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Abstract. The accuracy of surgery schedules depends on precise estimation of 
surgery duration. Current approaches employed by hospitals include historical 
averages and surgical team estimates which are not accurate enough. The inher-
ent complexity of surgery duration estimation contributes significantly to in-
creased procedure cancellations and reduced utilisation of already encumbered 
resources. In this study we employ administrative and perioperative data from a 
large metropolitan hospital to investigate the performance of different machine 
learning approaches for improving procedure duration estimation. The predic-
tive modelling approaches applied include linear regression (LR), multivariate 
adaptive regression splines (MARS), and random forests (RF). Cross validation 
results reveal that the random forest model outperforms other methods, reduc-
ing mean absolute percentage error by 28% when compared to current hospital 
estimation approaches.  

Keywords: Duration of procedure, Operating Room (OR), Random Forest, 
Linear Regression, Multivariate Adaptive Regression Splines (MARS). 

1 Introduction 

Operating Rooms (ORs) are of pivotal importance to hospitals as they are the main 
revenue and cost centre of the hospital [1, 2]. However, 10% to 40% of scheduled 
elective procedures often get cancelled before surgery [3, 4], with the primary reason 
for day of surgery cancellations being lack of theatre time due to over-run of other 
surgeries. Robust schedules require surgery duration estimations that are unbiased, 
highly accurate, and should minimise cases with large absolute errors [5]. Accurate 
surgery duration estimation is essential for efficient use of ORs in hospitals as  
optimal planning can be achieved only when reliable predictions are available [6]. 
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More accurate procedure time estimations can improve surgery scheduling by provid-
ing a better arrangement of cases throughout the ORs, leading to more efficient use of 
resources and reduced costs. Also, it may allow more surgeries to be done which can 
lead to increased revenue. Therefore, regardless of the method used to construct sur-
gery schedules, having an accurate estimation of case duration is a prerequisite for 
matching demand to capacity and will help to reduce both underutilisation and over-
running of the planned schedules. 

Despite its obvious importance, predicting surgery duration is not an easy task due 
to the variability of situations and several significant factors. The procedure code that 
represent the core actions during the surgery is the most significant factor for predict-
ing surgery duration [7]. Surgeries with straightforward diagnosis and standardised 
procedures are more predictable than complex surgeries. Currently, many hospitals 
use the historical average time for the same procedure codes for planning surgeries [8, 
9]. However, these estimates are not accurate enough and result in suboptimal use of 
surgical facilities. Other sources of variability including patient characteristics (e.g. 
age, gender, diagnosis, etc.), type of surgery, and individual surgeons and anaesthe-
tists can affect the duration of surgery [7, 8] and need to be considered when building 
a predictive model [10, 11].  

During the last two decades a wide range of statistical and machine learning tech-
niques have been used for predicting surgery duration including Linear Regression 
(LR) [8, 12], ANOVA [11], Bayesian approaches [13, 14], Neural networks [10, 15], 
and Random forests [16]. However, while these current research efforts outperform 
current hospital estimation methods, the prediction error of the proposed models is 
still quite high and the majority of these models are either specialty specific or based 
on limited datasets which make them hard to use in practical situations.  

In this study we used four years of elective surgery data including a wide range of 
predictors (e.g. patient, operation, and surgery team characteristics) across all special-
ties in a major metropolitan Australian hospital. These predictors were selected after 
an exhaustive review of available information sources and discussions with hospital 
clinicians and administrators. Our main focus is to build a model that can be applied 
as a standalone tool to provide a more accurate estimation to the administrator at the 
time of booking to help them improve their theatre utilisation. Such a tool can also be 
integrated within an intelligent hospital scheduling system to improve the allocation 
of theatre time and other resources.  

The rest of this paper is organised as follows. Section 2 provides details about data 
collection and preparation, and briefly discusses the predictive modelling approaches 
employed. Section 3 presents our findings and discusses how the employed  
approaches compare to each other and to the baseline hospital estimates. Section 4 
discusses how our work relates to the current state of the art approaches in surgery 
duration estimation. In section 5 we draw conclusions from our findings and indicate 
directions for future work. 
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2 Materials and Methods 

2.1 Subject 

The study employed 4 years (1/07/2008 to 31/06/2012) of administrative and pe-
rioperative data from a major metropolitan teaching hospital in Queensland, Australia 
with approximately 500 beds and catering to over 60,000 elective and emergency 
patients annually.  Administrative data was obtained from the Hospital Based Corpo-
rate Information System (HBCIS) and perioperative information was obtained from 
the Operating Room Management Information System (ORMIS). Ethics approval for 
the study was obtained from the Gold Coast Hospital and Health Service Human Re-
search Ethics Committee. Emergency surgical cases were not considered since the 
goal was estimating procedure time for planned, i.e. elective, surgeries. 

2.2 Data Preparation 

Administrative and perioperative elective surgery data was transformed to an individual 
procedure level. The data represented a wide range of details including patient character-
istics, operation characteristics, and surgery team characteristics across 12 specialties. 
Potential predictors were chosen after an exhaustive review of available information 
sources and discussions with clinical experts and hospital administrators. Some of the 
input variables needed to be transformed before being employed for predictive model-
ling. Some additional features were also extracted from data.  For instance, patient diag-
nosis (such as heart disease, AIDS, or cancer) was used to calculate the Charlson Comor-
bidity Index (CCI) [17] as an indicator of severity and complication of patient condition, 
and team size was calculated by summing up the number of people involved in the pro-
cedure. A list of resulting predictors that were then employed for predictive modelling is 
presented in Table 1. The initial dataset included 66233 individual procedures across 12 
specialties. Those procedures that were performed less than 100 times during the period 
of this study, cases with no match between administrative and perioperative databases, 
and procedures that were not assigned to a surgical specialty were excluded. This left 
38520 cases representing 104 different procedures. The output variable to be predicted 
was the total procedure time.  

2.3 Modelling  

Considering that the target output variable of our model (procedure time) is continu-
ous, regression techniques were applied in this study. Linear Regression (LR), MARS 
(Multivariate Adaptive Regression Splines), and Random Forest (RF) algorithms 
were used for building the prediction models. Linear Regression was chosen as it is a 
common approach employed in prediction and can provide a good understanding of 
the relationships between variables. It is also a reasonable benchmark for evaluating 
other models. The MARS algorithm was chosen as it is able to search a large number 
of variables, their interactions, and all possible non-linear responses in a very efficient 
way and was well suited to the complexity of the problem at hand. Random forest was 
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chosen because of its proven capability of being able to handle a large number of 
predictors efficiently and perform consistently well across a gamut of machine learn-
ing tasks. In this section, we briefly describe the techniques and how they were  
employed. 

Table 1. Description of the predictors used for procedure time estimation 

Predictor Description (Type) Distinct/ Mean values*** 
 
Patient characteristics 
Category 
Age 
Gender 
Type of admission 
Classification 
CCI 
Referral centre 
 

Urgency category of patient (Nominal)  
Age of patient (Numeric) 
Patient gender (Nominal) 
Patient Type of admission (Nominal) 
Patient payment class (Nominal) 
Charlson Comorbidity Index (Nominal) 
Centre patient referred to (Nominal) 

6 
52 
3 
4 
3 

21 
22 

 
Operation characteristics 
Procedure indicator 
Unit  
Specialty  
Theatre 
Order 
Ward 
Sub specialty  
Procedure 
Primary 
Procedure class* 
Session  
Session type 
 

Planned procedure (Nominal) 
Hospital unit (Nominal) 
Hospital specialty (Nominal) 
Operating room number (Nominal) 
Operation order in session (Nominal) 
Hospital ward (Nominal) 
Sub specialty code (Nominal) 
Procedure code (Nominal) 
Is it the primary procedure? (Binary) 
Nominal 
Morning/ Afternoon session (Nominal) 
Type of the session (Nominal) 

200 
65 
11 
22 
25 
51 
69 
104 
2 

26 
2 
5 

 
Surgery team characteristics 
Consultant 
Con. category 
Surgeon  
Surgeon category 
Surgeon-Consultant 
Surgeons # 
Anaesthetists # 
Team size** 
 

Doctor who visited the patient (Nominal) 
Professional category of consultant (Nominal) 
Surgeon in charge with operation (Nominal) 
Professional category of surgeon (Nominal) 
Is surgeon the same as consultant? (Binary) 
Number of surgeon involved (Nominal) 
Number of anaesthetists involved (Nominal) 
Total number of people involved (Nominal) 

178 
9 

241 
11 
2 
4 
4 

11 

 
*This predictor has been extracted based on the historical average time of procedures before the period of    
this study. Those procedures that have similar average time have been grouped together. 
** This number includes surgeons, anaesthetists, technicians, and nurses involved in the procedure. 
*** For nominal and binary predictors, this represents the number of distinct levels/categories. For numeric 
predictors, this represents the mean value of the sample. 

Linear Regression 
Regression analysis is a common approach employed in prediction [18-21]. Gener-
ally, linear regression models the relationship between one or more input vectors 
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, , … ,  and a dependent output variable  using a linear equation. A 
regression model can be formularised as [22]: 

 ∑                           (1) 

where β  are the regression coefficients. Each x x , x , … , x T  is a vector of 
feature measurements for the i  case. Here we have a set of training data x , y . . . x , y  where each x  is a vector of predictors as listed in Table 1 and y  is corre-
sponding observed procedure time from which to estimate the parameters β. 
 
The response variable was log-transformed for the regression analysis as it has been 
shown that the distribution of procedure duration best fits a lognormal distribution [6, 
23]. The Statistics Toolbox in MATLAB R2014a was used for the modelling. 

MARS (Multivariate Adaptive Regression Splines) 
MARS is a non-parametric regression technique in which non-linear relationships 
between a response variable and the set of predictors are described by a series of 
piece-wise linear segments of differing slope.  ∑   (2) 

The model is a weighted sum of basis functions . Basis functions are used to fit 
linear segments and added to the model in pairs using knots. Knots can be selected in 
a backwards/forward stepwise procedure to identify terms to be retained in the final 
model by evaluating a lack of fit function (e.g. maximising reduction in sum-of-
squares residual error) [24]. MARS can search a large number of variables, their  
interactions, and all possible non-linear responses in a very efficient way. We imple-
mented the ARESLab toolbox in MATLAB [25] to fit a MARS model to our data.  

Random Forest 
The Random Forest (RF) algorithm was developed by Leo Breiman [26] and is an 
ensemble learning method for classification and regression. The forest is built by 
combining numerous decision or regression trees in a random process in order to take 
advantage of the predictive power of each tree and boost the prediction performance 
and robustness of the algorithm. Each tree is grown on a bootstrap sample of the train-
ing cases and each node of the tree splits based on a random subset of the input  
variables. Random forest can handle a large number of predictors and its prediction 
performance compares well to other machine learning algorithms such as support 
vector machines (SVMs) [27], and artificial neural networks (ANN) [28]. Another 
advantage of random forests is a built-in estimate of accuracy, where for every tree, 
out of the bag (OOB) samples are used to get the estimated response of the corre-
sponding tree for those cases. In regression the forest prediction is an unweighted 
average over all trees. In this study we used the Random Forest package in MATLAB 
R2014a [29].  
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2.4 Model Evaluation 

We compared the performance of our models against each other and an existing cur-
rent hospital estimation method. Ten-fold cross validation was employed and various 
error statistics, including Root Mean Square Error (RMSE) and Mean Absolute Per-
centage Error (MAPE), were measured.  

RMSE quantifies the difference between the predicted values from a model (f x ) 
and the actual values of the estimated variable (y .  

 ∑  (3) 

MAPE is another statistic which expresses accuracy as a percentage and can be used 
to measure of accuracy of a model.  

 ∑ | |
                              (4) 

The R-squared value (R2), also known as the coefficient of determination, was em-
ployed as a measure of goodness of fit. R2 measures how well the fitted model can 
explain the variation of the data by measuring the correlation between the response 
value and the predicted values.    R 1 ∑∑    (5) 

3 Results and Discussions 

Figure 1 presents the distribution of our response variable, procedure time, across 
individual specialties including the mean and standard deviation (SD) of procedure 
times for each specialty. Analysis revealed considerable variation between specialties 
with the distribution being positively skewed with a long right tail in most specialties. 
In the data collected, 73% of procedure time estimates were based on the historic 
average time taken by the procedure in the past, 19% were based on estimates pro-
vided by surgeons, and 8% employed a default time in the absence of historical record 
and surgeon estimates. 

Table 2. Performance of current method and prediction models 

 
RMSE  MAPE  R2 

Value %Baseline*  Value %Baseline*  Value %Baseline* 
Hospital 

LR 
MARS 

RF 

27.88 
28.12 
25.83 
22.78 

------ 
-0.9 
 7.4 
18.3 

 

0.95 
1.20 
0.90 
0.68 

------ 
-26.3 
   5.3 
 28.4 

 

0.48 
0.46 
0.55 
0.65 

------ 
 -4.2 
14.6 
35.4 

*The %Baseline column shows the improvement in the performance metric as compared to the baseline 
performance, i.e. the hospital estimate of procedure time. 
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Fig. 1. Distribution of actual procedure times (min) in different specialties 
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Table 2 presents the performance of the predictive modelling approaches em-
ployed. The performance of the linear regression model was poor when compared to 
the baseline, i.e. the hospital estimate of procedure time. We speculate that the reason 
for this could be the fact that surgeons estimate the time based on their experience and 
implicitly consider the interactions between variables whereas these interactions were 
not taken into account by our linear regression model. 

The performance of the MARS model, on the other hand, was much better, reducing 
RMSE and MAPE by 7.4% and 5.3% respectively when compared to the baseline, and 
provided a better fit, improving the R2 value by 14.6% when compared to the baseline. 
This is likely because MARS is capable of fitting complex, nonlinear relationships 
between the response variable, procedure time in our case, and its predictors and can 
search a large number of variables and their interactions in a very efficient way.  

The random forest model outperformed both linear regression and MARS models, 
delivering an improvement of 18.3% to the RMSE and 28.4% to the MAPE values 
when compared to the baseline. The R2 value increased by 35.4% when compared to 
the baseline, providing a significantly better fit than other approaches. Various con-
figurations of the random forest were tried and the chosen configuration for our final 
random forest model was: number of trees=500, number of variables sampled at each 
split=9 and random sampling with replacement was used. We believe the superior 
performance of the random forest may come from its ability to boost the prediction 
performance by combining numerous regression trees in a random process. However, 
the higher accuracy of the random forest model comes at the expense of interpretabil-
ity. Black box models such as random forest can’t quantify the impact of each predic-
tor to the predictions of the complex model. Therefore, the relationships between 
predictors and output variable can’t be explained easily in the random forest model.  

Table 3. Comparison of under/overestimated time of our best model with the current hospital 
method 

 Current Method Random Forest Improvement 

 
Underestimated time (min) 

 

67534 

 

47675 

 
29.4% 

 
Overestimated time (min) 
 

 

61651 

 

 

50819 

 

 

17.6% 

 

 

Further analysis of the random method algorithm investigated the overestimated 
and underestimated predicted procedure times. Table 3 presents these compared to the 
baseline while Figure 2 presents the residuals plot of the random forest model and the 
baseline method. It was observed that the random forest model significantly improved 
underestimations and overestimations by 29.4% and 17.6% respectively. Current 
hospital estimates tend to underestimate procedure times more frequently which often 
result in surgery cancellations in hospitals. The random forest model not only reduced 
both underestimated and overestimated times but also distributed estimation error 
more evenly around zero compared to the current hospital method. 
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Fig. 2. (a) RF model residuals, (b) Current hospital method residuals  

4 Related Work 

Estimating surgery time has been the subject of many studies over the last decades 
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compared them with the estimates made by surgeons and median duration of same-
type surgeries in a general surgery department. Their results showed 36% improve-
ment in surgery duration estimations compared to the surgeon’s estimation. However, 
the scope of their study was restricted to operations in one department.  

In this study we addressed some of the abovementioned shortcomings of current 
state of the art of surgery duration estimation. We collected four years of administra-
tive and perioperative elective surgery data across all specialties of our case study 
hospital and the dataset represented a wide range of details including patient charac-
teristics, operation characteristics, and surgery team characteristics. We employed 
machine learning algorithms that can handle complex datasets with a large number of 
predictors to build a more general model whose performance is comparable to or bet-
ter than the current state of the art models. It is envisaged that the model will be de-
livered to hospital and can be used to improve current hospital practice. 

5 Conclusion 

This paper focuses on predicting procedure time for elective surgeries. We applied 
three different machine learning techniques to a large number of predictors including 
patient, operation and surgery team characteristics to build a procedure duration pre-
diction model. The random forest model was found to outperform other models and 
delivered 28% improvement when compared to the current hospital method. In future 
work we will explore how predictions from our proposed model can be used in elec-
tive surgery scheduling and how much improvement can be delivered to theatre utili-
sation through these more accurate time estimations. 

References  

1. Cardoen, B., Demeulemeester, E., Beliën, J.: Operating room planning and scheduling: A 
literature review. European Journal of Operational Research 201(3), 921–932 (2010) 

2. Macario, A., Vitez, T.S., Dunn, B., McDonald, T.: Where are the costs in perioperative 
care?: Analysis of hospital costs and charges for inpatient surgical care. Anesthesiolo-
gy 83(6), 1138–1144 (1995) 

3. Pandit, J.J., Carey, A.: Estimating the duration of common elective operations: Implica-
tions for operating list management. Anaesthesia 61(8), 768–776 (2006) 

4. Schofield, W.N., Rubin, G.L., Piza, M., Lai, Y.Y., Sindhusake, D., Fearnside, M.R., Kli-
neberg, P.L.: Cancellation of operations on the day of intended surgery at a major Austral-
ian referral hospital. Med. J. Aust. 182(12), 612–615 (2005) 

5. Kayis, E., Wang, H., Patel, M., Gonzalez, T., Jain, S., Ramamurthi, R., Santos, C., Sing-
hal, S., Suermondt, J., Sylvester, K.: Improving Prediction of Surgery Duration using Op-
erational and Temporal Factors. In: AMIA Annu. Symp. Proc., pp. 456–462 (2012) 

6. Eijkemans, M.J.C., Van Houdenhoven, M., Nguyen, T., Boersma, E., Steyerberg, E.W., 
Kazemier, G.: Predicting the unpredictable: A new prediction model for operating room 
times using individual characteristics and the surgeon’s estimate. Anesthesiology 112(1), 
41–49 (2010) 



1008 Z. ShahabiKargar et al. 

7. Dexter, F., Dexter, E.U., Masursky, D., Nussmeier, N.A.: Systematic review of general 
thoracic surgery articles to identify predictors of operating room case durations. Anesthe-
sia and Analgesia 106(4), 1232–1241 (2008) 

8. Wright, I.H., Kooperberg, C., Bonar, B.A., Bashein, G.: Statistical modeling to predict 
elective surgery time: Comparison with a computer scheduling system and surgeon-
provided estimates. Anesthesiology 85(6), 1235–1245 (1996) 

9. Zhou, J., Dexter, F., Macario, A., Lubarsky, D.A.: Relying solely on historical surgical 
times to estimate accurately future surgical times is unlikely to reduce the average length 
of time cases finish late. Journal of Clinical Anesthesia 11(7), 601–605 (1999) 

10. Combes, C., Meskens, N., Rivat, C., Vandamme, J.P.: Using a KDD process to forecast 
the duration of surgery. International Journal of Production Economics 112(1), 279–293 
(2008) 

11. Stepaniak, P.S., Heij, C., De Vries, G.: Modeling and prediction of surgical procedure 
times. Statistica Neerlandica 64(1), 1–18 (2010) 

12. Li, Y., Zhang, S., Baugh, R.F., Huang, J.Z.: Predicting surgical case durations using ill-
conditioned CPT code matrix. IIE Transactions (Institute of Industrial Engineers) 42(2), 
121–135 (2010) 

13. Dexter, F., Ledolter, J.: Bayesian prediction bounds and comparisons of operating room 
times even for procedures with few or no historic data. Anesthesiology 103(6), 1259–1267 
(2005) 

14. Dexter, F., Ledolter, J., Tiwari, V., Epstein, R.H.: Value of a scheduled duration quantified 
in terms of equivalent numbers of historical cases. Anesthesia & Analgesia 117(1), 205–
210 (2013) 

15. Devi, S.P., Rao, K.S., Sangeetha, S.S.: Prediction of surgery times and scheduling of oper-
ation theaters in optholmology department. Journal of Medical Systems 36(2), 415–430 
(2012) 

16. Gomes, C., Almada-Lobo, B., Borges, J., Soares, C.: Integrating data mining and optimiza-
tion techniques on surgery scheduling. In: Zhou, S., Zhang, S., Karypis, G. (eds.) ADMA 
2012. LNCS, vol. 7713, pp. 589–602. Springer, Heidelberg (2012) 

17. Charlson, M.E., Pompei, P., Ales, K.L., MacKenzie, C.R.: A new method of classifying 
prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic 
Dis. 40(5), 373–383 (1987) 

18. Palmer, P.B., O’Connell, D.G.: Regression Analysis For Prediction: Understanding the 
process. Cardiopulmonary Physical Therapy Journal 20(3), 23 (2009) 

19. Heil, D.P., Freedson, P.S., Ahlquist, L.E., Price, J., Rippe, J.M.: Nonexercise regression 
models to estimate peak oxygen consumption, pp. 599–606. Williams & Wilkins, Balti-
more (1995) 

20. Dossey, J., Blum, W., Niss, M.: Using Mathematical Competencies to Predict Item Diffi-
culty in PISA: A MEG Study. In: Research on PISA, pp. 23–37. Springer (2013) 

21. Hedley, C.B., Yule, I.J.: A method for spatial prediction of daily soil water status for pre-
cise irrigation scheduling. Agricultural Water Management 96(12), 1737–1745 (2009) 

22. Hastie, T., Tibshirani, R., Friedman, J.H.: The elements of statistical learning: Data min-
ing, inference, and prediction. Springer, New York (2001) 

23. Strum, D.P., May, J.H., Vargas, L.G.: Modeling the uncertainty of surgical procedure 
times: Comparison of log- normal and normal models. Anesthesiology 92(4), 1160–1167 
(2000) 

 
 



 Predicting Procedure Duration to Improve Scheduling of Elective Surgery 1009 

24. Friedman, J.H.: Multivariate Adaptive Regression Splines. Annals of Statistics 19(1), 1–
141 (1991) 

25. Jekabsons, G.: ARESLab: Adaptive Regression Splines toolbox for Matlab/Octave (2011), 
http://www.cs.rtu.lv/jekabsons/ 

26. Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001) 
27. Vapnik, V.: Support-vector networks. Machine Learning 20(3), 273–297 (1995) 
28. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error 

propagation, DTIC Document (1985) 
29. Liaw, A.: Breiman and Cutler’s random forests for classification and regression (2012), 

http://stat-www.berkeley.edu/users/breiman/RandomForests 
 


	Predicting Procedure Duration to Improve Scheduling of Elective Surgery
	1 Introduction
	2 Materials and Methods
	2.1 Subject
	2.2 Data Preparation
	2.3 Modelling
	2.4 Model Evaluation

	3 Results and Discussions
	4 Related Work
	5 Conclusion
	References




