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Abstract. It is well known that for certain tasks, quantum comput-
ing outperforms classical computing. A growing number of contributions
try to use this advantage in order to improve or extend classical machine
learning algorithms by methods of quantum information theory. This pa-
per gives a brief introduction into quantum machine learning using the
example of pattern classification. We introduce a quantum pattern clas-
sification algorithm that draws on Trugenberger’s proposal for measuring
the Hamming distance on a quantum computer [CA Trugenberger, Phys
Rev Let 87, 2001] and discuss its advantages using handwritten digit
recognition as from the MNIST database.
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1 Quantum Methods for Machine Learning

With the rapid growth in the volume of data that is transferred, stored and pro-
cessed on a daily basis, innovative methods of machine learning become more
and more important. Supervised machine learning algorithms infer an input-
output relation from large sets of training data that consist of ‘correct’ examples
of mappings. In other words, the computer learns from experience how to treat
new inputs. A prominent example where a mapping needs to be learned is the
pattern classification problem, in which a new data vector has to be assigned
to one of a number of classes, given a set of correctly classified data vectors. A
data vector thereby contains information on the features of the entity that is to
be classified (for example the clicking behaviour of an online user, the structure
of a molecule or the pixel of an image), and is also called feature vector. Pattern
classification is the abstract formulation of the problem of interpreting informa-
tion, and it finds application in areas as diverse as information technology, the
food industry or the financial sector. These tasks come to humans much more
natural than to machines (e.g., when we recognise other humans as a response
to the large amount of photons that enter our eyes in every second), and as a
subdiscipline of artificial intelligence, machine learning is indeed inspired by the
way of how our brain deals with data.
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Quantum computing is a relatively new branch combining computer science
and physics, in which the properties of small particles formulated in quantum
theory are exploited to process information. Controlling quantum objects that
encode information (so called qubits or qudits) is a highly nontrivial task, and
the realisation of a mature quantum computer is still far from being accom-
plished. However, there is no lack of theoretical studies on the scope and power
of quantum information. As part of these efforts, quantum information scien-
tists recently realised that quantum computing could improve classical machine
learning algorithms in three basic ways. First, subroutines that are costly on a
classical computer when subjected to big data - such as the evaluation of an inner
product or searching for a minimum distance - could be executed on a quantum
computer with a linear or even exponential speedup in complexity due to quan-
tum parallelism [18,23,35]. Second, from the perspective of quantum computing,
quantum machine learning (from here on QML) opens up new possibilities for
quantum information processing, such as quantum state classification [30,12].
Third, especially in the area of intelligent agents and reinforcement learning,
quantum physics offers unique types of logics that is often compared to fuzzy
logics [24,6].

The advantage of computing with quantum objects is that data can theoreti-
cally be represented exponentially more compact in a so called quantum super-
position of both the 0 and 1 state. On the downside, information retrieval is
limited by the laws of measurement of a quantum system, which is a destructive
process that changes it substantially preventing us from assessing all information
at once [27]. (However, as we will see later the probabilistic nature of the out-
puts to quantum algorithms can be valuable for pattern classification). The last
decade of quantum information research provided a ‘toolbox’ of algorithms that
can be implemented on a potential quantum computer, which are the building
blocks used to tackle the more sophisticated problems of QML. Here, we will
add to these methods and propose a quantum pattern classification algorithm
for binary feature vectors, which follows the principle of a distance weighted
k-nearest neighbour method [9]. Our idea uses a variation of Trugenberger’s [32]
subroutine to determine the Hamming distance between two binary patterns on
a quantum computer.

This paper is organised as follows. We will first give a brief introduction to
quantum computing which can be skipped by readers familiar with quantum
information theory. We then outline the problem of pattern recognition (Section
3). In Section 4 we briefly introduce into distance-based methods of pattern clas-
sification such as k-nearest neighbours, translate the problem into the language of
quantum physics and give an example of a quantum classification algorithm. We
discuss its merit using handwritten digit recognition and give a general outlook
in the context of quantum machine learning.
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2 Computing with Quantum Objects

Quantum computing analyses the manipulation of quantum objects in order to
solve computational problems1. A ‘quantum object’ thereby refers to any particle
or system of particles for which Newton’s mechanics proves to be an insufficient
description while quantum theory explains our observations. This is becomes
important for the description of microscopic particles such as atoms, electrons
or photons, and allows for entirely new ways of information processing on a
microscopic scale.

The equivalents to bits on a classical computer are quantum objects with two
distinct configurations or states, called qubits2, which can have various physical
implementations such as the energy of atoms or the polarisation of photons. But
if bits are either carrying a signal encoding a 0 or 1, qubits use the superposition
principle of quantum objects to be in both states ‘at the same time’. In the
notation for quantum states, this looks like

|ψ〉 = α |0〉+ β |1〉 , |α|2 + |β|2 = 1,

where α, β are complex numbers called amplitudes and |·〉 represents a state
vector describing a quantum object. Later on the phase φ of a qubit becomes
important, which is a part of the amplitude α = α̃eiφ. Quantum theory is built
around the observation that the squared amplitudes |α|2, |β|2 denote the prob-
ability to measure the qubit either in state |0〉 or |1〉. A qubit state is thus not
characterised by whether it is in the ‘0’ or ‘1’ state, but by how likely it is to
measure it in either of them. Computations can work on both states at the same
time, a fact that is often referred to as quantum parallelism.

The power of quantum information processing becomes apparent if we
consider a system of n qubits each with the two available states {|0〉 , |1〉}.
The quantum system can be put into a superposition of all 2n combinations
{|00...00〉 , |00...01〉 , ..., |11...11〉} and an algorithm can work on all these config-
urations in parallel. However, quantum computing is always constrained by the
probabilistic nature of the results, as well as the destruction caused by mea-
surement. After a qubit has been measured to be either |0〉 or |1〉, the state
‘collapses’ into the measurement result and will subsequently only produce the
same output. We can therefore only access a limited amount of information from
the result, and the output is of probabilistic nature (i.e. evolving and measuring
the same system several times produces a distribution of results, of which the
most likely result can be regarded as the output of the computation). This is
why it is rather difficult to come up with powerful algorithms for a quantum
computer [22].

It is important for the following to introduce some formal basics of quantum
information theory, but the interested reader shall be referred to [22]. The dis-
crete states of a quantum object (such as the above mentioned polarisation or
energy level) are mathematically modelled as vectors in a d-dimensional Hilbert

1 For a comprehensive introduction to quantum computing, see [22].
2 Note that qudits would be the generalisation to d-dimensional states.
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space Hd. For qubits, d equals 2, and a system of n qubits that encodes a binary
string of the same length can be described by vectors in H2 ⊗ ...⊗H2 (remem-
ber that the d-dimensional generalisation of a qubit is then called a ‘qudit’).
Transformations from one vector to another that obey the general laws of quan-
tum theory are represented by unitary operators U with the property U †U = 1
where U † is the hermitian conjugate. These unitary transformations define the
dynamics of the quantum system and quantum algorithms can be represented
by a sequence of such operations on an input quantum state.

In quantum computation, these unitary transformations are called ‘quantum
gates’, since they correspond to classical gates that manipulate bits. Some stan-
dard 1-qubit gates are the X-gate that flips the state of a qubit, the Z-gate
that changes the sign of its amplitude, or the Hadamard or H-gate that creates
a superposition 1√

2
(|0〉 ± |1〉) from |0〉 (+) or |1〉 (−) respectively. A central 2-

qubit gate is the controlled-NOT operation cNOT which only flips the state of
a second qubit if the first one is in state |1〉. The cNOT together with standard
single qubit gates form in fact a universal set for quantum computation [22]. A
more general formulation for a quantum gate that is derived from fundamen-
tal quantum theory based on the Schrödinger equation can be described by a
unitary transformation U = e−iHt where H denotes a hermitian operator called
Hamiltonian.

3 The k-Nearest Neighbour Algorithm for Pattern
Classification

In a pattern classification problem we want to assign one out of a number of
classes to a pattern, according to a rule learned from a set of example classifica-
tions. It is thus a problem of supervised learning, or learning from training data.
This abstract formulation contains an impressive range of important decision
problems in real life. For example, a doctor diagnosing a disease given a number
of symptoms and his experience from other cases, an email being automatically
marked as ‘important’ or ‘spam’ on the grounds of previous emails, or a hand-
written digit on a postal envelope being recognised by a scanning device. Even
more, our human thinking process can be described through decision problems,
for example when we ‘recognise’ (= classify) people, things and smells around
us, or when we classify a situation as dangerous or not depending on sensual
stimuli. Some authors replace the term pattern classification by pattern recogni-
tion, which is a more generalised expression as it also looks at the problem of
seeing patterns without classifying it, as well as template matching or associative
memory, in which a close example from learnt data is retrieved upon an input.

Describing the pattern classification problem more precisely, we are given
a set of n-dimensional data vectors vk and their class assignments cp, T =
{(vp, cp)}p=1,...,N that makes up the ‘training set’ to our problem. Each of the
vectors encodes n features vpi . These features may represent the grey shade
of a certain pixel, information on whether a patient has had cancer in his or
her family, or the number of times a certain word occurs in a text sample.
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k=5

Fig. 1. (Colour online) Illustration of the kNN method of pattern classification. The
new vector (black cross) gets assigned to the class that the majority of its k closest
neighbours have (in this case it would be the orange circle shape). In this example, k
is set to 5.

The features are given as by binary, integer or real-valued numbers, while the
class cp of a feature vector is often encoded by a finite number d of positive
integers c ∈ {1, ..., d}. Also given is an unclassified input vector x from the same
vector space as the training vectors, encoding n features. The task of pattern
classification is to match the new vector x to a class, using information from
the training data. This is usually done by defining some distance measure and
assigning the new input vector to the class whose members are the most ‘similar’
in terms of this distance. A common distance measure is the Euclidean metric
or in case of binary features, the Hamming distance [3] (the number of differing
bits on two binary strings [13]).

The discipline of machine learning developed a number of algorithms to solve
the problem of pattern classification. One the most famous is the k-nearest neigh-
bour (kNN) method [14,25]. Given a training set T stored in a memory, the k
training vectors closest to the input vector are selected. The class to which the
majority of these neighbours belong consequently gets assigned to the input vec-
tor (see Fig. 1). There are many variations to this simple method. For example,
in the distance-weighted kNN, the neighbours get weighted by their distance to
the input vector, so that closer neighbours make a bigger contribution to which
class gets selected [9]. Another variation includes to preprocess the training data
and calculate the centroid v̄c = |x − 1

L

∑
l∈c v

l| of each class c ∈ {1, ..., d}
(l = 1, ..., Lc is the index for the members of class c). The input vector then
becomes part of the class with the closest centroid vector.

The advantage of the kNN method and its variations is not only their simplic-
ity. They are nonparametric examples of supervised learning, since they do not
require initial information on the distribution of vectors [8]. The only assump-
tion on the data used is that similar inputs have similar outputs [3] (in our case,
similar input vectors should be in general members of the same class). An impor-
tant task is to choose an optimal parameter k, and in the original kNN method,
a balance between noise reduction and maintaining the locality information has
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to be found (for example, for k → all, then the class assignment would always
result in the class with the most members). The distance-weighted kNN version
has the advantage of being independent of the choice of k, as the “number of
nearest neighbors is implicitly hidden in the weights” [15]. The quantum algo-
rithm introduced in the following is based on the same principle as kNN, namely
assuming that ‘close’ feature vectors carry the class that is to be assigned to the
new vector.

4 Quantum Pattern Classification

Translating the pattern classification problem into the language of quantum
physics reads as follows. Our feature data set is represented by quantum states
{|vp1 ...vpn, cp〉} ∈ H⊗n

2 ⊗Hd where p = 1, ..., N runs over the training states and
the class of feature vector vp is stored in the qudit |cp〉. The product state of
n 2-dimensional Hilbert spaces thereby represents the feature space, while the
additional qudit in Hd encodes the d possible classifications. The input vector is
a quantum state |x1, ..., xn〉 from the feature Hilbert space H⊗n

2 . As we are now
dealing with quantum information, classical data either has to be translated
into quantum states, or -as suggested in [11,18]- taken from some form of a
quantum random access memory (especially if the machine learning algorithm
is a subroutine to a larger computation on a future quantum computer).

4.1 Related Work

Many of the textbook machine learning methods already faced attempts to be
translated into quantum physics (for a detailed review, see [28]). Amongst them
are support vector machines [23], decision trees [20], principal component anal-
ysis [19], learning from membership queries [31], neural networks [34,36] and
clustering [2,16,1]. Most contributions are dedicated to pattern recognition
or classification tasks [18,23,10,21,27,30,35,29,33]. Some of these proposals are
based on the idea of taking a computationally expensive subroutine from an
original machine learning algorithm and executing it more efficiently on a quan-
tum computer [18,35,29,23]. In [27,30] we find an attempt to use the insights
of Bayesian decision theory for the classification of unknown quantum states.
Some use adiabatic quantum computing to solve a learning optimisation problem
[21,18]. A number of contributions also try to execute classical distance measures
through quantum computation [18,23,35,33]. Finally, some authors emphasize
the observation that the theory of open quantum systems is close to machine
learning methods based on Markov models [7,4]. Despite this growing number of
contributions, quantum machine learning is still a premature discipline, which
derives its relevance from its potential to extend machine learning by a new
paradigm, rather than from a given theoretical foundation. Although touched
upon in several articles [26,17], there is yet no fundamental theory of how quan-
tum information can in general be exploited for intelligent forms of computing.
The expression ‘quantum learning’ [5,26,12] is so far used interchangeably with
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Fig. 2. (Colour online) Illustration of the principle on which the quantum pattern
classification is based. The new vector (black cross) gets assigned to the class with the
closest members. As in Figure 1, this would be the class of orange circles.

the term ‘quantum machine learning’ and simply refers to the various ideas
brought forward in order to integrate quantum information into methods of ma-
chine learning or vice versa.

4.2 A Quantum Pattern Classification Algorithm

The quantum pattern classification (QPC) algorithm we present here uses the
same distance-based classification principle as kNN, only that instead of chosing
nearest neighbours, the distance of the entire training vector set is considered
(see Figure 2). It draws on an algorithm presented in the context of quantum
associative memory in [32]. The idea is to create a superposition of the training
data set and ‘write’ the Hamming distance to the input state into the amplitude
of each vector in the superposition. Measuring the class-qudit then retrieves
the desired class with the highest probability. Even more, if repeated enough
times to achieve statistical significance, the algorithm leads to a probability
distribution containing information on how close each class members are to the
input vector. Note that the following requires an understanding of the circuit
model of quantum computing that was touched upon in Section 2, and readers
not sufficiently familiar with quantum information theory might prefer to only
consider the result in Eq (2) and the discussion thereafter.

The initial step of the algorithm is to construct a ‘training set superposition’
containing the training data,

|T 〉 = 1√
N

∑

p

|vp1 ...vpn, cp〉 .

While this ‘training phase’ is trivial in the classical case, the efficient preparation
of a quantum system in an arbitrary initial state is still an open problem, and
also questions of quantum memory devices have not been resolved yet. However,
algorithms to construct the initial state from a ground state can be found in
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[32,34] and have linear complexity, just as accessing each bit from a classical
memory would have. From this we construct the initial state

|ψ0〉 =
1√
N

∑

p

|x1...xn; v
p
1 ...v

p
n, c

p; 0〉 .

It is made of three registers, the first containing the input state, the second
containing the superposition |T 〉 and the third containing an ancilla qubit set to
zero. In the first step, the ancilla is put into a superposition through a Hadamard
gate, leading to

|ψ1〉 =
1√
N

∑

i

|x1...xn; v
p
1 ...v

p
n, c

p〉 ⊗ 1√
2
(|0〉+ |1〉).

For reasons of readibility we factor the ancilla state out for now. Following [32],
in a second step the Hamming distance between each qubit of the first and second
register,

dik =

{
1, if |vpk〉 = |xk〉 ,
0, else,

replaces the qubits in the second register. This is done by applying an
cNOT(a, b)-gate (see Section 2) which overwrites the second entry b with 0 if
a = b and else with 1. We use the X gate to reverse the states in the second
register, since in the end we want a strong ‘signal’ for small Hamming distances.
Note that the gates have no effect on the class and ancilla states. The second
step consequently reads

|ψ2〉 =
∏

k

X(xk) cNOT(xk, v
p
k) |ψ1〉

=
1√
N

∑

p

|x1...xn; d
p
1...d

p
n, c

p〉 ⊗ 1√
2
(|0〉+ |1〉).

We then use the unitary operator

U = e−i π
2nH with H = 1⊗

∑

k

(
σz + 1

2

)

dk

⊗ 1⊗ (σz)c ,

to sum up the reverse single-qubit Hamming distances dpk of each training vector
|vp1 ...vpn〉 in order to write the total reverse Hamming distance between input
vector and the pth training vector, d̄H(x,vp), into the phase of the ith state of
the superposition (together with a negative sign if the ancilla qubit is |1〉). The
state after the third step is consequently given by

|ψ3〉 = U |ψ2〉 =
1√
2N

∑

p

ei
π
2n d̄H(x,vp) |x1...xn; d

p
1...d

p
n, c

p; 0〉

+ e−i π
2n d̄H(x,vp) |x1...xn; d

p
1...d

p
n, c

p; 1〉 . (1)
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Another Hadamard transformation on the ancilla state, H = 1 ⊗ 1 ⊗ 1 ⊗ Ha,
writes the phase information into the amplitudes,

|ψ4〉 = H |ψ3〉 =
1√
N

∑

p

cos
[ π

2n
d̄H(x,vp)

]
|x1...xn; d

p
1...d

p
n, c

p; 0〉

+ sin
[ π

2n
d̄H(x,vp)

]
|x1...xn; d

p
1...d

p
n, c

p; 1〉 .

The ancilla does not only allow for this trick, but also gives us a possibility
to test if the Hamming distance between the input we aim to classify, |x〉, and
the states |vp〉 , p = 1, ..., P is on average large or small. If the new input is
far away from most training patterns, we have a much higher probability to
measure the ancilla in the state |1〉, if the input is close to many patterns we end
up in state |0〉. Trugenberger in his quantum associative memory only accepts
inputs that have a sufficiently high probability of an ancilla state in |0〉, arguing
that only in this case an associative memory can be reliable. Although our QPC
algorithm should not rely on the average distance between the input and the
training vectors, for the following retrieval step we have to measure the ancilla
until we get a |0〉 in order to retrieve the cosine part of the sum. Obviously,
the closer the input is to the training set, the more likely that we succeed. Our
simulations show that the probability for this measurement,

P (0a) =
1

N

∑

p

cos2
[ π

2n
d̄H(x,vp)

]
,

is higher than 2
3 for standard examples like the MNIST3 handwritten digit

database.
There are two versions of how to proceed, one that corresponds to a “k → all”

method assigning the class of vectors that are on average closer to the input, and
another version that measures the pattern register and retrieves neighbours with
a probability weighed by their distance, and chooses the class most represented
by this pool.

Following the first version, the last step is a measurement of the class-qudit
along the standard basis. This step varies from [32], in which step two gets
reversed in order to measure along the basis of the training vectors and retrieve
the most likely (i.e. close) candidate. However, for classification problems we
are fortunately not interested in the actual features of the nearest neighbours
of |x1...xn〉, but merely in their class assignment. In superposition |ψ4〉, the
different classes appear weighted by their member’s distance to the input that
is to classify. This is obvious if we rewrite state |ψ4〉 as

3 The Mixed National Institute of Standards and Technology database is a collection of
handwritten digits and can be retrieved from http://yann.lecun.com/exdb/mnist/

[last visit 19/9/2014].

http://yann.lecun.com/exdb/mnist/
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|ψ4〉 =
1√
N

d∑

c=1

|c〉 ⊗
∑

l∈c

cos
[ π

2n
d̄H(x,vl)

] ∣
∣x1...xn; d

l
1...d

l
n; 0

〉

+ sin
[ π

2n
d̄H(x,vl)

] ∣
∣x1...xn; d

l
1...d

l
n; 1

〉
,

where l runs over all training vectors classified with the label c. The probability
to measure a certain class c ∈ {1, ..., d} provided we previously measured the
ancilla in 0 is given by

P(c) =
1

NP (0)

∑

l∈c

cos2
[ π

2n
d̄H(x,vl)

]
, (2)

a value that scales with the average Hamming distance between the input and
all training vectors in this class. If we measure the class qudit of a sufficient
number of copies of superposition |ψ4〉, we can consequently retrieve the optimal
class label for |x1...xn〉. This can be further processed as classical information,
or as a new training vector

∣
∣vP+1

1 , ..., vP+1
n , cP+1

〉
= |x1...xn, cx〉 if we discard

the qubits d1...dn in the second register.

The second version would go as in [32,33], only that we are not interested in
the closest training vector, but in the class of a number of close vectors. As in
kNN, we assign the class that is the most represented amongst the neighbours.
The difference to the classical algorithm is thereby that we do not necessarily
pick the k nearest neighbours, but any neighbours with a probability that is
proportional to their proximity to the input vector.

5 Discussion

The quantum pattern classification algorithm sketched above runs in polynomial
time O(TPn)4 where n is the size of the feature vectors, P is the number of
training examples and T is a accuracy threshold. More precisely, we have 4n+2
operations for the retrieval algorithm (the unitary U can be decomposed into 2n
elementary operations [33]), which we run T times to get a sufficiently precise
picture from the measurement results. The construction of the superposition
lies in O(Pn) [34,33]. As a rough comparison, the classical kNN also has to
compute the distance to all P n-dimensional training examples, which leads
to a similar complexity class. An interesting point is that if we find a more
efficient way to construct the superposition |T 〉 in O(n), or receive it from a
quantum memory device, the quantum version of this pattern classification
algorithm would be independent of the number of training vectors, some-
thing that seems impossible to achieve in a classical version. In addition to
this, the distance weighting (assigning a weight to each neighbour) does not
require an additional step, but is ‘combined’ with the measuring of the distances.

4 The complexity of a quantum algorithm is measured through the number of elemen-
tary gates that have to be applied to simulate the quantum evolution.
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0
9

Fig. 3. Example of an ambiguous input image for the task of handwritten digit recog-
nition. The image is taken from the training set of the MNIST database and shows
the original (left) and binarised (right) example of a handwritten ‘9’ that can easily be
recognised as a 0 or a 9.

To illustrate another advantage of the quantum pattern classification algo-
rithm, we consider the problem of recognising (in other words, classifying) hand-
written digits, for example from the above mentioned MNIST handwritten digit
database. Of course, running the algorithm on the unpreprocessed data of the
binarised grey-shade pixel is only as successful as any classical algorithm exe-
cuting a majority decision based on the Hamming distance between input and
training vectors. This is without question a rather imprecise approach and our
simulations show that approximately 50% of the digits of a test set of 100 ex-
amples can be classified correctly by this method (using a training set of 400
examples), a value that can be slightly improved by a scaling parameter ε intro-
duced through a global phase shift in Eq (1). Still, the MNIST example helps
to demonstrate how quantum computing offers a general advantage in cases of
ambiguous inputs. Consider an image of a handwritten 9 that is easily mistaken
for a 0, especially when applying a rough classification method based on the
Hamming distance (see Figure 3). The classical kNN algorithm would lead to a
deterministic output of either 0 or 9. On the other hand, repeating the quantum
algorithm several times would lead to a distribution of outputs governed by Eq
(2), and we would expect the 0 and 9 to be almost equally frequent. As a conse-
quence, the quantum algorithm produces additional information on the quality of
the judgement in a classification task. In other words, the probabilistic output of
quantum algorithms presents an asset for pattern classification, as can be shown
through a method as simple as the one presented here. Future works would have
to extend the quantum algorithm to allow for continuous inputs, and investigate
ways to exploit its advantages using more complex distance measures. This is
beyond the scope of this publication, in which we merely intend to demonstrate
the potential of pattern classification through quantum information. In general,
methods of quantum machine learning might become an important extension
to the field of machine learning, and create an exciting opportunity for both
quantum physicists and computer scientists.
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and National Research Foundation.
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