
The Aniketos Service Composition Framework

Analysing and Ranking of Secure Services

Achim D. Brucker1, Francesco Malmignati2, Madjid Merabti3, Qi Shi3,
and Bo Zhou3

1 SAP SE, Vincenz-Priessnitz-Str. 1, 76131 Karlsruhe, Germany
achim.brucker@sap.com

2 Selex ES S.p.A, A Finmeccanica Company, Italy
francesco.malmignati@guests.selex-es.com

3 Liverpool John Moores University, Liverpool, United Kingdom
{m.merabti,q.shi,b.zhou}@ljmu.ac.uk

Abstract. Modern applications are inherently heterogeneous: they are
built by composing loosely coupled services that are, usually, offered and
operated by different service providers. While this approach increases the
flexibility of the composed applications, it makes the implementation of
security and trustworthiness requirements much more difficult. Therefore
there is a need for new approaches that integrate security requirements
right from the beginning while composing service-based applications, in
order to ensure security and trustworthiness.

In this chapter, we present a framework for secure service composi-
tion using a model-based approach for specifying, building, and executing
composed services. As a unique feature, this framework integrates secu-
rity requirements as a first class citizen and, thus, avoids the “security
as an afterthought” paradigm.

Keywords: secure service composition, BPMN, service modelling, ser-
vice availability.

1 Introduction

A service-oriented architecture (SOA) provides a platform for services devel-
oped by different providers to work together [23]. Facilitated by standardised
inter-operation and description languages, such as WSDL [10], services can be
composed to form a larger application based on users’ requirements.

The focus of research in SOA was traditionally on the realisation of service
composition in terms of how to construct the services so that they can work
together seamlessly. With the continuous development of SOA, it has been re-
alised lately that the security issue has become a barrier that hinders wider
application of SOA. Apart from the conventional security problems faced by
other systems, e. g., confidentiality, integrity, privacy and so on, the situation in
SOA is more complicated given the fact that the services are developed by dif-
ferent providers. Concerns over inconsistent security policies and configurations
must be addressed as top priority.

A.D. Brucker et al. (Eds.): Secure Service Composition, LNCS 8900, pp. 121–135, 2014.
c© Springer International Publishing Switzerland 2014

mailto:achim.brucker@sap.com
mailto:francesco.malmignati@guests.selex-es.com
mailto:m.merabti@ljmu.ac.uk
mailto:q.shi@ljmu.ac.uk
mailto:b.zhou@ljmu.ac.uk


122 A.D. Brucker et al.

We propose a secure and trustworthy service composition framework that
supports the service developer with the capability of composing services with
security requirements in mind. The services are modelled and composed using
a toolchain supporting the Business Process Model and Notation (BPMN) [19].
A service developer first constructs a BPMN service composition plan based on
his/her functional requirements. It specifies what are the tasks needed and how
these tasks interact with each other. We extend the BPMN notations so that
certain security requirements can be specified within the BPMN composition
plan as well. After searching for suitable services in an open marketplace, the
abstract BPMN composition plan will be associated with concrete services for
each task in the plan. The service composition is verified and guaranteed to
comply with the service developer’s security requirements before deployment.

Unlike other SOA solutions, our framework takes the security requirements
into account during the service composition process. A service developer can
specify his/her security needs directly in the extended BPMN composition plan
so only those services that satisfy the security requirements will be selected. In
addition, the service developer is given the flexibility to set priorities that will
be used to quantify and compare service compositions, from all three aspects of
security, quality of service, and cost. This is particularly useful when the service
developer faces a wide range of choices.

2 The Aniketos Secure Service Composition Framework

Building secure and trustworthy composite services on top of a SOA is a chal-
lenging task. At design-time the service developer needs to select the optimal set
of services that satisfies both the functional and security requirements put by the
end user. At runtime, a service may become unavailable due to various reasons
and has to be replaced automatically with alternative services that, at least,
offer the same security and trust guarantees. In addition, the service developer
also needs to decide if a given security property should be enforced statically
or dynamically. One the one hand, a static enforcement creates less overhead
at runtime, it reduces the flexibility of service substitution or re-composition.
On the other hand, a dynamic enforcement is usually more flexible but requires
more system resources at runtime. Thus, a service designer needs to balance the
system resources while fulfilling the security and compliance requirements.

To support the service developer in building flexible, secure, and trustworthy
services through composition, we propose a secure service composition framework
that addresses both the design-time and runtime service compositions. In this
chapter we focus only on the technical parts of the design-time process, i. e.,
we exclude the requirements elicitation, as well as the service deployment and
runtime adaptation parts.

Figure 1 gives an high-level overview of the Aniketos Service Composition
Framework which is the design-time modelling and analysis part of the Anike-
tos platform [4]. At the beginning, domain experts together with requirement
engineers specify the high-level business process as well as the security and trust



The Aniketos Service Composition Framework 123

Fig. 1. The Aniketos Service Composition Framework

requirements by using the Aniketos Socio-technical Modelling Tool [20]. It pro-
vides the opportunity to express security needs not just from technical, but also
from social aspects. From these semi-formal descriptions, the model transforma-
tion module helps to generate composition plans, which are presented in BPMN
format. These composition plans are coarse-grained. Thus, before these composi-
tion plans can be deployed in the Aniketos Service Runtime Environment, they
will be refined by a service developer using the Aniketos Secure Composition
Framework.

The Aniketos Service Composition Framework provides an Eclipse-based en-
vironment (the Service Composition Modeller) to the service developer for refin-
ing the composition plans as well as checking their security and trust properties.
Specifically, the service developer can use the following component modules:
– Model Transformation Module: As described above, this module helps to

generate the basic elements of the composition plan from the requirement
document that expressed in the Aniketos Socio-technical Modelling Lan-
guage [20] (see Chapter 5, Chapter 6, and Chapter 7).

– Secure Composition Planer Module: This module allows the service developer
semi-automatically select the secure services for a given composition plan
(see Section 4 for more details). To check the compositions comply with the
security requirements, this module uses the Security Verification Module as
well as the Security Property Determination Module.

– Security Verification Module: This module provides formal validation and
verification solutions for composed services (and, not discussed in this chap-
ter, atomic services [9]). For example, role-based access control and separa-
tion of duty properties (see Section 3 for details) are verified by the Security
Verification Module (see Chapter 8 and Chapter 10).

– Security Property Determination Module: This module provides an uniform
interface for accessing security properties of services. Moreover, this module
stores the verification status of security properties to avoid an unnecessary
(expensive) re-verification.



124 A.D. Brucker et al.

– Service Marketplace: This component registers and stores the services for
open access. Secure Composition Planner Module selects services from the
Service Marketplace (see Chapter 4).

The Aniketos Service Composition Framework supports composition of services,
as well as the transformation from social to technical modelling of security re-
quirements. It provides formal verification of these security requirements and
helps the end user to choose the most suitable services. In the next two sections,
we will focus on the two key research challenges: 1) Analysing the consistency
of security properties and 2) quantifying and ranking service compositions.

3 Modelling and Verifying Security Properties

In this section, we present a validation approach for fine-grained separation-of-
duty and binding-of-duty constraints. This work is implemented as core tech-
nique for the security verification module mentioned in Section 2 and assumes
composition plans as discussed in Chapter 8.

3.1 Analysing SecureBPMN Models

Modelling non-functional requirements, right from the beginning, is important
but it can only be the first step in building secure and trustworthy service-
oriented systems, which requires various analysis techniques, e. g., for
1. checking the internal consistency of the security specification, for example

ensure the access control requirements and need-to-know requirements do
not contradict each other.

2. checking the information (data) flow on the process level to examine infor-
mation flow requirements as well as high-level need-to-know requirements.

3. checking that process-level security requirements are fulfilled on the imple-
mentation and configuration level. This is particular important for implemen-
tation and configuration artifacts that are not generated in a model-driven
approach.

4. checking that the service compositions (business processes) are executable if
the security requirements are enforced, i. e., there exists a valid execution
trace from a start to an end event.

5. analysing and comparing different techniques (e. g., resulting in different
costs or runtime resource requirements) for implementing security require-
ments.

In this section, we discuss, as an example, an analysis method for checking
the consistency between role-based access control (RBAC) and separation of
duty (SoD)/binding of duty (BoD) specifications (see Chapter 10). This anal-
ysis method contributes to both the item 1 and item 5 mentioned above. Our
modular architecture allows to integrate other analysis approaches easily and
our prototypes already support other analysis as well. For example, [9] presents
an analysis that contributes to the item 3.



The Aniketos Service Composition Framework 125

Fig. 2. Security Validation within the Activiti BPMN Editor

Adding constraints such as SoD or BoD to a system that is already restricted
by RBAC results in questions like the following: “Is the SoD constraint already
guaranteed by the RBAC configuration?” If an RBAC configuration ensures a
SoD constraint, e. g., as two tasks are only executable by different roles r1, r2
and there is no user ui that is assigned to both roles r1 and r2, we call this a
static separation of duty. Otherwise, we call it a dynamic separation of duty.

While static separation of duty constraint do not need to be enforced at
runtime and, thus, reduce the runtime costs, it requires to re-check the SoD
constraint after each and every modification of the RBAC configuration (e. g.,
adding new roles, changing the role assignment of subjects). In contrast, dy-
namic separation of duty constraint requires a runtime check for each access to
a resource that is constrained by the separation of duty. Although dynamic SoD
is more flexible, it requires additional resources and, thus, costs, at runtime.
Moreover, additional security checks might result in delays for users and, thus,
might reduce the overall usability of the system.

To address these issues, we use an analysis method inspired by the work of
Arsac et al. [5]. We extended their work significantly to support n-ary SoD
(BoD) constraints as well as constraints on the level of constrained permis-
sion (instead the task-level). As Arsac et al. [5], we use the AVANTSSAR tool



126 A.D. Brucker et al.

suite (www.avantssar.eu) as back-end for our formal analysis. Consequently, we
translate the service composition plan and its security requirements to ASLan [5],
i. e., the input language of the AVANTSSAR tool suite. The choice of ASLan is
based on two reasons: 1) the experiments carried out by Arsac et al. [5] show
that ASLan is expressive enough to capture the requirements of security enriched
service compositions and 2) the use of the same tools allows for developing a
common verification back-end for our SecureBPMN-based approach as well as
the approach developed by Arsac et al. [5]. In fact, we could demonstrate that
the analysis can be provided as a cloud-based service that can be used by both
modelling approaches [11].

Fig. 3. A composed service for booking flights and hotels

Assume, in our example from Chapter 8 (see Figure 3), we want to coun-
terfeit fraud or price-fixing agreements. Therefore, we require that the services
Find suitable flights and Book the flight are operated by different provides (and
similarly, for the hotel booking). The actual RBAC configuration is inferred au-
tomatically from the information available in the service marketplace (i. e., the
service-level agreements).

Our formal analysis translates the security configuration (here, RBAC and
SoD/BoD) as well as the security properties that should be verified into the
formal language ASLan [5]. In our example, the result of this translation (only
an excerpt) for the security configuration looks like the following:

hc rbac_ac (Subject , Role , Task)
:= CanDoAction(Subject , Role , Task)
:- user_to_role(Subject , Role), poto(Role , Task)

hc poto_T6 := poto(TravelAgency1 , Find suitable flights )
hc poto_T7 := poto(TravelAgency1 , Book the flight)

The security goal, in this case a SoD constraint between the services Find
suitable flights and Book the flight looks as below:

attack_state sod_securitySod1_1(Subject0 ,Subject1 ,
Instance1 ,Instance2)

:= executed (Subject0 ,task(Find suitable flights ,Instance1)).
executed (Subject1 ,task(Book the flight;Instance2))
&not(equal(Subject0 ,Subject1 ))

www.avantssar.eu


The Aniketos Service Composition Framework 127

This configuration, obviously, violates the SoD constraint as the TravelAgency1
can do both searching for flights and booking them. In this case, a dishonest
travel agency could prefer flights with a higher bonus for the travel agency that
are not necessarily the cheapest for the traveller. This is detected by our formal
analysis, e. g., the verification module returns the following “attack trace:”

1. [w_usertask1(fnat(n0 ,0 ,0))]
2. [authorizeTaskExecution(bo,user ,usertask1 ,fnat(n0 ,0 ,0))]
3. [h_taskExecution(bo,user ,usertask1 ,fnat(n0 ,0,0),

in_usertask1 ,out_usertask1)]
4. [w_parallelgateway1(fnat(n0 ,0 ,0))]
5. [w_servicetask1(fnat(n1 ,0,0)),

w_servicetask2(fnat(n2 ,0 ,0))]
6. [authorizeTaskExecution(flight1 ,flightservice ,

servicetask2 ,fnat(n2 ,0,0)),
authorizeTaskExecution(travelagency1 ,travelagency ,

servicetask1 ,fnat(n1 ,0 ,0))]

...

15. h_taskExecution(travelagency1 , travelagency ,
servicetask9 ,fnat(n8 ,0,0),
in_servicetask9 ,out_servicetask9)

Of course, this textual representation is not well-suited to practitioners. There-
fore, we developed a user-friendly visualisation of such an attack in terms of the
high-level composition plan (i. e., on the level of the BPMN model). Figure 2
shows how our prototype visualises such a violation to the service developer.
Here, the service developer is able to manually step through all necessary actions
that a dishonest agency would execute to actually violate the SoD constraint.

After such an analysis, the service developer needs to decide how to mitigate
this risk. In general, there are several options, among them
– re-design the composition plan, to avoid the need for a particular separation

of duty constraint,
– instruct the service composition framework to ensure the selection of different

service providers, or
– enforce a dynamic separation of duty at runtime. For this, our prototype can

generate configurations for XACML [18] based access control infrastructures.
Certainly, the concrete mitigation plan depends on the actual use case.

4 Quantifying and Ranking Service Compositions

The security property modelling and verification techniques allow the service
consumer specify certain security properties that the service composition has to
comply with. In practice, the number of compositions that satisfy the security
requirements could still be large. Therefore another dilemma always faced by
the service consumer is to make a choice from the service composition pools.

In this section, we introduce the mechanism used in Aniketos platform for
quantifying and ranking service compositions, i. e., we support the service con-
sumer in choosing, based on an automated recommendation, the most suitable
service composition. This recommendation should be made based on the property



128 A.D. Brucker et al.

of the composition as a whole, rather than just based on individual sub-services
in the composition. As a starting point, we try to solve this issue from three
aspects, which are the three factors that mostly considered by service consumers:
encryption (security), availability (QoS), and cost (business).

In most of the cases web services are made available together with a service-
level agreement (SLA). SLA is a formal guarantee that has to be accepted by
service consumers before the service being used. SLA normally specifies the
properties of a service across different level. For example, on business level it
describes what kind of functionality the service offers and how the users will be
charged (cost); on technical level it may describe what kind of security protection
is deployed (e. g., encryption) and the number of shutdowns the service might
encounter each year (availability). We focus on these three properties in this
section not only because they are normally included in the SLA, it is also because
they are the properties that verifiable at runtime. For example, the availability
of service can be easily recorded and calculated by examining the logs stored in
the system.

This work is implemented as key part for the security composition planner
module mentioned in Section 2.

4.1 Encryption – The Weakest Link

There are some cases when the weakest link principle is particularly applicable to
service composition. It states that when services are composed together, the se-
curity capability of the composite service is equal to what the weakest service or
link is offering. This security principle is applicable to many security properties
and encryption is one of them. When encryption is applied to communications
between services, the services may adopt different encryption algorithms or key
lengths which give them different encryption strength. In order to communi-
cate with each other, the service with advanced encryption algorithm may have
to degrade its encryption strength during the composition. Thus the composite
services literally use the weakest encryption strategy in part of their commu-
nications. For example, consider the case in Figure 4 where service A supports
encryption algorithms of Blowfish and 3DES, service B supports Blowfish and
AES, and service C supports 3DES and AES. To communicate with each other,
the link between service A and B is encrypted with Blowfish and the link be-
tween B and C is encrypted with AES. Therefore the overall strength of the
composition, in terms of keeping communications confidential, is the weaker one
between Blowfish and AES.

Fig. 4. Set Ranking Criteria



The Aniketos Service Composition Framework 129

In Aniketos, the weakest link principle is used to determine the security ca-
pacity of the composite services. It should be noted however, that the weakest
link principle is not universally applicable. There are cases where alterations
to a service composition can be utilised to improve the security of a composite
service to be greater than that of the weakest component. An example might be
where a firewall service is used to shield an otherwise vulnerable service from
outside attack. The use of the firewall mitigates the vulnerability exposed by the
weaker service. And vice versa it may also apply in reverse: the introduction of a
component may serve as an exacerbating factor that reduces the security of the
overall composition to a degree beyond that posed by the service were it to act
in isolation. This often results from interactions between incompatible security
properties.

To simplify the issue, in this study we focus on the encryption. Therefore each
link between services is checked, and the encryption strength of the composition
is determined by the weakest link, i. e.,

E =
n

min
i=1

Ei

where E is the encryption strength of the composition and Ei is the encryption
strength for each link i in the composition. Ei is determined by the strongest
algorithm, which supported by both services at each end of the link i.

The quantitative value (from 0.9 to 0 in our case), however is predetermined
by expertise in advance based on Table 1. Please note that as claimed in [14], the
quantitatively ranking of encryption algorithms is possible but heavily depends
on the metrics and target scenario. Table 1 is just a guideline and rather used
to demonstrate our ideas in this front.

Table 1. Quantitative Value of Encryption Algorithms

Algorithm Name Quantitative Value

Serpent 0.9
AES (Rijndael) 0.8
3DES 0.7
CAST128/256 0.6
Twofish 0.5
Blowfish 0.4
MARSH 0.3
Other algorithms 0.2
Codings 0.1
Plain text 0

4.2 Availability

Availability is another aspect being used to compare services. It relates to the
quality of services (QoS). Availability in this scenario means the available time



130 A.D. Brucker et al.

ratio of a service. Unexpected shutdown of a service could cause severe dam-
age to service consumers’ business and service developer’s reputation. Therefore
seeking guarantee from service developer about the service availability is one of
the top priories for service consumers, before they commit to use the service.
The situation gets complicated in service composition because a composition’s
availability is decided by not only the technical specifications of the sub-services,
but also by the structure of the composition.

Take the example of the travel agency in Figure 3 on page 126, most of the
services are placed in sequential order. That means if one of the sub-service is not
available, the entire composition will stop. Therefore the availability of sequen-
tial tasks is the product of all the sub-services’ availability value in percentage.
However, the services Find suitable hotels and Find suitable flights are executed in
parallel. It means these two services can be carried out separately. Nonetheless
they still have to be both finished before the next task Get user’s credit card data
can be executed. Therefore for parallel tasks the availability value is the mini-
mum among them. For services that are exclusive to each other, the availability
of the composition depends on which service has been eventually used.

Table 2 shows the rules that we used for calculating the availability of com-
posite services. In this study we assume that the services are independent from
each other. If in Figure 3 each service has the following availability value: Find
suitable hotels: 0.99, Find suitable flights: 0.96, Get user’s credit card data: 0.97,
Book the hotel: 0.99, Book the flight: 0.98, and Undo hotel booking: 0.94. The
availability value for a successful transaction will be calculated as:

A = min(0.99, 0.96)× 0.97× 0.99× 0.98 = 0.90

where A represents availability of the composition.

Table 2. Rules to Calculate Availability

Description Calculation

Sequence
∏n

i=1 Ai

Parallel min(A1, . . . , An)

Exclusive Ai

4.3 Cost

Finally the last factor that also plays important role in consumer’s decision
making is the cost. Higher security and quality of service normally means higher
price, which must be within a consumer’s budget. Comparing to encryption and
availability, calculating the cost of a service composition is more straightforward.
When discount is not considered, it is simply the sum of all the sub-services’
costs, i. e.:



The Aniketos Service Composition Framework 131

C =

n∑

i=1

Ci

where C is the cost for the composition and Ci is the cost for sub-service i.

4.4 Ranking Compositions

In Aniketos we implemented a simple user interface providing prioritising options
so the service consumers can specify the criteria that they want to use to rank
secure service compositions. As shown in Figure 5, the service consumer basically

Fig. 5. Set Ranking Criteria

can choose how much weights he wants to put on each criterion of encryption,
availability, and cost. Assume the consumer sets the weights to 0.32, 0.53 and
0.15 respectively for availability and cost, the overall value V for each service
composition will be:

V = 0.32× E + 0.53×A+ 0.15× B − C

B

where E represents the value of encryption strength, A represents the value of
availability, C represents cost, and B represents the consumer’s budget. Appar-
ently higher value of E and A, and lower value of C will result in greater value
of V . In this way the generated service compositions can not only be security-
wise verified by our SecureBPMN extensions, but also ranked easily based on
consumer’s other priorities.

The Aniketos platform targets secure service composition at both design-
time and runtime. Therefore the prioritising options set by consumer at design-
time will be stored in the consumer’s policy configurations and referred back at
runtime. So the ranking mechanism will still work on behalf of the consumer at
runtime, in case the service composition changes.



132 A.D. Brucker et al.

Please note that the ranking is for service compositions that already satisfy
users’ requirements, i. e., the service compositions ranked here should have ac-
ceptable values in E, A and C first. This can be easily enforced by put threshold
values for each of the criteria.

5 Conclusion and Related Work

5.1 Related Work

We see three areas of related work: 1. modelling of security requirements for
process models, 2. analysing security properties of process models, and 3. deter-
mining security of composite services.

There is a large body of literature extending graphical modelling languages
with means for specifying security or privacy requirements. One of the first
approaches is SecureUML [16], which is conceptually very close to our BPMN
extension. SecureUML is a meta-model-based extension of UML that allows for
specifying RBAC-requirements for UML class models and state charts. There
are also various techniques for analysing SecureUML models, e. g., [6] or [8].
While based on the same motivation, UMLsec [15] is not defined using a meta-
model. Instead, the security specifications are written, in an ad-hoc manner, in
UML profiles. Integrating security properties into business processes is a quite
recent development, e. g., motivated by [25]. In the same year, [21] presented
a meta-model based approach introducing a secure business process type that
supports global security goals. In contrast, our approach allows the fine-grained
specification of security requirements for single tasks or data objects. Similar
to UMLsec, [17] presented an attribute-based approach (i. e., the conceptual
equivalent of UML profiles) of specifying security constraints in BPMN models
without actually extending BPMN.

With respect to the validation of security requirements on the business process
level, the closed related work is the work of [24] and [5] that both support the
checking if an access control specification enforces binary static of duty and
binding of duty constraints. Apart from security properties, there is also a strong
need for checking the consistency of business process itself, e. g., the absence of
deadlocks. There are several works that concentrate on this kind of process
internal consistency validation, e. g., [12] and [2]. Moreover, there are several
approaches for analysing access control constraints over UML models, e. g., [22],
[8], and [15]. These approaches are limited to simple access control models, as
the UML models are usually quite distant from business process descriptions
that comprising high level security and compliance goals.

Last but not least, determining the properties of composite service based on
its sub-services is another area that attracts attentions from research commu-
nity. Most of the work related to security focus on determining trust due to its
subjectiveness and openness. This undermines the need for solutions to deter-
mine other properties as well. [13] described how to present trustworthiness for
composite services based on various factors such as reputations and qualities of
the services. The method took the structure of the composition into account.



The Aniketos Service Composition Framework 133

[28] proposed a classification method that abstracts and quantifies service com-
positions based on five key security aspects: confidentiality, integrity, availability,
accountability and non-repudiation. There are also other works that focus on se-
curity properties of system-of-systems such as [27] and [26]. Comparing to these
works, our approach concentrates on the most objective and justifiable properties
in encryption, availability and cost, which represents security, QoS and business
respectively. Our solution also gives the flexibility to the service consumers so
they can decide how to rank the service compositions themselves.

5.2 Lessons Learned

We discussed our approach with various business process modelling experts at
SAP SE. Overall, these experiences show that our approach is applicable to a
wide range of applications domains.

Our evaluation showed that the discussed security and compliance require-
ments can be expressed at the business process level. Moreover, they are sufficient
for most modelling needs. Still, in particular our telecommunication case study
raised the need for various notions of confidentiality. As such, confidentiality is
not (yet) supported by SecureBPMN; currently, SecureBPMN only supports a
very specific form, the need-to-know-principle. Confidentiality, in terms of requir-
ing encrypted communications between the different services (tasks) is another
important requirement. The choice of the correct encryption technology (in fact,
on a technical level, we need to ensure that data is only communicated over
authenticated and secured channels) requires a multitude of technical decisions
(e. g., encryption algorithms, length of cryptographic keys). As these are merely
technical decisions, we can only record the high-level requirement on the process
level and need to refine them interactively during the implementation of a secure
service composition.

Moreover, our evaluation showed that in practice, most service compositions
are rather small (e. g., less than 15 services or tasks). On these sizes of models,
our formal analysis usually is able to validate security or compliance properties
within less then 20 seconds. While this is fast enough for the (interactive) design
of service compositions, it is too slow for automatic service re-compositions at
runtime. Therefore, the efficient caching, which needs to ensure the authenticity
and validity, of validation results is of outermost importance.

5.3 Conclusion and Future Work

In this chapter we presented an integrated framework for modelling, analysing,
and ensuring secure service compositions. This framework, called Aniketos Ser-
vice Composition Framework is part of a larger platform that supports the end-
to-end (i. e., ranging from the requirements elicitation to the actual operation of
the developed system) development of secure and trustworthy SOA and cloud-
based systems. This end-to-end integration is a unique feature of our approach
that not only enables traditional security and consistency analysis on the model
and implementation level, it also supports certain types of economical analysis



134 A.D. Brucker et al.

approaches that allow the service consumers to decide between different security
solutions based on their encryption strengths, availabilities and costs.

There are several lines of future work. One of them is the development of sup-
port for system audits, e. g., by integrating analysis techniques such as [1] or [3].
In particular, process mining approaches appear to be particularly interesting:
combining process mining with our business process animation, i. e., the visual-
isation of attack traces, allows interactive investigation of the deviations of the
actual service composition execution with the intended one. Moreover, we are
also interested in the integration analysis techniques that check the internal con-
sistency of processes, e. g., [12], as well as their reconfiguration, e. g., [2]. Finally,
we intend to integrate security testing approaches, e. g., [7], for validating the
compliance of services and (legacy) back-end systems in a black-box scenario.

References

[1] van der Aalst, W., de Medeiros, A.: Process mining and security: Detecting anoma-
lous process executions and checking process conformance. ENTCS 121, 3–21
(2005)

[2] van der Aalst, W.M.P., Dumas, M., Gottschalk, F., ter Hofstede, A.H.M., La
Rosa, M., Mendling, J.: Correctness-preserving configuration of business process
models. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961, pp.
46–61. Springer, Heidelberg (2008)

[3] Accorsi, R.,Wonnemann, C.: inDico: Information flow analysis of business processes
for confidentiality requirements. In: Cuellar, J., Lopez, J., Barthe, G., Pretschner,
A. (eds.) STM 2010. LNCS, vol. 6710, pp. 194–209. Springer, Heidelberg (2011)

[4] Aniketos: Deliverable 5.1: Aniketos platform design and platform basis implemen-
tation (2011)

[5] Arsac, W., Compagna, L., Pellegrino, G., Ponta, S.E.: Security validation of busi-
ness processes via model-checking. In: Erlingsson, Ú., Wieringa, R., Zannone, N.
(eds.) ESSoS 2011. LNCS, vol. 6542, pp. 29–42. Springer, Heidelberg (2011)

[6] Basin, D., Clavel, M., Doser, J., Egea, M.: Automated analysis of security-design
models. Information and Software Technology 51(5), 815–831 (2009)

[7] Brucker, A.D., Brügger, L., Kearney, P., Wolff, B.: An approach to modular and
testable security models of real-world health-care applications. In: SACMAT, pp.
133–142. ACM Press (2011)

[8] Brucker, A.D., Doser, J., Wolff, B.: A model transformation semantics and analysis
methodology for secureUML. In: Wang, J., Whittle, J., Harel, D., Reggio, G. (eds.)
MoDELS 2006. LNCS, vol. 4199, pp. 306–320. Springer, Heidelberg (2006)

[9] Brucker, A.D., Hang, I.: Secure and compliant implementation of business process-
driven systems. In: Rosa, M.L., Soffer, P. (eds.) Joint Workshop on Security in
Business Processes (SBP). LNBIP, vol. 132, pp. 662–674. Springer, Heidelberg
(1982)

[10] Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web services de-
scription language (WSDL) 1.1. Tech. rep., W3C (2001)

[11] Compagna, L., Guilleminot, P., Brucker, A.D.: Business process compliance via
security validation as a service. In: Oriol, M., Penix, J. (eds.) Testing Tools Track
of ICST. IEEE Computer Society (2013)



The Aniketos Service Composition Framework 135

[12] Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business pro-
cess models in BPMN. Information & Software Technology 50(12), 1281–1294
(2008)

[13] Elshaafi, H., McGibney, J., Botvich, D.: Trustworthiness monitoring and predic-
tion of composite services. In: ISCC, pp. 580–587 (2012)

[14] Jorstad, N., Landgrave, T.S.: Cryptographic algorithm metrics. In: 20th National
Information Systems Security Conference (1997)

[15] Jürjens, J., Rumm, R.: Model-based security analysis of the german health card
architecture. Methods Inf Med 47(5), 409–416 (2008)

[16] Lodderstedt, T., Basin, D., Doser, J.: SecureUML: A UML-based modeling lan-
guage for model-driven security. In: Jézéquel, J.-M., Hussmann, H., Cook, S. (eds.)
UML 2002. LNCS, vol. 2460, pp. 426–441. Springer, Heidelberg (2002)

[17] Mülle, J., von Stackelberg, S., Böhm, K.: A security language for BPMN process
models. Tech. rep., University Karlsruhe, KIT (2011)

[18] OASIS: eXtensible Access Control Markup Language (XACML), version 2.0
(2005), http://docs.oasis-open.org/xacml/2.0/XACML-2.0-OS-NORMATIVE.zip

[19] Object Management Group: Business process model and notation bpmn, version
2.0 (2011), Available as omg document formal/2011-01-03

[20] Paja, E., Dalpiaz, F., Poggianella, M., Roberti, P., Giorgini, P.: Modelling security
requirements in socio-technical systems with sts-tool. In: Kirikova, M., Stirna, J.
(eds.) CAiSE Forum, vol. 855, pp. 155–162 (2012)

[21] Rodŕıguez, A., Fernández-Medina, E., Piattini, M.: A BPMN extension for the
modeling of security requirements in business processes. IEICE - Trans. Inf.
Syst. E90-D, 745–752 (2007)

[22] Sohr, K., Ahn, G.-J., Gogolla, M., Migge, L.: Specification and validation of au-
thorisation constraints using UML and OCL. In: di Vimercati, S.d.C., Syverson,
P.F., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 64–79. Springer,
Heidelberg (2005)

[23] Welke, R., Hirschheim, R., Schwarz, A.: Service-oriented architecture maturity.
Computer 15(1), 662–674 (2011)

[24] Wolter, C., Meinel, C.: An approach to capture authorisation requirements in
business processes. Requir. Eng. 15(4), 359–373 (2010)

[25] Wolter, C., Schaad, A.: Modeling of task-based authorization constraints in
BPMN. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS,
vol. 4714, pp. 64–79. Springer, Heidelberg (2007)

[26] Zhou, B., Arabo, A., Drew, O., Llewellyn-Jones, D., Merabti, M., Shi, Q., Waller,
A., Craddock, R., Jones, G., Arnold, K.L.Y.: Data flow security analysis for
system-of-systems in a public security incident. In: ACSF, pp. 8–14 (2008)

[27] Zhou,B.,Drew,O.,Arabo,A.,Llewellyn-Jones,D.,Kifayat,K.,Merabti,M., Shi,Q.,
Craddock, R., Waller, A., Jones, G.: System-of-systems boundary check in a public
event scenario. In: SoSE (2010)

[28] Zhou, B., Llewellyn-Jones, D., Shi, Q., Asim, M., Merabti, M., Lamb, D.: Secure
service composition adaptation based on simulated annealing. In: ACSAC, pp.
49–55 (2012)

http://docs.oasis-open.org/xacml/2.0/XACML-2.0-OS-NORMATIVE.zip

	The Aniketos Service Composition Framework
	1Introduction
	2The Aniketos Secure Service Composition Framework
	3Modelling and Verifying Security Properties
	3.1Analysing SecureBPMN Models

	4Quantifying and Ranking Service Compositions
	4.1Encryption – The Weakest Link
	4.2Availability
	4.3Cost
	4.4Ranking Compositions

	5Conclusion and Related Work
	5.1Related Work
	5.2Lessons Learned
	5.3Conclusion and Future Work





