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Abstract. We propose a novel, distributed approach for analyzing com-
munities in social networks. In this approach, we define communities
from two perspectives: local and global. Firstly, the local communities
are identified by each node in a self-centred manner. Then, the global
communities are captured using the notion of tendency among local com-
munities. Our approach is especially suitable for decentralised and dy-
namic networks. We present formal definitions and experimentally verify
our model on both static and dynamic networks.

1 Introduction

During the past 10 years, a vast amount of work has been published addressing
questions involving social networks. Here, one uses graphs to represent the net-
work topology, where the edges denote various forms of relationships or interac-
tions among members in the network. An important attribute that differentiates
social networks from an arbitrary graph is community structure: the distribution
of edges are nonuniform in the sense that the graph contains subgraphs which are
densely connected within but sparsely connected from its outside [6]. Such sub-
graphs are called communities. A central problem in this study is the detection
of communities within a network (also called clustering in some literature).

Community detection has direct applications. For example, detecting cus-
tomer communities for online retailers like Amazon helps to build effective rec-
ommendation systems [19]. Detecting scientific communities based on research
collaboration networks helps to reveal collaboration patterns [15] among research
fields. Detecting communities in the protein-protein interaction (PPI) networks
help to reveal functional groups that are associated to cancer and metastasis
[9]. Other applications appeared in ecology [11], epidemiology [13] and counter-
terrorism [25].

Community detection also proves to be hard: 1) Due to the wide varieties of
networks, it is extremely difficult to provide a formal definition of communities.
Numerous definitions have been proposed, yet no definition has been universally
accepted. 2) Communities are not homogeneous; large but relatively sparse
communities may contain smaller and denser sub-communities. Hence one needs
notions and tools for dealing with relations among communities. 3) One needs
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feasible computation methods for detecting communities. Unfortunately many
existing definitions of communities result in high computation costs for com-
munity detection (e.g., two well-known approaches – one based on modularity
optimization [14] and another based on clique percolation [17] – both lead to
NP-hardness of the community detection problem).

More recently, two trends in network analysis emerge which pose new chal-
lenges: i) As networks grow larger, data become increasing decentralised (e.g.
the Internet). One needs new techniques for handling networks when only local
information is present at each node. ii) Real networks are often dynamic in the
sense that it undergoes continuous changes over time (e.g. online social network,
phone-call network). Thus communities are no longer static; they emerge and
evolve in a dynamic manner. Therefore one needs computational methods that
keep track of community evolution in rapidly changing networks.

Our Contribution. We tackle the challenges above by proposing a new model
of communities. Our motivation is the following: one may view the communities
in a network from two perspectives. From a local perspective, the community of
a node v consists of those nodes with whom v would agree to associate. From a
global perspective, local communities may “tend” to combine in order to optimize
certain global criteria. Thus our community model includes:

(1) Local communities: Intuitively speaking, a local community of a node v is
the “inner ring” of v, which is a “tightly-knitted” cluster of nodes with
very high density. The local communities are detected through optimizing
a certain utility measure of the clusters. This is in principle similar to the
approach adopted by e.g. [10]. (see Sec. 4)

(2) Global communities: Several local communities may be so closely linked that
they tend to form a single community, even though combining them would
not improve the overall utility. We capture this situation using the notion
of tendency, which helps to detect communities from a global perspective.
Through numerous examples, we stipulate that such tendency among local
communities is a general phenomenon in real-life communities. (see Sec. 5)

To make our approach useful in decentralised and dynamic network, we make
the following assumptions for community detection:

A1 : Each community only sees local information regarding its neighbourhood.
There is no common knowledge shared among all nodes.

A2 : Each community makes self-centred, subjective decisions based on its in-
formation. No central controller exists in the network.

We implement and test our community detection algorithm on both real and
generated data. Firstly we apply our model to three well-known examples: (1)
Zachary’s karate club, (2) bottlenose dolphine in Doubtful Sound, and (3)
American college football league. These experiments show that our model cap-
tures real-life communities with high precision. We then use generated data to
simulate community detection in dynamic networks.
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Related Work. Numerous community detection methods have been proposed
in the past. The reader is referred to [6,14,1,17,3,4,21,18] for important break-
throughs and surveys to this field. The recent survey [7] gave a state-of-the-art
introduction on clustering dynamic networks. Despite intensive research in com-
munity detection, few distributed methods have been proposed; see [24,23,5,26]
for works in this direction. Lastly, we mention Massaro et al’s recent work on
localised community detection using a probabilistic model [12].

Paper Organization. Section 2 presents required terminology. Section 3
presents the framework for our distributed community detection algorithm. Sec-
tion 4 and Section 5 present our model of local and global communities. Section 6
and Section 7 discuss experiments on both real static networks and generated
dynamic networks. Section 8 concludes the paper.

2 Preliminaries

We represent a network as an unweighted undirected graph where every node is
an element of the network.Girvan and Newman discovered that very often real
networks exhibit community structure: nodes in the network can be partitioned
into clusters, with high density of edges within each cluster, but low density of
edges between these clusters [6]. Our goal is thus to identify such clusters in a
community structure, using only information provided by the graph topology.

A graph G is a pair (V,E) where V is a set of nodes and E ⊆ {{u, v} |
u �= v ∈ V } is a set of undirected edges on V . We abuse the notation writing
an undirected edge as (u, v) instead of {u, v}. For any set S, |S| denotes the
cardinality of S. A neighbour of a node v is any node u with (v, u) ∈ E. For any
node v ∈ V , the neighbourhood of v is the set N(v) = {v}∪ {u ∈ V | (v, u) ∈ E}
that consists v and all its neighbours. For C ⊆ V , set N(C) =

⋃
u∈C N(u). A

graph is connected if there is a path between any pair of nodes.

Definition 1. A clustering of a graph G = (V,E) is a collection of sets C =
{C1, C2, . . . , Ck} where each Ci ⊆ V induces a connected subgraph of G, Ci∩Cj =

∅ for any distinct i, j, and
⋃k

i=1 Ci = V . Each Ci is called a cluster in C. A set
C ⊆ V is said to be C-consistent if it is the union of sets in C.
Intuitively speaking, a community in a graph G = (V,E) is a connected induced
subgraph that has high intra-cluster density but low inter-cluster density. Let C
be a set of nodes. The intra-cluster density of C measure the edge connectivity
of the subgraph induced on C:

Definition 2. The intra-cluster density δint(C) of C is the ratio between the
actual number of edges in C and the total number of possible edges in C, i.e.,

δint(C) =

{ |C2∩E|
|C|(|C|−1)/2 , if |C| > 1,

1, if |C| = 1.

Let C be a clustering of G = (V,E). Take a set C that is C-consistent. The
inter-cluster density of C with respect to C measures the connectivity between
C and its neighbouring clusters:
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Definition 3. Let D1, D2, . . . , Dm be all clusters in C disjoint from C that con-
tain a neighbour of C, i.e., C ∩Di = ∅, Di ∩N(C) �= ∅ for all 1 ≤ i ≤ m. The
inter-cluster density of C with respect to C is defined as

δext(C, C) =
{ |{(v,u)∈E|v∈C,u∈N(C)\C}|

|C|×(|D1|+|D2|+···+|Dm|) , if m ≥ 1

0, if m = 0.

Def. 3 is different from the typical definition of inter-cluster density (such as the
one given in [4]), which measures connectivity between C and the rest of the
entire network. The reason for this is our assumption A1, which states that a
node is only aware of its neighbourhood and its community, and hence would
not be able to grasp the entire network.

3 An Algorithmic Framework

Instead of describing a central controller, we specify the actions of individual
computational units, called cells, in a number of rounds of computation:

– Round 1: Each node is a cell. The goal is to compute a partition C1 where
each cluster in C1 is called an initial cluster.

– Round i > 1: Each cluster in Ci−1 is a cell. The goal is to compute a
clustering Ci where each cluster in Ci is Ci−1-consistent. The sequence of
clusterings C1, C2, . . . eventually stablises and we call the limit clustering
Cloc, in which each cluster is called a local community.

– Round ω: Each local community is a cell. The goal is to compute the
clustering Cglo where each cluster in Cglo is a global community.

In each round, a cell C performs three steps: Invite, Select and Join:

– Invite: The cell C evaluates its neighbouring cells and based on the result
sends out “invitations” to a subset I(C) of its neighbours.

– Select: The cell C evaluates the utility of all invitations it receives, and selects
among the senders a cell s(C).

– Join: The cell C joins the cluster proposed by its selected cell s(C).

See Fig. 1 for a flow chart. In subsequent sections we present formal definitions
of our community models, which naturally provide implementations of the Invite,
Select and Join steps in each round.

4 Local Communities

Cliques are maximally connected subgraphs (where there is an edge between
any pair of nodes) in the graph. It is thus desirable to define the initial cluster
C1(v) as the maximal cliques that contains v. However, finding maximal cliques
is a well-known NP-hard problem. The problem is even hard for approximation
in a precise sense [8]. We therefore use a different notion to obtain a clique-
like subgraph from the neighbourhood N(v). The definition below is a slight
variation of the notion introduced in [22].
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Fig. 1. The flow of our algorithmic framework

Definition 4. A k-core in a graph is an induced subgraph where all nodes have
degree at least k . The core number of a node v is the largest κ(v) such that N(v)
contains a κ(v)-core. For v ∈ V , the local core of v is the set

K(v) = {u ∈ N(v) | |N(u) ∩N(v)| ≥ κ(v)− 1}

See Figure 2 for an example of the local core of nodes. Note that in the example
K(v) of any v coincides with the maximal clique containing v. Furthermore,
the local core K(v) of a node v necessarily contains the node v, and hence is
connected. See Appendix A for an efficient algorithm that computes K(v).

Fig. 2. (a) An example network G. (b) Nodes in K(v) are represented by the outgoing
arrows from v. Nodes in I(v) are represented by incoming arrows to v. (c) The arrow
from a node v indicates the selection s(v). This results in the initial clustering C1 =
{{0, 1, 2, 3}, {5, 6, 7, 8}, {4}}.

The local communities essentially optimize the following community utility.

Definition 5. Let C be a clustering of the graph G, and C1, C2 ⊆ V be C-
consistent. We say that C2 has higher community utility than C1, written as
C1 ≺ C2, if one of the following holds:

– δint(C1) < δint(C2);
– δint(C1) = δint(C2) and |C1| < |C2|;
– δint(C1) = δint(C2), |C1| = |C2| and δext(C1, C) > δext(C2, C)

Round 1. When we compare the community utilities in Round 1, we use the
basic clustering C0 where each node forms a cluster itself. Intuitively speaking,
each clustering C1 is a two-way selection process: Every node v first sends
invitations to nodes in its local core K(v). Upon receiving an invitation, v then
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evaluates the community utility of the proposed local core, and selects the node
w whose proposal has the highest utility.

Formally, for each v ∈ V , let I(v) = K(v). Let R(v) = {u ∈ N(v) | v ∈ I(u)};
these are all nodes that v receives invitations from. The selection s(v) is the
node w ∈ R(v) that has the highest community utility. Define the set Sel(v) =
{u ∈ N(v) | s(u) = v}; these are all nodes who have selected v.

Definition 6. The initial cluster C1(v) of a node v is the connected component
of v in the subgraph induced by Sel(s(v)). The initial clustering C1 is the collection
of all initial clusters in the graph.

See Fig. 2(c) for the selections and initial clusters in the previous example.

Round i > 1. Assume that we have defined Ci−1 for i > 1. Our next goal
is to define a new clustering Ci. This is similar to the initial clustering step:
each cluster C ∈ Ci−1 chooses a cluster D ∈ Ci−1 (which may be C itself)
from its neighbourhood based on the community utility of C ∪D and sends an
invitation to D. The cluster D then selects among all received invitations one
that maximizes the community utility.

Formally, define for every cluster C ∈ Ci−1 its periphery ρ(C) = {D ∈ Ci−1 |
D∩K(v) �= ∅ for some v ∈ C} which consists of all clusters in Ci−1 that contain
a node in the local core of some node in C. Set I(C) as a singleton {D} whereD ∈
ρ(C) and C ∪ D has maximal community utility with respect to the clustering
Ci−1. Note that implicitly C ∈ I(C) and hence it may also send an invitation
to itself. Let R(C) = {D | C ∈ I(D)}. The selection s(C) is defined as the
community D ∈ R(C) such that C ∪ D has the highest community utility.
Note that whenever s(C) �= C, s(C) always has higher community utility than
C. Hence for every C ∈ Ci−1, there is some j ∈ N and D ∈ Ci−1 such that
D = sj(C) = sj+1(C). We call D the i-sink of C.

Definition 7. Two clusters C1, C2 ∈ Ci−1 belong to the same cluster in Ci if
they have the same i-sink.

For i ∈ N and v ∈ V we use Ci(v) to denote the cluster in Ci that contains v.
As the network G is finite, the sequence C1(v), C2(v), . . . eventually stablises.

Definition 8 (Local Communities). Let G = (V,E) be a network. The local
community Cloc(v) of a node v ∈ V is defined as Ci(v) where i is the least
number such that Ci(v) = Ci+1(v).

We use two examples to illustrate the notion of local communities. The first
example (Fig. 3(a)) is the graph shown in Fig. 2(a), which stablises after the
initial step. The second example (Fig. 3(b)) identifies four local communities
based on the above definitions after two iterations.

5 Global Communities

The local community Cloc(v) has, in a certain sense, reached local optimality –
it cannot be combined with other local communities which leads to a higher
intra-cluster density, nor can it achieve a lower inter-cluster density without
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Fig. 3. (a) The cluster {4} sends one invitation to {5, 6, 7, 8}, but is not selected
by these nodes. Hence no change is made to the initial clustering. We have C2 =
C1 = {{0, 1, 2, 3}, {5, 6, 7, 8}, {4}} and they are the local communities. (b) Clusters
are shown as nodes with the same colour. The resulting local communities are C2 =
{{0, 1, 2}, {3, 4}, {5, 6}, {7, 8, 9}}.

sacrificing its intra-cluster density. Such clustering reveals important properties
regarding connectivity of individual nodes. However, in real-world networks that
are sparse (e.g. terrorist networks), the local communities tend to be very small.
The granularity of the local community clustering Cloc is thus too fine to reveal
any significant global structural property in practice.

It is important to note that two local communities may still be closely linked,
even though their combination does not result in a better community utility.
Thus, seeing from a global perspective, it may be reasonable to combine them.
Here we introduce the notion of tendency: intuitively, when one local community
has a lower community utility than a neighbouring one, this community is “at-
tracted” towards the other community. Recall that K(v) denotes the local core
of a node v ∈ V . Formally, we define the following:

Definition 9. Let C ∈ Cloc be a local community. The periphery of C is the set
ρ(C) ⊆ Cloc defined as ρ(C) = {D ∈ Cloc | D ∩K(v) �= ∅ for some node v ∈ C}.
We say that C has a tendency towards D if D ∈ ρ(C) and D has the highest
community utility among all local communities in ρ(C) with respect to the local
community clustering Cloc; in this case, we write Td(C) = D.

Note that the above definition implicitly implies that a local community always
belongs to its own periphery, and hence it may have a tendency towards itself.
As each local community has tendency towards exactly one local community,
the tendencies of all local communities in Cloc form a forest:

Definition 10. The tendency forest FTd of a network G is a directed graph
whose nodes are all local communities Cloc and there is an edge (C,D) in FTd if
and only if D = Td(C).

The tendency sink of a local community C ∈ Cloc is the root of the tree that
contains C in the tendency forest FTd, i.e., it is the local community D = Tdi(C)
for some i ≥ 1 such that Tdi(C) = Tdi+1(C). The above notions allow us to
define global communities in a network:

Definition 11 (Global Communities). Let G = (V,E) be a network. The
global community of a node v ∈ V is the set of all u ∈ V such that the local
communities Cloc(v) and Cloc(u) have the same tendency sink.
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Note that tendency sinks can also be viewed as a centrality notion in the graph,
which represent a dense cluster that has the greatest “influence” in a community.
As an example, we show in Fig. 4 the tendency forest of the graphs in Fig. 3.

Fig. 4. (a) The tendency forest of the network shown in Fig. 3(a). Each shaded area
represents one local community. The arrows represent the tendency among local com-
munities. The global communities are {0, 1, 2, 3} and {4, 5, 6, 7, 8}. (b) The tendency
forest of the network shown in Fig. 3(b). Each shaded area represents one local com-
munity. The arrows represent the tendency among local communities. The global com-
munities are {0, 1, 2, 3, 4} and {5, 6, 7, 8, 9}.

Computation Complexity. we remark on the efficiency of detecting global
communities in a network. The algorithm is very efficient: the overall time cost
on each node v ∈ V is polynomial. Indeed, our algorithm for computing the local
core of v takes time O(n2

v) where nv = |N(v)|. The running time of each round i is
O(|E|) and there are at most O(|V |) rounds. Given the local communities, com-
puting global communities requires O(m) time in total. Furthermore, the notions
of local cores, local and global communities uses only local information, hence
the computation can be distributed among nodes and local communities, where
information exchanges happen only among neighbouring cells. Implementing the
algorithm in a distributed network would drastically improve computation time
when the network becomes large.

6 Experiments: Static Community Detection

We implemented our algorithms using the Java programming language with
OpenGL for visualization. The implementation is distributed: each cluster ex-
ecutes a thread, which repeatedly performs the three steps Invite, Select and
Join until it joins another cluster. We perform experiments on a laptop with In-
tel Core i7-3630QM CPU 2.4GHz 8.0GB RAM. The experiments involve three
well-known benchmarks in the static case. The results of the following experi-
ments are recorded in videos which were uploaded to the indicated URLs.

6.1 Zachary’s Karate Club (Video: http://youtu.be/dNim0to3QSU)

Zachary models the friendship among all 34 members of a karate club in an
American university. After an internal dispute, the club split into two factions:
one centered on 0 (the instructor’s faction), and another one centered on node
32 and 33 (the officer’s faction). Zachary correctly predicated through analysing



1044 J. Liu and Z. Wei

the graph how the club is to be split prior to the actual split [27]. The example
has since become an ubiquitous case study taken by many researchers.

After running our algorithm on Zachary’s network we obtained two global
communities (see Fig. 5), which match exactly with the factions. The local com-
munities identified by our algorithm reveal a finer-grained association among the
members, and closely resemble the partition found using the modularity-based
method [16] and the clique-based method [3]. In particular, two large local com-
munities are located: {0, 1, 2, 3, 13} and {8, 30, 32, 33}, which are the tendency
sinks of the two global communities. They coincide well with the known centers
of the two factions: 0 is the instructor, and 33 is the president.

Fig. 5. Zachary’s karate club graph with 34 nodes. Left: Two nodes belong to the same
local communities if they have the same colour. Right: An arrow represent the tendency
from one local community to another.

6.2 Bottlenose Dolphin Network (Video
http://youtu.be/kAAiYn5PN 0)

The dolphin social network studied by Lusseau captures interactions among
bottlenode dolphines in Doubtful sound in New Zealand. One of the classic re-
search [11] on animal social networks applied Girvan-Newman algorithm [6] to
the dolphin social network and detected four communities. The detection re-
quired to use extra information such as gender of dolphins in their experiments.
These extra information actually played a significant role in finding these natural
communities. We conducted experiments on the same network excluding those
extra information. Our program identified four communities same as the results
obtained using the Girvan-Newman algorithm. The local communities and the
tendency forest are shown in Fig. 6. The resulting global communities misplaced
only two dolphins compared to the result in [11]. We also include a table show-
ing the intra-/inter-community density of each community; the intra-community
density is roughly 4-7 times of the inter-community density.

6.3 American Football League (Video: http://youtu.be/CUPFl2ECECs)

The American college football league network captures matches between teams.
The league consisted of several conferences which are normally classified by
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Fig. 6. The dolphin social network. Left: The global communities. Right: The local
communities and the tendency forest

their geographic locations. Teams within the same conference interact more than
teams between different conferences. Sometimes teams at intersectional region
interact more with teams outside of their own conferences. The league has 12
conferences in total but our system partitions one of the conferences into two.
It can be statistically justified that the disrupt conference is located at a centric
area of America. In this experiment, we found that the tendency between two
local communities implicitly reveals the idea of overlapping community. Ten-
dency only appears when two local communities have proposed to the same set
of candidates before.

7 Experiment: Dynamic Network Detection

To illustrate the use of our distributed algorithm in the dynamic setting, we sim-
ulated networks that undergo dynamic changes. Firstly we implement a network
with 60 nodes based on Condon andKarp’s planted �-model where � = 4 [2]. Edges
are added to the network in sequence so that the graph contains four subgraphs
containing more edges within each subgraph (with probability 0.9) and less edges
between subgraphs (with probability 0.1). The algorithm correctly identified all
four planted communities. See the video (see http://youtu.be/43cW9CSbg10).
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Fig. 7. The American colledge football league network. Left: The global communities.
Right: The local communities and the tendency forest.

Fig. 8. Edges were built between two strongly connected component

Fig. 9. Remove edges that have been added between two strongly connected compo-
nents and re-identify original components
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Secondly we implemented a network with 75 nodes containing four strongly
connected components that are complete graphs. Edges are added in sequence
between these components so that eventually the nodes merge to a single com-
ponents hence forming one community. Then edges are removed in sequence so
that in the end four communities re-emerge in the network. See the video in
http://youtu.be/cdUcBzrVjcA. This video illustrated how global communities
evolved during the sequence of changes.

We also show using Fig. 8 and Fig. 9 another smaller example that illustrates
how two global communities grow towards one and disintegrate from one into
two global communities again. The underlying mechanism is that a change made
to a node may affects the entire initial cluster which it belongs to. Moreover,
the other nodes in the same initial cluster will re-propose regarding changes in
order to form new initial cluster.

8 Discussion and Conlusion

In this paper we proposed a formalmodel of communities from the local and global
perspectives and implement an algorithm to realise this model. Our approach is
efficient and captures communities in dynamic networks in a decentralised way.
Communities identified by our algorithm almost conform to communities in every
real network that we have used in our experiments. Since these networks vary sig-
nificantly, our definition to community has certain degrees of generality. To further
justify the validity of our results, we computed modularity of the identified com-
munities (with different rewire probability), which is a well-known performance
measure for community detection algorithms [4]. The following table shows that
our results achieve almost the same modularity as the results obtained by a well-
known modularity optimisation algorithm [1].

Rewiring probability 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13

Our approach 0.8108 0.8065 0.8015 0.7773 0.7758 0.7759 0.7546 0.7476 0.7271

Compared approach 0.8108 0.8065 0.8015 0.7773 0.7758 0.7759 0.7547 0.7476 0.7270

Rewiring probability 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22

Our approach 0.7252 0.7167 0.7250 0.7086 0.6934 0.6715 0.6384 0.66150 0.6143

Compared approach 0.7269 0.7167 0.7250 0.7086 0.6934 0.6765 0.6653 0.6615 0.6415

As future work, we are still challenged by large datasets (hardware limitation)
and the complication of collecting real life dynamic network datasets. The men-
tioned distributed algorithm was implemented in a single-core computer running
multiple thread. Therefore the experiment did not reveal the efficiency of the al-
gorithm and does not scale to huge networks. We expect that the algorithm will
be able to scale to very large networks once we implemented it in a multi-core
computer in a truly distributed manner.
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