+1) can be predicted by using the estimated information of
S̃n+1(qn+1)|1≤qn+1≤100. This qn+1 value can be used to compress the (n+1)th

frame and then, the actual size of the compressed frame (Sn+1(qn+1)) can be
measured. Again, Kn+1(qn+1) and Cn+1 can be calculated by using Eqn. 4 and
9 respectively. In this way, the subsequent values for q (i.e., qn+1, qn+2, etc.)
which can provide suitable value of frame size, f (i.e., fn+1, fn+2, etc.) can be
estimated.

The above mentioned M-JPEG Frame-Size Regulation algorithm can be im-
plemented according to the following flowchart shown in Fig. 4.

5 Evaluation of the Proposed Approach

In this section, the proposed approach is experimentally compared with the
other two similar approaches by Nishantha et al. [22] and Derin et al. [23].
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Table 1. RMS error comparison among different approaches

Constant frame size Dynamic frame size

experiment experiment

RMS error RMS error RMS error RMS error

(bytes/frames) in % of frame size (bytes/frames) % of frame size

[22] Approach 1211.39 4.04% 1298.83 4.40%

[23] Approach 528.86 1.76% 537.64 1.82%

Proposed Approach 362.70 1.21% 374.26 1.27%

The same set of 7600 video frames used for above Cn trend experiment is used
as input frames. As these video frames are captured from a moving camera,
the approach in [14], being constraint to stationary camera scenarios, is not
used in the comparison. For the approach in [23], optimal parameter values
AggrQScaleFactor andMildQScaleFactor are empirically selected as 0.1 and 0.02
respectively based on the best performance from initial experiment runs.

This performance evaluation consists of two experiment set: constant-frame-
size experiment set and dynamic-frame-size experiment set. In the first set of
experiments, desired frame sizes are set at a constant value of 30000 bytes and
the experiment results are shown in Fig. 5. For the second set of experiments,
desired frame sizes are dynamically changing as shown in Fig. 6. Its experiment
results are shown in Fig. 7.

From the graph plots, it is clear that there are significant differences in per-
formance while using the three methods for streaming adaptation. To quantify
these differences, the RMS errors (i.e., the difference between desired frame size
and actual frame size) from both set of experiments are compared in Table 1.
Analyzing the data proves that the proposed approach clearly outperforms the
other two approaches and it offers a better prediction of Q value in achieving
desired individual frame sizes in both the constant-frame-size experiment and
the dynamic-frame-size experiment.

6 Conclusion

A novel approach for closely predicting the Q value with minimal latency in time-
sensitive M-JPEG streams is proposed in this paper. The proposed approach
offers the distinct advantage of no parameter setting requirement enabling a
straight forward deployment. Experiment runs were conducted to evaluate the
performance of the proposed algorithm in predicting the Q-value for a video
sequence from a moving electric vehicle and they verified that the approach
outperforms the other known approaches in term of minimizing error in both
fixed and dynamic frame-size adaptation for M-JPEG streams.
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Abstract. In this research, an automatic melody generation system
considering user’s evaluation by interactive genetic algorithm is pro-
posed. In the proposed automatic melody generation system, initial pop-
ulation are generated using the automatic melody generation system
by genetic algorithm considering melody blocks of plural melodies, and
melodies are generated considering user’s evaluation using interactive ge-
netic algorithm. In this system, the trained sample melodies are divided
into some melody blocks. Here, melody blocks mean verse, bridge, cho-
rus and so on. And some new melodies are generated considering melody
features in each block. The features on rhythm and pitch in each melody
block of the sample melodies are trained in some N-gram models, and
they are used in order to calculate fitness in the melody generation by
genetic algorithm.

1 Introduction

Since the first approach to the automatic composition in 1957, a lot of meth-
ods for the automatic composition have been proposed[1]–[3]. As one of these
methods, we have proposed the automatic melody generation method using N -
gram model and genetic algorithm[3]. In this method, the features on sample
melodies are trained using N -gram models[5] per melody blocks. Here, melody
block means verse, bridge, chorus and so on. And melodies which have similar
features to trained sample melodies can be generated using genetic algorithm[4].
However, in this system, the user’s evaluation is not considered in melody gen-
eration using genetic algorithm.

In this research, an automatic melody generation system considering user’s
evaluation by interactive genetic algorithm is proposed. In the proposed au-
tomatic melody generation system, initial population are generated using the
automatic melody generation system by genetic algorithm considering melody
blocks of plural melodies, and melodies are generated considering user’s eval-
uation using interactive genetic algorithm. In this system, the trained sample
melodies are divided into some melody blocks, some new melodies are generated
considering melody features in each melody block. The features on rhythm and
pitch in each melody block of the sample melodies are trained in some N -gram

G. Dick et al. (Eds.): SEAL 2014, LNCS 8886, pp. 785–797, 2014.
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models, and they are used in order to calculate fitness in the melody generation
by genetic algorithm.

2 Automatic Melody Generation System Using Genetic
Algorithm Considering Melody Blocks of Plural
Melodies

In this section, the automatic melody generation system using genetic algo-
rithm considering melody blocks of plural melodies which is used in the proposed
melody generation system is explained.

In this system, the trained sample melodies are divided into some melody
blocks manually, and some new melodies are generated considering melody fea-
tures in each block. The features on rhythm and pitch in each melody block of
sample melodies are trained using some N -gram models, and they are used in
order to calculate fitness in the melody generation by the genetic algorithm.

2.1 Flow of Automatic Melody Generation System by Genetic
Algorithm Considering Melody Blocks of Plural Melodies

Step 1: Initial Population Generation

In this automatic melody generation system, initial individuals are generated
randomly using features on rhythm and pitch in each melody block of training
sample melodies.

Step 2: Fitness Calculation

The fitness of each individual is calculated. In this system, the fitness of the
individuals which have similar feature to the trained sample melodies becomes
high.

Step 3: Selection

Based on fitness calculated in Step 2, individuals used in Step 4 (crossover)
are selected by the roulette selection and the elite preserve strategy.

Step 4: Crossover

New individuals are generated from the parents which are selected in Step 3 by
the multi-point crossover. In this system, in order not to generate the melodies
which whose notes and rests whose length and position are unnatural, a crossover
point is chosen from places other than the middle of a triplet or a rest.

Step 5: Mutation

In order to maintain genetic diversity, the mutation is carried out.

Step 6: Repeat

Steps 2 ∼ 5 are repeated Tmax times.
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2.2 Melody Expression in Individuals

In this melody generation system, generated melodies are expressed as individu-
als. The individual is composed of two parts; (1) rhythm and (2) tone. Rhythm
and tone are expressed per unit length. In this system, unit length (that is,
minimum length of note/rest) is set to 1/3 length of the demisemiquaver (six-
teenth note). The rhythm part is expressed by 0 (rest), 1 (the beginning of the
sound) and 2 (the state that the sound continue) per unit length. The tone part
is expressed by pitch names and octave such as C4, A5.

2.3 Initial Population Generation

In this melody generation system, based on features in each melody block of
all training melodies, initial individuals are generated. The initial population
generation process is composed of two steps; (1) generation of rhythm (phonetic
value) and (2) assignment of pitch to each sound.

(1) Generation of Rhythm (Phonetic Value). First, the rhythm of initial
individual is generated based on the Markov model of state transition sequences
in each melody block.

In the Markov model of the melody block k (Mk
R), the probability where the

state qi continues after the state qi−1, P
k(qi|qi−1) is calculated as

P k(qi|qi−1) =
Nk(qii−1)

Nk(qi−1)
(qi ∈ CR2) (1)

where Nk(qi−1) is the number of state sequences in the melody block k in all
trained sample melodies and Nk(qii−1) is the number of state sequences in the
melody block k in all trained sample melodies. qi is the rhythem state per two
bars. CR2 shows the set of rhythm states per two block and it is described as

CR2 = {b1, b2, e1, e2, s1, · · · , s96, r1, · · · , r96} (2)

where b1 and b2 are the beginning of the block composed of two bar. b1 show
the case when the first sound begins at the beginning of the block. In contrast,
b2 shows the case when the first sound begins at the end of the previous block.
e1 and e2 are the end of the block. e1 shows the case when the last sound ends
in the block, and e2 shows the case when the last sound continue to the next
block. sx shows the sound which begins at the position x (x = 0 ∼ 96), rx shows
the rest which begins at the position x in each two bar.

The first state in the melody block which is next to the state b1 or b2 is
generated using the probability which is given by Eq.(1), and the remain rhythm
state sequences are generated randomly using the Markov model Mk

R.

(2) Assignment of Pitch to Each Sound. Second, pitch is assigned to each
sound based on the occurrence probability of pitch in each position.
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The probability of the sound whose pitch is o at the position i in the melody
block k, P k(soi ) is given by

P k(soi ) =
Nk(soi )

Nk(si)
(3)

where Nk(si) is the number of sounds whose pitch is o and begin at the position
i in the melody block k in all trained sample melodies, and Nk(soi ) is the number
of the sounds which begin at the position i in the melody block k in all trained
sample melodies. The pitch of each sound is determined based on the probability
P k(soi ).

2.4 Fitness

In this automatic melody generation system, the fitness of the individual is
calculated as summation of (1)rhythm transition, (2) pitch transition, (3) pitch
and length transition, (4) transition of the number of sounds per bar, (5) rhythm
similarity between phrases, (6) rate of scale unique sounds, (7) pitch difference
between two consecutive sounds and (8) distribution of rest length.

Fitness on Transition of Rhythm, Pitch and the Number of Sounds
per Bar. In this system, N -gram models on rhythm, tone and the number of
sounds per bar are used in order to calculate fitness.

The N -gram model on the feature f is given by

Vf (g) =

K∑
k=1

1

Nf (k)

Nf (k)∑
j=1

(
1

Nf(g, k, j)

×
Nf (g,k,j)∑

i=1

P k
m(g,k,f,j,i)(Sf (g, k, j)i|Sf (g, k, j)

i−1
i−N+1)

⎞
⎠ (4)

where f is given by

f ∈ {R2, R4, Rlast, T, Tlast, S, Slast, B}. (5)

Here, R2 is rhythm per two bars, R4 is rhythm per four bars, Rlast is rhythm
in the last two bars of each melody block, T is pitch in the whole melody block,
Tlast is pitch in the last two bars, S is pitch and length of sound in the whole
melody block, Slast is pitch and length of sound in last two bars, and B is the
number of sounds in a bar.

Nf (k) is the number of state sequence blocks on the feature f in the melody
block k of the generated melody and it is given by

Nf (k) =

⎧
⎨
⎩

�NB(k)/2�, (f = R2)
�NB(k)/4�, (f = R4)
1, (otherwise). .

(6)
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Here, NB(k) is the number of bars in the melody block k of the generated
melodies and this is determined based on the trained sample melodies. If the
numbers of bars in the melody block k of the trained sample melodies are not
same, the average number of bars is used. �NB(k)/2� shows the number of blocks
per two bars in the melody block k, and �NB(k)/4� shows the number of blocks
per four bars in the melody block k.

Nf (g, k, j) is the number of states on the feature f of the state sequence block
j in the melody block k of the generated melody expressed by the individual g
and it is given by

Nf (g, k, j) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

NS
2 (g, k, j) + 2, (f = R2)

NS
4 (g, k, j) + 2, (f = R4)

NS
last(g, k) + 2, (f = Rlast)

NS(g, k), (f = T, S)
NS

last(g, k), (f = Tlast, Slast)
NB(k), (f = B) .

(7)

where NS
2 (g, k, j) is the number of sounds in the block (composed of two bars)

j of the melody block k expressed by the individual g, NS
4 (g, k, j) is the number

of sounds in the block (composed of four bars) j of the melody block k expressed
by the individual g, NS

last(g, k) is the number of sounds in the last two bars of
the melody block k expressed by the individual g, NS(g, k) is the number of
sounds in the melody block k expressed by the individual g, and NS

last(g, k) is
the number of sounds in last two bars of the melody block k expressed by the
individual g.

Sf (g, k, j)i is the ith state on the feature f of the state sequence block j in
the melody block k of the individual g, and it is given by

Sf (g, k, j)i ∈

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

CR2 → CR2, (f = R2, Rlast)
CR4 → CR4, (f = R4)
CT , (f = T, Tlast)
CS , (f = S, Slast)
CB , (f = B) .

(8)

CR2={b1, b2, e1, e2, s1, · · · , s96, r1, · · · , r96} (9)

CR4={b1, b2, e1, e2, s1, · · · , s192, r1, · · · , r192} (10)

CT={Xd | X = {C,C�,D,D�,E, F, F �,G,G�,A,A�,B,R}, d = {3, · · · , 6}}(11)
CS={X l

d | X = {C,C�,D,D�,E, F, F �,

G,G�,A,A�,B,R}, d = {3, · · · , 6}, l = {1, · · · , 48}} (12)

CB = {1, · · · , 48} (13)

Sf (g, k, j)
i
i−N+1 is the state sequence from i − N + 1-th state to the i − 1-th

state on the feature f in the block j of the melody block k expressed by the
individual g.

And, in Eq.(4),NMB is the number of melody blocks of the generated melodies
and it is determined based on the trained sample melodies. And,
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P k
m(Sf (g, k, j)i | Sf (g, k, j)

i
i−N+1) is the probability where the state on the

feature f , Sf (g, k, j)i appears after the state sequence Sf (g, k, j)
i
i−N+1 in the

melody block k in the trained sample melody m and it is estimated in the N -
gram model on the feature f of the melody block k in the trained sample melody
m (Mk

f (m)). In this system, the N -gram model for the trained melody m whose
probability is maximum is selected as the N -gram model which is employed to
calculate fitness in principle.

P k
m(g,k,f,j,i)(Sf (g, k, j)i | Sf (g, k, j)

i−1
i−N+1) is the probability where the state

on the feature f , Sf (g, k, j)
i appears after the state sequence on the feature

f , Sf (g, k, j)
i−1
i−N+1 in block j in the melody block k of the gene g and it is

estimated in the N -gram model on the feature f of the melody block k in the
trained sample melody m(g, k, f, j, i), Mk

f (m(g, k, f, j, i)).
In this system, when plural melodies are used as the training sample melodies,

the N -gram model whose occurrence probability is highest is selected in order to
calculate the fitness. However, in this selection method, different N -gram models
are often selected for the consecutive state sequences, as a result, the fitness of
the individuals which express unnatural melodies sometimes become high.

In this system, m(g, k, f, j, i) is determined by

m(g, k, f, j, i) = argmax
m

P k
m(Sf (g, k, j)i | Sf (g, k, i)

i−1
i−N+1) (14)

After N -gram model which used in the calculation of fitness selected by this
equation, m(g, k, f, j, i) is determined as follows finally.

m(g, k, f, j, i)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m(g, k, f, j, i− 1)
(m(g, k, f, j, i− 1) = m(g, k, f, j, i+ 1)
and (m(g, k, f, j, i− 2) = m(g, k, f, j, i− 1)
or (m(g, k, f, j, i+ 2) = m(g, k, f, j, i+ 1)))
m(g, k, f, j, i)(otherwise)

(15)

That is, in this system, if the following conditions are satisfied, the N -gram
model which is selected for the previous and next state sequence is chosen.

1. N -gram model which learns the feature from different melodies are selected
for the previous and next state sequences.

2. N -gram model which learns the feature from different melodies are selected
for the previous previous and/or next next state sequences.

Fitness on Rhythm Similarity between Phrases. In actual melodies,
rhythm of the phrase for every four bars is often mutually similar. So, in this
system, the rhythm similarity between phrases are used as the fitness.

The fitness on rhythm similarity between phrases of the individual g, VRS(g)
is given by

VRS(g) =
NMB∑
k=1

fRS

(
1

�NB(k)/4�C2

�NB(k)/4�−1∑
i=1

�NB(k)/4�∑
j=i+1
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(
Lij(g, k) + a · 1

(
nij(g, k)/Ni(g, k) + nji(g, k)/Nj(g, k)

)))
(16)

where �NB(k)/4� is thenumber ofphrases in themelodyblockk, and �NB(k)/4�C2

means the combination number of two phrases. In Eq.(16), average similarity in
all considerable combination of phrases are calculated. Here,Lij(g, k) is the rate of
sounds (including rests) whose length and its start position are same in the phrases
i and j.

Ni(g, k) shows the number of sounds (including rests) in the phrase i of the
melody block k of the individual g, Nj(g, k) is the number of sounds (including
rests) in the phrase j of the melody block k of the individual g, nij(g, k) is
the number of sounds (including rests) in the phrase i which begin at the same
position (time) to the phrase j, nji(g, k) is the number of sounds (including
rests) in the phrase j which begin at the same position (time) to the phrase i,
and a is the weighting coefficient.

Fitness on Rate of Scale Unique Sounds. The most of the melodies in
each key consist of their own scale unique sounds. For example, scale unique
sounds of C major are C, D, E, F, G, A and B, and these of G major are
G, A, B, C, D, E and F�.

The fitness on rate of scale unique sounds in the individual g, VUS(g) is
calculated as

VUS(g) =

NMB∑
k=1

fk
US

(
NUS(g, k)

NS(g, k)

)
(17)

where NS(g, k) shows the number of sounds in the melody block k which is
expressed by the individual g. NUS(g, k) shows the number of the scale unique
sounds in the melody block k which is expressed by the individual g. fk

US(·) is
the function which is given by

fk
US(u) =

⎧⎪⎨
⎪⎩

1 (θkUS < u)

u

θkUS

(otherwise)
(18)

where θkUS shows the threshold for the rate of scale unique sounds in the melody
block k. And it is determined as follows:

θkUS = min
m

{
NUS(m, k)/NS(m, k)

}
(19)

where NS(m, k) shows the number of sounds in the melody block k of the trained
sample melody m. NUS(m, k) shows the number of scale unique sounds in the
melody block k of the trained sample melody m.
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Fitness on Pitch Difference between Two Consecutive Sounds. The
fitness on pitch difference between two consecutive sounds of the individual g ,
VD(g) is given as

VD(g) =
NMB∑
k=1

1

2Dmax + 1

Dmax∑
i=−Dmax

fk
Di

(
ND

i (g, k)

ND(g, k)

)
(20)

where Dmax is the maximum pitch difference between two sounds, ND(g, k) is
the number of pitch differences between two sounds in the melody block k which
is expressed by the individual g, and ND

i (g, k) is the number of pitch differences
between two sounds whose value is i in the melody block k of the individual g.
fk
Di(·) is the function which is given as

fk
Di

(u) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1− u

1− θiD2(k)
(θiD2(k) < u)

1 (θiD1(k) ≤ u ≤ θiD2(k))

u

θiD1(k)
(θiD1(k))

(21)

where θiD1(k) and θiD2(k) are the thresholds on the pitch difference i between
two consecutive sounds in the melody block k and θiD1(k) ≤ θiD2(k). These are
determined by

θiD1(k) = min
m

{
ND

i (m, k)

ND(m, k)

}
(22)

θiD2(k) = max
m

{
ND

i (m, k)

ND(m, k)

}
(23)

where ND(m, k) shows the number of pitch differences between two consecutive
sounds in the melody block k of the trained sample melody m. ND

i (m, k) shows
the number of pitch differences whose value is i in the melody block k of the
trained sample melody m.

Fitness on Length of Rests. The fitness on length of rests in the individual
g, VRE(g) is given by

VRE(g) =

NMB∑
k=1

1

48

48∑
i=1

fRE

((
P k(NR

l )− P k(NR
l (g, k))

)2)
(24)

where P k(NR
l ) is the rate of rests whose length is l in the melody block k of the

trained sample melodies, and P (NR
l (g, k)) is the rate of rests whose length is l in
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the melody block k which is expressed by the individual g. These are calculated
by

P k(NR
l ) =

∑
m

NR
l (m, k)

∑
m

NR(m, k)
(25)

P k(NR
l (g)) =

NR
l (g)

NR(g)
(26)

where NR
l (m, k) is the number of rests whose length is l in the melody block k

of the trained sample melody m, NR(m, k) is the number of rests in the melody
block k of the trained sample melody m, NR

l (g, k) is the number of rests whose
length is l in the melody block k which is expressed by the individual g and
NR(g, k) is the number of rests in the melody block k which is expressed by the
individual g. In Eq.(24), fRE(·) is the function which is given by

fRE(u) =

⎧⎨
⎩

1 (u < θRE1)
0.5 (θRE1 ≤ u < θRE2)
0 (otherwise)

(27)

where θRE1, θRE2 are the thresholds and θRE1 < θRE2.

3 Automatic Melody Generation Reflecting User’s
Evaluation Using Interactive Genetic Algorithm

In the proposed automatic melody generation system reflecting user’s evalua-
tion using interactive genetic algorithm, initial population are generated by the
automatic melody generation system by genetic algorithm considering melody
blocks of plural melodies described in 2, and melodies are generated considering
user’s evaluation using interactive genetic algorithm.

3.1 Melody Expression by Individuals

In the proposed automatic melody generation system, generated melodies are
expressed as individuals which is composed of two parts; (1) rhythm and (2)
pitch in the same manner used in the system which is used in the generation of
the initial population described in 2.

3.2 Initial Population Generation

In the proposed automatic melody generation system, initial individuals are
generated by the automatic melody generation system using genetic algorithm
considering melody blocks of plural melodies described in 2.
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3.3 User’s Evaluation

Trends of user’s evaluation are analyzed and fitness are calculated based on
analyzed results in the proposed automatic melody generation system. Here, the
melodies are divided into some phrases and a user evaluates these phrases in 5
(−2 ∼ 2) degrees.

3.4 Fitness

In the proposed automatic melody generation system, the fitness which are used
in the automatic composition system using genetic algorithm considering melody
blocks of plural melodies described in 2 are used. In addition, the fitness consid-
ering user’s evaluation are also used.

In the proposed system, three fitness considering user’s evaluation (A) rhythm
transition (whole melodies), (B) pitch transition (whole melodies) and (C) pitch
and length transition (whole melodies) are used.

These are calculated usingN -grammodels which learns features of the melodies
which was evaluated by a user. The N -gram model on the feature f is given as

Vf (g) =

NMB∑
k=1

1

Nf (k)

Nf (k)∑
j=1

(
1

Nf (g, k, j)

Nf (g,k,j)∑
i=1

(
e+(Sf (g, k, j)

i
i−N+1) + e−(Sf (g, k, j)

i
i−N+1)

))
(28)

where f is given by

f ∈ {IR2, IT, IS}. (29)

where IR2 is the rhythm transition per two bars, IT is the pitch transition, and
IS is the the pitch and length transition.

Nf (k) is the number of state sequence blocks on the feature f of the melody
block k and is given by

Nf (k) =

{⌊
NB(k)/2

⌋
(f = IR2)

1 (otherwise)
(30)

where NB(k) is the number of bars in the melody block k.
Nf (g, k, j) is the number of states on the feature f of the state sequence block

j of the melody block k in the generated melody expressed by the individual g
and it is given by

Nf(g, k, j) =

{
NS

2 (g, k, j) + 2 (f = IR2)
NS(g, k) (f = IT, IS)

(31)

where NS
2 (g, k, j) is the number of sounds in the block composed of two bars j

of the melody block k which is expressed by the individual g, NS(g, k) is the
number of sounds in the melody block k expressed by the individual g.
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(b) Individual after Interac-
tive Genetic Algorithm

Fig. 1. An Example of Generated Melody

Sf (g, k, j)i is the i-th state on the feature f of the state sequence block j of
the melody block k in the individual g, and is given by

Sf (g, k, j)i ∈
⎧⎨
⎩

CR2 → CR2 (f = IR2)
CT (f = IT )
CS (f = IS)

.

(32)

Sf (g, k, j)
i
i−N+1 shows the state sequece from the i − N + 1-th state to the

i-th state on the feature f of the state sequence block j of the melody block k
in the individual g.

e+(Sf (g, k, j)
i
i−N+1) and e−(Sf (g, k, j)

i
i−N+1) are the trend of user’s evalua-

tion which are given by

e+(Sf (g, k, j)
i
i−N+1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2∑
E=1

ENE
k (Sf (g, k, j)

i
i−N+1)

2∑
E=1

ENE
k

⎛
⎜⎜⎜⎜⎝

2∑
E=1

ENE
k (Sf (g, k, j)

i
i−N+1)

2∑
E=1

ENE
k

> θf

⎞
⎟⎟⎟⎟⎠

0 (otherwise)

(33)
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e−(Sf (g, k, j)
i
i−N+1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1∑
E=−2

ENE
k (Sf (g, k, j)

i
i−N+1)

−1∑
E=−2

ENE
k

⎛
⎜⎜⎜⎜⎝

−1∑
E=−2

ENE
k (Sf (g, k, j)

i
i−N+1)

−1∑
E=−2

ENE
k

> θf

⎞
⎟⎟⎟⎟⎠

0 (otherwise)

(34)

where E is the evaluation by a user. In this system, an user evaluates each
phrases as −2, −1, 0, 1 or 2. NE

k is the number of phrases in the melody block k
which are evaluated as E, NE

k (Sf (g, k, j)
i
i−N+1) shows the number of melodies

which include state sequece NE
k (Sf (g, k, j)

i
i−N+1) and the its evaluation is E.

4 Computer Experiment Results
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Fig. 2. Fitness

Figure 1 shows an example of generated
melody of the proposed method which
learns the features of two sample melodies
(Japanese Animation Songs). Fig. 1(a) shows
an example of the generated melody as an
initial individual, and A and B show the N -
gram model which trained sample melody A
or B was used for the calculation of fitness.

Figure 2 shows the transition of the aver-
age and maximum fitness. In this experiment,
the fitness in first 30 generatations is calcu-
latesd without interactive genetic algorithm.

5 Conclusions

In this research, the automatic melody generation system reflecting user’s evalu-
ation using interactive genetic algorithm has been proposed. We generated some
melodies using the proposed system, and confirmed that the some melodies re-
flecting the features in each melody block of the trained sample melodies and
user’s evaluation can be generated.
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Abstract. Descriptors extracted from deep neural networks have been
shown to be very discriminative, for example networks such as those
trained on the large, very general ImageNet dataset have been used to
extract descriptors robust for a variety of image classification tasks. Such
retrieval systems utilize feature locality, for example Approximate Near-
est Neighbour. Our goal is to use such descriptors as part of a large
scale object instance recognition and retrieval system. We propose us-
ing deep nonlinear metric learning on Convolutional Neural Networks to
learn features with good locality. In particular we worked with two re-
lated methods, Neighborhood Components Analysis (NCA) and the re-
lated Mean square Error’s Gradient Minimization (MEGM).

We utilize a nonlinear form of MEGM as an alternative to NCA and
propose some stochastic samplingmethods to apply these (normally batch)
methods to larger datasets with minibatch Stochastic Gradient Descent
(SGD). On a larger scale we found the methods difficult to train, failing
to converge or generalizing very badly depending on training method or
parameters. This led us to go back to a smaller dataset and examine the
factors which lead to good generalization with this form of training.

We found on a small subset of the RGB-D dataset, surprisingly stochas-
tic samplingmethodsgeneralizedmuchbetterwith small batch sizes,which
acted as a form of regularization. When trained with larger batches, or
as a full batch, the dataset was overfit. Given the correct parameters, de-
scriptors extracted performed well at the Nearest Neighbour task and ex-
ceeded theperformanceof those extractedbyapplying standard supervised
training.

1 Introduction

Deep convolutional neural networks in combination with modern GPUs and large
image datasets have shown strong performance on image classification tasks [1],
and has been applied to related problems such as object detection [2], image
segmentation [3] and image retrieval [4].

1.1 Descriptors from Deep Neural Networks

Using descriptors derived from the hidden layers of a neural networks trained
using supervised learning, for the purpose of other learning tasks is a relatively

G. Dick et al. (Eds.): SEAL 2014, LNCS 8886, pp. 798–809, 2014.
c© Springer International Publishing Switzerland 2014
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new idea. These descriptors have been shown to be robust even for quite unre-
lated tasks [5,4]. The ImageNet dataset [6] is a popular source for pretraining,
and pre-trained models exist such as the OverFeat network [2] or the DeCAF
feature extractor [5]).

A standard technique in training a Convolutional Neural Netowork (CNN)
is to augment the dataset by applying transformations, more data typically
gives better generalization. In [7], a CNN was trained on single images which
were warped in many different ways. Features obtained from the network were
then used in popular classification benchmarks achieving good results. For many
years local image descriptors such as Scale Invariant Feature Transform (SIFT)
[8] have been used for matching and indexing images, a recent comparison [9]
(though perhaps not a fair one) showed that using a CNN for matching tasks
performed better than SIFT by a margin similar to the improvement given by
SIFT to raw pixel data.

The final layer of a standard deep neural network as used in supervised classi-
fication consists of a set of linear classifiers, as such those descriptors are suitable
for classification using other linear classifiers such as SVMs. Nearest Neighbor
suffers from high dimensionality and noisy or irrelevant dimensions, as such the
descriptors produced by a CNN may not be suitable for comparison by distance.
For that reason we have looked towards metric learning to directly optimise the
descriptors for the purpose of Nearest Neighbor classification.

1.2 Deep Metric Learning

Metric learning has often been used for object recognition and image classifi-
cation [10,11] (and many others), and especially face recognition, for example
[12]. Although most efforts often have focued on mahalanobis distance metric
learning (a form of distance metric learning linear transformation), deep metric
learning has had some attention [13,11,14,15]. At the expense of much larger
computation cost, deep metric learning has been shown to perform much bet-
ter than its linear counterparts. We use gradients from metric learning to drive
Stochastic Gradient Descent (SGD) on a deep CNN.

1.3 Training

Metric learning comes with its own set of challenges, it has often been formulated
as batch training method because each example potentially interacts with every
other example. In practice descriptors from examples far apart don’t interact
with each other at all, so approximations can be made as we discuss later. This
runs into issues relating to high dimensional spaces, namely the “curse of dimen-
sionality”. In high dimensional spaces, such as those we deal with in this paper,
if the points (descriptors) were uniformly spaced then on average the number of
neighbours increases with dimension.

The interaction between points decays with distance (for example exponen-
tially with NCA). We can use approximations around the local neighbourhood
of examples which can be used to create an SGD training proceedure. Using
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an approximation to the nearest k neighbours is a popular approach, seen in
[16,17] (of many). Clustering (amongst other sampling methods) is discussed in
[18] such as Farthest Point or Random Projection clustering, the downside of
such clustering is that it is hard to control the size of a batch.

Manytrainingmethods focuson interactionbetweenpairsof (similar/dissimilar)
examples or triples (example, more similar, less similar), for example DrLIM [10]
where a spring analogy is used to create an attraction between similar pairs and a
repulsion between dissimilar pairs, the advantage with this kind method is that it
can be used without explicit class labels, but just a similar/dissimilar annotation.

2 Deep Metric Learning

A deep neural network (in our case a CNN) is used to to create an embedding
into a lower dimensional space, creating descriptors which can be compared
with their euclidean distance (and classified with nearest neighbour) where the
euclidean distance of the raw pixels is both expensive and not a good measure
of the distance of the semantic similarity of image content.

We examine non linear versions of two methods NCA [19], the closely related,
but less well known MEGM [17]. NCA optimizes a continuous version of the
Leave One Out (LOO) performance, it uses a softmax over weights which decay
exponentially with distance. The NCA score can be interpreted as the probability
that a descriptor will pick another descriptor of the correct class as its nearest
neighbour.

The probability, pij , of one descriptor selecting another descriptor, as its
neighbour is defined as a softmax function over weights Wij. The indexes i and
j refer to input examples xi and xj , and corresponding vector valued output of
a CNN f(xi) and f(xj) which are the descriptor vectors.

pij =
Wij∑
k �=i Wik

g (1)

Then the total probability, pi, of a point selecting any neighbour with another
with its correct class is defined as the sum of those neighbour probabilities pij
which have the same class:

pi =
∑

j:cj=ci

pij (2)

Where Ci is the class label of example i. We use a gaussian kernel for the
weighting as [17] do.

Wij = exp(
−‖f(xi)− f(xj)‖22

2σ2
),Wii = 0 (3)

Then the function to be maximized, is the total sum of the probabilities of all
descriptors being correctly classified.

Enca =
∑
i

pi (4)
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Where NCA optimises directly on the probability pi above, MEGM instead
computes for each class ŷti as a prediction that a descriptor will take class t,
where the only difference is that cj = t as opposed to cj = ci:

ŷti =

∑
j:cj=t Wij∑
k �=i Wik

(5)

The prediction ŷti can then be compared with yti (1 where t = ci, 0 otherwise),
it then minimizes the Mean Squared Error (MSE) between prediction and true
class label:

Emegm =
∑
i

∑
t

(yti − ŷti)
2 (6)

Intuitively MEGM can be seen to penalize the case where two classes compete
for the same region more so than when one class competes against examples of
many different classes, where as NCA would treat the two cases approximately
equally. These loss functions can be used to drive gradient descent on a CNN by
standard backpropogation. The derivative for MEGM is shown in the appendix,
section 7.

We compute the gradient over the outputs of each minibatch and apply back-
propogation as usual to find the derivative with respect to the weights of the
network. It can be noted that the output, and derivative for MEGM is more ex-
pensive to compute because of the additional per class summation, so it would
not be suitable with an extremely large number of classes. In practice a large
number of the terms can be factored out and precomputed, as well as computing
the difference summations in terms of matrix multiplication.

Note the parameter σ was not in the original NCA, and is initialized to the
average distance to the nearest neighbours of the initial descriptor output before
training. We use it to prevent the weights initializing to zero when the distance
between descriptors is large.

Where α controls the tradeoff. When αEmse > Enca the descriptors all collapse
into the same point.

3 SGD for Metric Learning

Our main proposal is in using minibatch SGD, and applying it to metric learning
methods which have been designed as batch learning methods. Metric learning
as shown above as a batch method, scales at O(n2) for n examples. Given that
we wish to apply these approaches to large datasets containing hundreds of
thousands or millions of images we are forced to consider approximations. The
typical method for training a CNN on large numbers of images is using SGD,
because it is fast, simple and scales to handle large datasets easily.

The most obvious approximation is to just truncate the influence to the near-
est k neighbours as the weight exponentially decays with the square distance. We
hypothesised this would lead to the best approximation, however there are many
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ways of truncating the neighbourhoods. This lends itself to clustering methods
and is more complicated than the alternative, which is to sample batches ran-
domly, but use a large enough batch to include several examples of each class.

We propose the following approaches for sampling batches for SGD:

1. Random Shuffled Batches. Randomly shuffle the dataset and divide up
into batches of a fixed size, exactly how batches would normally be se-
lected for supervised learning. Each batch contains (almost certainly) dif-
ferent numbers of examples from each class.

2. Stratified Random Batches. Pick batches by selecting a number of ex-
amples from each class, to ensure the same number of examples of each class
are represented in each batch.

3. K-neighbourhoods around Random Points. Before each training epoch,
run the model forward through the training set to obtain descriptors for each
example. Select N examples at random and pick the batch as the batch sized
neighbourhood (in descriptor space) of each selected example.

3.1 Issues of Scale

The parameter σ is largely optional in theory, as the scale can be factored into
the final fully connected weight matrix (or previous layers). We make use of σ
for the purposes of numerical stability upon initialization, during training the
density of points adjusts itself to fit this parameter. It can also be observed that
for different values of σ that the distance between descriptors adjust themselves
to fit the new parameter over a few iterations of training.

3.2 Adding Mean Square Error

We experimented with adding the square distance between members of the same
class as a means of adding some bias to the loss functions after suspecting that
metric learning methods decribed above were overfitting, to force the output
distribution to be more simple.

Emse =
∑
i

∑
j:jc=ic

‖f(xi)− f(xj)‖22
σ2

(7)

Etotal = Enca + αEmse (8)

3.3 kNN Implementation

We use a brute force k-Nearest Neighbor (kNN) algorithm running on CUDA
[20], computing the distance matrix using matrix multiplication followed by us-
ing an insertion sort to select the k neighbours of lowest distance. This approach
is not scaleable to large datasets, and smarter clustering algorithms will even-
tually need to be used, however the time for evaluating kNN on the datasets
we experimented with are still dominated by the cost of computing descriptors
from examples.
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4 CNN Architecture

64x64x3

29x29x64
13x13x96

6x6x96 2x2x96

256

softmax (300)

7x7 5x5 3x3 3x3

maxout(2)

maxout(2)

max pooling(2)
max pooling(2) max pooling(2) max pooling(2)

Fig. 1. Convolutional network configuration used for 64×64 rgb images with supervised
learning

We used a fairly standard convolutional neural network of six layers, with four
layers of convolution and max pooling using rectified linear activation functions,
two fully connected layers using maxout [21] units as an activation method,
shown in Figure 1. Dropout [22] with a rate of 0.5 is used when training on
inputs to the two fully connected layers. For metric learning, the last linear layer
and softmax are removed, leaving four convolutional layers and a single fully
connected layer giving descriptors of size 256.

Dropout and Maxout have been shown to be beneficial in a supervised learning
scenario for the purposes regularization. In the standard supervised training
scenario Dropout is of great practical use because it (to some degree) prevents
overfitting, and mostly does away with the need for early stopping. However
we found that it prevented good generalization when used with metric learning
approaches.

4.1 Data Augmentation

In all cases we used randomized data augmentation of the test set by applying
random distortions to ensure the network never saw exactly the same image
twice, and to increase its tolerance to small changes in lighting, translation and
rotation. The parameters of the data augmenmtation can be seen in Figure 1.
Without the data augmenmtation supervised training produces substantially

Fig. 2. Example of image distortions resulting from transformations of a single source
image
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worse generalization than without in both supervised and metric learning ap-
proaches. In all experiments testing was performed on non-distorted images and
trained with distorted images.

Table 1. Ranges of parameters used for image distortion

scale (uniform) 1± 0.2
squash 1± 0.2
rotation (rads) ± π

16

translation(x, y) (% image size) ±5%
brightness (additive) ±20%
contrast (multiplicative) 1± 0.2%
gaussian pixel noise σ = 2± 2
flip horizontal (probability) 0.5

4.2 Dataset

We experimented with the University of Washington RGB-D dataset primarily
because it has a standard test set for instance recongition and a large number
of published results, it contains 300 objects from 50 classes. Each object has 3
sequences of rotations at 30, 45 and 60 degrees elevation, each rotation sequence
contains approximately 150 images. For instance recognition the sequence at 30
and 60 degrees are used for training and the sequence at 45 degrees is used for
testing.

We used a cut down version of the RGB-D dataset for a number of experi-
ments, with 50 objects and 100 images of each object to train on, and 50 images
per object to test. The images were randomly selected.

We used a resolution of 64× 64 on the RGB-D images, we used the cropped
version of the data, our proceedure for resizing was to load all of the images in
a sequence and if any image was at a higher resolution than 72× 72 we resized
the image to 72 × 72 and all other images in the sequence by the same ratio.
The images were then distorted (see Figure 1) and finally centered (modulo
translation) on a 64× 64 with a black background.

Fig. 3. Example of image distortions resulting from transformations of a single source
image
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5 Experiments

In all cases (unless otherwise specified) we use a minibatch size of 256, with
standard SGD learning rate set to 10−2 for supervised learning, and 10−5 for
metric learning methods. We experimented with other learning rates for metric
learning, in some cases a lower learning rate of 10−6 was used when the higher
rate caused divergence.

We manually divided the training rate by a factor of 10 when the training set
accuracy plateaus for supervised learning. Supervised learning methods greatly
benefit from reducing the learning rate after time, however we did not notice any
benefit to the metric learning methods. Metric learning methods we stopped at
70 epochs, or earlier if they were not converging. Overall we found MEGM to
give similar, but slightly better test set accuracy than NCA, we performed most
experiments with MEGM for consistency.

5.1 Overall Comparison

We compare the testing classification error between methods, the final accuracy
is reported as the test set classification accuracy average over the last 5 iterations.
Test set accuracy is percentage accuracy for supervised learning, and for metric
learning by k = 5 nearest neighbours and selecting the most common class.

Table 2. Summary of training methods

Method Sampling Batch Test accuracy Train epochs

Initialization 64.0 0

Supervised 256 90.6 40
5NN 89.0 40

NCA batch 71.2 50
random 256 94.0 70

MEGM batch 74.4 50
random 128 95.0 70

256 90.5 70
512 81.4 70

MEGM stratified 128 95.4 70
256 94.6 70
512 87.1 70

MEGM neighbourhoods 256 80.4 70

MEGM + MSE stratified 128 95.3 70

We sought to compare the sampling approximation to the batch method.
As a batch method, clearly SGD is not the ideal training method. We were
surprised to see that despite the loss function smoothly decreasing (as can be
seen in Figure 5), training failed to generalize well to the training set Figure 4.
We anticipated the batch metric learning methods would work best as batch
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methods or with larger batches (as closer approximations to the batch method).
We can see that is not the case, and both the batch method and SGD with the
larger batch size (512) both failed to generalize well. The same pattern occurred
for NCA, as well as using the stratified sampling method. The reason for such
overfitting is that we believe the two metric learning methods to have not enough
bias to force the network to learn something. NCA allows highly complex and
multi-modal distributions with many local minima which, provided the local
neighbourhood structure fits, are not penalized by its loss function. Smaller
batch sizes however act as a regularization, forcing the descriptors outputs to a
simpler form.

5.2 Sampling Method

We compared the three different sampling methods, most noticeably the k-
neighbourhood sampling method did not converge well. The loss function can
be seen to oscillate wildly and the does not reach a local minimum (reducing
the learning rate did not help), and as can be seen in Figure 2 did not produce
good generalization to the test set. Reducing the learning rate did not seem to
help in this case. In the same figure the results of adding in a MSE term to the
loss function can be shown to provide a slightly faster convergence rate while
reaching the same testing classification error.

6 Conclusion

We discovered that metric learning with NCA and MEGM can produce good
results under the right conditions. Used as a minibatch method, they’re sensitive
to parameters such as the batch size. Large batch sizes caused significant overfit-
ting, while small batch sizes produced the best generalization, and adding MSE
increased convergence rate considerably. Of the proposed sampling methods, ran-
dom batches and stratified sampling worked much better than neighbourhood
sampling which did not converge well.

We validated the proposed idea (at least in the small scale dataset) that
the metric learning approach can be used to produce better descriptors than
standard supervised learning, despite the toy size dataset. Nonlinear MEGM
generalized a little better than NCA on this particular dataset, with similar
properties.

We are of the opinion that when either of these metric learning methods do
not provide enough bias when combined with deep neural networks. They allow
complex (and potentially multi-modal) distributions in the output descriptors,
as long as the local neighbourhood structure matches the labelling. We believe
this prevents good generalization in our experiments when the batch sizes were
larger.

Pairwise interactions complicate the implementation and we believe contribute
largely to sensitivity of the training process, so make choosing the correct sam-
pling method much more difficult in practice. A simpler alternative we will inves-
tigate in future is to chose a fixed descriptor to represent each class like Nearest
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Class Mean (NCM) [23], avoiding the pairwise interaction as well as forcing the
neural network to produce a more general metric.

7 Appendix

We adjusted the NCA derivative found in [13] to give the derivative for MEGM
output for the ith training case and tth class:

∂Emegm

∂f(xti)
= −2

( ∑
j:ci=cj

mtipij

(
dij −

∑
z

pizdiz

))

+ 2

( ∑
j:ci=cj

mtjpjidji −
∑
z

( ∑
q:cz=cq

pzq

)
mtzpzidzi

)
(9)

Where errti is short hand for the partial derivative ŷti with respect to MSE,
and dij = f(xi) − f(xj) is shorthand for the difference between the descriptor
vectors. The formula differs from the NCA derivative only by the errti term.

mti =
∂Emegm

∂ŷti
= −2(yti − ŷti) (10)
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Abstract. When Genetic Programming is applied to edge detection,
the computational cost is generally expensive. When a set of natural
images are used to train edge detectors, using their high resolutions is
more expensive than using their low resolutions. However, from existing
reports, it is hard to find the influence on performance from using dif-
ferent sampling techniques on low resolutions. In this paper, we propose
a GP system to automatically select the resolutions of a single training
image to train edge detectors. The results of the experiments show that
the GP system can effectively evolve edge detectors based on automatic
resolution selection.

Keywords: Genetic Programming, Edge Detection, Image Analysis,
Resolution Selection.

1 Introduction

Edge detection has been widely applied to image processing and computer vision
[1]. Many techniques for edge detection have been developed based on moving
windows [1, 2]. The image gradient has been popularly employed for edge feature
extraction, such as the Sobel edge detector [3] and the Canny edge detector [4].
In general, edges extracted from one image with high resolution have higher
detection accuracy than the extracted results from the image with low resolution.
However, using an image with low resolution to extract edges is generally faster
than using the image with high resolution. While considering the importance of
remaining detection accuracy, it is desirable to investigate how to detect edges
from images with low resolution.

Genetic programming (GP) has been used for object detection and image anal-
ysis since the 1990s [5]. In [6], GP was successfully employed to evolve detectors
using a shifting function to select pixels instead of using a window. In [7], GP was
used to design specific edge detectors based on an energy function, rather than
using ground truth. The evolved edge detectors [6, 7] have fast detection speed
on raw images. However, it is not clear whether GP can be used to automatically
select different low degrees of resolutions on raw images while maintaining the
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c© Springer International Publishing Switzerland 2014
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detection accuracy. It is therefore worthwhile to investigate automatic resolution
selection using GP.

1.1 Goals

The overall goal of this paper is to investigate automatically evolving edge detec-
tors based on automatic resolution selection using GP. In this paper, we will con-
duct an initial investigation on how to train edge detectors based on automatic
resolution selection using a single training image. A GP system for resolution
selection is proposed. In order to select different low level resolutions of raw im-
ages, different sampling methods are proposed and are considered as functions.
Specifically, we would like to investigate the following research objectives.

• Whether GP evolved edge detectors can be used to effectively extract edges
when automatic resolution selection is used.

• Whether GP evolved edge detectors have similar detection performance to
the edge detectors from human design.

1.2 Organisation

In the remainder of the paper, Section 2 briefly describes the background. Sec-
tion 3 introduces the proposed GP system for resolution selection. After pre-
senting the experimental design in Section 4, Section 5 describes the results
with discussions. Section 6 gives conclusions and future work directions.

2 Background

This section describes edge detection and the related work using GP for edge
detection.

2.1 Edge Detection

In general, there are three stages in edge detection. The first stage is to filter
noise; the second stage is to extract edge features; and the last stage is to obtain
binary edge maps. Since edge points are usually detected based on the extracted
edge features, the second stage, namely feature extraction, is very important in
edge detection [1, 21].

In order to extract edge features, local pixel information is commonly utilised,
such as Gaussian-based edge detection [2]. In Gaussian-based edge detection,
multiple scales have been employed for extracting edge features [1, 2, 11]. Similar
to human eyes, Gaussian filters with large scales mainly focus on boundary
information, but Gaussian filters with small scales mainly focus on the details
of edges. From using wavelet sampling on raw images, multiple resolutions can
be used to represent these raw images [9]. In different resolution levels in the
wavelet domain, edge information (usually in the high frequency domain) is
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included [1, 10]. It is desired to extract edge information from low resolution
raw images after a specific transformation. Meanwhile, a sampling technique
for the transformation would be required. Wavelet-based techniques have been
successfully applied to edge detection [1].

2.2 Related Work to GP for Edge Detection

The existing works using GP for edge detection are based on images at their raw
resolution. This subsection only focuses on the existing work on low-level edge
detection. In low-level edge detection, GP has been used to explicitly search for
raw pixels based on local windows [15] or implicitly search for raw pixels and a
set of raw pixels based on full images [6–8].

There is some work mainly focusing on low-level edge detection [6, 7, 12, 13].
Four macros were suggested to be used for searching for pixels when GP was
employed for image processing [20]. Existing edge detectors have been approxi-
mated by GP. The Canny edge detector was approximated by applying shifting
functions and other common functions in GP [13]. Also, the Sobel edge detector
was approximated by GP [14]. The edge detectors evolved by GP based on a
13 × 13 moving window were compared with the Canny edge detector [15]. In
order to obtain edge detectors based on ground truth of natural images, search
operators using single pixels and sets of pixels were considered as functions in [6–
8], and the evolved edge detectors outperform some existing edge detectors, such
as the Sobel edge detector. Considering edges as one-dimensional signals, one-
dimensional step filters were designed by GP based on a set of pre-defined edge
signals and noise [12].

Additionally, in digital circuit design, edge detectors using a 4 × 4 window
were evolved by GP [18]. Morphological operators were used to evolve binary
edge detectors by GP [16, 17]. An ant was designed to find food, namely “edge
point”, inspired by the problem of artificial ants searching for food in GP [19].

In summary, the existing work on low-level edge detection mainly utilises
pixels on images at their raw resolution. However, there is no reports on the
detection performance influence of GP edge detectors when the detected edges
come from different levels of resolutions.

3 The Method

This section introduces the proposed GP system for resolution selection. The sets
of functions and terminals are given first, then the fitness function is described.

3.1 Functions and Terminals

From wavelet domain transformation, low-level resolutions with high frequency
parts include edge information [1, 10]. When a sampling technique is used to
obtain an image with low resolution, the edge information would be used for
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extracting edge features in the low resolution levels (not the raw image). How-
ever, it is not clear how to design sampling techniques to obtain images (smaller
than their raw images) including edge information. We consider sampling tech-
niques as functions so that a GP system can automatically select the size of the
images with low resolution.

In wavelet domain transformation, a raw image is separated into different
small sub-sections. In our proposed sampling functions, we only select one sub-
section as a low resolution image. Considering images from the horizontal or
vertical direction to sample pixels, the width of the one-dimensional window is
2∗wn+1 on a signal with length L. Based on the restruction condition from the
Nyquist-Shannon sampling theorem [22], the size of the sampled signal is fixed
to L/wn in this paper. For a sampling window, s is used to represent the weights.
Here, sampling is based on pixels in a sampling window. Parameter wn is used
to control the sampling scale. Only wn = 2 and wn = 3 are used for an initial
investigation in this paper. When wn = 2, s = [1, 1, 0,−1,−1] is used. When
wn = 3, s = [1, 1, 1, 0,−1,−1,−1] is used. Equations (4) and (5) are used to
represent the sampled value in the new sampled image based on the horizontal
and vertical directions. Here, I ′ is the new image after sampling, x′ and y′ are
the new positions in the new image, I is the raw image, and x and y are the raw
positions in the raw image I.

Thresh(x) = max{0, x} (1)

x′ = � x

wn
� (2)

y′ = � y

wn
� (3)

I ′x(x
′, y′) = Thresh(

∑wn

i=−wn

∑wn

j=−wn
(s(j) ∗ I(x+ i, y + j))) (4)

I ′y(x
′, y′) = Thresh(

∑wn

i=−wn

∑wn

j=−wn
(s(i) ∗ I(x + i, y + j))) (5)

When wn = 2, a sampled image I ′ will have a quarter of pixels from image
I. The weight vector s is used to only obtain high frequency information from
image I.

Considering the low frequency domain, we also design a sampling technique to
obtain smaller images. Similar to I ′x(x

′, y′) and I ′y(x
′, y′), the edge information,

rather than the raw pixel values, will be sampled.

I ′avg(x
′, y′) = Thresh(I(x, y)−

∑wn

i=−wn

∑wn

j=−wn
(I(x + i, y + j))

4 ∗ w2
n + 4 ∗ wn + 1

) (6)

Note that I(x, y) only represents the image grayscale level in this paper, and
only positive values are considered in the image I ′. In order to combine sampling
results, four functions (see Equations (7) to (10)) are also added into the func-
tion set. Here, a result of 1 is produced for a 0 divisor, a and b are pixel grayscale
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levels from two input images. When two input images are not the same size, the
larger image will be shrunk to the size of the smaller one.

Add(a, b) =
(a+ b)

2
(7)

Sub(a, b) =
|a− b|

2
(8)

Mul(a, b) =
2ab√
a2 + b2

(9)

Div(a, b) = min{a
b
,
b

a
} (10)

To summarise, the function set includes {I ′x, I ′y , I ′avg, Add, Sub,Mul,Div}. For
the terminal set, only the raw image I is considered.

3.2 Fitness Function

The Figure of Merit (FOM) has been previously used as the fitness function in
GP for edge detection [23]. FOM considers offset distances from predicted edge
points to true edge points. It has lower computational cost than a detection
accuracy measure method when predicted edge points are needed to match to
true edge points [25]. We directly employ FOM as the fitness function in this
paper. Here, we only allow predicted edge points with one pixel offset from a
true edge point. Note that the outputs of GP edge detectors are not binary and
the size of an output image might be different from the original size of a test
image. There are two processes before calculating FOM: obtaining binary edges
and scaling an output to the size of the test image.

FOM is defined in Equation (11), where, NT is the number of true edge points
in a single image, NP is the number of predicted edge points in the image,
SetP is the set of all predicted edge points, α is a weighting factor for detection
localisation, and d(j) is the distance from a predicted edge point j to the nearest
true edge point in a ground truth edge map. Considering the overlap of a 3× 3
window, α is usually set 1

9 .

FOM =
1

max{NT , NP }
∑

j∈SetP

1

1 + αd2(j)
(11)

The binary result for outputO(x, y) is obtained based on Equation (12), where
“mean” is the average of the output O on all pixels and “std” is the standard
deviation. Position (x, y) is considered as an edge point when B(x, y) is larger
than 0.

B(x, y) = Thresh(O(x, y)− (mean+ 0.005 ∗ std)) (12)

4 The Design of the Experiment

In general, a single image is not sufficient to train GP edge detectors. However,
when some degrees of prior domain knowledge are considered in a GP system,
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23025 Ground Truth

Fig. 1. Training image 23025 and its ground truth.

Table 1. Training Results (FOM) from Evolved Edge Detectors and Two Simple De-
signed Edge Detectors

FOM (mean ± standard deviation) p-value

GP 0.3785 ± 0.0070 −
EDwn=2 0.3505 0.0000 ↓
EDwn=3 0.3509 0.0000 ↓

a single image has the potential to get good edge detectors [24]. In this paper,
we select image 23025 from the Berkeley Segmentation Dataset (BSD) [25] as
the single training image. All BSD images with ground truth provided are taken
from throughout the world and have size 481 × 321 pixels. There are 100 test
images in the BSD 300 [25]. For fairness of judgement of edges, the ground truth
are combined from five to ten persons as graylevel images. Figure 1 shows the
training images 23025 and its ground truth. Note that the images in Figure 1
are stretched.

Based on common settings [6, 23, 24] and initial experiments, parameter values
used in this paper are: population size 200; maximum generations 60; maximum
depth (of a program) 7; and probabilities for mutation 0.15, crossover 0.80 and
elitism (reproduction) 0.05. There are 30 independent runs for the experiment.

5 Results and Discussions

In order to compare with the edge detectors designed by humans, we design two
edge detectors via using I ′x and I ′y based on wn = 2 and wn = 3. Similar to
the simplified Sobel edge detector [3], the designed edge detector is shown in
Equation (13).

EDwn = Add(I ′x + I ′y) (13)

5.1 Training Results

Table 1 gives the mean and standard deviation of the FOM values of the training
results from GP. Here, a t-test with overall significant level 0.05 is employed, and
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Ground Truth GP

EDwn=2 EDwn=3

Fig. 2. Detected results on training image 23025

↓ indicates that the relevant result is significantly worse than the results from
GP. Comparing to the designed edge detectors EDwn=2 and EDwn=3, the results
from GP are significantly better, in terms of FOM. Also, the standard deviation
of the results from GP is small, and therefore, the performance of evolving edge
detectors is stable, in terms of FOM in the training stage. From the table, it
seems that GP has some ability to effectively train edge detectors when the
ground truth is provided. Additionally, there is almost no influence between
using wn = 2 and wn = 3, in terms of FOM .

Figure 2 shows the detected results from a GP edge detector, EDwn=2 and
EDwn=3. Note that the training results from GP are very close, and the standard
deviation of the 30 independent runs is only 0.0079. From the visual results, it
is found that the detected results from GP have fewer false positives than the
results from EDwn=2 and EDwn=3. Since the detected results are based on low
resolutions, all detected results are affected by noise.

5.2 Test Performance

Table 2 gives the overall test results from the GP evolved edge detectors on the
100 BSD test images. Here, ↑ represents that the relevant result is significantly
better than the results from GP. As we can see, the test results from GP are
decreased. From the 100 BSD test images, EDwn=2 and EDwn=3 also have lower
FOM values than the single training image 23025. Based on the comparisons
among GP, EDwn=2 and EDwn=3, it seems that GP can evolve edge detectors
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Table 2. Test Results (FOM) from Evolved Edge Detectors and Two Simple Designed
Edge Detectors on the 100 BSD Test Images

FOM (mean ± standard deviation) FOM (best) p-value

GP 0.2452 ± 0.0079 0.2579 −
EDwn=2 0.2393 − 0.0003 ↓
EDwn=3 0.2557 − 0.0000 ↑

0.23

0.235

0.24

0.245

0.25

0.255

1

Fig. 3. Box-plot for the test results of the GP evolved edge detectors on the 100 BSD
test images

which outperform than EDwn=2 when only a single image is used as the training
data. Overall, EDwn=3 has the best test performance, in terms of FOM. It seems
that different sampling techniques affect the detected results. Since only a single
training image is used, GP automatically selected sampling techniques which
can be helpful to find good results on the training image.

Figure 3 shows the box-plot of the 30 independent test results from GP. The
best performance from GP is higher than the test performance of EDwn=3.
Table 2 gives the best test result of the GP evolved edge detectors is 0.2579.
However, most of the edge detectors have lower performance than EDwn=3.

Figure 4 shows the detected results from the best GP edge detector, EDwn=2

and EDwn=3 on an example test image 102016. Similar to the training result,
the GP edge detector has fewer false positives than the results from EDwn=2

and EDwn=3. Note that there is no post-processing, so the detected results are
not the final binary edge maps. Following the suggestion from [21], this paper
only conducts the initial investigation in the feature extraction stage.

From the training and test results, especially comparing to EDwn=2, GP has
potential to effectively select sampling techniques to evolve good edge detectors.
However, it remains to investigate how to improve the overall performance of
GP evolved edge detectors.

Note that the test time is not discussed in this paper. The detection speeds of
all edge detectors on each test image are shorter than 0.01 second on a platform
with 2.1 GHz CPU and using C++.
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102016 Ground Truth

GP

EDwn=2 EDwn=3

Fig. 4. The detected results on an example image 102061 from the best GP edge
detector, EDwn=2 and EDwn=3
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5.3 Further Discussion

Similar to one-shot learning [26], only a single training image is used to train
edge detectors and the evolved edge detectors are used for a large set of different
images. However, there is no prior knowledge from the BSD training dataset,
such as the distribution of the single image from the 200 BSD training im-
ages. Although there is no prior knowledge from the training data, specific edge
knowledge can be considered in the proposed GP system. The proposed sampling
techniques mainly focus on high frequency domain (I ′x and I ′y) and difference
among pixels (I ′avg). Note that edge information mainly exists in high frequency
domain. Therefore, it is a potential reason that a single image can be effectively
used to evolve edge detectors in the proposed GP system.

6 Conclusions

This paper aimed to investigate automatic selection of sampling techniques us-
ing GP for edge detection. Different sampling functions were introduced in the
proposed GP system for automatically evolving edge detectors using sampling
techniques. The 100 BSD test images were used to test performance on the
evolved edge detectors. From the results, GP has potential to evolve good edge
detectors via selecting from the pre-defined sampling techniques.

From the detected results, GP evolved edge detectors can be used to effec-
tively extract edges and outperform a simple edge detector, similar to the Sobel
edge detector. However, this study is an initial investigation. How to effectively
improve the performance of evolved edge detectors and analyse evolved edge
detectors would be done in the future work.
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Abstract. Diffusion-based saliency detection is a graph-based technique
in which the optimal saliency map is computed by saliency propagation
over the graph using diffusion of saliency values from one node to another.
This is achieved by computing the product of a propagation matrix and
a saliency seed vector. The saliency seeds stored in the saliency seed vec-
tor contain important prior saliency information usually obtained from
a bottom-up saliency model or certain heuristics. Finding the optimal
saliency seeds is vital for efficient saliency propagation during the diffu-
sion process. In this work, we propose to investigate the performance of
an evolutionary feature combination technique for learning the optimal
seeds for diffusion-based saliency detection. We achieve this by adapting
an evolutionary feature combination system (having good object detec-
tion performance) for the task of seed generation, for diffusion-based
saliency, termed as IGASeed. We present quantitative and qualitative
comparison of our proposed IGASeed system with the state-of-the-art
heuristic and learning approaches for seed prediction. Our results show
that our IGASeed technique performs better than most state-of-the-art
models and comparable to the best seed learning model with lower com-
putational cost.

1 Introduction

Saliency detection is the task of identifying the most important or useful part of
a scene. It has been successfully used in several vision problems such as image
compression [8], object recognition [13] and content based image retrieval [4].
The prime motivation for almost all saliency models is either to predict human
fixation or to detect salient objects. The focus of this work is on salient object
detection. Furthermore, we are interested in formulating the problem of object
saliency as identifying the segments of an image that belong to the salient object
and discriminating them from the background segments.

Recently, a class of models based on saliency propagation has been intro-
duced that predict the likelihood of a segment belonging to a generic object.
These models include energy based models [7], conditional random fields [10],
random walk models [7] and manifold ranking models [14]. In all these mod-
els a graph-based solution is sought, where the optimal solution comprises of

G. Dick et al. (Eds.): SEAL 2014, LNCS 8886, pp. 822–834, 2014.
c© Springer International Publishing Switzerland 2014



Evolutionary Feature Combination for Diffusion-Based Saliency 823

a product of a propagation matrix (capturing node similarity information) and
a seed vector, which contains saliency information. While the diffusion process
for these approaches vary according to their different propagation matrices, the
problem of determining the saliency seeds remain common. The seed prediction
problem for diffusion based object saliency has not received much attention in
prior works, though a few heuristic approaches exist in the literature [14], [9].
Recently, a seed learning method based on optimal feature combination has been
reported by Lu et al. [11].

Based on the results of [11], we have two major observations:

– A seed learning system having fewer highly discriminative features may
achieve similar performance as compared to a system with large number of
features. According to [11], a bottom-up approach (SalSeedProp) performed
comparably to a large-scale feature combination seed learning method (Opt-
SeedProp) that incorporates 178 features.

– Learning the best feature combination process may have a more important
role in seed learning as compared with the number of features included.
Again the results of [11] demonstrated that a feature combination based
implementation with uniform weights (MeanSeedProp) having 178 features,
performed worse than SalSeedProp [11].

These observations enable us to formulate the following research questions:

– Should a seed learning system incorporate a large number of features with
low discrimination power or fewer highly discriminative features?

– How does the optimization of the feature combination process for seed learn-
ing compare to the number of features included in the learning system?

The overall goal of this paper is to learn optimal seeds for diffusion-based ob-
ject saliency. In order to achieve this goal, our previously introduced IGA system
of [12] will be adapted to investigate its effectiveness in predicting seeds for a
diffusion-based saliency framework, we compare its performance with the state-
of-the-art heuristic and learning approaches for seed prediction. We anticipate
that the process of efficiently combining features in the best possible manner
for producing object saliency is parallel to the problem of seed prediction in
diffusion based saliency. The specific objectives of this work are:

– To adapt the IGA system (having considerably lower number of features
as compared with OptSeedProp) in the diffusion-based saliency framework
to devise a new system, IGASeed. As the IGASeed system utilizes multiple
learned schemes, we will address both the questions simultaneously.

– To compare the quantitative performance and the computational complex-
ity of the newly developed IGASeed system with the seed learning system
(OptSeedProp) and other state-of-the-art seed prediction approaches.
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2 Background

2.1 Diffusion-Based Object Saliency

The process of diffusion based saliency computation involves the product of an
optimal seed vector s and a propagation matrix A. The propagation matrix A is
responsible for capturing the internal relation between nodes and therefore guides
the diffusion process. The propagation matrix A captures similarities between
nodes on a graph by the help of an affinity matrix W. Higher affinities between
nodes improve the chance of saliency propagation between the nodes during
diffusion. A variety of graph based approaches are reported in literature each
with a different diffusion mechanism. A few common examples of propagation
matrices for diffusion in different frameworks are reported below:

– Quadratic energy models [7]: A = (K+ α(D−W))−1K
– Random walks [7]: A = (I− αWD−1)−1

– Manifold Ranking [14]: A = (I− αD−1/2WD−1/2)−1,

where D is a diagonal matrix computed by summing the rows of the affin-
ity matrix W. The parameter α controls the fitting constraint of the regular-
ization framework. ki are the weights for the fitting constraint, where K =
diag{k1, k2, . . . , kN}. Although having slightly different formulation of the prop-
agation matrix, the above methods work on the same principle. In all frameworks
the optimal solution y∗ for diffusion has the form y∗ = As.

Fig. 1. The saliency diffusion process. Given an initial set of saliency seeds and a
propagation matrix; saliency is propagated between nodes through a diffusion process.
The green dots represent the effective object saliency seeds. The red dots depict the
background seeds having lower saliency values.

2.2 The IGA System

The IGA system is an evolutionary feature combination based system intro-
duced in [12]. The IGA system learns multiple combination schemes depending
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upon image type. The feature combination using IGA involves three important
variables, i.e., feature weight vector (wn), normalization operation (N ) and an
integration operation (◦). The objective is to find the best possible solution (com-
bination scheme) in terms of wn, N and ◦, such that the difference between the
ideal classification accuracy and the computed accuracy is minimized. It uses
multiple Genetic Algorithms (GA) to find the optimal combination schemes for
different sets of images. The work uses nine saliency features including both pixel
and segment based features (for details please refer to [12]).

Before giving an overview of the algorithm behind the IGA system, we would
like to describe a few notations for better understanding of the algorithm. The
complete feature set and the ground truth sets for training are denoted as G and
F , where Fi and Gi are feature and ground truth groups, respectively, formed
after autonomous feature grouping. Fi encapsulate feature vectors fi ∈ R

D×n.
The learning process of the IGA system is comprised of the following steps:

1. Find the k nearest neighbors of the first element in F .
2. Form groups Fi and Gi using the neighbors from step 1.
3. Delete Fi and Gi from F and G.
4. Repeat steps 1 to 3 untill F = {}.
5. For each Fi find the best possible combination scheme λi = {wn,N , ◦}.
6. Construct a memory set Mi to store {Fi, λi}.
In order to test a particular image using the learned model, IGA takes the

following procedure:

1. Compute a test feature vector ft for a test image.
2. Compute a distance di between ft and a group Fi.

3. Repeat step 2 to obtain a distance vector d =
[
d1, d2, . . . , dN

k

]
.

4. Choose a memory set Mi from M using the smallest distance di from d.
5. Use the corresponding optimal combination scheme λ∗ = λi to compute the

saliency map.

For specific details of the GA and further details of the IGA system, the reader
is directed to [12].

2.3 Optimal Seed Learning System (OptSeedProp)

Recently, a diffusion-based object saliency prediction system was introduced in
[11] (OptSeedProp), which learns the set of optimal seeds for object saliency.
OptSeedProp attempts to learn the optimal seeds by combining a large number
of mid-level features and a bottom-up saliency feature in an optimization frame-
work. The goal is to be able to predict the best seeds by learning the optimal
weighted feature combination. The graph is constructed in a similar fashion as
in [14]. In order to capture the similarities of two superpixel nodes, a boosted
decision tree is used to classify whether the nodes belong to the same object or
not. The propagation matrix used by OptSeedProp is given as:

A = (I−D−1W)−1. (1)
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OptSeedProp uses gradient descent to learn the optimal weight vector w by
maximizing the discriminant saliency criteria between object and background
superpixels. OptSeedProp uses a single bottom-up feature and 177 superpixel
based mid-level features to learn the optimal seeds. For details, please see [11].

3 From Saliency to Saliency Seeds (IGASeed System)

In the novel IGASeed system, the process of seed based saliency starts by com-
puting features for an input image as shown in Figure 2. The computed fea-
tures are then combined in the feature fusion block. The combination scheme
is selected from the multiple combination schemes learned by the IGA system
depending upon the feature distance of the input image from feature groups.
We use the same settings for feature grouping and genetic algorithm design as
reported in [12]. The evolutionary feature combination based saliency obtained
after the fusion process is then used to produce seeds for the diffusion pro-
cess. In order to map the pixel-level saliency (obtained in the previous step) to
segment-level saliency, superpixel information obtained from the image (using
SLIC algorithm [2]) is overlayed on the pixel-level saliency (such that pixels inside
a superpixel can have different values), and centroids c1, ..., cN for each super-
pixel are computed. These centroids are then used to construct a segment-based
saliency or saliency seeds (where each superpixel has similar pixel intensities).
In order to form the propagation matrix A, the input image I is first segmented
into superpixels. These superpixels form nodes as the image is represented as a
graph G = (V,E). We build a k-regular graph, where each node is connected
to its immediate neighbors and to nodes sharing common boundaries with its

Fig. 2. The process of obtaining saliency seeds from feature combination based saliency
and saliency propagation
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neighboring nodes. Afterwards, a sparse affinity matrixW capturing the relation
between nodes is constructed as follows [15]:

wij = exp

(
−‖xi − xj‖2

2σ2

)
, (2)

where xi and xj are the centroids of the nodes and σ is a parameter that
controls the strength of the relation between two nodes. The propagation matrix
A is then computed by the following diffusion scheme which produced the best
results in our experiments.

A =
I

D− αW
. (3)

The number of superpixels N in our implementation is set to 200. Following
[15], α and σ2 are chosen to be 0.99 and 0.1.

4 Experimental Design

4.1 Data Sets

We select the well-known benchmark database called segmentation evaluation
database (SED) [3] from the salient object detection literature. SED is divided
into two datasets SED1 and SED2, based on image type and the level of difficulty.
SED1 contains a total of 100 single object foreground images, while SED2 con-
tains 100 images each having two different foreground objects. The ground truth
is provided in the database, having either two or three classes and annotations
from three different human subjects for each image. For saliency evaluation, the
ground truth is first processed by pixel level voting to obtain a binary ground
truth map with 1’s representing an object and 0’s for background.

4.2 Selected Models for Comparison

Baseline Seed Prediction Models. In this work, two baseline seed predicting
heuristic methods are used to produce saliency seeds.

– Background Seeds (BS): Following the heuristic approach of [14], i.e,
using boundary nodes as queries for ranking of nodes. We use all boundary
nodes from the four sides of an image as seeds to compute a saliency map
using the diffusion process.

– Reconstruction Error Based Seeds (SRE): We use the sparse recon-
struction errors obtained by using the background nodes as basis functions
for sparse representation. The sparse reconstruction errors are then used
as saliency seeds for computing diffusion based saliency. Sparse reconstruc-
tion errors using background templates were first used by [9] as part of the
Bayesian system to predict saliency.
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OptSeedProp. For OptSeedProp [11], we use the numerical results from the
paper as the implementation is not publically available. Consequently, we are
not able to report receiver operating characteristic (ROC) and average precision
(AP) curves for OptSeedProp.

Deterministic Models. RC [5], Gof [6] and FTS [1] are used for comparison.
We use the author provided implementations for these models to compute the
reported results.

4.3 Performance Evaluation

For a fair comparison, we evaluate the performance of models using the quantita-
tive measures reported in [11], i.e., the average area under the receiver operating
characteristic curve (AUC) and the average precision (AP). In order to compute
AUC and AP, ROC and precision curves must be generated for a set of thresholds
for each saliency map. We use the standard benchmark method reported in [1]
to generate ROC and precision curves for a defined set of thresholds. According
to this benchmark, a saliency map is segmented at discrete thresholds within a
range of [0,255], and compared with the ground truth to compute either the true
positive rate, false positive rate or the precision at each value of the threshold.
The AUC is then computed by finding the area under the ROC curve and AP
is obtained by averaging the precision values for each image.

5 Quantitative Results

This section presents the performance comparison of selected seed based and
state-of-the-art deterministic models with our proposed IGASeed system.

5.1 Performance Comparisons with Seed Based Techniques

Table 1 presents the comparison of seed based techniques with our proposed
IGASeed system.

Table 1. Object detection performance with seed based techniques: AUC/AP

AUC/AP BS SRE IGASeed OptSeedProp

SED1 0.758/0.767 0.801/0.795 0.930/0.850 0.953/0.891

SED2 0.727/0.716 0.760/0.757 0.840/0.777 0.906/0.806

For SED1 the OptSeedProp approach performs better than all other models
with our proposed IGASeed technique producing the second best results. The
high performance of OptSeedProp is due to the high number of features that it
incorporates (i.e., 178 features in total) at the cost of high computational load.
On the other hand our IGASeed technique achieves comparable results using
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only nine features presenting a low computational cost solution. Our IGASeed
system learns multiple combination schemes to enhance its performance at the
cost of high computation time at the training stage. However the time required to
compute the saliency for a test image is considerably faster than the OptSeed-
Prop model (for details please see Section 5.3). OptSeedProp performs better
than our IGASeed system on the SED2 dataset. However it is to be noted that
our IGASeed system produces comparable results. The analogous performance of
our IGASeed system indicates that the process of optimally combining features
carries more importance than including a large number of features, for qual-
ity seed prediction with the added advantage of low computational cost. Our
IGASeed technique outperforms the primitive heuristic seed prediction models
without adding considerable computational time.

5.2 Performance Comparisons with Deterministic Approaches

This section presents the comparison of our IGASeed technique with the state-
of-the-art deterministic models as shown in Table 2. It can be observed that our
IGASeed system achieves considerably better results than all other models on
the SED1 dataset. RC [5] produces the second best results.

Table 2. Object detection performance comparison with deterministic techniques:
AUC/AP

AUC/AP FTS Gof RC IGASeed

SED1 0.686/0.5656 0.822/0.641 0.889/0.820 0.930/0.850

SED2 0.791/0.722 0.832/0.682 0.925/0.806 0.840/0.777

We anticipate that the higher performance of our IGASeed system as com-
pared with the state-of-the-art models is due to its richness in terms of features
and its effective combination scheme at the cost of additional computational
time. It is to be noted that despite using more time as compared to FTS and
RC, the time used by our IGASeed system to produce a saliency map is compara-
ble to most state-of-the-art saliency models. RC produces the best performance
amongst both diffusion and non-diffusion based systems including OptSeedProp
on SED2 dataset with our IGASeed system performing the second best. This
might indicate that the current seed prediction based methods are not excep-
tionally good at scenes with multiple objects and more robust diffusion processes
are required to deal with multiple object scenarios.

To complement the numerical results in Tables 1 and 2, we present the ROC
and thresholded precision curves in Figure 3. In compliance with the numerical
results, the ROC and precision curves show that our IGASeed system performs
better than all the models for the SED1 dataset. Our IGASeed maintains its
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higher true positive rate for all thresholds and highest precision values for ma-
jority of threshold levels. In terms of the ROC curve, RC and Gof produce com-
parable results, while RC maintains higher true positive rate for lower thresholds.

Fig. 3. ROC and thresholded precision curves for all models. Top row shows the results
for SED1 and bottom row presents the results for SED2 dataset respectively. Our
IGASeed system is shown in red. This figure is best viewed in color.

For SED2 the close performance of our IGASeed and the Gof model in terms
of AUC can be observed from the ROC curve. RC performs the best in capturing
more area under the curve. In terms of the precision curve, our IGASeed system
performs similar to RC, however RC scores higher average precision at higher
thresholds boosting its overall score.

It can be observed that the performance of BS and SRE models in terms
of precision at low thresholds is remarkably good. A probable explanation of
this performance could be the sparser maps that these models usually produce.
The sparse maps when thresholded at low levels score high precision but fail to
maintain it on higher thresholds, assigning the salient regions low values in most
cases.

We performed an unpaired two-tailed t-test to determine the statistical signifi-
cance of our IGASeed system. In terms of AUC, our IGASeed system was found
to be statistically significant over all models with a p-value < 0.0001 for the
SED1 dataset. On the AUC comparison for SED2, it significantly outperformed
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BS, SRE and FTS with p-values of <0.0001, <0.0001 and 0.014, respectively
and performed similar to Gof with a p-value of 0.554. RC performed better than
IGASeed with a p-value < 0.0001 on SED2 in terms of AUC.

In terms of AP on the SED1 dataset, our IGASeed system was found to be
statistically significant over all models with a p-value 0.0026 for RC and <0.0001
for all other models. On SED2 for AP comparison, it performed better than BS
and FTS with a p-value of 0.01, while performed similar to SRE with a p-value
0.231 and significantly lower than RC with a p-value of 0.0168. We are not able
to report the statistical significance results for the OptSeedProp system as they
do not report the variance results in their paper.

5.3 Comparison of Computational Time

Table 3 present the computational time requirements for our IGASeed and Opt-
SeedProp systems. Comparing the two models using complexity results is not
trivial as there are several different modalities involved, which make the com-
parison infeasible. Therefore we limit our discussion to the reported timings in
seconds for the scope of this work. Here we neglect the time for weighted addi-
tion of features for both approaches, as it is negligible. The reported timings are
average of 10 selected images of size 300× 400 from the SED1 dataset and they
were computed on a i7 vpro 3.2 GHz processor with 8 GB of RAM.

The complexities for individual features are reported for presenting the overall
context. In terms of computational complexity of individual features, the upper
bound on a feature in our IGASeed system is greater than the upper bound on
any individual feature in the OptSeedProp model. However evaluating bounds
on computational complexity of features in isolation will make the comparison
unfair as it is the sum of timings that governs the completion time.

It can be noted that our IGASeed techniques is an order of times faster than
its counterpart in terms of the total average time spent in seconds (as shown
in brackets in Table 3). Although the individual timings for OptSeedProp fea-
tures are smaller (due to superpixel level feature computation for all features)
as compared with our IGASeed features. However, the number of superpixel
level features of a type along with the number of scales is very high for the
OptSeedProp technique, boosting the overall computation time.

6 Qualitative Results

The better performance of our IGASeed system in terms of visual quality is
demonstrated by the saliency maps for the images in rows 2 and 6 (Figure 4),
for which almost all the models struggle to produce high quality saliency maps.
For the fifth row image, our IGASeed system uniformly highlights both salient
objects as compared with other models.

BS and SRE occasionally produce highly sparse saliency maps failing to high-
light the salient object in a uniform manner and perform poorly on parts of
the salient regions. This may be due to the low number of representative seeds
selected by these models. FTS appears to filter important information on a few
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Table 3. Computational time requirements for our IGASeed system and OptSeedProp
system. F1-F9 are the nine features used by our IGASeed system. F1-F177 are features
used by the OptSeedProp system. We only report timing and complexity information
for representative features for OptSeedProp system. All timings reported here are in
seconds.

IGA OptSeedProp

Feature
Time
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Remarks Feature
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F1 5.36 O(N)
N: number of pixels in
image

F1-25 22.7 O(n2
p)

np: number of super-
pixels in image

F2 0.67 O(n2
c)

nc: number of clusters
(k-means)

F26-125 21 O(n2
b)

nb: number of bound-
ary superpixels in im-
age at each side

F3 0.67 O(Nc)
Nc: number of pixels in
a cluster

F161-163 3.15 O(n2
p)

np: number of super-
pixels in image

F4 0.25 O(N)
N: number of pixels in
image

F164-166 3.15 O(n2
p)

np: number of super-
pixels in image

F5+F6 7.08 O(Np)
Np: number of pixels in
a region

F167-168 0.4 O(n2
s)

ns: number of selected
superpixel regions

F7 0.18 O(n2
p)

np: number of super-
pixels in image

F169 0.91 O(n2
p)

np: number of super-
pixels in image

F8 0.18 O(n2
p)

np: number of super-
pixels in image

F173-177 1 O(n2
b)

nb: number of bound-
ary superpixels in im-
age at each side

F9 0.39 O(nr)
nr: number of reduced
superpixels in image

Fig. 4. Visual comparison of all models on selected images from SED1 and SED2. Left
to right (in rows): input, ground truth, SRE, BS, FTS, RC, Gof and our proposed
IGASeed.
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images, resulting in assigning similar scores to the objects and the background.
RC includes unwanted noise in images, which seldomly affects its quantitative
performance due to its low intensity in the saliency maps as compared with the
intensity of salient object regions.

7 Conclusions and Future Work

In this work, we have investigated the following scenarios for seed learning: 1)
high number of less informative features versus low number of highly discrim-
inative features and 2) optimal feature combination vs the number of features
included. The novel IGASeed system, despite using considerably fewer features
with a better feature combination scheme, achieved comparable results to the
OptSeedProp on both the datasets. The good performance of our IGA system
for seed prediction demonstrates the potential of a reduced feature implemen-
tation with rich feature combination schemes, as compared with the large scale
feature combination implementation of OptSeedProp. The IGASeed system has
the added advantage of low computational cost. Our results encourage us to in-
vestigate richer learning approaches with the best performing selected features
for improving seed learning for diffusion-based object saliency.
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Abstract. Vegetation classification from satellite and aerial images is a 
common research area for fire risk assessment and environmental surveys for 
decades. Recently classification from video data obtained by vehicle mounted 
video in outdoor environments is receiving considerable attention due to the large number of real-world applications. However this is a very challenging 
task and requires novel research techniques. This paper presents an analysis of 
hybrid classification approach to distinguish vegetation in particularly the type 
of roadside grasses from videos recorded by the Queensland transport and main 
roads. The proposed framework can distinguish dense and non-dense grass 
regions from roadside video data. While most of the recent works focuses on 
infrared images, proposed approach uses image texture feature for vegetation 
region classification. Analysis of hybrid approach using texture feature and 
multiple classifiers is the main contribution of this research work. The 
classifiers include: Support Vector Machine (SVM), Neural Network (NN), k-
Nearest Neighbor (k-NN), AdaBoost and Naïve Bayes. The different images 
were created from video data containing roadside vegetation in various 
conditions for training and testing purposes. The hybrid classification approach 
has been analysed on roadside data obtained and results are discussed. 

Keywords: Hybrid Classification, Neural Networks, Vegetation Analysis, 
Feature Extraction, Support Vector Machine, k-Nearest Neighbor, AdaBoost, 
Naïve Bayes. 

1 Introduction 

Research on distinguishing vegetation area especially different types of vegetation 
regions has been recognized very important topic in the remote sensing field. 
However, the recognition of vegetation from video data recorded by ground vehicle is 
quite new even up to date. Surprisingly, there is no known method that can effectively 
identify the vegetation region from roadside data due to its similar spectral signature 
with respect the color, shape as well as the regions are not properly distributed in the 
field [1]. Hence, this research tries to implement a new idea for roadside vegetation 
classification. Instead of classifying different types of grasses, initially this paper 
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focuses on dense and non-dense region identification. Although a variety of 
vegetation can be found on the roadside with respect to color, structure, this paper 
consider only how they distributed on the field.  

Designing and implementing automatic image classification algorithms within 
autonomous system is very young and unexplored area of research. Meanwhile 
several approaches on weed classification have been developed using various 
classifiers such as k-Nearest Neighbour [2], Adaptive boost [3], Artificial Neural 
Network [4], Support Vector Machine [5] and Wavelet [6]. The increased use of 
automation on roadside data is the main reason for motivating into the research on 
detection and classification of vegetation region from roadside [7] [8] [9].  

In 2004, tree species classification technique from high resolution forest imagery 
was developed by Kanda et al. [10]. In this study, they used GLCM as texture feature. 
Although many features can be generated from GLCM, according to the literature 
they selected homogeneity as their feature vector. Qian Yu et al. [11] studied detailed 
vegetation classification in high spatial resolution airborne Digital Airborne Imaging 
System (DAIS) imagery using 52 features where nine GLCMs features have been 
used. In 2007, Ghazali et al. [12] introduced a 2 Dimensional Discrete Wavelet 
Transform (2D-DWT) based feature extraction technique to investigate the 
characteristic of narrow and broad weed. According to [13], GLCM and FFT have 
been used to recognize types of weeds as either narrow or broad. Recognition results 
showed that for offline images, FFT achieve 89.2% and 91% correct classification 
rate for narrow and broad weed recognition where as 81% and 81.5% classification 
rates were recorded for the GLCM. Whereas for recorded video FFT scores 80.60% 
and 81.10% for narrow and broad weed recognition, respectively. On the other hand, 
for GLCM obtained accuracy was 70.4% for the narrow category and 72.5% for the 
broad. Hence for real time application FFT has been chosen. In addition, Ghazali et 
al. [14] obtained above 80% accuracy by using a combination of statistical grey-level 
co-occurrence matrix (GLCM), structural approach Fast Fourier Transform (FFT), 
and scale-invariant feature transform (SIFT) features in a real-time weeds control 
system for an oil palm plantation. Apart from this, Wu et al. [15] utilized GLCM and 
histogram statistics-based texture features extracted from four spatial orientations, 
horizontal, left diagonal, vertical and right diagonal corresponding to 0°, 45°, 90° and 
135° respectively for weed and corn seedling recognition with SVM classifier. 
Zhengrong et al. [16] investigated state-of-art texture descriptors such as Gray-Level 
Co-Occurrence Matrix (GLCM), Local Binary Patterns (LBP) for object-based 
vegetation species classification and evaluate the performance. In this work, 10 
spectral and texture feature descriptors were evaluated using SVM by means of 
classification accuracy. In contrast, some researchers [17] used 3 texture features 
(GLCM, Gabor Wavelet (GW), Uniform LBP (ULBP)) to classify vegetation species. 
The evaluation results suggest selecting appropriate feature and classification 
algorithm for different categories. Overall, the classification accuracies of all 
classifiers and texture features are not as good as expected. In 2003, Tang et al. [18] 
performed texture based weed classification using low-level Gabor wavelets-based  
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feature extraction algorithm to classify images into broadleaf and grass categories. In 
this research, three species of broadleaf weeds (common cocklebur, velvetleaf, and 
ivyleaf morning glory) and two grasses (giant foxtail and crabgrass) that are common 
in Illinois were studied. Although it can classify effectively, a serious drawback of 
this method was that sample images were limited to 40 images with 20 samples for 
each class. Another drawback with the method was the processing time as each weed 
image needs to perform four frequency levels. Mustapha and Mustafa [19] developed 
an algorithm to extract texture based features based on GW to categorize broad and 
narrow leaf weeds, which achieved an accuracy of 88.17%. 

Another class of weed classification technique was proposed by Ishak et al.[20] 
which utilized the combination of a Gabor wavelet (GW) and Gradient Field of 
Distribution (GFD) to extract a new set of feature vector. In their work, an Artificial 
Neural Network (ANN) has been applied for classification purpose. A total of 400 
images of 200 grasses and 200 broadleaf weeds with different lighting conditions 
were used to test the effectiveness and listed accuracy was 93.75%. 

In recent years, some researchers use LIDAR (Light Detection and Ranging) 
sensors in order to calculate texture feature from 3D structure. In [21] Nguyen et al. 
combines 2D-3D information for vegetation detection. In terms of 2D feature they 
consider the mean and standard deviation of brightness, color and histogram. The 
limitation of their approach is time consuming because of mapping 2D and 3D 
information from two different sensors by using coarse calibration method [21]. The 
approach can be efficiently used when considering time is not a criteria [22]. Most of 
the researchers use texture feature and color features in order to detect grass region 
[23] [24] . They extract the color component from YUV color space and enhance the 
image by changing the color or brightness of the pixels. Their proposed approach 
works well when the grass color is green [25], but in real scenario in Queensland road 
there is no specific color of the grass. So it’s difficult to use color as a feature vector 
for those vegetation area identification. The aim of this paper is to combine the NN, 
SVM, k-NN, AdaBoost and Naïve Bayes together with a texture feature for dense and 
non-dense area classification. 

Among the reported research on vegetation detection mainly focused on specific 
texture: grass-field [23] and weed [26] as well as with specific color: green leaf, green 
grass [25]. Some research works focused on specific structure such as foliage and 
needle tree [27]. From the literature cited above, it is clear that only few research 
works were done that works on every types of vegetation commonly found on 
roadside. In this paper pixel-based method for roadside vegetation detection is 
presented which is applied on roadside video data collected by moving vehicle.  

The rest of this paper is organized as follows: in the third section proposed 
approach is introduced with texture feature selection and classifier training. 
Experimental results and analysis of proposed approach is presented in the fourth 
section. The conclusions and future research directions are presented in the last 
section of this paper. 
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2 Proposed Approach 

The main focus of this research is based on the video data collected by Queensland 
transport and main roads (TMR) from different parts of Queensland. Using four video 
cameras fitted on different positions, data are collected automatically from the 
roadside. Directions include left, right, front and rear. This research especially focuses 
on left side video data. For this study ten meter from roadside are considered. The 
video camera was set to automatic exposure and focus. Presently, all frames shown in 
Fig.1 were taken from the video. All the videos are saved in .avi format for further 
processing. The data size around 250 GB with resolution 1632 X 624. Frame rate for 
the video was 5 and codec used for this purpose was Motion JPEG Video (MJPG). 
For this research purpose database contains 110 images extracted from video 
sequences, which are manually segmented to differentiate between dense and non-
dense region. No additional equipment needed as this study only focus on visible 
spectrum. The foundation of the proposed hybrid technique is based on that the 
vegetation features can be learnt and distinguished by the fusion of different base 
classifiers. The proposed technique consists of 5 stages such as data acquisition, 
extraction of selected features, training of base classifiers and classification with 
trained base classifiers, majority voting and calculation of accuracy. A scenario of the 
proposed technique is shown in Fig. 2.  

 

 

Fig. 1. Different Types of Dense and Non-dense Region 

At the very beginning of the proposed technique, the research focuses on deciding 
which color spaces would be suitable for this kind of region differentiation. The study 
starts with several color spaces like RGB, gray, HSV, YUV YCbCr that area 
commonly used in vegetation detection. RGB color space is initially rejected because 
from RGB image we cannot differentiate between grass color and soil color. As we 
lose information on gray image, this option is also not good choice. Though HSV 
color space show good performance on green vegetation, it is not always true under 
most different environment conditions. Better accuracy is achieved using YCbCr 
color space as its work with brightness of the pixel as well as blue and red difference 
between the pixels.  On the basis of the conclusion, candidate image is converted into 
YCbCr color model and then convert it into binary level. The frame size of each 
image after scaling was 384 X 384. 
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2.1 Feature Extraction 

For human being it seems to be very simple to understand the difference between 
dense and sparse region based on its typical colors, textures and geometric 
distributions. But to train machine and get decision from it is quite challenging. The 
most important challenge is choosing appropriate features. 
 

 

Fig. 2. Flow Chart of the Proposed System Implementation 

Video Data

Extract Frame

Segment Grass Region 
(manually)

Candidate Image

Change Color space

Extract Feature

Feature Vector

NN

SVM

AdBoost

k-NN

Naïve Bayes

Feature Vector

Train Data Feature Vector

Test Data Feature Vector

Trained Data

Output

Majority Vote

Dense Region Sparse Region

NN

SVM

AdBoost

k-NN

Naïve Bayes

T
ra

in
in

g
C

la
ss

ify

ClassificationFeature Extraction



840 S. Chowdhury, B. Verma, and D. Stockwell 

 

Texture feature consider as a powerful source of information and have been 
intensively used in image classification [15]. A good number of methods exist in 
order to extract texture feature from image. Among them gray-level co-occurrence 
matrix (GLCM), Local Binary Patterns (LBP) are the widely used texture descriptors 
for weed and leaf classification [15]. As dense and sparse region classification is 
similar kind of classification, we adopt the idea of using GLCM as a texture feature 
for our purpose. But the key difference of using GLCM is the way that we using the 
pixel for our purpose. Usually texture feature tries to extract the pattern within the 
adjacent areas. It also integrates the information on direction, adjacent interval and 
change amplitude for analyzing structure or pattern. In this paper, texture feature were 
generated from 32 levels in 00, 450, 900, 1350 directions respectively (shown in Fig. 3). 

 

                          

Fig. 3. Illustrates the Offset Directions (00, 450, 900, 1350) 

Four effective texture descriptors: uniformity, homogeneity and correlation were 
extracted for the feature vector and a small portion of the scenario is shown in Table 
1. The formulas for calculating the above parameters as follows: 

1. Uniformity: ∑ ,ሺ݅݌ ݆|݀, ሻଶே௜,௝ߐ    
2. Homogeneity: ∑ ሺሺ݌ሺ݅, ݆|݀, ሻሻ|ሺ1ߐ ൅ |݅ െ ݆|ሻሻே௜,௝  

3. Correlation:  ∑ ൫݅ െ ሻሺ݆݅ߤ െ ,ሺ݅݌ሻሺ݆ߤ ݆|݀, ௝൯௡௜,௝ߪ௜ߪሻหߐ  

Where N is the number of intensity levels in the image. An element p (i, j |d, ϴ) 
represents the relative frequency. Here i and j represents the location of the pixel (x,y) 
and at a distance d neighboring pixel gray level respectively. ϴ represents the 
orientation angle.   

Uniformity of an image describes the random of image texture. The value will be 
high if within the image patterns vary greatly and vice versa. In terms of non-dense 
region the pattern varies greatly, so the value will be high (shown in the 3rd column 
for sparse in Table 1), while the value is small (shown in the 2nd column for sparse in 
Table 1) for dense compare to sparse. Therefore, uniformity added as a feature vector.     
Homogeneity represents the closeness within the image pixels. Low value of 
homogeneity presents the image pixels are close enough within their pattern, whereas 
high value of homogeneity presents the big variation within the pixel values. From the 
table 1 in 4th column the value is small for dense and value is a little bit high for 
sparse. Hence, homogeneity considered as a feature vector. Another important feature 

Pixel-of interest

135
0
 [-1 -1]

450 [-1 1] 

0
0
 [0 1]

90
0
 [-1 0]
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also added as a feature vector for differentiation of dense and non-dense region is 
known as correlation. This feature represents the linear dependency of an image. If 
pixel values vary greatly, correlation value will be small, while the value will be large 
if all the elements in the matrix are equal. The value of correlation will be big if the 
texture areas of an image are similar in certain direction.  

Table 1. Texture Feature Vector 

 Feature 1 Feature 2 

Image Dense Sparse Dense Sparse 

1 0.513361377 0.666191085 0.412776971 0.515697507 

2 0.579373343 0.657258439 0.507681093 0.517547735 

3 0.518351603 0.626493744 0.497914291 0.516757606 

4 0.588950211 0.623618024 0.638743607 0.495329285 

5 0.534794282 0.620239126 0.484430235 0.459876482 

6 0.446476271 0.709995826 0.34273133 0.514854551 

7 0.439425231 0.617367189 0.334520367 0.431400026 

8 0.511729273 0.657870402 0.405405136 0.478781784 

9 0.529651143 0.62778723 0.455379704 0.462826774 

10 0.526651609 0.639158566 0.397081212 0.480070446 

2.2 Hybrid Classification  

After extracting features, the next phase is to train the machine using the extracted 
features. A wide variety of machine learning algorithms have been addressed in many 
published works for classification tasks. In this paper, we try to address those 
algorithms used for our purpose and describe the reason for choosing them. At the 
very beginning of our work, we choose three classifiers and now extended to five: 
Support Vector Machine (SVM), Neural Network (NN), k-Nearest Neighbor (k-NN), 
AdaBoost, and Naïve Bayes Classifier. 

Classification begins with SVM as it widely used for weed, crops and leaf 
classification [1].  It separate the clusters by drawing a hyper plane, in such a way 
that feature vectors with dense region are on one side of the plane and non-dense 
region feature vectors will be on the other side of the plane. In terms of computational 
complexity and memory requirements SVM achieved optimum performance. Hence 
SVM added as a classifier. The reason for choosing k-NN as a base classifier because 
of its overall recognition accuracy  and time complexity [28]. A more impressive 
work has been presented in [29] to classify the weed according to their types based on 
the feature obtained using combination of Gradient Field Distribution (GFD) and 
Grey Level Co-occurrence Matrix (GLCM). BP-ANN was used as a base classifier 
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and ANN has produced good generalization accuracy in many other applications, 
hence the idea of adding NN as a base classifier. Adaboost has been used to classify 
3D aerial lidar data into four categories: road, grass, buildings, and trees using five 
features [30] and achieved over 92% accuracy. So the performance of the algorithm 
attracts us to choose Adaboost as a base classifier. A study on Bayes feature fusion 
has been presented for three types of image classification: “soil” (class 1), “tall 
vegetation” (class 2), and “grass” (dry or green – class 3) [31]. Hence we added 
"naive Bayes" as our base classifier. By adding more classifiers, we want to analyze 
how performance varies by increasing the number of base classifiers. 

3 Experimental Results and Discussions 

This section provides experimental results for the classification accuracy in order to 
analyze the hybrid technique by varying the number of classifiers. The feature 
extraction technique together with classification technique was applied on the dense 
and non-dense regions. 110 images have been used for training and testing to check 
the classification performance. Firstly, images were segmented manually and 
prepared for training and testing. From the test sets, features were extracted and then 
corresponding classifiers were applied for classification. Figs. 4 and 5 show the 
original image, image after changing the color space, and the dense region after 
coloring respectively. 
 

 

Fig. 4. Dense a) Original Image b) Histogram Image c) Coloring Dense Region 

 

Fig. 5. Non-dense a) Original Image b) Histogram Image c) Coloring Dense Region 
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Two types of image classification have been presented: “dense region” (class 1), 
“non-dense region vegetation” (class 2).  The class “1” represents dense region and 
“2” represents non-dense region. Five machine learning algorithms have been used 
(SVM, NN, k-NN, AdaBoost, Naïve Bayes) as base classifiers. The overall 
performance of the proposed approach for classification of dense and non-dense 
region is depicted in Table 2 and results are discussed.  

Initially, with different kernel functions classification accuracies of SVM were 
compared and the most suitable kernel function for dense and non-dense region 
classification has been chosen. The best accuracy is listed in Table 2 and it shows that 
using RBF-based kernel function recognition accuracy obtained was 90% for training 
and 85% on test data. 

Table 2. Classification Results using SVM, NN, k-NN, Adaboost, Naive Bayes and Hybrid 

Technique/Approach Function 
Train 

Accuracy 
(%) 

Test 
Accuracy 

(%) 

SVM 'rbf' 90 85 

NN 
H.U=12, Iterations= 3500, RMS 
error=0.0001 

90 85 

k -NN k = 7 85 80 

AdaBoost 
Learning cycle=100, 
Learners=’Discriminants’  

87 82 

Naïve Bayes fitNaiveBayes 90 85 

Hybrid Approach 
(SVM, NN, k-NN) 

SVM: rbf 
NN : H.U= 12, Iterations= 3500 
k -NN: k =7 

95 90 

Hybrid Approach 
(SVM,NN,k-NN, 
AdaBoost,Naïve 
Bayes) 

SVM: rbf 
NN : H.U= 12, Iterations= 3500 
k-NN: k=7 
AdaBoost:  Learning 
cycle=100, 
Learners=’Discriminants’ 
Naïve Bayes: fitNaiveBayes 

95 90 

 
The second classifier used in the proposed hybrid approach is a NN classifier with 

different number of hidden units, iterations, and RMS errors. At every stage we 
manually changed the parameter and checked the classification accuracy. Finally, the 
best parameters are chosen which give accuracy around 90% for training and 85% for 
testing dataset same as SVM. The obtained parameter accuracy is listed in Table 2.  

The third classifier used in the proposed hybrid approach is k-NN with the closest 
feature vector and results obtained are listed in Table 2. From the above table it shows 
the highest accuracies on training and test datasets were obtained using k =7. We ran 
experiments with different value of k, but observed degradation of accuracy using  
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k-NN.  Results obtained using the k-NN is lower than the other two classifiers which 
were 85% for training and 80% for testing.  

The fourth classifier used is AdaBoost, which shows similar performance like 
SVM and NN in terms of accuracy. Table 2 shows that, accuracy achieved by 
AdaBoost is 87% for training and 82% for testing using 100 learning cycle and 
'Discriminant' in learners. 

The fifth and final classifier used for classification was Naïve Bayes with 
fitNaiveBayes and predict function. Accuracy obtained using this classifier is similar 
to SVM and NN, which is 90% for training and 85% for testing.   

Finally based on the decision obtained using different classifiers, the results are 
fused using majority voting with 3 classifiers and 5 classifiers. The results with 
different classifiers and hybrid results (after majority voting) are summarized in Table 
2. The principle of majority voting is that decision is based on majority wins. Thus if 
majority of classifiers predict the region as dense then the region is classified as dense 
and vice versa.  The results shown in Table 2 indicate that hybrid approach achieved 
the highest classification accuracy when RBF kernel function was chosen for SVM; 
number of hidden unit and iterations were chosen 12 and 3500 respectively for NN 
and the value of k was chosen as 7 for k-NN, 100 learning cycle and 'Discriminant' 
learners was chosen for AdaBoost. Table 2 shows that best results obtained using the 
combination of feature vector and hybrid approach were 95% (training) and 90% 
(testing) respectively. From the above analysis it is obvious that by just increasing the 
number of classifiers doesn’t increase the accuracy of hybrid approach. So choosing 
appropriate classifiers and using them efficiently should be the main focus of the 
future research.  

4 Conclusion 

This paper presents and analyses a hybrid approach with texture features for dense 
and non-dense regions classification. The proposed hybrid approach increments the 
number of diverse classifiers and analyses the results to see whether there is any 
change in accuracy or not.   

After conducting experiments, it was found that the results using hybrid 
classification are better than the results using individual classifiers. In comparison of 
the results obtained with individual classifiers, the hybrid classification approach 
achieved 95% and 90% accuracy respectively on training and test data. The analysis 
showed that the accuracy didn’t increase when more than three classifiers are added.   

In this research the candidate images were manually segmented. More research 
will be conducted on segmentation to crop the region automatically. The experiments 
were conducted using a dense and non-dense grass region which is most important 
factor in identifying roadside fire. In real scenario on roadside, in addition to grasses 
there are also presence of other vegetation like trees and shrubs. Future research will 
be directed towards using a large dataset with different types of vegetation extracted 
from the video data and using evolutionary algorithms for optimization of classifiers.  
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Abstract. Image segmentation is mainly used as a preprocessing step in
problems of image processing and computer vision. Its performance has
a great influence on subsequent tasks. Evolutionary Computation (EC)
techniques have been introduced to the area of image segmentation due
to their high search capacity. However, there are rarely comprehensive
surveys on EC based image segmentation methods, which can enable
researchers to get a quick understanding of this area and compare the
existing methods. Therefore, this paper provides an overview of EC based
image segmentation methods, and discusses the remaining issues in this
area. It is observed that among all EC techniques, four of them (genetic
algorithms, genetic programming, differential equation and partial swarm
optimization) are more frequently used and GAs are the most popular
technique. It is noted that low generalization capacity and computational
complexity are two common problems in EC techniques applied to image
segmentation.

Keywords: Evolutionary Computer Vision, Image Segmentation, Evo-
lutionary Computation, Genetic Algorithms, Genetic Programming.

1 Introduction

Image segmentation is a process of partitioning pixels of an image to different
regions based on specific information, which are normally intensity, texture or
color. For a segmented image, pixels in one region are similar to each other
according to a homogeneity criterion, yet pixels in different regions are heter-
geneous [1–3]. It is a major step in both image processing and computer vision
systems. The segmented images are often the input to high-level image tasks,
such as feature extraction, object detection, image recognition and classification.
Since this process divides an image into several homogeneous regions and helps
find regions of interest, images become easier to manipulate and more meaningful
for the high-level tasks [1].

However, partitioning an image typically has a high computation cost. The
enumeration of all posible solutions is an exhaustive process, which forms a
huge search space [3]. To address this problem, the search methods selected are
crucial for algorithms’ efficiency. Evolutionary Computation (EC) algorithms

G. Dick et al. (Eds.): SEAL 2014, LNCS 8886, pp. 847–859, 2014.
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solve problems using natural selection, and have been shown to be powerful
search methods. Therefore, EC-based image segmentation is an active research
area now.

When using EC techniques to conduct image segmentation, most related
works combine them with other classic segmentation algorithms such as thresh-
old, region growing, clustering and partial differential equations [4–9]. In these
hybrid methods, EC takes the role of optimizing parameters or minimizing/ max-
imizing objective functions. In contrast, other works [10–14] apply EC techniques
to generate segmentation algorithms from a subset of basic image operators
such as filters, histogram equalization and threshold. Therefore, we group EC-
based image segmentation techniques into two branches: hybrid segmentation
techniques combining EC and classic mehtods (Section 3); image segmentation
operators evolved by EC (Section 4).

The overall goal of this paper is to discuss EC-based image segmentation
methods, analyze the improvements over existing methods and identify problems
and challenges. The specific objectives are:

– Overview the existing hybrid methods that combine EC techniques with the
classic methods for image segmentation;

– Discuss the current EC methods, evolving image segmentation operators
from primitive image processing operators;

– Identify the main challenges, issues and future work directions.

The rest of the paper is organized as follows. Section 2 introduces EC and
image segmentation. Section 3 surveys existing works on methods combining
EC techniques and classic segmentation methods. Section 4 focuses on the EC
methods that evolve image segmentation algorithms. In Section 5, conclusions
are drawn.

2 A Brief Review of Evolutionary Computation and
Image Segmentation

As a subfield of artificial intelligence, EC normally addresses continuous opti-
mization or combinatorial optimization problems. It can be mainly categorized
into three groups [15, 16]: evolutionary algorithms, swarm intelligence and others
(as shown in Fig. 1). EC algorithms have a similar framework [15], which is pre-
sented in Fig. 2. They have been successfully applied to many problems in image
processing and computer vision, including edge detection, image segmentation,
object detection, classification and recognition.

Image segmentation is an important step for many problems in image process-
ing and computer vision. It is an active area with many alogrithms, methods and
techniques proposed. According to papers [1, 2], most segmentation techniques
can fall into one of the following categories.

– Threshold based methods [4, 17–19];
– Region based methods (region growing, region splitting, and region merging)

[5, 20];
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Fig. 1. EC Algorithms

– Edge based methods [6];
– Clustering based methods [7, 21–23];
– Neural network based methods [8];
– Partial Differential Equation (PDE) based methods (snakes or active contour

model (ACM), level sets, mumford shah and so on) [24, 25].

The six categories of image segmentation techniques provide a clue to investi-
gate hybrid methods of EC with classic algorithms. The research on investigat-
ing hybrid methods can thus be divided into these six branches: EC-Threshold
based, EC-Region based, EC-Edge based, EC-Clustering based, EC-Neural Net-
work based and EC-PDE based image segmentation.

3 Hybrid Image Segmentation Techniques of EC and
Classic Mehtods

Based on the research conducted by Khan [1], combining two or more segmen-
tation techniques together can lead to better performance. EC algorithms have
been introduced to the area of image segmentation, forming hybrid methods with
many classic segmentation algorithms. Since image segmentation is a costly com-
bination task, it is related to a huge search space. As powerful search techniques
[15], EC is suitable for complex search tasks in image segmentation.

3.1 EC-Threshold Based Techniques

Thresholding is a simple and popular image segmentation method, which has
been widely used in practical applications. For threshold-based algorithms, the
selection of the optimal threshold is the biggest challenge, and still remains a
problem [4, 17]. Thresholds are found by analyzing the image histogram in most
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Fig. 2. The Framework of EC Algorithms

related algorithms. In this process, an objective function related to threshold
values is often minimized or maximized. EC techniques have been used to find
the optimal threshold [4, 17–19].

Banimelhem and Yahya [4] utilizes a thresholding technique to conduct image
segmentation. To find optimal thresholds, a genetic algorithm is employed due
to its search capability in practical applications. The segmentation problem has
been transformed into an optimization problem in this paper by searching for
optimal thresholds. The proposed method is tested on four images, but there is
no evaluation on the segmentation performance.

Kanungo et al. [17] proposes a threshold-based approach using GA-Crowding
to select the optimal threshold from histogram images. A crowding algorithm,
which is firstly proposed by De Jong in 1975, is a multimodal function optimizer
[26]. Under ideal conditions, the histograms of images with two classes have
a deep and sharp valley between two peaks. The bottom of the valley is the
threshold [27]. In this paper, the crowding algorithm is used to find the peaks on
histogram images, and then GA is applied to locate the valley between the peaks.
This technique can not only operate with bimodal features, but also multimodal
features. Although it can deal with bimodal features well, it performs poorly for
images with histograms of tri-modal features.

PSO is used to select multilevel thresholds in image segmentation [18]. The
goal is to maximize the Otsu and Kapur objective functions. Otsu and Kapur are
two optimal thresholding methods based on between-class variance and entropy



A Survey of Methods Based on Evolutionary Computation 851

criterion respectively. Both of them are efficient for bi-level thresholding. Even
though these methods can be extended to multi-level thresholding, the compu-
tation time increases exponentially with the number of thresholds. A GA based
multilevel thresholding algorithm is also implemented as a comparison in this
paper. Compared with GAs based method, the proposed PSO based method
achieves better results in terms of solution quality, convergence and robustness.

Pei et al. [19] combines Otsu with Differential Evolution for image segmenta-
tion. It employs the Differential Evolution technique to search for the optimal
threshold. This system avoids the weakness of Otsu, which is based on maxi-
mum between-cluster variance and cannot manipulate low signal-to-noise well.
Moreover, it is faster than the 2D maximum between-cluster variance method,
which has a high computation complexity.

3.2 EC-Region Based Techniques

For region-based methods, segmentation is usually conducted through grouping
neighboring pixels with similar intensities, such as region-growing and split-and-
merge methods [28].

Al-Faris et al. [5] combine PSO and Seeded Region Growing (SRG) to seg-
ment images. SRG confronts two problms that are the selection of seeds and the
similarity criteria. This paper chooses K randomly seeds when initializing the
particles of the swarm. Thus SRG is combined with PSO, and then is evolved
by PSO. The new algorithm is tested on the dataset – RIDER Breast MRI [29].
When compared with Support Vector Machine (SVM), K Nearest Neighbors
(KNN), Fuzzy C-means (FCM), Bayesian, and Improved Self-Training (IMPST)
techniques, there are two highlights. One is that the classification performance of
the proposed algorithm improves greatly. The other is that parameters, such as
threshold value, the suspected region window and seed pixel, are automatically
selected.

3.3 EC-Edge Based Techniques

In an image, edges are the local changes in intensity, so edge detection is a process
of finding discontinuity in intensity or the first derivative of intensity [30]. Edge
detection techniques have been used as one kind of segmentation technique.

Diazi et al. [6] proposes a segmentation method using edge detection. Their
system consists of three steps: calculate depth gradients and orientation gradi-
ents; find an edge map from the gradients using a GA; label pixels. Even though
the proposed method can locate thin and closed edges and reduce false edges
by employing a GA, it is sensitive to noise, and the edge map cannot describe
image surfaces well.

3.4 EC-Clustering Based Techniques

Clustering is a process of organizing data into clusters that have high intra-
cluster and low inter-cluster similarity. It is clear that intra-cluster similarity
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should be maximized and inter-cluster similarity should be minimized. Based on
this idea, objective functions are defined. Clustering-based works introduce EC
to optimize objective functions [7, 21–23].

Shirakawa and Tomoharu [7] presents a multi-objective evolutionary algo-
rithm to optimize two clustering objectives (overall deviation and edge value).
The overall deviation is the summed distance between data items and their clus-
ter center, and the connectivity evaluates the degree to which neighbor pixels
have been put in the same cluster. The proposed method can determine the num-
ber of clusters automatically. The results of four test images (pepper, sailboat,
terra, paprika) are considered relatively good by the authors.

Maulik et al. [21–23] research EC-based fuzzy clustering methods for image
segmentation, and the basic discipline is similar. Take paper [21] as an example,
an improved differential evolution is applied to optimize multiple parameters for
fuzzy clustering (XB and Jm). Jm calculates the global cluster variance,while
the XB index is a combination of global and local situations. When tested
on six data sets from the UCI dataset repository, this method outperforms a
multiobjective version of classical differential evolution based fuzzy clustering
technique (MODEFC), NSGA-II [23] and the FCM algorithm. The difference
between papers [21–23] lies in the selection of EC techniques. In the papers
[22, 23], GA is utilized to conduct parameter optimization, while DE is applied
in the paper [21]. The authors have not compared them directly, so it is not clear
which one is better for image segmentation.

3.5 EC-Neural Network Based Techniques

Neural networks adapted to image segmentation are such methods, which pro-
cesses small areas of an image using a network or a set of networks [31]. After
the processing, a decision mechanism is defined to mark the areas of an image
based on the category recognized by the neural network.

Bilotta [8] proposes a method of using GAs to explore a CNN (Cellular Neu-
ral Network) to detect and segment lesions contained within magnetic resonance
imaging (MRI) images automatically. Since it does not need any manual seg-
mentation, this system is fully automatical. Tested on 11 patients with 20 slices
each, CNN can segment most of the lesions and thus it is a useful tool to evaluate
MR lesions.

3.6 EC-PDE Based Techniques

The PDE methods used for segmentation are mainly Snakes ( or Active Contour
Model), Level Set and Mumford-Shah model [24]. Several EC techniques have
been combined with PDEs to conduct image segmentation.

Payel et al. [9] utilizes GAs to evolve level-set functions using texture and
shape information. In the evolutionary process, the contours (level-set func-
tions) are formed through minimizing an energy function by the gradient descent
method. The proposed system is used to segment the prostate region on pelvic
and MRI images. The GAs-based level-set algorithm proposed in the paper does
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not need to compute derivatives in curve evolution, reducing computational com-
plexity. In addition, it is domain-independent and can deal with multiple features
for segmentation.

In paper [32], GA is introduced to optimize parameters of level sets.
Specifically, segmentation parameters are encoded in each individual of the GA.
Individual fitness is calculated by comparing the segmentation result with the
reference segmentation. This system is tested on computed tomography (CT) im-
ages and achieves good performance, but reference segmentations and contours
are needed.

Roulu et al. [33] presents an evolutionary snakes to segment nuclei in histopatho-
logical images. This evolutionary algorithm uses mutation and crossover mecha-
nisms to search solution space, yet does not use the natural selection process for the
selection of the best individual. In this paper, the snake algorithm is transformed
to a combinatory optimization problem. An evolutionary algorithm is proposed to
search the solution space. The defined fitness function of evolutionary algorithm
reduces the search space, generating a fast convergence.

Cruz-Aceves et al. [34] propose a new method using differential evolution to
guide the evolution of multiple active contours (MACDE). This system is tested
on synthetic images containing complex objects, Gaussian noise, and deep con-
cavities, and datasets of sequential computed tomography and real MRI images
as well. Evaluation is based on the comparison of segmentation results and ref-
erence images. MACDE is better than original ACM in terms of accuracy, ro-
bustness, and efficiency. However, reference segmentations from experts need to
be provided, which increases the workload in applying this method.

Wang et al. [35] intoduces PSO to overcome drawbacks of the classic snake
model, such as high level of sensitivity to noise and local optimization. The
combination of PSO and snakes performs better in image segmentation than
snakes alone. However, the related parameters of the system cannot be adjusted
automatically, and convergence speed is low.

4 Image Segmentation Operators Evolved by EC

In areas of artificial intelligence, sysmbolic processing, and machine learning,
many problems can be considered as discovering a computer program [36], in-
cluding image segmentation. Among EC techniques, GP and GA are used by
existing works to generate segmentation algorithms. GAs are heuristic search
methods that mimic the process of natural selection and uses fixed-length strings
to represent possible solutions. GP is a specialization of GA, which commonly
uses parse trees to replace strings for the representation[10]. Driven by a fitness
function defined to evaluate a solution’s ability to deal with a given task, GA
and GP seek to optimize a population of computer programs.

Research [10–13] is aimed to apply GP to evolve image operators, such as
filters and classifiers, to conduct image segmentation. For example, Poli [10]
uses the evolved filters to build pixel-classification-based segmentation methods.
In those papers, segmentation is regarded as a classification task on the pixel
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level. Similarly, Brumby et al. [14] utilizes a GA to evolve image segmentation
algorithm from certain primitive image operators.

Poli [10] proposes a method using GP to evolve filters to detect features of
interest and conduct pixel-classification-based segmentation. In order to make
the filters feasible and efficient, this paper focuses on choosing a suitable terminal
set, a function set and a fitness function. The dataset contains real medical
images (head MR images, X-ray coronarograms blood vessels). The method is
measured with sensitivity and specificity defined in (1) and (2). It achieves 61.5%
in sensitivity and 99.2% specificity, while neural network only achieves 31.7% and
92.2% respectively.

Sensitivity = |TP |/(|TP |+ |FN |) . (1)

Specificity = |TN |/(|TN |+ |FP |) . (2)

where |TP |(True Positive) and |FN |(False Negative) mean points belonging
to the objects of interest are correctly and incorrectly detected by an evolved
program respectively; |FP |(False Positive) and |TN |(True Negative) represent
points belonging to the non-objects of interest are correctly and incorrectly de-
tected by the evolved program respectively.

In paper [11], GP is employed to evolve texture classifiers to conduct tex-
ture image segmentation containing both binary textures and multiple textures.
Table 1 shows how to use the generated image operators to do segmentation.
The system is fast with high accuracy, and can deal with complex shapes. There
are also some weaknesses: a) it needs prior information—the number of texture
classes the images have; b) the training time is quite long (from several hours to
several days); c) it is problem-specific.

One common problem in segmentation is that algorithms are usually not
generalized, since they use priori information of subjects which limits them to
specific problems [12]. To solve this problem, Singh et al. [12] utilizes GP to
generate image segmentation programs from primitive image-operators (e.g. fil-
ters, edge detectors). There are two advantages of the proposed algorithm: it
does not need priori information as other automatic image segmentation algo-
rithms require; it produces simple MATLAB-based programs, which are easy to
be understood and used by other researchers. This technique is compared with
GENIE Pro. (GENtic Image Exploitation) [14], and consistently produces better
results.

Roberts [13] also employs GP to evolve image operators with image inputs.
The highlight in this paper is introducing a caching mechanism to overcome the
high time consumption. Due to the evolutionary process where the evaluation of
individuals costs much time. By storing the results of subtree evaluations, the
caching system does not need to re-evaluate the trees, which are copied from the
previous generations. Tested on the mole images with skin lesions, the method
achieves 92.3% of average sensitivity and 97.2% of average specificity.

Brumby et al.[14] propose a software, Genetic Imagery Exploitation (GENIE),
which is an image segmentation and classification tool. This software uses GA to
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Table 1. A Flow Chart of Pixel-classification-based Segmentation. (Adapted from [11])

Input: test image (I); window size (n); step size for moving the window
(v in vertical direction; h in horizontal direction)

Output: segmented image

1. Use the generated operator to sweep I:
a) Start from the top-left of I.
b) Get a subimage with the size of n*n; use the operator to classify it and get

a label.
c) Label the pixels of the subimage with the result of b).
d) Move the window to the right horizontally with h pixels and repeat b) and c),

till the window reach the right boundary.
e) Move the window down vertically with v pixels and repeat b), c) and d),

till the window reach the down-right corner of I.

2. Generate the output with the labels of each pixel.
a) Use some mechanisms(e.g. voting) to decide the final label of each pixel.
b) Assign pixels with the same label the same color or intensity, and output

the result image.

evolve image-processing algorithms from low-level image operators. In this paper,
primitive image operators are described and the chromosomal representation
of an algorithm is presented. This software is tested on an airborne simulator
picture of the Gulf of Mexico, and it achieves an accuracy of over 98%.

This section summarizes the research using GP and GA to evolve image op-
erators. In these four papers [10–14], GP and GA are used in a different way
with the EC techniques presented in Section 3. The hybrid techniques combining
EC and classic segmentation algorithms mainly utilize EC to optimize parame-
ters or objective functions required by classic algorithms. In comparison, using
GP and GA to generate image segmentation operators is creating segmentation
programs, which can be directly applied to image segmentation.

Table 2. Summary of EC-based Methods for Image Segmentation

EC-based Methods Specific Techniques

Hybrid
Methods

GAs-Threshold [4, 17], PSO-Threshold [18], DE-Threshold [19]
PSO-Region [5]
GAs-Edge [6]
GAs-Clustering [22, 23], DE-Clustering [21]
GAs-Neural Nerwork [8]
GAs-Level Sets [9, 32], DE-ACM [34], PSO-Snake [35]

Evolution of Image Operator GP [10–13], GA [14]
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5 Conclusions

In this paper, various techniques of EC based image segmentation have been
discussed. They fall into two groups, including hybrid segmentation techniques
involving EC and classic mehtods, and EC-evolved image segmentation opera-
tors. Existing approaches of EC based image segmentation methods presented
in this paper have been summarized in Table 2.

Based on the survey conducted in this paper, it is observed that:

– Most EC-based image segmentation techniques are based on the GAs, GP,
DE or PSO techniques. These EC techniques are used to deal with parameter
optimization or pixel-level problems in image segmentation.

– GAs have been the most popular methods in image segmentation. This is
because many classic segmentation algorithms require parameter optimiza-
tion that is suited to GA. Traditional search methods can often be stuck in
local optima, while GAs are often able to handle large and complex search
space and to obtain the global optimum. Moreover, GP and GA can be used
in a different way with other EC techniques for image segmentation. Due
to the characteristic of generating programs, they are employed to generate
image segmentation operators.

– According to the identified weaknesses of the systems presented by the pa-
pers we studied, problems in EC-based image segmentation are the same
as certain open issues in the whole area. Most of the image segmentation
methods are still domain-specific, and need prior knowledge to fulfill the
segmentation task. Thus, the generalization capacity of systems are low.
Another big challenge lies in computational efficiency, which is a barrier for
real applications. Actually, the computation complexity is often because of
the evaluation process utilizing a costly fitness function.

One interesting future work would be to focus on GP-based image segmenta-
tion. GP is a promising method in image processing and computer vision, and
it has been widely used for image classification and feature construction [37–41].
With the expectation that normally high-level features have low dimensions and
can improve performance for the complex image segmentation tasks, We will
consider applying GP to conduct feature construction in image segmentation
tasks.

References

1. Khan, W.: Image Segmentation Techniques: A Survey. Journal of Image and
Graphics 1(4), 166–170 (2013)

2. Senthilkumaran, N., Rajesh, R.: Edge detection techniques for image segmentation
a survey of soft computing approaches. International Journal of Recent Trends in
Engineering 1(2), 250–254 (2009)

3. Bhandarkar, S.M., Zhang, H.: Image Segmentation Using Evolutionary Computa-
tion. IEEE Transactions on Evolutionary Computation, 1–21 (1999)



A Survey of Methods Based on Evolutionary Computation 857

4. Banimelhem, O., Yahya, Y.A.: Multi-Thresholding Image Segmentation Algorithm
Using Genetic Algorithm. In: World Congress in Computer Science, Computer
Engineering, and Applied Computing (2011)

5. Al-Faris, Q.A., Ngah, U.K., Isa, N.A.M., Shuaib, I.L.: Breast MRI Tumour Seg-
mentation using Modified Automatic Seeded Region Growing Based on Particle
Swarm Optimization Image Clustering. In: Online Conference on Soft Computing
in Industrial Applications Anywhere on Earth, Online Version, pp. 1–11 (2012)

6. Diazi, I., Branch, J., Boulancer, P.: A Genetic Algorithm to Segment Range
Image by Edge Detection. In: International Conference on Industrial Electronics
and Control Applications, pp. 7–14 (2005)

7. Shirakawa, S., Tomoharu, N.: Evolutionary image segmentation based on multiob-
jective clustering. In: IEEE Congress on Evolutionary Computation. IEEE (2009)

8. Bilotta, E., Cerasa, A., Pantano, P., Quattrone, A., Staino, A., Stramandinoli, F.:
A CNN Based Algorithm for the Automated Segmentation of Multiple Sclerosis
Lesions. In: Di Chio, C., Cagnoni, S., Cotta, C., Ebner, M., Ekárt, A., Esparcia-
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