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Abstract. We show a kernel of at most 14k vertices for the Planar
Feedback Vertex Set problem. This improves over the previous ker-
nel of size bounded by 97k. Our algorithm has a few new reduction rules.
However, our main contribution is an application of the region decom-
position technique in the analysis of the kernel size.

1 Introduction

A feedback vertex set in a graph G = (V,E) is a set of vertices S ⊆ V such that
G−S is a forest. In the Feedback Vertex Set problem, given a graph G and
integer k one has to decide whether G has a feedback vertex set of size k. This is
one of the fundamental NP-complete problems, in particular it is among the 21
problems considered by Karp [8]. It has applications e.g. in operating systems
(see [9]), VLSI design, synchronous systems and artificial intelligence (see [6]).

In this paper we study kernelization algorithms, i.e., polynomial-time algo-
rithms which, for an input instance (G, k) either conclude that G has no feedback
vertex set of size k or return an equivalent instance (G′, k′), called kernel. In this
paper, by the size of the kernel we mean the number of vertices of G′. Burrage
et al. [5] showed that Feedback Vertex Set has a kernel of size O(k11), which
was next improved to O(k3) by Bodlaender [3] and to 4k2 by Thomassé [10].

In this paper we study Planar Feedback Vertex Set problem, i.e.,
Feedback Vertex Set restricted to planar graphs. Then one can get a kernel
of size O(k) by general tools based on the bidimensionality theory [7]. However,
in this general algorithm the constants hidden in the O notation are very large.
Bodlaender and Penninkx [4] gave a simple (to implement) algorithm which out-
puts a kernel of size at most 112k. This was improved recently by Abu-Khzam
and Khuzam [1] to 97k. In this paper we improve this bound substantially, to
14k. More precisely, we show the following result.

Theorem 1.1. There is an algorithm that, given an instance (G, k) of Planar
Feedback Vertex Set, either reports that G has no feedback vertex set of
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size k or produces an equivalent instance with at most 14k − 24 vertices. The
algorithm runs in O(kn) time, where n is the number of vertices of G.

To obtain Theorem 1.1, we extend the algorithms in the previous works [1,4] by a
few new reduction rules. However, our main contribution is an application of the
region decomposition technique in the analysis of the kernel size. Region decom-
position was developed for the Dominating Set problem by Alber et al. [2].
Roughly, in this method the plane instance is decomposed into O(k) regions (i.e.
subsets of the plane) such that every region contains O(1) vertices of the graph.
We apply this approach in a slightly relaxed way: the regions are the faces of a
k-vertex plane graph and the number of vertices in each region is linear in the
length of the corresponding face. In [1,4] kernel size was bounded using different
methods, e.g., using bounds on the number of edges in general and bipartite
planar graphs. In our opinion region decomposition gives tighter bounds. In par-
ticular, we present a tight example, i.e., an example of a family of graphs which
can be returned by our algorithm and have 14k − O(1) vertices.

Organization of the paper. In Sect. 2 we present a kernelization algorithm
which is obtained from the algorithms in [1,4] by generalizing a few reduction
rules, and adding some completely new rules. In Sect. 3 we present an analysis of
the size of the kernel obtained by our algorithm. In the analysis we assume that
in the reduced graph, for every induced path with � internal vertices, the internal
vertices have at least three neighbors outside the path. Based on this, we get the
bound of (2� + 4)k − (4� + 6) for the number of vertices in the kernel. In Sect. 2
we present reduction rules which guarantee that in the kernel � ≤ 6, resulting
in the kernel size bound of 16k − 30. To get the claimed bound of 14k − 24
vertices we use a complex set of reduction rules, which allow us to conclude that
� ≤ 5. Due to space limitations these additional rules are deferred to the journal
version.

Notation. In this paper we deal with multigraphs, though for simplicity we
refer to them as graphs. (Even if the input graph is simple, our algorithm may
introduce multiple edges.) Recall that by the degree of a vertex x in a multi-
graph G, denoted by degG(x), we mean the number of edges incident to x in G.
By NG(x), or shortly N(x), we denote the set of neighbors of x. Note that in
a multigraph |NG(x)| ≤ degG(x), but the equality does not need to hold. The
neighborhood of a set of vertices S is defined as N(S) = (

⋃
v∈S N(v)) \ S. For a

face f in a plane graph, a facial walk of f is the shortest closed walk induced by
all edges incident with f . The length of f , denoted by d(f) is the length of its
facial walk.

2 Our Kernelization Algorithm

In this section we describe our algorithm which outputs a 16k-kernel for Planar
Feedback Vertex Set. The algorithm exhaustively applies reduction rules.
Each reduction rule is a subroutine which finds in polynomial time a certain
structure in the graph and replaces it by another structure, so that the resulting
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Fig. 1. Reduction rules 1–7. Dashed edges are optional. We draw in black the vertices
whose incident edges are all already drawn (as solid or dashed edges), in white the
vertices which might be incident to other edges. Regardless of their color, vertices in
the figures may not coincide.

instance is equivalent to the original one. More precisely, we say that a reduction
rule for parameterized graph problem P is correct when for every instance (G, k)
of P it returns an instance (G′, k′) such that:

(a) (G′, k′) is an instance of P ,
(b) (G, k) is a yes-instance of P iff (G′, k′) is a yes-instance of P , and
(c) k′ ≤ k.

Below we state the rules we use. The rules are applied in the given order,
i.e., in each rule we assume that the earlier rules do not apply. We begin with
some rules used in the previous works [1,4] (Fig. 1).

Rule 1. If there is a loop at a vertex v, remove v and decrease k by one.
Rule 2. Delete vertices of degree at most one.
Rule 3. If a vertex u is of degree two, with incident edges uv and uw, then
delete u and add the edge vw. (Note that if v = w then a loop is added.)
Rule 4. If a vertex u has exactly two neighbors v and w, edge uv is double, and
edge uw is single, then delete v and u and decrease k by one.
Rule 5. If there are at least three edges between a pair of vertices, remove all
but two of the edges.
Rule 6. Assume that there are five vertices a, b, c, v, w such that 1) both v and
w are neighbors of each of a, b, c and 2) each vertex x ∈ {a, b, c} is incident with
at most one edge xy such that y �∈ {v, w}. Then remove all the five vertices and
decrease k by two.

The correctness of the above reduction rules was proven in [1]. (In [1], Rule 6 is
formulated in a slightly less general way which forbids multiplicity of some edges,
but the correctness proof stays the same.) Now we introduce a few new rules.

Rule 7. If a vertex u has exactly three neighbors v, w and x, v is also adjacent
to w and x, and both edges uw and ux are single, then contract uv and add
an edge wx (increasing its multiplicity if it already exists). If edge uv was not
single, add a loop at v.
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Lemma 2.1. Rule 7 is correct.

Proof. Let G′ be the graph obtained from a graph G by a single application
of Rule 7. Let S be a feedback vertex set of size k in G′. We claim S is a
feedback vertex set in G too. Assume for a contradiction that there is a cycle C
in G−S. Then u ∈ V (C), for otherwise C ⊆ G′. If v ∈ S then {wu, ux} ⊆ C and
C − {wu, ux} + {wx} is a cycle in G′, a contradiction. If v �∈ S, then w, x ∈ S
and hence v is the only neighbor of u in G−S, so C is the 2-cycle uvu. But then
G′ − S contains a loop at v, a contradiction.

Let S be a feedback vertex set of size k in G. If |{u, v} ∩ S| = 2, then
S \ {u} ∪ {w} is a feedback vertex set of size k in G′. Assume |{u, v} ∩ S| = 1.
Then we can assume v ∈ S for otherwise we replace S by S \ {u}∪ {v}, which is
also a feedback vertex set in G. If there is a cycle C in G′ − S, then wx ∈ E(C),
for otherwise C ⊆ G − S. But then C − {wx} + {wu, ux} is a cycle in G, a
contradiction. Finally, if |{u, v}∩S| = 0 then both w and x are in S, so S is also
a feedback vertex set in G′. �

Rule 8. Let A ⊆ V (G) and let w1 and w2 be two vertices in G, w1, w2 �∈ A.
If (i) no cycle in G \ {w1, w2} intersects A, and (ii) there is a subgraph Q ⊆
G[A∪{w1, w2}] with |V (Q)| ≥ 2 such that for every vertex x ∈ V (Q)\{w1}, we
have degQ(x) ≤ |E(Q)| − |A| − 1, then remove w1 and decrease k by 1.

Lemma 2.2. Rule 8 is correct.

Proof. Let G′ be the graph obtained from a graph G by a single application of
Rule 8, i.e., G′ = G − w1. Let S be a feedback vertex set of size k − 1 in G′.
Then every cycle in G − S contains w1, so S ∪ {w1} is a feedback vertex set of
size k in G.

Let S be a feedback vertex set of size k in G. If w1 ∈ S, then clearly S \{w1}
is a solution of the instance (G′, k − 1). Hence assume w1 �∈ S. We claim that
|S∩V (Q)| ≥ 2. Assume the contrary, i.e., |S∩V (Q)| ≤ 1. Since Q−S is a forest,

|E(Q−S)| ≤ |V (Q−S)|−1 = |V (Q)|−|S∩V (Q)|−1 ≤ |A|+1−|S∩V (Q)|. (1)

On the other hand, by the degree bound, and because w1 �∈ S and |S∩V (Q)| ≤ 1,

|E(Q − S)| ≥ |E(Q)| − (|E(Q)| − |A| − 1)|S ∩ V (Q)|. (2)

By (1) and (2), |A|+1 ≥ |E(Q)|−(|E(Q)|−|A|−2)|S∩V (Q)|. Since |S∩V (Q)| ≤ 1
this implies |A| + 1 ≥ |E(Q)| − (|E(Q)| − |A| − 2) = |A| + 2, a contradiction. It
follows that |S ∩ V (Q)| ≥ 2. Then S′ = S \ {u, v1, v2, v} ∪ {w1, w2} is of size at
most k. Moreover, S′ is a feedback vertex set in G, since S is a feedback vertex
set and by (i). Again, this implies that S′ \ {w1} is a solution of the instance
(G′, k − 1), as required. �

Rule 8 is not used directly in our algorithm, because it seems impossible to
detect it in O(n) time. However, to get the claimed kernel size we need just a
few special cases of Rule 8, which are stated in Lemmas 2.3, 2.4 and 2.5 below
(Fig. 2).
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Fig. 2. Configurations in Lemmas 2.3, 2.4, and 2.5.

Lemma 2.3. Assume there is an induced path uv1v2v such that for some ver-
tices w1, w2 outside the path we have N(u) = {v1, w1, w2}, N({v1, v2})\{u, v} ⊆
{w1, w2}, and there is at most one edge incident to v and a vertex outside
{w1, w2, v2}. Then Rule 8 applies.

Proof. It is easy to see that condition (i) of Rule 8 is satisfied. We proceed to
condition (ii). By symmetry we can assume |N(w1) ∩ {v, v1, v2}| ≥ |N(w2) ∩
{v, v1, v2}|. Let A = {u, v1, v2, v}. We build E(Q) as follows. First, we put the
five edges uw1, uw2, uv1, v1v2, v2v in Q. Since Rule 3 does not apply, there
are no vertices of degree two in G and all of v, v1 and v2 are adjacent to w1

or w2 (or to both). For every y ∈ {v, v1, v2}, if yw1 ∈ E, then we add edge
yw1 to Q, and otherwise we add yw2 to Q. Thus |E(Q)| = 8. Moreover, since
|N(w1) ∩ {v, v1, v2}| ≥ |N(w2) ∩ {v, v1, v2}|, in this last step at least two edges
added to Q are incident with w1, and at most one to w2. Hence, for every
x ∈ V (Q) \ {w1} we have degQ(x) ≤ 3 = |E(Q)| − |A| − 1. �

Lemma 2.4. Assume there are six vertices v1, v2, u1, u2, w1, w2 such that
N(v1) = {w1, w2, v2}, N(u1) = {w1, w2, u2}, there is at most one edge incident
to v2 and a vertex outside {w1, w2, v1} and at most one edge incident to u2 and
a vertex outside {w1, w2, u1}. Moreover, assume that the edges v1v2 and u1u2

are simple. Then Rule 8 applies.

Proof. It is easy to see that condition (i) of Rule 8 is satisfied. It is easy to
see that condition (i) of Rule 8 is satisfied. We proceed to condition (ii). By
symmetry we can assume |N(w1) ∩ {v2, v3}| ≥ |N(w2) ∩ {v2, v3}|. Let A =
{u, v1, v2, v3}. We build E(Q) as follows. First, we put the six edges v1v2, v1w1,
v1w2, v2v3, uw1, and uw2 in Q. Since Rule 3 does not apply, there are no
vertices of degree two in G and both v2 and v3 are adjacent to w1 or w2

(or to both). For every y ∈ {v2, v3}, if yw1 ∈ E, then we add edge yw1

to Q, and otherwise we add yw2 to Q. Thus |E(Q)| = 8. Moreover, since
|N(w1)∩{v2, v3}| ≥ |N(w2)∩{v2, v3}|, in this last step at least one edge added to
Q is incident with w1, and at most one to w2. Hence, for every x ∈ V (Q) \ {w1}
we have degQ(x) ≤ 3 = |E(Q)| − |A| − 1. �

Lemma 2.5. Assume there are six vertices v1, v2, v3, u, w1, w2 such that
N(v1) = {w1, w2, v2}, {v1, v3} ⊆ N(v2) ⊆ {w1, w2, v1, v3}, there is at most
one edge incident to v3 and a vertex outside {w1, w2, v2} and at most one edge
incident to u and a vertex outside {w1, w2}. Moreover, the edges v1v2 and v2v3
are simple. Then Rule 8 applies.
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Proof. We proceed very similarly as in the proof of Lemma 2.4. �

Rule 9. Assume there is an induced path with endpoints u and v and with
six internal vertices v1, . . . , v6 such that for some vertices w1, w2 outside the
path N({v1, . . . , v6}) \ {u, v} = {w1, w2}. If |N(w1) ∩ {v1, . . . , v6}| ≥ |N(w2) ∩
{v1, . . . , v6}|, then remove w1 and decrease k by one.

The correctness of Rule 9 is shown in [1]. In [1] it was assumed that when Rule 9
described above is applied, G does not contain an induced path v1, . . . , v5 such
that for some vertex w, we have N(v2, v3, v4) \ {v1, v5} = {w}. In our algorithm
this is guaranteed by Rule 7 (slightly more general than their Rule 6).

To complete the analysis we need a final rejecting rule which is applied when
the resulting graph is too big. In Sect. 3 we prove that Rule 10 is correct.

Rule 10. If the graph has more than 16k−30 vertices, return a trivial no-instance
(conclude that there is no feedback vertex set of size k in G).

We are able to extend Rule 9 as follows.

Lemma 2.6. Assume there is an induced path with endpoints u and v and with
five internal vertices v1, . . . , v5 such that for some vertices w1, w2 outside the
path N({v1, . . . , v5}) \ {u, v} = {w1, w2}. Then there is an instance (G′, k′) with
|V (G′)| < |V (G)| such that (G, k) is a yes-instance iff (G′, k′) is a yes-instance
and k′ ≤ k.

The proof of Lemma 2.6 contains many cases and is thus deferred to a journal
version due to space limitations. We stress here that even without Lemma 2.6, in
this paper we give a self-contained kernelization algorithm which returns a kernel
of size at most 16k. If one aims at a 14k-kernel, beside adding the reduction rule
from Lemma 2.6, the bound in Rule 10 should be replaced by 14k − 26.

Running time. It is easy to verify that the whole algorithm works in O(kn)
time (details deferred to the journal version).

3 The Size Bound

In this section we prove the following theorem.

Theorem 3.1. Let G be a planar graph such that rules 1–7 do not apply and
G does not contain the configurations described in Lemmas 2.3, 2.4 and 2.5.
Assume also that for every induced path P with endpoints u and v and with �
internal vertices v1, . . . , v� the internal vertices have at least three neighbors
outside the path, i.e., |N({v1, . . . , v�}) \ {u, v}| ≥ 3. If there is a feedback vertex
set of size k in G, then |V (G)| ≤ (2� + 4)k − (4� + 6).

Let S be a feedback vertex set of size k in G (i.e., a “solution”), and let F be the
forest induced by V (G) \ S. Denote the set of vertices of F by VF = V (G) \ S.
We call the vertices in S solution vertices and the vertices in VF forest vertices.
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A partition of VF . Now we define some subsets of VF . Let I2, I3+ ⊆ VF denote
the vertices whose degree in F is two or at least three, respectively. The leaves
of F are further partitioned into two subsets. Let L2 and L3+ be the leaves of
F that have two or at least three solution neighbors, respectively. By rules 2
and 3 all the vertices in G have degree at least 3. Hence, if a leaf of F has fewer
than two solution neighbors, Rule 4 or 5 applies. It follows that every leaf of F
belongs to L2 ∪ L3+ . This proves claim (i) of Lemma 3.2 below.

Lemma 3.2. Graph G satisfies the following properties.

(i) The sets I2, I3+ , L2, L3+ form a partition of VF .
(ii) For every pair u, v of solution vertices there are at most two vertices x, y ∈

L2 such that N(x) ∩ S = N(y) ∩ S = {u, v}.
(iii) Every vertex of G is of degree at least three.
(iv) Every face of G is of length at least two.

Claim (ii) follows from the fact that Rule 6 does not apply to G. Claim (iii)
follows because rules 2 and 3 do not apply to G and Claim (iv) by Rule 1.

The inner forest. Let FI be the forest on the vertex set I3+ ∪ L3+ such that
uv ∈ E(FI) iff for some integer i ≥ 0, there is a path ux1 · · · xiv in forest F such
that u, v ∈ I3+ ∪ L3+ and for every j = 1, . . . , i, vertex xi belongs to I2.

Three sets of short chains. A path in F consisting of vertices from I2 ∪ L2

will be called a chain. A chain is maximal if it is not contained in a bigger chain.
In what follows we introduce three sets of (not necessarily maximal) chains,
denoted by CL2, C2− and C3+ . We will do it so that each vertex in I2 belongs
to at least one chain from these sets of chains.

For every vertex x ∈ L2, we consider the maximal chain (y1, . . . , yp) of degree
2 vertices in F such that y1 is adjacent to x and no yi has a solution neighbor
outside NG(x) ∩ S. Then the chain (x, y1, . . . , yp) is an element of CL2. Note
that L2 ⊆ V (CL2).

Chains of C2− and C3+ are defined using the following algorithm. We consider
maximal chains in F , one by one (note that all maximal chains are vertex-
disjoint). Let c = (x1, x2, . . . , xp) be a maximal chain. The vertices of c are
ordered so that if {x1, xp} ∩ L2 �= ∅, then xp ∈ L2. Using vertices of c we form
disjoint bounded length chains and put them in the sets C2− and C3+ as follows.
Assume that for some i < p the vertices of a prefix (x1, x2, . . . , xi) have been
already partitioned into such chains (in particular i = 0 if we begin to process c).
There are three cases to consider.

Consider a shortest chain ci = (xi+1, . . . , xj) such that the vertices of ci have
at least three solution neighbors, i.e., |S ∩ N({xi+1, . . . , xj})| ≥ 3. If the chain
ci exists, we put it in C3+ , and we proceed to the next vertices of c. Otherwise
we consider the chain c′

i = (xi+1, . . . , xp). Note that vertices of c′
i have at most

two solution neighbors.
If xp ∈ I2, then we add the chain c′

i to C2− and we finish processing c. Note
that then xp is adjacent to a vertex u ∈ L3+ ∪ I3+ (otherwise c is not maximal,
as we can extend it by a vertex in L2). Moreover, because of the order of the
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vertices in c, we know that x1 �∈ L2. It follows that x1 is also adjacent to a vertex
v ∈ L3+ ∪ I3+ . Hence, uv ∈ E(FI). We assign chain c′

i to edge uv.
If xp ∈ L2, then we do not form a new chain and we finish processing c. Note,

however, that the vertices {xi+1, . . . , xp} ∩ I2 belong to a chain in CL2.
Note also that some vertices of the first chain c0 can belong to two chains,

one in C3+ and one in CL2.
Let us summarize the main properties of the construction.

Lemma 3.3. The following properties hold:

(i) Every vertex from I2 belongs to a chain in CL2, C2− or C3+ .
(ii) Every chain in CL2 ∪ C2− has at most two solution neighbors.
(iii) Every chain in C3+ has at least three solution neighbors.
(iv) Every chain in C2− is assigned to a different edge of inner forest FI .
(v) Every chain in C2− ∪ CL2 has at most � − 1 vertices.
(vi) Every chain in C3+ has at most � vertices.

A solution graph HS . Let us introduce a new plane multigraph HS = (S,ES).
Since the vertices of HS are the solution vertices we call it a solution graph. From
now on, we fix a plane embedding of G. The vertices of HS are embedded in
the plane exactly in the same points as in G. The edge multiset ES is defined as
follows. For every triple (u, x, v) such that u, v ∈ S, x ∈ L2 and there is a path
uxv in G, we put an edge uv in ES . Moreover, the edge uv is embedded in the
plane exactly as one of the corresponding paths uxv (note that there can be up
to four such paths if some edges are double). Note that by Lemma 3.2(ii), every
edge of HS has multiplicity at most two.

The set of faces of HS is denoted by FS . By FS,2 we denote its subset with
the faces of length two, while FS,3+ are the remaining faces. Note that there are
no faces of length 1 in HS .

Lemma 3.4. We have |V (CL2)| ≤ 3(|ES | − |FS,2|).
Proof. By the definition, for every vertex x ∈ L2 there is a corresponding edge
uv ∈ ES , where NG(x) ∩ S = {u, v}. Also, for every chain c in CL2 there is a
corresponding vertex x ∈ L2, and thus a corresponding edge uv ∈ ES . We assign
x, c and the vertices of c to the pair {u, v}.

Consider an arbitrary pair u, v such that uv ∈ ES . Note that there are
exactly |ES | − |FS,2| such pairs. We claim that there are at most three elements
in V (CL2) assigned to the pair {u, v}. Indeed, by Lemma 3.2(ii), there are at
most two vertices in L2 assigned to {u, v}. If there are no such vertices, no chain
in CL2 is assigned to {u, v}, so the claim holds. If there is exactly one vertex
x ∈ L2 assigned, there is exactly one chain c ∈ CL2 assigned. By Lemma 2.3,
chain c has at most three vertices, so the claim holds. Finally, if there are exactly
two vertices x, y ∈ L2 assigned, there are exactly two chains cx and cy assigned.
By Lemmas 2.4 and 2.5 we have |V (cx)| + |V (cy)| ≤ 3. This concludes the
proof. �
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Maximality. In what follows we assume that graph G is maximal, meaning that
one can add neither an edge to E(G) nor a vertex to L2 obtaining a graph G′ such
that S is still a feedback vertex set of G′ and all the claims of Lemmas 3.2, 3.3
and 3.4 hold. Note that the number of L2-vertices which can be added to G
is bounded, since each such vertex corresponds to an edge in HS , and HS has
at most 6|S| edges as a plane multigraph with edge multiplicity at most two.
Similarly, once the set of L2-vertices is maximal, and hence the vertex set of G
is fixed, the number of edges which can be added to G is bounded by 6|V (G)|.
It follows that such a maximal supergraph of G exists. Clearly, it is sufficient to
prove Theorem 3.1 only in the case when G is maximal.

Lemma 3.5. The planar graph HS is connected.

Proof. Assume now for contradiction that there is a partition S = S1 ∪ S2 such
that there is no edge in HS between a vertex of S1 and a vertex of S2.

Every face of G is incident to at least one vertex of S, for otherwise the
boundary of the face does not contain a cycle, a contradiction. Assume that a
face f of G contains a solution vertex u1 in S1 and a solution vertex u2 in S2.
Then we can add a vertex x, two edges xu1 and two edges xu2. Note that
S is still a feedback vertex set in the new graph; in particular now x ∈ L2.
In the new graph there are no more vertices in L2 adjacent to both u1 and u2

because of our assumption that S1 and S2 are not connected by an edge in HS , so
Lemma 3.2(ii) holds. Moreover, |V (CL2)| was increased by one and |ES |−|FS,2|
was also increased by one, so Lemma 3.4 holds. The other claims of Lemmas 3.2
and 3.3 trivially hold, so F is not maximal, a contradiction.

Let F1 and F2 be the collections of faces of G containing a vertex in S1, or
in S2, respectively. We have shown above that F1 ∪ F2 is a partition of the set
of all the faces of G. Let V1 and V2 denote the sets of vertices incident to a face
in F1, or in F2, respectively. Note that V1 ∩ V2 �= ∅, since there must be two
neighboring faces, one in F1 and the other in F2. Let x ∈ V1 ∩ V2. Since faces
of G are of length at least two, x has in G at least two neighbors in V1 ∩ V2. It
follows that G[V1 ∩ V2] has minimum degree two, so G[V1 ∩ V2] contains a cycle.
However, (V1 ∩ V2) ∩ S = ∅, since F1 and F2 are disjoint. Hence V1 ∩ V2 ⊆ F , a
contradiction. �

Bounding the number of forest vertices in a face of HS . For a face f of HS

and a set of vertices A ⊆ V (G) we define Af as the subset of A of vertices which
are embedded in f or belong to the boundary of f . Note that all vertices of every
chain belong to the same face f of HS . When C is a set of chains, by Cf we denote
the subset of chains of C which lie in f , i.e., Cf = {c ∈ C : V (c) ⊆ V (G)f}.

Lemma 3.6. For every face f of HS, it holds that |Lf
3+ | + |If

3+ | + |Cf
3+ | ≤

d(f) − 2.

Proof. First we note that the forest F f is in fact a tree. Indeed, if F f has more
than one component, we can add an edge between two solution vertices on the
boundary of f preserving planarity, what contradicts the assumed maximality.
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Consider a plane subgraph A of G induced by V (G)f , i.e., we take the plane
embedding of G and we remove the vertices outside V (G)f . Then we can define
graph AS , analogously to HS . We treat f as a face of AS . Let u1u2 · · · ud(f)u1

be the facial walk of f .
Consider an arbitrary vertex x of If

3+ . Let T1, . . . , Tr be the r trees obtained
from the tree T in F containing x after removing r from T . Then r ≥ 3
since x has at least three neighbors in T . By planarity, there are 2r indices
b1, e1, b2, e2, . . . , br, er such that for every i = 1, . . . , r

{ubi , uei
} ⊆ N(V (Tt)) ∩ {u1, . . . , ud(f)} ⊆ {ubi , ubi+1, . . . , uei

}.

Then, for every j ∈ {b1, b2, . . . , br} there is an edge xuj , for otherwise we can
add it in the current plane embedding, contradicting the maximality of G. This
means that every vertex in If

3+ has at least three neighbors in {u1, u2, . . . , ud(f)}.
We further define B as the plane graph obtained from A by (1) replacing

every triple (u, x, v) where x ∈ L2, u, v ∈ S and uxv forms a path by a single
edge uv, (2) removing vertices of V (CL2), (3) contracting every chain from C3+

into a single vertex, and (4) contracting every chain from C2− into a single edge.
By (4) we mean that every maximal chain d = x1, . . . , xi of I2 vertices which is
contained in a chain from C2− , is replaced by the edge yz where y and z are the
forest neighbors (in L3+ ∪ I3+) of x1 and xi outside the chain d. Let us call the
vertices of B that are not on the boundary of f as inner vertices.

Note that the set of inner vertices is in a bijection with Lf
3+ ∪ If

3+ ∪ Cf
3+ .

Moreover, I forms a tree, since F f is a tree. Also, each inner vertex has at
least three neighbors in {u1, u2, . . . , ud(f)}. We show that |I| ≤ d(f) − 2 by the
induction on d(f). When d(f) = 2 the claim follows since each inner vertex has
at least three neighbors on the boundary of f . Now assume d(f) > 2. Let x be
leaf in the tree I. Then the edges from x to the boundary of face f split F into
at least three different faces. The subtree I −x lies in one of these faces, say face
bounded by the cycle xuiui+1 · · · ujx. We remove x and vertices uj+1, . . . , ui−1

(there is at least one of them) and we add edge uiuj . The outer face of the
resulting graph is of length at most d(f) − 1, so we can apply induction and the
claim follows. �

Lemma 3.7. For every face f in HS of length at least three,

|V f
F \ V (CLf

2 )| ≤ � · (d(f) − 2) − (� − 1).

Proof. We have

|V f
F \ V (CLf

2 )| ≤ |Lf
3+ | + |If

3+ | + |V (Cf
3+)| + |V (Cf

2−)|.
By Lemma 3.3(v) we get

|V f
F \ V (CLf

2 )| ≤ |Lf
3+ | + |If

3+ | + �|Cf
3+ | + (� − 1)|Cf

2− |. (3)

By Lemma 3.3(iv), |Cf
2− | is bounded by the number of edges of the inner for-

est FI . Hence, |Cf
2− | ≤ |Lf

3+ | + |If
3+ | − 1 when |Lf

3+ | + |If
3+ | > 0 and |Cf

2− | = 0
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otherwise. In the prior case, by (3) we get that

|V f
F \ V (CLf

2 )| ≤ �(|Lf
3+ | + |If

3+ | + |Cf
3+ |) − (� − 1),

and the result then follows from Lemma 3.6. Hence it suffices to prove the claim
when |Lf

3+ | = |If
3+ | = |Cf

2− | = 0. Then the forest F f is a non-empty collection
of paths, each with both endpoints in L2. Let c be such a path on p vertices
x1, . . . , xp. Then x1 ∈ L2 and x1 has exactly two neighbors u, v in S. Let i be
the largest such that N({x1, . . . , xi})∩S = {u, v}. By definition, (x1, . . . , xi) is a
chain in CLf

2 . We infer that if i = p for every such path, then |V f
F \ V (CLf

2 )| = 0
and the claim follows. Hence we can assume that i < p, i.e., xi+1 has a neigh-
bor in S \ {u, v}. Then, by definition, (x1, . . . , xi+1) is a chain in Cf

3+ . Since
(x1, . . . , xi) ∈ CLf

2 , we get |{x1, . . . , xi+1} \ V (CLf
2 )| = 1. Hence,

|V f
F \ V (CLf

2 )| ≤ 1 + �(|Cf
3+ | − 1),

what, by Lemma 3.6, is bounded by 1 + � · (d(f) − 3) = � · (d(f) − 2) − (� − 1),
as required. �

Lemma 3.8. For every face f in HS of length two, V f
F ⊆ V (CLf

2 ).

Proof. Since the boundary of f has only two solution vertices, F f contains no
vertices of Lf

3+ , V (C3+)f or If
3+ . Then by Lemma 3.3(iv), Cf

2− is also empty.
The claim follows. �

Now we proceed to the bound of Theorem 3.1. By Lemmas 3.7 and 3.8 we have

|VF | ≤ |V (CL2)| +
∑

f∈FS,3+

(�(d(f) − 2) − (� − 1))

By Lemma 3.4 we get

|VF | ≤ 3(|ES | − |FS,2|) +
∑

f∈FS,3+

(�(d(f) − 2) − (� − 1))

= 3(|ES | − |FS,2|) +
∑

f∈FS

(�(d(f) − 2) − (� − 1)) + (� − 1)|F2,S |

= (2� + 3)|ES | − (3� − 1)|FS | + (� − 4)|F2,S |
= (2� + 3)|ES | − (2� + 3)|FS | − (� − 4)|FS | + (� − 4)|F2,S |
≤ (2� + 3)(|ES | − |FS |).

By Lemma 3.5 graph HS is connected, so we can apply Euler’s formula |S| −
|ES | + |FS | = 2. Thus,

|V (G)| = |VF | + |S| ≤ (2� + 3)(|S| − 2) + |S|,
= (2� + 4)k − (4� + 6).



108 M. Bonamy and �L. Kowalik

Fig. 3. A tight example. The big black vertices are solution vertices, the small grey
ones are forest vertices. The zigzag edges represent paths of � − 1 forest vertices, each
adjacent to the two available solution vertices. Asymptotically for larger cycles, we
have 2� + 3 forest vertices for each solution vertex.

This concludes the proof of Theorem 3.1. For � = 6, we get |V (G)| ≤ 16k−30.
If we use Lemma 2.6, we can put � = 5, which results in |V (G)| ≤ 14k − 24. In
Fig. 3 we show an example of a graph, where our reduction rules do not apply
and our analysis is tight (up to a constant additive term).

Note. We have learned that very recently Xiao [11] obtained independently a
29k-kernel for Planar Feedback Vertex Set.
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