
A.D. Brucker et al. (Eds.): Secure Service Composition, LNCS 8900, pp. 192–202, 2014.
© Springer International Publishing Switzerland 2014

Security Policy Monitoring of Composite Services

Muhammad Asim1, Artsiom Yautsiukhin2, Achim D. Brucker3,
Brett Lempereur1, and Qi Shi1

1 School of Computing and Mathematical Sciences, Liverpool John Moores University, UK
{m.asim,b.lempereur,q.shi}@ljmu.ac.uk

2 Istituto di Informatica e Telematica, Consiglio Nazionale delle Ricerche, Italy
artsiom.yautsiukhin@iit.cnr.it

3 SAP SE, Vincenz-Priessnitz-Str. 1, 76131 Karlsruhe, Germany
achim.brucker@sap.com

Abstract. One important challenge the Aniketos platform has to address is the
effective monitoring of services at runtime to ensure that services behave as
promised. A service developer plays the role that is responsible for constructing
service compositions and the service provider is responsible for offering them
to consumers of the Aniketos platform. Typically, service consumers will have
different needs and requirements; they have varying business goals and differ-
ent expectations from a service, for example in terms of functionality, quality of
service and security needs. Given this, it is important to ensure that a service
should deliver for which it has been selected and should match the consumer’s
expectations. If it fails, the system should take appropriate subsequent reactions,
e.g., notifications to the service consumer or service designer.

In this chapter, we present the policy-driven monitoring framework which is
developed as part of the Aniketos project. The monitoring framework allows
different user-specified policies to be monitored simultaneously. The monitor-
ing is performed at the business level, as well as at the implementation level,
which allows for checking the policies of composite services as well as atomic
ones. The framework sends an alarm in case of policy violation to notify the in-
terested parties and triggers re-composition or re-configuration of the service.

Keywords: monitoring, secure service composition, security policy, complex
event processing, SOA, BPMN.

1 Introduction

Applications based on a Service-Oriented Architecture (SOA) are highly dynamic and
liable to change heavily at runtime. These applications are made out of services that
are deployed and run independently, and may change unpredictably after deployment.
Thus, changes may occur to services after deployment and at runtime, which may lead
to a situation where services fail to deliver for which they have been selected and no
longer satisfy user’s expectations. Therefore, there is need to shift towards runtime
monitoring of services [1].

One important feature of the Aniketos platform is the effective monitoring of ser-
vices at runtime to ensure that services behave as promised. This paper presents a

 Security Policy Monitoring of Composite Services 193

monitoring framework that is based on the runtime monitoring of a composite service
to ensure that the service behaves in compliance with a pre-defined security policy.
Alerts regarding policy violations are sent as notifications. BPMN [2] has been used
for modelling and specifying composite services, and the Activiti engine [16] as a
Business Process Management Platform. BPMN is widely used as a modelling nota-
tion for business processes as well as for executing them in a business process engine
[3].

Current monitoring methods applied to service execution environments focus on
generating alerts for a specific set of pre-built event-types. However, the dynamic
nature of SOAs also extends to the end-user security requirements. An ideal system
might allow different users to be given the opportunity to apply their own security
policies enforced through a combination of design-time and run-time checks. This
might be the case even where multiple users are accessing the same services simulta-
neously. Current monitoring techniques [4, 5, 6, 7] have not been set up with this
flexibility in mind.

In this paper we aim to rectify the above weakness of the existing monitoring work
by developing a novel policy-driven monitoring framework that allows different user-
specified policies to be monitored simultaneously at run-time with the accuracy of a
monitoring system that links directly into the service execution environment.

2 Service Composition: An Example

We will illustrate our approach by using a running example. In this example, we as-
sume that we are a small company that designs, develops, and provides customized
services to customers. Moreover, we assume that our customer wants to have an ap-
plication that provides a location based information service, e.g., based on the current
GPS coordinates of a mobile device or after entering an address. The application
should display information such as the current weather or a map highlighting various
points of interests.

As there are many services available that already provide information such as the
current weather, it is quite a natural approach to build this new application based on
already existing services, e.g.:

• a GeoCoding type service, which takes as input a street address and gets the
associated geographical coordinates;

• a PointOfInterest type service that takes as input the geographical coordi-
nates and returns the places that the end user can be interested in;

• an WeatherForecast type service that takes as input the geographical coordi-
nates and returns the information about the weather observations at the sta-
tion closest to the end user;

• a Map type service that takes as input the geographical coordinates and re-
turns a map showing the position of the end user;

• a WebPageInfoCollector type service that takes as input a set of information
related to a location and returns a web page that shows it.

194 M. Asim et al.

The resulting composite service, named InfoService, takes as input a street address
and returns the web page collecting all the information described above. For more
details about this scenario and its implementation, we refer the reader elsewhere [17].
Fig. 1 presents an overview of the InfoService case study.

Fig. 1. Overview of InfoService Components

3 Policy Language

In the Aniketos project we were looking for a language which could: (i) express secu-
rity properties and policies for hierarchical services; (ii) be expressive enough, clear
and simple in processing at the same time; (iii) be generated by both humans and
software.

We considered several candidates for such kind of language. XACML [9], Event
Calculus [10], PROTUNE [11]. XACML is a general purpose language but hard to
express policies and reason about them. Event Calculus has a complex syntax for
expressing policies for composite services. PROTUNE [17] language has high ex-
pressivity and can be used to specify complex policies in a distributed environment.
The main disadvantages of the method relates to its strength. Because of such enorm-
ous expressiveness the language is complex for policy writing and reasoning.

Based on the above analysis, we selected the ConSpec language [12] for our pur-
poses. The ConSpec language was proposed by the University of Trento and Royal
Institute of Technology in the scope of the S3MS project [15]. Briefly, we can see the
language as follows (we refer a reader to Aktug and Naliuka [12] for the details):

 Security Policy Monitoring of Composite Services 195

RULE ID ruleId
SCOPE <Session | Multisession>
SECURITY STATE
<bool |int|string> VarName1 = <Value1>
<bool |int|string> VarName1 = <Value1>
<BEFORE | AFTER> event1 PERFORM
Gaurd11->Update11
……
Gaurd1N->Update1N
 …
<BEFORE | AFTER> eventM PERFORM
GaurdM1->UpdateM1
…
GaurdML->UpdateML

Fig. 2. ConSpec Syntax

The tag RULEID simply defines the id of the policy. The tag SCOPE specifies

whether the rule is applied to one specific execution or to all executions of the ser-
vice. The tag SECURITY STATE defines the global variables and their initial values.
Then several events are checked BEFORE or AFTER occurrence. If an event oc-
curred we check guards one by one until find the one which is satisfied. In this case
certain security updates are performed. If no guards are fired for the event, then the
further execution is not permitted (and some further security actions, like notifying
the customer, are triggered). In case no security updates are needed but the further
execution is allowed, there is a special action SKIP which does not do anything but
continues the execution. There is also a possibility for specifying an ELSE statement
for the cases, when the further execution should be allowed even if no guards fired
(we omitted this option here for simplicity).

There are a number of advantages of ConSpec. First, this language was developed
for security purposes and allows guarding possible actions performed by a system
(e.g., a service). It represents behaviour in terms of different events (originally, Java
method calls) that allow policies to be checked at runtime. The policies written in
ConSpec are easily understandable by humans (the language is similar to program-
ming languages), has comparatively simple semantics, and is easy to learn. ConSpec
is an automata-based language. Although this feature slightly reduces its expressive-
ness (in comparison with its predecessor PSLan [13], or other declarative languages
as EventCalculus [10], XACML [9], PROTUNE [11], etc.), it allows automatic rea-
soning on it. For example, in the project we needed to check that requirements desired
by a consumer could be fulfilled by a service provider. Furthermore, it is simple to
define a policy decision point for monitoring purposes if automation is available.
Finally, ConSpec defines different scopes of its application. Thus, we may define a
policy for a single execution of a service or multiple executions.

196 M. Asim et al.

Fig. 3. ConSpec Editor

In the scope of the Aniketos project we have created a tool which provides a graph-
ical user interface for making and changing ConSpec policies. The tool is called a
ConSpec Editor and has been illustrated in Fig. 3. The tool also converts the policy in
a specified XML format, which simplifies policy processing by the policy decision
point (PDP) of the monitor. The tool checks the correctness of the written policy and
notifies the writer about possible errors.

Moreover, the tool allows creating templates for policies, i.e., a predefined policy
structure, which requires only initialization of input parameters. Thus, templates sig-
nificantly simplify the work with ConSpec rules for inexperienced users, who now
should simply insert context specific values in a selected policy template. Finally, the
tool may be integrated with a service composition framework (e.g., the one shown in
Chapters 4 and 9, and retrieve names of used constructs (e.g., IDs of services) or even
policies themselves.

4 Event Model

The monitoring framework we propose is built around the concept of events. It is an
event-driven approach that allows the monitoring system to analyse events and react
to certain situations as they occur.

 Security Policy Monitoring of Composite Services 197

Figure 4 displays a simplified version of our proposed event model. This organises
different event types allowing us to reason about and provide a generic way to deal
with them.

Fig. 4. Event Model

The Activiti engine provides an extension on top of the BPMN 2.0 specification al-

lowing Execution Listeners to be defined. These listeners can be configured at the
Process level, Activity level or Transition level in order to generate events. Our event
model is based on two types of process variables: Base Variables and Domain Specif-
ic Variables. Both types of variable are available during the execution of a business
process and could be used for monitoring. The listeners have access to these process
variables and can create events populated using their associated values, sending for
analysis. The Base Variables inherit common attributes from the process itself, e.g.,
the process ID, process name, activity ID, activity name, process start time. For ex-
ample, to monitor the execution time of a particular service composition described as
a BPMN process (possibly using an extension that supports the specification of secu-
rity and trust properties [14]), both process start and end events could be used along
with the common variables: event start time and event end time. However, the Do-
main Specific Variables are user-defined and may build upon the Base Variables. For
example, to analyse the load on a particular service, we could accumulate all start
process events for that service over the last hour. An alert message should be generat-
ed if the number of requests is more than a threshold value in the last hour. This thre-
shold value is a user-defined attribute falling within the Domain Specific Variables.

In the following discussion, we try to determine the structure of events that should
be received for analysis. In our proposed framework, an overall process could
represent a composite service and an Activity could represent a service component.
Fig. 5 shows an example of events for a BPMN process executed in a specific order.

198 M. Asim et al.

Fig. 5. Event Flow

In this example, a loan service is comprised of loan calculation and loan approval

tasks. Therefore, it is not possible to define a single structure for monitoring the over-
all process. For example, to monitor an Activity, we cannot wait for the whole process
to complete. The monitoring of an Activity may need only the process ID, Activity
start and end events.

In our proposal, an event structure describes the data and structure associated with
an event. It helps in organizing the data that is required for monitoring. Below we
define the event structure for our proposed monitoring framework.

1) Process level event

processName
eventLevel (processLevelEvent)
eventName (Start or End)
eventTime (Timestamp)
Variable 0...n –domain specific variables

2) Activity level event
processName
activityName (name of the Service or User Task)
eventLevel (activityLevelEvent)
eventType (Service Task or User Task)
eventName (Start or End)
processFlow (used to construct a composition work-flow)
eventTime (Timestamp)
Variable 0...n –domain specific variables

 eventDate (e.g. 2013/04/05)

5 The Monitoring Framework

The general architecture of the monitoring framework that we use to monitor the
BPMN processes is shown in Fig. 6.

 Security Policy Monitoring of Composite Services 199

Fig. 6. Monitoring Framework

During execution, the Activiti engine generates events for the deployed BPMN
process. The framework consists of an Analyzer that accepts a set of security re-
quirements (monitoring policy) for a particular process to be monitored. The monitor-
ing policy is defined by the service designer. The Analyzer then recovers the monitor-
ing patterns that are related to the requirements from the monitoring pattern repository
and checks whether the received events are consistent with the patterns and if it is not
then it reports a violation. The monitoring policy is defined using the ConSpec lan-
guage. The components of the monitoring framework are shown in Fig. 6. In the fol-
lowing, we describe the monitoring components:

Event Manager: This module is responsible for gathering events coming from the
Activiti engine and forwards them to the Analyzer. The event manager is composed
of an Event Filter that filters relevant events for compliance monitoring. The Event
Filter relies on a filtering mechanism and acts as a first step to reduce the number of
events that must be considered by the Analyzer.

Monitoring Policy: A set of requirements, specified in ConSpec, that describes what
properties need to be monitored for a particular BPMN process. The monitoring
policies are defined using the Aniketos Service Composition Framework (SCF), see
Chapters 4 and 9.

Consider the following example where a service designer creates a travel booking
composition that consists of several tasks, such as ordering, booking hotel, booking
flight, payment and invoice, and each task is performed by a component service. The
service designer might want that the payment service component should only be in-

200 M. Asim et al.

voked when it has a trustworthiness value ≥ 90%. This requirement could easily be
specified using the ConSpec language as shown in Fig. 7.

MAXINT 32000
MAXLEN 1000
SESSION session

SECURITY STATE
 int trust_threshold = 0.9;
 string ServiceID=PaymentService;

BEFORE v#activity.start(string id, string type,

string time, string date, string exec)
ServiceID==id && i#Trustworthiness(id) >

trust_threshold-> skip;

Fig. 7. ConSpec rule for Trustworthiness

Monitoring Rule Repository: It is a database of monitoring patterns used for moni-
toring services. The rules defined in the monitoring policy are translated into monitor-
ing rules and are stored in the Monitoring Pattern repository. An example monitoring
pattern might specify that the trustworthiness of a service should be continuously
monitored so that a notification is generated as soon as the value falls below a given
threshold.

Analyzer: It analyses the events coming from the Event Manager by using patterns
stored in the repository. The Analyzer makes use of the monitoring policy to select
the appropriate monitoring patterns for a particular process. Every policy is analysed
according to the ConSpec specification, particular, if a policy has a Scope Session
policy initialised when a service is invoked. The PDP helps in translating ConSpec
policies into monitoring rules for decision making. Upon receiving events from the
Analyzer, the PDP analyses them according to the order of the guard-update state-
ments specified in the policy. The first guard returning “true” fires the corresponding
update (i.e., actions, which have to be performed before continuing of the execution)
and afterwards no more statements are checked. Thus, no conflicts are allowed to
occur. Note that if no guards resulted to “true” (and updates for ELSE are not speci-
fied), this means violation of the policy. If no updates are necessary for some condi-
tions, a special command skip is envisaged.

Notification Module: It is developed as a part of the Aniketos platform and is used
by the monitoring framework to report any violations. The Notification Module is
implemented as a cloud service and is based on a publish-subscribe paradigm that
notifies the entities subscribed about contract violation.

 Security Policy Monitoring of Composite Services 201

6 Conclusion

The presented monitoring framework is tightly integrated into the Aniketos platform
(See Chapter 4) which supports the design-time and runtime aspects of secure and
trustworthy service compositions. The proposed monitoring framework provides a
user friendly interface for service designers to specify their monitoring policies as
ConSpec rules. A policy written in ConSpec is easily to understand and the simplicity
of the language allows comparatively simple semantics. This enables the service de-
signer to easily specify the monitoring requirements for their processes and monitor
them using the framework. The monitoring framework is based on the way relevant
information can be combined from multiple dynamic services in order to automate the
monitoring of business processes and proactively report compliance violations. Alerts
regarding policy violations are sent as notifications which other interested parties
(generally the service composition providers) can subscribe to, allowing them to make
verifications and take decisions and actions.

References

[1] Ghezzi, C., Guinea, S.: Run-time Monitoring in Service Oriented Architectures. In: Test
and Analysis of Web Services. Springer, Heidelberg (2007)

[2] OMG, Business Process Model and Notation (BPMN) Version 2.0 (2011),
http://www.omg.org/spec/BPMN/2.0/

[3] Rademakers, T.: Activiti in Action:Executable business processes in BPMN 2.0. Man-
ning Publications (2012)

[4] Baresi, L., Guinea, S., Nano, O., Spanoudakis, G.: Comprehensive monitoring of BPEL
processes. IEEE Internet Computing 14(3), 50–57 (2010)

[5] Haiteng, Z., Zhiqing, S., Hong, Z.: Runtime Monitoring Web Services Implemented in
BPEL. In: International Conference on Uncertainty Reasoning and Knowledge Engineer-
ing (URKE), Bali, Indonesia, vol. 1, pp. 228–231 (2011)

[6] Wu, G., Wei, J., Huang, T.: Flexible Pattern Monitoring for WS-BPEL through Stateful
Aspect Extension. In: Proc. of the IEEE Intl. Conf. on Web Services (ICWS 2008),
Beijing, China, pp. 577–584 (2008)

[7] Baresi, L., Ghezzi, C., Guinea, S.: Smart Monitors for Composed Services. In: Proceed-
ings of the 2nd International Conference on Service Oriented Computing (ICSOC 2004),
New York, USA, pp. 193–202 (2004)

[8] Aniketos Consortium, Deliverable D9.2: Demonstration material and events from the
complete project (2012)

[9] eXtensible Access Control Markup Language (XACML) Version 3.0,
http://docs.oasis-open.org/xacml/3.0/
xacml-3.0-core-spec-os-en.pdf

[10] Shanahan, M.: The Event Calculus Explained. In: Veloso, M.M., Wooldridge, M.J. (eds.)
Artificial Intelligence Today. LNCS (LNAI), vol. 1600, pp. 409–430. Springer,
Heidelberg (1999)

[11] Bonatti, P.A., De Coi, J.L., Olmedilla, D., Sauro, L.: PROTUNE: A Rule-based
PROvisionalTrUst Negotia-tion Framework (2010)

202 M. Asim et al.

[12] Aktug, I., Naliuka, K.: ConSpec: A Formal Language for Policy Specification. In: Pro-
ceedings of the First International Workshop on Run Time Enforcement for Mobile and
Distributed Systems (2007)

[13] Erlingsson, U.: The inlined reference monitor approach to security policy enforcement.
PhD thesis, Department of Computer Science, Cornell University (2004)

[14] Brucker, A.D.: Integrating Security Aspects into Business Process Models. IT - Informa-
tion Technology 55(6), 239–246 (2013)

[15] S3MS project,
http://researchprojects.kth.se/index.php/kb_1/io_9718/io.html

[16] Activiti engine, http://www.activiti.org/
[17] Aniketos Consortium, Deliverable D9.2: Demonstration material and events from the

complete project (2012)

	Security Policy Monitoring of Composite Services
	1 Introduction
	2 Service Composition: An Example
	3 Policy Language
	4 Event Model
	5 The Monitoring Framework
	6 Conclusion
	References

