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Abstract. Selecting the proper Kernel function in SVMs and the spe-
cific parameters for that kernel is an important step in achieving a high
performance learning machine. The objective of this research is to op-
timize SVMs parameters using different kernel functions. We cast this
problem as a multi-objective optimization problem, where the classifica-
tion accuracy, the number of support vectors and the margin define our
objective functions. So, we introduce a method based on multi-objective
evolutionary algorithm NSGA-II to solve this problem. We also intro-
duce a multi-criteria selection operator for our NSGA-II. The proposed
method is applied on some benchmark datasets. The experimental ob-
tained results show the efficiency of the proposed method.

Keywords: Parameter selection, kernel function setting, multi-objective
genetic algorithm NSGA-II, support vector machines (SVMs).

1 Introduction

Support vector machines (SVMs), proposed by Vapnik [1], are a powerful and
popular techniques which have been widely used in various fields of classification
problems such as pattern recognition, bioinformatics and finance [2, 4].

With SVM, a classification model is generated in the training process using
the training data. The model is then used to classify data. The crucial and
largest problems encountered in establishing the SVM model are how to select
the kernel function, its corresponding parameters values and the misclassifica-
tion penalty parameter C. The setting quality of SVM kernel functions and
hyper-parameters influence the performance of learning and generation. In fact,
inappropriate kernel function and inappropriate hyper-parameters tuning lead
to poor classification results [5].

Genetic algorithms (GAs) have been successfully applied to solve the problem
of parameters selection for SVM classification due to its ability to discover good
solutions for complex searching and optimization problems. The drawback of
GAs that considering one objective to be either maximized or minimized. But,
it has been observed that a single objective is no sufficient and there are many
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objectives that may to be taken into account for obtaining an effective SVM
classifier. These objectives are most often conflicting in nature.

For that, motivated by the multi-objective optimization problems, in this
paper we introduce a new method to simultaneously set the appropriate kernel
function, its parameters and SVM parameters for SVM classification based on
multi-objective evolutionary algorithm NSGA-II for which we have implemented
several improvements to perform the desired task.

The remainder of this paper is organized as follows: We begin in Section 2
with an overview of related work of model selection. Section 3 and 4 describe
respectively SVMs and kernel selection and multi-objective genetic algorithm
NSGA-II. In section 5, we present our proposed approach. The experimental
results on chosen benchmark datasets are discussed in Section 6. We conclude
this work in Section 7.

2 Related Work

The most simple way to tune hyperparameters (model selection) is the grid
search algorithm [6]. It trains SVMs with all desired combinations of hyper-
parameters, evaluates their performance and outputs the settings that achieved
the highest accuracy. The results obtained by this technique demonstrate that
it is robust and works effectively and efficiently on a variety of problems [7].
Nevertheless, it is time consuming. Moreover, a better region on the grid must
be specified before doing a grid-search. More recently, the model selection was
seen as an optimization task and many optimization algorithms were suggested
to perform model selection like gradient descent (such as [8, 9]). However, these
methods have the drawback that the kernel function and the score function (or at
least an accurate approximation of this function) for evaluating the performance
of the hyperparameters should be differentiable with respect to all hyperpa-
rameters [10]. Moreover, their results depend on the initialization. The genetic
algorithms (GAs) are also applied to tune SVM parameters (such as [11, 15]).
One very complete study is that of Huang and Wang [16], where they aim to
perform feature and parameters selection simultaneously. They show that their
method improves significantly SVMs accuracy. In this approach three criteria:
classification accuracy, number of selected features, and the feature cost were
combined to create a single objective function. In [14], Zhao et al. have made an
area search table, based on the asymptotic behaviors of support vector machines
and after analyzing it, they proposed at first a parametric distribution mode
fused with a genetic algorithm in order to improve classification performance.
The results obtained indicate that classification accuracy of genetic algorithm
based on parametric distribution model is better than that of grid search [14].
Then, they used this approach to simultaneously optimize the SVM parameters
and the feature subset. In [15], a method based on crossbreed genetic algo-
rithm has been proposed to choose the kernel function and its parameters. This
method uses two fitness functions which are produced according to the two crite-
rion of SVM’s performance: empirical estimators and theoretical bounds for the
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generalization error for improving the performance of SVMs. It has been able
to avoid premature convergence and, consequently, improves predictive accu-
racy [15]. Other researchers have used the PSO (Particle Swarm Optimization)
methods. For example, Lin and al. [17] have proposed a method based on particle
swarm optimization for SVM parameters tuning with and without feature selec-
tion. They use as objective function the classification accuracy. The comparison
of their obtained results with the obtained results of other methods based on
PSO algorithm show the efficiency of their approach.

3 SVMs and Kernel Function

Originally, SVMs are designed as a statistical learning technique which can solve
linear and nonlinear binary classification. Then, it extended for multiclass prob-
lems by designing a number of two-class SVMs. The basic idea of SVMs is to
map the input space x into a high dimensional feature space (z = Φ (x)), and to
classify the transformed feature by a hyperplane (w ·z−b = 0). SVMs aim to find
the optimal separating hyperplane, which maximizes the margin between the two
classes. The mapping is performed by a kernel function k (xi, xj) = Φ (xi)·Φ (xj).
There are many kernel functions and the most popular kernel functions are given
in Table 1.

Table 1. The most popular kernel functions

Linear Kernel k (x, y) = x · y
RBF Kernel k (x, y) = exp

(−γ ‖x− y‖2)
Polynomial Kernel k (x, y) = (γ (x y) + r)d , γ � 0

Sigmoid Kernel k (x, y) = tanh
(
γxT y + r

)

When using RBF kernel in SVM, two major parameters C and γ must be set
appropriately. The choice of value for C influences on the classification outcome.
If C is too large, then the classification accuracy rate is very high in the training
phase, but very low in the testing phase. If C is too small, then the classification
accuracy rate unsatisfactory, making the model useless. Parameter γ has a much
greater influence on classification outcomes than C, because its value affects
the partitioning outcome in the feature space. An excessively large value for
parameter γ results an over-fitting, while a disproportionately small value leads
to under-fitting [18].

4 Multi-objective Genetic Algorithm NSGA-II

NSGA-II is one of the most efficient multi-objective evolutionary algorithms [19].
It appears as one of the reference algorithms in multi-objective optimization.



812 A. Bouraoui, Y.B. Ayed, and S. Jamoussi

This algorithm is characterized by a sorting procedure of the population (parent
and offspring) in successive fronts according to the non-dominance relation and
a selection method (called Fast Non-dominated Sort) based on a performance
criterion (called crowded comparison) and a so-called niching technology. For
more details readers can refer to [19]. The practical implementation of NSGA-
II on our specific problem differs to the standard NSGA-II especially at the
selection operator (which is binary tournament for standard NSGA-II).

5 The P-SVM Proposed Method:From NSGA-II to SVM
Model Selection Using Several Kernels

This section is devoted to analyzing and describing our multi-objective P-SVM
(Parameter selection for SVM) method for simultaneous kernel choice and hyper-
parameters determination for the SVM. We consider the task of model selection
as an optimization problem that requires the choice of several efficient criteria
to be optimized. We decided to choose the classification accuracy, the margin
and the total number of support vectors as criteria to be optimized simulta-
neously. Thus, an individual (chromosome) with high classification accuracy, a
high margin value and a low total number of support vectors present an optimal
compromise between these criteria. The details of our NSGA-II to simultaneous
SVM kernel and hyper-parameters tuning are given by the following issues.

(1) Chromosome design and initialization
For genetic algorithms, one of the key issues is to encode a solution of the problem
into a chromosome.

To implement our proposed approach, we have used the most popular ker-
nel functions to be optimized simultaneously. These kernels are recapitulated in
Table 1. So, five parameters need to be optimized: the misclassification penalty
parameter C, the SVM parameter ε and parameter(s) (d, γ or r) according to
the treated kernel function. Each individual in the population must encode these
five real values in order to represent a point in the search space (see Figure 1).
In our application, we used a real-coded scheme because it is more accurate and
better suited to continuous optimization problems. The search ranges of val-
ues of C,ε, γ, d and r are respectively {0.0001, . . . , 10000.0}, {0.00002, . . . , 0.2},
{0.0005, . . . , 5}, {1, . . . , 9} and {0.0, . . . , 20.0}.

First of all, we randomly selected T potential solutions. T denotes the size of
the population and it was fixed at 15 in our case after several experiments to
decide which is the best value.



A Mutli-objective GA for Model Selection for SVM 813

Fig. 1. Chromosome design

(2) Genetic Operator
Genetic operator consists of three basic operators: selection, crossover and mu-
tation. In this paper, a new selection approach is presented to pick fittest indi-
viduals.

– Selection operator

During the selection step we select best individuals in current population as
parents to generate offspring. Since we aim to optimize three different criteria:
the margin, the number of the support vectors and the classification accuracy, we
had the idea of crossing optimal individuals within the sense of different criteria.
This idea consists on randomly select six individuals and keep only three, each
of them is optimal for one criterion. The three solutions chosen will be crossed.
The process is repeated a number of times to have at least T children in the
child population. Indeed, crossing the individual judged best for a criterion with
other individual judged best for an other criteria, we hope to exploit the best
genes of these individuals to create new better solutions. This proposal led to
satisfactory results.

– Crossover operator

The crossover allows the creation of new individuals according to a given process.
Its aim is to enrich the diversity of the population by manipulating the structure
of chromosomes (individuals). As we employed the real-encoding scheme for C, ε
and kernel parameters, we used the SBX crossover operator [20] which is defined
as follows. {

xi (e1) = 0.5
[(
1 + β̄

)
xi (p1) +

(
1− β̄

)
xi (p2)

]
xi (e2) = 0.5

[(
1− β̄

)
xi (p1) +

(
1 + β̄

)
xi (p2)

] ·

where β̄ =

⎧⎨
⎩
(αu)

1
ηc+1 if u ≤ 1/α(
1

(2−αu)

) 1
ηc+1

otherwise
, α = 2 − β−(ηc+1) and β = 1 +

2
xi(p2)−xi(p1)

min
{
min (xi (p1) , xi (p2))− xmin

i , xmax
i −max (xi (p1) , xi (p2))

}
. ηc

represents the distribution index and u a random number between 0 and 1.
The three retained individuals at the selection step are crossed each other.

For example, if we take the parent having the best accuracy rate so he is crossed
with the best parent for the margin and with the best parent for the number of
support vectors.
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– Mutation operator

The mutation consists of randomly changing the value of one (or more) com-
ponent(s) of the individual. In our algorithm, we used the polynomial mutation
operator [21], which is defined as: xi

′ = xi +Δmaxδ̄ .

Where δ̄ =

⎧⎪⎨
⎪⎩
(
2u+ (1− 2u) (1− δ)

ηm+1
) 1

ηm+1 − 1 if u ≤ 0.5

1−
(
2 (1− u) + 2 (u− 0.5) (1− δ)

ηm+1
) 1

ηm+1

otherwise

,

δ =
min(xi−xmin

i ,xmax
i −xi)

xmax
i −xmin

i
, ηm represents the distribution index and Δmax =

xmax
i − xmin

i .
In this work and after many experiments, we used the value of 0.015 as mutation
probability.

– Replacement operator

The NSGA-II is based on an elitist replacement. Indeed, the population of par-
ents and the population of their descendants are assembled and sorted according
to the criterion of not-dominance to identify different fronts. The best individ-
uals will be found in the first fronts. To form the new population the fronts
were added until a T number of individuals is reached. Here we used the same
principle of the NSGA-II replacement operator.

(3) Stopping criterion
Each genetic algorithm must have a break point. We used as stopping criterion
the maximum number of generations. It was set at 40 after many comparisons
based on several experiments on tested databases.
The flow chart of our multi-objective genetic algorithm using several kernel is
shown in Figure 2:

To classify individuals in each generation, we need to calculate our objective
functions (the classification rate, the margin and the number of the support vec-
tors). To do this, we must train and evaluate our SVM classifier using the four
considered kernel functions. When the RBF kernel is selected, only the parame-
ters (C, ε and γ) were used for building SVM model. Indeed for each individual
in the population we treat the four used kernel functions. Then, we compare
their results in terms of accuracy rate and adopt as kernel function for this indi-
vidual one that gives the best model (which has the highest value of classification
accuracy). The function of dominance will depend on the best kernel selected
for each individual. Therefore, the Pareto fronts represent not only a set of best
parameters but also the best kernel for the treated problem. Choosing the best
kernel for each individual also affects the selection and replacement operators.
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Fig. 2. Our SVM model selection with several kernels

6 Experimental Results

To implement our proposed approach, we have developed our method using the
java langage. We also used the LibSvm which is a library for support vectors
classification. A general use of LibSvm involves two steps: first, a training data
set is used to obtain a model and subsequently the model is validated on a test
data set for predictive power. Our proposed method is evaluated and validated on
five UCI datasets which can be taken from LibSvm webpage 1 or ML-Repository
webpage 2.

1 www.csie.ntu.edu.tw/~cjlin/
2 http://archive.ics.uci.edu/ml/

www.csie.ntu.edu.tw/~cjlin/
http ://archive.ics.uci.edu/ml/
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Table 2 describes these datasets in terms of number of attributes, instances
and classes.

Table 2. Information about the used datasets

Benchmark Classes Attributes Instances

Australian 2 14 690

Ionosphere 2 34 351

Heart 2 13 270

Pima 2 8 768

Glass 7 9 214

We tested our method, at first, in optimizing the SVM parameters with the
RBF kernel only (P-SVM (RBF only)) in order to compare our results with
those of literature.

Scaling was applied to prevent feature values in greater numeric ranges from
dominating those in smaller numeric ranges, and to prevent numerical difficul-
ties in the calculation. Scaling the feature value may contribute to improve the
classification accuracy of SVM [14]. The range of each feature value was scaled
to the range [−1,+1].

Table 3 reports the results obtained by our method P-SVM (RBF only) com-
pared with the results obtained by the NSGA-II method.

Table 3. Results obtained by P-SVM (RBF only)

Benchmark NSGA-II P-SVM (RBF only)
AA MA AA MA

Australian 88.12 89.78 88.26 89.85

Ionosphere 100.0 100 100 100

Heart 87.59 89.99 88.9 90.74

Pima 83.25 85.45 86.04 87.66

Glass 82.56 90.67 81.4 90.67

Where AA and MA design respectively average accuracy and maximum ac-
curacy.

A comparison between the results obtained by applying NSGA-II and those
obtained by applying P-SVM (RBF only) shows that the latter is more effective.
Indeed, crossing optimal individuals within the sense of different criteria allows
the detection of more satisfactory solutions. Consider the case of the Heart and
Pima databases, we can detect classification accuracies equal to 90.74% and
87.66%; more accurate than those obtained by the classic selection strategy of
NSGA-II (89.99% and 85.45%).
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For this, we adopt the strategy of crossing optimal individuals within the sense
of different criteria to implement our proposal of optimizing SVMs parameters
using several kernels.

In Table 4, the results obtained by our proposal (P-SVM (RBF only)) were
compared with other picked up for state of the art algorithms [16], [17] and [14]
which optimized a one kernel function: the RBF.

Table 4. A comparison between results obtained by P-SVM-RBF and [16], [17] and [14]

Bench. [16] [14] [17] P-SVM (RBF only)
AA MA

Aust. 88.09 86.81 88.09 88.26 89.85

Iono. 96.61 98.57 97.5 100 100

Heart 94.58 91.11 88.17 88.9 90.74

Pima 82.98 81.97 80.19 86.04 87.66

Glass - - 78.04 81.4 90.67

It is noted that our approach allows accuracies rates better than those achieved
by the three mentioned works. Such as, for the Ionosphere, Pima and Glass
databases we could detect accuracy rates equal to 100%, 87.66% and 90.67%.

Table 5 presents the results obtained when applying our method of optimizing
SVM parameters using several kernel functions, compared with those obtained
by optimizing only the RBF kernel.

Table 5. Results of simultaneous optimization

Benchmark P-SVM P-SVM (RBF only)

AA MA AA MA

Australian 91.87 92.86 88.26 89.85

Ionosphere 100 100 100 100

Heart 91.86 94.23 88.9 90.74

Pima 86.43 88.5 86.04 87.66

Glass 89.46 93.38 81.4 90.67

The obtained results prove the effectiveness of our proposed approach (P-
SVM). We were able to achieve accuracies rate more accurate than those achieved
by the P-SVM-RBF. Such as, for the Australian, Heart and Glass databases we
could detect accuracy rates equal to (92.86%, 94.23% and 93.38%) instead of
(89.85%, 90.74% and 90.67%) when using the RBF once.
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7 Conclusion

In literature, the most proposed methods for the SVM model selection are tack-
ling the misclassification penalty C and kernel parameters. The choice of the
kernel function and its parameters is an important step which influence the per-
formance of SVM. Whereas, this choice is very difficult as it is dependent on
databases. In the context, we have proposed a method enable to select the best
kernel for a used dataset while selecting different combinations of parameters to
fine tune. As SVMmodel selection can be considered as multi-objective optimiza-
tion problem, we have applied NSGA-II to implement our approach according
to three criteria: the classification accuracy, the margin and the total number of
support vectors. We have implemented a new strategy concerning the selection
operator. The results obtained show the effectiness of our proposal. In future,
the simultaneous model selection and feature selection may be studied. The work
can be extended for regression problems or unsupervised context. Moreover, the
application of our algorithm on known biological data as the challenges that
they present particularly those of dimensionality and the high precision sought
can be envisaged.
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