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Abstract. Kernelization is the process of transforming the input of a
combinatorial decision problem to an equivalent instance, with a guar-
antee on the size of the resulting instances as a function of a parameter.
Recent techniques from the field of fixed parameter complexity and
tractability allow to give lower bounds for such kernels. In particular, it is
discussed how one can show for parameterized problems that these do not
have polynomial kernels, under the assumption that coNP �⊆ NP/poly.

1 Introduction

In this paper, a number of recent techniques for lower bounds for
kernelization are surveyed. The study of kernelization is motivated in two ways:
first, it allows a precise mathematical analysis what can be achieved with poly-
nomial time preprocessing of combinatorial problems. Second, a kernelization
algorithm for a (decidable) problem also gives that the problem is fixed parame-
ter tractable.

An important driving force behind much algorithm research is the intractabil-
ity of many (combinatorial) problems, coming from practical applications and
from theoretical investigations. One of the approaches when we ask for exact
solutions is to first preprocess the instances before applying an exact solver: the
former is typically fast, and the latter is typically slow (e.g., using integer linear
programming, branch and bound, a SAT-solver). In kernelization, we make the
assumption that the preprocessing takes polynomial time, is safe (in the sense
that the answer for the problem instance is the same as, or can be derived from,
the answer for the reduced instance), and we ask if there is a guaranteed upper
bound of the size of the reduced instance. This upper bound is expressed as
a function of some parameter of the input, possibly the target value, or some
structural parameter of the input.

Parameterization is very useful for the analysis of preprocessing.
The following lemma illustrates the limitations of a setting without parame-
terization.

Lemma 1 (Folklore). Let Q be an NP-hard decision problem. If we have a
polynomial time procedure, that given an input s, either decides if s ∈ Q, or
produces an input s′ with s ∈ Q ⇔ s′ ∈ Q, then P = NP .
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Proof. Suppose we have such Q. Given an input, repeatedly apply Q on its own
output till we decide. This gives a polynomial time algorithm for an NP-hard
problem. �

The study of fixed parameter tractability is motivated from the
observation that often, when we have a problem that is intractable, actual
instances may be much easier due to the fact that some parameter of these
instances is small. Again, this parameter may be the target value, or some struc-
tural parameter of the input. E.g., a combinatorial problem arising from facility
location problem may be NP-hard, but may be still polynomial time solvable
when we know that the number of facilities to be placed is at most three (e.g.,
by exhaustive search). Another example is that many NP-hard problems become
linear time solvable on graphs of bounded treewidth (see e.g., [6].) A decidable
problem has a kernel, if and only if it is fixed parameter tractable (see Lemma 2).
This strong relationship between the notions of kernelization and FPT is an
important motivation behind the research on kernelization. Kernels of smaller
size lead to faster FPT algorithms, and thus an important question is: what is
the smallest size that we can obtain for a kernel for some given parameterized
problem?

For several parameterized problems, kernels of small size are known: e.g.:
Vertex Cover has a kernel with at most 2k vertices (and O(k2) bits) (see e.g.
[1,34]) Feedback Vertex Set has a kernel with O(k2) vertices (and O(k2)
bits) [36]. There nowadays are many problems for which kernels of polynomial
size are known. But also, for many problems, no such kernels are known. Cur-
rent lower bound techniques explain why: it is shown that the problem has no
polynomial kernel (or no kernel at all) unless a currently widely believed com-
plexity theoretic assumption does not hold. Such lower bounds are useful for the
algorithm designer: like an NP-hardness proofs guides us away from trying to
design a polynomial time algorithm for a problem, here lower bounds can guide
us away from trying to design (polynomial) kernels.

In this survey, we discuss a number of techniques to show such conditional
lower bounds for kernelization.

2 Preliminaries

Throughout the paper, we assume that Σ is some finite alphabet. For a string
s ∈ Σ∗, we denote with |s| its length. A parameterized problem is a subset of
Σ∗ × N.

To a parameterized problem Q ⊆ Σ∗ × N we associate its classic variant
Qc ⊆ (Σ ∪{(, 1, )})∗, which is obtained from Q by writing the second parameter
(k) in unary.

In the literature, small variations on the definition of FPT are used. We use
here the notion of strongly uniform FPT (see [18, Section 2.1]).

Definition 1. FPT (fixed parameter tractable) is the class of parameterized
problems Q such that there is an algorithm A, that decides for a given instance
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(s, k) ∈ Σ∗ × N if (s, k) ∈ Q in O(f(k) · |s|c) time, for a computable function f
and constant c ∈ N.

Many parameterized problems are known to be fixed parameter tractable (in
FPT); the design of efficient parameterized algorithms is a very active field of
study. E.g., see [18,19,21,35].

Definition 2. A kernelization algorithm or in short, a kernel for a parameter-
ized problem Q is an algorithm A, that, given an instance (s, k) ∈ Σ∗ × N,
outputs an instance (s′, k′) ∈ Σ∗ × N, such that there are computable functions
f and g, and a constant c, with

1. A uses O(f(k)|s|c) time;
2. (s, k) ∈ A, if and only if (s′, k′) ∈ A;
3. |s′| ≤ g(k), k′ ≤ g(k).

Thus, a kernelization algorithm is a polynomial time algorithm, that trans-
forms an input for parameterized problem Q to an equivalent input, but with
the size of the latter bounded by a (computable) function in the parameter. The
function g is said to be the size of the kernel.

There are minor variations on the definition of kernelization, and also more
general notions have been studied. Some of these are reviewed in Sect. 6. The
notion of kernelization is tightly bound to the notion of fixed parameter tractabil-
ity, as the following well known result shows.

Lemma 2 (Folklore). Let Q ⊆ Σ∗ × N be a decidable problem. Then Q ∈
FPT , if and only if Q has a kernel.

Proof. Suppose Q ∈ FPT . Let A be an algorithm that decides on Q in f(k)nc

time, for some computable function f and constant c. Suppose we have an
instance (x, k) of size n. Run algorithm A for nc+1 steps. If A terminates
within this time, then output a trivial O(1) size yes- or no-instance. Otherwise,
n ≥ f(k): output (x, k). This fulfils the definition of a kernel.

Suppose we have a kernelization algorithm A. First run A on the input, and
then, as Q is decidable, run any decision algorithm on the remaining reduced
instance. The time of the latter step is bounded by a function of the parameter
k, and the time of the former step is polynomial. The combination of the steps
is an FPT algorithm. �

Lemma 2 is important for two reasons. First, it shows us that we can turn a
kernelization algorithm directly in an FPT algorithm, and the method (first build
a small equivalent instance, and then solve that instance) follows the approach
discussed in the introduction for hard problems. Kernels of smaller size give faster
FPT algorithms, and this thus motivates the search for kernels of small size.
Second, it shows that if we have reason to believe that no FPT algorithm exists
for a problem Q, then we also have reason to believe that there is no kernelization
algorithm for Q. The latter is precisely the case for parameterized problems
that are W [1]-hard. If a W [1]-hard problem belongs to the class FPT, then we
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have that FPT = W [1], and from that it follows that the Exponential Time
Hypothesis (ETH) does not hold [10]. Thus a corollary of Lemma 2 is that no
W [1]-hard problem has a kernel, assuming the ETH.

As discussed above, we are interested in kernels of small size.
An important class of kernels are the polynomial kernels: a kernel is polyno-
mial, if the function g in Definition 2 (i.e., the upper bound for the resulting
instances (s′, k′) on |s′| and of k′) is polynomial, i.e., there is a constant c′ with
g(n) = O(nc′

).
In this survey, we look at a number of techniques to give conditional proofs

that such polynomial kernels do not exist. The results usually depend on the
assumption that NP �⊆ coNP/poly, or, equivalently, that coNP �⊆ NP/poly. If
this assumption would not hold, the polynomial time hierarchy would collapse to
its third level [37]. For many parameterized problem, unconditional proofs that
no polynomial kernel exists cannot reasonably be expected. E.g., if P = NP ,
then the parameterized variants of NP-complete problems (like Long Path,
Treewidth) have kernels of size O(1).

3 Compositions

In this section, we discuss the first technique to show that problems do not have
polynomial kernels: composition. Actually, composition comes in two flavours:
OR-composition, and AND-composition. In several cases, compositionality gives
simple and sometimes even trivial proofs for parameterized problems that they
do not have polynomial kernels, assuming NP �⊆ coNP/poly. In several other
cases, such proofs can be hard and lengthy. We start this section with describing
the intuition behind the ideas. Then we introduce the main notions, stating the
main theorems, and proving the main theorem for the case of OR-composition.
We end the section with showing for some parameterized problems that they are
compositional, and conclude that they have no polynomial kernel, again under
the assumption that NP �⊆ coNP/poly.

3.1 Intuition

To get the intuition behind the approach, we consider the Long Path problem.
A k-path is a simple path with at least k edges. In the Long Path problem, we
are given an undirected graph G, integer k, and must decide if G has a k-path;
k is the parameter.

Let us look at the situation that we would have a kernel of polynomial size
for the Long Path problem, say a polynomial time algorithm A that reduces
an instance of Long Path to one with kc bits to describe it. Now, suppose we
have a graph with kc+1 connected components. G contains a simple path with
k edges, if and only if at least one of its connected components has a simple
path with k edges. But these different connected components can be regarded as
separate instances of Long Path, and thus, we would have a manner of reducing
kc+1 different instances of Long Path to kc bits in total: significantly fewer bits
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than the number of components. Such reduction seems only possible when we
are able to solve the Long Path problem on some of the components; that is
unlikely in polynomial time as the problem in its classic variant is NP-complete.

With this intuition in mind, we now look at the formal notion of compositions,
and see how this can be used to prove conditional lower bounds for kernelization
in Sect. 3.2.

3.2 Compositionality and Lower Bounds

The techniques and results in this section are mostly due to Bodlaender et al. [3]
and Fortnow and Santhanam [22].

The notion of composition comes in two flavours: or-composition and and-
composition. We give the definition of or-composition in full, and explain the
difference with the definition of and-composition.

Definition 3. An or-composition for a parameterized problem Q ⊆ Σ∗ × N is
an algorithm A that gets as input a sequence of instances (s1, k), . . . (sr, k), and
outputs one instance (s′, k′), such that

1. A uses time that is bounded by a polynomial in
∑r

i=1 |si| + k;
2. (s′, k′) ∈ Q, if and only if there exists an i, 1 ≤ i ≤ k with (si, k) ∈ A;
3. k′ is bounded by a polynomial in k.

I.e., the or-composition algorithm transforms a sequence of instances with
the same parameter to one instance, the latter being a yes-instance for Q if and
only if at least one of the former instances is a yes-instance; it uses time that
is polynomial in the total size of the instances in the sequence; and the result-
ing parameter must be polynomially bounded in the parameter in the original
instances. We see examples of compositions in Sect. 3.3.

And-compositions are defined in the same way; we change the second condi-
tion in Definition 3 to

– (s′, k′) ∈ Q, if and only if for all i, 1 ≤ i ≤ k with (si, k) ∈ A.

If a problem has an or-composition, we say it is or-compositional; similarly
for and-compositional. Combining the results of three different papers, we obtain
the following central result, which provides us with a powerful tool to show that
problems are likely not to have a polynomial kernel. In Sect. 3.4 we sketch the
proof for part (a).

Theorem 1. (a) [Bodlaender et al. [3], Fortnow and Santhanam [22]] Let Q be
a parameterized problem that is or-compositional and whose classic variant is
NP-hard. Then Q does not have a polynomial kernel unless coNP ⊆ NP/poly.
(b) [Bodlaender et al. [3], Drucker [20] ] Let Q be a parameterized problem that is
and-compositional and whose classic variant is NP-hard. Then Q does not have
a polynomial kernel unless coNP ⊆ NP/poly.
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3.3 Compositional Problems

As a graph has a k-path, if and only if at least one of its connected components
has a k-path, the Long Path problem is trivially or-compositional: just take
the disjoint union of the graphs of the instances, and do not change parameter k.
Similarly, if we have a graph parameter like Treewidth which is for each graph
the maximum of the parameters value over all connected components, disjoint
union gives a trivial and-composition. A direct corollary of Theorem 1 and the
corresponding NP-hardness results is that Long Path and Treewidth have
no polynomial kernel unless coNP ⊆ NP/poly.

In many other cases, compositions are far from trivial. See for example
[13,17,28,32].
Compositionality of Disjoint Factors. An example of a non-trivial or-com-
position is the following, from Bodlaender et al. [8]. In the Disjoint Factors

problem, we are given a string s ∈ {1, . . . , k}, and ask for a collection of k
substrings s1, . . . , sk of s, that do not overlap, and for each i, si starts and ends
with an i. The size of the alphabet k is the parameter of this problem.

For example, 1231331212 is a positive instance, with substrings 1231, 212
and 33; and 1221 is a negative instance.

An or-composition for Disjoint Factors can be obtained as follows. First,
we notice that the problem is solvable in O(kn ·2k) time with standard dynamic
programming techniques for strings of length n. Suppose we have instances
s1, . . . , sr ∈ {1, 2, . . . , k}. If r > 2k, we can solve all these instances in poly-
nomial time, so assume r ≤ 2k. By possibly adding dummy instances, we can
assume that r = 2k. Now, add k + 1, . . . , 2k to our alphabet. Instead of formally
defining the composition, the following examples will make the scheme hopefully
clear: if k = 2, take 34s14s243s43; if k = 3, take

456s + 16s2656s36s465456s56s6656s76s8654.

The resulting string has a solution, if and only if at least one si has a solution: the
factor with k + 1 ‘disables’ either the first or second half of the strings si; the
next factor disables half of the remaining ones, and once we found factors for
k + 1 till 2k, only one si remains to find the factors for 1, . . . , k. For a more
detailed explanation, see [8] or [33]. Now, as Disjoint Factors is NP-complete
[8], it follows from Theorem 1, that it has no polynomial kernel unless coNP ⊆
NP/poly.

3.4 Proof Sketch For Lower Bounds With Or-Composition

Below, we give a proof for Theorem 1(a). The original proof was via a notion of
distillation; we give here a direct proof without this intermediate step; it follows
the proof method from [22, Theorem3.1]. Druckers proof [20] for the case of and-
composition is much more involved; a new and possibly simpler proof was very
recently given by Dell [14].
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Proof of Theorem 1(a). Suppose we have a parameterized problem Q that is
compositional, whose classic variant is NP-hard, and that has a kernel with
inputs with parameter k mapped to an equivalent input with at most kc bits for
some constant c.

Throughout the following proof, we will switch without notification between
the parameterized and classic variants of the problem, and ignore some simple
but technical details on how instances of the two versions are mapped. We always
assume that the parameter is given in unary.

Denote the complement of the classic variant of Q by not-Q. (E.g., if Q is the
problem, given a graph G and integer parameter k, to decide if G has a simple
cycle of length at least k, then not-Q is the problem, given a pair (G, k) to decide
if all simple cycles in G have length at most k − 1.) As (the classic variant of)
Q is NP-hard, we have that not-Q is coNP-hard. Thus, if we show that not-Q
belongs to NP/poly, we have that coNP ⊆ NP/poly and proved the result.

Hence, what remains to be done is to give a nondeterministic algorithm for
not-Q that can access polynomial advice. I.e., for each input size n, the algorithm
can consult a string advice(n), whose size is bounded by a polynomial in n. In
our case, the advice will consist of O(n2) instances, each of size at most ncc′

,
thus the advice has size O(ncc′+2) bits. Each element of the advice will belong
to not-Q.

The algorithm will have the following form:

– Suppose an instance (x, k) of size n is given. (We have that k ≤ n.)
– Set r = ncc′

.
– Non-deterministically guess a sequence of r instances, each of size n, and with

parameter k.
– If (x, k) is not in the sequence, then reject.
– Compute the composition of the sequence, say (y, k′). By assumption on the

composition, we have that k′ ≤ kc′ ≤ nc′
.

– Compute the kernel (z, k′′) of (y, k′). By assumption on the kernelization
algorithm, we have that the size of this instance is at most k′c ≤ ncc′

= r.
– Check if (z, k′′) is in advice(n). If so, accept; otherwise, reject.

Each element in the advice will be a negative instance of Q (or, equivalently,
a positive instance of not-Q.) If (x, k) ∈ Q, then the properties of or-composition
and kernelization imply that (y, k′) ∈ Q and thus that (z, k′′) ∈ Q. As the advice
only contains elements from not-Q, (z, k′′) �∈ advice(n), and we correctly reject.
What remains now is to show that there is a sufficiently small advice set such
that for each (x, k) ∈ not-Q of size n, there is a guess that gives a kernel in the
advice. Lemma 3 shows that such a set indeed exists.

We say that an instance (x, k) ∈ not-Q of size n is covered by an instance
(y, k), if there is a sequence x = (x1, k), (x2, k), . . . , (xkc,k) such that

1. There is an i, 1 ≤ i ≤ kc with x = xi. (I.e., (x, k) is part of the sequence.
2. The kernelization algorithm, applied to the result of the or-composition algo-

rithm, applied to the sequence x belongs to advice(n).
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Lemma 3. For sufficiently large n, there exists a set advice(n) of O(n2)
instances of size at most ncc′

, such that

– Each instance (y, k′) ∈ advice(n) belongs to not-Q.
– Each instance (x, k) of size n is covered by an element of advice(n).

Proof. We build the advice incrementally, starting with an empty set. Repeat
the following step: add to the advice an instance of size at most ncc′

in not-Q
that covers the largest number of instances from not-Q of size n that are not yet
covered by the advice.

Claim. There is an instance in not-Q of size at most ncc′
that covers a constant

fraction of all uncovered instances of size n in not-S.

Proof. Recall that r = ncc′
. Let A be the set of uncovered instances of size n

in not-S. These form |A|r r-tuples. Each tuple is mapped by composition and
kernelization to an instance of size at most r, of which there less than 2 · 2r.
By pigeon-hole principle, one of the latter is the image of |A|r

2·2r tuples, and thus
covers at least ( |A|r

2·2r )1/r ≥ |A|/4 instances from A. �
As there are at most 2n instances of size n in not-S, the claim shows that

O(log 2n) = O(n) elements are sufficient for the advice. �
Lemma 3 shows that the advice is polynomial, and thus completes the proof

of Theorem 1(a).

4 Transformations

A second technique to show conditional lower bounds for kernels is based upon
using transformations. The technique is quite similar to usual NP-completeness
proofs, with the specific twist here that the transformation should map an
instance with parameter k to a new instance whose parameter is polynomially
bounded in k. The technique was independently observed by several groups of
authors [2,8,17]; the formalization is taken from [8], while the terminology was
proposed by Lokshtanov.

Definition 4. A polynomial parameter transformation (ppt) from a parame-
terized problem Q to a parameterized problem R is an algorithm A, that given
an instance of Q, outputs an instance of R, such that

1. For all instances (x, k), (x, k) ∈ Q ⇔ A(x, k) ∈ R.
2. Given an instance (x, k), A uses time, polynomial in |x| + k.
3. There is a constant c, such that for all instances (x, k), if A(x, k) = (x′, k′),

then k′ ≤ kc.

The following theorem can be easily proven, and gives a direct method to
lift lower bounds for kernels for some problem to similar lower bounds for other
problems. See e.g. [8] or [5] for the proof.
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Theorem 2. If there is a ppt from Q to R and a polynomial time reduction
from the classic variant of R to the classic variant of Q, and R has a polynomial
kernel, then Q has a polynomial kernel.

Corollary 1. Suppose we have parameterized problems Q and R, with the clas-
sic variant of Q NP-hard, and the classic variant of R in NP. If Q has no
polynomial kernel, then R has no polynomial kernel.

As an example, we consider the Disjoint Cycles problem: determine, given
an undirected graph G and integer k (the parameter), whether G has at least
k vertex disjoint cycles. This problem is well known to be NP-complete. A ppt
from Disjoint Cycles to Disjoint Factors is as follows. Given a string
s1s2 · · · sn ∈ {1, 2, . . . , k}n, we build a graph with n + k vertices. We first take a
path with n vertices, each vertex representing a character from the string. For
each symbol in the alphabet i ∈ {1, . . . , k}, we add a vertex vi, and make vi

incident to all path vertices that represent a character with this symbol. See
Fig. 1. It is not hard to observe that the resulting graph has k disjoint cycles,
if and only if the string has the required set of factors. (Each cycle needs to use
one of the vertices not on the path, the remainder of the cycle corresponds to a
factor, and as the cycles must be disjoint, the factors may not overlap.) From the
earlier observed lower bound for kernels for Disjoint Factors, it thus follows
that Disjoint Cycles has no polynomial kernel assuming coNP �⊆ NP/poly,

1 2 1 2 3 3 1

1 2 3

s

Fig. 1. Example of transformation: Disjoint Factors to Disjoint Cycles

5 Cross Composition

Suppose we want to show that parameterized problem Q has no polynomial
kernel under the usual assumption that NP �⊆ coNP/poly. An (and- or or-)
composition as discussed in the previous chapter takes a collection of instances
of Q and ‘merges’ these to one instance of the problem. The notion of cross
composition, introduced by Bodlaender et al. [5], allows to start with a collec-
tion of instances of some (other) problem Q′ (which should be NP-hard), and
transforms this collection to one instance of Q. In this way, the notion of cross
composition gives a more powerful tool to proof the conditional lower bounds
for kernels.

The first ingredient for the notion of cross composition is a polynomial equiv-
alence relation.

Definition 5. A polynomial equivalence relation is an equivalence relation ∼
on Σ∗, such that
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– Given two strings s1 and s2, we can decide if s1 ∼ s2 in time, polynomial in
|s1| + |s2|.

– There is a polynomial p, such that The number of equivalence classes of ∼
that contain strings of length at most r is bounded by p(r).

An example is the following. We consider instances of a graph problem, and
two instances are equivalent if and only if they have the same number of vertices
and the same number of edges.

We now come to the definition of OR cross composition, and then briefly
give the difference with the definition of AND cross composition.

Definition 6. Suppose we have a parameterized problem Q ⊂ Σ∗N, a language
L ⊆ Σ∗ and a polynomial equivalence relation ∼ on Σ∗. An OR cross composi-
tion of L to Q with respect to ∼ is an algorithm A, such that

– The input of A is a sequence instances s1, . . . , sr of L that belong to the same
equivalence class of ∼.

– A uses time, polynomial in
∑r

i=1 |si|.
– A outputs one instance (s′, k′) of Q, with k′ bounded by a polynomial in

max |si| + log k.
– (s′, k′) ∈ Q if and only if there is an i with (si) inL.

The notion of AND cross composition is defined in exactly the same way,
except that the last condition in Definition 6 is replaced as follows.

(s′, k′) ∈ Q if and only if for all an i with (si) inL.

Building upon the techniques and results of Bodlaender et al. [3], Fortnow and
Santhanam [22] and Drucker [20], Bodlaender, Jansen, and Kratsch [5] obtained
the following result, which provides us with a powerful mechanism to show con-
ditional kernel lower bounds.

Theorem 3 (Bodlaender et al. [5]). Let L ⊆ Σ∗ be an NP-hard language,
let ∼ be a polynomial equivalence relation, and Q ⊆ Σ∗ × N be a parameter-
ized language. Suppose there exists an OR cross composition or an AND cross
composition from L to Q with respect to ∼. Then Q does not have a polynomial
kernel, unless NP ⊆ coNP/poly.

For three reasons, this result gives more possibilities to show conditional
kernel lower bounds:

– We can start with a collection of instances of any NP-hard problem, instead
of having to use instances of the problem we want to prove a bound for itself.

– The polynomial equivalence relation allows us to make several additional
assumptions on this collection of instances.

– The bound on k′ helps to bound the number of instances of L we have to
compose.

Cross compositions were used for kernel lower bounds for e.g., Treewidth

and Pathwidth [4], Clique Cover [12], Vertex Cover [28], and Test

Cover [23].
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6 Other Models and Extensions

This survey so far only discussed results that some problems do not have poly-
nomial kernels under the assumption of coNP �⊆ NP/poly. Several extensions
and variants have been studied, that will be briefly mentioned below.

Many if not all of the lower bounds we discussed hold for more general set-
tings: when we compress instances of a compositional language Q into instances
of some other language R, compression in a setting of protocols, etc.

Many of the lower bounds also hold when we compress to a different target
language. Also, lower bounds can be stated for the amount of information sent
in certain types of protocols, for details see e.g. [16]. Drucker also proved his
lower bounds for more general settings, e.g., probabilistic and quantum [20].

Earlier, lower bounds for a different model of compression with applications
in e.g., cryptography were investigated by Harnik and Naor [24].

Non-increasing parameters. In interesting technique for lower bounds for kernels
that do not increase the parameter was introduced by Chen et al. [11]. Combining
composition and branching, one can show for several problems (including Long

Path) that they do not have a polynomial kernel which does not increase the
parameter, assuming that P �= NP . Chen et al. [9] also augment the framework
discussed in Sect. 3.2 to obtain stronger lower bounds.

Co-nondeterminism. Kratsch [29] and Kratsch et al. [31] showed that one can
use co-nondeterministic composition to prove lower bounds, thus extending the
power of the framework to a more general notion of composition. E.g., [29] gives a
lower bound for kernels for the problem to decide whether a given graph contains
a vertex set of size k that is independent or a clique; the problem is in FPT as
direct consequence of Ramsey theory.

6.1 Polynomial Lower Bounds

An important result was obtained by Dell and van Melkebeek [16], who extended
the techniques to obtain sharp polynomial lower bounds for problems with a
polynomial kernel for several well known parameterized problems.

For instance, they showed that if there is a polynomial time algorithm that
gives a kernel for Vertex Cover or Feedback Vertex Set with O(k2−ε)
bits for some ε > 0, then coNP ⊆ NP/poly. Thus we have existing kernels for
these problems (see e.g. [1,36]) are to be expected to be sharp with respect to
the number of edges. The technique has been used by Dell and Marx [15] to
obtain lower bounds for kernels for a number of packing problems. See also [26].

An interesting application of the technique was found by Kratsch et al. [30],
who show that a simple quadratic kernel for the problem to cover a point set in
the plane with k straight lines is essentially tight.

Parametric duality. Chen et al. [9] introduce the technique of parametric duality,
which allows to give linear lower bounds for several problems, e.g., a bound of
2k vertices for Vertex Cover, assuming that P �= NP .
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6.2 Turing Kernelization

A different model for kernelization is Turing kernelization. A Turing kernel is
an algorithm that solves a parameterized problem in polynomial time, but the
algorithm in addition has access to an oracle that decides instances of size f(k)
in one time step. With a proof similar to that of Lemma 2, one sees that a
decidable problem has a Turing kernel iff it is in FPT.

There are several problems that have a polynomial Turing kernel, but (assum-
ing coNP �⊆ NP/poly) polynomial kernel. See e.g., [2,27]. A lower bound theory
for Turing kernelization has been set up by Hermelin et al. [25].

7 Conclusions

This paper gives a compact and incomplete survey on a number of techniques to
show lower bounds (under a complexity theoretic assumption) for kernels were
discussed. An excellent and more extensive survey was made by Misra et al. [33].

The framework helps in the classification of the complexity of parameterized
problems: is the problem in P (regardless of parameter), has it a polynomial
kernel, does it belong to FPT, is it in XP, or is it already NP-hard for some
fixed value of the parameter?

I would like to end the survey with a practical warning: even when we know
that for parameter, the problem at hand has no polynomial kernel, it still can
be very useful to preprocess the problem. An illustrative example is for the
problem of Treewidth. Treewidth parameterized by the target value is and-
compositional, and thus not likely to have a polynomial kernel. However, pre-
processing rules were seen to be very effective for many instances from real-world
applications [7]. In [4,26], (part of) a theoretical explanation is provided: with
different parameterizations, treewidth has kernels of small (polynomial) size.
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