
Achim D. Brucker Fabiano Dalpiaz
Paolo Giorgini Per Håkon Meland
Erkuden Rios (Eds.)

Secure and Trustworthy
Service Composition

St
at

e-
of

-th
e-

Ar
t

Su
rv

ey
LN

CS
 8

90
0

 123

The Aniketos Approach

Lecture Notes in Computer Science 8900
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Achim D. Brucker Fabiano Dalpiaz
Paolo Giorgini Per Håkon Meland
Erkuden Rios (Eds.)

Secure and Trustworthy
Service Composition

The Aniketos Approach

13

Volume Editors

Achim D. Brucker
SAP SE, Vincenz-Priessnitz-Str. 1, 76131 Karlsruhe, Germany
E-mail: achim.brucker@sap.com

Fabiano Dalpiaz
Utrecht University, PO Box 80.089, 3508 TB Utrecht, The Netherlands
E-mail: f.dalpiaz@uu.nl

Paolo Giorgini
University of Trento, DISI, Via Sommarive 5, 38123 Povo Trento, Italy
E-mail: paolo.giorgini@unitn.it

Per Håkon Meland
SINTEF ICT, Strindveien 4, 7465 Trondheim, Norway
E-mail: per.h.meland@sintef.no

Erkuden Rios
TECNALIA Research & Innovation
Parque Tecnológico de Bizkaia, Edificio 202, 48170 Zamudio, Spain
E-mail: erkuden.rios@tecnalia.com

Cover illustration: The Aniketos approach to making composite services
secure and trustworthy for the service end user.

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-13517-5 e-ISBN 978-3-319-13518-2
DOI 10.1007/978-3-319-13518-2
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014955202

LNCS Sublibrary: SL 4 – Security and Cryptology

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Foreword

The Future Internet envisions a move toward widespread use of services as a
way of networked interaction. However, while the technologies for developing
and deploying services are well established, methods for ensuring trust and se-
curity are fewer and less mature. In particular, current service security standards
and technologies tend to be focussed on specific areas, such as security at the
communication level.

Lack of trust and confidence in composed services and in their constituent
parts is reckoned to be one of the significant factors limiting widespread uptake
of service-oriented computing. Citizens and businesses alike need to have greater
confidence in online services for the digital economy to flourish.

For example, the security claims of a service should be known in advance, and
a user should be able to make judgments about the trustworthiness of a service
and its likelihood of fulfilling these claims. This should apply to services running
in isolation, as well as those comprised of other services from different providers.
In order for users to be confident that their legitimate security requirements are
being satisfied, advances in tools and methods are required.

This was the common understanding that brought 17 European partners
from 10 countries to join forces in the Aniketos project. The motivation was to
overcome some of these obstacles.

The results of the project are now available, and this book presents them
in condensed form. In addition to the written word, the project has produced
software tools wrapped in four packages, each serving a group of typical security
needs, ranging from the specification of security and trustworthiness require-
ments, through improved tools for designing secure composite software systems
services, and to support for runtime monitoring and dynamic recomposition of
secure behavior.

Enjoy!

August 2014 Richard Torbjørn Sanders
Project Manager of Aniketos

Preface

The Future Internet will provide an environment in which a diverse range of
services are offered by multiple suppliers, and users are likely to unknowingly
invoke underlying services in a dynamic and ad hoc manner. Moving from today’s
static services, we will see service consumers that transparently mix and match
service components depending on service availability, quality, price, and security
attributes. Consequently, the applications that end users see may be composed
of multiple services from many different providers, and the end user may have
little assurance about the compliance of a particular service supplier with the
declared security policies.

Thus, there is the need for services platforms that build the foundation of
a Future Internet that is responsive to threats and changes in services. This
book presents the Aniketos platform that was developed during the Aniketos
project, and that is the central element of the Aniketos approach to secure and
trustworthy service composition. This approach can help establish and maintain
trustworthiness and secure behavior in a constantly changing service environ-
ment. It integrates methods for analyzing, solving, and sharing information on
how new threats and vulnerabilities can be mitigated. The Aniketos approach is
holistic in the sense that it addresses the following three areas:

1. Socio-technical perspective: Dynamically composed services have to handle
not only technical issues, but also organizational and business aspects such
as responsible parties, business models, different security legislations, as well
as end-user usability and assurance.

2. Design-time composition support : Services cannot be created the same way
as we have been doing so far. Security, as well safe and secure behavior,
needs to be described not only from a technical point of view, but also from
the organizational and businesses perspective. Moreover, there is a need for
methods and tools to analyze and model the variability of services and their
composition as a response to the evolution of the environment.

3. Run-time service adaptation and composition: At run-time, the trust estab-
lished from design-time artifacts and activities needs to be maintained, and
safe and secure service behavior needs to be continuously verified. Run-time
monitoring and automatic adaptation of services are needed due to an evolv-
ing environment of threats and operating conditions. Down-time is costly; a
composed service must be able to operate even during an attack (with pos-
sible limitations or change of behavior), taking risks and adaptation costs
into account.

The book is divided into five parts. Part one provides a summary of the
state of the art in secure and trustworthy composite services, thereby being the
most suitable starting point for readers who want to get a quick overview on
why we need secure and trustworthy composite services, the threats that they

VIII Preface

need to consider as well as a first insight into techniques for building secure
and trustworthy such services. Readers that are already familiar with the topic
might skip directly to Part two, which provides an overview of the Aniketos
platform. This is, so to speak, the “must read” part of the book if one wants
to get an overview of the Aniketos approach to trustworthy composite services.
Moreover, this part helps decide which of the following chapters one wants to
deep-dive into. Part three discusses selected details of the design-time support
of the Aniketos platform, i.e., how to gather the requirements for secure and
trustworthy services and transfer these requirements into a system design that
is eventually implemented. We continue the journey on designing and operating
secure and trustworthy composite services in Part four, which discusses selected
features of the run-time support of the Aniketos framework. Finally, in Part
five, we present two large case studies in which the Aniketos platform was used,
as well as a report on challenges in evaluating such a complex and feature-rich
platform.

This book is the result of the collective effort of all project participants that
contributed to the success of Aniketos, which arises from the many brainstorming
and discussion sessions. The project participants also acted as reviewers for the
book chapters; each chapter was reviewed by at least two reviewers. We would
like to thank them all for their serious effort. In particular, we would like to
thank Richard Sanders, the project leader of Aniketos, the EU Project Officer
Manual Carvalhosa and Rodrigo Mendes, who supported the project during its
lifetime, the reviewers Giampaolo Bella, Dirk Khulman, Martin Koyabe, and
Patrick Legand, who provided valuable feedback at the project reviews, and,
last but not least, Eleonora Anzini, Valentino Meduri, and Alessandra Tedeschi,
who designed the image featured on the title page of this book.

October 2014 Achim D. Brucker
Fabiano Dalpiaz
Paolo Giorgini

Per H̊akon Meland
Erkuden Rios

Table of Contents

State of the Art in Secure and Trustworthy
Composite Services

Composite Services with Dynamic Behaviour . 1
Per H̊akon Meland

Security and Trustworthiness Threats to Composite Services:
Taxonomy, Countermeasures, and Research Directions 10

Per H̊akon Meland, Muhammad Asim, Dhouha Ayed,
Fabiano Dalpiaz, Edith Félix, Paolo Giorgini, Susana Gonzáles,
Brett Lempereur, and John Ronan

Adopting Existing Communication Platforms for Security Enabling
Technologies . 36

Konstantinos Giannakakis

The Aniketos Platform

The Aniketos Platform . 50
Per H̊akon Meland, Erkuden Rios, Vasilis Tountopoulos,
and Achim D. Brucker

The Socio-technical Security Requirements Modelling Language for
Secure Composite Services . 63

Elda Paja, Fabiano Dalpiaz, and Paolo Giorgini

From Consumer Requirements to Policies in Secure Services 79
Erkuden Rios, Francesco Malmignati, Eider Iturbe,
Michela D’Errico, and Mattia Salnitri

Design-Time Support Framework

Security Requirements Engineering with STS-Tool 95
Elda Paja, Mauro Poggianella, Fabiano Dalpiaz, Pierluigi Roberti,
and Paolo Giorgini

Using SecureBPMN for Modelling Security-Aware Service
Compositions . 110

Achim D. Brucker

X Table of Contents

The Aniketos Service Composition Framework: Analysing and Ranking
of Secure Services . 121

Achim D. Brucker, Francesco Malmignati, Madjid Merabti, Qi Shi,
and Bo Zhou

Compliance Validation of Secure Service Compositions 136
Achim D. Brucker, Luca Compagna, and Pierre Guilleminot

Aggregation and Optimisation of Trustworthiness of Composite
Services . 150

Hisain Elshaafi, Jimmy McGibney, and Dmitri Botvich

Run-Time Support Framework

Monitoring Threats to Composite Services within the Aniketos
Run-Time Framework . 173

Brett Lempereur, Dhouha Ayed, Muhammad Asim, Madjid Merabti,
and Qi Shi

Security Policy Monitoring of Composite Services . 192
Muhammad Asim, Artsiom Yautsiukhin, Achim D. Brucker,
Brett Lempereur, and Qi Shi

Case Studies and Evaluation

The Aniketos Design-Time Framework Applied – A Case in Air Traffic
Management . 203

Stéphane Paul, Alessandra Tedeschi, Erlend Andreas Gjære, and
Ivonne Herrera

Supporting Security and Trust in Complex e-Government Services 219
Vasilis Tountopoulos, Ira Giannakoudaki,
Konstantinos Giannakakis, Lefteris Korres,
and Leonidas Kallipolitis

Characteristics and Addressed Challenges in Evaluating the Aniketos
Project Outcome . 234

Elke Beck, Sandra Trösterer, Alexander G. Mirnig,
and Manfred Tscheligi

Author Index . 247

Composite Services with Dynamic Behaviour

Per H̊akon Meland

SINTEF ICT, N-7465 Norway
per.h.meland@sintef.no

Abstract. The characteristics of dynamic composite services opens up
to new possibilities as well as potential dangers. We need to be aware of
both sides of this coin when designing and providing such services, as well
as when we are consuming them. This chapter explains the characteristics
of composite services, and gives a brief overview of related literature,
projects, tools and standards as a backdrop to the Aniketos project.

Keywords: Service-Oriented Computing, Composite Services, Dynamic
behaviour, Security, Trustworthiness.

1 Introduction

As the Internet extends into an Internet of Services, composite services [28]
are expected to become enablers of a more open and agile business environ-
ment. Design-time service composition involves the manual tailoring of a ser-
vice based on planning, discovery, analysis and composition. The typical work
styles of composing a service range from top down approaches, where a user
specifies an abstract description of a desired composite service, to bottom-up
approaches where users directly edit and compose existing services [45]. In the
event of a change, a manual or (semi-)automatic recomposition is done before
the service can be replaced. Currently, many WS-∗ specifications address secu-
rity concerns, but most of the focus is on secure message exchange [30], and
current orchestration and choreography lack support for the specification and
enforcement of process level requirements, such as secure operational styles [57].
These higher order interactions must become a part of composition; otherwise
service composition represents a real threat for the security of services and net-
work integrity. Static service composition suffers from an inherent drawback,
the absence of information about the dynamic structure of the network. Usu-
ally, the variance between a static approximation and the real behaviour of a
system is huge. Papazoglou et al. point out that many of the existing approaches
towards service composition largely neglect the context in which the composition
takes place [41]. These considerations outline the importance of dynamic adap-
tation/composition environments, where a composite service can automatically
react and respond to change. Fully automatic service composition is still at a
very immature stage [41,47,48] but partial adaptation and/or replacement of
service components is possible given that there are adaptation plans or alterna-
tive service configurations.

A.D. Brucker et al. (Eds.): Secure Service Composition, LNCS 8900, pp. 1–9, 2014.
c© Springer International Publishing Switzerland 2014

2 P.H. Meland

New paradigms and new challenges tend to go hand in hand. Just as flexibility
is a way of dealing with unforeseen changes and threats, it is also a serious risk to
security, trustworthiness, and dependability. Traditional engineering paradigms
suggest to check systems against these properties through design-time verifica-
tion techniques (à la model checking [31]). Unfortunately, these approaches are
inapplicable for dynamically composed services given that (i) a service behaves
as a black-box, thus a composite service’s building blocks are not necessarily
inspectable; (ii) at runtime, service components may be replaced by new ones;
and (iii) the interaction among different services leads to non-deterministic out-
comes [50]. When developing new methods and technologies we need to make
sure that we do not introduce new problems that are greater than the ones we
had before.

The purpose of this chapter is to explain the characteristics (section 2) of
composite services with dynamic behaviour as a backdrop for the rest of this
book, and to give a brief overview of related work in this area (section 3). In
section 4 we conclude the chapter with some comments on the research challenges
we have faced in the Aniketos project.

2 Characteristics

Creating complex systems by combining smaller services as components is one
of the fundamental concepts in Service Oriented Architecture (SOA). For Web
services, composition and integration usually fall under the terms choreography
and orchestration [33]. With a dynamic composite service, service components
can be replaced during execution time [56], for example if a component fails, or
a cheaper, faster, or otherwise better one can be found. This is usually termed
runtime adaptation or recomposition. There are different grades of adaptation,
from simply replacing a single service component with another one performing
the same task, to a total reconfiguration of roles and a completely new set of
service components with different functionalities. Alternative service composi-
tions may have been defined in advance at design-time, or may involve real-time
reasoning, planning, discovery and binding.

We know that the threat picture of a service is in constant evolution. This
is due to the fact that new methods and motivations for performing an attack
emerge, changing operating conditions and that the services themselves are up-
dated at various intervals. Within a composite service, this is even more of a
challenge, since each individual service component will have a fluctuating threat
picture and the total attack surface of the composite service will be broader as
the number of involved service components increases. It is important to under-
stand the characteristics of dynamic composite services in order to understand
the threats to them. We can summarize these characteristics as:

– A composite service is an aggregation of multiple sub-services or service
components. These more fine-grained services may be atomic services or other
compositions themselves.

Composite Services with Dynamic Behaviour 3

– A service consumer is the one requesting a service, while a service provider
tries to fulfill the request. A service provider can also be a service consumer
(acting as a service mediator).

– The service components are delivered by service providers from within or
outside the consumer’s organization. The consumer may know very little
about these providers.

– Composite services have much more distributed nature than isolated services,
and this is something that makes the detection of attacks much harder than
in single systems. The attack surface is also much broader, giving the attacker
several more options on where to attack.

– A dynamic composite service can replace service components or reconfigure
itself during execution time. This kind of adaptation or re-composition at
run-time may affect the functionality or efficiency of the remaining services.
Crisis situations are prime examples where dynamic behaviour is needed.

– A service component has the nature of a black box, meaning that the external
interface is exposed, but it is very difficult to check what the component
actually does internally.

– Service components are primarily selected from functional service descrip-
tors, secondly from other types of properties such as costs and QoS1.

– Service descriptors are available in different types of service marketplaces
(most common are yellow/green pages for UDDI), making it possible to
discover relevant service components for a composition.

– The expected behavior of a service component is often expressed in a type
of contract between the service consumer and service provider. Today this
is mostly limited to availability, price and performance.

We can illustrate some of the characteristics through a practical service ex-
ample. Consider a service provider offering a travel assistance service which lets
the end user read about various points-of-interest (POI), access local maps, cal-
culate routes and pay for tickets online. Under the hood of such a composite
service there will be a range of service components from independent providers,
but this is hidden from the service end user.

Consider the case where a ticket purchasing component becomes exposed to a
threat (for instance recall the DDOS attacks on VISA, Mastercard and PayPal
in 2010 [58]), lowering its assurance level or availability. The composite service
should consequently react to this, and for instance replace that service compo-
nent with something that is available and will not cripple the service as a whole.
This could be a service component that allows you to use an electronic invoice,
charge your mobile phone bill, or in the worst case - direct you to the nearest
ticketing machine where you can pay by cash. Figure 1 illustrates this composi-
tion example, where the composition is puzzled together by a set of roles played
by a set of generic services. The original payment service is later considered to
be too risky at runtime, influencing the total security and availability of the
composite service. This leads to a substitution of the service with another one

1 The term QoS does not usually include security, the contractual focus is in most
cases related to dependability, measured as service availability.

4 P.H. Meland

Fig. 1. The travel assistance composite service example

that has an equivalent business functionality, but is considered more secure and
trustworthy at that time.

Whether the end users should be notified about such service changes must
be determined on a case-by-case basis. An end user will probably not care if
the service providing the map changes on a regular basis, but would probably
want an explanation if the payment part suddenly does so. Ignorance is bliss,
but knowlegde is power.

3 Related Work

3.1 Literature

Service composition, especially with automatic methods and tools, has been high
up on the research agenda for a long time now. The most cited are publications
by Milanovic and Malek [40], Hamadi and Benatallah [34], Rao and Su [46],
Canfora et al. [26], Casati et al. [29], and Srivastava and Koehler [51]. These
were all published before 2005, at a time that seems to be a peak when it comes

Composite Services with Dynamic Behaviour 5

to publications in this area. After this period, there has been a steady number
of publications up until today. For instance, Alrifai et al. [20] have developed an
approach for service selection based on QoS parameters, Hwang et al. [35] have
taken dynamic service selection further, El Hadad et al. [32] have worked on
selection and composition based on transactional properties and QoS character-
istics between service components, and Sohrabi and McIlraith [49] have looked at
the trade-off between offline and online composition. Richer overviews of exist-
ing publications can be found in the many survey works. Strunk [53] published a
survey on service composition in 2010, as did Bronsted et al.[25] and Ibrahim et
al. [36] the same year, but with a stronger focus on pervasive computing. Maigre
[37] also wrote a survey in 2010 on the topic of service composition tools. Later
surveys have followed, such as [27,24,54,42,52], but these are currently not as
much quoted in the literature.

3.2 Projects

Our Aniketos project started in 2010 with the goal of enabling practical solu-
tions to secure and trustworthy composite services. Alongside with Aniketos,
there have been other European research projects tied to our work, such as
SecureChange [14], which started in 2009 and targeted to develop new mod-
els, methodologies and processes to ensure security, privacy and dependability
requirements during software evolution. The AVANTSSAR (Automated Valida-
tion of Trust and Security of Service-oriented Architectures) project [2] devel-
oped a formal language for specifying trust and security properties of services,
their associated policies and their composition into service architectures, as well
as automated techniques to reason about services, their dynamic composition,
and their associated security policies into secure service architectures. NESSOS
[10] has been a network of excellence on the security challenges for the future
software services. COMPAS [5] implemented a framework to ensure dynamic and
on-going compliance of software services. FI-WARE [6] is developing a catalogue
of so-called generic enablers that can be included in services to perform specific
tasks. SOA4All [16] developed an infrastructure for easier service composition
and application mash-ups. COIN [4] worked for self-adaptive service systems,
and CHOReOS [3] with large-scale service choreographies.

3.3 Tools and Standards

In Aniketos, we have based our tool technology on open source platform from
Activiti [1], which uses BPMN as a service specification and execution language.
There are several other open source tools for service composition and execution,
for instance Sword [44], ZenFlow [39], JOpera [8], METEOR-S [19] and Flow
Editor [43]. These are mostly academically driven. On the commercial tool side,
we are aware that e.g. Microsoft Visual Studio [9], Oracle SOA Suite [12], IBM
Business Process Manager [7] and SAP NetWeaver [13] are commonly used for
service composition/integration. Interoperability between these these tools is
very limited, though there exist a plethora of standards for service descriptions,

6 P.H. Meland

service process specifications and service interaction. For instance SoaML [15],
WS-BPEL [11], BPML [55], DAML-S [21], WSCI [22], WSCL [23], WS-CDL
[18], OWL-S [38] and WSMO [17]. Having these standards has not lead to a
wide uptake and implementation, and most of them are now outdated.

4 Conclusion

The characteristics of dynamic composite services opens new possibilities as well
as potential dangers. We need to be aware of both sides of this coin when de-
signing and providing such services, as well as when we are consuming them.
Service composition is one of the key principles of service oriented architecture,
the research field gained a lot of attention between 2003-2005 and has kept a
steady pace ever since. This chapter has explained the common backdrop of the
Aniketos project, with a brief overview of the most notable related publications,
projects, tools and standards. Still, even after fifteen years of research and de-
velopment, there are many roads yet to be discovered and very few composite
services that are self-managed and trustworthy at the same time. We hope that
the Aniketos methods and technology will help bring this field a lot further, both
from an academic and industrial point of view.

References

1. Activiti BPM Platform, http://activiti.org/ (cited May 2014)
2. Automated VAlidatioN of Trust and Security of Service-oriented ARchitectures
(avantssar), http://www.avantssar.eu/ (cited May 2014)

3. CHOReOS, http://www.choreos.eu/ (cited May 2014)
4. Coin, http://www.coin-ip.eu/ (cited May 2014)
5. COMPAS - Compliance-driven Models, Languages, and Architectures for Services,

https://sites.google.com/site/mashtn/eu-projects/compas (cited May 2014)
6. FI-ware, http://www.fi-ware.eu/ (cited May 2014)
7. Ibm business process manager, http://www-03.ibm.com/software/products/en/

business-process-manager-family (cited May 2014)
8. JOpera for Eclipse, http://www.jopera.org/ (cited May 2014)
9. Microsoft Visual Studio, http://www.visualstudio.com/ (cited May 2014)
10. Network of Excellence on Engineering Secure Future Internet Software Services

and Systems (NESSoS), http://www.nessos-project.eu/ (cited May 2014)
11. OASIS Web Services Business Process Execution Language (WSBPEL), https://

www.oasis-open.org/committees/wsbpel/? (cited May 2014)
12. Oracle SOA Suite, http://www.oracle.com/technetwork/middleware/soasuite/

(cited May 2014)
13. SAP NetWeaver Technology Platform, http://scn.sap.com/community/

netweaver (cited May 2014)
14. Securechange, http://www.securechange.eu/ (cited May 2014)
15. Service Oriented Architecture Modeling Language (SoaML), http://www.omg.

org/spec/SoaML/ (cited May 2014)
16. Service Oriented Architectures for All (SOA4All), http://www.soa4all.eu/ (cited

May 2014)

http://activiti.org/
http://www.avantssar.eu/
http://www.choreos.eu/
http://www.coin-ip.eu/
https://sites.google.com/site/mashtn/eu-projects/compas
http://www.fi-ware.eu/
http://www-03.ibm.com/software/products/en/business-process-manager-family
http://www-03.ibm.com/software/products/en/business-process-manager-family
http://www.jopera.org/
http://www.visualstudio.com/
http://www.nessos-project.eu/
https://www.oasis-open.org/committees/wsbpel/?
https://www.oasis-open.org/committees/wsbpel/?
http://www.oracle.com/technetwork/middleware/soasuite/
http://scn.sap.com/community/netweaver
http://scn.sap.com/community/netweaver
http://www.securechange.eu/
http://www.omg.org/spec/SoaML/
http://www.omg.org/spec/SoaML/
http://www.soa4all.eu/

Composite Services with Dynamic Behaviour 7

17. Web Service Modeling Ontology (WSMO), http://www.w3.org/Submission/

WSMO/ (cited May 2014)
18. Web Services Choreography Description Language Version 1.0, http://www.w3.

org/TR/ws-cdl-10/ (cited May 2014)
19. Aggarwal, R., Verma, K., Miller, J., Milnor, W.: Constraint driven web service

composition in METEOR-S. In: Proceedings of the IEEE International Conference
on Services Computing (SCC) 2004, pp. 23–30. IEEE (2004)

20. Alrifai, M., Skoutas, D., Risse, T.: Selecting skyline services for qos-based web
service composition. In: Proceedings of the 19th International Conference on World
Wide Web, pp. 11–20. ACM (2010)

21. Ankolekar, A., et al.: DAML-S: Web service description for the semantic web. In:
Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 348–363. Springer,
Heidelberg (2002)

22. Arkin, A., Askary, S., Fordin, S., Jekeli, W., Kawaguchi, K., Orchard, D., Pogliani,
S., Riemer, K., Struble, S., Takacsi-Nagy, P., et al.: Web service choreography
interface (WSCI) 1.0. Standards proposal by BEA Systems, Intalio, SAP, and Sun
Microsystems (2002)

23. Banerji, A., Bartolini, C., Beringer, D., Chopella, V., Govindarajan, K., Karp, A.,
Kuno, H., Lemon, M., Pogossiants, G., Sharma, S., et al.: Web services conversation
language (WSCL) 1.0. W3C Note 14 (2002)

24. Bartalos, P., Bieliková, M.: Automatic dynamic web service composition: A survey
and problem formalization. Computing & Informatics 30(4) (2011)

25. Bronsted, J., Hansen, K.M., Ingstrup, M.: Service composition issues in pervasive
computing. IEEE Pervasive Computing 9(1), 62–70 (2010)

26. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: An approach for qos-aware
service composition based on genetic algorithms. In: Proceedings of the 2005 Con-
ference on Genetic and Evolutionary Computation, pp. 1069–1075. ACM (2005)

27. Cardinale, Y., El Haddad, J., Manouvrier, M., Rukoz, M.: Transactional-aware web
service composition: A survey. IGI Global-Advances in Knowledge Management
(AKM) Book Series, pp. 116–141 (2011)

28. Casati, F., Ilnicki, S., Jin, L., Krishnamoorthy, V., Shan, M.-C.: Adaptive and
Dynamic Service Composition in eFlow. In: Wangler, B., Bergman, L.D. (eds.)
CAiSE 2000. LNCS, vol. 1789, pp. 13–31. Springer, Heidelberg (2000)

29. Casati, F., Ilnicki, S., Jin, L., Krishnamoorthy, V., Shan, M.C.: Adaptive and dy-
namic service composition in eflow. In: Advanced Information Systems Engineering,
pp. 13–31. Springer (2000)

30. Charfi, A., Schmeling, B., Heizenreder, A., Mezini, M.: Reliable, Secure, and Trans-
acted Web Service Compositions with AO4BPEL. In: 4th European Conference on
Web Services, ECOWS 2006, pp. 23–34 (December 2006)

31. Clarke, E.M., Emerson, E.A.: Design and Synthesis of Synchronization Skeletons
Using Branching-Time Temporal Logic. In: Workshop on Logic of Programs, pp.
52–71. Springer, London (1982)

32. El Hadad, J., Manouvrier, M., Rukoz, M.: Tqos: Transactional and qos-aware se-
lection algorithm for automatic web service composition. IEEE Transactions on
Services Computing 3(1), 73–85 (2010)

33. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice
Hall PTR, Upper Saddle River (2005)

34. Hamadi, R., Benatallah, B.: A petri net-based model for web service composition.
In: Proceedings of the 14th Australasian Database Conference, vol. 17, pp. 191–200.
Australian Computer Society, Inc. (2003)

http://www.w3.org/Submission/WSMO/
http://www.w3.org/Submission/WSMO/
http://www.w3.org/TR/ws-cdl-10/
http://www.w3.org/TR/ws-cdl-10/

8 P.H. Meland

35. Hwang, S.Y., Lim, E.P., Lee, C.H., Chen, C.H.: Dynamic Web Service Selection
for Reliable Web Service Composition. IEEE Transactions on Services Comput-
ing 1(2), 104–116 (2008)

36. Ibrahim, N., Le Mouël, F.: A survey on service composition middleware in perva-
sive environments. International Journal of Computer Science Issues (IJCSI) 7(4)
(2010)

37. Maigre, R.: Survey of the tools for automating service composition. In: ICWS, pp.
628–629 (2010)

38. Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S.,
Narayanan, S., Paolucci, M., Parsia, B., Payne, T., et al.: OWL-S: Semantic markup
for web services. W3C member submission 22, 2007–2004 (2004)

39. Martinez, A., Patino-Martinez, M., Jimenez-Peris, R., Perez-Sorrosal, F.: ZenFlow:
a visual Web service composition tool for BPEL4WS. In: 2005 IEEE Symposium
on Visual Languages and Human-Centric Computing, pp. 181–188. IEEE (2005)

40. Milanovic, N., Malek, M.: Current solutions for web service composition. IEEE
Internet Computing 8(6), 51–59 (2004), http://dx.doi.org/10.1109/MIC.2004.
58

41. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented com-
puting: A research roadmap (2008)

42. Pejman, E., Rastegari, Y., Esfahani, P.M., Salajegheh, A.: Web service composi-
tion methods: A survey. In: Proceedings of the International MultiConference of
Engineers and Computer Scientists, vol. 1 (2012)

43. Pi, B., Zou, G., Zhong, C., Zhang, J., Yu, H., Matsuo, A.: Flow Editor: Semantic
Web Service Composition Tool. In: 2012 IEEE Ninth International Conference on
Services Computing (SCC), pp. 666–667. IEEE (2012)

44. Ponnekanti, S.R., Fox, A.: Sword: A developer toolkit for web service composition.
In: Proc. of the Eleventh International World Wide Web Conference, Honolulu, HI
(2002)

45. Rao, J., Dimitrov, D., Hofmann, P., Sadeh, N.: A Mixed Initiative Approach to Se-
mantic Web Service Discovery and Composition: SAP’s Guided Procedures Frame-
work. In: Proceedings of the IEEE International Conference onWeb Services, ICWS
2006, pp. 401–410. IEEE Computer Society, Washington, DC (2006), http://dx.
doi.org/10.1109/ICWS.2006.149

46. Rao, J., Su, X.: A survey of automated web service composition methods. In: Car-
doso, J., Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 43–54. Springer,
Heidelberg (2005)

47. Schaffner, J., Meyer, H.: Mixed initiative use cases for semi-automated service com-
position: A survey. In: Proceedings of the 2006 International Workshop on Service-
oriented Software Engineering, SOSE 2006, ACM, New York (2006), http://doi.
acm.org/10.1145/1138486.1138489

48. Sirin, E., Parsia, B., Hendler, J.: Composition-driven filtering and selection of se-
mantic web services. In: AAAI Spring Symposium on Semantic Web Services, pp.
129–138 (2004)

49. Sohrabi, S., McIlraith, S.A.: Preference-based web service composition: A middle
ground between execution and search. In: Patel-Schneider, P.F., Pan, Y., Hitzler,
P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part
I. LNCS, vol. 6496, pp. 713–729. Springer, Heidelberg (2010)

50. Srivastava, B., Koehler, J.: Web Service Composition-Current Solutions and Open
Problems. In: ICAPS 2003 Workshop on Planning for Web Services (2003)

http://dx.doi.org/10.1109/MIC.2004.58
http://dx.doi.org/10.1109/MIC.2004.58
http://dx.doi.org/10.1109/ICWS.2006.149
http://dx.doi.org/10.1109/ICWS.2006.149
http://doi.acm.org/10.1145/1138486.1138489
http://doi.acm.org/10.1145/1138486.1138489

Composite Services with Dynamic Behaviour 9

51. Srivastava, B., Koehler, J.: Web service composition-current solutions and open
problems. In: ICAPS 2003 Workshop on Planning for Web Services, vol. 35, pp.
28–35 (2003)

52. Stavropoulos, T.G., Vrakas, D., Vlahavas, I.: A survey of service composition in
ambient intelligence environments. Artificial Intelligence Review 40(3), 247–270
(2013)

53. Strunk, A.: Qos-aware service composition: A survey. In: IEEE 8th European Con-
ference on Web Services (ECOWS), pp. 67–74 (December 2010)

54. Syu, Y., Ma, S.P., Kuo, J.Y., FanJiang, Y.Y.: A survey on automated service com-
position methods and related techniques. In: IEEE Ninth International Conference
on Services Computing (SCC), pp. 290–297. IEEE (2012)

55. Thiagarajan, R.K., Srivastava, A.K., Pujari, A.K., Bulusu, V.K.: Bpml: a process
modeling language for dynamic business models. In: Fourth IEEE International
Workshop on Advanced Issues of E-Commerce and Web-Based Information Sys-
tems, WECWIS 2002, pp. 222–224. IEEE (2002)

56. Tsai, W.T., Chen, Y., Paul, R., Liao, N., Huang, H.: Cooperative and group testing
in verification of dynamic composite web services. In: Proceedings of the 28th An-
nual International Computer Software and Applications Conference - Workshops
and Fast Abstracts, COMPSAC 2004, vol. 2, pp. 170–173. IEEE Computer Society,
Washington, DC (2004), http://dl.acm.org/citation.cfm?id=1025118.1025616

57. Xu, D.H., Qi, Y., Hou, D., Wang, G.Z., Chen, Y.: An improved calculus for se-
cure dynamic services composition. In: 32nd Annual IEEE International Computer
Software and Applications, COMPSAC 2008, pp. 686–691 (July 2008)

58. Zuckerman, E., Roberts, H., McGrady, R., York, J., Palfrey, J.: Distributed De-
nial of Service Attacks Against Independent Media and Human Rights Sites.
Tech. rep., The Berkman Centre for Internet & Society and Harvard University
(December 2010), http://cyber.law.harvard.edu/sites/cyber.law.harvard.

edu/files/2010_DDoS_Attacks_Human_Rights_and_Media.pdf

http://dl.acm.org/citation.cfm?id=1025118.1025616
http://cyber.law.harvard.edu/sites/cyber.law.harvard.edu/files/2010_DDoS_Attacks_Human_Rights_and_Media.pdf
http://cyber.law.harvard.edu/sites/cyber.law.harvard.edu/files/2010_DDoS_Attacks_Human_Rights_and_Media.pdf

Security and Trustworthiness Threats

to Composite Services: Taxonomy,
Countermeasures, and Research Directions

Per H̊akon Meland1, Muhammad Asim2, Dhouha Ayed3, Fabiano Dalpiaz4,
Edith Félix3, Paolo Giorgini5, Susana Gonzáles6, Brett Lempereur2,

and John Ronan7

1 SINTEF ICT
per.h.meland@sintef.no

2 Liverpool John Moores University
{m.asim,b.lempereur}@ljmu.ac.uk

3 Thales Services
{dhouha.yahed,edith.felix}@thalesgroup.com

4 Utrecht University
f.dalpiaz@uu.nl

5 University of Trento
paolo.giorgini@unitn.it

6 ATOS
susana.gzarzosa@atos.net

7 Waterford Institute of Technology
jronan@tssg.org

Abstract. This chapter studies not only how traditional threats may
affect composite services, but also some of the new challenges that arise
from the emerging Future Internet. For instance, while atomic services
may, in isolation, comply with privacy requirements, a composition of
the same services could lead to violations due to the combined informa-
tion they manipulate. Furthermore, with volatile services and evolving
laws and regulations, a composite service that seemed secure enough at
deployment time, may find itself unacceptably compromised some time
later. Our main contributions are a taxonomy of threats for compos-
ite services in the Future Internet, which organises thirty-two threats
within seven categories, and a corresponding taxonomy of thirty-three
countermeasures. These results have been devised from analysing ser-
vice scenarios and their possible abuse with participants from seventeen
organisations from industry and academia.

Keywords: Threats, taxonomy, countermeasures, service composition,
security, trustworthiness.

1 Introduction

The capability to effectively cope with unexpected changes and threats is desir-
able for any system. Systems residing on the Internet are no exceptions, as the

A.D. Brucker et al. (Eds.): Secure Service Composition, LNCS 8900, pp. 10–35, 2014.
c© Springer International Publishing Switzerland 2014

Security and Trustworthiness Threats to Composite Services 11

Internet is a volatile and vulnerable environment that poses difficult challenges
for researchers and systems engineers. Representatives from European industry
and academia [17] have already stated in their Future Internet vision that a pri-
mary research direction is to make the Internet—and the systems deployed over
it—more secure, dependable, reliable, and flexible.

This chapter investigates both how traditional threats will affect composite
services, and some of the new challenges that shall be accounted for in the emerg-
ing Future Internet. For instance, while atomic services may in isolation comply
with privacy requirements, a composition of the same services could lead to vio-
lations due to the use and manipulation of combined information. Furthermore,
with volatile services and evolving laws and regulations, a composite service that
seemed secure enough at deployment time may become non-compliant.

Our main contribution is a taxonomy of threats—organised within seven
categories—and corresponding countermeasures for composite services in the
Future Internet. These results have been devised from analysing service scenar-
ios and their possible abuse with participants from seventeen organisations from
industry and academia.

This chapter is organised as follows. Section 2 describes the research method
thatwe followed. Section 3 presents our taxonomyof threats and Section 4 suggests
possible countermeasures to these threats. Section 5 outlines research directions
to tackle the threats as well as the implementation of countermeasures. Section 6
gives and overview of related work and, finally, Section 7 concludes the chapter.

2 Research Method

In order to study the threats related to composite services, we have employed a
scenario-driven method to identify the most relevant types of threats based on
both the knowledge of the present situation as well as what different stakeholders
envision concerning the near future.

As service composition is still an emerging field, one cannot simply look at
incidents in the past to determine what will be the greatest challenges. The
scenario development process involved the seventeen organisations in the Anike-
tos project, with their different expertise and domain knowledge related to ser-
vice technology. Together, these organisations cover private and public service
providers, Cloud providers, security companies, researchers (institutes and uni-
versities) on secure service engineering and end-users.

The organisations were encouraged to focus on their expertise domains dur-
ing scenario description. However, in order to have a comprehensive catalog of
threats, we also allowed scenarios related to other domains, even beyond the
project case studies. The scenario development was done iteratively, starting off
with rough sketches of the usage and behaviour of service environments. A cho-
sen moderator gathered the scenario descriptions and performed an initial review
of their relevance. This was followed by a refinement process, where each sce-
nario was updated by the scenario creators in collaboration with the moderator.
Afterwards, there were several iterations where the group as a whole determined
necessary steps to remove ambiguousness and gaps.

12 P.H. Meland et al.

The rough scenarios consisted of short text with focus on the normal situa-
tions and behaviour. They were then refined into a more structured template
consisting of a summary, workflow description, workflow deviations, stakehold-
ers involved, and expected outcome. For each scenario, we tried to identify how
the service environment could be exploited for malicious intents through mis-
use/abuse case scenario descriptions. They were similarly structured with a short
description, stakeholders (the attackers), outcome, assets involved, and possible
countermeasures/mitigations. Figure 1 illustrates the overall process.

Scenario handling

Rough scenario input
Describe situation and behaviour

Identified by different organisations.
Collected and reviewed by mediator.

Refine scenarios
Refine scenario description, structure and

merge (mediator)

Relevant?
(mediator) Rejected

Ambiguous?

Yes, needs
refinement

Yes

No

No

Evaluated during refinement

Good enough
coverage?

No, need
more

scenarios Yes

Fig. 1. Scenario elicitation process

The first round of scenario creation resulted in more than fifty scenarios for
normal situations, and twenty misuse cases identifying threat events and threat
agents. These scenarios have been our main information source for defining
threats and countermeasures. A second round of scenario elicitation was per-
formed two years later. Eleven additional scenarios were identified then, and
we have been updating the classification itself and the threat description over a
period of four years as technology and service uptake have progressed.

We chose to focus on and classify threats that are critical for composite ser-
vices; thus, the taxonomy should not be regarded as a complete overview for
software systems in general. To sort out what is already established threats, we
have studied the dictionary of Common Weakness Enumeration (CWE) [2], the
dictionary of Common Vulnerabilities and Exposures (CVE), and results from
various research project such as Forward [3] (extensive list in section 6).

Security and Trustworthiness Threats to Composite Services 13

3 A Taxonomy of Threats for Composite Services

Trustworthiness and security in composite services have the same foundations
as in traditional information systems. They are grounded by the security needs
which shall roughly be aligned with classical needs as addressed by the informa-
tion security field, for example confidentiality, availability, integrity, trustworthi-
ness, privacy, access control, non-repudiation as defined in [16].

However, composite services present specific vulnerabilities and threats that
do not affect traditional information systems. A threat is defined as a potential
for violation of security, which exists when there is a potential for accidentally
triggering or intentionally exploiting a specific vulnerability. Vulnerabilities are
instead security weaknesses or flaws that make a system susceptible to an at-
tack, whereas attacks consist in the exploitation of such vulnerabilities, being
the actual materialization of threats [18,19]. Countermeasures are defensive se-
curity mechanisms used for mitigating system vulnerabilities. If a vulnerability
is detected within a service, this would typically reduce the trustworthiness of
the service until it has been repaired or mitigated.

Taking into account the special characteristics of dynamic composite services,
we have defined a set of categories and classes of threats following the method
presented in Section 2. Categories are more abstract than classes, and help with
organisation. Our categories share similarities with the STRIDE1 categories [10],
which are widely used for modelling threats to traditional software systems, but
we have specialized them for our domain. A threat class can belong to more
than one category, and represents more specific unwanted events. Note that
the threat classes have different levels of abstractions as well, and can in some
cases partly overlap/subsume each other. The reason for this is that they have
been collected from different industry domains. In our work, we had to make
a balance between making the threat classes generic enough for wider use, and
preserving them in their original form in terms of name and level of detail. For
each threat class we have also indicated a threat impact value within the range
of low, medium, high. These values must be considered as an indicative starting
point, as they are based on how they would affect the scenarios they originate
from. For further reuse, these values may need to be re-assessed based on the
system under consideration. Section 3.1 explains our categories, while Section
3.2 lists and explains the threat classes. Table 1 summarizes the relationship
between categories and threats, along with their impact value.

3.1 Threat Categories

[TC-1] Incompatibility: Service composition can be a highly complicated task,
and such complexity tends to cause security issues concerning incompatibility.
Functionality should not be the only criteria while considering composition.
Other non-functional constraints such as efficiency, redundancy, resource, and

1 Spoofing, Tampering, Repudiation, Information disclosure, Denial of service and
Elevation of privileges.

14 P.H. Meland et al.

synchronisation issues may all result in a composition failure. The interface of
the component services have to be secure and compatible with each other. A
composite service might seem to work correctly from a functional point of view,
but there may be violations of security requirements. Even though a composite
service only consists of components that are considered to be safe and secure
individually, their combination might increase overall vulnerability to threats.
The incompatibility category is related to information disclosure. If we consider
for example, that a travel assistance service provider is committed to ensure cus-
tomer information privacy, a point of interest (POI) service provider that uses
data related to user preferences, and sells the data to advertisement companies,
should not be selected in the composition.

If one service component is insecure this may compromise the overall security
of the composite service. It is unlikely that each component will be fully secure,
but the objective is to make them secure enough for their purpose.

[TC-2] Constraints: The services within a composition can be geographically
distributed and composed, in turn of other services with different capabilities and
constraints, such as security policies, laws or technical and conceptual restric-
tions. All these new features must be considered in order to avoid the appearance
of incompatibilities between the integrated services. Thus, it is necessary to be
conscious of the component services to assure a reliable result.

It is possible that each component service has its own security policy. In-
compatibility policies may result in a security breach or may lead to different
vulnerabilities being exposed. For example, the composite services of the travel
assistance service can be deployed in several countries that have incompatible
confidentiality laws which can cause an incompatibilities between confidentiality
policies of the composition. The constraints category is related to information
disclosure.

[TC-3] Unaccountability: Unaccountability is related to repudiation. It should
be possible to hold service providers of composite services and service compo-
nents accountable on how data is managed, used and transferred. Responsible
parties should be defined in contracts, but this can be difficult in a complex
and dynamic environment. With composite services, information exchanged be-
tween different services is typically maintained in the form of logged data. This
logged information can be used for accountability and chain-of-evidence. Also,
the logged data may contain sensitive information (such as user’s bank account
details), and therefore its integrity and confidentiality have to be protected.

[TC-4] Malicious Activity: Composite services are not spared from malicious
activities or tampering. Attacks are launched with varying motivations. Exam-
ples include financial gain, competitive advantage, and damaging reputation. An
attacker can, for instance, first gain access to a single service component before
it compromises the overall composition. The component service can be either
maliciously coded (e.g., by the service developer) or can offer a vulnerability

Security and Trustworthiness Threats to Composite Services 15

that the attacker can exploit. Malicious activities always have an intention of
damaging the composite service or related assets, and can be performed by in-
siders or external agents.

[TC-5] Overtrust: By building trust relationships and establishing trustwor-
thiness, service providers and organisations will improve business value and con-
sumer confidence in the service oriented environments. In a composed services
context, a number of trust-related threats arise where several individual services
are put together in a composed service. This makes it difficult to have complete
control over composite services and thus predict their behavior, and eventually
their trustworthiness. For example, the trust level of service components related
to the travel assistance service can change over time due to several reasons, such
as decreasing reputation, and this compromises the trust level of the whole com-
position. Overtrust is somewhat related to elevation of privilege, information
disclosure, and spoofing.

[TC-6] Usability: A bad user interface may result in user frustration that can
lead them to make errors or compromise their own data. Sometimes it may oc-
cur that user interaction with the interfaces or tools in a composite service can
increase the likelihood of data being compromised. For example, a lack of user
notification or, indeed a large volume of unnecessary notifications could frus-
trate the end user to such an extent that they inadvertently make bad decisions,
compromising their own data. Consequently, it is necessary to have a friendly
and easy-to-use user interface. Usability relates with information disclosure.

[TC-7] Unavailability: Unavailability is closely related to denial of service, and
is especially critical for composite services as the unavailability of any service
components can easily make the composite service useless. Unavailability as such
is typically a consequence or results of other threats, as a provider may be forced
to take down the service if it is not trustworthy enough.

3.2 Threat Classes

1. Incompatible Laws: When services are geographically distributed, legal
incompatibilities may arise and pose a security threat (e.g., an adequate
level of data confidentiality is not ensured by law in all involved countries).
A composite service is perceived as a unique entity by its users. Such a
threat occurs because users are typically unaware of the identity of individ-
ual providers, of their geographic distribution, and of the laws that apply
in the countries where the service component resides. In some business ar-
eas, regulations and laws might forbid transferring sensitive data, and may
require the consent of the data owner or may result in undesirable legal liabil-
ities for service providers. For example; to exchange a confidential electronic
document with the company’s vice-president, who is currently on a business
trip in country B, the financial manager (who is in country A) assembles a
composition based on a secure service S1 that provides Microsoft Word to

16 P.H. Meland et al.

Adobe PDF conversion (to make sure the rendering of the document is pre-
served regardless of the specific document reader/editor), and a file sharing
service S2 used to share the PDF document with the vice-president. S1 is
deployed in country A, S2 in country B. The law of country B does not en-
sure data confidentiality over the Internet, as service providers are obliged to
introduce lawful intercept facilities. This generates a confidentiality concern
for the composite service. In most countries data confidentiality norms exist.
The risk could be low/medium if all parties are within EU. However, the risk
could be high if parties involved are more globally (e.g., US and EU).
table top
• Threat Category: TC-1, TC-2
• Impact: High - Incompatible laws may put data confidentiality at risk.

2. Incompatible Access Control Models:Access control of a composition is
dependent on the access control capabilities of the individual services. Where
different component services use different access control models, the result
could be a violation of any of the models. As a simple example, consider
a travel assistance service composition where the POI service applies Bell-
LaPadula (“no read up, no write down” for confidentiality), while the the
route service applies Biba (“no read down, no write up” for integrity), is
liable to result in a confused system with both models partially implemented.
• Threat Category: TC-1, TC-2
• Impact: High - The impact of such a attack can be high as confidential and
private data may be leaked to unauthorized users or, potentially, attackers.
This could be, in fact, worse than having no access control as the users would
be completely unaware of the issue and think they are operating in a secure
environment.

3. Privacy Violation via Composition: When some services are composed
together, it is possible that although every one of them has its own security
policy, the interaction between them or the data shared in the composi-
tion can lead to vulnerabilities and privacy violation. In isolation, none of
the services in the composition is a threat to privacy; however, when in a
composition, privacy is endangered. For example, an organisation relies on
services to let employees collect needed data for their job. The administra-
tion uses service “Tax” to retrieve the tax number of an employee, given her
name and surname, and birth date. The statistics department uses service
“Real Properties” to gather anonymous data about real properties of em-
ployees. If employees of the statistics department gain access to the “Tax”
service and compose it with “Real Properties”, they violate the privacy of
employees, for they can associate real properties to specific employees.
• Threat Category TC-1, TC-2, TC-3
• Impact: High - Privacy data confidentiality and integrity are very sensitive
security issues, and pose as potential show-stopper for compositions.

4. Exploitable Interaction: An important characteristic in dynamic service
re-composition is the increased, and potentially unplanned, interactions be-
tween services. Such interactions are themselves a potential source of vul-
nerabilities and threats. Problems often arise from existing vulnerabilities.

Security and Trustworthiness Threats to Composite Services 17

Table 1. The taxonomy of threats to composite services

Threat Categories Threats Classes
Threat
Impact

TC-1: Incompatibility

Incompatible laws
Incompatible access control models
Degraded policy negotiation
Privacy violation via composition
Exploitable interaction
Unwanted recomposition and reconfiguration
Synchronisation threats
Degraded security interface
Insecure interfaces and API’s

High
High
High
High
High
High
High
High
High

TC-2: Constrains

Incompatible laws
Incompatible access control models
Degrade policy negotiation
Privacy violation via composition
Security guidelines compromised
Dissolved redundancy

High
High
High
High

Medium
High

TC-3: Unaccountability

Extracting information from logs
Information and accountability lost
Insecure interfaces and API’s
Privacy violation via composition
Security guidelines compromised
Malicious service provider
Lack of trust between providers

High
Medium
High
High

Medium
High
Low

TC-4: Malicious activity

Insufficient automated security evaluation
DDoS attack occurs on service composition
Malicious service provider
Failure to sanitize special element
Embedded malicious code
Protection mechanism failure
Insecure interfaces and API’s
Exploitable interaction
Degrade policy negotiation
Extracting information from logs
Manipulation of trust properties

High
High
High
High
High
High
High
High
High
High
High

TC-5: Overtrust

Manipulation of trust properties
Untrusted outsourcing/delegation
False perception of trust for end user
Reliance on untrusted inputs in a security decision
Inclusion of functionality from untrusted control sphere
Degraded security interface
Degrade policy negotiation
Failure to sanitize special element
Embedded malicious code
Trustworthiness level variability

High
High
High
High
High
High
High
High
High

Medium

TC-6: Usability

Missing end user notification
End user gets annoyed by confirmations
Lack of usability in secure composition
False perception of trust for end use

Medium
Medium
Medium
High

TC-7: Unavailability

Lack of trust between providers
DDoS attack occurs on service composition
Corrupt load-balancing
Recomposition corrupts response time
Synchronisation threats
Cascade failure

Low
High

Medium
Medium
High
High

18 P.H. Meland et al.

These might exist in individual services, but can be exacerbated or exploited
through dynamic interactions across multiple services. Data validation vul-
nerabilities are a well-understood and widely-exploited type of vulnerability
present in a large number of existing systems. The class encompasses any
security threat arising from a failure to validate the syntactic or semantic
integrity of data passed between services before the data is used.
• Threat Category TC-1, TC-4
• Impact: High - Confidential and private data may be leaked to unauthorized
users or, potentially, attackers.

5. Degraded Security Interface: Service compositions might be long-lived.
However, not all services are invoked together. Some are invoked after pre-
vious providers deliver the service. During this time, security service inter-
faces might change, and this could be a threat for the service composition.
For example, consider a service composition that determines the salary of
a company’s employees. Among the various services, there are two subse-
quent services: “Analyse timesheets” determines the amount of work, while
“Compute gross salary” takes the timesheet data and determines the gross
salary. In such composition, the provider of “Compute gross salary” com-
mits to confidentiality and not to further delegate the task. However, service
“Analyse timesheets” takes time, for human verification is needed. During
this time, the service “Compute gross salary” changed its interface, which
does not guarantee non-delegation anymore.
• Threat Category TC-1, TC-5
• Impact: High - Changes in the security interfaces might affect the effec-
tiveness of the composition and may not meet the security needs of the user.

6. Unwanted Recomposition and Reconfiguration: A system adaptation
may involve replacing existing services with new ones or re-structuring the
services. The resulting composition may introduce some functionality that
might not be desirable for the user or the new functionality may not support
the existing compositions. This may leads to a number of problems, for
instance incompatible compositions which could prevent the correct delivery
of composite service; compromise on security requirements and degrade the
efficiency of the system.
• Threat Category TC-1
• Impact: High - This may leads to a number of problems, i.e., incompatible
compositions which could prevent the correct delivery of composite service;
compromise on security requirements and degrade system efficiency.

7. Insecure Interfaces and APIs: Service providers typically expose a set
of software interfaces or APIs that service consumers use to manage and
interact with their services. Reliance on a weak set of interfaces can expose
an organisation to a variety of security issues related to confidentiality, avail-
ability, and password integrity. For example, anonymous access or reusable
passwords, clear-text authentication or transmission of content, inflexible
access controls or improper authorizations, limited monitoring and logging
capabilities, unknown service or API dependencies. Consider a small com-
pany that uses a cloud service for daily business management such as online

Security and Trustworthiness Threats to Composite Services 19

sale and order management. An insecure interface is exploited by attackers
causing financial losses and damage of company’s reputation.

• Threat Category TC-1, TC-3, TC-4

• Impact: High - Using services with insecure interfaces and APIs may result
in an incompatible composition thereby introducing a threat to the overall
security of the composite service.

8. Degraded Policy Negotiation: Different services may have different poli-
cies and often multiple policies cannot be reconciled. This leads to negotia-
tion between service providers. A malicious service provider might use this
opportunity to try to affect the security policies of a service to make them
weaker in order to attack the service at a later time. A weaker security policy
can make a system vulnerable to various attacks.

• Threat Category: TC-1, TC-2, TC-4, TC-5

• Impact: High - A weaker security policy can make a system vulnerable to
various attacks.

9. Security Guidelines Compromised: The process of matching security
requirements (security guidelines defined by a security specialist) with secu-
rity capabilities of the services can be a notoriously complex and technical
process. In general, developers concentrate more on the functional aspects of
a system and may not have extensive experience dealing with security con-
siderations. In some cases, it may be impossible to fulfil all of the required
security requirements, such as where security ease-of-use must be balanced
against security restrictions. If a developer is unable to create a system that
fulfils the requirements, problems are likely to arise. Such problems could
take the form of inadequate security, or of failure to deploy a service. The
source of the threat comes from lack of security expertise or intractable se-
curity requirements.

• Threat Category TC-2, TC-3

• Impact: Medium - This could lead to all sort of security issues.

10. Dissolved Redundancy: Service compositions often involve redundant
provision of a certain service. Sometimes, service providers further delegate
service provision to third-party providers. If they delegate the service to the
same third-party, then the redundancy principle is violated. For example, an
air traffic controller needs accurate weather forecasts. According to the flight
regulations, he assembles a service composition that includes two providers
for rain/snow real-time data. However, both providers outsource the provi-
sion to the same third-party. This way, redundancy is not guaranteed any
more and the redundancy policy has been violated.

• Threat Category TC-2

• Impact: High - Redundant provision of a service is mandatory for critical
tasks. When redundancy dissolves, the critical task is at risk (its failure is
more likely).

11. Information and Accountability Lost: In a decentralized system each
end point is responsible for collecting and storing information usage events
(logs) that may be relevant to current or future assessment of accountability

20 P.H. Meland et al.

to some sets of rules/policies. These logs become the major source of assess-
ing policy accountability either in real time or in the future when such an
assessment is needed. Therefore, it is important to securely maintain these
logs in the system. For example, Alice tries to sign up for a subscription to
the newspaper from a foreign country, making use of a SoA comprised of a
series of services. For delivery reasons it is not possible to send the newspa-
per to that country, so one of the services cancels the order. However this
is a rare event and the service does not pass the information back to other
services with which it is composed. In fact one service sends an email to Alice
saying that her subscription was successful. The newspaper has no record of
Alice’s details.
• Threat Category TC-3
• Impact: Medium – Information and accountability lost may damage the
company reputation.

12. Extracting Information from Logs: Logging information is an essen-
tial part of maintaining composite services. These logs capture an extreme
amount of data, including sensitive information (e.g., personal information,
authentication data, bank details) that must be protected. By adequately
securing the logged information, the risk of releasing confidential informa-
tion to untrusted parties from both inside and outside the organisation can
be reduced.
• Threat Category TC-3, TC-4
• Impact: High - Confidential and private data may be leaked to unauthorized
users or attackers.

13. Malicious Service Provider: A malicious service provider could ask for
unnecessary private or confidential information and store all the gained data
in order to assemble and sell a detailed costumer profile. Consider a use case
of “travel reservation”. In the use case, a user would like to reserve a complete
travel package from a composition of loosely-coupled web services. First, the
user finds a travel agent service on the web and provides the travel agent
with destination and preferred dates. Based on the customer’s requirements,
the travel agent searches and contracts many airline and hotel services, in
order to obtain information on the flights and hotel rooms. The travel agent
service then assembles a list of travel alternatives and presents them to the
user. The user makes his/her choices and provides the travel agent service
with personal information for reservation. The travel agent service then asks
for the credit card details and confirms the reservation. During the travel
booking process, personal data such as name, date of birth, address, phone
no and credit card number are exchanged. However a question arises how
to ensure that the requested user’s personal data is only used for the stated
purpose. A user giving personal identifiable information to an organisation
may result in the data being used in ways the user never intended. For
example, the credit card details could be passed on to persons intending to
commit fraud.

Security and Trustworthiness Threats to Composite Services 21

• Threat Category TC-3, TC-4
• Impact: High - Compromise privacy, confidentiality, integrity and avail-
ability depending on the type of information provided.

14. Failure to Sanitize Special Element: Composite services are often in-
volved in receiving inputs from its users. However, a user could inject
keystrokes or even code in order to cause an adverse effect on the service
behaviour and its integrity. In composite services, a service with such a weak-
ness may put the integrity of the whole composition at risk. Special elements
are often important in weaknesses that can be exploited by injection attacks.
Therefore, user-controlled input should be properly filtered and intercepted
for special elements.
• Threat Category TC-4, TC-5
• Impact: High - In composite services, a service with such a weakness may
put the integrity of the whole composition at risk. Further, it can be exploited
by service injection attacks.

15. Embedded Malicious Code: A dishonest service developer could insert
malicious code within a service to subvert its security. A simple example
could be: insert malicious code in a service to send credit card details or any
other sensitive information to a particular email address. The malicious code
is normally inserted during service implementation. As service developers are
often considered trusted, this threat needs consideration.
• Threat Category TC-4, TC-5
• Impact: High - It can compromise privacy, confidentiality, integrity and
availability depending on the malicious code and the attacker motivation.

16. Protection Mechanism Failure: Services are often equipped with secu-
rity mechanisms that provide defence against various attacks. However, a
security weakness arises when a service does not use or uses an insufficient
protection mechanism. In case of an insufficient protection mechanism, a
service could be saved from certain attacks but could not be saved from
others. For example, service A is vulnerable to both Distributed Denial of
Service (DDoS) attack and service injection attack. However, the security
mechanism it uses can only provide defence against the DDoS attack. Thus,
service A can do nothing against the service injection attack. A missing
security mechanism could expose service A to both types of attack.
• Threat Category TC-4
• Impact: High - A service without any security mechanism or uses an in-
sufficient protection mechanism may expose a service to various attacks.

17. Insufficient Automated Security Evaluation: Without a timely eval-
uation, services with malicious intent or vulnerabilities can cause all sorts
of trouble such as leakage of information or financial losses. This can be
compared to traditional viruses in software code. A simple example could
be an insider of a bank inserting back-door code into a service component
before the security evaluation has been performed, in order to get customers’
personal information.
• Threat Category: TC-4
• Impact: High - It could cause serious privacy and data protection issues
for an organisation.

22 P.H. Meland et al.

18. DDoS Attack Occurs on Service Composition: DDoS attacks are not
new for web-based services. Many high-profile companies have been victims
of such attacks. A DDoS attack is easy to detect but difficult to prevent. The
distributed nature of composite services makes them even more exposed to
DDoS, since the attacker can attack any of the service components and inflict
damage to the overall service. This broad attack surface is something that
makes DDoS attacks even more likely than for isolated systems. A DDoS
attack normally targets web services that have public access gateway. By
flooding a server with requests, the service can be overwhelmed, thereby
preventing valid access to the service.
• Threat Category TC-4, TC-7
• Impact: High - This can make a service unavailable.

19. Manipulation of Trust Properties: The role of reputation systems is
to facilitate trust. Remote monitoring of fulfilment of a contract relies on
trustworthy collection of real data. However, a dishonest service provider
could change or manipulate some trust properties of one of the services that
are involved in a composite service. This could happen by compromising the
monitoring engine either by manipulating trust properties or submitting a
fake report to increase the trust level. For example, suppose Johnny is a
service provider with limited ethics. By setting up a large number of false
composite services using a payment service he provides, he is able to boost
the trust level of this payment service.
• Threat Category: TC-4, TC-5
• Impact: High - Malicious users could control service reputation according
to their goal. The integrity of the overall composition could be at risk.

20. Trustworthiness Level Variability: The trustworthiness of single services
and service providers often changes over time. This is also true when a ser-
vice is used within a service composition. Maintaining trustworthiness helps
consumer confidence and provides a safe environment for businesses to dy-
namically interact and carry out transactions. The trustworthiness of one of
the component services can be deteriorated during the execution of a com-
posite service. This may lead to a situation where a single service with low
trustworthiness becomes a threat for the entire composition. For example, in
a travel assistance composition, the reputation of the map service provider
goes down; thus, the integrity of the entire travel assistance is threatened.
The composite service cannot be trusted because the map service could im-
pose a huge threat to the entire composition. It could have a major security
flaw that may let an attacker launch a denial-of-service attack and damage
the overall composition or it may put the data confidentiality at risk. It is
therefore necessary to continuously monitor the trustworthiness of the ser-
vices and decide to replace the deteriorated component service with another
service with the same functionality as soon as the trustworthiness value falls
below a threshold.
• Threat Category: TC-5
• Impact: Medium - It can compromise privacy, confidentiality, integrity and
availability depending on the type of an attack.

Security and Trustworthiness Threats to Composite Services 23

21. Untrusted Outsourcing/Delegation: To deliver a service, providers
might outsource it or delegate specific activities to other service providers.
This might be dangerous if the service user does not trust the additional
providers. An air traffic controller is relying on a certain composition to ob-
tain accurate weather forecasts. The service provider that delivers rain/snow
real-time data delegates this service to another provider that the controller
distrusts. Distrust might concern both service delivery (the controller does
not rely on that service) or the handling of data (the position of the aero-
planes might be confidential).
• Threat Category: TC-5
• Impact: High - Untrusted outsourcing may put data confidential and privacy
at risk. Furthermore, the untrusted service may not be adequately secured and
may introduce several vulnerabilities. It could be a weak spot for the attackers
to attack the overall composition.

22. False Perception of Trust for End User: An untrustworthy composite
service could boost its overall trustworthiness by including highly trustwor-
thy service components. Most of these components do not have an active
role in the composition; they are just there to contribute to the calculation
of the trustworthiness level of the composition as a whole. This can occur if
the mechanism for calculating trustworthiness is simply based on the average
trustworthiness of included components. For example, Gary is a customer
who is looking looking to buy a product online. The WrongWeb shop uses
his preferred and trusted provider, SafePay, so he trusts the WrongWeb shop
implicitly (false sense of security). However, when he makes a purchase, the
received product is of a terrible quality and worse yet, the WrongWeb shop
sells his contact information to spammers. The transaction itself goes with-
out problems.
• Threat Category: TC-5, TC-6
• Impact: High - Exploiting the reputation of others can give a service false
credibility, enabling a large number of attacks. This credibility can be used to
exploit assets from end users, and make trustworthiness/reputation mecha-
nisms less trustworthy.

23. Reliance on Untrusted Inputs in a Security Decision: In some protec-
tion mechanisms, security decisions such as authentication and authorisation
are made based on the values of input such as cookies, environment variables,
and hidden form fields. However, an attacker could change these inputs us-
ing customized client applications and bypass the protection mechanism. For
example, a web-based email list manager may allow attackers to gain admin
privileges by setting a login cookie to ’admin’.
• Threat Category: TC-5
• Impact: High - This may lead to the exposure or modification of sensitive
data or damaging service availability.

24. Inclusion of Functionality from Untrusted Control Sphere: Services
using or importing executable functionalities (a library or a widget) from an
untrusted source could introduce several security issues. The functionality
could be malicious in nature, outdated or contain other vulnerabilities.

24 P.H. Meland et al.

• Threat Category: TC-5
• Impact: High - This might lead to many different consequences depending
on the included functionality, but some examples include injection of mal-
ware, damaging service availability or gaining access to sensitive data. In a
composite service, malicious functionality could inflict damage to the overall
composition. It depends on how often a service imports or uses functionalities
from other services that are not evaluated for trustworthiness. Furthermore,
the impact increases if there are insufficient protection mechanisms in place
to check the functionalities that are borrowed and does not belong in the same
domain.

25. Missing End User Notification: In a composite service, a recomposition
may consist of replacing existing services with new ones. It is possible that
the new composition fulfils user requirements but compromises some impor-
tant properties. By not giving this information to the end user may, it my
lead to severe or unintended consequences. For example, Donald is a business
man who uses a stock quote service to see the current stock prices for cer-
tain important stocks. When Donald sets his preferences about which stock
exchange service to use, he only sets the minimum required trustworthiness
level and the maximum price of the service. When the initial web service is
no longer usable due to the lowering of the services trust level, a free stock
exchange service, now at the highest trustworthiness level, is inadvertently
recommended to Donald’s client. Unfortunately the free service has a 15-
minute built-in delay for stock market data. Donald is not notified about
this and loses money.
• Threat Category TC-6
• Impact: Medium - A service may not deliver as expected.

26. End User Gets Annoyed by Confirmations: This is largely a usability
problem, arising from the tension between the need to ensure users to con-
sider the consequences of changes to a system (and their actions) and the
desire of the user to focus on functional rather than non-functional aspects
of the system. Although most users acknowledge the importance of security,
it nonetheless often represents a hindrance to them achieving their intended
aims. This is especially true in relation to notifications. The threat is there-
fore that an overabundance of notifications frustrates the user and makes
him choose to fulfil functional desires over security. This can be mitigated to
some extent by considerate approaches towards notifications (e.g., providing
non-modal notifications, and avoiding repeated notifications), but achieving
a suitable balance is a difficult technical problem.
• Threat Category TC-6
• Impact: Medium - A user may agree to a reduced security policy unin-
tentionally. This may lead to several security issues, i.e., a threat to data
confidentiality.

27. Lack of Usability in Secure Composition:Breadth, depth and flexibility
of provided features in a development tool can often lead to compromises
in terms of usability. Creating an interface that is both technically rich and
easy to use is a difficult proposition. One of the goals of the Future Internet

Security and Trustworthiness Threats to Composite Services 25

is to provide flexibility through the use of services, however this often means
that complexity management is simply transferred from the end user to the
service developer. This is particularly true in the development of generic
services, for a developer may have to consider a variety of scenarios, and
is therefore unable to make assumptions on how the deployed service will
be used. Designing tools and techniques for dealing with this complexity
introduces difficult usability challenges. Usability can be measured, but the
process of determining the resulting threats is an uncertain process.
• Threat Category TC-6
• Impact: Medium - A service developer may find the development environ-
ment too difficult to understand and eventually give up on using it.

28. Cascade Failures: In cascade failures, a failure in one system has an impact
on the activities of other systems it interacts with. A real-world example of
a cascade failure is the electrical blackout that affected much of Italy on 28
September 2003: the shutdown of power stations directly led to the failure
of nodes in the internet communication network, which in return caused
further breakdown of power stations [8] [9]. In terms of systems-of-systems
(e.g., power stations attached to the national grid), the threat applies equally
to composed software services and the Future Internet more widely.
• Threat Category TC-7
• Impact: High - Cascade failures result in some of these other systems fail-
ing, which in turn have a cumulative impact on the remaining systems, and
so on. Ironically the situation arises especially where back-ups and fail-safes
have been put in place, but with the potential consequence that the cascade
failures result in a complete failure of the entire composition of systems.

29. Corrupt Load-Balancing: If one system fails due to an attack (e.g., denial-
of-service), the remaining systems have to handle the load from the failed
system. This may result in an additional backlog transferred from the failed
system that pushes the remaining services over their capabilities. If one of
these systems fails, even more load is transferred the remaining systems, and
a further backlog, with the process repeating to cause a cascade of failures.
Such cascade of failures can be attributed to the dynamic reassignment of
services resulting from an attempt to address an existing failure.
• Threat Category TC-7
• Impact: Medium - Dynamic system re-composition may be required to ad-
dress an existing failure, which may affect the overall system operation.

30. Recomposition Corrupts Response Time: When a composite service
reconfigures, its component services are rearranged and/or replaced. How-
ever, it is possible that some services of the composition are unable to ef-
fectively participate in the process of recomposition due to their availabil-
ity/response time. For example, consider the case where one of the com-
ponents of Service X is a storage service. Replacing this storage service
would require a time-consuming migration task, since large data volumes
are stored there. Unfortunately, the composite service is recomposing too
frequently, thereby spending significant time on changing the storage service
component.

26 P.H. Meland et al.

• Threat Category TC-7
• Impact: Medium - Access to data could be restricted or may cause delay in
accessing critical information.

31. Synchronisation Threats: In a composite services environment, services
may suffer from synchronisation/timing issues that prevent the correct deliv-
ery of composite services. These synchronisation/timing issues might cause
deadlock, race conditions and prevent the services to interact with each other.
For example, the parallel execution of services means that deadlock might
occur between two services if they both reach a state whereby they are wait-
ing for input from the other.
• Threat Category TC-1,TC-7
• Impact: High - This can cause severe interaction flaws.

32. Lack of Trust between Providers: Assembling a service composition is
not sufficient to ensure it works. Given their autonomy, service providers
might refuse to collaborate when they do not trust each other. This may
cause an unreliable composition which may fail to achieve its objectives. For
example, a service composition is established to compute income taxes for
a company’s employees. Within this composition, service “Incomes” returns
the income for employees, whereas service “Tax computation” determines
the taxes to pay on the basis of the income. However, “Incomes” does not
trust “Tax computation”, for it does not guarantee an adequate level of
confidentiality. Perhaps, “Tax computation” preserves it but has an incom-
patible trust certificate. Thus, a service that would be an excellent choice
for a composition is unavailable due to the fact that it does not trust other
candidate services that would participate in the composition.
• Threat Category TC-3, TC-7
• Impact: Low - This may cause an unreliable composition which may fail to
achieve its objectives.

4 Countermeasure Methods for the Threats

From the scenario descriptions, we have devised a set of countermeasure methods
for the threats to composite services described in Section 3.

Issues related to incompatible policies and laws can be tackled via design-
time verification techniques (M1). This requires the interface of both individual
and composite services to specify (i) allowed deployment locations, and (ii) the
laws/policies that apply. Automated verification checks if the expected exchange
of data between services complies with the laws/policies about, e.g., data privacy.

When design-time verification is inapplicable, the information flow has to be
monitored and/or enforced at run-time (M2). This requires the service infras-
tructure to monitor data exchange through observable channels. Access control
enforcement mechanisms ensure that confidential information is not accessed
by unauthorized users. The distinction between data and information is funda-
mental here: while data exchange can be observed, there is always a risk that
information flows in a way that cannot be directly observed.

Security and Trustworthiness Threats to Composite Services 27

If the policies of consumers and providers are incompatible, negotiation tech-
niques (M3) can help to identify a trade-off that satisfies both parties. Policy
federation patterns can be studied in this context.

Identity management systems (M4) can prevent (or at least make it more
difficult) providers from assuming fake identities. These systems require each
service to be bound to a legal entity (a human or an organisation). Trustwor-
thiness/reputation mechanisms will be key for services to successfully operate
in a volatile environment. However, these mechanisms have to be robust, both
in terms of their computation algorithms (M5)—the computed value shall be
as realistic as possible—and of their monitoring techniques (M6)—resistance to
fake reports and attacks to integrity.

Notification mechanisms (M7) enable actors to get up-to-date information
concerning consumers’ and providers’ trustworthiness (especially in case of rel-
evant changes, either negative or positive). A possible way to implement no-
tification is via publish/subscribe [11]. In addition to notification, service re-
composition algorithms (M8) enable responding to decreasing trustworthiness
levels. Re-composition should balance quality and stability, i.e. it should not dis-
rupt the current composite service. A particular type of re-composition pattern
involves relying on redundant service providers (M9). Though more expensive,
this avoids the scenario where failure of a component service affects the com-
posite service. Service re-composition shall take into account that services are
not controllable agents; rather, their providers are autonomous in choosing when,
how, and if to deliver a specific service (M10). Thus, while assembling composite
services, such autonomy cannot be neglected.

A possible way to prevent composite services from including untrusted services
is to provide explicit support to outsourcing (M11). This means that service
interfaces have to specify whether such operation is allowed to be outsourced as
well as providers and services that can/cannot be involved. Such method also
requires that, at run-time, actual outsourcing can be observed.

Services can be certified at deployment-time (M12) to verify whether a ser-
vice operates as declared by its interface. Relying on certified services prevents
malicious providers from injecting their services in compositions. However, such
technique requires access to the source code (or the availability of inspectable
binaries). Certification is not sufficient to analyse all possible interactions a ser-
vice may engage in. Consequently, it should be complemented by runtime inter-
action monitoring techniques (M13) to keep track of actual interactions services
participate in. A different yet fundamental approach is to devise secure service
development methods (M14) that, if followed by developers, prevents or signifi-
cantly reduces the likelihood of attacks from insiders. Such methods may include
pair programming, automated validation techniques, and the establishment of
traceability links from requirements to code.

Service interfaces shall be expressive enough to represent fine-grained access
control rules about the confidential data a service provides and needs (M15).
This way, composite service designers can check which data will be disclosed
(possibly to whom) and they can verify need-to-know properties, i.e., if data is

28 P.H. Meland et al.

disclosed to some actor that does not need it. Another technique is to give service
interfaces a contractual validity (M16): violations lead to penalties (e.g., negative
feedback or economic loss). In service-level agreements, penalties are referred
to as credits. Necessary condition to make M16 applicable is that services are
deployed in an environment where penalties can be enforced.

In order to overcome changes in security interfaces, partial planning techniques
(M17) are a helpful technique. A partial plan is defined beforehand and, while
the composite service is in place, and depending on the results of the execution,
the plan might be incrementally refined in order to timely include services that
are appropriate to deliver the expected outcome. Though sub-optimal, partial
planning is more robust to unexpected circumstances than planning from scratch.
An alternative approach is to define security interfaces that manifest temporal
validity (M18). This would allow for composition to be defined having a temporal
horizon in mind (the provider commits to the validity of the interface till a
certain point in time). Such technique can be combined with partial planning
to create robust compositions. A third way to cope with changes is to perform
early binding of services before their actual usage (M19). Such solution works if
providers are committed to deliver the services that have already been bound.
Combining M19 with M18 allows service providers to avoid indefinite allocation
of resources.

To reduce the effect of DDoS attacks, efficient and scalable access control
engines are a possible solution (M20). Cloud computing techniques might be
adopted to physically distribute the infrastructure over multiple computational
nodes, still providing a unique logical interface. To help consumers in service se-
lection, security interfaces can incorporate information about scalability (M21).
For instance, the maximum amount of requests the provider can deal with or
a distribution curve showing how performance and response time degrade with
an increasing the number of users. Such details may be either informative or
have contractual validity. A way to early detect DDoS attacks is to monitor
service performance to detect degradations (M22). Upon detection, response
mechanisms can be applied, e.g., migration/redeployment of existing services on
different servers, refusal of all new requests, usage of existing techniques to filter
out attackers.

Mechanisms should be put in place so that the functionality of the composite
service is not endangered by continuous re-compositions needed to improve secu-
rity performance (M23). This might include using utility functions that balance
traditional quality-of-service factors and security properties. Monitoring service
interconnections (M24) allows for preventing cascade failures. Indeed, a single
service is often used by multiple consumers, and the effects of a failure (and also
of a response) shall take such factor into account.

In order to ensure a throughput and response time, load balancing techniques
(M25) can be exploited at service deployment-time. Composition techniques
should therefore give priority to services with better resource availability. In or-
der to guarantee redundancy in service provision, services shall be enriched with
information that allows for specifying and monitoring redundancy constraints

Security and Trustworthiness Threats to Composite Services 29

(M26). If a service commits to redundant provision, its interaction with third-
party services shall be monitored to verify that redundancy does not dissolve.
Timing and synchronisation issues—that may affect timely delivery of a com-
posite service—can be tackled by conducting test cases (M27). If the set of test
cases is defined systematically, the tests can dramatically reduce the likelihood
of incurring in such issues at run-time.

Providers can specify, in service interfaces, information concerning what type
of log information will be kept, which policies will be applied, and how such
policies will be enforced (M28). The inherent limitation of such technique is
that it requires information about how specific service providers work, which
organisations are typically unwilling to disclose.

The design of composite services should take that into account, and minimize
the risk of frequent re-composition requests that might lead to users carelessly
pressing a “confirm re-composition” button (M29). More generally, interaction
design aspects shall be seriously taken into account when designing composite
services and composition mechanisms. The results of formal verification tech-
niques can be abstracted using higher-level models (M30), so to ensure designers
consider such results to improve the composite service. For example, this means
interpreting issues at the organisational level or showing which are the risks that
affect the interactions between services. In order to improve the way service de-
signers/composers assemble services in a secure and trustworthy way, training
sessions can be foreseen and organised (M31). These sessions provide design-
ers with a methodological approach and with knowledge about the verification
techniques that are performed by design-time tools.

Most security problems are continuously reoccurring and with known solu-
tions/mitigation strategies. However, developers are not always aware of the
available mitigation strategies. By providing the relevant information for a com-
position the developer will receive definitive advice and will have the knowledge
to make more informed decisions (M32). If a specific composite service is at-
tacked, similar services or services using some of the same components are likely
to be threatened. An early warning system (M33) would notify these other
services in advance so that they are able to prepare themselves (e.g., via recom-
position).

Table 2 summarises the countermeasure methods. The “type” column classi-
fies the methods according to their main function: (i) Prevention (P) methods
avoid the occurrence of a threat; (ii) Monitoring (M) refers to observing relevant
events that might suggest a threat; (iii) Verification (V) collects analysis tech-
niques that check whether some security/trustworthiness property is guaranteed;
(iv) Diagnosis (D) means correlating monitoring data to determine if a threat
exists and to identify the root cause of such threat; (v) Response (R) methods
mitigate the threat impact after it occurs. The “phase” column describes at
which stage of the service engineering process the method applies: design-time
(Des), deployment-time (Dep), and run-time (Run).

30 P.H. Meland et al.

Table 2. Taxonomy of the countermeasure methods

Method Type Phase

M1 : Design-time security verification takes into account policies/law V Des
M2 : Monitor information flow and enforce it using access control rules M, R Run
M3 : Policy negotiation automatically performed D, R Run
M4 : Detect fake services by keeping track of the identity of the provider M, D Run
M5 : Robust trustworthiness/reputation computation mechanisms D Des, Run
M6 : Robust trustworthiness/reputation monitoring mechanisms M Run
M7 : Monitor and notify changes in reputation/trustworthiness M Run
M8 : Recompose when trustworthiness and reputation are decreasing R Run
M9 : Create (re)compositions that rely on redundant service providers P, R Dep, Run
M10 : Consider providers’ autonomy while composing services P Des, Dep, Run
M11 : Explicit support to outsourcing (sub-contracting) P, M Des, Run
M12 : Deployment-time service certification V, P Dep
M13 : Run-time interaction monitoring M, D Run
M14 : Secure service development method to prevent insiders attacks P Des
M15 : Service interfaces specify fine-grained access control P, M, D Des, Run
M16 : Contractual service interfaces, violations lead to penalties M, R Run
M17 : Partial planning techniques to enable incremental compositions P, R Run
M18 : Security contracts manifest temporal validity P Des, Run
M19 : Early binding of services before actual invocation R Des, Run
M20 : Scalable access control verification engines P Run
M21 : Incorporate scalability information in security interfaces P Des
M22 : Monitor service performance to early detect DDOS attacks P, R Run
M23 : Consider functionality/service to be delivered during adaptation P Run
M24 : Predict cascade failures by monitoring service interconnections P, D Run
M25 : Load balancing mechanisms while deploying service compositions P, R Dep, Run
M26 : Redundancy specification and monitoring M, D Des, Run
M27 : Test cases to check synchronisation/timing issues in compositions V, P Des
M28 : Protect logs using the same policies that apply to services M, D Des, Run
M29 : Avoid pressing “confirm re-composition” due to annoyance P Des, Run
M30 : Design tools should abstract the results of formal verification P Des
M31 : Training sessions to educate designers of service compositions P Des
M32 : Provide information about threat/attack method P Des
M33 : Early warning P Run

5 Research Directions

Our study on threats and countermeasures has helped us identify the follow-
ing prospective techniques and research directions for designing, building, and
operating secure and trustworthy composite services:

– Trustworthiness/Reputation Management. In the scenarios where con-
sumers and service providers are unknown at design-time and where the ser-
vice composition is performed with providers that do not know each other,
trustworthiness and reputation management will be essential. We envisage
that the challenge will be to provide mechanisms that: (i) enable consumers
and service providers to obtain information about the reliability of others;
and (ii) enable to monitor and compute trustworthiness and reputation in a
robust way free of bootstrapping and malicious attackers. Different factors to
evaluate should be considered, such as opinions by peers, information about
compliance, and certifications released by trusted third parties.

Security and Trustworthiness Threats to Composite Services 31

– Expressive Security Interfaces for Services. Whereas current service
providers represent both functional and non-functional properties about their
offered service through the specification of service interfaces, this seems to
be largely inadequate to represent security and trustworthiness properties
for service compositions. The development of new future languages shall al-
low service providers for a comprehensive specification of the security and
trustworthiness properties they guarantee. Some of them could be: (i) fine-
grained access control policies that indicate which information can be shared
and with whom, as well as specific services that can or cannot be included in
the composition; (ii) redundancy guarantees to increase the reliability; (iii)
the threats that affect the composite service and the countermeasures that
are deployed to address them.

– Early Warning and Response. Currently, when a threat or security issue
that affects a service composition is detected, a reconfiguration or recomposi-
tion of the services is performed in response. However, this reactive approach
is only a mitigation and does not prevent the occurrence of an event. Early
warning and response mechanisms, taking advantage of risk assessment tech-
niques to determine when threats are likely to occur, would enable proactive
switching to alternative compositions.

– Certification at Deployment Time. Certification techniques (especially
if the certificates are issued by trusted third parties) that guarantee the
trustworthiness of a new service deployed (and even their providers) will play
a fundamental role to be considered in service compositions. We envisage
that these certifications might include information about the structure and
composition of a service, the development methodology followed at design-
time, or a commitment about the responsibility of the certification authority
in case of a breach of agreements by the certified service.

– Service Recomposition Revisited. Existing techniques for recomposition
of services are based on components as established in traditional software
engineering methodology. Other mechanisms based on service-oriented set-
tings shall be developed to work better in the new scenarios that arise from
the Future Internet. Some of the factors that should be taken into account
for these new devised techniques are the following: (i) service providers are
autonomous (consequently there is no central overall control and the ac-
tion of composing services will be based on an interaction protocol among
the participating service providers); (ii) threats are recomposition triggers
(e.g., a recomposition process might be triggered by lower trustworthiness
due to the expiry of a certificate); (iii) countermeasures are based on secu-
rity patterns (service recompositions will typically consist of applying the
most adequate pattern); (iv) service interfaces with contractual validity (the
provider is committed to guarantee the declared properties in the socio-legal
context where the service is deployed); and (v) incremental compositions
(e.g. a service composition is only partially assembled at deployment and
necessary services are added on the fly based on the availability and quality
of service providers).

32 P.H. Meland et al.

– Representing Laws, Checking and Enforcing Their Compliance.
Currently, there are no techniques to fully capture laws and associate them
with the services where they apply to, e.g. to represent data confidentiality
restrictions that apply in certain countries. Some of the challenges in the
Future Internet will be to find mechanisms to ensure the compliance of a
composition of services with respect to specific laws and, thus, the need of
devising a representation of laws in a machine-understandable way.

– Robust Identity Management Systems. Also related to legal issues,
another relevant challenge in the Future Internet will be the development of
robust identity management systems. Each entity in this new context shall
be characterized by an identity and each service (atomic or composite) shall
be unequivocally associated to its service provider, who could be have legal
responsibilities about the service offered. This need of ensuring each user is
who he says to be, is even more crucial in contexts of single sign-on where a
single identity enables accessing to multiple systems.

– Methodologies and CASE Tools. A large number of security issues could
be produced by insider attacks, sometimes without harmful intention but
due to lack of knowledge. There are many methodologies and tools that
support the development of secure and trustworthy composite services, but
they should be able to provide the results in such way that even non-security-
expert developers can understand the risks and threats that can affect the
composite service under design. Moreover, training sessions should support
these methodologies and tools to guarantee their correct use and application.

– Automated Policy Negotiation via Flexible Templates. Static poli-
cies, such as ”Use cryptography protocol X version Y” will be insufficient in
the open environment of the Future Internet. More flexible and dynamic
policies are required that allow interoperability between different service
consumers and providers, dynamic negotiation of the policies in service com-
position (e.g., within the ranges that have been specified) or even include
optional priorities, preferences and parameters that help perform a better
matching.

– Testing Techniques for Composite Services. The importance of testing
is key not only for software, but also for composite services. The main diffi-
culty will be the opening of an environment where services in a composition
can be replaced by others at run-time. Very little attention has been paid to
this topic so far, which we envisage will be a crucial challenge in the future.

6 Related Work

In this section we briefly present some of the main research projects and papers
related to our work and based on the identification and taxonomy of threats and
vulnerabilities and methods to deal with them.

During 2008 and 2009, the EU/FP7 project FORWARD identified possible
new research areas and threats that need to be addressed. The main results of
the project were presented in the FORWARD Whitebook [3], that contains not

Security and Trustworthiness Threats to Composite Services 33

only the identified threats but also detailed and concrete scenarios of how po-
tential malicious agents can take advantage of them. The main research areas
identified by FORWARD were grouped into the following categories: network-
ing, hardware and virtualisation, weak devices, complexity, data manipulation,
attack infrastructure, human factors, and insufficient security requirements. The
threats identified in the EU/FP7 project FORWARD were updated during 2011
in the SysSec project [4]. SysSec was a European project included in the Seventh
Framework Programme that proposes to create a European Network of Excel-
lence in the field of Systems Security and one of its goals is managing Threats
and Vulnerabilities in the Future Internet. They decided to preserve the division
of threats focusing on three main areas: malware and fraud, smart environment,
and cyberattacks. Other related European projects in this area are: the Think-
Trust project [5] that has produced a list of research challenges complementary
to the RISEPTIS (Research and Innovation for Security, Privacy and Trustwor-
thiness in the Information Society) Report (generated by a high-level advisory
body in ICT research on security and trust), the WOMBAT (Worldwide Ob-
servatory of Malicious Behaviors and Attack Threats) project [6] that aimed at
providing new means to understand the existing and emerging threats that are
targeting the Internet economy and the net citizen.

Early work, such as the taxonomy from Landwehr et al.[13], Wang and Wang
[20], Weber et al. [21] and Im and Baskerville [12] categorize security threats,
flaws and vulnerabilities in a very broad sense related to computer programs.
Mirkovic and Reiher [14] have published more specific taxonomies for attacks
and defences related to DDoS attacks, but this is something we only treat as a
class in our taxonomy. Babar et al. [7] have published a taxonomy of threats for
the Internet of Things (IoT), which is more hardware-oriented than ours. The
threats taxonomy from Mármol and Pérez[15] is, to the best of our knowledge,
the most similar work to ours. They focus on threats trust and reputation models
for distributed systems, which have been central aspects for our work as well.

Finally, important work is done through CAPEC [1] from the National Cyber
Security Division of the U.S. Department of Homeland Security. CAPEC, the
Common Attack Pattern Enumeration and Classification, is a public, interna-
tional and community-developed list of common attack patterns along with a
comprehensive schema and classification taxonomy.

7 Conclusion

The Future Internet will be an environment in which a diverse range of services
are offered by heterogeneous suppliers. In this environment users are likely to
unknowingly invoke underlying services in a dynamic and ad hoc manner. The
dynamic environment of service composition carries new security threats. Follow-
ing a method where scenarios were contributed by seventeen European organisa-
tions, we have established a taxonomy of threats, consisting of seven high-level
categories and thirty-two classes, and a taxonomy of thirty-three countermea-
sures that cover the entire life cycle of composite services.

34 P.H. Meland et al.

The threats taxonomy is a comprehensive overview of specific dangers for
composite services, that was devised through a thorough analysis of existing and
potential vulnerabilities, and is clearly focused on trustworthiness aspects. The
taxonomy is not meant to be exhaustive, as new threats will inevitably appear in
the future. Our identified research directions provide recommendations on how
to put countermeasure methods into practical use.

References

1. CAPEC, the Common Attack Pattern Enumeration and Classification, http://
capec.mitre.org/

2. CWE (Classified Weakness Enumeration), http://cwe.mitre.org/
3. Forward project, http://www.ict-forward.eu/
4. SysSec project, http://www.syssec-project.eu/
5. Think-Trust project, http://www.think-trust.eu/
6. WOMBAT (Worldwide Observatory of Malicious Behaviors and Attack Threats),

http://www.wombat-project.eu/

7. Babar, S., Mahalle, P., Stango, A., Prasad, N., Prasad, R.: Proposed security
model and threat taxonomy for the internet of things (IoT). In: Meghanathan,
N., Boumerdassi, S., Chaki, N., Nagamalai, D. (eds.) CNSA 2010. CCIS, vol. 89,
pp. 420–429. Springer, Heidelberg (2010)

8. Berizzi, A.: The Italian 2003 blackout (June 2004)
9. Corsi, S., Sabelli, C.: General blackout in Italy Sunday September 28, 2003 (June
2004)

10. Hernan, S., Lambert, S., Ostwald, T., Shostack, A.: Uncover Security Design Flaws
Using The STRIDE Approach,
http://msdn.microsoft.com/en-us/magazine/cc163519.aspx

11. Hoffman, K., Zage, D., Nita-Rotaru, C.: A survey of attack and defense techniques
for reputation systems. ACM Comput. Surv. 42, 1:1–1:31 (2009), http://doi.acm.
org/10.1145/1592451.1592452

12. Im, G.P., Baskerville, R.L.: A longitudinal study of information system threat
categories: The enduring problem of human error. SIGMIS Database 36(4), 68–79
(2005), http://doi.acm.org/10.1145/1104004.1104010

13. Landwehr, C.E., Bull, A.R., McDermott, J.P., Choi, W.S.: A taxonomy of computer
program security flaws. ACM Comput. Surv. 26(3), 211–254 (1994), http://doi.
acm.org/10.1145/185403.185412

14. Mirkovic, J., Reiher, P.: A taxonomy of ddos attack and ddos defense mechanisms.
SIGCOMM Comput. Commun. Rev. 34(2), 39–53 (2004), http://doi.acm.org/
10.1145/997150.997156

15. Mármol, F.G., Pérez, G.M.: Security threats scenarios in trust and reputation mod-
els for distributed systems. Computers & Security 28(7), 545–556 (2009), http://
www.sciencedirect.com/science/article/pii/S0167404809000534

16. CSRC - NIST: Glossary of Key Information Security Terms, http://csrc.nist.
gov/publications/nistir/ir7298-rev1/nistir-7298-revision1.pdf

17. Papadimitriou, D.: Future Internet–The Cross-ETP Vision Document (2009),
http://www.future-internet.eu/fileadmin/documents/reports/Cross-ETPs_

FI_Vision_Document_v1_0.pdf

18. Shirey, R.: Internet Security Glossary, Version 2 (RFC4949) (2007), http://www.
rfc-base.org/rfc-4949.html

http://capec.mitre.org/
http://capec.mitre.org/
http://cwe.mitre.org/
http://www.ict-forward.eu/
http://www.syssec-project.eu/
http://www.think-trust.eu/
http://www.wombat-project.eu/
http://msdn.microsoft.com/en-us/magazine/cc163519.aspx
http://doi.acm.org/10.1145/1592451.1592452
http://doi.acm.org/10.1145/1592451.1592452
http://doi.acm.org/10.1145/1104004.1104010
http://doi.acm.org/10.1145/185403.185412
http://doi.acm.org/10.1145/185403.185412
http://doi.acm.org/10.1145/997150.997156
http://doi.acm.org/10.1145/997150.997156
http://www.sciencedirect.com/science/article/pii/S0167404809000534
http://www.sciencedirect.com/science/article/pii/S0167404809000534
http://csrc.nist.gov/publications/nistir/ir7298-rev1/nistir-7298-revision1.pdf
http://csrc.nist.gov/publications/nistir/ir7298-rev1/nistir-7298-revision1.pdf
http://www.future-internet.eu/fileadmin/documents/reports/Cross-ETPs_FI_Vision_Document_v1_0.pdf
http://www.future-internet.eu/fileadmin/documents/reports/Cross-ETPs_FI_Vision_Document_v1_0.pdf
http://www.rfc-base.org/rfc-4949.html
http://www.rfc-base.org/rfc-4949.html

Security and Trustworthiness Threats to Composite Services 35

19. Stoneburner, G., Goguen, A., Feringa, A.: Risk management guide for information
technology systems recommendations of the national institute of standards and
technology. Nist Special Publication 800(30), 55 (2002), http://csrc.nist.gov/
publications/nistpubs/800-30/sp800-30.pdf

20. Wang, H., Wang, C.: Taxonomy of security considerations and software qual-
ity. Commun. ACM 46(6), 75–78 (2003), http://doi.acm.org/10.1145/777313.
777315

21. Weber, S., Karger, P.A., Paradkar, A.: A software flaw taxonomy: Aiming tools
at security. SIGSOFT Softw. Eng. Notes 30(4), 1–7 (2005), http://doi.acm.org/
10.1145/1082983.1083209

http://csrc.nist.gov/publications/nistpubs/800-30/sp800-30.pdf
http://csrc.nist.gov/publications/nistpubs/800-30/sp800-30.pdf
http://doi.acm.org/10.1145/777313.777315
http://doi.acm.org/10.1145/777313.777315
http://doi.acm.org/10.1145/1082983.1083209
http://doi.acm.org/10.1145/1082983.1083209

A.D. Brucker et al. (Eds.): Secure Service Composition, LNCS 8900, pp. 36–49, 2014.
© Springer International Publishing Switzerland 2014

Adopting Existing Communication Platforms
for Security Enabling Technologies

Konstantinos Giannakakis

Athens Technology Center S.A., Halandri, Athens, Greece
k.giannakakis@atc.gr

Abstract. Development of secure solutions requires special care and considera-
tion. In most situations dedicated tools need to be used and strict procedures
must be followed. However, more often than not, secure web services must be
based on existing technologies and interact with the real world, where special
security considerations aren’t made. This introduces a big challenge for design-
ers and developers, who need to integrate existing libraries and tools into a
specific secure technology stack. The deployment of the services is equally
challenging, as developers want to benefit from the advantages of state-of-the-
art platforms and deployment in Cloud environments. This chapter is going to
examine how the above mentioned challenges were addressed in the design and
development of the Aniketos Platform.

Keywords: communication platform, cloud, OSGi, secure service development.

1 Introduction

The Aniketos Platform aims to establish and maintain trustworthiness and secure
behaviour in a constantly changing service environment. It aligns existing and devel-
ops new technology, methods, tools and security services that support the design-time
creation and run-time dynamic behaviour of composite services, addressing service
developers, service providers and service end users.

The Aniketos Platform consists of many different components, each one offering a
specific functionality. In order to integrate this diverse set of components from vari-
ous vendors, it was decided that the architecture of the platform would be based on
the OSGi framework. The OSGi framework defines a dynamic module system for
Java. It is a standardised technology and fully documented through the OSGi specifi-
cations documents [6]. OSGi is supported both by industry and an active open-source
community. Open source implementations of high quality are available. It is becom-
ing more and more popular and it is the technology of choice for a large number of
projects. The reasons for selecting OSGi and the benefits it brings to the Aniketos
Platform will be presented in detail at section 2 of this chapter.

On top of the OSGi architecture various challenges need to be addressed. The plat-
form aims to integrate existing components with new ones, which have been devel-
oped specifically for Aniketos. A wide range of technologies are used. Also the

 Adopting Existing Communication Platforms for Security Enabling Technologies 37

platform should be able to adapt itself, so that it can run in different environments.
Integration of such a big system is not an easy task and here we will escribe, how
diverse technologies and components can be fit together in a common environment, in
order to provide the rich functionality of the platform.

2 Modular Design

A big system with broad functionality is usually designed by separating it into differ-
ent components that are logically separated. This process is called modular design and
it is especially important, when the full system also needs to integrate existing com-
ponents. Enforcing modularity is essential during the development, deployment and
execution of a system. The OSGi framework fosters modularity in all the above
phases. In the following sections, we are going to explain the benefits that the adop-
tion of the OSGi architecture brings to the Aniketos Platform.

2.1 Design Time Modularity

Design time modularity refers to splitting the source code of a complex system into
various software components. Design time modularity is enforced during the devel-
opment phase.

The OSGi framework allows the creation of bundles, which encapsulate code that
performs a single task. A software module, i.e. a single logical unit that offers a spe-
cific functionality, consists of one or more bundles. The separation of source code in
different bundles is the module layer of the OSGi architecture. It is the first step to-
wards design time modularity as it allows developers to work on different topics in-
dependently.

The communication between bundles is achieved by exporting and importing Java
packages. Every bundle defines in a manifest file, which Java packages it needs to
import and which packages it can provide to other bundles. Versioning information as
well as some other rules that can be used at runtime during dependency resolution are
also included in the manifest file. These are beyond standard JVM behaviour, which
doesn’t provide such granularity. In order to be effective, the bundles, which are actu-
ally Java jar files with some extra information, must be deployed and run in an OSGi
container.

On top of OSGi’s module layer there is the services layer. OSGi has been success-
fully described as Services Oriented Architecture in JVM. It features a service regis-
try, where a bundle can register a provided service. A service is defined by a Java
interface, which can be considered the “contract” between the provider and the con-
sumer. Other bundles discover the provided services in order to consume them. In the
runtime there can be more than one implementations of the same service available.
This doesn’t affect the development, as the OSGi container will do the appropriate
linking. The bundles developers only need to worry about properly consuming the
interface.

Design time offers additional benefits, when different teams from different vendors
work on implementing an integrated solution. A common practice is to create an

38 K. Giannakakis

“interface bundle”, which contains all Java interfaces needed by external components.
This bundle is used internally for the development of the “implementation bundles”.
The implementation bundles actually provide the specific functionality of a software
module. This functionality needs to be consumed by external components. With OSGi
architecture, the external bundles only need the interface bundle to be able to interact
with a component. It is the single artefact that must be exchanged between different
development teams. The interface bundle also plays the role of documenting the con-
tract of the OSGi services provided.

2.2 Runtime Modularity

Runtime modularity refers to the deployment and execution of different software
components that together build a unified system. OSGi bundles are deployed in an
OSGi container. An OSGi container is an implementation of the OSGi specification.
It is responsible for resolving dependencies between bundles and linking bundles
together. The benefits of OSGi’s runtime modularity are more than enough for a
complex system:

• One module can be uninstalled or updated without affecting the rest of the system.
Proper maintenance can be achieved much more easily.

• There can be more than one implementations of the same module. The selection of
the most appropriate one is made by the container.

• It is much easier to handle dependency issues. In a big system with a lot of mod-
ules, it is very likely that two components require a different version of the same
third party library. This situation is close to impossible to handle in a standard JEE
container. However, this doesn’t constitute a problem for OSGi, as the two differ-
ent versions can be both be installed at the same time.

3 Integration of Existing Technologies

3.1 Interaction with Enterprise Applications

The term enterprise applications is used to define software applications that aim to
solve problems of an organisation. In Java terminology, enterprise applications refer
to applications that need to be distributed, interactive and have to manage security,
transactions and persistence.

The Aniketos Platform need to integrate components with enterprise characteristics.
These components consume and provide web services – either SOAP or REST. They
store information in a database and may use a messaging mechanism. In order to inte-
grate them in a common system the next two different approaches can be followed.

Converting Existing Applications to OSGi
The first approach of integrating an existing component is to convert it to use the
OSGi framework. The OSGi Alliance, which is the organisation responsible for OSGi
standardisation, has understood the need of enterprise applications and has released

 Adopting Existing Communication Platforms for Security Enabling Technologies 39

the OSGi Enterprise Specification (currently in release 5). This specification defines
how OSGi bundles implement characteristics typical to enterprise applications, such
as accessing a database or creating a web application. Apache Aries project provides
implementations and extensions of most of the Enterprise OSGi specifications.

In the Aniketos Platform, Apache Aries1 components have been used to implement
the database layer. Access to an existing relational database is achieved through the
Blueprint, JPA, JNDI and JTA specifications. This is considered the proper way of
accessing database servers in an OSGi environment.

Figure 1 depicts the configuration of a blueprint component that declares an Enti-
tyManager data source connecting to a MySQL database. In Apache Karaf2, which is
Aniketos OSGi container of choice, one can simply copy this file to the deploy folder
in order to instantiate the blueprint component.

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">

 <bean id="mysqlDataSource"
class="com.mysql.jdbc.jdbc2.optional.MysqlDataSource">
 <property name="url" value="jdbc:mysql://10.1.1.66:3306/aniketos_rt"/>
 <property name="user" value="root"/>
 <property name="password" value="****"/>
 </bean>

 <bean id="mysqlXADataSource"
class="com.mysql.jdbc.jdbc2.optional.MysqlXADataSource">
 <property name="url" value="jdbc:mysql://10.1.1.66:3306/aniketos_rt"/>
 <property name="user" value="root"/>
 <property name="password" value="****"/>
 </bean>

 <service interface="javax.sql.DataSource" ref="mysqlDataSource">
 <service-properties>
 <entry key="osgi.jndi.service.name" value="jdbc/sredb"/>
 </service-properties>
 </service>

 <service interface="javax.sql.XADataSource" ref="mysqlXADataSource">
 <service-properties>
 <entry key="osgi.jndi.service.name" value="jdbc/xasredb" />
 </service-properties>
 </service>

</blueprint>

Fig. 1. Blueprint Data Source Configuration

The consumption of the above data source can be performed inside another
blueprint component, as depicted in Figure 2.

1 http://aries.apache.org
2 http://karaf.apache.org/

40 K. Giannakakis

<bean id="dataAdapter"
class="eu.aniketos.serviceruntime.data.DataAdapterImpl">
 <jpa:context unitname="sredb" property="entityManager"/>
 <tx:transaction method="*" value="Required"/>

</bean>

Fig. 2. Blueprint connection to data source

The above configuration injects the data source inside the DataAdapter class. The
DataAdapter class can later use JPA to work with the database. Although the DataA-
dapter and the Data Source are Blueprint components, the use of the Blueprint
component framework in other parts isn’t mandatory. The DataAdapter bundle can
register OSGi services, which can be discovered with other means (Declarative Ser-
vices, Service Tracker).

Since OSGi is based on the Java language, migrating an existing JEE application to
OSGi is entirely possible. However, OSGi has a special class loading mechanism that
allows every bundle to be isolated from every other. This has many technical implica-
tions for third-party libraries commonly used in JEE (database drivers, ORM frameworks
and all libraries using reflection are affected). For these libraries a special OSGi version
is needed. Luckily, many vendors provide OSGi versions of their libraries. For legacy
libraries and components that do not provide an OSGi version, special considerations
must be taken in order to perform the migration. This usually involves creating a single
bundle, which includes all required dependencies. This is of course against OSGi prin-
ciples and breaks modularity, however it proved to be the only solution in some cases.
(In Aniketos we were forced to follow this practice in the case of Drools Rule Engine3).

Communication with Web Services
Migrating an existing component to OSGi is not always possible, not only due to tech-
nical constraints, but also due to licensing issues. Some components provide their func-
tionality through a service and not through a binary or a source code package that can be
redeployed. OSGi can leverage web services in order to interact with these components.

3.2 Security Considerations

Integration of secure components in a complete solution can be achieved almost ef-
fortlessly in an OSGi environment. In OSGi every bundle is completely isolated from
one other. This allows including security sensitive operations in separate components.
Also, OSGi supports Java Platform Security and can fully take advantage of the pro-
vided API.

4 Cloud Deployment

In today’s world more and more applications find their way to the Cloud. A Cloud
deployment offers many advantages and any newly developed application needs to
make the necessary considerations in order for it to be possible to deploy to a Cloud
environment.

3 http://drools.jboss.org/

 Adopting Existing Communication Platforms for Security Enabling Technologies 41

The Aniketos Platform is a modern system that aims to be installed in as many en-
vironments as possible in the near future. As such it must be flexible enough to be
deployable effortlessly in both Cloud and non-Cloud infrastructure. The modular
architecture of OSGi really helps in this direction.

An addition to the OSGi Specification is the OSGi Remote Services specification.
OSGi Remote Services define how bundles deployed in different containers can dis-
cover and consume services between them. This is achieved by exposing an OSGi
through a SOAP or a REST interface. Popular open source implementations of the
OSGi Remote Services include Apache CXF DOSGi4 and Eclipse Communication
Framework (ECF)5.

OSGi Remote Services allow Aniketos Platform modules to be installed in remote
containers. These modules can still interact with one another, providing and consum-
ing OSGi services, the same way as if they were installed in a single container. There
is no need at all for code changes. These OSGi containers can be deployed in any
infrastructure that supports invocation of a JVM. Currently there are containers run-
ning in proprietary infrastructure as well as in Amazon Web Services. A sample
architecture is depicted in Figure 3.

Fig. 3. OSGi Distributed Architecture

4 http://cxf.apache.org/distributed-osgi.html
5 http://www.eclipse.org/ecf/

Module 1 Module 2

Module 3

Module 4 Module 5

Module 6

OSGi Container 1

OSGi Container 2

OSGi Remote Services

42 K. Giannakakis

4.1 Discovery

The architecture described above presents the problem of node discovery. Although
every container can contain different modules, in order for these modules to be able to
communicate, it must be possible for one container to discover each other. In Apache
CXF DOSGi this is achieved through Apache ZooKeeper6.

Apache ZooKeeper is an open-source server, which enables highly reliable distrib-
uted coordination. The OSGi containers aren’t connected directly to each other. In-
stead they all connect to the ZooKeeper service. The ZooKeeper service allows the
containers to discover each other and exchange messages. This allows the addition of
new containers to the system, without having to re-configure the old ones.

4.2 Deployment

Apache CXF DOSGi exposes web services through non-standard HTTP web ports.
An example endpoint of a web service is http://localhost:9090/marketplace?wsdl. The
usage of non-standard ports in problematic in enterprise environments, which have
very strict firewall settings. This issue can be resolved by using Apache Web Server
and mod_proxy module to redirect the web service to a standard port. The required
configuration of httpd.conf is depicted in Figure 4 (For simplicity the configuration
allows proxying from all locations. This should be changed in a production environ-
ment).

<IfModule proxy_module>

 ProxyRequests Off

 ProxyPreserveHost On

 <Proxy *>

 Order deny,allow

 Allow from all

 </Proxy>

 ProxyPassReverse /marketplace http://localhost:9090/marketplace

 ProxyPass /marketplace http://localhost:9090/marketplace

</IfModule>

Fig. 4. Mod proxy configuration

5 Technology Stack

5.1 Apache Karaf

OSGi in an open technology and there are many open source implementations avail-
able. The Aniketos Platform is using Apache Karaf for deployment. Apache Karaf
offers many unique characteristics that make it ideal for OSGi applications:

6 http://zookeeper.apache.org/

 Adopting Existing Communication Platforms for Security Enabling Technologies 43

• It is very easy to customise and configure.
• It provides many ways for the bundles provisioning. Bundles can be installed from

a command shell or by copying them directly to the deploy folder. Most impor-
tantly Karaf offers a features characteristic that allows bundles to be grouped in
logical units which can then be installed all together in a single go.

• It is a very lightweight container that out of the box only offers the absolutely ne-
cessary functionality. This contributes to fast start-up times and to a cleaner envi-
ronment. Common third-party libraries can be easily installed as features.

• It supports the Maven protocol. It can connect to Maven repositories and install
bundles from them. This is a very convenient way of bridging development and
deployment.

• It offers an advanced command shell that can be easily extended.
• It has all the necessary characteristics of a production environment container: It can

be installed as an OS service; it offers a centralised logging mechanism that can
easily be configured; the command shell can be accessed remotely by any SSH cli-
ent.

For the Aniketos Platform a special distribution of Apache Karaf has been created.
This distribution has been customised and configured according to the needs of the
platform. It has been proved helpful both for development and deployment. Develop-
ers had an easy way to replicate the deployment environment and test their modules.
For deployment, the Aniketos Karaf distribution made it easy to deploy the container
in different servers.

5.2 Activiti

Activiti is a workflow and Business Process Management Platform. It features a
BPMN 2 process engine that is used to execute business processes. It is an open
source solution released under the Apache license. Activiti can be installed as a stan-
dard WAR file in Tomcat or any other Java Web container. It offers a graphical inter-
face for deploying and managing services. However, a REST API is also available.
This REST API can be used to integrate Activiti with external components.

6 Aniketos Service Runtime Environment

The Aniketos Service Runtime Environment (SRE) is the Aniketos mechanism for
executing secure composite services. SRE as well as other Aniketos components are
presented in [1]. Although it isn’t an internal Aniketos component, it is tightly inte-
grated with the Aniketos platform with respect to the following aspects:

 Security and trust in recomposition/adaptation of composite services. [2]

 Monitoring and evaluation of trustworthiness and security violations of service
contracts, also considering contextual information such as change in operation
conditions and users’ behaviour.

 Runtime validation of secure service behaviour.

44 K. Giannakakis

The Aniketos SRE is implemented with the aid of the OSGi and Activiti technologies
presented above.

6.1 Architecture

Figure 5 depicts the architecture of the Aniketos Service Runtime Environment.

Fig. 5. Service Runtime Architecture

The Service Runtime Environment consists of two main components:

• A Tomcat server, which hosts an Activiti v5.11 engine responsible for ex-
ecuting the BPMN composition plans and the composite services deployed
through SCF and SRE.

• Aniketos and environment modules deployed as OSGi bundles in Apache
Karaf containers

Activiti Engine

Runtime DB

Karaf Container

Remote Karaf Containers

SRE OSGi
Module

OSGi Remote Services

REST API

Tomcat Server

Tomcat
Manager REST API

Composite
Service 1

Composite
Service 2

posite
ice 1

 Adopting Existing Communication Platforms for Security Enabling Technologies 45

The bridge between these two components is the SRE OSGi Module. This is a set
of OSGi bundles, which also has the responsibility of connecting the Runtime Envi-
ronment with the Design Tools. The main tasks of this module are:

• Exposes a Web Service that is consumed from the Service Composition
Framework (SCF) for the deployment of composite services.

• Deploys composition plans (BPMN) to the Activiti Engine making use of the
REST API provided.

• Dynamically generates the composite services WAR files and deploys them
to Tomcat through a REST interface.

• Subscribes to notification events for composite and atomic services and trig-
gers re-composition and re-configuration, whenever it is required

The SRE OSGi Module needs to communicate directly or indirectly with numerous
other Aniketos modules: Marketplace, Notification, SCPM, NCVM, CMM, Trustwor-
thiness. Some of them are installed in the same OSGi container, while some others in
remote ones. The communication between OSGi bundles that reside in different OSGi
containers is performed with the aid of CXF DOSGi Remote Services implementa-
tion.

6.2 Deployment of Composite Services

An Aniketos Composite Service is created with the Service Composition Framework
(SCF) tool. A service designer uses SCF to combine one or more atomic services,
discovered in the Aniketos Marketplace, into a BPMN diagram, attach security re-
quirements and configure the rules for re-configuration and re-composition. The SCF
tool is described in detail in the Aniketos Design Time Tools section. SCF connects to
the SRE OSGi module to physically deploy a composite service.

Currently the SRE module supports BPMN diagrams with service tasks only. Dia-
grams with user tasks are not supported and will fail to deploy. The reason for this
will become evident, when the process of executing a composite service is described.

The following sequence diagram presents the actions taken during a composite
service deployment.

The process of the deployment is initiated by the SCF. The SRE OSGi module ex-
poses a Web Service interface for deployment processes. SCF provides all the neces-
sary information for the deployment:

• The main composition plan and the list of alternatives.
• Agreement template.
• Consumer policy.
• Rules to follow for re-configuration and re-composition, when a notification

alert for the composite service or one of its atomic services is received.
• Deployment details. This is a set of service designer’s preferences. They are

used for the registration of the composite service to the Marketplace and for
the creation of the composite service’s interface.

46 K. Giannakakis

Fig. 6. Composite Service Deployment

When a valid deployment request is received by the SRE, it will first try to deploy

the composition plan (BPMN) to the Activiti engine. It will then generate a WAR file
that will expose the composite service interface and deploy it to Tomcat. The next
step is to register the composite service to the Marketplace. The registration uses
information from the deployment details. The tags to characterize the service are
available there. This information is important in order to be able to discover the com-
posite service and re-use it as an atomic service in a different scenario.

After the service registration the SRE subscribes to events from the Notification
service for the composite service itself and for the atomic services used in the service
tasks. This will allow the SRE to re-act in case of an alert and trigger re-composition
or re-configuration. Finally SRE performs some internal required actions and re-
sponds to the SCF.

6.3 Execution of a Composite Service

All composite services expose a similar interface:

String [] operationName(String [] arg0, String [] arg1);

SCF SRE Market-
place

Notification Activiti Tomcat

Deployment of composition plan

Generation of composite service WAR

Deployment of composite service WAR

Registration of composite service to the market-
place

Subscription to Notification
service events

SRE internal activities

 Adopting Existing Communication Platforms for Security Enabling Technologies 47

The operation name is included in the deployment details and it is up to the service
designer to select it. Every service accepts as input two String arrays of equal size.
The first is the parameter names and the second one the parameter values. Only sim-
ple types (string, numeric, Boolean) are accepted. These are the input parameters
needed by the composition plan in order to be executed. The caller of the service must
be aware of the required parameters. An example SOAP envelope is presented below.

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:com="http://compositeService.aniketos.eu/">

 <soapenv:Header/>
 <soapenv:Body>
 <com:getMap>
 <arg0>LotInfo</arg0>
 <arg1>3</arg1>
 </com:getMap>
 </soapenv:Body>
</soapenv:Envelope>

The output of the service is a String array with the results of the composition plan

execution. An example SOAP response follows.

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
 <S:Body>
 <ns2:getMapResponse

xmlns:ns2="http://compositeService.aniketos.eu/">
 <return>LotInformation=37.99411,23.75631</return>
 <re-

turn>MapView=http://dev.virtualearth.net/REST/v1/Imagery/Map/Road/
37.99411,23.75631/15?pushpin=37.99411,23.75631&dcl=1&mapSi
ze=600,600&key=AkMqtYXkW6HV1CDW7GNF712mrntdCnEe9Qv_eXHESYdOFCq
IuW9Tc7Kh2oo9rYWq</return>

 </ns2:getMapResponse>
 </S:Body>
</S:Envelope>

The required actions for the execution of a composite service are presented in the

following sequence diagram.

48 K. Giannakakis

Fig. 7. Composite Service Execution

When a composite service is invoked it makes use of Activiti Engine’s REST inter-
face in order to start a process instance. A process instance executes the BPMN
workflow of the composition plan. The BPMN workflow includes one or more ser-
vice tasks. The service task is executed through an Activiti extension that has been
developed in the context of the Aniketos project. This extension is called “Aniketos
Delegation” and is based on the Execution Listeners technology provided by Activiti.
The tasks of Aniketos Delegation are:

• Communicate with Security Policy Monitoring Module (SPMM) before a
service task is executed

• Store the result of the service task in the Service Runtime Engine database.
The results are stored alongside the process id that was allocated to the ex-
ecution from Activiti

After the process has finished executing, Activiti returns through the REST inter-
face the process id used. The composite service uses this process id to read the results
from the database and return them to the caller.

Service Client Composite Ser-
vice

Activiti

Service invocation

Runtime DB

Start of
process
instance Service task invocation

Storing of result

Service task invocation

Storing of result
End of
process
instance

Service result

Retrieval of stored results for the
returned instance id

 Adopting Existing Communication Platforms for Security Enabling Technologies 49

From the above diagram it becomes evident the reason why only service tasks are
supported in the composition plan. Composite services are normal SOAP services and
must respond to clients in a timely manner. In case of user tasks the process execution
is stalled until some human interactions takes place. This can take an arbitrary amount
of time and the service call would most probably timeout before a response is re-
ceived. A solution would be to devise an asynchronous mechanism for receiving the
results. In that case however the composite service wouldn’t be a simple SOAP
service and could only be used in compatible environments.

7 Conclusions

Designing, developing and deploying security enabling components is far from trivial.
However, one can leverage existing technologies to achieve this task. The OSGi
framework offers a lot of advantages to this end. The communication between the
components can be based on standard solutions (SOAP and REST web services).
Finally, the Activiti Business Process Management Platform offers a suitable way for
executing secure business processes. The Activiti REST API can be used to automate
the deployment and execution of services.

OSGi and Activiti technologies are used to implement the Aniketos Service Run-
time Environment. The Aniketos Service Runtime Environment allows the deploy-
ment and execution of secure Aniketos composite services.

References

1. Meland, P.H., Rios, E., Tountopoulos, V., Brucker, A.D.: The aniketos platform. In:
Brucker, A.D., Dalpiaz, F., Giorgini, P., Meland, P.H., Rios, E. (eds.) Secure and Trustwor-
thy Service Composition. LNCS, vol. 8900, pp. 50–62. Springer, Heidelberg (2014)

2. Meland, P.H., et al.: Security and trustworthiness threats to composite services: Taxonomy,
countermeasures, and research directions. In: Brucker, A.D., Dalpiaz, F., Giorgini, P.,
Meland, P.H., Rios, E. (eds.) Secure and Trustworthy Service Composition. LNCS,
vol. 8900, pp. 10–35. Springer, Heidelberg (2014)

3. OSGi in Action - Richard S. Hall, Karl Pauls, Stuart McCulloch, and David Savage -
Manning Publications Co. (April 2011)

4. Enterprise OSGi in Action - Holly Cummins and Timothy Ward - Manning Publications Co.
(March 2013)

5. Building Modular Cloud Apps with OSGi - Paul Bakker, Bert Ertman - O’Reilly Media
(September 2013)

6. OSGi Alliance Specifications,
http://www.osgi.org/Specifications/HomePage

7. Activiti Web Site, http://activiti.org/
8. Apache Karaf Web Site, http://karaf.apache.org/
9. Zookeper Web Site, http://zookeeper.apache.org/

A.D. Brucker et al. (Eds.): Secure Service Composition, LNCS 8900, pp. 50–62, 2014.
© Springer International Publishing Switzerland 2014

The Aniketos Platform

Per Håkon Meland1, Erkuden Rios2, Vasilis Tountopoulos3, and Achim D. Brucker4

1 SINTEF ICT, N-7465, Norway
per.h.meland@sintef.no

 2 TECNALIA Research and Innovation, Parque Tecnológico de Bizkaia 700, Spain
erkuden.rios@tecnalia.com

3 Athens Technology Center S.A., Halandri, Athens, Greece
v.tountopoulos@atc.gr

4 SAP SE, Vincenz-Priessnitz-Str. 1, 76131 Karlsruhe, Germany
achim.brucker@sap.com

Abstract. The overall objective of Aniketos has been to help establish and
maintain trustworthiness and secure behaviour in a constantly changing service
environment. The resulting Aniketos platform contains existing and newly
developed technology, methods, tools and security services that support the
design-time creation and run-time dynamic behaviour of composite services,
addressing service developers, service providers and service end users. This
chapter gives and overview of the Aniketos platform as a whole and its software
packages.

Keywords: Aniketos, platform, service composition, components.

1 Introduction

The Future Internet will provide an environment in which a diverse range of services
are offered by a diverse range of suppliers, and users are likely to unknowingly in-
voke underlying services in a dynamic and ad hoc manner. Moving from today’s stat-
ic services, we will see service consumers that transparently mix and match service
components depending on service availability, quality, price and security attributes.
Thus, the applications end users see may be composed of multiple services from
many different providers, and the end users do not have much of a guarantee that a
particular service or service supplier will actually offer the claimed security.

We can illustrate service composition through a practical service example: Let’s
say a service developer wants to create a travel agency service, MyPerfectTravel,
which lets the end user read about various destinations, check the weather forecast
and book a trip containing flights, hotel, a hire car and tickets to leisure activities.
Under the hood of such a composite service there will be a range of services from
independent providers, but the end users only has to relate to MyPerfectTravel. There
are many services like this already today, but these are largely static affairs, and re-
quire redesign once there is some sort of change. New and emerging technologies for

 The Aniketos Platform 51

dynamic service composition allow a more autonomous and ad-hoc approach, so that
a service can adapt to another configuration at runtime. Let’s say that MyPerfectTra-
vel ordinarily uses a service from the Amadeus reservation system to handle the flight
bookings, but this service becomes exposed to a threat, lowering its assurance level or
availability. MyPerfectTravel should consequently react to this, and for instance re-
place this service component with a similar one from e.g. Galileo, Worldspan or Sa-
bre without the end user ever noticing it.

The main objective of Aniketos is to establish and maintain trustworthiness and
secure behaviour in a constantly changing service environment. Aniketos provides
methods for analysing, solving, and sharing information on how new threats and
vulnerabilities can be mitigated. We have constructed a platform for creating and
maintaining secure and trusted composite services that:

• Complements state-of-the-art service composition technology. The platform pro-
vides methods, tools and community services to support service implementation,
discovery, composition, adaptation and management through the concept of full
life-cycle security engineering.

• Allows definition, validation and monitoring of trustworthiness and security prop-
erties of composed and dynamically evolving services through models for require-
ments specification and business-processes enhanced with security policies and
metrics.

• Makes it possible to efficiently analyse, solve and share information on how new
threats and vulnerabilities affect the composition and can be mitigated, so that
composed services can automatically adapt to them without loosing availability
and end user trust.

• Manages to handle trustworthiness and security of adapted/recomposed services
from a socio-technical perspective. Security and trust are not only a technical issue
for the heterogeneous nature of composite services, but rather an interleaving prob-
lem between technical and social aspects that cannot be considered in isolation.

In section 2 we give a high level overview of the Aniketos platform, the processes,
activities and stakeholders it supports. Section 3 gives more detail on the component
structure and explains how they are grouped in different packages. Concluding re-
marks are given in section 4.

2 The Aniketos Platform at a Glance

The Aniketos platform complements existing state-of-the-art Service Oriented Archi-
tecture (SOA) frameworks by connecting emerging technological solutions with the
human practices that are needed to create and maintain secure and trusted composite
services. Figure 1 shows how Aniketos supports activities within the composite ser-
vice life cycle. Service developers compose services at design-time by discovering
and including available service components from external service providers. A service

52 P.H. Meland et al.

component needs to provide an abstraction of its behaviour and security guarantees.
Consuming composite services require a specific behaviour and impose their own
policies that the service components have to respect. Aniketos is used to make sure
that service providers can be trusted and that service components do not unintention-
ally violate security policies.

At runtime, the service provider offers the composite service to a service end user.
Due to the Aniketos capabilities, this end user is able to put his trust in one party in-
stead of relating to all of the service providers involved. He would like to have stable
level of trust, being indifferent to whether service components are changed or service
providers come and go. Aniketos uses monitoring and notifications to help the service
providers perform intelligent adaptation or recomposition of the services, triggered by
changes in component behaviour, change in the trustworthiness of a service provider,
new threat information, and also changes in the operating environment (e.g. a service
is being used for a purpose it was not originally intended for or the end user relocates
to a more hostile environment).

Fig. 1. The composite service life cycle

As shown in Figure 2, the Aniketos platform itself can be structured into the three
areas related to design-time support, runtime support and community support. These
are explained in the text below in relation to different stakeholders.

 The Aniketos Platform 53

Fig. 2. Overview of the Aniketos Platform

2.1 Design-Time Support

This area consists of methodologies and tools that define and evaluate trustworthiness
and security properties over and between external service components. This allows a
service developer to perform service discovery and composition based on security
properties and metrics, not just functional descriptors. He is also able to choose ser-
vice providers and service components according to trustworthiness aspects. Compo-
site services are analysed and prepared through automated on-line mechanisms that
gather data concerning both individual components and service compositions as a
whole, and the developer is informed about known threats to these through the threat
notification from the community.

Aniketos did not set out to create a whole new process of developing composite
services; a lot of work has already been done in this field and should therefore be
exploited. Figure 3 shows typical work processes related to design-time service com-
position and how Aniketos complements these. The generic part may of course have
other variations, with more/fewer process boxes (e.g. testing has been omitted since
we focus on validation at design-time) and where the order might be a little bit differ-
ent (e.g. contracts can be established after service assemble), but we think this one is a
fairly generic version to which we can relate to. Note that loops have been omitted
(e.g. if validation fails it will be necessary to go back one or several steps).

Only the service developer stakeholder has been included here, but this one can
represent other more specific roles, such as service composer, service designer and ser-
vice implementer. Additionally, the service owner and the service end user would typi-
cally be involved in giving high-level requirements input to the service specification
process.

The ANIKETOS platform
Design-time support Runtime support

Community support

Trustworthiness monitoring and
evaluation

Runtime validation of secure service
behaviour

Composite service adaptation and
recompostion

Trustworthiness definition and
evaluation

Security property definition and
evaluation

Composite service analysis and
preparation

ANIKETOS market place

Threat analysis and notification

End user trust and assurance

Reference architecture and patterns

54 P.H. Meland et al.

Fig. 3. Typical processes related to design-time service composition

2.2 Runtime Support

Any service provider must expect changes related to external dependencies, such as
updates or alterations of service components, or unwanted circumstances that influ-
ence the service compositions. The design-time definitions are used to monitor threats
that cannot be mitigated at design-time, evaluate the trustworthiness and look for
potential security violations of the service components. The platform allows a proac-
tive increase in trustworthiness by asking for more credentials and tries to control the
damages in case of attack by selecting the appropriate security level on which the
service can run. A runtime threat alert-and-adapt mechanism is able to receive emerg-
ing threat notifications from the community. All these are possible triggers to dynam-
ic adaptation or recomposition of the service.

Figure 4 gives a generic overview of the runtime domain. The Provide service
process is continuously running, and will at some point in time receive an alert from
the Aniketos platform. This will indicate to the service provider that a service valida-
tion would be a wise thing to do. The service validation can have three outcomes:

1. The service is OK and the alert was nothing to care about, go back to regular pro-
vision.

2. The service is not OK, try and adapt with a reconfiguration (meaning keep the
same service components but with some modifications).

3. The service is not OK, try to recompose (replace service components).

In the two latter cases the service provider would normally do a new validation since
there has been a change.

 analysis Design-time processes

Generic design-time composi tion

Establish
contracts

Discov er
serv ice

component
candidates

Deploy
serv ice

Assemble
serv ice

Select
serv ice

components

Validate
serv ice

Specify
serv ice

Serv ice dev eloper

Model and analyse
trust and security
requirements for

the serv ice

Socio-technical
Security Modelling

Tool

Serv ice
composition
framework

Aniketos platform
serv ices

Threats

Countermeasures

Discov ery based
on trust and

security
requirements

Suggest secure
composition

Analyse secure
composition of

serv ice

Determine
monitoring points

and alert
thresholds

Announce serv ice
in Aniketos
marketplace

supply

supply
supplysupply supply supply supply

invoke

supply

supply

invoke

 The Aniketos Platform 55

In the lowermost part of the figure we have showed that monitoring is also some-
thing that is continuously done by the service provider. If something out of the ordi-
nary is detected, an alert can be sent to the Aniketos platform, which would route this
message to the relevant receivers. For instance, if a service provider detects an intru-
sion he would have to notify consuming composite services if this is a contract re-
quirement.

Fig. 4. General processes related to runtime reaction to changes and monitoring

2.3 Community Support

Service developers can find information on how to apply Aniketos as a part of the com-
munity support, which also includes example services, demonstration material, tutorials,
process descriptions, development patterns and guidelines. Threat/countermeasure in-
formation and notifications are provided to both service developers and service providers
in order to guide design-time composition or trigger runtime adaptation/recomposition
based security goals or service components included in the composite service. The ser-
vice end user will only need to relate to one entity that she can place her trust to and keep
responsible in case something goes wrong, though a composite service has many under-
lying service providers. The Aniketos marketplace offers a way of requesting/offering
service components with defined security and trustworthiness properties.

 analysis Prov ider runtime processes

Monitoring the service and the
environment

Monitoring the service and the
environment

Dynamic provision of composite service

Recomposition

Assemble
and deploy

serv ice

Discov er serv ice
component
candidates

Select serv ice
components

Validate serv iceProv ide serv ice

Alert

Monitor

Alert

OK?

Serv ice prov ider

Serv ice runtime
env ironment

Verify serv ice
compliance to

contract

Discov ery based
on trust and

security
requirements

Suggest secure
composition

Determine
monitoring points

and alert
thresholds

Aniketos platform
serv ices

Analyse secure
composition of

serv ice

no, need recompostion

yes

supply

supply

supply

supply

supply supplysupplysupply

supply
invoke

56 P.H. Meland et al.

Fig. 5. Stakeholders

 analysis Stakeholders

Serv ice prov ider

Serv ice developer

Serv ice composer

Serv ice consumer

Aniketos
community

member

Aniketos authority

Maintains the software and services part of the
Aniketos platform, such as the marketplace and
threat repository.

High level stakeholder that represents users able to
benefit from Aniketos results. This stakeholder
represent various kinds of Aniketos platform end
users.

Invokes Aniketos compliant services.

End user of a service developed/composed with
the Aniketos platform.

Provides a service to service consumers at
runtime.

A high level stakeholder involved in the creation
of a service.

Uses the Aniketos platform to compose a new
service from existing and compliant services.

(Re)composition
agent

Software which recomposes a composite service at
runtime triggered by changes, e.g. in service
requirements, execution environment, consumed
services, or due to a change in the threat picture.

Serv ice end user

Serv ice designer
Designs/specifies services using aided by the
Aniketos platform.

Serv ice mediator

A mediator both consumes and provides services,
thus inherits from both service consumer and
service provider. A service mediator often enriches
the service with some value added feature.

Serv ice
implementor

Someone implementing a service (from scratch)
that can be used with the Aniketos platform, e.g.
possible to discover and use in a composition.

Third party
A third party able to act as a certifier of trust for
stakeholders involved in a service invocation.

Aniketos platform
contributor

A user able to enrich the Aniketos platform with
meaningful content, e.g. provide demonstration
material, example services, guidelines or
information in the threat repository.

Serv ice owner A person or and organisation that is behind the
capabil ities offered by the service. Would typically
be l iable responsible and make revenue from the
service.

 The Aniketos Platform 57

2.4 Overview of Stakeholders

As already shown in the process diagrams, Aniketos supports several types of stake-
holders who in one way or another are influenced by the platform. Figure 5 presents a
more complete stakeholder breakdown (the arrow relationship between stakeholders
is always inheritance/specialisation) along with a brief comment explaining the typi-
cal characteristics. At the most abstract level we have defined the "Aniketos commu-
nity member", which all other stakeholders inherit from. The specialisations give
more detail on their particular role and how they benefit from the Aniketos platform.
Note that these stakeholders are not mutually exclusive, for example a service provid-
er might also be a service owner.

3 Aniketos Components and Packaging

The Aniketos platform has been realised by a set of loosely coupled components that
can be glued together based on what type of support is needed. Figure 6 gives a three-
layered overview of these components. Some of these are environment components,
which are basically reference implementation of something that interacts with Anike-
tos, and can be replaced by other tools that perform similar tasks. These tasks are the
design and deployment of composite services (done with the Service Composition
Framework - SCF), the execution and adaptation of service compositions (performed
by Service Runtime Environment – SRE), the detection of deviations (through the
Service Monitoring Module – SMM) and management of identity identification
(through the Identity Management Service – IdM).

Fig. 6. The layer-based conceptual representation of the Aniketos architectural design

Socio-technical
security modelling tool

Model transformation
module

Trustworthiness
Component

Verification
Component

Security property
determination module

Secure composition
planner module

Security policy
monitoring module

Threat response
recommendation

module

Service threat
monitoring module

Notification module

Community support
module

Threat repository
module

Marketplace

Service composition
framework

Training material
module

Service runtime
environment

Identity management
service

Interaction Layer

Data Access Layer

Business Logic Layer

Security-by-Contract
Component

Security Requirements
Compliance Module

Nested Composition
Verification Module

Service Monitoring
Module

58 P.H. Meland et al.

The Aniketos Platform a
software packages shown i
ketos platform functionaliti
Requirements package can
is used to analyse the syste
vice Specification and Dep
time. It is also stand-alone
Verification package and Se

Below we describe the
packages. Many of the com
packages are able to intera
spectrum of the Aniketos pl

Fi

3.1 Socio-technical Sec

Description of the Offered
This package offers a user
among elements such as age
in the goal achievement (ei
age offers four different vie

• Social view: represents a
• Information view: repres

together with the docum
tionships among differen

• Authorisation view: repr
actors concerning the ex
poses.

• Security requirements: r
terms of commitments t
needs expressed in the ab

and Environment components have been grouped into f
n Figure 7, which better facilitate the delivery of the A
ies to the target user groups. The Socio-technical Secu
be used standalone and is a pure design-time package t

em as a whole on an organisational level. The Secure S
ployment package is relevant both at design-time and r
e, but can be enhanced with the Security Validation
ecurity Monitoring and Notification package.
components from Figure 6 in relation to these softw

mponents are part of more than software package, and
act with each other in order to take advantage of the
latform.

g. 7. The Aniketos software packages

curity Requirements Package

d Functionality
friendly interface for modelling the security relationsh

ents, roles, their security goals and the documents invol
ither as requirements or derivatives of the goal). The pa
ews, namely:

actor intentionality and sociality;
sents the information in the considered organisation/sett

ments that represent such information, as well as the re
nt pieces of information (documents).
resents the authorisations granted by some actors to ot
change and manipulation of information for particular p

represents the list of security requirements expressed
that hold/should hold between actors to cover the secu
bove three views.

four
Ani-
urity
that
Ser-
run-
and

ware
d all
full

hips
ved

ack-

ting
ela-

ther
pur-

d in
urity

 The Aniketos Platform 59

It also enables users to associate model elements with potential threats, which can be
fetched from a threat repository. These threats can again be used to find suitable coun-
termeasures for effectively addressing the risks they impose.

Involved Aniketos Components
This package consists of the following Aniketos components and modules:

• The Socio-Technical Security Modelling Tool (STS), which offers the main tool to
model security requirements.

• The STS Threats Plugin, which enables attach threats and respective countermea-
sures to the security goals of a composite service.

• The Threat Repository Module (TRM), which exposes the list of registered threats
and countermeasures encountered in various domains.

Main Outcome

• A document (in pdf) of the security relationships among the agents, the roles, the
goals and the involved documents.

• An XML file with the set of security requirements specifications applied to the
defined goals, expressed as commitments between the actors.

3.2 Secure Service Specification and Deployment Package

Description of the Offered Functionality
This package enables the service developer to create the composite service process
model and configure the security requirements on a more detailed level. It also
enables easy deployment of the composite service specification to the runtime envi-
ronment that will offer the service to the end user. The specification includes opera-
tional instructions for the composition as a whole and for each service component,
such as functional specification with security characteristics, detailing the level of
security that should be supported by the specific service.

The package offers the possibility to publish Aniketos compliant services to a ser-
vice registry and searching in this registry to discover the most appropriate service
descriptions. The current set of supported security properties are trustworthiness,
separation and binding of duty, confidentiality, non-repudiation and integrity.

Involved Aniketos Components
This package consists of the following Aniketos components:

• The Service Composition Framework (SCF), which is a process modelling tool and
is used to model the composite service processes. This component acts as an or-
chestrator between the various components of this package.

• The Conspec Editor, which is a flexible UI tool to help security experts defining
properties for their services in Conspec format.

• The Model Transformation Module (MTM), which can be optionally used for
transformation between the socio-technical security requirements, as expressed (with
STS package) in the form of commitments, and the formal service specification.

60 P.H. Meland et al.

This module can also create the template for the consumer’s security policy (in
Conspec format), based on the commitments.

• The Identity Management Service (IdM), which offers authentication and authori-
sation services and feeds the package tools with the roles, which should be defined
in the service design.

• The Security Requirements Compliance Module (SRCM), which can be optionally
used to compare the service specification created from MTM and the security re-
quirements specifications and verify that these two are compliant with each other.

• The Threat Repository Module (TRM), which exposes the list of registered threats
and countermeasures encountered in ICT systems.

• The Threat Response Recommendation Module (TRRM), which provides sugges-
tions on the countermeasures, which should be applied during service composition
in order to deal with those threats related to the development and deployment of a
composite service.

• The Composition Security Validation Module (CSVM), which enables define secu-
rity properties with respect to the separation or binding of duty and provides static
analysis of the defined security requirements with respect to the specified compo-
site service processes.

• The Marketplace, which acts as an enriched service registry maintaining both the
functional and security characteristics of individual service components.

• The Contract Manager Module (CMM), which manages the overall security check-
ing process and checks the compliance of the offered service security level from a
service provider with the consumer‘s security policy.

• The Trustworthiness Module (TM), which offers prediction over the trustworthi-
ness value of a service component.

• The Security Property Determination Module (SPDM), which manages the security
properties associated with a service.

• The Service Runtime Environment (SRE), which orchestrates the deployment of
the composite service process.

Main Outcome

• The specification of the composite service process, enriched with security require-
ments (consumer policy), expressed in Conspec format.

• A list of service specifications, which satisfy the consumer’s security policy.
• A Web-based implementation of a selected composite service process, which com-

plies with specific security requirements.
• A Boolean response on whether an announcement of an Aniketos compliant ser-

vice is successful or not (this step might need an additional verification check, as it
is described in next Section).

3.3 Security Service Validation and Verification Package

Description of the Offered Functionality
This package offers verification and validation checks to the design, registration and
execution of secure composite services. The service validation process is invoked
when a composite service when the service developer needs to check the security

 The Aniketos Platform 61

characteristics of the involved services. The same check can be performed at runtime
to validate that the offered security level of the composite service complies with the
consumer’s security policy.

Involved Aniketos Components
This package consists of the following Aniketos components:

• The Secure Composition Planner Module (SCPM), which suggests the most secure
composite service specifications based on certain security features.

• The Contract Manager Module (CMM), which manages the overall security check-
ing process and checks the compliance of the offered service security level from a
service provider with the consumer‘s security policy.

• The Nested Composition Verification Module (NCVM), which verifies the com-
pliance of a service specification with the offered service security level from a service
provider.

• The Trustworthiness Module (TM), which offers prediction over the trustworthi-
ness value of a service component.

• The Security Property Determination Module (SPDM), which manages the security
properties associated with a service.

• The Composition Security Validation Module (CSVM), which verifies the com-
pliance of a service composition to the offered security properties.

• The Property Verification Module (PVM), which analyses a service implementa-
tion (e.g., based on its source code) for compliance with required security proper-
ties (e.g., absence of certain vulnerabilities, enforcement of access control, ensur-
ing data privacy) as expressed in a service contract.

• The Composite Service Security Testing Module (CSSTM), which is used to detect
vulnerabilities in a service specification.

• The Threat Repository Module (TRM), which exposes the list of registered threats
and countermeasures encountered in ICT systems.

• The Service Threat Monitoring Module (STMM), which analyses an event refer-
ring to a change in the threat level of an offered composite service.

• The Notification Module, which compiles the proper alert and notification messag-
es to be communicated to the application and other involved Aniketos components.

Main Outcome

• A Boolean response that the security properties of a service specification have been
verified.

• A list with the security checks performed and the respective result.

3.4 Security Monitoring and Notification Package

Description of the Offered Functionality
This package enables an operational environment to monitor the execution of compo-
site services and generating alerts when any malfunction is identified. Such malfunc-
tions can refer to the violation of a service contract and/or the change in the trustwor-
thiness and/or threat level of the offered composite service.

62 P.H. Meland et al.

The other main element is the functionality for subscriptions to service notifica-
tions for different types of events, so that information about data breaches, vulnerabil-
ities and changes is sent to the relevant subscribers in both a human and machine-
readable format.

Involved Aniketos Components
This package consists of the following Aniketos components:

• The Service Composition Framework (SCF), which is a process modelling tool and
is used to define rules to an existing composite service process for handling inci-
dents identified during the execution of the service process.

• The Service Runtime Environment (SRE), which orchestrates the subscription to
monitors and generates the events during the composite service execution.

• The Service Monitoring Module (SMM), which captures the events generated by
the SRE and classifies them according to their type for further use.

• The Service Threat Monitoring Module (STMM), which receives subscriptions of
service components to threats and analyses an event referring to a change in the
threat level of an offered composite service.

• The Threat Repository Module (TRM), which exposes the list of registered threats
and countermeasures encountered in ICT systems.

• The Security Policy Monitoring Module (SPMM), which is notified of the compo-
site service contract and analyses an event referring to a service contract violation.

• The Security Property Determination Module (SPDM), which manages the security
properties associated with a service.

• The Trustworthiness Component (TM), which is notified on the requirement for
monitoring the trustworthiness values of the composite service and analyses an
event referring to a change in the trustworthiness level of an offered composite
service.

• The Notification Module (NM), which receives subscriptions for notifications to
specific security events (i.e. contract change, trust level change, security property
change, threat level change, etc.) and compiles the proper alert and notification
messages to be communicated to the application and other involved Aniketos com-
ponents.

Main Outcome

• A set of alerts and notification messages, stating the type of malfunction that was
identified.

• A set of rules to guide on the proper incident handling at runtime.

4 Conclusion

This chapter presented the Aniketos platform as-a-whole and is intended to be a start-
ing point for anyone interested in its usage and technology behind. The following
chapters in this book give more detailed explanations on how the various components
work and interact with each other and the environment.

The Socio-technical Security Requirements Modelling
Language for Secure Composite Services

Elda Paja1, Fabiano Dalpiaz2, and Paolo Giorgini1

1 University of Trento – DISI, Via Sommarive 5, 38123, Povo, Trento, Italy
{elda.paja,paolo.giorgini}@unitn.it

2 Utrecht University – Department of Information and Computing Sciences, Princetonplein 5,
De Uithof, 3584 CC Utrecht, The Netherlands

f.dalpiaz@uu.nl

Abstract. Composite services foster reuse and efficiency in providing consumers
with different functionalities (services). However, security aspects are a major
concern, considering that both service consumers and providers are autonomous
and heterogeneous—thus, loosely controllable entities. When consumers provide
information in order to be furnished some service, what happens to that informa-
tion? Do service consumers trust service providers? In order to tackle the design
of secure and trustworthy composite services, we should consider the security
requirements such a composition must satisfy. We propose STS-ml, a security re-
quirements modelling language that allows modelling security requirements over
participants’ (consumers and providers) interactions. These security requirements
are expressed in terms of social contracts the various parties shall comply with
while interacting (consuming/furnishing some service). Most importantly, STS-
ml considers social and organisational threats that might affect the said com-
posite services. In this chapter, we give an overview of STS-ml, introducing its
modelling and reasoning capabilities while building models from the Aniketos
eGovernment case study and verifying that the composite service complies with
the specification, as well as checking whether a recomposition is needed.

1 Introduction

The Future Internet aims at digitalising many aspects of our lives, in particular offering
online a great deal of services we are used since ages to have/obtain on the basis of
face-to-face communication and interaction. This new system surpasses geographical
limitations and confines, for it allows a wide range of organisations and individuals to
offer (provide) a plethora of services to a wide variety of users (consumers). Everyone
is free to join or leave this system and be in any of the roles, provider or consumer. Thus,
the system exists because of the interaction among participants, a black-box interaction
among autonomous actors based on service interfaces.

As much as this new environment facilitates interaction and communication, often
increasing the quality of services (because of competition—now with all providers of
the same types of services), it opens up many new challenges and issues with respect
to trust, security and privacy. Typically consumers need to provide or exchange infor-
mation with service providers to be able to access and use the offered services. But, in

A.D. Brucker et al. (Eds.): Secure Service Composition, LNCS 8900, pp. 63–78, 2014.
c© Springer International Publishing Switzerland 2014

64 E. Paja, F. Dalpiaz, and P. Giorgini

many cases consumers have little or no information about the providers, so can they re-
ally trust them with their information? Can the consumers trust providers not to misuse
their information? Can consumers trust providers not to disclose their data to unautho-
rised parties? These are some of the questions we need to consider in engineering a
system that offers the desired services while respecting users’ needs on protecting their
information (maintaining user trust and an adequate level of security).

The analysis of security aspects is of utmost importance, since information is dis-
closed (and tasks are executed) beyond the “safe” boundaries of a single organisation,
and due to the autonomy of the participants, users have no control whatsoever over
providers (with respect to what might happen to their information). The lack of control
makes the design of composite services a challenging task. Such design should not con-
sider technical details alone, but the bigger picture comprising the participants interact-
ing to get and provide services, which stand at the basis of service-oriented applications.
We need a way to capture and represent participants’ needs when interacting with oth-
ers, either to consume a service or to exchange information, in order to understand what
are their concerns with respect to security over the said interaction. Moreover, in such a
dynamic environment, the participants may be subject to security threats affecting their
important assets. These threats are not necessarily technical, rather they are social, as
they originate from the interactions between social actors (humans and organisations).

As in any engineering discipline, early awareness and analysis of potential problems
is beneficial to system design, resulting in the development of more robust systems. For
this, we have proposed a security requirements engineering modelling language that
supports the specification of security requirements for service-oriented applications.
The modelling language, STS-ml (Socio-Technical Security modelling language), al-
lows to represent service-oriented settings in terms of goal-oriented actors that interact
with one another to obtain (consume) services and exchange information. The key idea
is to relate security requirements to interaction. This means adding constraints to the
way actors exchange information, and to the delegation of goals (services). These con-
straints help specify the security requirements the actors shall comply with while in-
teracting. STS-ml specifies security requirements as social commitments [6], promises
with contractual validity made by an actor to another. One actor commits to another
that, while delivering some service, it will comply with the required security needs. For
example, a service provider might need to respect (commit for) the non-disclosure of the
consumer’s personal data, which is required as input to the provided service. Similarly,
the same service provider may commit not to redelegate its offered services to other
actors (providers), which might be not trusted by the consumer. As any approach to se-
curity, for a thorough security analysis, STS-ml does not overlook threats, and considers
social and organisational threats that might affect the well-functioning of the systems.
In our case, threats might affect the services under operation and the threats’ impact
might require a service recomposition (considering alternative services already known
at design time) so that the required functionalities are maintained for the consumers.

Security requirements are integrated within the service interface, so that the provider
makes a commitment to prospective service consumers to satisfy the given security
needs. In this way, security requirements can be effectively used to specify the service
under development. Expressing security requirements within service interfaces ensures

The Socio-technical Security Requirements Modelling Language 65

that the security needs expressed by the consumers result in actual commitments the
provider makes to the consumer to satisfy the imposed constraints (the security needs)
while delivering the service. For instance, if consumers are concerned with the disclo-
sure of personal data, the service interface may declare that the data will not be dis-
closed to other actors. Irrespective of the service implementation, such interface makes
the provider committed for non-disclosure.

These specifications guide the design of composite services that satisfy the security
requirements. However, in certain cases, the specification may be inconsistent, i.e., one
or more requirements might be conflicting. If not effectively managed, inconsistencies
result in the implementation of a system that violates one or more requirements. We
propose to rely on automated reasoning to identify and resolve these conflicts. This
choice is justified by our gathered evidence [8] that requirements models are large and
that even skilled analysts would be unable to identify all the conflicts in a model.

Analysis results over security requirements are intended to improve the created mod-
els, so that the final security requirements specification is consistent and can serve as
a basis for the implementation of the considered composite services. An analysis of
threats impact, on the other hand, determines whether a service recomposition is re-
quired or not, should any of the composing services be threatened (become unavail-
able).

2 STS-ml: An Overview

STS-ml has been first proposed in [2], here we present the current version of STS-
ml. STS-ml includes high-level organisational concepts such as actor, goal, delegation,
etc. Security requirements in STS-ml models are mapped to social commitments [6]—
contracts among actors—that actors (participants) shall comply with at runtime. STS-
ml modelling consists of three complementary views of the same model, namely social,
information, and authorisation view (see Fig. 1, 3, and 4), so that different interactions
among actors can be analysed by concentrating on a specific view at a time. Inter-view
consistency is ensured by STS-Tool1 (see Chapter 7).

We consider a scenario from the eGovernment case study (Chapter 15) as a running
example to illustrate STS-ml.

Example 1 (Lot Searching). The Department of Urban Planning (DoUP) wants to build
an application which integrates the existing back-office system with the available com-
mercial services to facilitate the interaction of involved parties when searching for a
lot. The Lot Owner wants to sell the lot, he defines the lot location and may rely on a
Real Estate Agency (REA) to sell the lot. REA then creates the lot record with all the lot
details, and has the responsibility to publish the lot record together with additional legal
information arising from the current Legal Framework. Ministry of Law publishes the
accompanying law on building terms for the lot. The Interested Party is searching for
a lot and: (i) accesses the DoUP application to invoke services offered by the various
REAs; (ii) defines a trustworthiness requirement to allow only trusted REAs to contact
him; (iii) sets a criteria to search and select a Solicitor and a Civil Engineer (CE) to

1 http://www.sts-tool.eu

http://www.sts- tool.eu

66 E. Paja, F. Dalpiaz, and P. Giorgini

asses the conditions of the lot; (iv) assigns solicitor and CE to act on his behalf so that
the lot information is available for evaluation; and (v) populates the lot selection for the
chosen CE and Solicitor. Aggregated REA defines the list of trusted sources to be used
to search candidate lots, it collects candidate lots from trusted sources, and ranks them
to visualize to the user. The Chambers provide the list of creditable professionals (CE
and Solicitors).

2.1 Multi-view Modelling

STS-ml relies on multiple views of the same model, each representing a specific per-
spective on the analysed setting. Multi-view modelling promotes modularity and sep-
aration of concerns. Currently, STS-ml includes three views: social view, information
view, and authorisation view.

Social View. The social view (see Fig. 1)—a variant of i* [9]–based modelling lan-
guages, such as SI* [5]—, represents participants of a socio-technical system as in-
tentional and social actors. These actors are intentional for they enter the system in
order to fulfil their objectives (goals), and they are social, for they interact with oth-
ers to fulfill their objectives (by delegating goals) and obtain information (by ex-
changing/transmitting documents). STS-ml supports two types of actors: agents—
representing concrete participants, and roles—abstract actors, used when the actual par-
ticipant is unknown. In our example, (Example 1), the identified roles are Lot owner,
REA, Map Service Provider, Interested Party, Solicitor, CE Chambers, and Solicitor
Chambers, while the represented agents are: DoUP Application, Aggregated REA, and
Ministry of Law, see Fig 1. The reason for this is that roles refer to general actors that
are instantiated at run time, while agents refer to concrete entities already known at
design time. That is, we do not know who Lot owner or Interested Party is going to be,
but we consider that there is only one Aggregated REA and one Ministry of Law in this
scenario, which are known already at design time.

Actors may achieve their goals on their own by decomposing (further refining goals)
via: (i) and-decompositions: all subgoals must be achieved for the goal to be achieved;
and (ii) or-decompositions: at least one subgoal must be achieved for the goal to be
achieved. For instance, in Fig 1, Lot Owner has goal lot sold. He could sell the lot either
privately or through an agency. Therefore, Lot Owner or-decomposes lot sold into lot
sold privately and lot sold via agency. In the Lot searching scenario, we consider that
the Lot Owner interacts with a real estate agency (REA), hence we further refine how
this is achieved. To sell the lot through an agency: a lot record should be created, lot
information needs to be provided, the lot location needs to be defined and finally the
lot price needs to be approved. Thus, this is represented through the and-decomposition
of goal lot sold via agency into goals lot record created, lot info provided, lot price
approved, and lot location defined.

Actors can delegate goals when they cannot achieve them on their own or it is more
convienient to rely on others. Note that delegation is possible if the delegator actor has
the said goal2. For instance, in Fig 1, Lot Owner wants to have the lot sold via agency,
for which he delegates goal lot record created to the Real Estate Agency.

2 Note that in STS-ml only leaf goals can be delegated!

The Socio-technical Security Requirements Modelling Language 67

lo
t s

ol
d

lo
t s

ol
d

vi
a

ag
en

cy
lo

t s
ol

d
pr

iv
at

el
y

lo
t r

ec
or

d
cr

ea
te

d

lo
t i

nf
o

pr
ov

id
ed

lo
t l

oc
at

io
n

de
fin

ed

lo
t i

nf
o

ow
ne

r
pe

rs
on

al

lo
t p

ric
e

ap
pr

ov
ed

Lo
w

 O
w

ne
r

lo
t r

ec
or

d
cr

ea
te

d

lo
t r

ec
or

d
pu

bl
is

he
d

lo
t i

nf
o

lo
ca

tio
n

m
ap

 a
dd

ed

le
ga

l i
nf

o
ad

de
d

le
ga

l
fr

am
ew

or
k

Re
al

 E
st

at
e

A
ge

nc
y

tr
us

te
d

RE
A

se
le

ct
ed

ci
tiz

en
s

he
lp

ed
le

ga
l

fr
am

ew
or

k

cr
ed

ib
le

 C
E

pr
ov

id
ed

cr
ed

. s
ol

ic
ito

r

cr
ed

ib
le

CE
ng

lo
t s

ea
rc

he
d

tr
us

te
d

RE
A

be
st

 lo
ts

lo
t o

w
ne

r
re

gi
st

er
ed

IP
 re

gi
st

er
ed

cr
ed

ib
le

so
lic

ito
r

D
oU

P
A

pp
lic

at
io

n

lo
t a

cq
ui

re
d

lo
t s

ea
rc

he
d

lo
t s

ta
tu

s
as

se
ss

ed

lo
t s

el
ec

te
d

lo
t i

nf
o

as
se

ss
ed

so
lic

ito
r

se
le

ct
ed

tr
us

te
d

RE
A

se
le

ct
ed

CE
 s

el
ec

te
d

cr
ed

ib
le

CE
ng

be
st

 lo
ts

cr
ed

ib
le

so
lic

ito
r

In
te

re
st

ed
Pa

rt
y

le
ga

l f
rm

w
pr

ov
id

ed

le
ga

l
fr

am
ew

or
k

lo
t i

nf
o

as
se

ss
ed

So
lic

ito
r

le
ga

l f
ra

m
w

le
ga

l
fr

am
ew

or
k

M
in

is
tr

y
of

La
w

cr
ed

ib
le

 C
E

pr
ov

id
ed

cr
ed

ib
le

CE
ng

CE Ch
am

be
rs

tr
us

te
d

so
ur

ce
s

lo
t

ca
nd

id
a.

..
lo

t r
an

ke
d

tr
us

te
d

RE
A

se
le

ct
ed

lo
t s

ea
rc

he
d RE

A
co

lle
ct

ed
RE

A
 ra

nk
ed tr

us
te

d
RE

A

be
st

 lo
ts

A
gg

re
ga

te
d

RE
A

lo
ca

tio
n

m
ap

 a
dd

ed

m
ap

M
ap

 S
er

vi
ce

Pr
ov

id
er

cr
ed

. s
ol

ic
ito

r
pr

ov
id

ed

cr
ed

ib
le

so
lic

ito
r

So
lic

ito
r

Ch
am

be
rs

lis
t

lis
t

no
t

fil
e

st
ol

en

O
R

A
N

D

 P
ro

du
ce

O
R

A
N

D
A

N
D

A
N

D

 N
ee

d

A
N

D
A

N
D

 N
ee

d

A
N

D

A
N

D

 N
ee

d

A
N

D

 N
ee

d

A
N

D

 N
ee

d

A
N

D

 N
ee

d

 N
ee

d

A
N

D

 N
ee

d

A
N

D

A
N

D

A
N

D
A

N
D

A
N

D

A
N

D

 N
ee

d

 N
ee

d

A
N

D

 N
ee

d

 N
ee

d

A
N

D

 N
ee

d

 P
ro

du
ce

 P
ro

du
ce

 P
ro

du
ce

A
N

D

 N
ee

d

A
N

DA
N

D
A

N
D

 N
ee

d
 P

ro
du

ce

 P
ro

du
ce

 P
ro

du
ce

O
R

O
R

A
N

D
A

N
D

lo
t..

.

N
O

-D
...

A
V

A
IA

A
N

D

 P
ro

du
ce

lo
t i

nf
o

 R
ea

d

A
N

D
A

N
D

A
N

D

A
N

D
A

N
D

A
N

D
A

N
D

A
N

D
A

N
D

tr
us

te
d

A
N

D

A
N

D

se
le

ct
ed

RE
A

 P
ro

du
ce

le
ga

l
fr

am
ew

or
k

 R
ea

d
 R

ea
d

IN
TE

G

le
ga

l
fr

am
ew

or
k

 R
ea

d

le
ga

l
fr

am
ew

or
k

 R
ea

d

A
N

D
A

N
D

N
O

 R
E

cr
ed

ib
le

 C
E

pr
ov

id
ed

 P
ro

du
ce

cr
ed

ib
le

CE
ng

 R
ea

d

cr
ed

ib
le

 R
ea

d

lo
t

 R
ea

d

A
N

D

N
O

 R
E

lo
t

se
ar

ch
ed

 R
ea

d

A
N

D
A

N
D

A
N

D
A

N
D

 P
ro

du
ce

tr

us
te

d
RE

A R
ea

d

 P
ro

du
ce

be
st

 lo
ts

 R
ea

d

lo
ca

ti.
..

N
O

-D
...

be
st

 lo
ts

 R
ea

d

A
N

D

A
N

D

ow
ne

r
pe

rs
on

al
in

fo

C
O

N
F

C
O

N
F

IN
TE

G

IN
TE

G

IN
TE

G
C

O
N

F

IN
TE

G
C

O
N

F

IN
TE

G
 R

ea
d

A
N

D

N
O

 R
E

cr
ed

.
so

lic
ito

r
pr

ov
id

ed

 P
ro

du
ce

cr
ed

ib
le

so
lic

ito
r

 R
ea

d

cr
ed

ib
le

so
lic

ito
r

 R
ea

d

 R
ea

d

 P
ro

du
ce

A
U

TH

lo
t i

nf
o

 T
hr

ea
te

n

 T
hr

ea
te

n

 T
hr

ea
te

n

 T
hr

ea
te

n

no
t

fo
un

d

un
av

ai
l.

as
se

ss
ed

CE
ng

in
fo

se
ar

ch
ed

ow
ne

r
pe

rs
on

al
in

fo

pr
ov

id
ed

tr
us

te
d

se
le

ct
ed

RE
A

is
su

edap
pr

ov
ed

A
U

TH

A
U

TH

 R
ea

d

IN
TE

G
AV

AI
A

AU
TH

A
V

A
IA

A
V

A
IA

A
V

A
IA

A
V

A
IA

N
O

-D
TR

U
S

T F
ig

.1
.L

ot
S

ea
rc

hi
ng

sc
en

ar
io

—
S

oc
ia

lV
ie

w

68 E. Paja, F. Dalpiaz, and P. Giorgini

Actors may possess documents (containing information); they may read, modify, or
produce documents while achieving their goals. For instance, in Fig 1, Real Estate
Agency reads lot info to achieve goal lot record created (the owners personal data are
needed to create the lot record). This document (lot info) is produced by the Lot Owners
while providing lot information (goal lot info provided). Actors can transmit documents
to others only if they possess the required document. For instance, in Fig 1, Lot Owner
is the creator of lot info (i.e., possesses the document) and he transmits this document
to Real Estate Agency.

Modelling threats. In STS-ml we represent events threatening stakeholders’ assets—
informational assets and intentional assets. However, given that in the social view stake-
holders exchange and manipulate information via documents, we model threats over
actors’ documents and goals respectively. STS-ml proposes the concept event and the
relationship threaten relating the event to the asset it threatens. For instance, in Fig. 1,
we represent the events identified to threaten actors’ assets for Example 1. For instance,
event file stolen threatens document credible CE of CE Chambers (see Fig. 2 which
zooms over Fig. 1).

Solicitor
ChambersCE Chambers

credible CE
provided credible solicitor

provided

credible CE
credible
solicitor

List
not found

File stolen

 Produce Produce Produce

 Threaten

Produce

Threaten

Fig. 2. Modelling threats

Information View. This view (Fig. 3) shows how information and documents are in-
terconnected to identify which information actors manipulate, when they read, modify,
produce, or transmit documents to achieve their goals in the social view. Information
can be represented by one or more documents (through Tangible By), and on the other
hand one or more information entities can be made tangible of the same document.

Importantly, this view relates information to their owners through own relationships.
For instance, Lot Owner provides information about the lot, and thus we identify infor-
mation lot info details, which is owned by the Lot Owner himself and is represented
(made tangible) by document lot info (see Fig. 3).

Information view gives a structured representation of actors’ information and docu-
ments via part of relationships. These relationships can result in information hierarchies
(relating information with information) or document hierarchy (relating documents with
documents). This means that such relationship holds only between entities of the same
type, either information or documents. For instance, in Fig. 3, information lot geo loca-
tion is part of information lot info details, while documents trusted REA and best lots
are part of document trusted sources.

The Socio-technical Security Requirements Modelling Language 69

lot info
Owner
Perso...

Low Owner

legal
framework

Ministry of
Law

legal info

list of
credible REA

list of
credible CE

list of
credible sol

lot geo
location

list of lots

list of
selected lot

lot info
details

credible
CEng

CE
Chambers

trusted
sources

trusted REA
best lots

Aggregated
REA

map

Map Service
Provider

credible
solicitor

Solicitor
Chambers

VAT number ID Card
number

 PartOf PartOf

 Tangible By

 Tangible By

 PartOf

 Tangible By
 PartOf

 Tangible By Tangible By

 Tangible By

 PartOf PartOf

 Tangible By

 Tangible By

 Tangible By

 Tangible By

 Own

 Own

 Own

 Own
 Own

 Own

 Own
 Own

 Own

Fig. 3. Lot Searching scenario—Information View

Low Owner

Real Estate
Agency

DoUP
Application

Interested
Party

Solicitor

Ministry of
Law

legal info

list of
credible REA

list of
credible CElist of

credible sol

lot geo
location

list of lots

list of
selected lot

lot info
details

CE
Chambers

Aggregated
REA

Map Service
Provider

Solicitor
Chambers

VAT number
ID Card
number

 PartOf

 PartOf

M P

lot info details lot geo location

lot record created M P

legal info

legal info added

M P

list of credible CE list of credible REA

list of credible sol list of lots

lot acquired

M P

legal info

legal frmw provided

M P

legal info

citizens helped

M P

list of credible REA list of lots

citizens helped

M P

list of credible CE

credible CE provided

M P

list of credible sol

cred. solicitor prov

M P

ID Card number VAT number

lot owner registered

M P

legal info

R

R

R

R

R

R

R

R

R

R

T

T

T

T

T

T

T

T

T

T

 Own

 Own
 Own Own

 Own

 Own

 Own
 Own Own

Fig. 4. Lot Searching scenario—Authorisation View

70 E. Paja, F. Dalpiaz, and P. Giorgini

Authorisation View. STS-ml includes the primitive authorisation, see Fig. 4, to cap-
ture two key concepts in security, namely permissions and prohibitions. The main idea
behind this view, is that actors (typically information owners) may want to specify what
they allow or prohibit others to do over their proprietary information. Following this
intuition, the authorisation relationship in STS-ml is specified over four dimensions:

– Allowed/Prohibited Operations: they define whether the actor is permitted (green
tick symbol) or prohibited (red cross symbol) to Read (R), Modify (M), Produce
(P), and Trasnmit (T) any document that makes tangible the information (opera-
tions are graphically represented in four boxes with distinguishable labels, R, M, P,
and T respectively). For instance, in Fig. 4, the Lot Owner authorises Real Estate
Agency to read, produce, and transmit information lot info details and lot geo loca-
tion. No prohibitions are specified through this authorisation relationship. Instead a
prohibition on modifying information legal info is expressed from the Ministry of
Law to Real Estate Agency.

– Information: authorisation is granted over at least one information entity. Given
the structuring of information in terms of part-of relationships, authorising some
actor over some information means that the actor is authorised over parts of in-
formation as well, because ownership of information propagates top-down through
part-of relationships. The information entities over which authorisation is specified
is represented right below the allowed/prohibited operations.

– Scope of Authorisation: authority over information can be limited to the scope of
a certain goal. As such, scope of authorisation defines the goals for the fulfillment
of which the authorisation is granted. In other words, the authorisation is restricted
to a certain purpose, and does not apply to different purposes. Our notion of goal
scope adopts the definition in [1], which includes the goal tree rooted by that goal.
As a result, if a goal is specified in the scope of authority, authority is given to make
use of the information not only for the specified goal, but also for all its sub-goals.
For instance, in Fig. 4, the Lot Owner authorises Real Estate Agency in the scope
of goal lot record created, not for every goal of Real Estate Agency.

– Transferability of the Permissions: it specifies whether the actor that receives the
authorisation is in turn entitled to transfer the received permissions or specify prohi-
bitions (concerning the received permissions) to other actors. Graphically, transfer-
ability of the authorisation is allowed when the authorisation arrow line connecting
the two actors is solid, while it is not granted when it is dashed. The authorisation
from Lot Owner to Real Estate Agency is a transferable authorisation (continu-
ous/solid arrow line), while the one from DoUP Application to the Interested Party
granting the authority to read information list of credible CE, list of credible REA,
list of credible sol and list of lots for goal lot acquired, is a non-transferrable autho-
risation (dashed arrow line).

2.2 Security Requirements in STS-ml

Through its three views, STS-ml supports different types of security requirements. In
the social view security requirements are specified over the social relationships in which
actors take part, such as goal delegation and document transmission. Moreover, a num-
ber of supported security requirements is imposed by the regulatory framework and

The Socio-technical Security Requirements Modelling Language 71

laws in place, which restrict responsibility uptake and role adoptions. The information
view serves as a brigde between the social and authorisation view, for a richer set of
security requirements. As such, no security requirements are expressed in the informa-
tion view. In the authorisation view, security requirements are expressed through the
authorisation relationships themselves.

The following is the list of security requirements supported by the social view:

1. Over Goal Delegations:
(a) No-redelegation—the re-delegation of the fulfilment of a goal is forbidden; in

Fig. 5 Lot Owner requires the Real Estate Agency not to redelegate the goal lot
record created.

(b) Non-repudiation—the delegator cannot repudiate he/she delegated (non-repudi-
ation of delegation); and the delegatee cannot repudiate he/she accepted the
delegation (non-repudiation of acceptance); for instance, in Example 1, DoUP
Application requires CE Chambers the non-repudiation of the acceptance of
goal credible CE provided, see Fig. 1.

(c) Redundancy—the delegatee has to employ alternative ways of achieving a goal;
We consider two types of redundancy: True and Fallback. True redundancy: at
least two or more different strategies are considered to fulfil the goal, and they
are executed simultaneously to ensure goal fulfillment. Fallback redundancy: a
primary strategy is selected to fulfill the goal, and at the same time a number
of other strategies is considered and maintained as backup to fulfill the goal.
None of the backup strategies is used as long as the first strategy successfully
fulfils the goal. Within these two categories of redundancy, two sub-cases ex-
ist: (i) only one actor employs different strategies to ensure redundancy: single
actor redundancy; and (ii) multiple actors employ different strategies to ensure
redundancy: multi actor redundancy. In total, we can distinguish four types
of redundancy, which are all mutually exclusive, so we can consider them as
four different security requirements, namely, (i) fallback redundancy single,
(ii) fallback redundancy multi, (iii) true redundancy single, and (iv) true re-
dundancy multi. In Fig. 6, Interested Party imposes on the DoUP Application
a true redundancy single security requirement for goal trusted REA selected.

(d) Trustworthiness—the delegation of the goal will take place only if the dele-
gatee is trustworthy; for instance, the delegation of goal trusted REA selected
from Interested Party to DoUP Application will take place only to trustworthy
application providers, see Fig. 5.

(e) Goal Availability—the delegatee should ensure a minim availability level for
the delegated goal; for instance, Lot Owner requires Real Estate Agency 90%
availability for goal lot record created, see Fig. 5.
Note that security requirements over goal delegations are expressed through
annotations over these relationships, graphically represented through a pad-
lock symbol, and made explicitly visible under the goal itself, when selected.
Different labels and colours are used to distinguish them.

2. Over Document Transmissions:
(a) Non-repudiation—the sender cannot repudiate he/she transmitted (non-

repudia- tion of transmission); and the delegatee cannot repudiate he/she re-
ceived (accepted) the transmission (non-repudiation of acceptance);

72 E. Paja, F. Dalpiaz, and P. Giorgini

Lot Owner lot sold

lot sold
privately

lot sold
via agency

lot record
created

lot info
provided

lot price
approved

lot location
defined

lot info

owner
personal info

OR

 Need ANDANDAND

 Need

AND

OR
AND

 Need

ANDAND
OROR

ANDANDANDAND

NO-D AVAIA

AVAIA

lot info

lot record
created

 Read

 Read

 Read

 Read

REA lot record
created

lot info

legal info
added

location
map added

lot record
published

legal
framework

90%

98%

integrity of transmission

no-redelegation

role-sod

goal-cod

receiver INTEG

AUTH

Fig. 5. Capturing security requirements from security needs for REA

(b) Integrity of transmission—the sender should ensure that the document shall
not be altered while transmitting it (sender integrity); the receiver shall ensure
the integrity of transmission for the given document is preserved (receiver in-
tegrity); and the system shall ensure that the integrity of transmission of a doc-
ument in transit is preserved (system integrity). For instance, in Fig. 6, DoUP
Application shall ensure sender integrity on the transmission of document best
lots to Interested Party.

(c) Confidentiality of transmission—the sender should ensure the confidentiality of
transmission for the given document (sender confidentiality); the receiver shall
ensure the confidentiality of transmission for the given document is preserved
(receiver confidentiality); and the system shall ensure that the confidentiality
of transmission of a document in transit is preserved (system confidentiality).
For instance, in Fig. 6, DoUP Application shall ensure sender confidentiality
on the transmission of document credible solicitor to Interested Party.

(d) Document Availability—the sender should ensure a minimal availability level
(in percentage) for the transmitted document. In Fig. 6, DoUP Application
should ensure an availability level of 94% for the document best lots and an
availability level of 90% for the document credible solicitor, when transmit-
ting both these documents to Interested Party.
Note that security requirements over document transmissions are expressed
through annotations over these relationships, graphically represented through
a padlock symbol, and made explicitly visible under the document itself, when
selected. Different labels and colours are used to distinguish the various sup-
ported security requirements over document transmissions.

3. Over responsibility uptake3:
(a) Separation of duties (SoD)—defines incompatible roles and incompatible goals,

so we define two types: role-SoD—two roles are incompatible, i.e., cannot be
played by the same agent, and goal-SoD—two goals shall be achieved by dif-
ferent actors; for instance, the goals lot record published and location map
added are defined as incompatible (unequals sign, see Fig. 5). An example of

3 Imposed either by the rules and regulations of the organisation, or by law.

The Socio-technical Security Requirements Modelling Language 73

Interested
Party

lot acquired

lot searched

lot status
assessed

solicitor
selected CE selected

trusted REA
selected

lot selected lot info
assessed

credible
solicitor

credible
CEng

best lots

DoUP
Application

no-redelegation
trustworthiness

integrity of
transmission

confidentiality of
transmission

90%

94%

integrity of
transmission

goal-cod

receiver

receiver

redundancy

ANDANDANDAND

 Need

 Need

ANDAND Need

AND

 Need

ANDANDANDANDAND

ANDAND

NO-D TRUSTRED

INTEG

AVAIA

CONF

INTEG AVAIA AUTH

AUTH

Read

Read

Read Read

best lots lot searched

trusted REA
selected

credible
CEng

credible
solicitor

Fig. 6. Capturing security requirements from security needs for Interested Party

role-SoD is shown in Fig. 1 among roles CE Chambers and Solicitor Cham-
bers.

(b) Combination of duties (CoD)—defines combinable roles and combinable goals,
so we distinguish between role-CoD—two roles are combinable, i.e., shall be
played by the same agent; and goal-CoD—two goals shall be achieved by the
same actor. For instance, in Fig. 5, there is a goal-CoD expressed among goals
solicitor selected and CE selected of Interested Party. Note that these security
requirements from organisational constraints are captured through a set of re-
lationships, namely incompatible (represented as a circle with the unequal sign
within) and combines (represented as a circle with the equals sign within) re-
spectively. This is related to the fact that they are not directly expressed over a
social relationship, but constrain the uptake of responsibilities of stakeholders.
Both relationships are symmetric, therefore there are no arrows pointing to the
concepts they relate.

Security requirements over authorisations are captured implicitly by prohibiting cer-
tain operations and limiting the scope of the authorisation:

– Limiting the scope of the authorisation expresses a need-to-know security require-
ment, which requires that information is read, modified, produced only for the spec-
ified scope; for instance, Lot Owner authorises DoUP Application to read informa-
tion ID Card number and VAT number only for the purpose of being registered (goal
lot owner registered), expressing a need-to-know security requirement to DoUP
Application, on reading this information only for lot owner registered, see Fig. 4.

– Prohibiting the read operation expresses a non-reading security requirement, which
requires the information is not read in an unauthorised way; it implies that the au-
thorisee should not read any documents making tangible the specified information.
There are no examples of the non-reading security requiremet in Example 1.

– Prohibiting the modify operation expresses a non-modification security requirement,
which requires the information is not modified in an unauthorised way; it implies

74 E. Paja, F. Dalpiaz, and P. Giorgini

that the authorisee should not modify any documents making tangible this informa-
tion. For instance, DoUP Application cannot modify documents representing infor-
mation ID Card number and VAT number, for the authorisation from Lot Owner
grants the right to read information ID Card number and VAT number, but pro-
hibits the right to modify these information entities, see Fig. 4.

– Prohibiting the produce operation expresses a non-production security requirement,
which requires the information is not produced in an unauthorised way; it implies
that no new document, representing the given information, is produced. In Fig. 4,
DoUP Application cannot produce documents that represent information list of
credible solicitors or information list of credible CE, given that the authorisations
from Solicitor Chambers and CE Chambers prohibit the operation to produce the
respective information entities.

– Prohibiting the transmit operation expresses a non-disclosure security requirement,
which requires the information is not disclosed in an unauthorised way; it implies
that no document, representing the given information, is transmitted to other actors.
In Fig. 4, Solicitor cannot transmit documents representing information legal info.

– Setting the transferrability dimension to false expresses a non-reauthorisation se-
curity requirement, which requires the authorisation is not transferrable, i.e., the
authorisee shall not further transfer rights either for operations not granted to him
(implicitly) or when the transferability of the authorisation is set to false (explic-
itly). This means that any non-usage, non-modification, non-production or non-
disclosure security requirement implies a not-reauthorise security requirement for
the operations that are not allowed. An example of explicit non-reauthorisation in
Fig. 4 is expressed by Ministry of Law to the Real Estate Agency, given that the
authorisation coming from the first on information legal info is non-transferable
(dashed arrow line).

3 Security Requirements Specification for Composite Services
with STS-ml

With the help of Example 1, we showed the interactions among the various actors in
the eGovernment Lot searching scenario, in particular the interactions with the DoUP
Application, which is in fact an application that helps citizens making use of a number of
services (services that compose DoUP Application’s main service), such as: providing
the list of credible civil engineers (for which it relies, via a goal delegation, on the CE
Chambers), providing the list of credible solicitors (for which it relies on the Solicitor
Chambers), searching for a lot (for which it relies on the Aggregated REA), etc. In the
same spirit, to offer the best service to citizens, the DoUP Application makes use of
information such as the legal framework (obtained from Solicitor, who received it from
the Ministry of Law).

Notice that the social relationships supported by STS-ml reflect rigorously the
service-oriented paradigm, capturing the interactions among a service consumer and
a service provider via goal delegations and document transmissions. The interaction
between a delegator and a delegatee is similar to that of a service consumer (repre-
sented by the delegator) and a service provider (represented by the delegatee) on con-
suming/furnishing a service (represented by the goal). The same stands for document

The Socio-technical Security Requirements Modelling Language 75

transmissions too, the sender is the service provider, while the receiver is the service
consumer.

Security requirements, on the other hand, reflect the constraints to be integrated and
implemented by service interfaces. Think for instance about non-repudiation. This se-
curity requirements is at the basis of the contracting that occurs among various service
providers: a service provider (acting as a consumer in this case) interacts with another
provider for a particular service. Non-repudiation is required to ensure that collabo-
rating parties are legally bound when an agreement is reached [7]. The satisfaction of
non-repudiation mechanisms such as proof of fulfilment could be employed.

A security requirement for not-redelegation imposes limitations to service providers,
for they are required not to rely on third parties for offering the required services.

Authentication is typically concerned with who exactly is trying to use the ser-
vice [7]. This involves confirming a claim that two references to identities are the same,
for example, that the sender of a message is the same person. In STS-ml, we extend this
to support dual authentication given that any actor could act both as a service consumer
and as a service provider.

Notice that goal availability (similarly document availability) is highly related to the
notion of service availability, where a provider specifies an uptime level for the service.
In service-oriented settings, availability levels often become integral part of service-
level agreements between providers and consumers.

Authorisations capture what service consumers are allowed to do. Typically con-
sumers are permitted to use the requested service, however they cannot read the internal
policies of the service provider.

Similarly, the rest of the supported set of STS-ml security requirements is to be
translated to a service interface specification. But, can these specifications be satisfied
by the said services and their respective providers? We aim at providing an answer to
this question through automated analysis, to avoid inconsistencies and conflicts before
going towards service deployment that might lead to a service not satisfying all security
requirements.

4 Automated Analysis

STS-ml supports different automated analyses types. Firstly, given that we are dealing
with requirements models that tend to become large and complex, an analysis of the
well-formedness is required, to ensure that the created models are syntactically correct,
see Section 4.1. Secondly, we verify whether there are any conflicts among the speci-
fied security requirements that might lead to a composite service not to be able to satisfy
them all at the same time, see Section 4.2. Finally, considering the social and organi-
sational threats affecting either services (represented via goals) or the information they
might need to provide the required functionality (be fulfilled), we calculate the impact
these threats have on the rest of the system, see Section 4.3.

After constructing the STS-ml model for Example 1, we can run the automated anal-
yses to verify its consistency, the satisfaction (or possible violation) of security require-
ments, and the threat propagation over actors’ assets.

76 E. Paja, F. Dalpiaz, and P. Giorgini

4.1 Well-Formedness Analysis

The purpose of this analysis is to verify whether the diagram built by the security
requirements engineer is consistent and valid. It is also referred to as offline well-
formedness analysis: some well-formedness rules of STS-ml are computationally too
expensive for online verification, or their continuous analysis would limit the flexibility
of the modelling activities. Thus, some analyses about well-formedness are performed
upon explicit user request. Examples of verifications include delegation cycles, part-of
cycles, inconsistent or duplicate authorisations, etc. The well-formedness analysis for
the scenario of Example 1 did not find any warnings or errors.

4.2 Security Analysis: Reasoning over Security Requirements

Security analysis is concerned with verifying: (i) if the security requirements speci-
fication is consistent—no requirements are potentially conflicting; (ii) if the STS-ml
model allows the satisfaction of the specified security requirements. Under the hood,
this analysis is implemented in disjunctive Datalog [3] and consists of comparing the
possible actor behaviors that the model describes against the behavior mandated by the
security requirements. Principally, requirements define actions that actors must do (or
must not do). Conflicts are then identified whenever: (i) actors do actions that security
requirements specify they must not do, (ii) actors do not do actions that the security
requirements they should comply with mandate doing.

Fig. 7. Executing security analysis: visualisation of results

The security analysis found several violations (errors) of the specified security re-
quirements, such as for instance the violation of non-production by the Map Service
Provider. As it can be seen by the diagram in Fig. 4 showing authorisation relations,
there is no authorisation relationship towards Map Service Provider on information lot
geo location which, following the semantics of STS-ml, is translated into an authorisa-
tion from the owner of this information, namely Lot Owner, prohibiting all operations
over this information. This means that the Map Service Provider is required all security

The Socio-technical Security Requirements Modelling Language 77

requirements derived from an authorisation relationship over the given information (i.e.,
non-reading, non-modification, non-production, non-disclosure, not-reauthorisation).
But, from Fig. 1, we see that Map Service Provider can produce lot geo location since
there is a produce relationship from its goal location map added towards document map
representing (making tangible) information lot geo location, owned by the Lot Owner
who requires non-production of this information. Thus, we identify a conflict that re-
sults in the violation of the non-production security requirement.

Similarly, there is a possible violation of a combination of duties between the goals
lot price approved and lot location defined of Lot Owner. A combination of duties re-
quires that the same actor pursues both goals, but there is no single actor achieving
both these goals, see Fig. 7. However, this could change during runtime, and is to be
verified through monitoring techniques. At the design level, we verify throughout the
models whether any strategies are undertaken to fulfil the imposed security requirement.
Therefore, this conflict is considered a warning, differently from the previous one which
is considered an error. Warnings may be skipped, while errors need to be resolved be-
fore implementation. Resolution techniques might, however, require negotiation among
service consumers and providers, as well as trade-off analysis [4].

4.3 Threat Analysis

Threat analysis is concerned with calculating the propagation of threatening events over
actors’ assets. It answers the question: “How does the specification of events threatening
actors’ assets affect their other assets?”

We consider the threats shown in Fig. 2 and calculate their impact. We present the
results of this analysis for the event list not found threatening goal credible solicitor
provided in Fig. 8.

credible CE

credible
solicitor

credible
solicitor

trusted REA
selected

lot searched

credible
solicitor
provided

credible
solicitor
provided

credible CE
provided

citizens
helped

best lots

Solicitor
Chambers

DoUP
Application

list not found

ANDAND
 Produce

AND

NO RE

 credible
solicitor

Read

Read
ReadRead

Reads

Produce

Threaten

credible
solicitor
provided

trusted REA

Fig. 8. Executing threat analysis

Considering the results of the threat analysis, we may need to consider a service re-
composition, which does not account on Solicitor Chambers for offering service cred-
ible solicitor provided, since from our information on this provider there are no other
alternatives to provide the said service.

78 E. Paja, F. Dalpiaz, and P. Giorgini

5 Conclusions

We discussed the need for early awareness and analysis of security issues (require-
ments) compositive services should take into account already at design time, before
they are implemented.

We presented STS-ml, a security requirements modelling language that relates se-
curity to interaction, which makes it suitable to identify security problematics strongly
related to the interactions among service consumers and service providers.

We demonstrated how the reasoning techniques offered by STS-ml help designers
identify possible conflicts and violations of security requirements for composite ser-
vices. In particular, social threats putting at risk the well-functioning of the composite
service are considered, together with the impact they have on the rest of the system.

References

1. Dalpiaz, F., Chopra, A.K., Giorgini, P., Mylopoulos, J.: Adaptation in open systems: Giving
interaction its rightful place. In: Parsons, J., Saeki, M., Shoval, P., Woo, C., Wand, Y. (eds.)
ER 2010. LNCS, vol. 6412, pp. 31–45. Springer, Heidelberg (2010)

2. Dalpiaz, F., Paja, E., Giorgini, P.: Security requirements engineering via commitments. In:
Proceedings of STAST 2011, pp. 1–8 (2011)

3. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive datalog. ACM Transactions on Database Sys-
tems (TODS) 22(3), 364–418 (1997)

4. Elahi, G., Yu, E.: A Goal Oriented Approach for Modeling and Analyzing Security Trade-Offs.
In: Parent, C., Schewe, K.-D., Storey, V.C., Thalheim, B. (eds.) ER 2007. LNCS, vol. 4801,
pp. 375–390. Springer, Heidelberg (2007)

5. Giorgini, P., Massacci, F., Mylopoulos, J., Zannone, N.: Modeling security requirements
through ownership, permission and delegation. In: Proc. of RE 2005, pp. 167–176 (2005)

6. Singh, M.P.: An ontology for commitments in multiagent systems: Toward a unification of
normative concepts. Artificial Intelligence and Law 7(1), 97–113 (1999)

7. Singh, M.P., Huhns, M.N.: Service-Oriented Computing: Semantics, Processes, Agents. John
Wiley & Sons, Chichester (2005)

8. Trösterer, S., Beck, E., Dalpiaz, F., Paja, E., Giorgini, P., Tscheligi, M.: Formative user-
centered evaluation of security modeling: Results from a case study. International Journal
of Secure Software Engineering 3(1), 1–19 (2012)

9. Yu, E.: Modelling strategic relationships for process reengineering. PhD thesis, University of
Toronto, Canada (1996)

From Consumer Requirements

to Policies in Secure Services

Erkuden Rios1, Francesco Malmignati2, Eider Iturbe1,
Michela D’Errico2, and Mattia Salnitri3

1 TECNALIA Research and Innovation,
Parque Tecnológico de Bizkaia 700, Derio, Spain

2 SELEX, Selex ES S.p.A, A Finmeccanica Company,
via Laurentina 760, 00143, Rome, Italy

3 UNITN, University of Trento, via Belenzani 12, 38122, Trento, Italy

Abstract. Automatic translation of elicited consumer security require-
ments at high level (problem space) into application or service level se-
curity requirements (solution space) has been traditionally the Achilles’
heel of security requirements engineering. Such automated translation
would result in significant failure and cost reduction in application de-
velopment and maintenance, particularly in those complex applications
based on compositions and choreographies of services. In this paper we
present a framework which makes a step forward to solve this dilemma.
The framework supports the engineering of composite service security
and trust requirements directly derived from the organisational needs
expressed for such service. The followed approach starts with the mod-
elling of organisation actors’ objectives and commitments among these
actors, and follows with the transformation of such commitments into
security elements in the service business process specification and into
a consumer security policy which the service will need to be compliant
with.

Keywords: security, requirements, transformation, service composition,
BPMN, consumer policy.

1 Introduction

The alignment of organizational requirements with requirements for a software
architecture is a well known problem in requirements engineering [23,27]. This
alignment is essential to keep architectures satisfy requirements when they evolve,
and is particularly important for embedding and tracking security requirements
compliance in the application lifetime.

The existing goal-based modelling languages as Tropos [4], Secure Tropos [15]
and SI* [12] are adequate to consider organizational (business) requirements in
Socio Technical Systems (STSs) [13].

The abstract level used in such languages for expressing the requirements is
not suitable for expressing implementation level security requirements of loosely

A.D. Brucker et al. (Eds.): Secure Service Composition, LNCS 8900, pp. 79–94, 2014.
c© Springer International Publishing Switzerland 2014

80 E. Rios et al.

coupled service based applications. These Service-Oriented Applications (SOA)
are usually described using business process modelling languages, such as Busi-
ness Process Model and Notation (BPMN) [19]. Our work considers a BPMN
extension that allows the incorporation of security requirements into a business
process. Rodriguez et al. [26], in 2007, introduced a BPMN extension for the
inclusion of five different security requirements: non-repudiation, attack harm
detection, integrity, privacy and access control. In 2011, Mulle et al. [16] pro-
posed a language for the formulation of security constraints embedded in BPMN.
In all these approaches the security requirements are incorporated into a BPMN
process from the perspective of a business process analyst and there is not much
rationale about where these requirements were originated from.

To tackle the problem of high level and low level security requirements mis-
alignment, as part of the work in the Aniketos project [2] we have developed a
framework to analyse and capture security needs from the organizational point
of view and derive application or service level security and trust requirements
through the use of a model transformation tool. This transformation tool of-
fers two main transformations: (i) from organizational security requirements to
service level requirements as BPMN extensions, and (ii) from socio-technical se-
curity requirements to consumer policies in ConSpec [1] format. Therefore, the
tool allows also the alignment with machine readable consumer policies which
compliance can be verified at run-time.

The chapter structure is as follows. Section 2 introduces our modelling frame-
work. First, in subsection 2.1, we explain the modelling of socio-technical security
requirements at organizational level, which will be the input for the transforma-
tions. Then, we describe the modelling of the two outputs: section 2.2 for service
BPMN level security extensions and section 2.3 for consumer security policies
specification. Section 3 shows our approach for transforming security require-
ments specified as commitments into BPMN elements. Section 4 explains how
commitments are transformed to composable consumer security policies. Finally,
Section 5 concludes with main remarks and discussion about our contribution
compared to related work.

2 A Framework for Modelling Security Requirements
and Contracts

2.1 Modelling of Socio-technical Security Requirements

The initial step of our framework for modelling service security requirements and
contracts, is the use of the Socio-Technical Security modelling language (STS-ml)
[7] (see chapter 5) to analyse and model the consumer organization needs, and
express them in terms social interactions among the involved stakeholders. This
will serve to derive business security requirements in the form of commitments
reached among the participants for the achievement of their goals.

The STS-ml is a goal based security requirements engineering language. It al-
lows characterising organizational security requirements of Socio-Technical

From Consumer Requirements to Policies in Secure Services 81

Systems (STSs): information systems that involve complex interactions among
humans, technological components and the environment [3,9]. In STSs actors
are autonomous entities that interact and collaborate with each other in order
to reach common objectives. Examples of STSs are health care systems, smart
cities/homes, air traffic management systems, eCommerce and eGovernment ap-
plications, etc.

STS-ml adopts a multi-view modelling approach to characterise the different
perspectives of an organizational setting and therefore it supports the multi
faceted analysis of a business. The three views are: social view, information
view and authorization view. Figure 1 shows an excerpt of a case study of a
telecommunication company where two actors, the Store locator and the Map
provider, interact in order to find the closest shops in a given area.

The social view represents actors as intentional social entities [20], which
strategic interests are called goals. Every goal can be decomposed in sub-goals
which, if achieved, contribute in achieving the top goal. There are two types of
decompositions, AND-decomposition and OR-decomposition. The former means
that all sub-goals must be achieved in order to achieve the top goal, while the
latter means that the top goal is achieved if at least one of the sub-goals is
achieved. For example, the actor Store locator has one top goal called Closest
stores found which is AND-decomposed in two sub-goals called Map created and
Location retrieved. Consequently, both sub-goals must be achieved in order to
achieve the top goal. The goal Location retrieved is marked with a capability
tick which means that the actor is able to individually achieve the goal.

In STS-ml models, actors can be agents or roles. Agents represent actual
participants at runtime while roles represent abstract participants, when the
specific participant is unknown. This avoids mandating the existence of specific
agents, but specifying the business at role level, which can later be played by
concrete agents. In the example showed in Figure 1, Store locator is an concrete
agent while Map provider is a role, so it can be played by unspecified agents.

In social view goals are linked to documents which represent physical objects
that actors may Need (read), Modify, or Produce (create from scratch) in order
to achieve their goals.

The interactions among actors are represented in social view as delegation
of goals (a delegator actor transfers the responsibility of goal achievement to
another actor) and provision of documents (a delegator actor transfers a docu-
ment to another actor). In the example of Figure 1 the Store locator delegates to
the Map provider the goal Map created, and the Store locator provides to Map
provider the document Position needed to achieve the goal Map created .

The information view represents the ownership and structure of the re-
sources involved in the business under study. A piece of information is owned
by one actor (represented with a double arrow) and is made tangible by one
or more documents (represented with Tangible by arrow), as shown in Figure 1
(this relation is represented with an arrow labelled).

The authorization view represents how authorizations over the resources
are granted to actors. An authorization relation expresses the permissions an

82 E. Rios et al.

Fig. 1. Example STS-ml model

actor allows to another actor over particular resources and it specifies: (i) the
set of operations granted, i.e., use, modify, produce and distribution (represented
with marked U,M,P or D letters in the authorization arrow); (ii) the set of
information for which the authorization is granted, represented in the upper box
of the authorization arrow; (iii) the set of objectives for which is legal to use
the information, represented in the lower box of the authorization arrow. For
example in Figure 1 the Store locator authorize the Map provider to use the
information Coordinates for achieving the goal Map created.

From Consumer Requirements to Policies in Secure Services 83

STS-ml can represent a number of security requirements such as Separation
of Duty [23], Trustworthiness, Integrity of transmission and Confidentiality of
transmission. All these security requirements can be expressed in the social view.
In this chapter we focus only in the last three.

Trustworthiness is something that can be computed, measured or cogni-
tively estimated in order to evaluate to what degree an entity should be trusted.
Trustworthiness is associated to metrics, measuring one or a set of properties [25].
In STS-ml trustworthiness is represented with a TRUST tag attached to a goal
delegation. Figure 1 shows an example of trustworthiness requirement modelled
using STS-ml. The TRUST tag attached to the delegation of the goal Map cre-
ated means that the Store locator may delegate the goal Map created to Map
provider only if the actor who plays the Map provider role has a trustworthiness
level higher than a value specified by the designer.

Integrity of transmission concerns the protection of information that is ex-
changed either from unauthorized writing or inadvertent corruption. Integrity
refers to the assurance that exchanged information has not been altered [18]. In
STS-ml the Integrity is represented with an INTEG tag attached to document
provision relationship. In the example in Figure 1, the INTEG tag attached to
the provision of Position document means that the Store locator is responsi-
ble for providing the document to Map provider without any modification by
unauthorized users.

Confidentiality of transmission concerns the protection of documents dur-
ing their provision: the document must not be accessed by unauthorized stake-
holders. In STS-ml this security requirement is represented with the CONF tag
associated to document provision. In the example in Figure 1 the confidentiality
requirement is modelled on the provision of document Position, meaning that,
during the document transmission, only authorized actors, in this case only Map
provider, are allowed to access it.

Once the social interactions of the organization participants are modelled in
STS-ml, the security requirements are derived in the form of social commitments.
Social commitments express the promises taken by the actors when a security
need is specified over their interaction. The commitments are expressed as a
ternary relation C(x,y,p), where a debtor actor x commits to a creditor actor y
that p will be brought about. In STS-ml the p is about the satisfaction of se-
curity requirements. An example of commitment is the one generated from the
security requirements of integrity on the document Position:

C(Store locator,Map provider, integrity(Position))

which means that the Store locator commits to the Map provider to guarantee
the integrity of the provided document Position.

STS-ml is supported by a modelling and analysis support tool called STS-tool
(see chapter 7). It has been developed as an Eclipse Rich Client Platform appli-
cation written in Java, distributed for multiple platforms (Win 32/64, Linux and
Mac OS X), and it is freely available for download from http://www.sts-tool.eu
[21]. Besides model well-formedness analysis, the STS-tool supports the designer

84 E. Rios et al.

with security analysis to verify the satisfaction or violation of the security needs
specified in the STS-ml models [21].

STS-tool offers the possibility to export commitments in a machine-readable
Security Requirement Specification (SRS) in Extensible Markup Language
(XML) format, which will be used by the transformation module to generate
service level security requirements and policies.

2.2 Modelling Security Properties in BPMN with Aniketos
Extensions

The Aniketos Service Composition Framework (SCF) (see chapter 9) allows a
service designer to create a business process specification that represents a com-
posite service along with a set of security properties (Integrity, Confidentiality,
Trustworthiness, Separation of Duty [6] and Binding of Duty [6]) that the gen-
erated service needs to be compliant with.

The Service Composition Framework has been developed as an Eclipse RCP
application and is based on Activiti Designer which is an Eclipse plugin that
allows the modelling of BPMN 2.0 processes. Since BPMN 2.0 does not support
naturally the definition of the security properties, we have defined the Security
Extended BPMN which extends the original BPMN 2.0 model with security and
trust properties.

By exploiting the SCF workbench a service designer creates the composite
service following desired functional requirements. The result is a composition
plan which is the BPMN process modelling the execution of the atomic services
involved into the composition. The atomic services, modelled in BPMN as service
tasks, are bound to web services by performing service discovery in an external
service marketplace.

Considering that the Trustworthiness level of a service, which denotes to what
degree the service can be trusted, can be evaluated over a set of properties such as
the reputation of the service provider and that it can be expressed as a numerical
value, a service designer can desire to bind to a service task only the web services
having a certain level of Trustworthiness. To support the specification of this
property the BPMN 2.0 XML specification has been extended by adding a new
tag element called security into the service task tag element and by adding a
new Trustworthiness tag element inside the security tag element.

The requirement of a Trustworthiness threshold of 99 is then specified as
follows:

<serviceTask id="servicetask1" name="Service Task">
<extensionElements>

<aniketos:security>
<aniketos:trustworthiness value="99"/>

</aniketos:security>
</extensionElements>

</serviceTask>

From Consumer Requirements to Policies in Secure Services 85

The service designer may also want to specify the Integrity property between
two atomic services linked through a BPMN sequence flow. The objective of
Integrity property is to allow a service A being sure about the integrity of the
data received from the service B. The fulfilment of this property requires that
the service B, linked to the service A through the sequence flow, implements a
mechanism enabling the interested party to perform an integrity check. Through
the user interface of the SCF the designer can further specify the requirements
for the implementation of the Integrity property. By selecting the service task
element in the BPMN model the designer has to enter the type of the integrity
mechanism (Message Integrity Code for example) and the specific algorithm to
be used to implement the mechanism.

The requirement that the data sent by servicetask1 to servicetask2 need to
be checked with MIC and algorithm SHA1 is specified as follows:

<serviceTask id="servicetask1" name="Service Task">
<extensionElements>

<aniketos:security>
<aniketos:integrity type="MIC" with="servicetask2"

algorithm="SHA1"/>
</aniketos:security>

</extensionElements>
</serviceTask>

The framework also allows the designer to specify Confidentiality property
if the communication among the services is required to be kept confidential.
The fulfilment of Confidentiality property will be achieved by applying cryp-
tography at message level. This choice is reflected in the possibility offered to
the designer who can decide to cipher the input, the output or both data. To
complete the Confidentiality property specification the designer has to select
the desired strength for the encryption mechanism (low, medium, high) which
will be translated in the application of a suitable encryption algorithm and key
length.

The requirement that the data sent by servicetask1 need to be cipherred with
algorithm RSA and key length of 128 bits is specified as follows:

<serviceTask id="servicetask1" name="Service Task">
<extensionElements>

<aniketos:security>
<aniketos:confidentiality type="output"

algorithm="RSA128"/>
</aniketos:security>

</extensionElements>
</serviceTask>

2.3 Modelling of Security Policies

Modelling security properties in consumer policies requires a deontic contract
language [1] which enables software applications to parse and process contract

86 E. Rios et al.

obligations to determine state information about matters governed by the con-
tract. This way, the modelled security policies allow verifying compliance of
service execution. In Aniketos we address this need with ConSpec, a policy
language that serves to describe both (composite) consumer policies and ser-
vice agreement templates or contracts. For example, in [8] mobile application
contracts were specified using ConSpec. For our approach, the main feature of
ConSpec is its support to formal proofs of policy adherence.

ConSpec was developed mainly for mobile code (e.g., Java mobile) execution
verification and it is an automata-based language inspired by the policy specifi-
cation language PSLang [11]. Conspec is specific for expressing security relevant
behaviour of the systems, and although more restricted than PSLang, it is ex-
pressive enough to define policies that apply to multiple executions of a service
as well as interactions with other services.

The formal specification of ConSpec encodes a security automaton represent-
ing the contract that shall be guaranteed by the service or the policy that is
desired by the consumer. We assume that the consumer security policy is built
upon non-interleaving rules (expressed in ConSpec) that concern different mat-
ters (e.g., connections or files). This way, the rules can be verified separately,
which simplifies the monitoring of the policy compliance. Each rule consists of
three parts: Scope definition, Security state declaration, and Event clauses.

The policy starts with the definition of the limit on values of the type int and
the maximum length of strings. And then the Security state specifies the initial
values of the set of variables which ensure a safe state.

The Scope allows expressing security requirements on single or multiple ex-
ecutions of the same application (scope Session or Multisession, respectively),
on executions of all applications of a system (scope Global) and on lifetimes of
objects of a certain class (scope Object).

The Scope declaration is followed by a list of security relevant events. An
Event clause describes a security relevant action (i.e. a method invocation) and
its modifier (BEFORE, EXCEPTIONAL, AFTER). That is, the Event clause
specifies under which conditions and how the security state variables should be
updated in case the event is detected in the current state.

MAXINT m
MAXLEN n
SCOPE <Object ClassName | Session | Global | MultiSession>
SECURITY STATE

<bool | int | string> SecVarName1 = <InitValue1>
...
<bool | int | string> SecVarNameN = <InitValueN>

<BEFORE | EXCEPTIONAL | AFTER> EVENT MethodSignature1 PERFORM
condition1 -> updateBlock1
...
conditionM -> updateBlockM

[ELSE -> updateBlock]
...

<BEFORE | EXCEPTIONAL | AFTER> EVENT MethodSignatureK PERFORM
...

From Consumer Requirements to Policies in Secure Services 87

3 Transforming SRS to Security Properties in Service
BPMN Process

The Model Transformation Module (MTM) is the responsible module for con-
necting the high-level (business) requirements with the low-level security require-
ments for the implementation of the composite services and their correspondent
contracts. Thus, the aim of the MTM is to connect two spaces: (1) the problem
space, where the organizational security and trust requirements are defined in
the STS model, and (2) the solution space, where they are transformed into
security and trust properties to be included in the business process specification
as well as in the consumer policy.

The tool has been developed as an Eclipse plugin that integrates with the
SCF. The MTM transformations are based on GEMDE [17], a generic executable
framework for Model Driven Engineering. GEMDE serves for both model cor-
rectness verification and model transformation rules definition and execution.

Fig. 2. Transformation of SRS model with Model Transformation Module

As shown in Figure 2, the input for the MTM is the Security Requirements
Specification (SRS), which describes the list of security requirements, expressed
as commitments, needed by the organisation stakeholders. During the trans-
formation process, the MTM first identifies the SRS elements (socio-technical
actors, assets and goals) to be mapped into elements of the business process.
The next step is to transform as much as possible these elements into business
process level elements. In order to connect both dimensions, the MTM needs
the service developer involvement during the transformation process. Therefore,
the MTM provides a GUI for the service developer to support him or her in

88 E. Rios et al.

the mapping between both spaces. Finally, as a result of the transformation,
the MTM generates a skeleton of the business process model of the composite
service in BPMN 2.01 [19].

The MTM identifies the elements from the SRS to be transformed during the
mapping process: the core elements (the organizational actors, their goals, and
the documents involved in the commitments) and the security requirements such
as Trustworthiness and Integrity of transmission.

We use the mapping proposed by Salnitri et al.[23], to link STS-ml elements
with core BPMN elements. The actors’ goals are mapped to tasks at business
process level. The actors, both the agents and the roles, included in the security
commitments are mapped to task performers. And the documents are linked to
variables of the tasks. The table 2 shows the relationship between the SRS core
elements and the business process elements.

Table 1. Mapping between the SRS core elements and the BPPMN 2.0 elements

SRS core element Relationship Mapping type BPMN 2.0 element

Goal 1..* -> 1 Relates-to Task
Actor (agent or role) 1 -> 1..* Plays / is-a Performer
Document 1 -> 1..* Represents Variable

In order to transform both actors and documents into business process ele-
ments, performers and variables related to service tasks, the BPMN 2.0 model
has to be extended using the Extension elements feature provided by Activiti’s
BPMN model.

Once the core elements are mapped, the MTM transforms with the aid of the
developer the high-level security requirements. In order to perform this step, the
MTM uses the Security Extended BPMN model (Section 2.2).

Figure 3 shows the result of the transformation using the MTM (integrated
in the SCF) of the STS-ml model example in Figure 1. The aim of the gen-
erated composite service is to find the closest stores in a given area; the first
service, called Get list of stores, returns the list of the closest stores taking as
input the actual position of the user invoking the composite service; the second
service, called Create Map, creates a map containing the previously obtained list
of closest stores.

The MTM currently allows the transformation of the following security and
trust properties: Trustworthiness, Integrity, Confidentiality, Separation of Duty
[6] and Binding of Duty [6]. In the following, the first three transformations are
explained.

1 The BPMN 2.0 specification used by the MTM to generate the service specification
can be found in http://www.activiti.org

http://www.activiti.org

From Consumer Requirements to Policies in Secure Services 89

Fig. 3. Example of a transformed BPMN process

Table 2. Example of the mapping between the SRS core elements and the BPPMN
2.0 elements

SRS core element Relationship Mapping type BPMN 2.0 element

Closes Stores found 1 -> 1 Relates-to Get list of stores (Service task)
Map created 1 -> 1 Relates-to Create map (Service task)
Store locator 1 -> 1 Plays / is-a StoreLocatorProviderName (Performer)
Map provider 1 -> 1 Plays / is-a MapProviderName (Performer)
Position 1 -> 1 Represents List of stores (Variable)

The commitment related to the Trustworthiness property is expressed as
follows:

C(Store locator, Store locator, delegatedTo(Map provider, trustworthiness level 99),

true)

The MTM translates this trustworthiness requirement in SRS into an element
defined in Security Extended BPMN metamodel associated with a service task:

<serviceTask id="Create map" name="Service Task">
<extensionElements>

<activiti:field name="ServiceProvider">
<activiti:string/>MapProvider</activiti:string/>

</activiti:field>
<aniketos:security>

<aniketos:trustworthiness value="99"/>
</aniketos:security>

</extensionElements>
</serviceTask>

The commitment related to the Integrity of transmission property is expressed
as follows:

C(Store locator, Map provider, integrity(provided(Map provider, Store locator,

Position)), true)

90 E. Rios et al.

The integrity in Security Extended BPMN is defined as a relationship between
two service tasks: the transmitter service task (Get list of stores in the example
above) and the recipient service task (Create map). The List of stores is an
output variable (that contains the position) of the transmitter for which integrity
should be maintained when this variable is passed as input to the recipient task.
The MTM translates the integrity requirement as follows:

<serviceTask id="Get list of stores" name="Service Task"

activiti:class="org.aniketos.runtime.AniketosClientDelegation">
<extensionElements>

<activiti:field name="ServiceProvider">
<activiti:string/>StoreLocatorProvider</activiti:string/>

</activiti:field>
<activiti:field name="resultVariable">

<activiti:string>List of stores</activiti:string>
</activiti:field>
<aniketos:security>

<aniketos:integrity type="MIC" with="Create map"

algorithm="AES"/>
</aniketos:security>

</extensionElements>
</serviceTask>

The commitment related to the Integrity property is expressed as follows:

C(Store locator, Map provider, confidentiality(provided(Map provider, Store locator,

Position)), true)

Following the specification of the Security Extended BPMN explained in Sec-
tion 2.2 the confidentiality property is translated as follows:

<serviceTask id="Get list of stores" name="Service Task"

activiti:class="org.aniketos.runtime.AniketosClientDelegation">
<extensionElements>

<activiti:field name="ServiceProvider">
<activiti:string/>StoreLocatorProvider</activiti:string/>

</activiti:field>
<activiti:field name="resultVariable">

<activiti:string>List of stores</activiti:string>
</activiti:field>
<aniketos:security>

<aniketos:confidentiality type="output"

algorithm="RSA128"/>
</aniketos:security>

</extensionElements>
</serviceTask>

From Consumer Requirements to Policies in Secure Services 91

4 Transforming SRS to Consumer Security Policies

As previously mentioned, in addition to transforming the organizational security
requirements (SRS) into security elements of a business process specification,
the MTM is in charge of transforming consumer needs into security properties
for the consumer policy. The generated consumer security policies are machine-
readable and are expressed in the same format used for the definition of the
service security agreement templates (which describe the offered set of security
properties of the service) and the service security contracts themselves. This
allows both the creation of the security agreement template and the automatic
matching of the policy with the contract for run-time monitoring of the policy
compliance.

Once the MTM has transformed the security requirements into security el-
ements at business process level using the Security Extended BPMN 2.0, the
MTM can further translate the service specification into a service consumer
security policy, written in Conspec language (see Figure 2).

In a similar way as the previous transformation, the MTM provides a user-
friendly GUI to the service developer to perform this transformation. For each
security requirement specified in the SRS (Trustworthiness, Non-repudiation,
Integrity, etc.) the MTM offers a policy pattern automatically fulfilled as much as
possible with the already transformed security elements in the business process.
As a result, the MTM generates a draft of the consumer security policy that can
be finalised by the developer with an editor integrated in the SCF. The MTM
sets also default values for the limits for int and string types and the initial
values of the variables in the Security State. The developer can edit the policy
and modify these values or add more variables or Event clauses, if needed. At
all times, the MTM guides the developer in what information is missing for the
policy to be complete enough. The Aniketos SCF offers an integrated ConSpec
editor in order to facilitate the edition of the ConSpec policies.

The result of the transformation of Trustworthiness and Integrity properties
of our example are shown below.

RULE Trustworthiness

MAXINT 32000

MAXLEN 1000

SCOPE Session

SECURITY STATE

string guardedTask = Create map;

BEFORE v#activity.start(string id, string name, string type, int time,

int date, string exec) PERFORM

i#Trustworthiness(id)<99 && guardedTask==name -> skip

!(guardedTask==name) -> skip

RULE Integrity

MAXINT 32000

MAXLEN 1000

SCOPE Session

SECURITY STATE

92 E. Rios et al.

string hash = ;

string guardedSender = StoreLocatorProvider;

string processingService = Create map;

string generatingService = Get list of stores;

BEFORE v#activity.end(string id, string name,string type, int time,

int date, string exec, string output) PERFORM

exec == guardedSender && generatingService==name ->
hash = s#SHA1Hash(output);

!(exec == guardedSender) ||!(generatingService==name) -> skip

BEFORE v#activity.start(string id, string name, string type, int time,

int date, string exec, string input) PERFORM

name == processingService && hash == s#SHA1Hash(input) -> skip

!(name == processingService) -> skip

5 Conclusions

There exist a number of approaches that address the extension of BPMN with
annotations to specify security requirements [22] [14] [5]. However, these ap-
proaches do not put the focus on the roots in the consumer needs that such
security requirements have or in the automatic mapping of such service level
requirements with elicited socio-technical security requirements at high level.

In this chapter we presented our framework for building secure and trustwor-
thy composite services, which really puts the focus in the alignment between the
modelled security requirements at organizational level and the security require-
ments at service level, as well as the corresponding service policies.

The framework starts with the analysis and modelling of organization par-
ticipants’ objectives and their relationships in the achievement of such business
goals. The social commitments in such interactions are gathered in a Security
Requirements Specification that is automatically transformed into trust and se-
curity information added to the service low level specification, as well as into
consumer security policy. This allows the three perspectives being continuously
aligned, and eases the end-to-end development and maintenance of compliant
secure and trustworthy service compositions.

When the considered organisation stakeholders change their security needs, or
when the considered scope for the requirements analysis is broadened to include
more stakeholders, changes in the social, resource, and authorisation views of the
corresponding STS-ml model are triggered. Since our SRS is derived from the
STS-ml model, this results in an evolution of the SRS. In particular, differences
in the SRS may be due to a different set of commitments or/and differences in
the involved information resources relationships. In order to keep the consumer
needs in SRS aligned with security elements in service specification, our approach
is complemented with the Security Requirements Compliance Module (SRCM)
of Aniketos which is in charge of verifying the compliance of an existing Security
Extended BPMN with respect to the requirements in the SRS. In cases when the
compliance does not keep, the developer can execute again the MTM in order
to perform a new transformation.

From Consumer Requirements to Policies in Secure Services 93

The lines of future work include the extension of our framework with other
socio-technical requirements, for example those related to time constraints (data
retention, etc.), as well as the automatic transformation of task execution flows.

Moreover, we are interested in enriching our framework with cloud relevant
security and trust properties (data location, accountability, etc.) [10] and cloud
contract compliance monitoring techniques through the use of formal verification
of ConSpec policies at runtime.

References

1. Aktug, I., Naliuka, K.: ConSpec — a formal language for policy specification.
Electronic Notes in Theoretical Computer Science 197(1), 45–58 (2008)

2. Aniketos Website, http://www.aniketos.eu
3. Baxter, G., Sommerville, I.: Socio-technical systems: From design methods to sys-
tems engineering. Interacting with Computers 23(1), 4–17 (2011)

4. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An
agent-oriented software development methodology. Autonomous Agents and Multi-
Agent Systems 8(3), 203–236 (2004)

5. Brucker, A.D., Hang, I., Lückemeyer, G., Ruparel, R.: SecureBPMN: Modeling and
enforcing access control requirements in business processes. In: Proceedings of the
17th ACM symposium on Access Control Models and Technologies, pp. 123–126.
ACM (June 2012)

6. Brucker, A.D., Malmignati, F., Merabti, M., Shi, Q., Zhou, B.: A Framework for
Secure Service Composition. In: International Conference on Information Privacy,
Security, Risk and Trust (PASSAT), pp. 1–6. IEEE (September 2013)

7. Dalpiaz, F., Paja, E., Giorgini, P.: Security requirements engineering via commit-
ments. In: 2011 1st Workshop on Socio-Technical Aspects in Security and Trust
(STAST), pp. 1–8 (September 2011)

8. Dragoni, N., Massacci, F., Naliuka, K., Siahaan, I.: Security-by-contract: Toward a
semantics for digital signatures on mobile code. In: López, J., Samarati, P., Ferrer,
J.L. (eds.) EuroPKI 2007. LNCS, vol. 4582, pp. 297–312. Springer, Heidelberg
(2007)

9. Emery, F.E., Trist, E.L.: Socio-Technical Systems. Management Science, Models
and Techniques 2, 83–97 (1960)

10. ENISA. Procure Secure: A guide to monitoring of security service levels in cloud
contracts (April 2012),
http://www.enisa.europa.eu/activities/Resilience-and-CIIP/

cloud-computing/procure-secure-a-guide-to-monitoring-

of-security-service-levels-in-cloud-contracts

(Cited on September 10, 2013)
11. Erlingsson, U.: The inlined reference monitor approach to security policy enforce-

ment. Cornell University (2003)
12. Giorgini, P., Massacci, F., Mylopoulos, J., Zannone, N.: Modeling security require-

ments through ownership, permission and delegation. In: Proceedings of the 13th
IEEE International Conference on Requirements Engineering, pp. 167–176. IEEE
(August 2005)

13. Trist, E.L.: On socio-technical systems. Sociotechnical systems: A sourcebook,
43-57 (1978)

http://www.aniketos.eu
http://www.enisa.europa.eu/activities/Resilience-and-CIIP/cloud-computing/procure-secure-a-guide-to-monitoring-of-security-service-levels-in-cloud-contracts
http://www.enisa.europa.eu/activities/Resilience-and-CIIP/cloud-computing/procure-secure-a-guide-to-monitoring-of-security-service-levels-in-cloud-contracts
http://www.enisa.europa.eu/activities/Resilience-and-CIIP/cloud-computing/procure-secure-a-guide-to-monitoring-of-security-service-levels-in-cloud-contracts

94 E. Rios et al.

14. Menzel, M., Thomas, I., Meinel, C.: Security requirements specification in service-
oriented business process management. In: International Conference on Availabil-
ity, Reliability and Security, ARES 2009, pp. 41–48. IEEE (March 2009)

15. Mouratidis, H., Giorgini, P.: Secure tropos: A security-oriented extension of the
tropos methodology. International Journal of Software Engineering and Knowledge
Engineering 17(02), 285–309 (2007)

16. Mulle, J., Stackelberg, S., Bohm, K.: A Security Language for BPMN Process
Models. Karlsruhe Reports in Informatics (September 2011)

17. Noguero, A., Espinoza, H.: A generic executable framework for model-driven engi-
neering. In: 2012 7th Iberian Conference on Information Systems and Technologies
(CISTI), pp. 1–6. IEEE (June 2012)

18. OASIS, Reference Model for Service Oriented Architecture 1.0 (2009), http://
docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra.pdf (cited September 12,
2013)

19. OMG. Business Process Model and Notation (BPMN) Version 2.0 (2011), http://
www.omg.org/spec/BPMN/2.0/ (Cited on September 10, 2013)

20. Paja, E., Dalpiaz, F., Giorgini, P.: Identifying Conflicts in Security Requirements
with STS-ml. University of Trento. Technical report (2012)

21. Paja, E., Dalpiaz, F., Poggianella, M., Roberti, P., Giorgini, P.: STS-Tool: Spec-
ifying and Reasoning over Socio-Technical Security Requirements. In: iStar 2013,
pp. 131–133 (2013)

22. Rodŕıguez, A., Fernández-Medina, E., Piattini, M.: A bpmn extension for the mod-
eling of security requirements in business processes. IEICE Transactions on Infor-
mation and Systems 90(4), 745–752 (2007)

23. Salnitri, M., Dalpiaz, F., Giorgini, P.: Aligning Service-Oriented Architectures with
Security Requirements. In: Meersman, R., Panetto, H., Dillon, T., Rinderle-Ma, S.,
Dadam, P., Zhou, X., Pearson, S., Ferscha, A., Bergamaschi, S., Cruz, I.F. (eds.)
OTM 2012, Part I. LNCS, vol. 7565, pp. 232–249. Springer, Heidelberg (2012)

24. Singh, M.P.: An ontology for commitments in multiagent systems. Artificial Intel-
ligence and Law 7(1), 97–113 (1999)

25. University of trento, STS-ml manual (2013), http://www.sts-tool.eu/doc/

STS-ModelingLanguage_ver1.3.2.pdf (cited September 12, 2013)
26. Wolter, C., Menzel, M., Meinel, C.: Modelling Security Goals in Business Processes.

Modellierung 127, 201–216 (2008)
27. van Lamsweerde, A.: Requirements engineering in the year 00: a research perspec-

tive. In: Proceedings of the 22nd International Conference on Software Engineering,
pp. 5–19 (2000)

http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra.pdf
http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra.pdf
http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/BPMN/2.0/
http://www.sts-tool.eu/doc/STS-ModelingLanguage_ver1.3.2.pdf
http://www.sts-tool.eu/doc/STS-ModelingLanguage_ver1.3.2.pdf

Security Requirements Engineering with STS-Tool

Elda Paja1, Mauro Poggianella1, Fabiano Dalpiaz2,
Pierluigi Roberti1, and Paolo Giorgini1

1 University of Trento – Department of Information Engineering and Computer Science,
Via Sommarive 5, 38123, Povo, Trento, Italy
{elda.paja,mauro.poggianella,

pierluigi.roberti,paolo.giorgini}@unitn.it
2 Utrecht University – Department of Information and Computing Sciences,

Princetonplein 5, De Uithof, 3584 CC Utrecht, The Netherlands
f.dalpiaz@uu.nl

Abstract. In this chapter, we present STS-Tool, the modelling and analysis sup-
port tool for STS-ml, an actor- and goal-oriented security requirements modelling
language for socio-technical systems. STS-Tool is a standalone application writ-
ten in Java and based on the Eclipse RCP Framework. It supports modelling a
socio-technical system in terms of high-level primitives such as actor, goal dele-
gation, and document exchange; to express security constraints over the interac-
tions between the actors; and to derive security requirements once the modelling
is done. It also supports analysing the created STS-ml models in terms of (i) well-
formedness, (ii) violation of security requirements, and (iii) threats impact over
actors’ assets. We also present the architecture of STS-Tool together with its main
features and provide technical details of the modelling and analysis capabilities.

1 Introduction

STS-Tool [6,7] is the graphical modelling and analysis support tool for STS-ml (Chap-
ter 5). STS-ml [1] (Socio-Technical Security modelling language), an actor- and goal-
oriented security requirements modelling language for socio-technical systems, which
relies on the idea of relating security requirements to interaction. STS-ml allows stake-
holders (reified as actors) to express security needs over interactions to constrain the
way interaction is to take place, and uses the concept of social commitment [9] among
actors to specify security requirements. For example, if a buyer sends its personal data
to a seller, the buyer may require the data not to be disclosed to third parties. Commit-
ments [9] are a pure social abstraction used to model interaction, and in STS-ml they
are used to capture security requirements, in terms of promises (social contracts) for
the satisfaction of security needs. This means that, in STS-ml security requirements are
specified as follows: one actor (responsible) commits to another (requestor) that it will
comply with the required security need. In the previous example, the seller commits not
to disclose personal data to other parties.

In previous work [7] we have shown the use of social commitments in specifying
security requirements; we have explained how STS-Tool supports modelling and the
automated derivation of commitments; we have presented the automated analysis tech-
niques in [5], and illustrated their integration and implementation in STS-Tool to detect

A.D. Brucker et al. (Eds.): Secure Service Composition, LNCS 8900, pp. 95–109, 2014.
c© Springer International Publishing Switzerland 2014

96 E. Paja et al.

violations of security requirements in [8]. We present details on the underlying mod-
elling language, STS-ml in Chapter 5. Here, we provide the technical details behind the
features supported by STS-Tool.

2 Overall Features of STS-Tool

STS-Tool offers the following features:

– Specification of Projects: STS-ml models are created within the scope of project
containers. A project refers to a certain scenario, and contains a set of models.
Typical operations on projects are supported: create, rename, import, and export.

– Project Explorer: a feature of STS-Tool developed as a customization of the Eclipse
RNF (Resource Navigator Framework). Since it is not designed to be used inside an
RCP application, the integration was a bit challenging. The project explorer allows
the user to manage files better, organising them into folders and projects.

– Diagrammatic Modelling: the tool enables the creation (drawing) of diagrams (mod-
els). Diagrams are created only within a project and typical create/modify/ save/
load/ undo/redo operations are supported. In particular, STS-Tool supports multi-
view modelling—different tabs are provided in the tool to allow modelling the var-
ious models of a socio-technical system diagram, namely social, information, and
authorisation model, following STS-ml’s multi-view feature. Each tab (referred to
as view) shows specific elements and hides others, while keeping always visible el-
ements that serve as connection points between the models (e.g. roles and agents).
Inter-model consistency is ensured by for instance propagating insertion (deletion)
of certain elements to all models (social, information, and authorisation) composing
the overall STS-ml model.

– Export Diagram to Different File Formats: STS-ml models (or parts of models, i.e.,
specific elements), as well as analysis results, can be exported to various formats,
such as jpg, png, pdf, svg, eps, etc.

– Derivation of Security Requirements: the tool allows the automatic derivation of se-
curity requirements in terms of relationships between a requestor and a responsible
actor for the satisfaction of a requirement.

– Automated Reasoning: two automated reasoning techniques (security analysis and
threat analysis) are integrated in and supported by STS-Tool. Note that the execu-
tion of automated reasoning is to be performed over well-formed models. We verify
well-formedness in two steps, depending on the complexity of the check: (i) online
or on-the-fly, while the model is being drawn, or (ii) offline, upon user explicit
request for computationally expensive checks (embedded within well-formedness
analysis). Security Analysis and threat analysis are performed upon request of the
end-user (security requirements engineer).

– Visulisation of analyses’ results: the tool visualises the results of the analyses (per
each analysis) and provides details of the findings.

– Generation of Requirements Documents: the tool allows the generation of a security
requirements document that contains the list of security requirements derived from
the model. This document contains information describing the models, information
that is customisable by the designer (by choosing which model features to include).

Security Requirements Engineering with STS-Tool 97

It is good practice to generate the requirements document at the end of the mod-
elling, and after refining the models in order to fix eventual errors detected by the
automated analyses. This document is helpful especially when communicating with
stakeholders, for it provides details about the different elements of the diagram.

3 Architecture

STS-Tool was developed using the Java programming language, and built on top of
different frameworks produced by the Eclipse community. The overall architecture for
STS-Tool is depicted in Fig. 1. As shown in this figure, the architecture of STS-Tool is
composed of three macro blocks. Starting from the bottom, we find the System Com-
ponent block that contains the underlying operating system (Windows, Linux or OsX)
and the Java virtual machine that executes the Java code.

Analysis Framework Security Requirements
Derivator

Document Generation
Module

Graphical Editor for the STS-ML language

STS-Tool EMF Metamodel

Other user Interfaces
components and services

Workbench (Compatiblity Layer, to access 3.x APIs)

Modeled UI, CSS styling, Dependency Injection, Application Services

OSGI - Equinox EMF Core SWT, JFace

JVM (Java Virtual Machine)

Operating System (Windows, Linux, OsX)

S
TS

-T
oo

l C
om

po
ne

nt
s

E
cl

ip
se

 P
la

tfo
rm

 (R
C

P
)

S
ys

te
m

 C
om

po
ne

nt
s

GEF (Graphical Editing Framework)

Fig. 1. STS-Tool architecture

At the second layer, we find the Eclipse Platform, also known as Eclipse Rich Client
Platform (RCP). The Eclipse Platform is developed and maintained by the Eclipse com-
munity1 and is a powerful framework for building multi-platform standalone

1 https://www.eclipse.org/

https://www.eclipse.org/

98 E. Paja et al.

applications. An Eclipse application consists of individual software components. Ac-
cording to Vogel in [11], the most important components are:

– OSGi: a specification that describes a modular approach for Java application. The
programming model of OSGi allows defining dynamic software components,
namely OSGi services.

– Equinox: one implementation of the OSGi specification and is used by the Eclipse
platform. The Equinox runtime provides the necessary framework to run a modular
Eclipse application.

– SWT: the standard user interface component library used by Eclipse. JFace [12] pro-
vides some convenient APIs on top of SWT, while the workbench provides the frame-
work for the application. It is responsible for displaying all other UI components.

– Eclipse 4: provides a compatibility layer which allows that plug-ins using the
Eclipse 3.x programming model can be used unmodified in an Eclipse based ap-
plication.

One of the major advantages of this platform is modularity. To achieve this Eclipse
uses plugins. Each plugin is an independent module that provides a specific functional-
ity inside the application, and can be easily added or replaced. Moreover, every plugin
can define or consume extension points that allow other plugins to contribute function-
ality to the defined plugin. Due to the high modularity of the system it is possible to add
new features with little effort and maintain code easily.

Eclipse provides the SWT [4] graphical library, which allows to build efficient and
portable applications that directly access the user-interface facilities of the operating
systems it is implemented on. This revolutionary technology makes it possible to create
Java-based applications that are indistinguishable from a platform’s native applications.

Last but not least, the Eclipse community develops a lot of parallel projects for var-
ious purposes that can be integrated to the Eclipse Platform, making the entire system
more powerful.

These are some of the reasons that Eclipse was chosen as the underlying platform
for developing the STS-Tool.

Finally, at the third layer, we find the STS-Tool Components. The STS-Tool allows
the user to create and modify STS-ml models (i.e., diagrams) described using a spe-
cific language, namely STS-ml. To support the particular specification of STS-ml, a
graphical editor was implemented using the GEF Framework [3]. The STS-ml meta-
model is incorporated to ensure that diagrams follow the syntax of STS-ml. The rest of
STS-Tool components correspond to the features it supports, such as analysis, security
requriements derivation, and security requirements document generation. We provide
more details on the implementation of each in Sec. 5.

4 Installation Details

The STS-Tool is distributed as a compressed archive for multiple platforms and it is
free to download from the STS-Tool website2. The tool is available in both source and

2 http://www.sts-tool.eu/

http://www.sts-tool.eu/

Security Requirements Engineering with STS-Tool 99

binary form, and the license is APGL (Affere General Public License). As prerequisite,
at least version 6.26 of the Java Virtual Machine is needed. Previous versions of the tool
are also available online in Archive3.

The installation of STS-Tool requires no setup, it is enough to download the version
suitable for the machine and operating system under consideration, extract the content
of the archive containing the tool, to finally run the launcher file.

The STS-Tool comes with Online Help. Help is produced by the Eclipse project, we
provide only the content of the help.

To obtain updates of the STS-Tool, one does not need to download the latest version
from the website, rather an update system is already integrated in the tool. The update
system is a customization of the Eclipse P2 (Eclipse update system). A public web site
was expressly created in order to update the new versions of the tool automatically.
The STS-Tool checks for updates and if any are found, it asks the user to install them.
However, the user has the choice of activating this feature (configuring updates from
the menu: Windows – Preferences – Updates) or getting updates manually.

5 Technical Implementation Details of STS-Tool

We provide technical details on how the STS-Tool supports modelling (Sec. 5.1), se-
curity requirements derivation (Sec 5.2), analysis (Sec 5.3), and security requirements
document generation (Sec 5.4).

5.1 Modelling with STS-Tool

To implement the graphical editor for the STS-ml language, the GEF Framework [3]
was chosen. The GEF Framework is an interactive Model-View-Controller (MVC)
framework, which fosters the implementation of SWT–based tree editors [11], and
Draw2d–based [3] graphical editors for the Eclipse Workbench UI [13]. One of the
challenges faced in the development of the graphical editor was related to the fact that
the GEF framework is a single view editor, while the STS-Tool editor had to be a multi-
view editor in order to support the multi-view modelling of STS-ml models. The prob-
lem was solved by implementing a custom multi-view editor starting from the class
MultiPageEditorPart (org.eclipse.ui.part.MultiPageEditorPart) 4.

Currently, STS-ml supports three views. However, considering a possible evolution
of the language and tool, we took advantage of the modular nature of the platform to
create a new extension point in order to allow the automatic addition (insertion) of new
views (should there be any in the future). The MultiPageEditor reads the extension point
and creates the required objects to then allow their initialization.

The extension point id is it.unitn.disi.ststool.editor.subparts and can have an infinite
number of children (one for each view) of 2 different types: Subeditor or View, see Fig.
2. The difference between them is the type of interface they must implement. The two

3 http://www.sts-tool.eu/Archive/
4 http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.
platform.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fui%
2Fpart%2FMultiPageEditorPart.html

http://www.sts-tool.eu/Archive/
http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.platform.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fui%2Fpart%2FMultiPageEditorPart.html
http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.platform.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fui%2Fpart%2FMultiPageEditorPart.html
http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.platform.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fui%2Fpart%2FMultiPageEditorPart.html

100 E. Paja et al.

<<interface>>
ISTSView

setEditorViewID(String id)
setCommandStack(CommandStack stack)
....

<<interface>>
ISTSCompositeView

createControl(Composite parent)
setDiagram(STSDiagram diagram)

<<interface>>
ISTSEditorView

<<interface>>
org.eclipse.ui.IEditorPart

.......

Fig. 2. STS-Tool Graphical Editor Support via Extension Points

interfaces are similar. They both extend the common interface ISTSView, which defines
the common methods each view must have, but the editor interface the ISTSEditorView
extends also from the org.eclipse.ui.IEditorPart allowing to add Eclipse editors as view
(as the GEF Editor), while the ISTSCompositeView allows to add simple composites
as views, useful to create a textual view. Each view must declare a unique id to make
one view distinguishable from the others. This id is subsequently used in the code to
identify the correct objects GraphicalConstraint (see Sec. 5.1–The Model).

After implementing the multi-view feature, we concentrated on the fundamental
modelling features of the editor. As already mentioned above, a GEF Editor was ex-
tended. Since GEF is a MVC Framework, three main objects should be provided for
each, namely the model, the view and the controller (see Fig. 3).

In the following paragraphs, we discuss in detail each and every one of the objects.

The Model. Each diagram the user displays or edits is described by an underlying Java
model. Each Java object contains its own properties, and represents a specific element
that will be displayed on a graphical canvas. The STS-Metamodel was implemented
using the EMF Framework [2]—a modelling framework and code generation facility
for building tools and applications based on a structured data model. It provides tools
and runtime support to produce a set of Java classes for the model, along with a set of
adapter classes that enable viewing and command-based editing of the model.

Apart from the Java code creation facility, EMF provides a powerful notification
system that is necessary when working with MVC frameworks. The notification system
notifies all the registered listeners when a property of one object changes so a graphical
update can occur. The STS-Metamodel (see Fig. 1) was created using this framework,
and was adapted to reflect the STS-ml language properties. The model was included in
the it.unitn.disi.ststool.model plugin.

To avoid mixing model properties with graphical properties the model was logically
separated in two parts:

Security Requirements Engineering with STS-Tool 101

Model View Controller

GEF Editor

S
TS

 G
ra

ph
ic

al
 E

di
to

r

STS Graphical Editor (For a single view)

Fig. 3. STS-Tool Graphical Editor

1. The abstract class does not specifically represent an STS-ml element, while the
main class from which all other elements derive is the STSElement. This class
defines the common element attributes, such as the unique identifier or the descrip-
tion properties, to be inherited by all subclasses5. Subsequently, STS-ml elements
(Nodes) and relationships (Links) are represented through two dinstinct classes:
STSNode and STSLink. The class GraphicalConstraint storer graphical informa-
tion such as node bounds or link binding points, which is useful to maintain sepa-
rated the graphical information from the model information. Given that such con-
straints are specified over different elements and relationships (representing inter-
action), the class is extended to differentiate among Nodes’, Links’, and Diagram’s
GraphicalConstraint. This is useful to avoid continuous casting in the code too.
GraphicalConstraint can have multiple properties, GraphicalProperty, in the form
of key/value, which facilitates the creation/addition of new non-default properties.

2. The real STS-ml model representation. Each STS-ml model object is reproduced
in the STS-EMF model. A plugin was created from the metamodel description: the
it.unitn.disi.ststool.edit plugin. This plugin is also generated from the EMF Frame-
work and contains a set of classes that allow to display and edit a model object
through the property view (as supported by Eclipse).

The View. The views for the GEF editor are made of simple shapes. These shapes are
created using the eclipse draw2d library and each shape extends the org.eclipse.draw2d.
IFigure interface. The IFigure was not implemented from scratch, rather the Shapes
figure provided by the draw2d library was extended. Views as such do not have any
information about the object model they are representing, but they are connected to
them through the Controller. This is useful to keep the model separated from the view
and maintain the code clear and easily reusable.

5 Class STSDiagram is an exception, as it defines the overall diagram. Thus, it is the parent of
all other objects in the diagram, serving as a root container so the entire model is represented
by this object.

102 E. Paja et al.

The Controller. The controller part is composed of classes that extend the org.eclipse.
gef.editparts.AbstractGraphicalEditPart class. Each editPart knows the model object it
has to represent and the figure associated to it, and is able to link them. Editpart is re-
sponsible for tracking model (diagram) changes and update the view in which changes
occur. The user interaction, on the other hand, is tracked by the EditingDomain and for-
warded to the corresponding editPart with a org.eclipse.gef.Request describing that the
user event occurred. The editPart processes the request through its policy and produces
a org.eclipse.gef.commands.Command that contains the code to modify the model ob-
ject (and also the code to undo the modifications). The command is successively passed
to the commandStack that finally executes the command. The purpose of the command
stack is to keep a history of the executed commands and allow undoing them. Once the
command is executed the model object is modified, and an event is propagated to the
editPart to update the respective view.

Each view editor shares with the other editors two important things: the diagram
model object and the CommandStack, while each has its own palette that is populated
during the construction of the editor. This allows the different views to have distinct
palettes. View filtering is made in the EditPart: each EditPart is responsible for listing
the children objects and the connections that start and end to the represented model
element. Filtering this list supports the filtering of what the editor displays.

5.2 Security Requirements Derivation

In this section, we present how security requirements are generated in STS-Tool start-
ing from security needs (Chapter 5, Section 2.2). Each Element in the STS Metamodel
derives from the STSElement class which defines a containment relation (0..*) with an
object of type ElementNeed, which keeps track of the security need specified over the
element. Therefore, each Element in the model is related to its element need. Each
element need has an id that identifies the type of the element need, and a map of
key → values of properties, used to store specific values of the security need, which
allows having multiple values for a single element need. This solution was chosen over
the one of binding specific properties on each model object, to make it possible to add
requirements through an extension point, without modifying and sequentially regen-
erating the metamodel code. Moreover, this option supports the automatic creation of
menus without modifying the editor code. That is, if a new security need is required to
be supported by STS-Tool, it can be added through a new plugin. This is made possible
by the it.unitn.disi.ststool.development.model. elementneed extension point. This ex-
tension point allows two types of children, an elementNeedGroup and an ElementNeed
respectively.

The elementNeedGroup requires 3 parameters:

1. id: uniquely identifies the group,
2. name: is displayed in the menu, and
3. parent group id: an optional id to create submenus.

The ElementNeed ,instead, requires 6 parameters:

Security Requirements Engineering with STS-Tool 103

1. id: uniquely identifies the element need type,
2. groupId: points to an elementNeedGroup ID,
3. name: is displayed to the user,
4. short name: used in the graphical representation,
5. color: used in the graphical representation,
6. applicableT o: string value that contains a list of comma separated Class names on

which the elementNeed will be applied (will be displayed in is context menu).

Furthermore the ElementNeed allows five types of children, which describe the prop-
erties of the ElementNeed. Each ElementNeed can have multiple of these children al-
lowing an element need to support multiple properties. These children are:

1. singlechoice value: allow to choose a single value from a list;
2. int value: allow to insert an integer value;
3. string value: allow to insert a text value;
4. bool value: allow to insert a Boolean value;
5. percent value: allow to insert a value in range 0-100.

For now these are the supported values, but in future versions of the STS-Tool, newer
value types could be added. In STS-Tool, security requirements are a specialization of
the ElementNeed. They are defined in a separate plugin unitn.disi.ststool. securityre-
quirements. This plugin defines the ElementNeed used in the STS-ml language, and
also provides a security requirement generator and a view (the security requirements
view) to display the evaluated security requirements. To perform an evaluation, two
different components are involved. The first component is the SecurityRequirements-
Manager singleton. This component tracks the current active editor and if a valid editor
is found it retrieves the associated STSDiagram Model object and delegates the evalua-
tion of the security requirements to the second component the SecurityRequirementE-
valuator. The Manager also tracks the changes on the model and when they occur it
asks the evaluator to perform a new evaluation. When the evaluation completes the re-
sult of the evaluation is stored and registered listeners to the manager, as the security
Requirements View, are updated with the new evaluation result. The SecurityRequire-
mentEvaluator instead takes an STSDiagram as parameter and when started recursively
iterates over the entire model and for each element it evaluates its ElementNeeds and
generates one (or multiple) objects of type ISecurityRequirement that describe(s) the se-
curity requirements associated to the ElementNeed. When no more elements are found,
the complete list of ISecurityRequirement is returned. A possible improvement of this
implementation: the SecurityRequirementEvaluator contains an hardcoded set of rules
to evaluate and create the correct implementation of the ISecurityRequirement, in the
future this could be moved to an extension point. The SRS Generator is another compo-
nent included in the Security Requirements plugin. When invoked by the user (through
a generate SRS button) it retrieves from the SecurityRequirementsManager the list of
the security requirements and transform them into an XML file.

5.3 Reasoning about Security Requirements

Here we show the automated reasoning capabilities implemented in STS-Tool.

104 E. Paja et al.

Well-formedness Analysis &
Threat Analysis

Analysis Framework

A
na

ly
si

s

STS-Tool Diagram

Fig. 4. STS-Tool Automated Analysis

STS-Tool supports analysis activities through a dedicated analysis module, as de-
picted in Fig. 4. Similarly to the other STS-Tool supported features, the analysis mod-
ule was developed and integrated through specific plugins. In the following, we describe
each and every plugin used for the analysis module.

1. The it.unitn.disi.ststool.analysis plugin supports the execution of analysis over an
STSDiagram object. This is achieved through a small framework, which has the
following main interfaces:
(a) IAnalysis: describes an analysis and contains a list of ITasks to be executed.
(b) ITask: defines a generic task in the analysis, and the dependencies to other

tasks. This interface cannot be directly implemented (see IComposedTask, IEx-
ecutableTask).

(c) IComposedTask: defines a composite task that contains subtasks. When this
task is started the subtasks are executed and the result of the task is the worst
result of the children. This is useful when a single task is composed of multi-
ple tasks that have dependencies between them (e.g., in the security analysis,
the AuthorityViolations task is composed of other subtasks. The first subtask
named preanalysis’ executes the ViolationAnalysis, but if for some reason this
fails, the other sibling tasks are skipped because they need the results of the
preanalysis).

(d) IExecutableTask: defines a task that will execute a piece of code performing an
evaluation and returning a result.

(e) IResult: describes a result.
(f) IAnalysisEngine: retrieved from the AnalysisEngineFactory singleton is the En-

gine that will execute the IAnalysis.
(g) ITaskEvent: the Analysis engine also supports events to notify registered listen-

ers of the analysis progress. The progress of the analysis is made through this
event object. The it.unitn.disi.ststool.analysis plugin also provides the graphical
user interfaces to display the analysis results and other utilities classes, useful
when performing analysis.

2. The it.unitn.disi.ststool.analysis.wellformedness plugin and the it.unitn.disi.
ststool.analysis.threat plugin contain respectively the well-formedness analysis

Security Requirements Engineering with STS-Tool 105

implementation and the threat analysis implementation. These plugins provide the
ITask implementation needed to perform the analysis. These analyses are performed
completely in Java, analysing the STSDiagram Model object.

Security Analysis

Analysis Framework

DLV binaries
(Datalog)JVM (Java Virtual Machine)

Operating System (Windows, Linux, OsX)

S
ec

ur
ity

 A
na

ly
si

sSTS-Tool Diagram Datalog Java Engine

Fig. 5. STS-Tool Security Analysis

3. For the security analysis things get complicated. Since the security analysis is im-
plemented in disjunctive Datalog (see Fig. 5), it requires the use of Datalog program
and engine. But, the Datalog program is released only in native OS executables, and
thus, a Java wrapper had to be implemented. To make it reusable, this wrapper was
developed in a separate plugin, namely it.unitn.disi.ststool.analysis.dlv.

The java DLVEngine class is in charge of recognizing the current operating sys-
tem in use and selecting the correct executables. It creates the required files on the
filesystem and when requested, it executes the program using the Runtime.exec(String
params) instructions. To make the DLVEngine more flexible, another class was in-
serted, namely EngineExecutionParameters, which contains methods to configure the
DLVEngine, such as setting the maximum number of models or setting filters, and also
contains the Datalog code that has to be executed. The output produced by the DL-
VEngine is parsed by a provided implementation of the EngineOutputReader class.
This set of classes makes the use of the DLV binaries transparent to the Java code. The
it.unitn.disi.ststool.analysis.security plugin contains the task that executes the security
analysis. The fundamental tasks of the security analysis rely on a particular analysis
(that is made internally and not in a separate plugin) called ViolationsAnalysis. This
analysis uses the Datalog engine in order to be executed and completed. Some other
classes have been added to support this analysis:

– Predicate: this class object represents a Datalog predicate; it has a name and con-
tains parameters that are mapped to a model object.

106 E. Paja et al.

– Violation: a wrapper for a predicate. This class, apart from containing the predicate,
contains also other values derived from the analysis, such as the total number of
occurrences of the predicate, and the total number of models generated by the DLV
engine.

– ViolationDefinition: while Violation is used to wrap the result of the analysis, the
ViolationDefinition class serves the purpose of containing the required values to dis-
cover a Violation. In particular, this class contains two attributes: (i) a predefined
list of Datalog predicates that will compose the final Datalog program code, and (ii)
the name of the predicate that will be generated by the Datalog program execution
when a violation is found.

The following schema (see Fig. 6) summarizes the process guiding the security analysis
and the components involved in the process, which are integrated in STS-Tool.

List of predicates
Diagram Parser

(Produce a list of predicates
representing the diagram)

STSDiagram
(In memory model as java objects)

ViolationDefinition

Predicate Name

DLVEngine

DLVExecutionParameters
As output filter

Object Mapper
(Map the diagram object to the

predicate value)

Datalog Input Program

Output Parser
(Transform the engine output in Predicate

objects)

Violation Mapper
(Create a Violation object for every dfferent predicate)

List of predicates
Diagram Parser

(P d li t f di t

DLVExecutionParameters
ut filter

Object Mapper
ap the diagram object to the

predicate value)

ect Map

Datalog Input Program
 List of datalog
predicates that

define the violation

(Produce a list of predicates
representing the diagram)

(Ma

Violations Analysis process and involved components

Result as a list of Violation

Fig. 6. STS-Tool Security Analysis: Verification of Security Requirements Violations

The ViolationsAnalysis requires two input parameters: an STSDiagram and a Viola-
tionDefinition. When the analysis is started some events occur. First of all, a specific
parser containing a set of rules iterates over the entire STSDiagram transforming each
element in a Datalog predicate. The generated predicates are transformed one by one
into String and the predicate values are mapped in a temporary Map. This allows us

Security Requirements Engineering with STS-Tool 107

to be able to reconstruct the predicates when the DLV output is parsed. At this point
the String that represents the predicates derived from the diagram and the predicates
provided by the ViolationDefinition are merged together and passed as InputProgram
through an instance of a DLVExecutionParameters to the DLVEngine. Afterwards the
predicate name, which is retrieved from the ViolationDefinition, is set as the filter op-
tion to the DLVEngine. Setting the output filter drastically reduces the output produced
by the DLV program and consequently improves memory footprint and efficiency. The
engine can be started with the configured parameters. The output parser reads the out-
put produced by the engine, interprets it and creates instances of Predicate. When the
DLVEngine completes its execution, all the generated predicates are transformed in Vio-
lation instances and returned to the specific Security analysis task that requested them,
and are used to produce the analysis results.

Visualising Analysis Results. The visualisation of the analysis results passes through
a singleton object, specifically designed to manage the analysis results. Each analysis,
once completed, provides to the ResultManager its results. Results are collected, stored,
and displayed into the analysis view. Every result object has some properties: a text and
a description that are used in the user interface to describe the result, the gravity of the
result (OK,WARNING,ERROR), and a list of elements (or model objects) that have to
be highlighted when the user wants to display them over the STS-ml model (diagram).
After the results are displayed in the analysis view, the user can select one or more
results to show them over the diagram. Once a result is selected, this action causes a
ResultManager retrieve from the selected results, which returns the list of objects that
need to be highlighted and modified over the diagram (by setting a graphical property to
each of this object graphical constraint), so the editor can change the displayed colour
of the element to highlight it on the diagram.

5.4 Generating the Security Requirements Document

The STS-Tool supports the generation of the security requirements document, which is
supported by the report module, as shown in Fig. 7. Similarly to the analysis module,
the report module was distributed into multiple plugins.

The main plugin is the it.unitn.disi.ststool.documents. This plugin contains only the
Java aspose libraries, which allow editing and creating text documents and presenta-
tion documents in multiple formats, as well as some UI classes and a set of classes
that generate the final documents. While this plugin is involved in managing the cre-
ation of the documents, the content of the final document is obtained (contributed)
via an extension point it.unitn.disi.ststool.documents.report.contribution that other plu-
gins can use to add their own content. This extension point accepts multiple chil-
dren of type contribution. A contribution must have a unique id, a priority value (a
number) to make contributions sortable and a class that will perform the contribu-
tion (add the content of the document). Moreover the contribution type must have at
least one child of type part. The part object is used in the graphical selection of the
parts that can be generated, to allow customisation of the security requirements doc-
ument by the analyst. This object has a unique id that can be used later in the code
to retrieve the information about the selection, a name that is used in the UI, and

108 E. Paja et al.

Report Module

Aspose libraries

R
ep

or
t M

od
ul

e

STS-Tool Diagram

Content contribution for
the main content

Content contribution for
the appendix

Content contribution for
the analysis

Fig. 7. STS-Tool Security Requirements Document Generation

some Boolean properties. part can also have part children to allow multi-level part-
selection. While the it.unitn.disi.ststool.documents plugin contributes only to the re-
port generation functionality, the it.unitn.disi.ststool.documents.report.analysis.security,
it.unitn.disi. ststool.documents.report.analysis.wellformedness, it.unitn.disi.ststool. doc-
uments.report.securityreqirements, and it.unitn.disi.ststool.documents.report.view con-
tribution plugins contribute to the content providing it through the extension points
previously described. The content is generated analysing the STSDiagram; static code
retrieves from the model the required information, caches them and at the end generates
the content that has to be inserted into the document.

6 Conclusions

The STS-Tool is quite a stable graphical requirements engineering modelling tool. It
is based on the Eclipse EMF framework and supports modelling and reasoning over
the created models. The latest version of the tool is the result of an iterative devel-
opment process, having been tested on multiple case studies and evaluated with prac-
titioners [10] in the scope of Aniketos. STS-Tool was proved suitable to model and
reason over models of a large size from different domains [5], such as eGovernment
(see Chapter 15) or Air Traffic Management Control (see Chapter 14).

References

1. Dalpiaz, F., Paja, E., Giorgini, P.: Security requirements engineering via commitments. In:
Proceedings of STAST 2011, pp. 1–8 (2011)

2. The Eclipse Foundation. Eclipse modeling framework project (emf). Lastchecked (March
2014)

3. The Eclipse Foundation. Gef (mvc). Lastchecked (March 2014)
4. Northover, S., Wilson, M.: Swt: the standard widget toolkit, vol. 1. Addison-Wesley

Professional (2004)

Security Requirements Engineering with STS-Tool 109

5. Paja, E., Dalpiaz, F., Giorgini, P.: Managing security requirements conflicts in socio-technical
systems. In: Proceedings of ER (2013) (to appear)

6. Paja, E., Dalpiaz, F., Poggianella, M., Roberti, P., Giorgini, P.: STS-Tool: socio-technical se-
curity requirements through social commitments. In: Proceedings of RE 2012, pp. 331–332
(2012)

7. Paja, E., Dalpiaz, F., Poggianella, M., Roberti, P., Giorgini, P.: STS-Tool: Using commit-
ments to specify socio-technical security requirements. In: Proceedings of ER 2012 Work-
shops, pp. 396–399 (2012)

8. Paja, E., Dalpiaz, F., Poggianella, M., Roberti, P., Giorgini, P.: Specifying and reasoning over
socio-technical security requirements with sts-tool. In: Proceedings of the 32nd International
Conference on Conceptual Modeling, ER Workshops, pp. 504–507 (2013)

9. Singh, M.P.: An ontology for commitments in multiagent systems: Toward a unification of
normative concepts. Artificial Intelligence and Law 7(1), 97–113 (1999)

10. Trösterer, S., Beck, E., Dalpiaz, F., Paja, E., Giorgini, P., Tscheligi, M.: Formative user-
centered evaluation of security modeling: Results from a case study. International Journal of
Secure Software Engineering 3(1), 1–19 (2012)

11. Vogel, L.: Building eclipse rcp applications based on eclipse 4 (2013), Revision history:
Revision 0.1 - 6.9 February 14, 2009-July 4, 2013

12. Vogel, L.: Eclipse jface tree - tutorial (2013) Revision history: Revision 0.1-0.1-3.3 August
22, 2010-October 15, 2013

13. Xenos, S.: Inside the workbench a guide to the workbench internals (October 2005)
(Lastchecked: March, 2014)

Using SecureBPMN for Modelling

Security-Aware Service Compositions

Achim D. Brucker

SAP SE, Vincenz-Priessnitz-Str. 1, 76131 Karlsruhe, Germany
achim.brucker@sap.com

Abstract. Today, many systems are built by orchestrating existing ser-
vices, custom developed services, as well as interaction with users. These
orchestrations, also called composition plans, are often described using
high-level modelling languages that allow for simplifying 1) the imple-
mentation of systems by using generic execution engines and 2) the adap-
tion of deployed systems to changing business needs. Thus, composition
plans play an important role for both communicating business require-
ments between domain experts and system experts, and serving as a
basis for the system implementation.
At the same time, ICT systems need to fulfil an increasing number

of security and compliance requirements. Thus, there is a demand for
integrating security and compliance requirements into composition plans.
We present SecureBPMN, a language for modelling security properties

that can easily be integrated into languages used for describing service
orchestrations. Moreover, we integrate SecureBPMN into BPMN and,
thus, present a common language for describing service orchestration
(in terms of business process models) together with their security and
compliance requirements.

Keywords: SecureBPMN, BPMN, Access Control, Confidentiality.

1 Introduction

Today, many systems are built by orchestrating existing service offerings, cus-
tom developed services, as well as human-centred tasks. These orchestration
models, also called composition plans, are often described using high-level mod-
elling languages, such as the Business Process Modelling Language and Notation
(BPMN) [21] or the Business Process Execution Language (BPEL) [20]. Using
such high-level description languages allows for simplifying:

1. the implementation of systems by using generic execution engines and
2. the adaption of deployed systems to changing business needs.

Thus, high-level composition plans play an important role both for communicat-
ing business requirements between domain experts and system experts as well
as a basis for the system implementation.

Since several years, enterprise systems need to fulfil an increasing number of
security and compliance requirements. One reason for this is that the number

A.D. Brucker et al. (Eds.): Secure Service Composition, LNCS 8900, pp. 110–120, 2014.
c© Springer International Publishing Switzerland 2014

mailto:achim.brucker@sap.com

Using SecureBPMN for Modelling Security-Aware Service Compositions 111

of businesses that operate in regulated markets, i. e., that need to comply to
regulations such as HIPAA [15] in the health care sector or Basel III [4] in
the financial sector, is increasing. Such compliance regulations along with the
increased awareness of IT security result in need for modelling, analysis, an d
execution techniques that treat security, privacy, and compliance properties as
first class citizens.

Consequently, the demand for an integrating means for specifying security and
compliance requirements into languages that fulfil the need of business experts,
system experts, and security experts, is increasing. Fulfilling the needs of business
experts and system experts at the same time is already challenging—bringing
the security experts to the same table, makes it even more challenging.

To meet this challenge, we developed SecureBPMN [8]: a security modelling
language for expressing high-level security and compliance requirements such as
role-based access control (RBAC), break-glass, separation-of-duty (SoD), dele-
gation, or variants of the need-to-know principle. SecureBPMN is defined using
a metamodel which makes it particularly suitable for integration into business
process modelling languages that are themselves defined by a metamodel.

In this paper, we present SecureBPMN and its integration into BPMN. As
BPMN is used in Aniketos for specifying service composition plans, this integra-
tion provides a language that allows for specifying, analysing security properties
on the level of service compositions plans. Thus, SecureBPMN provides the foun-
dation for the secure and compliant execution of service compositions.

2 Using BPMN for Modelling Service Orchestrations

The modelling in BPMN is done by expressing business processes through busi-
ness models. A BPMN model is an executable specification of the workflow,
i. e., a flowchart based diagram that captures the basic structure and flow of
activities and data within a business process. From a high-level perspective, the
development of a system using BPMN is divided into two major phases:

1. During the design phase, a service developer—together with domain or busi-
ness experts—designs the process model, i. e., the service composition plan.
This process model comprises both automatic services and human interac-
tions with these services.

2. During the deployment phase, the process model is deployed in a business
process execution engine, which can act as a service orchestrator.

This high-level view does not include several other tasks involved in system
development such as the implementation of actual services and the design of the
user interface.

Figure 1 shows a BPMN diagram modelling a service composition that pro-
vides a travel booking service to customers. First, customers enter their flight
and hotel preferences into the system (such kind of user interactions are mod-
elled by user tasks in BPMN). Next, two web services (modelled as service tasks)
are executed and connected via parallel gateways. These web services can be op-
erated by different service providers and, in our example, provide functionalities

112 A.D. Brucker

Fig. 1. A composed service for booking flights and hotels

for finding suitable hotel and flight information respectively. Here the parallel
gateways ensure that the service which queries customer’s credit card data will
only be executed if both the Find suitable hotels and Find suitable flights tasks
are terminated successfully. By using exclusive gateways the service developer is
able to indicate that the Book the hotel task might fail. In case the booking is
failed (!booked), an error boundary event will be reached.

3 Security in Service Orchestrations

Our motivating example, represented in Figure 1, requires already a surprisingly
large number of security and compliance requirements; for example:

– While all users should be able to search for hotels and flights, certain offers
should only be available to premium customers. Moreover, travel arrange-
ments that are above a certain limit (e. g., cost more than 5 000 Euro) might
require additional approval steps to avoid credit card fraud. Thus, already
this simple scenario requires a fine-grained access control that cannot be
modelled using a simple role-based access control model. Moreover, we want
to ensure that the person booking the travel and the credit card holder are
the same (binding of duty).

– To avoid fraud or price-fixing agreements, we demand that the services for
finding hotels (flights) and the booking service, are from different service
providers. Of course, such a strict application of the separation of duty prin-
ciple may hinder some travel agencies and we might want to relax this re-
quirement such that it only holds for travels that costs more than 1000 Euro.
Thus, separation of duty (as well as complementary binding of duty) should
restrict individual permissions to execute an action on a task and not whole
tasks (actions).

– The credit card company needs to know the price for the flight and hotel but
it needs to know neither the travel destination nor the exact travel dates.
Applying the principle of need to know or least privilege, can ensure such
confidentiality requirements.

Using SecureBPMN for Modelling Security-Aware Service Compositions 113

– Applying the discussed security and compliance requirements strictly may
harm the business, e. g., if travel requests are done by an assistant to the
holder of the credit card. Thus, a controlled way for transferring rights such
as through delegation, is essential. To ensure that a delegation of tasks does
not violate more important compliance rules, we also need to be able to
specify restrictions on delegations (e. g., certain tasks might not be delegable
at all or only delegable to persons that already possesses the necessary access
rights).

Even this simple scenario shows that describing the non-functional security and
compliance requirements is a significant part of the overall business process de-
sign. In real-world scenarios, the effort for specifying and implementing the non-
functional requirements can easily outgrow the effort for specifying and imple-
menting the functional requirements.

4 SecureBPMN

Security and compliance should be modelled together with the service orchestra-
tion this is while building the service composition, instead of addressing them
as an after-thought. To address this need, we used a metamodel-based (Brucker
and Doser [9] discuss the details of metamodel-based language extensions) ap-
proach for defining SecureBPMN. Overall, SecureBPMN is a security language
that easily can be integrated into business process modelling languages or work
flow modelling languages. Figure 2 shows the (slightly simplified) metamodel of
SecureBPMN and its integration into BPMN. SecureBPMN allows for describing
the following security and compliance requirements:

– Access Control: the core of SecureBPMN is a hierarchical role-based access
control (RBAC) [3] language supporting constraints (AuthorizationConstraint)
on the permissions. The constraints can be used to express requirements like
“a credit card payment shall be approved only if it is requested by the card
holder.” A Subject in SecureBPMN can be an individual User or a Group of
subjects. Subjects are mapped to a Role hierarchy. SecureBPMN allows to
permit (Permission) the actions (Action) on resources (Resource). In case of
BPMN, resources are instances of the BPMN meta-classes Process, Activity,
or ItemAwareElement. This part of SecureBPMN is, conceptually, very close
to SecureUML [7].

– Delegation: SecureBPMN supports delegation with (TransferDelegation) and
without (SimpleDelegation) transferring all (including access to data or back-
end systems) access rights that are necessary to execute a task. The former
only allows to delegate tasks to subjects that already possess the necessary
rights. The latter allows to delegate tasks to arbitrary subjects that, then,
can act on behalf of the original subject (Delegator). The number of del-
egations can be restricted by maxDepth: a maxDepth of ‘zero’ forbids any
delegation explicitly, and value of ‘one’ forbids a delegatee to delegate a task
further. A delegation can be negotiable, i. e., the delegatee can refuse to do

114 A.D. Brucker

F
ig
.
2
.
T
h
e
S
ecu
reB

P
M
N
m
eta
m
o
d
el
(sim

p
lifi
ed
)
a
n
d
its
co
n
n
ectio

n
to
th
e
B
P
M
N
m
eta
m
o
d
el

Using SecureBPMN for Modelling Security-Aware Service Compositions 115

a delegated task. If a delegation is not negotiable, it is an order and the
delegatee has to do this task.

– Permission-Level Separation and Binding of Duty: SecureBPMNmodels sep-
aration of duty (SoD) and binding of duty (BoD) as a sub-type of Authoriza-
tionConstraint. In contrast to existing works such as[18], which constrain all
actions on a task or service, our approach results in a fine-grained notion of
these properties on the level of single permissions. Moreover, SecureBPMN
generalises the usually binary SoD and BoD constraints to n-ary constraints:
an SoD constraints models, that a Subject is not allowed to “use” more than
max permissions out of n (max < n); BoD is generalised similarly. If a SoD
(BoD) constraint is already guaranteed by the RBAC configuration, it is
called static SoD (BoD). Additionally, SecureBPMN supports history-resets
(TriggerReset) for SoD (BoD) for processes with loops (similar to the work of
Basin et al. [6]). Such resets allow to model that a SoD (BoD) constraint only
needs to hold for the last (successful) execution of a loop and, thus, avoid
the risk of successively “consuming” all subjects and, eventually, resulting
in a dead lock.

– Need-to-Know: a strict application of the need-to-know principle (NeedTo
Know) is another important security property. In the context of business
process-driven systems, this mainly refers to restricting the access to pro-
cess variables or data objects (instances of the BPMN meta-class ItemAwa-
reElement) and, thus, the process model internal data-flow. To allow the
fine-grained access to certain resources (e. g., access to the travel details is
not allowed, if the travel takes longer than 14 days), we model the need to
know principle as a specialised Permission that is associated with a specific
authorisation constraint (ResourceAC).

– Exceptional Access Control: The strict enforcement of security and com-
pliance requirements always bears the risk of hindering legitimate business
transactions. Thus, an increasing number of enterprises implement break-
glass or exceptional access control mechanisms that allow regular users to
override access control decisions in a controlled manner, e. g., adhering to
certain obligations (Obligation) that are either defined on the permission or
policy level. SecureBPMN supports such a mechanism using a hierarchy of se-
curity policies (defined by the meta-class Policy) implementing the approach
presented in [11].

Conceptually, the integration of the SecureBPMN metamodel into the meta-
model of BPMN is straight forward: BPMN defines the resources and actions
that are constrained by the SecureBPMN language. On a technical level, the
need for diagrammatical representations of parts of the language as well as the
fact that we can extend a metamodel only by subclassing (and not by introducing
new superclasses) creates additional complexity:

– The SecureBPMN metamodel contains classes (SecurityFlowNode and Se-
curityFlow) that are not necessary for modelling security and compliance
requirements. Their sole purpose is to provide a diagrammatic specification
of certain requirements, e. g., SoD.

116 A.D. Brucker

– Conceptually we would only like to specify a common hierarchy of actions,
but technically this is impossible. To integrate SecureBPMN into BPMN,
we need to define this hierarchy for each resource in BPMN (e. g., Activity)
separately.

These parts of the metamodel (see Figure 2) are specific to BPMN and not part
of the core of SecureBPMN.

5 Discussion and Future Work

We report a number of challenges and suggestions for future work that have
emerged from discussions with product groups of SAP SE and our own experi-
ence in applying SecureBPMN in several case studies in the domains air traffic
management (see Chapter 14) and e-government (see Chapter 15).

Fig. 3. Specifying security requirements diagrammatically with SecureBPMN as well
as using specialised user interfaces

Using SecureBPMN for Modelling Security-Aware Service Compositions 117

5.1 Security and Compliance Properties

The selection of security and compliance properties supported by SecureBPMN
is based on discussion with various experts at SAP SE as well as our own appli-
cations to case studies (e. g., see Chapter 14 and Chapter 15). In our experience,
these properties cover the most important needs of business experts and, more-
over, they can be expressed on the process level. Of course, there is a plethora
of equally important security requirements and mechanisms (e. g., encryption as
one means for realising confidentially) that need to be considered as well. In
particular the security mechanisms are usually on a technical level and, thus,
need to be defined during the implementation of a secure service composition.
Nevertheless, the integration of technical properties into compositions plans (or
business process descriptions) is an interesting line of future work.

5.2 Visualising Security Properties

One important property of BPMN is its support for describing business processes
in a diagrammatic way that supports both the business experts and the system
experts. Consequently, when extending such a language with a domain specific
language for modelling security and compliance properties, it is tempting to pro-
vide visual representations for those properties as well. Figure 3 shows the user
interface of our SecureBPMN modelling environment (which is based on Activiti
BPMN Platform) in which we implemented a visual notation for SoD and BoD
constraints (centre of the window). Applying this to larger case studies resulted
quickly in over-populated diagrams that neither helped the business expert nor
the security expert. Thus, we refrained from this approach and implemented
dedicated property panes (lower part of the window). While such dedicated user
interfaces provide the necessary tools for power users (i. e., security experts),
they are not the best choices for increasing the awareness of business experts
for security and compliance requirements. Thus, we still consider the question of
finding a good (visual) representation of security and compliance requirements
that can be easily understood by business experts, system experts, and security
experts to be open.

5.3 Diagrams vs. Models

Many users of diagrammatic modelling languages identify the models with their
visual representation, e. g., the business process diagram. This misconception
is, sadly, also perceptible in most business process modelling tools: these tools
present the process diagram in the centre of their user interface (see Figure 3
for an example) and provide no access to the underlying model. We argue, that
a model is something much more fundamental than a diagram, i. e., a diagram
is only a selected view on the model. Thus, often several diagrams, each of
them visualising different aspects of a model, are necessary to capture the actual
model. While this need for different views (including, e. g., an abstract, tree-
like view of all model elements and their properties) is already prevalent for

118 A.D. Brucker

modelling the functional aspects of a business process, it becomes inevitable
when non-functional aspects such as security, compliance, or performance are
added. Moreover, separating the model from its (visual) representation should
also avoid the need for adding meta-classes purely for providing a visualisation
(e. g., SecurityFlowNode and SecurityFlow in Figure 2).

5.4 Runtime Enforcement

While not the main scope of this chapter, we want to mention that modelling
security and compliance requirements is only the beginning: these requirements
need to be fulfilled at runtime, i. e., while executing the business processes in a
business process execution engine. For example, in our prototype [13] we generate
XACML [19] policies from the SecureBPMN models. An extended version of the
Activiti BPMN runtime uses the generated XACML policies to enforce the access
control, SoD/BoD, and the delegation requirements at runtime.

Within the Aniketos platform, we monitor compliance with various security
and trustworthiness requirements using ConSpec [1], see Chapter 14 for details.

6 Conclusion and Related Work

We presented SecureBPMN, a security and compliance modelling language and
its integration into BPMN. The integration of SecureBPMN, as a domain-specific
language, into BPMN results in a modelling language that supports both security
and compliance requirements as well as functional business requirements. Within
the Aniketos platform, the security requirements are elicited using the socio-
technical modelling language and tool (see Chapter 5, Chapter 6, and Chapter 7).

SecureBPMN is supported by a BPMN modelling and execution framework
[10, 13] that builds the back-bone of the Aniketos Secure Composition Frame-
work (see Chapter 9). This Framework, in addition to the modelling and secure
execution of service composition plans, supports the analysis of the consistency
and correctness of the implementation of security and compliance properties.

There is a large body of literature extending graphical modelling languages
with means for specifying security or privacy requirements. One of the first ap-
proaches is SecureUML [17], which is conceptually very close to the access con-
trol part of our BPMN extension. SecureUML is a metamodel based extension
of UML that allows for specifying RBAC-requirements for UML class models
and state charts. There are also various techniques for analysing SecureUML
models, e. g., Basin et al. [5] or Brucker et al. [12]. While based on the same
motivation, UMLsec [16] is not defined using a metamodel. Instead, the security
specifications are written, in an ad-hoc manner, in UML profiles. In contrast,
integrating security properties into business processes is a quite recent devel-
opment, e. g., motivated by the work of Wolter and Schaad [24]. In the same
year, Rodŕıguez et al. [22] presented a metamodel based approach introduction
a secure business process type supporting global security goals. In contrast, our
approach allows the fine-grained specification of security requirements for single

Using SecureBPMN for Modelling Security-Aware Service Compositions 119

tasks or data objects. Similar to UMLsec, Mülle et al. [18] present an attribute-
based approach (i. e., the conceptual equivalent of UML profiles) of specifying
security constraints in BPMN models without actually extending BPMN. Sim-
ilarly, Salnitri et al. [23] extend BPMN with means for specifying the security
properties of RMIAS [14].

Besides the modelling of (rather technical) security and compliance require-
ments, integrating risk and attack models into business processes is an important
line of research. For example, Altuhhova et al. [2] present an integration of the
information security risk management model into BPMN. In what sense, such
risk modelling and security requirement approaches can be combined, is still an
open question. For example, one could try to use SecureBPMN for describing
countermeasures for the risks and threats expressed in the information security
risk management model.

References

[1] Aktug, I., Naliuka, K.: Conspec - a formal language for policy specification. Sci.
Comput. Program. 74(1-2), 2–12 (2008), doi:10.1016/j.scico.2008.09.004

[2] Altuhhova, O., Matulevicius, R., Ahmed, N.: Towards definition of secure business
processes. In: Bajec, M., Eder, J. (eds.) CAiSE Workshops. LNBIP, vol. 112, pp.
1–15. Springer, Heidelberg (2012)

[3] American National Standard for Information Technology – Role Based Access
Control. ANSI, New York (February 2004) ANSI INCITS 359-2004

[4] Basel Committee on Banking Supervision. Basel III: A global regulatory frame-
work for more resilient banks and banking systems. Technical report, Bank for
International Settlements, Basel, Switzerland (2010)

[5] Basin, D., Clavel, M., Doser, J., Egea, M.: Automated analysis of security-
design models. Information and Software Technology 51(5), 815–831 (2009),
Special Issue on Model-Driven Development for Secure Information Systems,
doi:10.1016/j.infsof.2008.05.011, ISSN 0950-5849

[6] Basin, D., Burri, S.J., Karjoth, G.: Separation of duties as a service. In:
Proceedings of the 6th ACM Symposium on Information, Computer and
Communications Security, ASIACCS 2011, pp. 423–429. ACM Press (2011),
doi:10.1145/1966913.1966972, ISBN 978-1-4503-0564-8

[7] Basin, D.A., Doser, J., Lodderstedt, T.: Model driven security: From UML models
to access control infrastructures. ACM Transactions on Software Engineering and
Methodology 15(1), 39–91 (2006), doi:10.1145/1125808.1125810, ISSN 1049-331X.

[8] Brucker, A.D.: Integrating security aspects into business process models. it - Infor-
mation Technology 55(6), 239–246 (2013), doi:10.1524/itit.2013.2004, ISSN 2196-
7032

[9] Brucker, A.D., Doser, J.: Metamodel-based UML notations for domain-specific lan-
guages. In: Favre, J.M., Gasevic, D., Lämmel, R., Winter, A. (eds.) 4th Interna-
tional Workshop on Software Language Engineering, ATEM 2007 (October 2007)

[10] Brucker, A.D., Hang, I.: Secure and compliant implementation of business process-
driven systems. In: Rosa, M.L., Soffer, P. (eds.) Data Base Design Techniques 1978.
LNBIP, vol. 132, pp. 662–674. Springer, Heidelberg (1982)

[11] Brucker, A.D., Petritsch, H.: Extending access control models with break-glass. In:
Carminati, B., Joshi, J. (eds.) ACM SACMAT, pp. 197–206. ACM Press (2009),
doi:10.1145/1542207.1542239, ISBN 978-1-60558-537-6

120 A.D. Brucker

[12] Brucker, A.D., Doser, J., Wolff, B.: A model transformation semantics and analysis
methodology for secureUML. In: Wang, J., Whittle, J., Harel, D., Reggio, G. (eds.)
MoDELS 2006. LNCS, vol. 4199, pp. 306–320. Springer, Heidelberg (2006), An
extended version of this paper is available as ETH Technical Report, no. 524

[13] Brucker, A.D., Hang, I., Lückemeyer, G., Ruparel, R.: SecureBPMN: Modeling and
enforcing access control requirements in business processes. In: ACM SACMAT,
pp. 123–126. ACM Press (2012), doi:10.1145/2295136.2295160, ISBN 978-1-4503-
1295-0

[14] Cherdantseva, Y., Hilton, J.: A reference model of information assur-
ance amp;amp; security. In: 2013 Eighth International Conference on Avail-
ability, Reliability and Security (ARES), pp. 546–555 (September 2013),
doi:10.1109/ARES.2013.72

[15] HIPAA. Health Insurance Portability and Accountability Act of 1996 (1996),
http://www.cms.hhs.gov/HIPAAGenInfo/

[16] Jürjens, J., Rumm, R.: Model-based security analysis of the german health card
architecture. Methods Inf. Med. 47(5), 26–1270 (2008) ISSN 0026-1270

[17] Lodderstedt, T., Basin, D., Doser, J.: SecureUML: A UML-based modeling lan-
guage for model-driven security. In: Jézéquel, J.-M., Hussmann, H., Cook, S. (eds.)
UML 2002. LNCS, vol. 2460, pp. 426–540. Springer, Heidelberg (2002)

[18] Mülle, J., von Stackelberg, S., Böhm, K.: A security language for
BPMN process models. Technical report, University Karlsruhe, KIT (2011),
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000023041

[19] OASIS. eXtensible Access Control Markup Language (XACML), version 2.0
(2005a), http://docs.oasis-open.org/xacml/2.0/XACML-2.0-OS-NORMATIVE.zip

[20] OASIS. Web services business process execution language (BPEL), version 2.0
(April 2007), urlhttp://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf.

[21] Object Management Group. Business process model and notation (BPMN), ver-
sion 2.0 (January 2011), Available as OMG document formal/2011-01-03

[22] Rodŕıguez, A., Fernández-Medina, E., Piattini, M.: A BPMN extension for the
modeling of security requirements in business processes. IEICE - Trans. Inf.
Syst. E90-D, 745–752 (2007), doi:10.1093/ietisy/e90-d.4.745, ISSN 0916-8532

[23] Salnitri, M., Dalpiaz, F., Giorgini, P.: Modeling and verifying security policies in
business processes. In: Bider, I., Gaaloul, K., Krogstie, J., Nurcan, S., Proper,
H.A., Schmidt, R., Soffer, P. (eds.) BMMDS/EMMSAD. LNBIP, vol. 175, pp.
200–214. Springer, Heidelberg (2014)

[24] Wolter, C., Schaad, A.: Modeling of task-based authorization constraints in
BPMN. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS,
vol. 4714, pp. 64–79. Springer, Heidelberg (2007)

http://www.cms.hhs.gov/HIPAAGenInfo/
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000023041
http://docs.oasis-open.org/xacml/2.0/XACML-2.0-OS-NORMATIVE.zip

The Aniketos Service Composition Framework

Analysing and Ranking of Secure Services

Achim D. Brucker1, Francesco Malmignati2, Madjid Merabti3, Qi Shi3,
and Bo Zhou3

1 SAP SE, Vincenz-Priessnitz-Str. 1, 76131 Karlsruhe, Germany
achim.brucker@sap.com

2 Selex ES S.p.A, A Finmeccanica Company, Italy
francesco.malmignati@guests.selex-es.com

3 Liverpool John Moores University, Liverpool, United Kingdom
{m.merabti,q.shi,b.zhou}@ljmu.ac.uk

Abstract. Modern applications are inherently heterogeneous: they are
built by composing loosely coupled services that are, usually, offered and
operated by different service providers. While this approach increases the
flexibility of the composed applications, it makes the implementation of
security and trustworthiness requirements much more difficult. Therefore
there is a need for new approaches that integrate security requirements
right from the beginning while composing service-based applications, in
order to ensure security and trustworthiness.
In this chapter, we present a framework for secure service composi-

tion using a model-based approach for specifying, building, and executing
composed services. As a unique feature, this framework integrates secu-
rity requirements as a first class citizen and, thus, avoids the “security
as an afterthought” paradigm.

Keywords: secure service composition, BPMN, service modelling, ser-
vice availability.

1 Introduction

A service-oriented architecture (SOA) provides a platform for services devel-
oped by different providers to work together [23]. Facilitated by standardised
inter-operation and description languages, such as WSDL [10], services can be
composed to form a larger application based on users’ requirements.

The focus of research in SOA was traditionally on the realisation of service
composition in terms of how to construct the services so that they can work
together seamlessly. With the continuous development of SOA, it has been re-
alised lately that the security issue has become a barrier that hinders wider
application of SOA. Apart from the conventional security problems faced by
other systems, e. g., confidentiality, integrity, privacy and so on, the situation in
SOA is more complicated given the fact that the services are developed by dif-
ferent providers. Concerns over inconsistent security policies and configurations
must be addressed as top priority.

A.D. Brucker et al. (Eds.): Secure Service Composition, LNCS 8900, pp. 121–135, 2014.
c© Springer International Publishing Switzerland 2014

mailto:achim.brucker@sap.com
mailto:francesco.malmignati@guests.selex-es.com
mailto:m.merabti@ljmu.ac.uk
mailto:q.shi@ljmu.ac.uk
mailto:b.zhou@ljmu.ac.uk

122 A.D. Brucker et al.

We propose a secure and trustworthy service composition framework that
supports the service developer with the capability of composing services with
security requirements in mind. The services are modelled and composed using
a toolchain supporting the Business Process Model and Notation (BPMN) [19].
A service developer first constructs a BPMN service composition plan based on
his/her functional requirements. It specifies what are the tasks needed and how
these tasks interact with each other. We extend the BPMN notations so that
certain security requirements can be specified within the BPMN composition
plan as well. After searching for suitable services in an open marketplace, the
abstract BPMN composition plan will be associated with concrete services for
each task in the plan. The service composition is verified and guaranteed to
comply with the service developer’s security requirements before deployment.

Unlike other SOA solutions, our framework takes the security requirements
into account during the service composition process. A service developer can
specify his/her security needs directly in the extended BPMN composition plan
so only those services that satisfy the security requirements will be selected. In
addition, the service developer is given the flexibility to set priorities that will
be used to quantify and compare service compositions, from all three aspects of
security, quality of service, and cost. This is particularly useful when the service
developer faces a wide range of choices.

2 The Aniketos Secure Service Composition Framework

Building secure and trustworthy composite services on top of a SOA is a chal-
lenging task. At design-time the service developer needs to select the optimal set
of services that satisfies both the functional and security requirements put by the
end user. At runtime, a service may become unavailable due to various reasons
and has to be replaced automatically with alternative services that, at least,
offer the same security and trust guarantees. In addition, the service developer
also needs to decide if a given security property should be enforced statically
or dynamically. One the one hand, a static enforcement creates less overhead
at runtime, it reduces the flexibility of service substitution or re-composition.
On the other hand, a dynamic enforcement is usually more flexible but requires
more system resources at runtime. Thus, a service designer needs to balance the
system resources while fulfilling the security and compliance requirements.

To support the service developer in building flexible, secure, and trustworthy
services through composition, we propose a secure service composition framework
that addresses both the design-time and runtime service compositions. In this
chapter we focus only on the technical parts of the design-time process, i. e.,
we exclude the requirements elicitation, as well as the service deployment and
runtime adaptation parts.

Figure 1 gives an high-level overview of the Aniketos Service Composition
Framework which is the design-time modelling and analysis part of the Anike-
tos platform [4]. At the beginning, domain experts together with requirement
engineers specify the high-level business process as well as the security and trust

The Aniketos Service Composition Framework 123

Fig. 1. The Aniketos Service Composition Framework

requirements by using the Aniketos Socio-technical Modelling Tool [20]. It pro-
vides the opportunity to express security needs not just from technical, but also
from social aspects. From these semi-formal descriptions, the model transforma-
tion module helps to generate composition plans, which are presented in BPMN
format. These composition plans are coarse-grained. Thus, before these composi-
tion plans can be deployed in the Aniketos Service Runtime Environment, they
will be refined by a service developer using the Aniketos Secure Composition
Framework.

The Aniketos Service Composition Framework provides an Eclipse-based en-
vironment (the Service Composition Modeller) to the service developer for refin-
ing the composition plans as well as checking their security and trust properties.
Specifically, the service developer can use the following component modules:
– Model Transformation Module: As described above, this module helps to

generate the basic elements of the composition plan from the requirement
document that expressed in the Aniketos Socio-technical Modelling Lan-
guage [20] (see Chapter 5, Chapter 6, and Chapter 7).

– Secure Composition Planer Module: This module allows the service developer
semi-automatically select the secure services for a given composition plan
(see Section 4 for more details). To check the compositions comply with the
security requirements, this module uses the Security Verification Module as
well as the Security Property Determination Module.

– Security Verification Module: This module provides formal validation and
verification solutions for composed services (and, not discussed in this chap-
ter, atomic services [9]). For example, role-based access control and separa-
tion of duty properties (see Section 3 for details) are verified by the Security
Verification Module (see Chapter 8 and Chapter 10).

– Security Property Determination Module: This module provides an uniform
interface for accessing security properties of services. Moreover, this module
stores the verification status of security properties to avoid an unnecessary
(expensive) re-verification.

124 A.D. Brucker et al.

– Service Marketplace: This component registers and stores the services for
open access. Secure Composition Planner Module selects services from the
Service Marketplace (see Chapter 4).

The Aniketos Service Composition Framework supports composition of services,
as well as the transformation from social to technical modelling of security re-
quirements. It provides formal verification of these security requirements and
helps the end user to choose the most suitable services. In the next two sections,
we will focus on the two key research challenges: 1) Analysing the consistency
of security properties and 2) quantifying and ranking service compositions.

3 Modelling and Verifying Security Properties

In this section, we present a validation approach for fine-grained separation-of-
duty and binding-of-duty constraints. This work is implemented as core tech-
nique for the security verification module mentioned in Section 2 and assumes
composition plans as discussed in Chapter 8.

3.1 Analysing SecureBPMN Models

Modelling non-functional requirements, right from the beginning, is important
but it can only be the first step in building secure and trustworthy service-
oriented systems, which requires various analysis techniques, e. g., for
1. checking the internal consistency of the security specification, for example

ensure the access control requirements and need-to-know requirements do
not contradict each other.

2. checking the information (data) flow on the process level to examine infor-
mation flow requirements as well as high-level need-to-know requirements.

3. checking that process-level security requirements are fulfilled on the imple-
mentation and configuration level. This is particular important for implemen-
tation and configuration artifacts that are not generated in a model-driven
approach.

4. checking that the service compositions (business processes) are executable if
the security requirements are enforced, i. e., there exists a valid execution
trace from a start to an end event.

5. analysing and comparing different techniques (e. g., resulting in different
costs or runtime resource requirements) for implementing security require-
ments.

In this section, we discuss, as an example, an analysis method for checking
the consistency between role-based access control (RBAC) and separation of
duty (SoD)/binding of duty (BoD) specifications (see Chapter 10). This anal-
ysis method contributes to both the item 1 and item 5 mentioned above. Our
modular architecture allows to integrate other analysis approaches easily and
our prototypes already support other analysis as well. For example, [9] presents
an analysis that contributes to the item 3.

The Aniketos Service Composition Framework 125

Fig. 2. Security Validation within the Activiti BPMN Editor

Adding constraints such as SoD or BoD to a system that is already restricted
by RBAC results in questions like the following: “Is the SoD constraint already
guaranteed by the RBAC configuration?” If an RBAC configuration ensures a
SoD constraint, e. g., as two tasks are only executable by different roles r1, r2
and there is no user ui that is assigned to both roles r1 and r2, we call this a
static separation of duty. Otherwise, we call it a dynamic separation of duty.

While static separation of duty constraint do not need to be enforced at
runtime and, thus, reduce the runtime costs, it requires to re-check the SoD
constraint after each and every modification of the RBAC configuration (e. g.,
adding new roles, changing the role assignment of subjects). In contrast, dy-
namic separation of duty constraint requires a runtime check for each access to
a resource that is constrained by the separation of duty. Although dynamic SoD
is more flexible, it requires additional resources and, thus, costs, at runtime.
Moreover, additional security checks might result in delays for users and, thus,
might reduce the overall usability of the system.

To address these issues, we use an analysis method inspired by the work of
Arsac et al. [5]. We extended their work significantly to support n-ary SoD
(BoD) constraints as well as constraints on the level of constrained permis-
sion (instead the task-level). As Arsac et al. [5], we use the AVANTSSAR tool

126 A.D. Brucker et al.

suite (www.avantssar.eu) as back-end for our formal analysis. Consequently, we
translate the service composition plan and its security requirements to ASLan [5],
i. e., the input language of the AVANTSSAR tool suite. The choice of ASLan is
based on two reasons: 1) the experiments carried out by Arsac et al. [5] show
that ASLan is expressive enough to capture the requirements of security enriched
service compositions and 2) the use of the same tools allows for developing a
common verification back-end for our SecureBPMN-based approach as well as
the approach developed by Arsac et al. [5]. In fact, we could demonstrate that
the analysis can be provided as a cloud-based service that can be used by both
modelling approaches [11].

Fig. 3. A composed service for booking flights and hotels

Assume, in our example from Chapter 8 (see Figure 3), we want to coun-
terfeit fraud or price-fixing agreements. Therefore, we require that the services
Find suitable flights and Book the flight are operated by different provides (and
similarly, for the hotel booking). The actual RBAC configuration is inferred au-
tomatically from the information available in the service marketplace (i. e., the
service-level agreements).

Our formal analysis translates the security configuration (here, RBAC and
SoD/BoD) as well as the security properties that should be verified into the
formal language ASLan [5]. In our example, the result of this translation (only
an excerpt) for the security configuration looks like the following:

hc rbac_ac (Subject , Role , Task)
:= CanDoAction(Subject , Role , Task)
:- user_to_role(Subject , Role), poto(Role , Task)

hc poto_T6 := poto(TravelAgency1 , Find suitable flights)
hc poto_T7 := poto(TravelAgency1 , Book the flight)

The security goal, in this case a SoD constraint between the services Find
suitable flights and Book the flight looks as below:

attack_state sod_securitySod1_1(Subject0 ,Subject1 ,
Instance1 ,Instance2)

:= executed (Subject0 ,task(Find suitable flights ,Instance1)).
executed (Subject1 ,task(Book the flight;Instance2))
¬(equal(Subject0 ,Subject1))

www.avantssar.eu

The Aniketos Service Composition Framework 127

This configuration, obviously, violates the SoD constraint as the TravelAgency1
can do both searching for flights and booking them. In this case, a dishonest
travel agency could prefer flights with a higher bonus for the travel agency that
are not necessarily the cheapest for the traveller. This is detected by our formal
analysis, e. g., the verification module returns the following “attack trace:”

1. [w_usertask1(fnat(n0 ,0 ,0))]
2. [authorizeTaskExecution(bo,user ,usertask1 ,fnat(n0 ,0 ,0))]
3. [h_taskExecution(bo,user ,usertask1 ,fnat(n0 ,0,0),

in_usertask1 ,out_usertask1)]
4. [w_parallelgateway1(fnat(n0 ,0 ,0))]
5. [w_servicetask1(fnat(n1 ,0,0)),

w_servicetask2(fnat(n2 ,0 ,0))]
6. [authorizeTaskExecution(flight1 ,flightservice ,

servicetask2 ,fnat(n2 ,0,0)),
authorizeTaskExecution(travelagency1 ,travelagency ,

servicetask1 ,fnat(n1 ,0 ,0))]

...

15. h_taskExecution(travelagency1 , travelagency ,
servicetask9 ,fnat(n8 ,0,0),
in_servicetask9 ,out_servicetask9)

Of course, this textual representation is not well-suited to practitioners. There-
fore, we developed a user-friendly visualisation of such an attack in terms of the
high-level composition plan (i. e., on the level of the BPMN model). Figure 2
shows how our prototype visualises such a violation to the service developer.
Here, the service developer is able to manually step through all necessary actions
that a dishonest agency would execute to actually violate the SoD constraint.

After such an analysis, the service developer needs to decide how to mitigate
this risk. In general, there are several options, among them
– re-design the composition plan, to avoid the need for a particular separation

of duty constraint,
– instruct the service composition framework to ensure the selection of different

service providers, or
– enforce a dynamic separation of duty at runtime. For this, our prototype can

generate configurations for XACML [18] based access control infrastructures.
Certainly, the concrete mitigation plan depends on the actual use case.

4 Quantifying and Ranking Service Compositions

The security property modelling and verification techniques allow the service
consumer specify certain security properties that the service composition has to
comply with. In practice, the number of compositions that satisfy the security
requirements could still be large. Therefore another dilemma always faced by
the service consumer is to make a choice from the service composition pools.

In this section, we introduce the mechanism used in Aniketos platform for
quantifying and ranking service compositions, i. e., we support the service con-
sumer in choosing, based on an automated recommendation, the most suitable
service composition. This recommendation should be made based on the property

128 A.D. Brucker et al.

of the composition as a whole, rather than just based on individual sub-services
in the composition. As a starting point, we try to solve this issue from three
aspects, which are the three factors that mostly considered by service consumers:
encryption (security), availability (QoS), and cost (business).

In most of the cases web services are made available together with a service-
level agreement (SLA). SLA is a formal guarantee that has to be accepted by
service consumers before the service being used. SLA normally specifies the
properties of a service across different level. For example, on business level it
describes what kind of functionality the service offers and how the users will be
charged (cost); on technical level it may describe what kind of security protection
is deployed (e. g., encryption) and the number of shutdowns the service might
encounter each year (availability). We focus on these three properties in this
section not only because they are normally included in the SLA, it is also because
they are the properties that verifiable at runtime. For example, the availability
of service can be easily recorded and calculated by examining the logs stored in
the system.

This work is implemented as key part for the security composition planner
module mentioned in Section 2.

4.1 Encryption – The Weakest Link

There are some cases when the weakest link principle is particularly applicable to
service composition. It states that when services are composed together, the se-
curity capability of the composite service is equal to what the weakest service or
link is offering. This security principle is applicable to many security properties
and encryption is one of them. When encryption is applied to communications
between services, the services may adopt different encryption algorithms or key
lengths which give them different encryption strength. In order to communi-
cate with each other, the service with advanced encryption algorithm may have
to degrade its encryption strength during the composition. Thus the composite
services literally use the weakest encryption strategy in part of their commu-
nications. For example, consider the case in Figure 4 where service A supports
encryption algorithms of Blowfish and 3DES, service B supports Blowfish and
AES, and service C supports 3DES and AES. To communicate with each other,
the link between service A and B is encrypted with Blowfish and the link be-
tween B and C is encrypted with AES. Therefore the overall strength of the
composition, in terms of keeping communications confidential, is the weaker one
between Blowfish and AES.

Fig. 4. Set Ranking Criteria

The Aniketos Service Composition Framework 129

In Aniketos, the weakest link principle is used to determine the security ca-
pacity of the composite services. It should be noted however, that the weakest
link principle is not universally applicable. There are cases where alterations
to a service composition can be utilised to improve the security of a composite
service to be greater than that of the weakest component. An example might be
where a firewall service is used to shield an otherwise vulnerable service from
outside attack. The use of the firewall mitigates the vulnerability exposed by the
weaker service. And vice versa it may also apply in reverse: the introduction of a
component may serve as an exacerbating factor that reduces the security of the
overall composition to a degree beyond that posed by the service were it to act
in isolation. This often results from interactions between incompatible security
properties.

To simplify the issue, in this study we focus on the encryption. Therefore each
link between services is checked, and the encryption strength of the composition
is determined by the weakest link, i. e.,

E =
n

min
i=1

Ei

where E is the encryption strength of the composition and Ei is the encryption
strength for each link i in the composition. Ei is determined by the strongest
algorithm, which supported by both services at each end of the link i.

The quantitative value (from 0.9 to 0 in our case), however is predetermined
by expertise in advance based on Table 1. Please note that as claimed in [14], the
quantitatively ranking of encryption algorithms is possible but heavily depends
on the metrics and target scenario. Table 1 is just a guideline and rather used
to demonstrate our ideas in this front.

Table 1. Quantitative Value of Encryption Algorithms

Algorithm Name Quantitative Value

Serpent 0.9
AES (Rijndael) 0.8
3DES 0.7
CAST128/256 0.6
Twofish 0.5
Blowfish 0.4
MARSH 0.3
Other algorithms 0.2
Codings 0.1
Plain text 0

4.2 Availability

Availability is another aspect being used to compare services. It relates to the
quality of services (QoS). Availability in this scenario means the available time

130 A.D. Brucker et al.

ratio of a service. Unexpected shutdown of a service could cause severe dam-
age to service consumers’ business and service developer’s reputation. Therefore
seeking guarantee from service developer about the service availability is one of
the top priories for service consumers, before they commit to use the service.
The situation gets complicated in service composition because a composition’s
availability is decided by not only the technical specifications of the sub-services,
but also by the structure of the composition.

Take the example of the travel agency in Figure 3 on page 126, most of the
services are placed in sequential order. That means if one of the sub-service is not
available, the entire composition will stop. Therefore the availability of sequen-
tial tasks is the product of all the sub-services’ availability value in percentage.
However, the services Find suitable hotels and Find suitable flights are executed in
parallel. It means these two services can be carried out separately. Nonetheless
they still have to be both finished before the next task Get user’s credit card data
can be executed. Therefore for parallel tasks the availability value is the mini-
mum among them. For services that are exclusive to each other, the availability
of the composition depends on which service has been eventually used.

Table 2 shows the rules that we used for calculating the availability of com-
posite services. In this study we assume that the services are independent from
each other. If in Figure 3 each service has the following availability value: Find
suitable hotels: 0.99, Find suitable flights: 0.96, Get user’s credit card data: 0.97,
Book the hotel: 0.99, Book the flight: 0.98, and Undo hotel booking: 0.94. The
availability value for a successful transaction will be calculated as:

A = min(0.99, 0.96)× 0.97× 0.99× 0.98 = 0.90

where A represents availability of the composition.

Table 2. Rules to Calculate Availability

Description Calculation

Sequence
∏n

i=1 Ai

Parallel min(A1, . . . , An)

Exclusive Ai

4.3 Cost

Finally the last factor that also plays important role in consumer’s decision
making is the cost. Higher security and quality of service normally means higher
price, which must be within a consumer’s budget. Comparing to encryption and
availability, calculating the cost of a service composition is more straightforward.
When discount is not considered, it is simply the sum of all the sub-services’
costs, i. e.:

The Aniketos Service Composition Framework 131

C =

n∑
i=1

Ci

where C is the cost for the composition and Ci is the cost for sub-service i.

4.4 Ranking Compositions

In Aniketos we implemented a simple user interface providing prioritising options
so the service consumers can specify the criteria that they want to use to rank
secure service compositions. As shown in Figure 5, the service consumer basically

Fig. 5. Set Ranking Criteria

can choose how much weights he wants to put on each criterion of encryption,
availability, and cost. Assume the consumer sets the weights to 0.32, 0.53 and
0.15 respectively for availability and cost, the overall value V for each service
composition will be:

V = 0.32× E + 0.53×A+ 0.15× B − C

B

where E represents the value of encryption strength, A represents the value of
availability, C represents cost, and B represents the consumer’s budget. Appar-
ently higher value of E and A, and lower value of C will result in greater value
of V . In this way the generated service compositions can not only be security-
wise verified by our SecureBPMN extensions, but also ranked easily based on
consumer’s other priorities.

The Aniketos platform targets secure service composition at both design-
time and runtime. Therefore the prioritising options set by consumer at design-
time will be stored in the consumer’s policy configurations and referred back at
runtime. So the ranking mechanism will still work on behalf of the consumer at
runtime, in case the service composition changes.

132 A.D. Brucker et al.

Please note that the ranking is for service compositions that already satisfy
users’ requirements, i. e., the service compositions ranked here should have ac-
ceptable values in E, A and C first. This can be easily enforced by put threshold
values for each of the criteria.

5 Conclusion and Related Work

5.1 Related Work

We see three areas of related work: 1. modelling of security requirements for
process models, 2. analysing security properties of process models, and 3. deter-
mining security of composite services.

There is a large body of literature extending graphical modelling languages
with means for specifying security or privacy requirements. One of the first
approaches is SecureUML [16], which is conceptually very close to our BPMN
extension. SecureUML is a meta-model-based extension of UML that allows for
specifying RBAC-requirements for UML class models and state charts. There
are also various techniques for analysing SecureUML models, e. g., [6] or [8].
While based on the same motivation, UMLsec [15] is not defined using a meta-
model. Instead, the security specifications are written, in an ad-hoc manner, in
UML profiles. Integrating security properties into business processes is a quite
recent development, e. g., motivated by [25]. In the same year, [21] presented
a meta-model based approach introducing a secure business process type that
supports global security goals. In contrast, our approach allows the fine-grained
specification of security requirements for single tasks or data objects. Similar
to UMLsec, [17] presented an attribute-based approach (i. e., the conceptual
equivalent of UML profiles) of specifying security constraints in BPMN models
without actually extending BPMN.

With respect to the validation of security requirements on the business process
level, the closed related work is the work of [24] and [5] that both support the
checking if an access control specification enforces binary static of duty and
binding of duty constraints. Apart from security properties, there is also a strong
need for checking the consistency of business process itself, e. g., the absence of
deadlocks. There are several works that concentrate on this kind of process
internal consistency validation, e. g., [12] and [2]. Moreover, there are several
approaches for analysing access control constraints over UML models, e. g., [22],
[8], and [15]. These approaches are limited to simple access control models, as
the UML models are usually quite distant from business process descriptions
that comprising high level security and compliance goals.

Last but not least, determining the properties of composite service based on
its sub-services is another area that attracts attentions from research commu-
nity. Most of the work related to security focus on determining trust due to its
subjectiveness and openness. This undermines the need for solutions to deter-
mine other properties as well. [13] described how to present trustworthiness for
composite services based on various factors such as reputations and qualities of
the services. The method took the structure of the composition into account.

The Aniketos Service Composition Framework 133

[28] proposed a classification method that abstracts and quantifies service com-
positions based on five key security aspects: confidentiality, integrity, availability,
accountability and non-repudiation. There are also other works that focus on se-
curity properties of system-of-systems such as [27] and [26]. Comparing to these
works, our approach concentrates on the most objective and justifiable properties
in encryption, availability and cost, which represents security, QoS and business
respectively. Our solution also gives the flexibility to the service consumers so
they can decide how to rank the service compositions themselves.

5.2 Lessons Learned

We discussed our approach with various business process modelling experts at
SAP SE. Overall, these experiences show that our approach is applicable to a
wide range of applications domains.

Our evaluation showed that the discussed security and compliance require-
ments can be expressed at the business process level. Moreover, they are sufficient
for most modelling needs. Still, in particular our telecommunication case study
raised the need for various notions of confidentiality. As such, confidentiality is
not (yet) supported by SecureBPMN; currently, SecureBPMN only supports a
very specific form, the need-to-know-principle. Confidentiality, in terms of requir-
ing encrypted communications between the different services (tasks) is another
important requirement. The choice of the correct encryption technology (in fact,
on a technical level, we need to ensure that data is only communicated over
authenticated and secured channels) requires a multitude of technical decisions
(e. g., encryption algorithms, length of cryptographic keys). As these are merely
technical decisions, we can only record the high-level requirement on the process
level and need to refine them interactively during the implementation of a secure
service composition.

Moreover, our evaluation showed that in practice, most service compositions
are rather small (e. g., less than 15 services or tasks). On these sizes of models,
our formal analysis usually is able to validate security or compliance properties
within less then 20 seconds. While this is fast enough for the (interactive) design
of service compositions, it is too slow for automatic service re-compositions at
runtime. Therefore, the efficient caching, which needs to ensure the authenticity
and validity, of validation results is of outermost importance.

5.3 Conclusion and Future Work

In this chapter we presented an integrated framework for modelling, analysing,
and ensuring secure service compositions. This framework, called Aniketos Ser-
vice Composition Framework is part of a larger platform that supports the end-
to-end (i. e., ranging from the requirements elicitation to the actual operation of
the developed system) development of secure and trustworthy SOA and cloud-
based systems. This end-to-end integration is a unique feature of our approach
that not only enables traditional security and consistency analysis on the model
and implementation level, it also supports certain types of economical analysis

134 A.D. Brucker et al.

approaches that allow the service consumers to decide between different security
solutions based on their encryption strengths, availabilities and costs.

There are several lines of future work. One of them is the development of sup-
port for system audits, e. g., by integrating analysis techniques such as [1] or [3].
In particular, process mining approaches appear to be particularly interesting:
combining process mining with our business process animation, i. e., the visual-
isation of attack traces, allows interactive investigation of the deviations of the
actual service composition execution with the intended one. Moreover, we are
also interested in the integration analysis techniques that check the internal con-
sistency of processes, e. g., [12], as well as their reconfiguration, e. g., [2]. Finally,
we intend to integrate security testing approaches, e. g., [7], for validating the
compliance of services and (legacy) back-end systems in a black-box scenario.

References

[1] van der Aalst, W., de Medeiros, A.: Process mining and security: Detecting anoma-
lous process executions and checking process conformance. ENTCS 121, 3–21
(2005)

[2] van der Aalst, W.M.P., Dumas, M., Gottschalk, F., ter Hofstede, A.H.M., La
Rosa, M., Mendling, J.: Correctness-preserving configuration of business process
models. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961, pp.
46–61. Springer, Heidelberg (2008)

[3] Accorsi, R.,Wonnemann, C.: inDico: Information flow analysis of business processes
for confidentiality requirements. In: Cuellar, J., Lopez, J., Barthe, G., Pretschner,
A. (eds.) STM 2010. LNCS, vol. 6710, pp. 194–209. Springer, Heidelberg (2011)

[4] Aniketos: Deliverable 5.1: Aniketos platform design and platform basis implemen-
tation (2011)

[5] Arsac, W., Compagna, L., Pellegrino, G., Ponta, S.E.: Security validation of busi-
ness processes via model-checking. In: Erlingsson, Ú., Wieringa, R., Zannone, N.
(eds.) ESSoS 2011. LNCS, vol. 6542, pp. 29–42. Springer, Heidelberg (2011)

[6] Basin, D., Clavel, M., Doser, J., Egea, M.: Automated analysis of security-design
models. Information and Software Technology 51(5), 815–831 (2009)

[7] Brucker, A.D., Brügger, L., Kearney, P., Wolff, B.: An approach to modular and
testable security models of real-world health-care applications. In: SACMAT, pp.
133–142. ACM Press (2011)

[8] Brucker, A.D., Doser, J., Wolff, B.: A model transformation semantics and analysis
methodology for secureUML. In: Wang, J., Whittle, J., Harel, D., Reggio, G. (eds.)
MoDELS 2006. LNCS, vol. 4199, pp. 306–320. Springer, Heidelberg (2006)

[9] Brucker, A.D., Hang, I.: Secure and compliant implementation of business process-
driven systems. In: Rosa, M.L., Soffer, P. (eds.) Joint Workshop on Security in
Business Processes (SBP). LNBIP, vol. 132, pp. 662–674. Springer, Heidelberg
(1982)

[10] Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web services de-
scription language (WSDL) 1.1. Tech. rep., W3C (2001)

[11] Compagna, L., Guilleminot, P., Brucker, A.D.: Business process compliance via
security validation as a service. In: Oriol, M., Penix, J. (eds.) Testing Tools Track
of ICST. IEEE Computer Society (2013)

The Aniketos Service Composition Framework 135

[12] Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business pro-
cess models in BPMN. Information & Software Technology 50(12), 1281–1294
(2008)

[13] Elshaafi, H., McGibney, J., Botvich, D.: Trustworthiness monitoring and predic-
tion of composite services. In: ISCC, pp. 580–587 (2012)

[14] Jorstad, N., Landgrave, T.S.: Cryptographic algorithm metrics. In: 20th National
Information Systems Security Conference (1997)

[15] Jürjens, J., Rumm, R.: Model-based security analysis of the german health card
architecture. Methods Inf Med 47(5), 409–416 (2008)

[16] Lodderstedt, T., Basin, D., Doser, J.: SecureUML: A UML-based modeling lan-
guage for model-driven security. In: Jézéquel, J.-M., Hussmann, H., Cook, S. (eds.)
UML 2002. LNCS, vol. 2460, pp. 426–441. Springer, Heidelberg (2002)

[17] Mülle, J., von Stackelberg, S., Böhm, K.: A security language for BPMN process
models. Tech. rep., University Karlsruhe, KIT (2011)

[18] OASIS: eXtensible Access Control Markup Language (XACML), version 2.0
(2005), http://docs.oasis-open.org/xacml/2.0/XACML-2.0-OS-NORMATIVE.zip

[19] Object Management Group: Business process model and notation bpmn, version
2.0 (2011), Available as omg document formal/2011-01-03

[20] Paja, E., Dalpiaz, F., Poggianella, M., Roberti, P., Giorgini, P.: Modelling security
requirements in socio-technical systems with sts-tool. In: Kirikova, M., Stirna, J.
(eds.) CAiSE Forum, vol. 855, pp. 155–162 (2012)

[21] Rodŕıguez, A., Fernández-Medina, E., Piattini, M.: A BPMN extension for the
modeling of security requirements in business processes. IEICE - Trans. Inf.
Syst. E90-D, 745–752 (2007)

[22] Sohr, K., Ahn, G.-J., Gogolla, M., Migge, L.: Specification and validation of au-
thorisation constraints using UML and OCL. In: di Vimercati, S.d.C., Syverson,
P.F., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 64–79. Springer,
Heidelberg (2005)

[23] Welke, R., Hirschheim, R., Schwarz, A.: Service-oriented architecture maturity.
Computer 15(1), 662–674 (2011)

[24] Wolter, C., Meinel, C.: An approach to capture authorisation requirements in
business processes. Requir. Eng. 15(4), 359–373 (2010)

[25] Wolter, C., Schaad, A.: Modeling of task-based authorization constraints in
BPMN. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS,
vol. 4714, pp. 64–79. Springer, Heidelberg (2007)

[26] Zhou, B., Arabo, A., Drew, O., Llewellyn-Jones, D., Merabti, M., Shi, Q., Waller,
A., Craddock, R., Jones, G., Arnold, K.L.Y.: Data flow security analysis for
system-of-systems in a public security incident. In: ACSF, pp. 8–14 (2008)

[27] Zhou,B.,Drew,O.,Arabo,A.,Llewellyn-Jones,D.,Kifayat,K.,Merabti,M., Shi,Q.,
Craddock, R., Waller, A., Jones, G.: System-of-systems boundary check in a public
event scenario. In: SoSE (2010)

[28] Zhou, B., Llewellyn-Jones, D., Shi, Q., Asim, M., Merabti, M., Lamb, D.: Secure
service composition adaptation based on simulated annealing. In: ACSAC, pp.
49–55 (2012)

http://docs.oasis-open.org/xacml/2.0/XACML-2.0-OS-NORMATIVE.zip

Compliance Validation

of Secure Service Compositions

Achim D. Brucker1, Luca Compagna2, and Pierre Guilleminot2

1 SAP SE, Vincenz-Priessnitz-Str. 1, 76131 Karlsruhe, Germany
achim.brucker@sap.com

2 SAP SE, Sophia-Antipolis, Mougins, France
luca.compagna@sap.com

Abstract. The Aniketos Secure Composition Framework supports the
specification of secure and trustworthy composition plans in term of
BPMN. The diversity of security and trust properties that is supported
by the Aniketos framework allows, on the one hand, for expressing a large
number of security and compliance requirements. On the other hand, the
resulting expressiveness results in the risk that high-level compliance re-
quirements (e. g., separation of duty) are not implemented by low-level
security means (e. g., role-based access control configurations).
In this chapter, we present the Composition Security Validation Mod-

ule (CSVM). The CSVM provides a service for checking the compliance
of secure and trustworthy composition plans to the service designer. As
proof-of-concept we created a prototype in which the CSVM module is
deployed on the SAP NetWeaver Cloud and two CSVM Connectors are
built supporting two well-known BPMN tools: SAP NetWeaver BPM
and Activiti Designer.

Keywords: Validation, Security, BPMN, SecureBPMN, Compliance.

1 Introduction

The Aniketos Secure Composition Framework (see Chapter 4 and Chapter 9)
supports the specification of secure and trustworthy composition plans in term
of BPMN (see Chapter 8). The diversity of security and trust properties that is
supported by the Aniketos Secure Composition Framework allows, on the one
hand, for expressing a large number of security and compliance requirements.
On the other hand, the resulting expressiveness results in the risk that high-
level compliance requirements (e. g., separation of duty) are not implemented by
low-level security controls (e. g., role-based access control configurations).

To ensure the compliance of service composition to the specified security
requirements, we are integrating a model-checking based validation approach
(see [3, 4, 8] for details) into the Aniketos platform. This integration into the
Aniketos Secure Composition Framework [7] consists out of a server compo-
nent (the Composition Security Validation Module) and an integration into the
Activiti Designer which is also used as front-end the Aniketos Secure Compo-
sition Framework. Moreover, we provide an alternative integration into SAP

A.D. Brucker et al. (Eds.): Secure Service Composition, LNCS 8900, pp. 136–149, 2014.
© Springer International Publishing Switzerland 2014

Compliance Validation of Secure Service Compositions 137

NetWeaver BPM. Both modelling tools provide a provides accessible user inter-
faces that support the modelling of security requirements as well as the graphical
rendering of the validation results.

2 The Composition Security Validation Module (CSVM)

Figure 1 provides a high-level overview of the architecture of the Composition
Security Validation Module (CSVM). The overall architecture comprises two
main elements: the CSVM itself and the CSVM Connector. The service designer
uses a CSVM-enabled BPM client to validate the compliance of her business
processes. The CSVM-enabled BPM client is a BPM client for which a CSVM
connector has been developed and integrated.

SAP NW Cloud

SVaaS-enabled BPM Client
Color codes

BP Analyst
SVaaS

connector

R

BPM Client

SVaaS Server

R

R SATMCSATMCSATMC
R

Existing component

New components

Host platform

BPCP

CSVM-enabled PBM Client

CSVMCSVM
Connector

Fig. 1. High-level View of the CSVM Architecture

The security validation activity is triggered by the service designer. The
CSVM connector retrieves all the security-relevant information necessary for
the validation and creates an instance of the Business Process Compliance Prob-
lem (BPCP). The BPCP is send to the CSVM for validation. The BPCP is an
XML specification that we devised to make our approach as much as possible
independent from the targeted BPM client. It relies on the established BPMN2
standard [11] and extends it with a BPMN2-SEC schema that we defined to
capture the security-relevant aspects of business processes.

The validation itself is handled by the CSVM that transforms the BPCP
resource into a formal specification suitable for SATMC [2], a SAT-based model
checker. As soon as the model checker completes its formal analysis the raw
result is provided back to the CSVM that converts it into an XML format. The
CSVM connector can now access and render the validation result. Alternatively
the results can be consulted on the cloud, e. g., using a Web application.

2.1 Business Process Compliance Problem (BPCP)

The Business Process Compliance Problem (BPCP) is a client-independent data
format that bundles the property that should be validated together with all

138 A.D. Brucker, L. Compagna, and P. Guilleminot

information necessary for its validation. As such, the CSVM only needs the
BPCP to validate the compliance of a given business process. In more detail, the
BPCP is an XML specification that contains two elements:

– the composition plan (business process model) in standard BPMN2 format,
optionally augmented details on Data Objects and their task input/output,

– the security-relevant aspects of the business process and corresponding val-
idation results both specified in BPMN2-SEC.

In this section, we will base our examples on a simple business process for request-
ing travel approvals (see Figure 2). The security relevant aspects of the BPCP
are described in BPMN2-SEC to ensure independent form a specific BPM client.
For example both SecureBPMN (see Chapter 8), as used by the Aniketos plat-
form, as well as the proprietary format used by SAP Netweaver BPM can easily
be mapped to BPMN2-SEC.

Request
Travel

Approve
Travel

Approve
Budget

Notify
RequestorSoD3

SoD1

SoD2

Staff

Manager

Manager

Fig. 2. A simple travel approval process with annotated security requirements

The BPMN2-SEC language (see Figure 3) allows mainly to express three as-
pects: 1. the policy underlying the targeted business process, 2. the security
properties the business process is supposed to satisfy, and 3. the validation re-
sult (if any already obtained).

The Policy. The Policy element comprises both the role-based access control
(RBAC) [14] relevant for the business process and the delegation policy the
BPM client is subject to. The RBAC element allows for specifying the roles and
users involved in the business process, the permissions, and the assignment of
these permissions to users and roles. Listing 1.1 shows a simplified example of
an RBAC section within a BPCP specification.

– manager, staff, and reception are roles (lines 2–7)
– mickael is a user (lines 8-11)
– the role manager is assigned to the user mickael (line 12)
– Two permissions are defined: one allows for executing the Approve Travel

(approvetravel) activity (lines 15-20) and the other one prohibits, via the
negate construct, the execution of the Request Travel (requesttravel)
activity (lines 21-25)

– The permission to execute the Approve Travel activity is assigned to role
manager (lines 29-30) while the prohibition is assigned to role reception

(lines 31-32)

Compliance Validation of Secure Service Compositions 139

Fig. 3. The meta-model of BPMN2-SEC

<rbac>
<roles >

<role id="manager "><name>Manager </name></role>
<role id="staff"><name>Staff</name></role>

5 <role id="reception"><name>Reception</name></role>
...

</roles >
<users >

<user id="mickael "><name>Mickael </name></user>
10 ...

</users >
<userToRole roleRef ="manager " userRef ="mickael " />
...
<permissions>

15 <permission id="exe_approveTravel">
<action >execute </action >
<resource >bpmn2:main#approvetravel</resource >

</ permission>
<permission id="noexe_requestTravel" negate ="true">

20 <action >execute </action >
<resource >bpmn2:main#requesttravel</resource >

</ permission>
...

</permissions>
25 <permissionAssignement principalRef="manager "

permissionRef="exe_approveTravel" />
<permissionAssignement principalRef="reception"

permissionRef="noexe_requestTravel"/>
...

30 </rbac>

Listing 1.1. BPMN2-SEC: RBAC example (simplified)

Moreover, BPMN2-SEC supports the specification of delegation (see [8] for
details): the delegation element allows for specifying the intended delegation
policy employed by the BPM client during the execution of the service compo-
sition. Basically the delegation policy defines under which conditions (if any) a

140 A.D. Brucker, L. Compagna, and P. Guilleminot

user involved in a certain task of the business process can delegate to a colleague
such a task.

Security Properties. The Properties element lists the security properties
that the business process is required to achieve. These are the properties that
our security validation approach will evaluate. Properties can be created on top
of an enumeration of security property templates. Our approach can be easily
extended to support other property templates provided they can be recast as an
LTL (Linear Temporal Logic) formula which is a quite powerful and expressive
logic. The properties currently defined and supported by CSVM are

Data Confidentiality: The access to sensitive data should be restricted to
certain users.

Separation of Duty (SoD): Separation of duty aims to mitigate the risk of
fraud by dividing the responsibility in executing critical parts of business
processes.

Binding of Duty: In some cases, it is necessary for a group of business process
activities to be performed by only one user so as to ensure the integrity of
the data.

Need-to-Know (NtK): Users shall only be able to access only the information
that is strictly necessary to accomplish their tasks, i. e., the tasks should be
performed in an objective manner. For a critical task, data can be defined
that should not be known by the principal executing the task.

Access Control Over Automated Tasks: Automated tasks are usually im-
plemented by calling a service. Such services are often provided by external
organisations should adhere to the access restrictions required by the service
providers.

Listing 1.2 presents two simple example properties, namely SoD and Ntk, for
a travel approval process: the first one captures a SoD between travel request
and travel approval (lines 2-6) and the second one model a NtK stating that the
manager that will execute the travel budget approval does not need to know the
trip business reason (lines 7-11).

<properties>
<separationOfDuty id="sod1" maxUserActions="1" minUsers ="2">

<activityRef>bpmn2:main#requesttravel</activityRef>
<activityRef>bpmn2:main#approvetravel</activityRef>

5 </separationOfDuty>
<needToKnow id="needtoknow1">

<activityRef>bpmn2:main#approvetravel</activityRef>
<dataObjectRef>bpmn2:main#traveldata</dataObjectRef>
<privatefield>reason </ privatefield>

10 </needToKnow>
...

</properties>

Listing 1.2. BPMN2-SEC: property example

Compliance Validation of Secure Service Compositions 141

Results. The Result element describes the validation result. Listing 1.3 shows
an example validation result of our simple travel approval process. The validation
result is not inconclusive (line 1) meaning that the model checker was able to
determine whether there is an attack (i. e., a possible system trace that results
in a system state violating the compliance or security requirements) or not (this
is normally the case when the business process does not feature complex loops).

<securebpmn2:result inconclusive="false">
<securebpmn2:summary >

Separation of Duty between Request Travel and
Approve Travel

5 </securebpmn2:summary >
<securebpmn2:attacks >

<securebpmn2:attack name="Separation Of Duty"
propertyRef="securebpmn2:main#sod1" type="SoD">

<securebpmn2:par>karl</securebpmn2:par>
10 <securebpmn2:par>requesttravel</securebpmn2:par>

<securebpmn2:par>approvetravel</securebpmn2:par>
</securebpmn2:attack >

</securebpmn2:attacks >
<securebpmn2:trace>

15 <securebpmn2:step
flowElementRef="bpmn2:main#requesttravel"
name="Request Travel ">

<securebpmn2:subStep type="claimed ">
<securebpmn2:par>staff </securebpmn2:par>

20 <securebpmn2:par>karl</securebpmn2:par>
<securebpmn2:par>requesttravel</securebpmn2:par>

</ securebpmn2:subStep >
<securebpmn2:subStep type="executed ">

<securebpmn2:par>staff </securebpmn2:par>
25 <securebpmn2:par>karl</securebpmn2:par>

<securebpmn2:par>requesttravel</securebpmn2:par>
</ securebpmn2:subStep >

</securebpmn2:step>
...

30 <securebpmn2:step flowElementRef="bpmn2:main#approvetravel"
name="Approve Travel ">

<securebpmn2:subStep type="delegationOfpermission">
<securebpmn2:par>mickael </securebpmn2:par>
<securebpmn2:par>manager </securebpmn2:par>

35 <securebpmn2:par>karl</securebpmn2:par>
<securebpmn2:par>approvetravel</securebpmn2:par>

</ securebpmn2:subStep >
</securebpmn2:step>
...

40 <securebpmn2:step flowElementRef="bpmn2:main#approvetravel"
name="Approve Travel">

<securebpmn2:subStep type="claimed ">
<securebpmn2:par>manager </securebpmn2:par>
<securebpmn2:par>karl</securebpmn2:par>

45 <securebpmn2:par>approvetravel</securebpmn2:par>
</ securebpmn2:subStep >
<securebpmn2:subStep type="executed ">

<securebpmn2:par>manager </securebpmn2:par>
<securebpmn2:par>karl</securebpmn2:par>

50 <securebpmn2:par>approvetravel</securebpmn2:par>
</ securebpmn2:subStep >

</securebpmn2:step>
</securebpmn2:trace>

</securebpmn2:result >

Listing 1.3. BPMN2-SEC: Validation results

142 A.D. Brucker, L. Compagna, and P. Guilleminot

More specifically, an attack has been found on one of the SoD properties (see
lines 6-13). The counter-example trace is also reported (lines 14-55). In there,
Karl claims and executes a Travel Request for himself (lines 15-28). Sometime
in the future Karl got delegated by the manager Mickael to handle Mickael’
managerial activities (delegation of permission, lines 30-39). We could imagine
that Mickael got suddenly sick. Karl has now all the permissions associated with
the manager role and, among other things, can claim and execute the approval
of his own travel request (lines 41-54) violating the SoD requirement.

2.2 The CSVM Architecture

Figure 4 provides a detailed overview of the CSVM architecture. The CSVM
Connector includes a loader component to load from the BPM client all data
necessary to create the BPCP resource. It is often the case that not all the data
that is necessary for a complete definition of a BPCP can be loaded from the
BPM client (e. g., the security properties to be validated). The UI component
provides graphical controls to collect the missing data, to configure the CSVM
connector, to trigger the security validation process overall, to render the valida-
tion results, etc. The REST client takes care of preparing and sending the REST
requests to the REST API of the CSVM. The controller component coordinates
the interaction among all the components of the CSVM connector. The persis-
tency component can be optionally implemented to enrich the CSVM connector
in keeping track of all the validations that were carried out by business analysts
within this specific CSVM connector.

The CSVM Server exposes a REST API whose incoming requests are handled
by the Request handler component. BPCPs are REST resources that are stored
with their validation status into the persistency layer (Persistency manager com-
ponent). The BPC broker queues the pending BPCPs that are then pulled by
BPC workers in order to be validated. The BPC worker first translates the BPCP
into its formal representation in ASLan (see Chapter 9) that is fed in input to one
external SATMC instance. The model checking task can be quite costly in terms
of time and resource consumption. For the sake of performances one SATMC
process should run on one virtual machine with 100% CPU and reasonable RAM
allocation. The BPC workers manager component starts on-the-fly a new BPC
worker thread and a corresponding external virtual machine with a new SATMC
instance as soon as certain work-load customer-dependent criteria are reached.
As soon as the model checker finishes the analysis, the BPC worker translates
this outcome into the proper XML structure that is filled into the result element
of the BPCP. The validation result is now ready to be consulted. The CSVM
Portal provide a single web-based entry-point for the end-users that could for
instance monitor the status of all their BPCP resources. The CSVM Portal also
offers a full-fledged security validation environment available for those BPM
Clients that wants to opt for a light integration with CSVM. Indeed, even cus-
tomers employing BPM Clients that are not augmented with CSVM Connectors
could get advantage of CSVM by just accessing the CSVM Portal and managing
the entire security validation life-cycle there. Of course the level of interactivity

Compliance Validation of Secure Service Compositions 143

SAP NW Cloud

Color codes

SVaaS enabled BPM Client

SVaaS connector

SVaaS Server

Loader

REST client

BPCP

Configuration

BPM Client

Controller

UI

R

BP Analyst

R

R

R

R

REST API

BPC broker

BPC workers
manager

BPC workerBPC worker

BPC worker

SVaaS Portal

R

SATMCSATMCSATMC

BPC data

R

Existing component

New components

Host platform

Not for version 1.0

Request handler

R

R

Persistency
manager

R

R

Platform
services

R

R

BPMN2
(with DO ext.)

BPMN2-SECPersistency
R

Translation layer

Trans. into
ASLan

Model Checking
Manager

Trans. into
BPCP result

R

SVaaS

SVaaS c

SVaaS S

SVaaS P':71 4SVXEP

'7:1 7IVZIV

':71 IREFPIH &41 'PMIRX

'7:1 'SRRIGXSV

-

Fig. 4. The CSVM Architecture

144 A.D. Brucker, L. Compagna, and P. Guilleminot

and usability would definitely be not comparable to those BPM Clients featuring
customized CSVM Connectors. This is why we consider more promising those
business scenarios in which BPM Clients are enriched with CSVM Connectors.

2.3 The REST-Based Interaction Protocol

As mentioned the CSVM Connectors and the CSVM Server interact through a
REST API that features methods for managing BPCPs and in particular their
creation and reading of the validation results. In order to instantiate a new
BPCP, the CSVM Connector exports a set of information from its BPM Client.
This set of information will be necessary to create a BPCP meta-model. To
allow BPM Client to export different files in parallel, the CSVM REST API is
defined as a multiple-step resource creation. First, a new resource associated to
the validation is created. This resource is unique and will remain accessible to
the end-user at any time at a specific location. The only action required is to
send a POST at the CSVM Server URI /validation/. After this, the client
can export the set of information required to feed the newly created resource.
To do so, the client sends PUT requests associated with data, on specific nested
elements of its validation resource location.

After the creation of the validation resource, the client can start the validation
process by asking for the result of a specific BPCP resource with a GET. As
mentioned the security validation process may take some time and this is why it is
treated asynchronously. Therefore the client may not get the result immediately.

3 Lessons Learned

In [3] and [5] we presented validation approaches for secure business processes that
integrate the validation into the BPM Client. Our discussion with the product
groups within SAP revealed that this approach has, in particular in an indus-
trial environment, certain limitations ranging from technical issues like scalability
to licensing and maintenance issues. For instance, some customers use both on-
demand and on-premise BPM Clients while designing their business processes.

While both the on-demand and the on-premise BPM Clients could have been
augmented with an implementation of the original security validation approach,
the required effort for this was a clear obstacle. Additional commercialisation
obstacles were also perceived on the BPM Client software producer side: while
the Security Validation approach provides a nice-to-have differentiating feature,
the long-term maintenance contracts for enterprise software does not go very
well with the idea of a research proof-of-concept depending on (academic) third-
party modules. All in all, the following requirements motivated us to switch for
a cloud-based solution:

– CSVM shall be flexible enough to match the heterogeneous BPM customer
landscapes including those in whichmultiple instances of different (on-demand
or on-premise) BPM Clients are operated by multiple business analysts;

– CSVM shall be scalable with respect to multiple customer landscapes;

Compliance Validation of Secure Service Compositions 145

– CSVM shall be flexible enough to offer various degrees of integration within
BPM Clients ranging from the most customisable one up to the lightest/sim-
plest one:
a) the BPM Client is augmented with its own customised CSVM UIs for

e. g., specifying the security requirements of the business process under-
design, rendering the results of the validation, etc;

a) the BPM Client is just augmented with a button that outsources the
overall security validation activity on the Cloud including e. g., security
requirement specification, result rendering, etc;

– CSVM shall be expressive and flexible enough to be consumable by most of
the commercial, state-of-the-art BPM Clients despite of their peculiarities
and differences;

– CSVM shall be extensible enough to easily integrate new security properties
within the validation life-cycle;

– CSVM shall be extensible enough to integrate novel, efficient techniques for
validating BPCP; e. g., it shall be possible to add a novel model checker or
different automated reasoning tool;

In our CSVM solution we decouple the security validation business logic from
the rest of the approach and we take advantage of the Cloud paradigm as a
vehicle to overcome some of the challenges that the original security valida-
tion approach faced, especially with respect to commercialization. To assess and
demonstrate our overall CSVM approach we focused on the proof-of-concept
shown in Figure 5 in which the CSVM Server is deployed on the SAP NetWeaver

SAP NetWeaver Cloud

SVaaS enabled SAP NetWeaver BPM Color codes

SVaaS enabled Activiti

U. of Genova

SAP Internal

BP Analyst

SVaaS
connector

R

SAP NetWeaver BPM

SVaaS Server

R

Existing component

New components

Host platform

BP Analyst

SVaaS
connector

R

Activiti

R

SATMC
R

R

SATMC

R

R

Platform
services

R

CSVM-enabled SAP Netweaver BPM

CSVM-enabled Activiti BPMN

CSVM

CSVM
Connector

CSVM
Connector

Fig. 5. Proof-of-Concept

146 A.D. Brucker, L. Compagna, and P. Guilleminot

Fig. 6. Security Validation within SAP NetWeaver BPM

Fig. 7. Security Validation within the Activiti BPMN Editor

Compliance Validation of Secure Service Compositions 147

Cloud and its REST API is consumed by two BPM clients, SAP NetWeaver
BPM (see Figure 6) and Activiti (see Figure 7). Both these BPM Clients use
an Eclipse-based business process design environment. This is why we first de-
veloped a generic CSVM Connector for the Eclipse environment and then we
customised it for our BPM clients.

The performance of the security validation activity, below 1 second, improved
with respect to the experiments run and described in [3]. This is simply due to
more powerful machines hosting the SATMC model checker. More interestingly,
the CSVM architecture allows to efficiently handle parallel requests for security
validation. In our proof-of-concept we only considered two machines hosting
SATMC and still we were able to smoothly serve two business analysts designing
medium-size business processes (around 50 tasks, 5 users and roles involved, and
5 data objects) and requesting for a security validation every 15 minutes. These
are promising preliminary results that we aim to extend by setting up pilots
with customers so to run more intensive experiments in real landscapes.

4 Conclusion and Related Work

4.1 Related Work

While there is a large body of literature extending business process modelling lan-
guages with means for expressing security and regulatory compliance properties,
e. g., [6, 10, 12, 13, 16] only a few approaches support validation or testing of
the specified properties. The closest related works are [15] and [13]. Wolter and
Meinel [15] use SPIN for checking that if an access control specification enforces
binary static separation of duty and binding of duty constraints. Salnitri et al.
[13] use specialised algorithms implemented in a query engine for validating
generic compliance requirements. Additionally, [5] presents an approach that al-
lows to statically check that service implementations, e. g., in Java, conform to
the process-level security and regulatory compliance specification.

Besides security properties, there is also strong need for checking the con-
sistency of business processes itself, e. g., the absence of deadlocks. There are
several works, e. g., [1, 9] that integrate these kind of process internal consis-
tency validation checks locally into the business process modelling environment.

4.2 Conclusion and Further Work

In this paper we presented CSVM, a promising approach and research proto-
type to test business process compliance. CSVM takes advantage of the Cloud
paradigm to provide on-demand security validation services to BPM systems.
Once properly interfaced via a CSVM Connector, the BPM Client is enabled
to consume CSVM services, allowing its business analysts to determine, in a
push-button fashion, whether the business processes under-design are respectful
of critical compliance and security properties. Moreover, the CSVM architecture
meets core business requirements collected during internal projects run at SAP

148 A.D. Brucker, L. Compagna, and P. Guilleminot

with the ultimate goal of increasing its chances to reach industrial commercial-
isation. We developed and deployed a proof-of-concept on top of our CSVM
approach and demonstrated through preliminary results that it can serve mul-
tiple business analysts using heterogeneous BPM Clients even belonging to the
same customer landscape.

Potential further steps include piloting with real customers, more intensive
testing and assessment of CSVM scalability (e. g., using the elastic Amazon
Cloud as hosting platform for SATMC instances to benchmark the BPC worker
manager component), and integration of the implementation validation discussed
in [5]. Last, but not least, we would like to explore if the availability of a common
security validation technique like CSVM could pave the way for 1. establish-
ment of domain-specific repositories of compliance requirements accessible for
any BPM system, and 2. a systematic certification of business processes under-
design that could be then compared in this regards and, e. g., sold at different
prices depending also on the security and compliance they offer.

References

[1] van der Aalst, W.M.P., Dumas, M., Gottschalk, F., ter Hofstede, A.H.M., La
Rosa, M., Mendling, J.: Correctness-preserving configuration of business process
models. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961, pp.
46–61. Springer, Heidelberg (2008)

[2] Armando, A., Carbone, R., Compagna, L.: LTL Model Checking for Security
Protocols. Journal of Applied Non-Classical Logics 19(4), 403–429 (2009)

[3] Arsac, W., Compagna, L., Kaluvuri, S.P., Ponta, S.E.: Security validation tool
for business processes. In: Breu, R., Crampton, J., Lobo, J. (eds.) SACMAT, pp.
143–144. ACM (2011a)

[4] Arsac, W., Compagna, L., Pellegrino, G., Ponta, S.E.: Security Validation of Busi-
ness Processes via Model-Checking. In: Erlingsson, Ú., Wieringa, R., Zannone, N.
(eds.) ESSoS 2011. LNCS, vol. 6542, pp. 29–42. Springer, Heidelberg (2011)

[5] Brucker, A.D., Hang, I.: Secure and compliant implementation of business process-
driven systems. In: La Rosa, M., Soffer, P. (eds.) PM 2012 Workshops. LNBIP,
vol. 132, pp. 662–674. Springer, Heidelberg (2012)

[6] Brucker, A.D., Hang, I., Lückemeyer, G., Ruparel, R.: SecureBPMN: Modeling and
enforcing access control requirements in business processes. In: ACM Symposium
on Access Control Models and Technologies (SACMAT), pp. 123–126. ACM Press
(2012), doi: 10.1145/2295136.2295160

[7] Brucker, A.D., Malmignati, F., Merabti, M., Shi, Q., Zhou, B.: A framework for
secure service composition. In: International Conference on Information Privacy,
Security, Risk and Trust (PASSAT), pp. 647–652. IEEE Computer Society (2013),
doi:10.1109/SocialCom.2013.97

[8] Compagna, L., Guilleminot, P., Brucker, A.D.: Business process compliance via
security validation as a service. In: Oriol, M., Penix, J. (eds.) IEEE Sixth Inter-
national Conference on Software Testing, Verification and Validation (ICST), pp.
455–462. IEEE Computer Society (2013) doi: 978-1-4673-5961-0

[9] Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business pro-
cess models in BPMN. Information & Software Technology 50(12), 1281–1294
(2008), doi:10.1016/j.infsof.2008.02.006

Compliance Validation of Secure Service Compositions 149

[10] Mülle, J., von Stackelberg, S., Böhm, K.: A security language for BPMN process
models. Tech. rep., University Karlsruhe, KIT (2011)

[11] OMG: Business Process Modeling Notation, BPMN (2011),
http://www.omg.org/spec/BPMN/2.0

[12] Rodŕıguez, A., Fernández-Medina, E., Piattini, M.: A BPMN extension for the
modeling of security requirements in business processes. IEICE - Trans. Inf.
Syst. E90-D, 745–752 (2007), doi:10.1093/ietisy/e90-d.4.745

[13] Salnitri, M., Dalpiaz, F., Giorgini, P.: Modeling and verifying security policies in
business processes. In: Bider, I., Gaaloul, K., Krogstie, J., Nurcan, S., Proper,
H.A., Schmidt, R., Soffer, P. (eds.) BPMDS 2014 and EMMSAD 2014. LNBIP,
vol. 175, pp. 200–214. Springer, Heidelberg (2014)

[14] Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access con-
trol models. Computer 29(2), 38–47 (1996)

[15] Wolter, C., Meinel, C.: An approach to capture authorisation requirements in
business processes. Requir. Eng. 15(4), 359–373 (2010), doi:10.1007/s00766-010-
0103-y

[16] Wolter, C., Schaad, A.: Modeling of task-based authorization constraints in
BPMN. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS,
vol. 4714, pp. 64–79. Springer, Heidelberg (2007)

http://www.omg.org/spec/BPMN/2.0

Aggregation and Optimisation

of Trustworthiness of Composite Services

Hisain Elshaafi, Jimmy McGibney, and Dmitri Botvich

Telecommunications Software and Systems Group
Waterford Institute of Technology, Waterford, Ireland

{helshaafi,jmcgibney,dbotvich}@tssg.org

Abstract. The chapter presents the Aniketos approach to aggregating
and predicting the trustworthiness of services that are assembled from
component services. Some of the important characteristics of service en-
vironments are that they are dynamic, distributed and loosely coupled.
These characteristics result in the existence of different levels of func-
tional and non-functional attributes of the services operating in such
environments. Consequently, it creates challenges for interacting service
consumers that require to only deal with services that are trustworthy.
In service compositions, the component services may be mandatory or
optional and vary in their contribution to the trustworthiness of the
composite service. Composition techniques must be able to select trust-
worthy components and to dynamically adapt to subsequent changes in
the services and the environment. The availability of multiple services
providing the same or similar functionality but with different trustwor-
thiness levels helps composite service providers to establish and maintain
trustworthy compositions.

1 Introduction

The chapter presents the Aniketos approach to the monitoring, aggregation and
prediction of trustworthiness of services that are assembled from lower level
component services. The chapter discusses the aggregation of the trustworthiness
attributes for composite and component services into a common trustworthiness
level. The techniques consider a number of criteria during the aggregation. One
of such criteria is that component services in a composition may vary in their
importance to the composite service as a whole. For example, in a travel service
a user may not appreciate all component services to the same extent such as car
rental, medical insurance, flight booking, etc. Therefore, it is more useful to see
a composite service as a unit that is composed of unequal subunits in terms of
their contribution to the trustworthiness of the service. The components may
differ also in the probability of their execution in their composite service due to
reasons such as limitations in their resource capacity.

The chapter is organised as follows. Background and related work are dis-
cussed in Section 2. Section 3 explains techniques for the aggregation and calcu-
lation of the trustworthiness of a composite service based on the service’s com-
position plan. It also includes calculation of service costs. Section 4 discusses

A.D. Brucker et al. (Eds.): Secure Service Composition, LNCS 8900, pp. 150–172, 2014.
c© Springer International Publishing Switzerland 2014

Aggregation and Optimisation of Trustworthiness of Composite Services 151

the aggregation of trustworthiness attributes in order to collectively evaluate
candidate services and constructs. The section also discusses the function and
architecture of the Aniketos trustworthiness monitoring and prediction module
and optimisation of service compositions. Section 5 describes experiments us-
ing simulations of the trustworthiness based service selection and composition
trustworthiness computation. A summary is described in Section 6.

2 Background and Related Work

2.1 Trust and Reputation Systems and Models

Several systems and models have been developed for trust and reputation and
their management in a variety of distributed environments. Common examples
include REGRET [1] and FIRE [2] models. REGRET relies on direct experi-
ence, witness, and social information to decide on the trustworthiness (reputa-
tion) of an interacting agent in a multi-agent system while also taking context
into consideration. FIRE model combines multiple trust sources namely, direct
experience, witness information, role-based rules, and references. References can
be produced by agents that have previously interacted with the target agent
certifying its behaviour.

Noorian and Ulieru [3] illustrate and describe a framework for classifying and
comparing trust and reputation systems. Similar frameworks were proposed by
Khalid et al. [4] and Hoffman et al. [5]. Khalid et al. [4] discuss the components
that are required to build trust and reputation models and describe phases of
the trust computation process. Hoffman et al. [5] describe design elements of
trust and reputation systems with more focus on attacks against those systems.

2.2 Trustworthiness of Services and Components

Web services standards, such as WS-Trust [6], refer to trust only within the
context of trusting the identity of a service as noted by Singhal et al. [7]. How-
ever, establishing a service identity does not necessarily mean that the service
itself is trustworthy. For instance, the service can be temporarily unreliable or
unavailable. Therefore, we consider trust a multidimensional concept.

Malik and Bouguettaya [8] discuss a framework for establishing trust in service
oriented environments named RATEWeb. The framework operates by aggregat-
ing reputation ratings from consumers in a P2P fashion. RATEWeb provides
a collaborative model in which Web services share their experiences of the ser-
vice providers with their peers through consumer feedback ratings. The authors
don’t provide enough details of the reputation mechanisms that support service
composition e.g. aggregation of component service reputations.

Takabi et al. [9] discuss some existing research problems that justify our ap-
proach in optimising the trustworthiness of services and the collaboration be-
tween composite services. They describe the barriers and possible approaches to
solutions in providing trustworthy services. They state that a trust framework

152 H. Elshaafi, J. McGibney, and D. Botvich

is needed to allow capturing parameters required for establishing trust and to
manage evolving trust requirements.

Other examples of research in the area of trust in service compositions and
selection are the works by Paradesi et al. [10] and Hang and Singh [11]. Both
study issues related to deriving the trustworthiness of compositions from that of
atomic services and the selection of the most trustworthy components. Although
their approaches are useful in solving certain aspects of research problems in
composition trustworthiness, the determination and evaluation of component
trustworthiness attributes are not investigated.

2.3 Threats against Determination of Component Trustworthiness

Any usable approach for determining the trustworthiness of component services
based on their composite services has to strive to meet certain requirements.
Examples of such requirements are fairness and protection from threats. Our
approach needs to be robust and aware of threats that exist as a result of vul-
nerabilities in the trustworthiness determination mechanisms especially when
monitoring the behaviour of individual components is not possible. See Chapter
2 for details on threats and countermeasures for trustworthiness systems.

2.4 Trustworthiness Attributes of Services

Several research studies exist on relating consumer satisfaction, QoE (Quality
of Experience), service quality and quality dimensions. Lee and Lin [12] iden-
tify a set of service quality attributes and relate them to consumer satisfaction.
Their survey indicates the main quality dimensions that affect consumer satis-
faction are reliability, security and responsiveness. Li and Suomi [13] propose an
eight-dimension scale to measure service quality based on the commonly used
SERVQUAL scale [14]. Udo et al. [15] examine the impact of service quality
on perceived satisfaction and other consumer behaviours. Ciszkowski et al. [16]
propose a framework that enables providers to facilitate composite service adap-
tation according to consumer expectations and maintain QoE at a satisfactory
level. Adaptation techniques are also described by other researchers e.g. [11,17].

2.5 Aggregation of Attributes

Techniques for the aggregation of QoS (Quality of Service) including reputation,
reliability and response time in some BPEL and OWL-S supported workflow
constructs are described by Hwang et al. [18]. However, the reputation of a
workflow is regarded as sum of component reputations which as described earlier
can cause inaccurate results because the dependency between components means
the reputations of components affect each other. Additionally, no consideration
is given to the variation in the importance of components. Grassi and Patella [19]
propose mechanisms to recursively aggregate the reliability of a composite service
based on the reliabilities of its components.

The work described in this chapter is a reviewed and extended version of the
authors’ previous work [20, 21].

Aggregation and Optimisation of Trustworthiness of Composite Services 153

3 Trustworthiness Attributes and Aggregation

In this work, the trustworthiness level Tcs of a composite service is modelled in
general as a function g of the trustworthiness of its components:

Tcs = g ({T1, T2, ..., Tm}) (1)

However, the calculation of the trustworthiness level depends on the trustwor-
thiness attributes and the structure of the business process. The selection of
component services statically during design time or dynamically is based on
the predicted trustworthiness level of the composite service. Trustworthiness
attributes include a set of attributes that are used to determine the overall
trustworthiness level as discussed in Subsection 3.1.

Selected services are executed in a business process. The process is viewed
externally as a Web service. The calculation of the trustworthiness of the com-
posite service depends on the way the abstract service is constructed. It also
depends on the probability of execution and the importance of the component
services in the composition. Component services in a composition may vary in
their importance to the composite service as a whole.

3.1 Trustworthiness Attributes

The identification of a set of attributes suitable for a particular business activity
or for a service environment depends on context, requirements and possibly other
factors. In this chapter, we consider a set of common trustworthiness attributes
that can affect the overall trustworthiness of a CS.

– Reliability (r): the rate of successful executions of a service without full or
partial failures per total number of executions (0 ≤ r ≤ 1).

– Uptime (a): the percentage of time of availability of a service for the admis-
sion of requests over the total measurement time (0≤ a ≤1). Uptime is used
as a synonym for availability.

– Reputation (p): the data available about a service from consumer satisfaction
ratings. We consider the reputation as a value p where 0 ≤ p ≤ 1.

– Security (S): includes a number of attributes such as encryption, confiden-
tiality, non-repudiation and authentication. A security attribute σi for a
service si is a boolean σi∈{0, 1} with 1 representing the fulfilment of the
attribute and 0 for non-fulfilment. For example in encryption the fulfilment
means the messages are securely encrypted with at least a minimum allowed
key length.

– Response Time (t): the response time of a service is used as a metric of
performance. After aggregation of the component response times, the com-
posite service response time is measured against required response time in
the service contract.

– Capacity (y): the number of executions that can be performed simultane-
ously. The aggregation of the capacity may result in an overall composite
service capacity that does not fulfil the requirements of the service contract.

154 H. Elshaafi, J. McGibney, and D. Botvich

– Cost (c): monetary cost of a service. Cost is often considered a trustwor-
thiness attribute e.g. Bianco et al. [22]. However, we include cost in the
aggregation techniques in any case as it is an important factor in service
composition optimisation.

3.2 Service Composition Constructs

Component services are executed in a BPMN [23] business process which is
viewed externally as a Web service. The prediction of composite service trust-
worthiness depends on the way the process is constructed. It also depends on the
probability of execution and the importance of the components in the composi-
tion. For example, in a travel service a user may not appreciate all component
services to the same extent such as car rental, medical insurance, flight booking,
etc. The probability of execution of a component service may be based on the
characteristics of the process or on limited supply of the component service. For
example, in an emergency composite service a fire or ambulance service may be
required in an estimated percentage of executions. An example of limited ca-
pacity is where a certain car rental service is most trustworthy but has limited
supply. In that case more demand requires additional supply from other possibly
less trustworthy car rental service providers.

A BPMN business process consists of one or more path constructs. Each
construct contains one or more service activities. A component service is selected
for each activity. The following are common constructs (illustrated in Table 1):

– Sequence: Services are invoked one after another.
– Synchronized Parallel (AND split/AND join): Two or more services are in-

voked in parallel and their outcome is synchronized. All services must be
executed successfully for the next activity (service) to be executed.

– Loop or Iteration: A service is invoked in a loop until a condition is met. We
assume that the number of iterations or their average is known.

– Exclusive Choice (XOR Split/XOR join): A service is invoked instead of
others if a condition is met. We assume that the likelihood of each alternative
service to be invoked is known.

– Unsynchronized Parallel (AND split/OR join): Two or more services are
executed in parallel but no synchronization of the outcome of their execution.
The next activity can commence as soon as one service is completed.

– Multi-choice with Synchronized Merge (OR split/AND join): Multiple ser-
vices may be executed in parallel. Subsequent services can begin execution
when all executing branches are completed. In BPMN, inclusive gateways
are used to split and merge the process flow.

– Unordered Sequence: Multiple services are executed sequentially but arbi-
trarily.

We use θ to denote a service construct in a composition. In BPMN, AND
join/split gateway is signified with ‘+’, OR with ‘◦’ and XOR with ‘×’. An
empty gateway ‘♦’ means it waits for one incoming branch before triggering the

Aggregation and Optimisation of Trustworthiness of Composite Services 155

outgoing flow. We use the empty gateway in merging Unsynchronised Parallel

paths. Inclusive gateways ‘ ’ are used to split and merge the process flow in
Multi-Choice with Synchronized Merge. Less common and more complex con-
structs and patterns are supported by modelling languages and products to vary-
ing degrees. The structure of business processes including BPMN-based business
processes are described by researchers e.g. [24–26].

3.3 Aggregation of Attributes

Table 1 shows our functions for calculating the considered trustworthiness at-
tributes per service construct. The following discussion details the approaches
for their aggregation.

For the purpose of trustworthiness attribute aggregation, a CS is represented
as a hierarchy of constructs. In order to aggregate the values of an attribute,
the workflow undergoes a series of reductions until the highest level construct is
reached. The innermost constructs are reduced first at each step. The type of the
final construct depends on the outermost pair of component services or gateways
(i.e. start and end services or gateways). Figure 1 illustrates the reduction of the
workflow of a composite service containing a variety of construct types. The
CS is reduced to a final sequence construct in step (3). A reduced construct is
treated like a component service during attribute aggregation.

Fig. 1. Hierarchical Reduction of CS Constructs

Reliability and Uptime

Reliability and uptime aggregations are similar. For the sake of brevity, equations
described for reliability in this section are also applicable to uptime.

156 H. Elshaafi, J. McGibney, and D. Botvich

(i) Sequence, Synchronized Parallel and Unordered Sequence: A failure of a
component means failure of subsequent dependent components. This is un-
like some other types of constructs (e.g. Unsynchronized Parallel) where
subsequent components may be partially independent of the failure of the
construct components and can be executed as long as a minimum set of
components succeeds. Therefore, we calculate the reliability of the compos-
ite service as a product of that of its components. Similarly, the downtime
of any mandatory component in these constructs results in the unavail-
ability of the whole construct because of the dependency between their
components.

rθ =
n∏

i=1

ri (2)

(ii) Loop: The reliability and uptime of a Loop containing n iterations of a
service si is the same as a Sequence construct of n copies of si i.e. rθ = ri

n.
(iii) Exclusive Choice: The reliability and uptime of this construct is the sum

of that of the exclusive components multiplied by their probabilities of
execution in the composite service.

(iv) Unsynchronized Parallel : Since an Unsynchronized Parallel construct only
fails if all constituent services fail, its reliability (and similarly for uptime)
is calculated as follows:

rθ = 1−
n∏

i=1

(1− ri) (3)

(v) Multi-choice with Synchronized Merge: In each subset of components that
may be executed in parallel, all its components must be executed success-
fully. Therefore, we sum the probabilities of each subset multiplied by the
reliability of that subset. In a construct θ with a set S of components and
two or more probable subsets of components that may be executed in par-
allel, its reliability is calculated as follows:

rθ =
∑
j⊂S

(
ρj ·

∏
i∈j

ri
)

(4)

Reputation

Importance Weight of Components

Each component si in a composition has a weight ωi based on its importance
to the reputation of the composition ωi ∈ {ω1, ..., ωl} where 0 ≤ ωi ≤ l, l
is the number of component services excluding alternatives in exclusive choice
constructs and

∑l
i=1 ωi = l. We consider components in an Exclusive Choice

construct as a single unit in terms of their weight ωθ and its calculation, where
θ is the service construct. For example, consider the case where a requirement
may be satisfied by only one of two services {s1, s2} and the trustworthiness of
s1 is more than that of s2 but its capacity is limited to a certain quantity. When

Aggregation and Optimisation of Trustworthiness of Composite Services 157

s1 becomes fully in use, s2 is invoked. Therefore, a common weighting value is
used. For a composition with m components and x exclusive choice constructs:

l = m− (nx − x)

where nx is the total number of components in the x constructs.
The weighting of the components is used in the calculation of the composite

service reputation, such as in the case of a Sequence with n components. Further
details on aggregation of reputation is in next subsection.

pθ =

n∏
i=1

pi
ωi (5)

In order to differentiate between mandatory and optional components, a
weight threshold Ω is set. A component service with ωi < Ω is considered op-
tional and can be excluded from the composite service execution when necessary
for instance due to the unavailability of the component. Optional components
can be excluded also from the aggregation of other trustworthiness attributes
such as capacity. The component weights are useful when the capacity of some
components are in full usage or close to becoming so. In that case non-critical
components can be excluded from the composite service execution. This is par-
ticularly useful if the request would otherwise be rejected or when low remaining
component resources can be saved for prioritised requests.

Aggregation of Reputation per Construct

The aggregation of reputation of components follows a similar approach to that
of reliability but with consideration of the weights of components in the con-
struct with some differences in the aggregation formulas for some constructs.
This approach is based on our assumption that the reputations of the compo-
nents of a composite service are interdependent and that the reputation of a
composite service is influenced by the importance of each component as well as
its reputation.

(i) Sequence, Synchronized Parallel and Unordered Sequence: The reputation
is calculated as a product of that of constituent services taking the service
importance into consideration as in Equation (5).

(ii) Loop: The reputation of a Loop containing n iterations of a service si is
the same as a Sequence of n copies of si i.e. pi

n·ωi .
(iii) Exclusive Choice: Each service si among the alternative services in an

Exclusive Choice has a probability ρ that it will be executed and
∑n

i=1 ρi =
1. As described earlier an Exclusive Choice is considered one unit in the
composite service component reputation weights. Therefore, we aggregate
reputation of the construct as sum of component reputations multiplied by
their probabilities of executions.

pθ =
(n∑
i=1

ρi · pi
)ωθ (6)

(iv) Unsynchronized Parallel : Since all component services are executed, the
reputation takes all services into consideration as in Equation (5).

158 H. Elshaafi, J. McGibney, and D. Botvich

T
a
b
le

1
.
A
g
g
re
g
a
ti
o
n
o
f
T
ru
st
w
o
rt
h
in
es
s
A
tt
ri
b
u
te
s
a
n
d
C
o
st
p
er
P
ro
ce
ss
C
o
n
st
ru
ct

C
o
n
st
ru

c
t

R
e
li
a
b
il
it
y
(r

θ
)

R
e
p
u
ta

ti
o
n

(p
θ
)

E
n
c
ry

p
ti
o
n

(d
θ
)

R
e
sp

.
T
im

e
(t

θ
)

C
a
p
a
c
it
y

(y
θ
)

C
o
st

(c
θ
)

n ∏ i=
1

r i
n ∏ i=
1

p
ω
i

i

n

m
in

i=
1
d i

n ∑ i=
1

t i
n

m
in

i=
1
y
i

n ∑ i=
1

c i

n ∏ i=
1

r i
n ∏ i=
1

p
ω
i

i

n

m
in

i=
1
d i

n
m
a
x

i=
1
t i

n

m
in

i=
1
y
i

n ∑ i=
1

c i

r i
n

p
i
n
·ω

i
d i

n
·t

i
y
i

n
·c

i

n ∑ i=
1

ρ
i
·r

i

(
n ∑ i=
1

ρ
i
·p

i

) ω
θ

n

m
in

i=
1
d i

n ∑ i=
1

ρ
i
·t

i

n ∑ i=
1

ρ
i
·y

i

n ∑ i=
1

ρ
i
·c

i

1
−

n ∏ i=
1

(1
−

r i
)

n ∏ i=
1

p
ω
i

i

n

m
in

i=
1
d i

n

m
in

i=
1
t i

n
m
a
x

i=
1
y
i

n ∑ i=
1

c i

∑ j
⊂
S

(ρ
j
·∏ i∈

j

r i
)

∑ j
⊂
S

(ρ
j
·∏ i∈

j

p
ω
i

i

)
n

m
in

i=
1
d i

∑ j
⊂
S

(ρ
j
·m
a
x

i∈
j
t i
)

∑ j
⊂
S

(ρ
j
·m
in

i∈
j
y
i

)
∑ j
⊂
S

(ρ
j
·∑ i∈

j

c i
)

n ∏ i=
1

r i
n ∏ i=
1

p
ω
i

i

n

m
in

i=
1
d i

n ∑ i=
1

t i
n

m
in

i=
1
y
i

n ∑ i=
1

c i

n
=
n
o
.
o
f
co
n
st
ru
ct
co
m
p
o
n
en
ts
,
ρ
i
=
p
ro
b
a
b
il
it
y
o
f
ex
ec
u
ti
o
n
o
f
co
m
p
o
n
en
t
s i
,
ρ
j
=
p
ro
b
a
b
il
it
y
o
f
ex
ec
u
ti
o
n
o
f
su
b
se
t
j
o
f
co
n
st
ru
ct
co
m
p
o
n
en
ts

Aggregation and Optimisation of Trustworthiness of Composite Services 159

(v) Multi-choice with Synchronized Merge: In this construct, the execution of
each subset j of all possible subsets of the set S of construct services (j ⊂ S)
is associated with a probability ρj that it will be executed where∑

j⊂S

ρj = 1

The construct reputation considers both the probability of execution and
weighting of component services:

pθ =
∑
j⊂S

(
ρj ·

∏
i∈j

pωi

i

)
(7)

Security

For security attributes, the level of security for an attribute in a composition
follows the weakest link principle for all the composite service components (see
e.g. [27] on the weakest link principle). Table 1 illustrates the aggregation for
encryption di as an example security attribute. Suppose an attribute σk,i is
one of z evaluated (i.e. verified compliant/noncompliant) security attributes of
components of a composite service; for a component si the attribute σk,i ∈ {0, 1}
and σk,i ∈ {σ1,i, σ2,i, ..., σz,i}. We calculate the score for an attribute σk,cs for a
composite service with m components σk,cs as:

σk,cs =
m
min
i=1

σk,i (8)

To aggregate the values of all security attributes in a composition and calcu-
late the overall level of security (0 ≤ Scs ≤ 1) based on z attributes we first take
the weighted sum σ̂cs of the verified attributes:

σ̂cs =

z∑
k=1

γk · σk,cs (9)

where γk (γk ≥ 0) is the weight for the attribute σk,cs. It sets the effect of
the attribute on the security level and trustworthiness. The value depends on
multiple factors including the number of security attributes considered, the pri-
ority of each attribute, potential resulting attack graphs in the composite service
and the likelihood of the related vulnerabilities being exploited. We propose the
following formula for the level of security:

Scs = 1− e−σ̂cs (10)

The value of γk should meet the following requirements:

– when all the composite service security attributes are fulfilled (i.e.
∑z

k=1 σk,cs

= z) Equation (10) should result in a security level Scs ≈ 1, and
– when a attribute that cannot be compromised is not fulfilled in the composite

service, Scs should fall below a preset security threshold (e.g. 0.95).

160 H. Elshaafi, J. McGibney, and D. Botvich

Response Time

(i) Sequence and Unordered Sequence: In both of these constructs the response
time is summed to provide the total time of the construct execution; tθ =∑n

i=1 ti.
(ii) Synchronized Parallel : The components are executed in parallel but the

next construct cannot commence its execution until all parallel components
are complete. Therefore, construct response time equals that of the longest
of its components’ response times i.e.

tθ =
n

max
i=1

ti (11)

(iii) Loop: The response time of a loop is the number of executions by its com-
ponent’s response time.

(iv) Exclusive Choice: We use the execution probability-based weighted average
of the components response times as the construct’s average response time.

(v) Unsynchronized Parallel : The next construct starts execution once the first
executing component in this construct completes. Therefore, the minimum
of the components response times is the construct response time.

(vi) Multi-choice with Synchronized Merge: The response time for each subset j
with execution probability ρj equals the longest of its components response
times. Subsequently, as in the Exclusive Choice we take the weighted av-
erage of the subsets’ response times.

tθ =
∑
j⊂S

(
ρj ·max

i∈j
ti
)

(12)

Capacity

(i) Sequence, Synchronized Parallel and Unordered Sequence: The capacity of
each of these constructs equals the minimum capacity among its compo-
nents when buffering is not taken into consideration.

yθ =
n

min
i=1

yi (13)

(ii) Loop: Since the same component is executed sequentially, the construct’s
capacity is the same of that of the component i.e. yθ = yi.

(iii) Exclusive Choice: The construct capacity is the execution probability-based
weighted average of the capacities of exclusive components.

(iv) Unsynchronized Parallel : At least one component of this construct is re-
quired to be executed. Therefore, its capacity equals the maximum com-
ponent’s capacity.

yθ =
n

max
i=1

yi (14)

(v) Multi-choice with Synchronized Merge: All components in each subset j of
the construct components with probability of execution ρj must have the
capacity to execute the composite service. Therefore, the minimum of their
capacity provides the capacity of the subset. The capacity of the construct
is the total of product of the subset capacities by their probabilities.

Aggregation and Optimisation of Trustworthiness of Composite Services 161

The capacity aggregation methods above do not describe how to consider
buffering. Concisely, we set a threshold for the composite service execution queue
size. The threshold value is based on constructs capacities, their response times
and the total allowed composite service response time. The buffering maximises
the usage of the components capacities and significantly increases the capacity
of the composite service.

Cost

(i) Sequence, Synchronized Parallel, Unsynchronized Parallel and Unordered
Sequence: Since all components in the constructs are executed, their cost
is the sum of the cost of all components.

(ii) Loop: The cost of a loop construct of n iterations of a service si is the same
as a Sequence construct of n copies of si i.e. n · ci.

(iii) Exclusive Choice: Since each service among the alternative services in the
construct has a probability ρ that it will be executed and

∑n
i=1 ρi = 1, its

cost is the probability-based weighted average of that of each component
service.

(iv) Multi-choice with Synchronized Merge: The calculation of cost in this con-
struct is the execution probability-based weighted average of the cost of
execution of each subset of components.

cθ =
∑
j⊂S

(
ρj ·

∑
i∈j

ci
)

(15)

3.4 Trustworthiness Update Procedure

An algorithm is proposed here to predict and update the trustworthiness at-
tributes of a service. The algorithm is faster than those proposed for multiagent
systems in REGRET [1] and FIRE [2] since there is no need to recursively run
through all the ratings with each new rating received. In this algorithm, the
reputation is determined using moving averages that are updated with every
new rating. Older ratings reduce in value over time. The comparison with those
algorithms is further discussed in the evaluation.

The reputation of a service si is determined by two values; the reputation pi,
0 ≤ pi ≤ 1 and the confidence fi in the score and 0 ≤ fi ≤ 1. Both of the
two values (i.e. reputation and confidence score) are important in indicating the
status of a composite and component services. Reduction of the reputation signi-
fies receiving consistent bad ratings of the service while reduction in confidence
indicates either low number of ratings received recently, significant fluctuations
in the rating values or both. Those fluctuations may for example indicate that a
service is not scalable enough to meet demands during peak times. The reputa-
tion pi is calculated as a dynamically weighted moving average of the service’s
rating values. When a new rating is received the reputation is updated.

First, a value representing the accumulated weight wi of all received ratings
for a service is updated. This weight is based on the recency and the category of

162 H. Elshaafi, J. McGibney, and D. Botvich

the ratings. Recency weight wt indicates how recent are the ratings received for
the service. The more recent the ratings the higher the weight because future
ratings are more likely to be close to the latest ratings. Reputation ratings of a
service can be classified into a set of categories or types with different weights
depending on the way they are gathered. Examples of types of consumer ratings
may include feedback on satisfaction, value, speed, etc. A service’s customers
might not value those categories equally and hence the customisable category
weighting wg .

Recency weight wt decays exponentially and 0 ≤ wt ≤ 1, as follows:

wt = e−λ·Δt (16)

where λ is the decay constant; a customisable positive number that controls the
rate of decay, and Δt in relation to a single rating is the age of that rating i.e.
the difference between the current time and the time when the rating took place,
while Δt for the reputation from the latest update is the age of the last update
of the accumulated weight wi.

The accumulated weight of the reputation wi (wi > 0) is updated when a new
rating value a is received, as follows:

wi ← wi · wt + wP (17)

where wP is the weight of the new rating value P which is calculated as follows:

wP = β · wtP · wgP (18)

where wtP and wgP are the recency weight and category weight for the rating
P respectively. The value wtP is calculated as in Equation (16). The value β is
the credibility value of the rater which is used to protect from malicious raters.
The main approaches in dealing with the problem are through majority rule [8]
and rating of consumers and data sources. Reputation ratings that are sent to
the trustworthiness module (see Subsection 4.2) must include ConsumerID and
TransactionID fields in order to protect from vulnerabilities such as slandering.
Slandering refers to providing false reports to decrease the reputation of the
victims (see also Subsection 2.3 on threats to trust and reputation systems).

For a rating that is generated at the time of calculation (i.e. Δt = 0 and
wP = β · wgP), the new accumulated weight:

wi ← β · wi · wt + wgP (19)

To facilitate the recalculation of the trustworthiness level when new ratings
are received, the values of wi and pi are stored after each update. The following
is the formula for updating pi after receiving a new rating.

pi ← (wi − wP) · pi + wP · P
wi

(20)

Since confidence reflects both the frequency of receiving new ratings and the
stability of their values as described earlier, the confidence value of service si, fi
is calculated as:

fi = fη · fδ (21)

Aggregation and Optimisation of Trustworthiness of Composite Services 163

where fη is called the ratings’ quantity confidence indicating how frequent new
ratings are received; and fδ the ratings’ quality confidence which indicates the
stability of the ratings values. The more frequent and stable the ratings the
more the confidence i.e. certainty in relation to the calculated reputation. The
following formula calculates fη:

fη = 1− e−α·wi (22)

where α is a constant parameter that can be used to adjust the slope of the
relationship between the sum of the ratings’ weights and the quantity confidence.
The higher the value of α the faster the full confidence (i.e. 1) is reached. It can be
set to any positive value but for gradual increase in confidence it should typically
be set to a value between 0 and 1. The confidence increases in proportion to the
number of ratings and to the degree of their recency.

The quality confidence fδ is calculated as follows:

fδ = 1− di (23)

where di is the deviation history of the ratings around the reputation, calculated
as in Equation (24).

di ← (wi − wP) · di + wP · |pi − P |
wi

(24)

To help update the reputation when new ratings are received, the value of di
is stored after each update. The result from |pi − P | is the absolute difference
between the overall reputation and individual rating value. The value of fδ in-
dicates the deviation of the ratings around the overall reputation and ranges
between 0 (highest deviations) and 1 (lowest deviations).

4 Service Trustworthiness and Selection

4.1 Aggregated Trustworthiness

A trustworthy composite service may incorporate a set of components that are
collectively trustworthy but their attribute values vary. Therefore, considering
trustworthiness attributes individually and setting their threshold can exclude
some more trustworthy components or constructs than those selected. A unified
view of trustworthiness during selection can have advantages as it weighs all
attributes together in the selection decision. However, multidimensional trust-
worthiness is a complex concept as it involves heterogeneous attributes where,
for example, some can be affected by the dependency between components e.g.
reliability, while others are not interdependent e.g. response time. Additionally,
attributes are affected in different fashion by the types of paths in composite
service processes. Therefore, any combination of those attributes into a common
value or ranking system can only be an approximation.

Multi-Criteria Decision Making approaches have been suggested to rank ser-
vices or constructs according to their attributes. Malik and Bouguettaya [8]

164 H. Elshaafi, J. McGibney, and D. Botvich

suggest the use of Simple Additive Weighting citing that it provides results com-
parable to more sophisticated methods. Zia ur Rehman et al. [28] describe a
method called Exponential Weighted Difference that restricts the effect of mu-
tual cancellation between criteria (attribute values) exceeding and below require-
ments.

Each trustworthiness attribute has a computed or monitored value and a re-
quired value. The required value is based on consumer expectation and/or com-
posite service provider requirements. In order to perform common mathematical
operations on the attributes and rank services based on their collective trustwor-
thiness, the attributes need to be normalised. Additionally, prioritisation of the
attributes ensures that the more important attributes to service trustworthiness
are given more weight in the decision.

Normalisation of attributes to obtain attribute values using the same mea-
surement units, requires that we determine the maximum and minimum allowed
values for each attribute. Attributes differ in their measurement units e.g. contin-
uous vs. discrete value, and in their optimal values i.e. maximum vs. minimum.
For example, for reliability the minimum value is 0 and the maximum is 1 (op-
timal). Defining maximum and minimum values may not be as straightforward
for some attributes. For example, the minimum response time (optimal) can
be set to approximately 0 while the maximum can be defined as the maximum
acceptable response time before considering the execution as unsuccessful. Addi-
tionally, some attributes may be discrete or binary such as compliance attributes
particularly those that are security related such as non-repudiation and integrity.

Equation (25) shows how to determine the normalised value τh,norm for an
attribute τh of a service si with N attributes depending on their optimal value,
τh ∈ {τ1, ..., τN}.

τh,norm =

⎧⎨
⎩

τh,max−τh,val

τh,max−τh,min
if τh,min is optimal

τh,val−τh,min

τh,max−τh,min
if τh,max is optimal

(25)

where τh,val is the actual attribute value, τh,max is the maximum, τh,min is the
minimum value and τh,max �= τh,min. The equation is applicable also when the
type of the attribute values are binary or discrete.

Selection candidate services or constructs can then be ranked based on their
scores. A score τθ for a construct θ is calculated using the weighted average of
the difference between normalised attributes and their specified thresholds τi,req .

τθ =
1

N

N∑
h=1

λh(τh,norm − τh,req) (26)

where λh is the weight of attribute τh, λh ≥ 0 and
N∑

h=1

λh = N . The value τθ can

be easily standardized to a value between 0 and 1 to represent the trustworthiness
level. In case of attribute values above thresholds, the difference (τh,norm−τh,req)
can be reset to 0 to prevent mutual cancellation.

Aggregation and Optimisation of Trustworthiness of Composite Services 165

4.2 Trustworthiness Module

A trustworthiness software module is developed for the runtime monitoring and
prediction of composite service trustworthiness as part of Aniketos Platform
based on a set of mechanisms and metrics to ensure contract compliance. Mon-
itoring is the process of checking that service contracts are fulfilled over time,
particularly if changes can occur to operational or business environments or to
internal service quality, security or reputation. Monitoring is also used to detect
vulnerabilities and discover attacks on a service, e.g. by making use of intrusion
detection systems or dynamic testing tools available in the environment.

Fig. 2. Trustworthiness Monitoring and Prediction Module

A composite service provider is a service provider that is responsible for con-
structing service compositions and offering them to consumers. A composite
service provider is notified of important changes in the trustworthiness of the
composite service as a result of one of its components. A component service
that is below the satisfactory trustworthiness level can be replaced with another
component service offering the same functionality but with better trustworthi-
ness. The monetary cost of a composite service as a result of its adaptation is
also determined. The consideration of costs ensures that a balance is maintained
between both trustworthiness and cost efficiency of the service.

Figure 2 shows the architecture of the trustworthiness module. The trust
events refer to the notifications received by the module from external compo-
nents such as event processing, QoS monitoring, consumer ratings, security test-
ing tools and other components. Those events include metrics and alerts that
indicate violations or adherence to the service contracts, threats or changes in the
environment. In addition to the direct experience through those events, the trust-
worthiness module can exchange recommendations with other online modules in
relation to service trustworthiness. Composition plans and existing composite

166 H. Elshaafi, J. McGibney, and D. Botvich

services can be evaluated by the module and their trustworthiness levels are cal-
culated based on received BPMN models of the planned or existing composite
service in XML format.

Incoming events are evaluated by a rules engine to generate trustworthiness
attribute ratings. The rules calculate the rating for the event and add other
properties including the event timestamp and the concerned trustworthiness
attribute. Trustworthiness ratings are then stored by the module and can be
used for calculating and updating the overall trustworthiness value of each ser-
vice and its composite services. The trustworthiness value can be used by other
components to optimise or evaluate the trustworthiness of composite services.
Context configurations allow customisation of the trust context by adjusting the
weighting of trustworthiness attributes e.g. security and performance attributes.
Policy configurations allow setting the trustworthiness thresholds and algorith-
mic constants such as the rating decay rate. The trust engine is responsible
for the aggregation of trustworthiness of a composite service from that of its
components and providing a prediction of the trustworthiness value of a service.

The trustworthiness module is implemented in Java as dynamic OSGi service
platform [29] sub-modules and uses Drools [30] for implementing the rating rules.
This architecture allows the substitution of the sub-modules dynamically as in
the case where alternative algorithms are required or configurations for the policy
and context need to be changed.

4.3 Optimal Service Composition

For optimal selection of a component service for service compositions, the fol-
lowing formula is used:

max

(
ωT · Tcs +

ωc

Ccs

)
(27)

where Ccs is the cost of the composite service and Tcs is a representation of
the trustworthiness calculated from security, reliability and reputation based on
Equation (26). Values ωT and ωc are constants used to normalise the values of
trustworthiness and cost respectively and to customise their priority.

In order to optimise service selection allowing to choose among the best com-
ponent services as per the computation techniques described in this chapter,
an optimisation solution is needed. Since the trustworthiness levels and costs
of component services have discrete values and because of the non-linearity of
those attributes, linear programming and other solutions that require continuous
variables and/or linearity are not suitable. Additionally, the number of services
to select from may be large making heuristic methods a better option to provide
fast and adequate results. Genetic algorithms are well-suited to these kinds of
problems. A custom GA is required to suit the characteristics of the problem of
service composition.

Aggregation and Optimisation of Trustworthiness of Composite Services 167

5 Simulation and Experiments

5.1 Description of GA

A custom GA is developed in MATLAB in which the fitness function uses Equa-
tion (27) together with the aggregation techniques that depend on the structure
of the service composition. As illustrated in Figure 3 the genome is represented
by a binary matrix where each row represents an ordered set of (concrete) ser-
vices belonging to a single service task. In each round, a selected service is
represented by 1 and an unselected by 0. Therefore, each row must have only
single 1 as only one service can be selected from each type to become a compo-
nent of the composite service. Each task (row in the representation) is associated
with a construct in the composite service and with a weighting value. Since the
number of available services may be different for each service type, the number
of columns in the matrix equals the size of the largest set of services belonging
to one service type S where there are m service types.

m
max
i=1

(size(Si))

Empty elements in smaller sets are filled with Not-a-Number (NaN).

Fig. 3. GA Genome

A set of matrices (using MATLAB cell array) are created as an initial pop-
ulation. The custom crossover function takes the parents as cell arrays, and
returns the children that result from a two-point crossover by exchanging ran-
domly selected sections in the parents’ matrices. The custom mutation function
randomly selects two elements in a row of a parent and swaps their values. Since
all elements except one are set to 0, the mutation may have an effect only if the
value of one of the affected elements equals 1. The number of generations can be
fixed to a constant number or set to be proportionate to the number of service
types and number of services. Figure 4 shows the improvement of the score of
best composition over 50 generations for a simulation of services. Note that the
problem is converted to a minimisation one. In the simulation there are 10 types
of services (i.e. tasks) organised in constructs as illustrated in Figure 1 with each
type having between 5 and 10 concrete services. The cost and trustworthiness
of the services are randomly assigned.

168 H. Elshaafi, J. McGibney, and D. Botvich

Fig. 4. Scores by Fitness Function

5.2 Comparison to Other Approaches

Figure 1 illustrates an example composite service used in the simulation that
includes the composition constructs discussed earlier. Simulation services con-
tinue to receive new ratings over the duration of their runtime. The arrival time
for service requests is based on Poisson distribution and the mean for the re-
quests changes over time peaking towards the end. Ratings are created based
on results of service executions and their values vary between services, the time
of the rating and whether there is an increased demand. The high demand is
set to cause consistent low performance (resulting in mainly low reputation) or
fluctuations in performance (resulting mainly in low reputation confidence) in
some of the services. A Gaussian random number generator is used to generate
new ratings where the mean and the variance depend on the component service,
its type (service task), and the time of rating (e.g. high demand).

During the simulations each of the services receives a rating after each re-
quest. The ratings trigger the update and checking of the trustworthiness of the
composite service. Figure 5 shows an evaluation of the trustworthiness of the
services using our approach compared to that using other approaches including:

– averaging of the reputation of components as proposed by Hwang et al. [18].
– taking the minimum reputation of the components as the reputation of the

composite service based on the weakest link principle where the reputation
of the composition is as good as that of its component with the lowest
reputation.

In Figure 5 (A) only three out of ten component services significantly de-
crease in their trustworthiness during the peak time. Despite the low reputation
of three component services, the reputation calculated using the averaging tech-
nique is still high. The weakest link technique only shows the lowest trustwor-
thiness component but does not reflect information on other components with
weak reputation while our approach maintains better view of the state of the
composite service. In Figure 5 (B) all component services’ trustworthiness levels

Aggregation and Optimisation of Trustworthiness of Composite Services 169

(A) Three Components with low reputation (B) All Components with low reputation

Fig. 5. Comparison between Approaches to Trustworthiness Aggregation

decline significantly. The weakest link technique estimates trustworthiness of the
composite service around the same value as in previous case despite the decline
of trustworthiness of all component services. The averaging technique also does
not reflect the low reputation of every component service. The trustworthiness
based on our approach falls to a very low level indicating the low trustworthiness
of the composition.

FIRE [2] is a widely cited trust management model and algorithm for the
assessment of the trustworthiness of agents in open multiagent systems. FIRE
extends REGRET system developed by Sabater [1]. Unlike our approach of using
a moving average, FIRE algorithm recursively runs through all the ratings when-
ever a new rating is received. This results in an increasing delay in responding
to requests for trustworthiness evaluation as ratings increase in quantity.

Fig. 6. Processing Time in msec for FIRE
and Our Algorithm

Fig. 7. Effect of Processing Time on Trust-
worthiness Calculations

Figure 6 compares the processing times of new ratings required by the al-
gorithm described in this chapter and that of FIRE. The figure clearly shows
our algorithm is considerably more faster as the number of ratings available for
assessment increases. Note that re-assessment of all ratings may be required in
our approach after some configuration changes such as those that modify the
weighting of reputation subcategories.

170 H. Elshaafi, J. McGibney, and D. Botvich

The delay in processing time has an effect on the trustworthiness evaluation
because of the role of time in the computations. Figure 7 compares the trust-
worthiness evaluations when (A) our prediction algorithm is used and (B) with
FIRE algorithm during the time interval between 100 and 200 msec. The trust-
worthiness levels differ because of the processing delay in case (B).

6 Summary

Composite service providers need to be able to select trustworthy components
for new compositions and respond swiftly to changed trustworthiness require-
ments and behaviour of existing composite services through adaptation. With
the availability of alternative components providing the same functionality as
those already integrated in a composition, composite service providers can take
advantage of this by replacing untrustworthy components.

This chapter presents the Aniketos approach to monitoring and predicting the
trustworthiness of composite services. The dynamic plugin-based trustworthiness
module continuously monitors the adherence the services to their contracts and
receives metrics relating to the reputation, QoS, security and other events. Inter-
nal service ratings are generated using a rules engine and stored in the module’s
trustworthiness ratings’ store. The computation of trustworthiness depends on
the construction of the composite service and the relative importance of compo-
nents.

The chapter discusses the aggregation of trustworthiness attributes to collec-
tively evaluate services and their constructs. Component services in a composite
service can be mandatory or optional components and may not all be equally
important to the trustworthiness of the composite service. Additionally, compo-
nent services are executed in business processes which consist of different types
of workflow constructs. The aggregation is based on the common structures of
BPMN business processes. A custom Genetic Algorithm is used to optimise the
composition of services based on their trustworthiness and cost.

References

1. Sabater, J.: Trust and reputation for agent societies, PhD dissertation, Universitat
Autònoma de Barcelona (2002)

2. Huynh, T.D.: Trust and Reputation in Open Multi-Agent Systems, PhD disserta-
tion, University of Sourthampton (2006)

3. Noorian, Z., Ulieru, M.: The State of the Art in Trust and Reputation Systems
A Framework for Comparison. J. Theoretical and Applied Electronic Commerce
Research (2010)

4. Khalid, O., Khan, S.U., Madani, S.A., Hayat, K., Khan, M.I.: Comparative study
of trust and reputation systems for wireless sensor networks. J. Security and Com-
munication Networks 6(6), 669–688 (2013)

5. Hoffman, K., Zage, D., Nita-Rotaru, C.: A survey of attack and defense techniques
for reputation systems. ACM Computing Surveys 42(1), 1–31 (2009)

Aggregation and Optimisation of Trustworthiness of Composite Services 171

6. WS-Trust specification document, http://docs.oasis-open.org/ws-sx/

ws-trust/v1.4/ws-trust.html (February 2009)
7. Singhal, A., Winograd, T., Scarfone, K.: Guide to Secure Web Services, National
Institute of Standards and Technology, Technical Report (August 2007)

8. Malik, Z., Bouguettaya, A.: Trust Management for Service Oriented Environments.
Springer (2009)

9. Takabi, H., Joshi, J., Ahn, G.: Security and Privacy Challenges in Cloud Computing
Environments. IEEE Security and Privacy 8(6), 24–31 (2010)

10. Paradesi, S., Doshi, P., Swaika, S.: Integrating Behavioral Trust in Web Service
Compositions. In: 2009 IEEE Int. Conf. Web Services, pp. 453–460 (2009)

11. Hang, C.-W., Singh, M.P.: Trustworthy Service Selection and Composition. ACM
Trans. Autonomous and Adaptive Systems 6(1), 1–18 (2011)

12. Lee, G.-G., Lin, H.-F.: Customer perceptions of e-service quality in online shopping.
Int. J. Retail & Distribution Management 33(2), 161–176 (2005)

13. Li, H., Suomi, R.: A Proposed Scale for Measuring E-service Quality. Int. J. u-and
e-Service 2(1), 1–10 (2009)

14. Parasuraman, A., Zeithaml, V., Berry, L.: SERVQUAL: A multiple-item scale for
measuring consumer perceptions of service quality. J. Retailing 64(1), 12–40 (1988)

15. Udo, G.J., Bagchi, K.K., Kirs, P.J.: An assessment of customers’ e-service quality
perception, satisfaction and intention. Int. J. Information Management 30(6), 481–
492 (2010)

16. Ciszkowski, T., Mazurczyk, W., Kotulski, Z., Hoßfeld, T., Fiedler, M., Collange,
D.: Towards Quality of Experience-based reputation models for future web service
provisioning. Telecommunication Systems 51(4), 283–295 (2012)

17. Moser, O., Rosenberg, F., Dustdar, S.: Non-Intrusive Monitoring and Service Adap-
tation for WS-BPEL. In: Proc. 17th Int. Conf. World Wide Web, pp. 815–824
(2008)

18. Hwang, S., Wang, H., Tang, J., Srivastava, J.: A probabilistic approach to model-
ing and estimating the QoS of web-services-based workflows. Information Science
J. 177(23), 5484–5503 (2007)

19. Grassi, V., Patella, S.: Reliability prediction for service-oriented computing envi-
ronments. Internet Computing 10(3), 43–49 (2006)

20. Elshaafi, H., Mcgibney, J., Botvich, D.: Trustworthiness Monitoring and Predic-
tion of Composite Services. In: Proc. 17th IEEE Symposium on Computers and
Communications, pp. 580–587 (July 2012)

21. Elshaafi, H., Botvich, D.: Aggregation of Trustworthiness Properties of BPMN-
based Composite Services. In: Proc. 17th IEEE Int. Workshop on Computer-Aided
Modeling Analysis and Design of Communication Links and Networks (September
2012)

22. Bianco, V., Lavazza, L., Morasca, S., Taibi, D.: A Survey on Open Source Software
Trustworthiness. In: IEEE Software (2011)

23. Object Management Group, Business Process Model and Notation (BPMN) 2.0,
http://www.omg.org/spec/BPMN/2.0

24. Weske, M.: Business Process Management. Concepts, Languages, Architectures,
2nd edn. Springer (2012)

25. Russell, N., ter Hofstede, A.H.M., van der Aalst, W.M.P., Mulyar, N.: Workflow
Control-Flow Patterns: A Revised View, BPM Center Report BPM-06-22 (2006),
http://bpmcenter.org

26. Workflow Patterns Initiative, http://www.workflowpatterns.com

http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/ws-trust.html
http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/ws-trust.html
http://www.omg.org/spec/BPMN/2.0
http://bpmcenter.org
http://www.workflowpatterns.com

172 H. Elshaafi, J. McGibney, and D. Botvich

27. Steel, C., Nagappan, R., Lai, R.: Core Security Patterns: Best Practices and Strate-
gies for J2EE, Web Services and Identity Management, Pearson Education (2006)

28. Rehman, Z.U., Hussain, F.K., Hussain, O.K.: Towards Multi-criteria Cloud Ser-
vice Selection. In: Proc. 5th Int. Conf. Innovative Mobile and Internet Services in
Ubiquitous Computing, pp. 44–48 (June 2011)

29. OSGi Alliance Specifications, http://www.osgi.org/Specifications
30. Drools - The Business Logic integration Platform, http://www.jboss.org/drools

http://www.osgi.org/Specifications
http://www.jboss.org/drools

Monitoring Threats to Composite Services

within the Aniketos Run-Time Framework

Brett Lempereur1, Dhouha Ayed2, Muhammad Asim1, Madjid Merabti1,
and Qi Shi1

1 School of Computing and Mathematical Sciences, Liverpool John Moores
University, Byrom Street, Liverpool, L3 3AF

{b.lempereur,m.asim,m.merabti,q.shi}@ljmu.ac.uk
2 Thales Services, Paris, France
dhouha.yahed@thalesgroup.com

Abstract. Creating complex systems by combining service components
is becoming a fundamental way to create flexible IT solutions that can
react to changing environment and comply with agile business. The dy-
namic nature of the Future Internet introduces new threats, and with
wider deployment comes a greater need to identify and tackle these
threats before they become attacks. For a composite service, this is even
more challenging, since each individual service component will have a
fluctuating threat picture and there is a broad combined attack surface
when many service components are involved. In this chapter we present
the design and implementation of the Aniketos Service Threat Monitor-
ing Module. This approach applies runtime monitoring of a service that
collects change events that occur and determines their impact on service
compositions.

1 Introduction

The highly distributed and complex nature of composite services exposes a
greater attack surface than traditional stand-alone systems. The nested usage
of services and its dynamic behaviour exposes the composite service to various
security threats [1]. A threat is defined as ”a potential for violation of security,
which exists when there is an entity, circumstance, capability, action, or event
that could cause harm” [2]. According to NIST, a threat represents the poten-
tial for accidental triggering or intentional exploitation of a specific vulnerability
[3]. The threat picture of a service will always be in constant evolution due to
the fact that new methods for performing attacks emerge over time, the users
find themselves in changing operating conditions, and the services themselves
and their execution environment might be updated relatively frequently. For a
composite service, this is even more challenging, since each individual service
component will have a fluctuating threat picture and there is a broad combined
attack surface when many service components are involved [4]. This chapter
discusses a threat monitoring approach that applies runtime monitoring of a
service for collecting change events that occur and correlating their impact on

A.D. Brucker et al. (Eds.): Secure Service Composition, LNCS 8900, pp. 173–191, 2014.
c© Springer International Publishing Switzerland 2014

174 B. Lempereur et al.

service compositions. In case the events describe the occurrence of a threat, a
notification is sent to the affected composition.

We begin the chapter by discussing the requirements of a threat-monitoring
solution within these service-oriented architectures and then introducing the
high-level architecture of threat monitoring within the Aniketos platform. The
chapter continues with the implementation of the threat-monitoring module, and
we present an evaluation of the module in terms of its ability to represent complex
threat types by composing primitive monitoring patterns, and its performance
at detecting denial-of-service attacks. We conclude the chapter with a discussion
of our experience while designing and implementing the threat-monitoring mod-
ule, and future research directions for threat monitoring in composite service
architectures.

2 Requirements for Threat Monitoring in Composite
Service Architectures

A threat monitoring solution must predict the potential for security violations
and detect malicious actions when it is possible. In a composite service architec-
ture context such monitoring solution must capture the changing threat picture
of a service composition, support all the threat categories that are specific to
composite services such as incompatibilities or malicious activities, and have the
capability to analyse the types of threats that are specific to service composition
(see more details about the threat categories and types in Chapter 3).

Threats could appear after a composition of a set of atomic services that do
not show any threat when they run independently of each other but the com-
position can cause vulnerability or make an existing vulnerability in an atomic
service exploitable. A threat monitoring solution needs a capability to detect
such threats in addition to the ability to collect and detect any type of change
from the atomic services that can have an impact on the threat level of a com-
position. Such changes can have various types going from simple context change
to service inherent or security properties.

Moreover, threat monitoring of service compositions has several requirements
in common with monitoring systems for service compositions that we mention
in the following:

– It needs to be platform agnostic in order to support monitoring of services
and compositions using various technologies.

– It should be capable of integrating monitoring data from other subsystems
in order to enable a holistic view of all monitoring data in a system.

– It needs to be unobtrusive so that no modifications to atomic services or
compositions should be necessary to interact with the monitoring system.

– It should enable monitoring across multiple atomic and composite services,
and must correlate monitoring data.

Moser et al. [5] demonstrated that a complex-event processing (CEP) ap-
proach guarantees a flexible monitoring solution that covers the previous re-
quirements.

Monitoring Threats to Composite Services 175

3 Architecture of the Service Threat Monitoring Module

The Aniketos Service Threat Monitoring Module (STMM), forms part of the
Aniketos Complete Solution discussed in Chapter 2, and is built upon built upon
a complex event-processing architecture. This event-driven approach allows the
monitoring system to monitor changes to service as they occur, and lets the
system respond in a much timelier manner to threats than a batch approach
where the detection process executes intermittently.

Not all event-processing systems have the same structure, but they generally
include the concepts of event producers and event consumers that are linked by
an event distribution mechanism and intermediary event filtering and processing
components. An event-processing network is ”a collection of event processing
agents, producers, consumers, and global state elements connected by a collection
of channels” [5]. In this model, an event producer is an entity that generates a
stream of events that is dispatched through the event-processing network, and an
event consumer is an entity that is able to receive events and, if necessary, trigger
actions in response. The intermediary event processing is generally specified as
a sequence of subcomponents that are called event processing agents, these are
typically divided into filter agents, pattern detection agents, and transformation
agents, where

– Filter agents apply a test on incoming events to decide whether to discard
it or to dispatch it for further processing;

– Pattern detection agents examine a stream of incoming events to discover
the occurrence of specified or anomalous patterns; and,

– Transformation agents modify the content or structure of the received events.

Following this model, Figure 1 shows the platform independent architecture of
the logical components within the module. The service threat-monitoring mod-
ule contains a set of threat detectors, which represent a suite of core function-
ality, augmented by a collection of monitoring pattern definitions. To monitor
events, services are bound to specific threats by the Service Runtime Environ-
ment, for which the STMM instantiates a threat detector as a threat binding.
The service-monitoring module in particular, and any component in the Anike-
tos platform capable of sending alerts through the notification module, play the
role of event producers by monitoring service compositions and their environ-
ments. The STMM automatically manages subscriptions for services and their
dependencies with the notification module.

Logically, the service threat-monitoring module represents a network of pro-
cessing agents, including a filtering component that discards irrelevant incoming
events and dispatches the remaining sequence of events to all interested service
monitors. In turn, the service monitors dispatch the event to all of their threat
bindings, which apply their core functionality and pattern agents to determine
changes in the level of a threat to a service.

The STMM is flexible enough to be applied to any service-oriented architec-
ture that provides the necessary marketplace and messaging components. In the

176 B. Lempereur et al.

Fig. 1. Component diagram showing the structure of the implementation of the service
threat-monitoring module

following section, we discuss the implementation of this platform-independent
architecture within the context of the Aniketos platform.

4 Implementation

Like most of the Aniketos platform, we implemented the service threat-
monitoring module as a web service using the OSGi framework. The imple-
mentation is separated into a collection of loosely coupled and cohesive compo-
nents that are provided as bundles of functionality. For example, the data model
shown in the next section is provided as one bundle, and a second bundle that
depends on the model bundle provides the component that interacts with the
Aniketos Marketplace to construct composite service dependency graphs. Our
implementation accesses external components using their web service interfaces
made available using the distributed DOSGi framework [8], with the exception
of the Notification Module that we access by connecting directly to the AMQP
broker [6]. Figure 2 shows the structure of the bundles in the implementation as
a component diagram, where boxes represent components, circles represent in-
terfaces, lines indicate that a component provides an interface, and lines ending
in cups indicate that a component uses an interface. To simplify the diagram, we
have hidden interfaces that are provided and consumed within the implementa-
tion and are not accessible to external components.

Monitoring Threats to Composite Services 177

F
ig
.
2
.
C
o
m
p
o
n
en
t
d
ia
g
ra
m
sh
ow
in
g
th
e
st
ru
ct
u
re
o
f
th
e
im
p
le
m
en
ta
ti
o
n
o
f
th
e
se
rv
ic
e
th
re
a
t-
m
o
n
it
o
ri
n
g
m
o
d
u
le

178 B. Lempereur et al.

In the remainder of this section, we will present the design and implementa-
tion of the components of the service threat-monitoring module, beginning by
presenting the common data model shared among all components of the module.

4.1 Data Model

The components in the service threat-monitoring module share a common un-
derstanding of the domain that is provided by the data model. Figure 3 shows
a sketch of the classes that comprise the data model using UML class diagram
notation, where each box represents a class, a filled-diamond denotes a compo-
sition relationship between classes, and an open-diamond represents an aggre-
gation relationship between classes. Within this model, instances of the class
service represent both atomic and composite services. The dependency class en-
codes a dependency relation between a parent service composition and a child
service that can be either atomic or composite. Events describe the time at which
they occurred, the service from which they originated, the composing service (if
any), and a set of parameters that represent properties of the event. A threat
represents a collection of potential weaknesses in a service or the environment
in which a service executes, each of which has a weight that allows the service
threat monitor to calculate the threat level of a service. Services are bound to
threats for monitoring, with the weakness state representing the current state of
a given weakness for a bound service.

Fig. 3. Data model of the service threat-monitoring module

This model forms the basis of the implementation of the service threat-
monitoring module. It allows us to apply complex event-processing techniques to
streams of events that originate from environmental and service-level monitors,
computing threat levels based on dynamically changing bindings between ser-
vices on the Aniketos Runtime Environment and threats hosted by the Aniketos
Threat Repository.

Monitoring Threats to Composite Services 179

While the description of the architecture of the service threat-monitor ex-
plained the sources of the data in this model, we have not yet addressed where
we derive service dependency information. In the next section, we will elaborate
on this topic, and discuss how we construct a graph-based model of direct and
transitive service dependencies.

4.2 Composite Service Dependency Graphs

To determine the presence of threats in composite service architectures, the
service threat-monitoring module must not only consider threats to the service
composition and its components, but also to any transitive service dependencies.
Our solution to this problem is the concept of a composite service dependency
graph, which models the relationship between a service composition and all of
its known transitive dependencies. An example composite service dependency
graph that consists of seven services and seven dependencies between those ser-
vices is shown in Figure 4. We draw a distinction between services that we know
are compositions, as their model is available in the Aniketos Marketplace, and
services that we treat as atomic because their model is unavailable to the Anike-
tos platform, further discussion of this can be found in Chapter 2 and Chapter
3. In the case of Figure 4, we know that the root service, service a, service b, and
service e are composite services, and we treat the remaining services as if they
were atomic. From this model, we know that in order to correctly determine the
actual threat level of the root service, we must also monitor events relating to
the other services in the dependency graph.

Fig. 4. Example composite service dependency graph consisting of seven services and
seven dependencies

To construct and maintain the dependency graphs in the service threat-
monitoring module, we use two iterative algorithms that interact with the Anike-
tos Marketplace to retrieve the composition plans for services in the dependency
graph. The first algorithm, shown in Figure 5, accepts a root service as an

180 B. Lempereur et al.

argument, and constructs a dependency graph as a set of services and depen-
dencies by iteratively traversing its set of unvisited child services, determining
whether each child service is known to be a composite service, and if so adding
its plan to a stack for processing. As explained earlier in this section, the re-
sulting composite service dependency graph captures our best knowledge of the
status of the composition and all of its dependencies.

Algorithm 4.1: Construct dependency graph(c)

procedure ConstructDependencyGraph(root)
services ← {root}
dependencies ← {}
stack ← 〈GetPlan(root)〉
while NotEmpty(stack)

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

plan ← Pop(stack)
parent ← GetService(plan)
for each child ∈ GetChildServices(plan)

do

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dependencies ← dependencies∪ {(parent, child)}
if child �∈ services

then

⎧⎨
⎩
services ← services ∪ {child}
if HasPlan(child)
then Push(stack,GetPlan(child))

return (root, services, dependencies)

The earlier chapters in this book have shown that composite services in the
Aniketos platform are not static; they react to changes in the environment and
user requirements by dynamically replacing services to ensure a high degree
of availability, security, and trustworthiness. We should expect, then, that the
dependency graphs we construct will not always be valid and our knowledge of
a composition should be updated. While we could, in the event of a change,
reconstruct the entire dependency graph, this will require a significant number
of round-trips to the marketplace, and is unsuitable for volatile environments.
Instead, the algorithm in Figure 6 allows us to reconstruct a dependency graph
by only knowing the original state of the graph and the dependency graph of
the replaced service. It accepts two dependency graphs, where , , and are the
root service, services, and dependencies in the current graph, and , , and are
the root service, services, and dependencies for the replacement subgraph. We
traverse the original dependency graph, excluding all services that are only the
direct or transitive dependencies of the replacement root , and return a new
dependency graph as the union of the visited services, dependencies, and those
in the replacement subgraph.

Monitoring Threats to Composite Services 181

Algorithm 4.2: Update dependency graph(c)

procedure UpdateDependencyGraph(rp, sp, dp, rq, sq, dq)
services ← {}
dependencies ← {}
stack ← 〈rp〉
while NotEmpty(stack)

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

parent ← Pop(stack)
services ← services ∪ {parent}
if parent �= rq

then

⎧⎪⎪⎨
⎪⎪⎩

for each child ∈ GetChildServices(parent)

do

⎧⎨
⎩
dependencies ← dependences∪ {(parent, child)}
if child �∈ services
then Push(stack, child)

services ← services ∪ sq
dependencies ← dependencies ∪ dq
return (rp, services, dependencies)

We use these two algorithms to create and update the dependency graphs for
services for the duration that they are bound to threat monitoring. The informa-
tion from the dependency graph is used by threat monitoring to determine which
service monitors should receive incoming events, and within the service monitors
to associate the state of a threat with each service participating in the composi-
tion. In the next section, we will present the design and implementation of the
threat detectors and service monitors, explaining the complex event-processing
engine in the Aniketos service threat-monitoring module.

4.3 Complex Event Processing Engine

The complex event-processing functionality in the service threat-monitoring
module is built upon the Drools Fusion platform [7]. This platform, which is
an extension of the Drools Expert knowledge-management software, allows us to
implement the service threat-monitoring module in terms of temporal operations
on streams and windows of events. Our implementation provides a mechanism for
filtering, dispatching, and processing events using threat detectors and bindings
constructed from a collection of primitive threat-monitoring patterns.

Figure 5 shows the event-processing pipeline, which we separate into stages in-
volving management, event filtering and processing, and alert generation. Events
are received from external components through the web service interface or from
the notification module, filtered to check for relevance to monitored services,
dispatched to relevant service monitors and threat bindings, and finally used
to update the threat level of a service and raise an alert through the notifica-
tion module if necessary. The four main entities in the service threat monitoring
module that implement this event-processing pipeline are

182 B. Lempereur et al.

Fig. 5. Service threat-monitoring module event-processing pipeline

– Threat detectors that act as a repository of monitoring patterns instantiated
from templates and spreadsheets.

– Threat bindings that are implemented as stateful and event-based Drools
monitoring sessions.

– Service monitors that are a collection of threat bindings for each threat that
a service has been bound to through the web service interface, they receive
and process events, calculate the threat level for the bound service, and
dispatch alerts when a service threat level changes.

– A monitoring engine that coordinates the creation of threat bindings, service
monitors, subscriptions to the notification module, and the dispatch of events
to the set of relevant service monitors.

We call the stream of events that arrive as the input to the event filtering
and processing stage the list of participant events. Event filtering is one of the
fundamental concepts of complex event processing, as it allows us to define facts
on which it is possible to reason about the state of a system. The service threat-
monitoring module is able to filter the list of participant events arriving from
the Aniketos platform according to their associated service identifiers. As the
module maintains a mapping that includes the identifiers of all bound services
and their transitive dependencies to the relevant service monitor, we can achieve
this filtering in constant time regardless of the number of services or bound
threats, limited only by the available memory in the system hosting the module.
Events from services that are not bound to a threat are considered irrelevant,
however, they are always logged and can be used to detect threats to services at
the point of their binding. This stage reduces the number of events that must
be considered by the module, as we need not apply complex temporal reasoning
to the subset of events that are irrelevant and will never trigger any changes in
the threat level of bound services.

In the next section, we complete discussions of the implementation of the ser-
vice threat-monitoring module by addressing the definition of threat-monitoring
patterns, the specification of abstract monitoring templates, and the instantia-
tion of concrete threat detectors through template parameter substitution.

4.4 Monitoring Patterns and Templates

The detection phase examines the stream of participant events and determines
if they match the specific conditions of the threat that is being searched for.

Monitoring Threats to Composite Services 183

In the previous sections, we have shown how the service threat-monitoring mod-
ule provides an extensible platform for monitoring threats to composite ser-
vice architectures that uses filters to allow for the expression of constraints on
events. However, event filters only support the expression of individual con-
straints, which means that these constraints are applied on a particular event
type. In order to be able to express complex constraints, for example a threat
that is dependent upon several event types, we introduce the notion of threat
monitoring patterns. Etzion et al. describe event patterns as

”An event pattern is a template specifying one or more combinations of
events. Given any collection of events, we may be able to find one or
more subsets of those events that match a particular pattern. We say
that such a subset satisfies the pattern.”

From this, we define a set of patterns for the detection of threats in composite
service architectures to include

– The all pattern is a logical conjunction on the stream of events that is satis-
fied when the participant event list contains one instance of each event type
that is specified in a relevant event types list;

– The any pattern is a logical disjunction on the stream of events that is
satisfied when the participant event list contains at least one instance of any
event type that is specified in a relevant event types list;

– The always pattern is a model pattern which is satisfied when all event
instances in a participant list match a given assertion;

– The absence or non-event pattern detects the absence of specified events and
is satisfied when the participant event list does not contain any instance of
any event type that is specified in a relevant event types list;

– The threshold pattern involves an aggregation function that is applied to the
set of participant events and the result of the aggregation function is then
compared to a threshold value;

– The sequence pattern applies a temporal ordering to the participant event
list and is satisfied if instances of events in the list occur in the same order
as specified in a relevant event types list;

– The monotonicity pattern that is satisfied if the value of a given event at-
tribute increases or decreases monotonically as we move forward through the
participant event list; and,

– The functor pattern applies a derivation function to a specific event attribute
over a set of event instances and then compares the result to a threshold, for
example functions applied by this pattern can include min, max, average,
concatenation, first, and last/

These patterns form the fundamental complex event-processing model of the
service threat-monitoring module.

To allow for the specification of threat monitoring rules by users, we hide the
complexity of the complex-event processing engine through the use of parame-
terized templates. These templates are constructed from the threat monitoring

184 B. Lempereur et al.

Listing 1.1. Excerpt from the implementation of the any pattern as a threat-
monitoring template

rule "Insecure Vulnerability {@name} Change"

when

$activator : ServiceEvent(type == "@{type}", parameters ["@{key}"] != null , @{expression}, $service :

service) from window RecentEvents

not(ServiceEvent(type == "@{type}", parameters ["@{key }"] != null , !(@{expression }), service ==

$service , this after $activator) from window RecentEvents)

$weakness : Weakness(name == "@{name}", weight == Float.valueOf ("@{weight }"))

$state : WeaknessState(service == $service , weakness == $weakness , !active)

then

logger.debug (" Insecure vulnerability change for ’@{name}’ triggered ");

modify($state) { setActive(true) }

end

rule "Secure Vulnerability {@name} Change"

when

$activator : ServiceEvent(type == "@{type}", parameters ["@{key}"] != null , !(@{expression }),

$service : service) from window RecentEvents

not(ServiceEvent(type == "@{type}", parameters ["@{key }"] != null , @{expression}, service == $service

, this after $activator) from window RecentEvents)

$weakness : Weakness(name == "@{name}", weight == Float.valueOf ("@{weight }"))

$state : WeaknessState(service == $service , weakness == $weakness , active)

then

logger.debug(" Secure vulnerability change for ’@{name}’ triggered ");

modify($state) { setActive(false) }

end

patterns as Drools rules with placeholders for variables that can be supplied
through some external source, typically a spreadsheet, database, or XML docu-
ment. As an example, consider the template excerpt specified in Figure 8. This
template specifies a simple monitoring rule using the any pattern. It examines
the stream of participant events for any event that contains an attribute match-
ing the given value, and if it is detected it signifies this by activating the weakness
state associate with the responsible service. This will, in turn, trigger a recalcu-
lation of the threat level for the service and if necessary the dispatch of an alert
through the notification module. In the event that the constraint does not hold
for any future event of the given type, the weakness state is deactivated, causing
the threat level to return to its previous value and again triggering a threat level
recalculation and resulting notifications if necessary.

The implementation of the service threat-monitoring module contains mul-
tiple templates that provide implementations of the any, threshold, and mono-
tonicity patterns. To support additional threat monitoring patterns, further tem-
plates can be added to the implementation without requiring changes to the
code.

To instantiate this template for their own needs, a user supplies the values
for its parameters in a spreadsheet that is uploaded to the Aniketos Threat
Repository as a monitoring control countermeasure. These spreadsheets contain
multiple workbooks, with each row in a workbook providing the parameters
to create an instance of the named threat-monitoring template. If we continue
to consider the previous example, the following assignments of parameters will
instantiate the any template to detect when the architecture providing a service
moves into an untrusted legal jurisdiction:

Monitoring Threats to Composite Services 185

– Name: Untrusted outsourcing or delegation;
– Weight: 1.0;
– Type: Context change;
– Key: Jurisdiction;
– Expression: parameters[jurisdiction] != Republic of Costaguana.

In this case, upon receiving an event of type context change, the service mon-
itor will check whether the event has a key named jurisdiction. If so, it will
check whether the given expression holds. If not, the weakness state associated
with the service will be updated to active and an alert will be generated if this
resulted in a change to the overall threat level of the service. If the expression
does hold and the weakness state is active, the state will be deactivated, again
triggering an alert if the overall threat level of the service changed.

This layered model, built on the concepts of threat monitoring patterns and
templates, allows the service threat-monitoring module to provide a flexible solu-
tion for detecting changes and threats in complex service-oriented architectures.
In the next section, we will present an evaluation of the implementation of the
module, beginning by considering the effectiveness of the threshold-monitoring
pattern.

5 Evaluation

In this section, we present a two-part evaluation of the service threat-monitoring
module. In the first evaluation, we consider the functionality of the module within
the context of the Aniketos platform, specifically testing our integration with the
Aniketos Marketplace, Threat Repository, Notification Module, Service Runtime
Environment, and the Service Monitoring Module. In the second part of the eval-
uation, we discuss the flexibility of the module, describing our implementation
of a denial-of-service detector based on the threshold pattern discussed in the
previous section.

5.1 Integration with the Aniketos Platform

For the purposes of this evaluation, we are hosting the Service Threat Moni-
toring Module within Apache Karaf [9] on an Amazon EC2 micro-tier instance.
This cloud machine is running an up-to-date version of Karaf as a system level
service, and the STMM and all of its dependencies are executing within this
Karaf instance, as shown in Figure 6. Access to this cloud deployment of the
STMM has been made public to allow other components within the Aniketos
platform to test their integration with the module.

To conduct this evaluation, we used the SoapUI unit-testing suite. The tests
are implemented as a SoapUI project, consisting of multiple unit tests that evalu-
ate the functionality of individual methods offered by the STMM, and test cases
that the behaviour of the STMM when sequences of methods reflecting expected
real-world usage are invoked. The aim of the tests is to achieve coverage of all of
the interfaces and methods provided by the STMM. To this end, the test suites
implemented within the project include:

186 B. Lempereur et al.

Fig. 6. Cloud deployment of the Service Threat Monitoring Module

– A set of six test cases that evaluate the STMM in isolation (i.e. with a
dummy threat countermeasure implementation), these cover both success-
ful operations and sequences of actions that are known to violate internal
constraints maintained by the STMM, and

– A set of nine integration tests that evaluate both the functionality of the
STMM and its integration with other Aniketos components.

The test case shown in Figure 10 first binds the service to the specified threat,
it then sends a sequence of events with an increasing request count (and rela-
tively close timestamps) that are designed to trigger the activation of the threat
detector, and then sends an event with a lower request count that should deac-
tivate the threat detector. Each of these actions sends a SOAP request to the
relevant method of the STMM interface. We execute the test by selecting the
play button in the top-left corner of the toolbar, and SoapUI handles dispatching
the SOAP requests and testing the servers replies against expected responses.

As the design of the STMM interface does not send detailed reports back
for each invocation, and we have not been able to integrate checking messages
sent by the notification, the responses indicate only the success of the operation.
That is, a successful test corresponds to a non-error reply from the web service.
To evaluate whether the STMM actually performed the expected sequence of
events, we must manually examine the logs produced by both the STMM itself,
the threat detectors, and the notification module. In the next section, we detail
the specific tests we conducted to validate the functionality of the STMM and
the results of the evaluation.

We implemented two test suites for the Service Threat Monitoring Module.
The first test suite, which evaluated the functionality of the module in isola-
tion, tested its response to various valid and invalid inputs. The second test
suite considered the functionality of the module as a part of the Aniketos plat-
form, including testing whether three real monitoring controls function correctly
when receiving streams of events. Table 1 shows an overview of the results of
these test suites. For all test cases in both test suites the module performed

Monitoring Threats to Composite Services 187

Fig. 7. Test case specification for an adaptive-threshold based denial-of-service threat
detector

as expected, this includes our manual verification that the correct events were
dispatched through the notification module. In the remainder of this section we
will present detailed results for both of the test suites, providing descriptions of
the operations invoked and their expected results.

Table 1. Overview of test-suite results for the Service Threat Monitoring Module

Name Test Cases Failures Errors Success Rate Time (s)

Isolation 7 0 0 100% 20.2
Integration 9 0 0 100% 12.8

As part of these tests of the module in isolation and integrated into the rest
of the platform, we used three separate threats from the threat repository to
evaluate the functionality of the STMM in the specified test cases, which were

– A simple countermeasure that activates and deactivates its corresponding
weakness state depending upon some test of the value of a parameter of a
single event;

– A threshold countermeasure for the detection of denial-of-service attacks
that uses an adaptive threshold algorithm, in this case based on the total
number of requests a service receives within a specified time-window; and

– A monotonicity countermeasure that, in this case, checks whether a sequence
number attached to events is strictly increasing.

188 B. Lempereur et al.

Listing 1.2. Excerpt from the implementation of the threshold-monitoring pattern as
a threat-monitoring template

rule "Threshold {@name} Calculate Moving Average"

no-loop

when

$service : Service ()

$weakness : Weakness(name == "@{name}", weight == Float.valueOf ("@{weight }"))

$averageState : MovingAverageState(service == $service , weakness == $weakness)

$events : ArrayList(size >= 2) from collect(

ServiceEvent(type == "@{type}", parameters ["@{key}"] != null , service == $service) from entry -

point "Event Stream"

)

then

// Calculate the updated moving average value.

ServiceEvent initialEvent = (ServiceEvent)$events.get(0);

float averageCoefficient = Float.valueOf ("@{averageCoefficient }");

float mu = Float.valueOf(initialEvent.getParameters ().get("@{key}"));

for (int i = 1; i < $events.size(); i++) {

ServiceEvent event = (ServiceEvent)$events.get(i);

float xi = Float.valueOf(event.getParameters ().get("@{key }"));

mu = (averageCoefficient * mu) + ((1 - averageCoefficient) * xi);

}

// Extract the latest observation value.

ServiceEvent latestEvent = (ServiceEvent)$events.get($events.size() - 1);

float xn = Float.valueOf(latestEvent.getParameters ().get("@{key}"));

// Update the moving average state.

modify($averageState) { setAverage(mu), setObservation(xn) }

// Allow inspection of rule progress through logs.

logger.debug(" Updated moving average state ’{}’", $averageState);

end

These threats represent typical usage of the STMM in real-world scenarios;
effectively we simulated inputs from the service runtime environment and the
service-monitoring module to test the functionality of the STMM. In the next
section, we present an evaluation of the flexibility of the module in terms of its
ability to represent complex threats using the paradigms we have outlined in
this chapter, and the performance of a denial-of-service threat detector.

5.2 Denial-of-Service Detection

Figure 11 shows an excerpt from the implementation of the threshold-monitoring
pattern that uses the adaptive threshold algorithm to determine whether a mon-
itored value exceeds normal behaviour. This algorithm collects a list of the par-
ticipant events as those events relating to a monitored service that have been
received from the Aniketos platform within the last ten minutes. It then cal-
culates the exponentially-weighted moving average of some attribute of those
events using the first event in the list as the initial value. If the latest obser-
vation is above a threshold computed using a given coefficient and the moving
average, an alarm count is incremented. Another rule in the implementation
that was omitted for brevity reacts to changes in the alarm count, determining
whether the number of consecutive alarms is above a user-specified threshold,
and if so activating the weakness and consequently triggering an alert to be
generated.

Monitoring Threats to Composite Services 189

This template accepts parameters that define the name of the weakness, its
weight, the type of event containing relevant information, the name of the event
attribute containing the value to use for calculation, the moving-average coeffi-
cient, the adaptive threshold coefficient, and a limit for the number of consecutive
alarms. For the detection of denial-of-service events, we use the coefficient val-
ues demonstrated by Siris and Papagalou [10] to be effective at the detection of
high-intensity denial-of-service attacks, constructing an instance of the template
with the parameters:

– Name: Distributed denial-of-service;
– Weight: 1.0;
– Type: Context change;
– Key: Requests-per-minute;
– Moving average coefficient: 0.96;
– Threshold coefficient: 0.5;
– Alarm limit: 4.

To evaluate the performance of the threshold monitoring template, and the ef-
fectiveness of the service threat-monitoring module, we conducted an experiment
that involved generating two different sequences of events.

Figure 8 and Figure 9 show the behaviour of the distributed denial-of-service
threat detector in these two scenarios. In the first instance, we generated a
sequence of requests per minute values that do not indicate a denial-of-service
attack. While the number of requests per minute fluctuated between 45 and 60,
the adaptive threshold remained relatively stable and was never breached. The
second graph shows the behaviour of distributed denial-of-service threat detector
when the requests per minute values indicate a denial-of-service attack, with

– The vertical magenta line indicating the point at which the number of con-
secutive alarms exceeded the alarm threshold, activating the vulnerability
and generating a notification; and,

– The vertical cyan line indicating when the number of requests per minute
fell below the adaptive threshold, causing the vulnerability to deactivate and
a notification to be generated.

In this example, we have used distributed denial-of-service as an example
threshold-monitoring pattern that uses fluctuations in the number of requests
received by a service to determine whether it is under attack. The design of the
threshold pattern, however, allows it to be used more generally for the monitoring
of properties of events, and for their inclusion as part of any monitoring control
specified in the Aniketos Threat Repository.

190 B. Lempereur et al.

Fig. 8. Graph of the behaviour of the distributed denial-of-service threat detector when
the sequence of participant events does not indicate an attack

Fig. 9. Graph of the behaviour of the distributed denial-of-service threat detector when
the sequence of participant events indicates an attack

6 Conclusions and Futher Work

The Future Internet will be populated not just by data and devices, but also by
services. Creating complex systems by combining service components is becom-
ing a fundamental way to create flexible IT solutions that can react to changing
environment and comply with agile business. As a solution to this problem, in
this chapter, we have presented the requirements, architecture, design, and im-
plementation of the service threat-monitoring module that forms part of the
Aniketos platform.

Within the scope of the current implementation, we intend to investigate
methods for horizontally scaling the monitoring platform to improve its per-
formance. This will involve distributing the monitoring components, either by
having nodes be responsible for hosting a smaller number of threat detectors and
a larger number of service monitors, or by ensuring each node holds a smaller
number of service monitors and a larger number of threat detectors. The infras-

Monitoring Threats to Composite Services 191

tructure to ensure the efficient distribution of messages can be built upon the
existing Notification Module.

In addition, we believe that further work on the mechanisms for specifying
monitoring policy will increase the usability of the service threat-monitoring
module. That is, we aim to reduce the semantic distinction between the specifi-
cation of the composition plan and its security requirements and the monitoring
mechanisms that can detect the potential for threats to a service. While the
existing monitoring template and spreadsheet-based instantiation process works
effectively for experts, it requires expertise on behalf of users and the separa-
tion of monitoring specification between the Threat Repository and the Service
Composition Framework. We believe that a more usable solution would be to
encode and represent all information required to monitor a composite service as
part of its plan.

References

1. Elshaafi, H., McGibney, J., Botvich, D.: Trustworthiness monitoring of dynamic
service compositions. In: Proceedings of the 6th International Workshop on En-
hanced Web Service Technologies, USA, pp. 25–29 (2011)

2. Shirey, R.: Internet Security Glossary, Version 2 (RFC4949) (2007)
3. Stoneburner, G., Goguen, A., Feringa, A.: Risk management guide for information
technology systems recommendations of the national institute of standards and
technology. NIST Special Publication 800(30), 55 (2002),
http://csrc.nist.gov/publications/nistpubs/800-30/sp800-30.pdf

4. Meland, P.H., Guerenabarrena, J.B., Llewellyn-Jones, D.: The Challenges of Secure
and Trustworthy Service Composition in the Future Internet. In: Proc. of the 2011
6th International Conference on System of Systems Engineering, Albuquerque, New
Mexico, USA, June 27-30 (2011)

5. Moser, O., Rosenberg, F., Dustdar, S.: Event Driven Monitoring for Service Com-
position Infrastructures. In: Chen, L., Triantafillou, P., Suel, T. (eds.) WISE 2010.
LNCS, vol. 6488, pp. 38–51. Springer, Heidelberg (2010)

6. Apache ActiveMQ, http://activemq.apache.org/
7. JBoss Drools, https://drools.jboss.org/
8. Apache CXF-Distributed OSGI,

https://cxf.apache.org/distributed-osgi.html

9. Apache Karaf, https://karaf.apache.org/
10. Siris, V.A., Papagalou, F.: Application of anomaly detection algorithms for detect-

ing SYN flooding attacks. Computer Communications 29(9), 1433–1442 (2006)

http://csrc.nist.gov/publications/nistpubs/800-30/sp800-30.pdf
http://activemq.apache.org/
https://drools.jboss.org/
https://cxf.apache.org/distributed-osgi.html
https://karaf.apache.org/

A.D. Brucker et al. (Eds.): Secure Service Composition, LNCS 8900, pp. 192–202, 2014.
© Springer International Publishing Switzerland 2014

Security Policy Monitoring of Composite Services

Muhammad Asim1, Artsiom Yautsiukhin2, Achim D. Brucker3,
Brett Lempereur1, and Qi Shi1

1 School of Computing and Mathematical Sciences, Liverpool John Moores University, UK
{m.asim,b.lempereur,q.shi}@ljmu.ac.uk

2 Istituto di Informatica e Telematica, Consiglio Nazionale delle Ricerche, Italy
artsiom.yautsiukhin@iit.cnr.it

3 SAP SE, Vincenz-Priessnitz-Str. 1, 76131 Karlsruhe, Germany
achim.brucker@sap.com

Abstract. One important challenge the Aniketos platform has to address is the
effective monitoring of services at runtime to ensure that services behave as
promised. A service developer plays the role that is responsible for constructing
service compositions and the service provider is responsible for offering them
to consumers of the Aniketos platform. Typically, service consumers will have
different needs and requirements; they have varying business goals and differ-
ent expectations from a service, for example in terms of functionality, quality of
service and security needs. Given this, it is important to ensure that a service
should deliver for which it has been selected and should match the consumer’s
expectations. If it fails, the system should take appropriate subsequent reactions,
e.g., notifications to the service consumer or service designer.

In this chapter, we present the policy-driven monitoring framework which is
developed as part of the Aniketos project. The monitoring framework allows
different user-specified policies to be monitored simultaneously. The monitor-
ing is performed at the business level, as well as at the implementation level,
which allows for checking the policies of composite services as well as atomic
ones. The framework sends an alarm in case of policy violation to notify the in-
terested parties and triggers re-composition or re-configuration of the service.

Keywords: monitoring, secure service composition, security policy, complex
event processing, SOA, BPMN.

1 Introduction

Applications based on a Service-Oriented Architecture (SOA) are highly dynamic and
liable to change heavily at runtime. These applications are made out of services that
are deployed and run independently, and may change unpredictably after deployment.
Thus, changes may occur to services after deployment and at runtime, which may lead
to a situation where services fail to deliver for which they have been selected and no
longer satisfy user’s expectations. Therefore, there is need to shift towards runtime
monitoring of services [1].

One important feature of the Aniketos platform is the effective monitoring of ser-
vices at runtime to ensure that services behave as promised. This paper presents a

 Security Policy Monitoring of Composite Services 193

monitoring framework that is based on the runtime monitoring of a composite service
to ensure that the service behaves in compliance with a pre-defined security policy.
Alerts regarding policy violations are sent as notifications. BPMN [2] has been used
for modelling and specifying composite services, and the Activiti engine [16] as a
Business Process Management Platform. BPMN is widely used as a modelling nota-
tion for business processes as well as for executing them in a business process engine
[3].

Current monitoring methods applied to service execution environments focus on
generating alerts for a specific set of pre-built event-types. However, the dynamic
nature of SOAs also extends to the end-user security requirements. An ideal system
might allow different users to be given the opportunity to apply their own security
policies enforced through a combination of design-time and run-time checks. This
might be the case even where multiple users are accessing the same services simulta-
neously. Current monitoring techniques [4, 5, 6, 7] have not been set up with this
flexibility in mind.

In this paper we aim to rectify the above weakness of the existing monitoring work
by developing a novel policy-driven monitoring framework that allows different user-
specified policies to be monitored simultaneously at run-time with the accuracy of a
monitoring system that links directly into the service execution environment.

2 Service Composition: An Example

We will illustrate our approach by using a running example. In this example, we as-
sume that we are a small company that designs, develops, and provides customized
services to customers. Moreover, we assume that our customer wants to have an ap-
plication that provides a location based information service, e.g., based on the current
GPS coordinates of a mobile device or after entering an address. The application
should display information such as the current weather or a map highlighting various
points of interests.

As there are many services available that already provide information such as the
current weather, it is quite a natural approach to build this new application based on
already existing services, e.g.:

• a GeoCoding type service, which takes as input a street address and gets the
associated geographical coordinates;

• a PointOfInterest type service that takes as input the geographical coordi-
nates and returns the places that the end user can be interested in;

• an WeatherForecast type service that takes as input the geographical coordi-
nates and returns the information about the weather observations at the sta-
tion closest to the end user;

• a Map type service that takes as input the geographical coordinates and re-
turns a map showing the position of the end user;

• a WebPageInfoCollector type service that takes as input a set of information
related to a location and returns a web page that shows it.

194 M. Asim et al.

The resulting composite service, named InfoService, takes as input a street address
and returns the web page collecting all the information described above. For more
details about this scenario and its implementation, we refer the reader elsewhere [17].
Fig. 1 presents an overview of the InfoService case study.

Fig. 1. Overview of InfoService Components

3 Policy Language

In the Aniketos project we were looking for a language which could: (i) express secu-
rity properties and policies for hierarchical services; (ii) be expressive enough, clear
and simple in processing at the same time; (iii) be generated by both humans and
software.

We considered several candidates for such kind of language. XACML [9], Event
Calculus [10], PROTUNE [11]. XACML is a general purpose language but hard to
express policies and reason about them. Event Calculus has a complex syntax for
expressing policies for composite services. PROTUNE [17] language has high ex-
pressivity and can be used to specify complex policies in a distributed environment.
The main disadvantages of the method relates to its strength. Because of such enorm-
ous expressiveness the language is complex for policy writing and reasoning.

Based on the above analysis, we selected the ConSpec language [12] for our pur-
poses. The ConSpec language was proposed by the University of Trento and Royal
Institute of Technology in the scope of the S3MS project [15]. Briefly, we can see the
language as follows (we refer a reader to Aktug and Naliuka [12] for the details):

 Security Policy Monitoring of Composite Services 195

RULE ID ruleId
SCOPE <Session | Multisession>
SECURITY STATE
<bool |int|string> VarName1 = <Value1>
<bool |int|string> VarName1 = <Value1>
<BEFORE | AFTER> event1 PERFORM
Gaurd11->Update11
……
Gaurd1N->Update1N
 …
<BEFORE | AFTER> eventM PERFORM
GaurdM1->UpdateM1
…
GaurdML->UpdateML

Fig. 2. ConSpec Syntax

The tag RULEID simply defines the id of the policy. The tag SCOPE specifies

whether the rule is applied to one specific execution or to all executions of the ser-
vice. The tag SECURITY STATE defines the global variables and their initial values.
Then several events are checked BEFORE or AFTER occurrence. If an event oc-
curred we check guards one by one until find the one which is satisfied. In this case
certain security updates are performed. If no guards are fired for the event, then the
further execution is not permitted (and some further security actions, like notifying
the customer, are triggered). In case no security updates are needed but the further
execution is allowed, there is a special action SKIP which does not do anything but
continues the execution. There is also a possibility for specifying an ELSE statement
for the cases, when the further execution should be allowed even if no guards fired
(we omitted this option here for simplicity).

There are a number of advantages of ConSpec. First, this language was developed
for security purposes and allows guarding possible actions performed by a system
(e.g., a service). It represents behaviour in terms of different events (originally, Java
method calls) that allow policies to be checked at runtime. The policies written in
ConSpec are easily understandable by humans (the language is similar to program-
ming languages), has comparatively simple semantics, and is easy to learn. ConSpec
is an automata-based language. Although this feature slightly reduces its expressive-
ness (in comparison with its predecessor PSLan [13], or other declarative languages
as EventCalculus [10], XACML [9], PROTUNE [11], etc.), it allows automatic rea-
soning on it. For example, in the project we needed to check that requirements desired
by a consumer could be fulfilled by a service provider. Furthermore, it is simple to
define a policy decision point for monitoring purposes if automation is available.
Finally, ConSpec defines different scopes of its application. Thus, we may define a
policy for a single execution of a service or multiple executions.

196 M. Asim et al.

Fig. 3. ConSpec Editor

In the scope of the Aniketos project we have created a tool which provides a graph-
ical user interface for making and changing ConSpec policies. The tool is called a
ConSpec Editor and has been illustrated in Fig. 3. The tool also converts the policy in
a specified XML format, which simplifies policy processing by the policy decision
point (PDP) of the monitor. The tool checks the correctness of the written policy and
notifies the writer about possible errors.

Moreover, the tool allows creating templates for policies, i.e., a predefined policy
structure, which requires only initialization of input parameters. Thus, templates sig-
nificantly simplify the work with ConSpec rules for inexperienced users, who now
should simply insert context specific values in a selected policy template. Finally, the
tool may be integrated with a service composition framework (e.g., the one shown in
Chapters 4 and 9, and retrieve names of used constructs (e.g., IDs of services) or even
policies themselves.

4 Event Model

The monitoring framework we propose is built around the concept of events. It is an
event-driven approach that allows the monitoring system to analyse events and react
to certain situations as they occur.

 Security Policy Monitoring of Composite Services 197

Figure 4 displays a simplified version of our proposed event model. This organises
different event types allowing us to reason about and provide a generic way to deal
with them.

Fig. 4. Event Model

The Activiti engine provides an extension on top of the BPMN 2.0 specification al-

lowing Execution Listeners to be defined. These listeners can be configured at the
Process level, Activity level or Transition level in order to generate events. Our event
model is based on two types of process variables: Base Variables and Domain Specif-
ic Variables. Both types of variable are available during the execution of a business
process and could be used for monitoring. The listeners have access to these process
variables and can create events populated using their associated values, sending for
analysis. The Base Variables inherit common attributes from the process itself, e.g.,
the process ID, process name, activity ID, activity name, process start time. For ex-
ample, to monitor the execution time of a particular service composition described as
a BPMN process (possibly using an extension that supports the specification of secu-
rity and trust properties [14]), both process start and end events could be used along
with the common variables: event start time and event end time. However, the Do-
main Specific Variables are user-defined and may build upon the Base Variables. For
example, to analyse the load on a particular service, we could accumulate all start
process events for that service over the last hour. An alert message should be generat-
ed if the number of requests is more than a threshold value in the last hour. This thre-
shold value is a user-defined attribute falling within the Domain Specific Variables.

In the following discussion, we try to determine the structure of events that should
be received for analysis. In our proposed framework, an overall process could
represent a composite service and an Activity could represent a service component.
Fig. 5 shows an example of events for a BPMN process executed in a specific order.

198 M. Asim et al.

Fig. 5. Event Flow

In this example, a loan service is comprised of loan calculation and loan approval

tasks. Therefore, it is not possible to define a single structure for monitoring the over-
all process. For example, to monitor an Activity, we cannot wait for the whole process
to complete. The monitoring of an Activity may need only the process ID, Activity
start and end events.

In our proposal, an event structure describes the data and structure associated with
an event. It helps in organizing the data that is required for monitoring. Below we
define the event structure for our proposed monitoring framework.

1) Process level event

processName
eventLevel (processLevelEvent)
eventName (Start or End)
eventTime (Timestamp)
Variable 0...n –domain specific variables

2) Activity level event
processName
activityName (name of the Service or User Task)
eventLevel (activityLevelEvent)
eventType (Service Task or User Task)
eventName (Start or End)
processFlow (used to construct a composition work-flow)
eventTime (Timestamp)
Variable 0...n –domain specific variables

 eventDate (e.g. 2013/04/05)

5 The Monitoring Framework

The general architecture of the monitoring framework that we use to monitor the
BPMN processes is shown in Fig. 6.

 Security Policy Monitoring of Composite Services 199

Fig. 6. Monitoring Framework

During execution, the Activiti engine generates events for the deployed BPMN
process. The framework consists of an Analyzer that accepts a set of security re-
quirements (monitoring policy) for a particular process to be monitored. The monitor-
ing policy is defined by the service designer. The Analyzer then recovers the monitor-
ing patterns that are related to the requirements from the monitoring pattern repository
and checks whether the received events are consistent with the patterns and if it is not
then it reports a violation. The monitoring policy is defined using the ConSpec lan-
guage. The components of the monitoring framework are shown in Fig. 6. In the fol-
lowing, we describe the monitoring components:

Event Manager: This module is responsible for gathering events coming from the
Activiti engine and forwards them to the Analyzer. The event manager is composed
of an Event Filter that filters relevant events for compliance monitoring. The Event
Filter relies on a filtering mechanism and acts as a first step to reduce the number of
events that must be considered by the Analyzer.

Monitoring Policy: A set of requirements, specified in ConSpec, that describes what
properties need to be monitored for a particular BPMN process. The monitoring
policies are defined using the Aniketos Service Composition Framework (SCF), see
Chapters 4 and 9.

Consider the following example where a service designer creates a travel booking
composition that consists of several tasks, such as ordering, booking hotel, booking
flight, payment and invoice, and each task is performed by a component service. The
service designer might want that the payment service component should only be in-

200 M. Asim et al.

voked when it has a trustworthiness value ≥ 90%. This requirement could easily be
specified using the ConSpec language as shown in Fig. 7.

MAXINT 32000
MAXLEN 1000
SESSION session

SECURITY STATE
 int trust_threshold = 0.9;
 string ServiceID=PaymentService;

BEFORE v#activity.start(string id, string type,

string time, string date, string exec)
ServiceID==id && i#Trustworthiness(id) >

trust_threshold-> skip;

Fig. 7. ConSpec rule for Trustworthiness

Monitoring Rule Repository: It is a database of monitoring patterns used for moni-
toring services. The rules defined in the monitoring policy are translated into monitor-
ing rules and are stored in the Monitoring Pattern repository. An example monitoring
pattern might specify that the trustworthiness of a service should be continuously
monitored so that a notification is generated as soon as the value falls below a given
threshold.

Analyzer: It analyses the events coming from the Event Manager by using patterns
stored in the repository. The Analyzer makes use of the monitoring policy to select
the appropriate monitoring patterns for a particular process. Every policy is analysed
according to the ConSpec specification, particular, if a policy has a Scope Session
policy initialised when a service is invoked. The PDP helps in translating ConSpec
policies into monitoring rules for decision making. Upon receiving events from the
Analyzer, the PDP analyses them according to the order of the guard-update state-
ments specified in the policy. The first guard returning “true” fires the corresponding
update (i.e., actions, which have to be performed before continuing of the execution)
and afterwards no more statements are checked. Thus, no conflicts are allowed to
occur. Note that if no guards resulted to “true” (and updates for ELSE are not speci-
fied), this means violation of the policy. If no updates are necessary for some condi-
tions, a special command skip is envisaged.

Notification Module: It is developed as a part of the Aniketos platform and is used
by the monitoring framework to report any violations. The Notification Module is
implemented as a cloud service and is based on a publish-subscribe paradigm that
notifies the entities subscribed about contract violation.

 Security Policy Monitoring of Composite Services 201

6 Conclusion

The presented monitoring framework is tightly integrated into the Aniketos platform
(See Chapter 4) which supports the design-time and runtime aspects of secure and
trustworthy service compositions. The proposed monitoring framework provides a
user friendly interface for service designers to specify their monitoring policies as
ConSpec rules. A policy written in ConSpec is easily to understand and the simplicity
of the language allows comparatively simple semantics. This enables the service de-
signer to easily specify the monitoring requirements for their processes and monitor
them using the framework. The monitoring framework is based on the way relevant
information can be combined from multiple dynamic services in order to automate the
monitoring of business processes and proactively report compliance violations. Alerts
regarding policy violations are sent as notifications which other interested parties
(generally the service composition providers) can subscribe to, allowing them to make
verifications and take decisions and actions.

References

[1] Ghezzi, C., Guinea, S.: Run-time Monitoring in Service Oriented Architectures. In: Test
and Analysis of Web Services. Springer, Heidelberg (2007)

[2] OMG, Business Process Model and Notation (BPMN) Version 2.0 (2011),
http://www.omg.org/spec/BPMN/2.0/

[3] Rademakers, T.: Activiti in Action:Executable business processes in BPMN 2.0. Man-
ning Publications (2012)

[4] Baresi, L., Guinea, S., Nano, O., Spanoudakis, G.: Comprehensive monitoring of BPEL
processes. IEEE Internet Computing 14(3), 50–57 (2010)

[5] Haiteng, Z., Zhiqing, S., Hong, Z.: Runtime Monitoring Web Services Implemented in
BPEL. In: International Conference on Uncertainty Reasoning and Knowledge Engineer-
ing (URKE), Bali, Indonesia, vol. 1, pp. 228–231 (2011)

[6] Wu, G., Wei, J., Huang, T.: Flexible Pattern Monitoring for WS-BPEL through Stateful
Aspect Extension. In: Proc. of the IEEE Intl. Conf. on Web Services (ICWS 2008),
Beijing, China, pp. 577–584 (2008)

[7] Baresi, L., Ghezzi, C., Guinea, S.: Smart Monitors for Composed Services. In: Proceed-
ings of the 2nd International Conference on Service Oriented Computing (ICSOC 2004),
New York, USA, pp. 193–202 (2004)

[8] Aniketos Consortium, Deliverable D9.2: Demonstration material and events from the
complete project (2012)

[9] eXtensible Access Control Markup Language (XACML) Version 3.0,
http://docs.oasis-open.org/xacml/3.0/
xacml-3.0-core-spec-os-en.pdf

[10] Shanahan, M.: The Event Calculus Explained. In: Veloso, M.M., Wooldridge, M.J. (eds.)
Artificial Intelligence Today. LNCS (LNAI), vol. 1600, pp. 409–430. Springer,
Heidelberg (1999)

[11] Bonatti, P.A., De Coi, J.L., Olmedilla, D., Sauro, L.: PROTUNE: A Rule-based
PROvisionalTrUst Negotia-tion Framework (2010)

202 M. Asim et al.

[12] Aktug, I., Naliuka, K.: ConSpec: A Formal Language for Policy Specification. In: Pro-
ceedings of the First International Workshop on Run Time Enforcement for Mobile and
Distributed Systems (2007)

[13] Erlingsson, U.: The inlined reference monitor approach to security policy enforcement.
PhD thesis, Department of Computer Science, Cornell University (2004)

[14] Brucker, A.D.: Integrating Security Aspects into Business Process Models. IT - Informa-
tion Technology 55(6), 239–246 (2013)

[15] S3MS project,
http://researchprojects.kth.se/index.php/kb_1/io_9718/io.html

[16] Activiti engine, http://www.activiti.org/
[17] Aniketos Consortium, Deliverable D9.2: Demonstration material and events from the

complete project (2012)

A.D. Brucker et al. (Eds.): Secure Service Composition, LNCS 8900, pp. 203–218, 2014.
© Springer International Publishing Switzerland 2014

The Aniketos Design-Time Framework Applied –
A Case in Air Traffic Management

Stéphane Paul1, Alessandra Tedeschi2, Erlend Andreas Gjære3, and Ivonne Herrera3

1 Thales Research and Technology, Avenue Augustin Fresnel, 91767 Palaiseau, France
stephane.paul@thalesgroup.com

2 Deep Blue, Piazza Buenos Aires, 20, 00198 Roma, Italy
alessandra.tedeschi@dblue.it

3 SINTEF ICT, Strindveien 4, NO-7465 Trondheim, Norway
{erlendandreas.gjare,ivonne.a.herrera}@sintef.no

Abstract. In order to assess the industrial relevance of the Aniketos design-time
framework, we report on its application to a typical use-case of the Air Traffic
Management (ATM) System Wide Information Management (SWIM) system: a
meteorological information request from a pilot in an aircraft involving air-
ground data-link communications. The scope of the study runs from security
requirements elicitation, to the deployment of dummy services implementing
the meteorological request secured process and communication functions. The
evaluation shows that a rich set of security requirements can be captured and
managed throughout the design-time engineering process. The Aniketos design-
time framework is assessed as a sound baseline. To allow for an industrial ex-
ploitation follow-up, some required improvements have been proposed.

Keywords: Evaluation, Design-Time, Security Engineering, Tools, Case-Study,
Air Traffic Management, System Wide Information Management.

1 Introduction

The European airspace is fragmented and congested. Air Navigation Services and
their supporting Air Traffic Management (ATM) systems are not fully integrated, and
are based on technologies already running at their max. To cope with this congestion,
early this century, the ATM community thought that a paradigm shift (i.e., a break-
through) was required. This led to the creation of the Single European Sky ATM Re-
search (SESAR) Programme. The SESAR Joint Undertaking (SJU) was created under
European Community law to manage the SESAR Development Phase. During the
recent years, a new operational concept (CONOPS) was developed for ATM. One of
the main identified operational enablers is the System Wide Information Management
(SWIM). SWIM is a distributed processing environment, which replaces data level
interoperability and closely coupled interfaces with an open, flexible, modular and
secure data architecture, totally transparent to users and their applications.

SWIM will be open to all traditional ATM stakeholders and systems. However, it
is also planned to be open to non-traditional ATM stakeholders, thus giving birth to

204 S. Paul et al.

new and strong security needs in a domain that has always focused exclusively on
safety. This makes SWIM a very relevant case for applying and assessing the new
Aniketos security engineering design-time processes, methods and tools.

In order to assess the industrial relevance of the Aniketos design-time framework,
we report on its application to a typical SWIM use-case: a meteorological
information request from a pilot in an aircraft. Section § 2 provides an overview of all
the Aniketos design-time security engineering evaluation activities that were run.
Another perspective is presented in Chapter 16: Supporting Security and Trust in
Complex e-Government Services.

On our selected case-study (cf. section § 3), we applied the overall Aniketos design-
time process. The first step was the capture and documentation of the security re-
quirements (cf. § 4) using the Socio-Technical Security (STS) modelling method,
language (cf. Chapter 5) and tool (cf. Chapter 7). This was compared to the existing
list of security requirements, as extracted from the SESAR documentation [1- 9].

Then, we realised a shift from the SWIM problem space to the SWIM solution
space, by modelling the corresponding business processes (cf. § 5), integrating the
security measures along the path, and developing the corresponding web services for
deployment. For this work, we used the Service Composition Framework (SCF) tool,
which integrates interaction with several components and services developed in Ani-
ketos (cf. Chapter 4, Chapter 6, and Chapters 8 to 11). This engineering work with
Aniketos tools was briefly compared to the current industrial best practices.

2 Methodology

The evaluation activities and assessments presented in sections § 4 and § 5 are the re-
sult of many focused evaluation sessions carried out throughout the whole Aniketos
project lifespan. These evaluation activities can be classified in three main categories:

• in-depth specific evaluation activities, to test and assess individual components,
performed by the authors of this chapter, acting as Aniketos end-users (cf. § 2.1);

• on-the-job evaluations, involving third-party operational and security experts, to
collect detailed external feedback on methodologies and tools (cf. § 2.2);

• presentations to ATM stakeholders and potential end-users, to collect high-level
feedback and assess general applicability in an industrial context (cf. § 2.3).

2.1 Single Components Evaluations

Single components evaluations were run as an iterative process. A first evaluation session
was dedicated to the investigation of modelling practices of STS-tool users, in order to
better understand the modelling flows, and develop the STS methodology. Then, a work-
shop was organised in order to test and assess the STS-tool in its early implementation
stage and inform further developments. An interactive validation session was organised
to evaluation the Module Transformation Module (MTM) in its final version. Finally, a
long evaluation session was dedicated to SCF and its satellite tools.

The SWIM case also informed the evaluation and re-design of the existing supporting
material, tutorial and guidelines for the Aniketos design-time tools. The availability of a

 The Aniketos Design-Time Framework Applied –A Case in Air Traffic Management 205

challenging industrial scenario used as test-bed provided useful insights and feedback to
the Aniketos tool developers. All comments were not taken into consideration due to
project time and budget constraints.

2.2 On-the-Job Evaluation

The on-the-job evaluation was a one-shot experiment with three third-party SWIM
operational and security experts. The main objective of this assessment was to provide
detailed industrial feedback on the STS methods and tools. The method used for the
assessment was simply to build and run a SWIM case study.

2.3 Presentations to ATM Stakeholders

In order to evaluate the impact of the design-time Aniketos solutions for the ATM
domain, various activities were proposed for presenting Aniketos project results to
ATM stakeholders:

• presentations to SESAR partners during security-related events and SESAR meet-
ings were iteratively carried out, in order to gather feedback from relevant external
stakeholders and refine the Aniketos results;

• the SWIM case study partners organised presentations and modelling sessions
inside their own organisation with other departments working in the ATM domain;

• a final combined demonstration and evaluation workshop with ATM stakeholders
(about 15 participants) was conducted in Rome on October 23rd, 2013.

The main aim of these activities was to present and evaluate the Aniketos design-time
support tools for the ATM domain, with a focus on: (i) assessing the overall suitability of
the Aniketos design-time solutions for the ATM domain and its compliance with existing
methods, standards, procedures and work practices; (ii) evaluating the acceptability of the
Aniketos design-time solutions for ATM practitioners, including how understandable,
easy-to-use and effective they are in real operational and industrial contexts.

3 The System Wide Information Management Case

According to SESAR [4], the set of initial Air/Ground (A/G) SWIM applications in-
cludes: (i) the sharing of weather forecasts and aircraft weather observations for the re-
duction of impacts of hazardous weather; (ii) the sharing of traffic situation for reduction
of impacts of traffic congestion; (iii) the sharing of temporary aeronautical data and col-
laborative diversion planning to improve the management of unexpected situations. The
flight crew should be able access the data at any time (regardless of the flight phase,
airspace or communication link used), instantly (seamless loading without a long wait
before information gets displayed) and will be confident that the data originates from a
safe source approved by Regulation Authorities. The A/G SWIM aims to be a fast and
secure in-flight connection, which will enable the flight crew to share and download data
in real time, in large volumes and only from authorized sources.

206 S. Paul et al.

The baseline scenario retained for Aniketos is an aircraft requesting weather in-
formation via SWIM. Thus, the specific A/G SWIM service considered is Weather
Avoidance. Through the Weather Avoidance service the A/G SWIM can provide: (i)
weather and turbulence forecasts; (ii) current weather situation for areas beyond the
range of aircraft sensors and on-board weather radar; data may include the graphical
shape of a large hazardous area, or textual information on the weather situation at
alternative diversion airports.

We consider an aircraft flying its en-route Business Trajectory [10]. Weather condi-
tions are changing and the pilots make a data-link request for Meteorological Information
(MET Info) provision via SWIM. The aircraft Airborne Broker calls an intermediary
Ground Broker. The Ground Broker enriches the information and provides the most
recent MET Info to the Airborne Broker. This MET Info is timely stored in the SWIM by
a MET Service Provider to be exploited by all the MET Service Subscribers.

Table 1. Excerpt of Functional Security Requirements from the SESAR programme

Id Functional Security Requirement Rationale
AG-
SR1

Only publishers authorized for given information
category shall be able to publish information of
this category.

Data must be provided
by the authority respon-
sible for producing it.

AG-
SR2

Only consumers authorized for given information
category shall be able to receive information of
this category.

Data must be received by
authorised customer for a
specific category.

AG-
SR3

Unauthorized information access shall be pre-
vented.

Security requirement,
derived by Risk Assess-
ment.

AG-
SR4

The air/ground information management shall be
able to provide information integrity of 0,999999
(i.e. probability of undetected error 10-6).

Most stringent require-
ment from the AIS/MET
SPR, EUROCAE ED-
175 / RTCA DO-324.
No safety conditions.

AG-
SR5

The air/ground information management shall
be able to protect authenticity of the transferred
information.

Security requirement,
derived by Risk
Assessment

AG-
SR6

The air/ground information management shall be
able to provide confidentiality of the transferred
information.

Security requirement,
derived by Risk
Assessment.

AG-
SR7

The air/ground information management shall
fulfil security requirements for segregation of
services between the Aircraft Control Domain
(ACD), the Aircraft Information System Domain
(AISD) and the Passenger Information and Enter-
tainment System Domain (PIESD) - see ARINC
664 Part 5.

Security requirement,
derived by Risk
Assessment.

 The Aniketos Design-Time

In Table 1, we report so
are relevant to our case-st
through the whole Aniketos

4 Eliciting the Sec

This section describes the
modelling language (cf. Ch
security needs of our ATM
lowing the STS methodolog
of the framework.

4.1 Study of the Contex

The first step of the STS m
to set the scene, from an o
step aims for breadth, not d

Fig. 1. Setting the scene:

This step was particula
many components of the co
terms of deployed and ope
vant socio-technical abstra
ments from the extremely
described in hundreds of dif

Our first approach was t
cluding, for example, a fine
the way they could impac
modelling of the standards
tool proved quite efficient i

Framework Applied –A Case in Air Traffic Management

ome of the SESAR Functional Security Requirements t
tudy. These requirements have been used as a refere
s design-time security engineering process.

curity Requirements with STS

activities performed using the Socio-Technical Secu
hapter 5) and tool (cf. Chapter 7) to elicit and capture

M SWIM case (cf. § 3). The modelling work was done
gy [11]. This section also provides some initial assessm

xt

methodology is the “Study of the Context”. The objectiv
organisational, technical and operational view point. T
epth. The result should be short and easy to grasp.

(a) roles and agents; (b) applicable standards and regulations

arly challenging in our ATM SWIM case-study. Inde
onsidered ATM System of Systems (SoS) already exist
erated equipment, people and procedures. Building a re
action adequate to reason about SWIM security requ

complex SoS and very detailed legacy implementati
fferent documents, was very far from trivial.
to model common knowledge about the ATM context,
e-grained description of the actors at play (cf. Fig. 1a)
ct and / or influence the system-under-study through
and / or regulation that they impose (cf. Fig. 1b). The S
n capturing this common knowledge.

207

that
ence

urity
the
fol-

ment

ve is
This

eed,
t, in
ele-

uire-
ions

 in-
and
the

STS

208 S. Paul et al.

However, for such a complex SoS as the overall European Air Traffic Management
system, this approach proved completely inappropriate. Too many details about
common knowledge facts meant that the key elements of the study were lost. As a
consequence, the ecosystem non-participant stakeholders were not modelled indivi-
dually in the STS-tool. Instead, they were captured as a unique rag-bag actor called
SWIM Context, with the exception of:

• the Pilot requesting meteorological information;
• the Aircraft System supporting the interaction between the Pilot and the SWIM;
• the Meteorological Service Provider providing the requested meteorological

information to the Pilot via the SWIM technical infrastructure (TI).

Fig. 2. Defining top-level goals

This original construct of the SWIM Context was key in defining the different actor
goals. Indeed, a Pilot’s goal to obtain fresh meteorological information, the SWIM
TI’s goal to securely route meteorological information requests and responses, and the
Meteorological Service Provider’s goal to provide accurate and timely meteorological
information are all linked by some top-level soft-goals related, for example, to ensur-
ing safe and efficient flights over Europe. Through the artificial SWIM Context con-
struct, it was possible for us to define and decompose a top-level soft-goal related to
the secure use of meteorological data (cf. Fig. 2) without too many discussions about
who is at the origin of, or is responsible for, each sub-goal. This construct was also
key in the following methodological steps, in particular when goal delegation was
necessary (see below).

By contrast, the SWIM ecosystem participant stakeholders were modelled in more
details, namely we chose to model individually: (i) a generic SWIM Access Point
(SAP); (ii) the SWIM Transport Services, and (iii) the SWIM aircraft On-board
Message Broker. The goals of these actors are defined later (cf. § 4.3), through the
delegation of goals defined in the SWIM Context.

 The Aniketos Design-Time Framework Applied –A Case in Air Traffic Management 209

4.2 Study of the Assets

The second step of the STS methodology is the “Study of the Assets”. The objective
of this step is to identify and describe all the assets relevant to the scope of the study,
and capture their intrinsic1 security needs.

This was done for all ecosystem participant actors. For example, for the SWIM
Access Point, the following assets were identified: (i) in terms of information assets:
Meteorological Information Request, Meteorological Information, Aircraft Identifica-
tion, and Meteorological Server Identification; (ii) in terms of goal assets: Meteoro-
logical Information Request Routed, and Meteorological Information Routed; (iii) in
terms of document assets: local copies of the Meteorological Information Request,
local copies of the Meteorological Information, local copies of the Aircraft Identifica-
tion, and local copies of the Meteorological Server Identification. Then, the assets
were described in detail, and linked together (cf. Fig. 3).

Fig. 3. Identifying assets and linking them together

The STS-tool allowed for the capture of quite a few intrinsic security requirements
in a compact and formal way. For example, the model extract in Fig. 4 shows that the
SAP is only allowed to access Meteorological Information in order to distribute it, as
a sub-task of the MET Info routed goal. This implies that the SAP is never allowed to
view, modify or produce Meteorological Information, and the SAP may not distribute
Meteorological Information for other purposes than routing it to the specified addres-
see.

Fig. 4. Expressing a need-to-know and integrity requirement between the meteorological ser-
vice provider and the system wide information management access point

Likewise, it was possible to capture some additional data availability and data
transmission integrity requirements, but not all security needs could be easily ex-
pressed. To overcome these limitations, or to justify particular security requirements,
the STS-tool allows for threats to be captured as threat events. Using the centralised
Threat Repository Module (cf. Chapter 4 and Chapter 12), we searched for threats, by

1 By intrinsic, we mean independent of the solution space, i.e. excluding any delegation / co-

operation options; indeed, co-operation and delegation are the first steps in the solution space
with respect to the problem space of top-level goal achievement by an actor.

210 S. Paul et al.

keyword (e.g. impersonatio
relevant threats and create
Threat Repository. Althoug
inclusion of threats in STS
that are not otherwise desc
propagating threat impacts
security issue awareness. B
us improve the remainder
probably because in our cas
ling process. It is reasonab
with these threats in mind.
explicit to all.

Fig. 5. Expressing threats with
threat propagation analysis to b

Although threat modelli
usage because threats and t
gram. A means to toggle thr

Finally, let us recall that
needs. This was found to b
ments.

4.3 Study of the Securi

The third step of the STS
objective of this step is to
how collaborative goals are
tures, namely, the delegatio
port the fulfilment of those
the scope of the capture of t
goals and to authorisations
borative goals.

In our case-study, we ex
our three SWIM ecosystem
werful concepts of the STS
and we found its semantics
if goal delegation was a sim

on) and by business domain (e.g. ATM). We selected a f
ed new ATM-specific threats, which were stored in
gh not being a replacement for proper risk analysis,

S allowed explicating and sharing awareness on situati
cribed in the desired system. The STS-tool capability

s throughout the model (cf. Fig. 5) further increased
eyond this shared awareness, threat modelling did not h
of the STS model, as one could have expected. Thi

se, threat modelling was performed quite late in the mod
le to think that our STS model had already been desig
. Threat modelling only allowed for making these thre

h events, such as Erroneous data impact flight, allowing for
be invoked (threatened paths and objects highlighted)

ing was found to be quite appealing, we had to limit
their relations to actors and assets rapidly cluttered the d
reat visibility would have been of significant value.
t STS does not allow one to define scales for the secu
be significantly detrimental in capturing security requ

ity Policies

methodology is the “Study of the Security Policies”. T
extend the analysis of the security needs by consider

e fulfilled. Collaborative goals imply security relevant f
on of all or part of the work, and sharing resources to s
e goals. Thus, the analysis performed in this step exte
the security needs (cf. § 4.2) to the delegation of rights o
over data that are useful for the fulfilment of those co

xtensively used delegations between our SWIM Context
m participants (cf. § 4.1). Delegation is one of the most

 modelling language (STS-ml). However, it is tricky to
to be insufficiently defined. Typically, it remained uncl

mple delegation of fulfilment of the goal, or a delegation

few
the
the

ions
y of
this

help
s is
del-

gned
eats

r the

t its
dia-

urity
uire-

The
ring
fea-
sup-
ends
over
olla-

and
po-
use
lear
n of

 The Aniketos Design-Time Framework Applied –A Case in Air Traffic Management 211

responsibility over the fulfilment of the goal, or a transfer of accountability. In our
case-study, the actors interacting with the SWIM have no hierarchical relations2 with
the SWIM. Thus, neither of them can (legally) delegate a task to SWIM, and vice-
versa. Typically, the Pilot and SWIM belong to independent organisations. When the
Pilot uses SWIM to route a message to the Meteorological Service Provider, he does
not (legally) delegate the routing, but he cooperates with a third-party, and he has to
trust that third-party.

4.4 Conclusion

By contrast with traditional risk-based security requirement elicitation techniques
(e.g., [12, 13, 14]), the Socio-Technical Security (STS) modelling approach of Anike-
tos is risk agnostic. Traditional risk-based security requirement elicitation techniques
operate in the solution space, assessing the vulnerabilities of the designed solutions, in
parallel to the assessment of the threats and impacts of the feared events. The STS
modelling approach of Aniketos operates solely in the problem space, with a strong
focus on business / operational goals. The intrinsic security needs can be elicited es-
sentially based on the will to achieve those goals, whilst preserving the identified
assets; the identification of feared events may help in this elicitation. As such the STS
modelling approach of Aniketos is perfectly suited for a very early security engineer-
ing activity, during which business / operational staff can be easily involved, without
introducing any complexity related to the solution space. For these reasons, the STS-
ml and STS-tool were a perfect fit for the ATM SWIM case-study.

However, the current version of the STS-ml and STS-tool are not completely ready
for industrial use. Based on our case-study, the main issues that would need to be
solved beforehand include: (i) the impossibility of clearly defining the boundaries of
the system-under-study; (ii) the impossibility of defining security need scales, in par-
ticular for the Confidentiality, Integrity and Availability (CIA) criteria; (iii) insuffi-
ciently formal semantics, in particular for organisation structures, goal delegation,
asset ownership, and Role Based Access Control (RBAC).

5 Designing and Securing the SWIM Business Process with SCF

This section describes the activities performed using the Aniketos Service Composition
Framework (SCF) to design and secure our ATM SWIM business process (cf. § 3). This
section also provides some initial assessment of the framework. For technical details
relating to SCF and its satellite tools, please refer to Chapter 6 and Chapters 8 to 11.

5.1 Designing the (Unsecure) SWIM Business Process with SCF

The first step we carried out in running our ATM SWIM case-study was business
process modelling without any consideration for security issues. We developed mul-
tiple BPMN diagrams, comprehending over thirty tasks. Some tasks were user tasks,
e.g. Login, but most tasks were service tasks, e.g. Authenticate. SCF proved itself
adequate for the job.

2 This is a typical situation in the context of a System of Systems (SoS).

212 S. Paul et al.

Fig. 6. Separating clearly user tasks from service tasks

Whilst the Business Process Modelling Notation (BPMN) specification allows for
many types of tasks, including user tasks, the Aniketos service specifications consist
of service tasks only. A service task is performed by a web service. A composite ser-
vice process is hence an executable workflow that is realised by web services alone,
and consumed as a web service itself. During the course of the case-study, this limita-
tion proved to have significant but manageable impacts on our BPMN design. Some
diagrams had to be redrawn to separate clearly user tasks from service tasks (cf.
Fig. 6). For other processes with heavy human-machine interactions, this might how-
ever be a deterrent constraint.

5.2 Discovering Services: A Prerequisite to Security Specification

The next step in our engineering process should have been the securing of our busi-
ness process. However, with the Aniketos engineering process, security specification
on service compositions can only be done after atomic service discovery within the
Service Composition Framework, in order to retrieve the atomic service signature.
This approach is clearly disputable since, in a real industrial context, most of these
services may not yet exist.

Fig. 7. Service discovery and confidentiality specification

 The Aniketos Design-Time Framework Applied –A Case in Air Traffic Management 213

To proceed with our case-study, we implemented, deployed and published 26 web
services, using the Aniketos Marketplace. Most of these web services, e.g. Log, were
dummy services doing nothing, but services that were key to observing the execution
of the meteorological request-response scenario were effectively developed, together
with their corresponding data flow interfaces and human-machine interfaces.

Fig. 8. Signature of composite service deployed and discovered with SCF

The first major issue we faced with service discovery in SCF was that the response
to a discovery request was (only) a list of operations with their input and output para-
meters (cf. Fig. 7). This response is much shorter than the output that can be obtained
from a search directly in the Aniketos Marketplace. Typically, the service names, the
service descriptions, the service provider and the list of other tags were missing in
SCF. An improvement of the Human-Machine Interface (HMI) is needed here, to
avoid ambiguities in the identification of services.

The second major issue we faced with service discovery was related to method
signatures. When a composite service is stored in and retrieved from the Aniketos
repository, the 1st parameter of the associated method is an array of the names of all
the parameters, whilst the 2nd parameter is an array of the corresponding values,
cf. Fig. 8.

This implementation for composite services was found to be inadequate for service
discovery, because it reduces the signature of the composite service to the sole name
of the method. Moreover, it is different from the signature used for atomic services,
cf. Fig. 7. An improvement of the implementation is needed here to support an effec-
tive discovery.

5.3 Securing the ATM SWIM Business Process

Having defined the business process (cf. § 5.1) and performed service discovery for all
atomic services (cf. § 5.2), it was now possible to secure the business process. Each
security property that was addressed in our test case is discussed below.

Separation and binding of duty (SoD/BoD) are the most straightforward security
properties that can be modelled using SCF, integrated nicely in its GUI and tools pa-
lette. It is supported through the SecureBPMN extension (cf. Chapter 8) to BPMN and
the Activiti tool. Although the SESAR SWIM project does not list any SoD/BoD
requirement, this construct was extensively used during our case-study modelling,

214 S. Paul et al.

cf. Fig. 6. However, the concrete syntax makes it impossible to express SoD/BoD
properties across diagrams. For example, it was impossible to capture a binding of
duty between the logging services in all our BPMN diagrams. Another issue with the
graphical notation was scalability, with quickly rising visual clutter in the diagrams.

Fig. 9. Defining integrity and trustworthiness requirements for a service task

In SCF, data confidentiality is captured through a tick box and a drop-down menu
for the selection of the confidentiality level (cf. Fig. 7), for inputs and outputs of ser-
vice tasks. In our case-study, we first identified all confidential data (e.g., the pilot’s
identification token). Then, we expressed the data confidentiality property on each
data flow comprehending at least one confidential datum. This modelling approach
was found heavy and error-prone, because confidential data is involved in many
flows. SCF should allow specifying data confidentiality on individual datum, rather
than on data flows.

Data transmission integrity and data authenticity requirements were captured
wherever needed with the choice of the HMAC construct and the SHA1 algorithm.
The notation was found to be very compact, as illustrated in Fig. 9, through the speci-
fication of the data flow source and target services, the type of integrity check to be
implemented and the supporting algorithm. However, we deplored the lack of support
for the choice of the construct and algorithm. Moreover, it was not possible to capture
integrity requirements on control flows (by opposition to data flows).

In SCF, Trustworthiness is captured through an input field and an Add button (cf.
Fig. 9). Lack of end-user documentation made the assessment of the capture of trust-
worthiness more complex than it should have been. We first thought that the initial
trustworthiness values of atomic services were automatically assigned some neutral
values. It turned out, that the initial trustworthiness values of atomic services needed
to be initialised in the marketplace and that could only be done manually in an ad hoc
fashion.

In SCF, Role Based Access Control (RBAC) allows for the specification of a
Role’s permission to perform an Action on the selected service; the possible actions
are Full Access, Claim, Assign and Complete. The RBAC labels were found to be not
self-explicit and the tool provided no definition for each of those actions.

In SCF, Need-to-know (NtK) allows for the specification of a Role’s permission
to perform an Action on a Process Variable of the selected service. The possible ac-
tions are Read, Write and Read/Write. In our case study, a number of NtK require-
ments were input. Coverage was good, but modelling work proved itself a long and
tedious process. Indeed, input is done task per task, iterating on each applicable role.

 The Aniketos Design-Time Framework Applied –A Case in Air Traffic Management 215

Fig. 10. Need-to-know specification

Delegation allows for the specification of delegation permissions on user tasks on-

ly, involving the definition of a Delegation Type, and when relevant, a Negotiable
attribute and a Delegation Depth attribute. The possible delegation types are None,
Simple and Transfer, whilst the Negotiable attribute can take its value in {Yes, No,
Dynamic}: the labels were found to be not self-explicit and the tool provided no defi-
nition for each of those options.

In our SWIM scenario, we needed to model a segregation security requirement (cf.
AG-SR7 in § 3). This specification could not be achieved using SCF.

5.4 A Seamless Transition from Design-Time to Runtime

Our ATM SWIM case-study was planned as a design-time test case only. However,
the Aniketos engineering process blurs the frontier between design-time and runtime
(cf. § 5.2). Thus, working on pure design-time engineering activities with the Aniketos
tool suite proved impossible. We therefore briefly assessed a set of runtime tools that
were required to perform design-time activities, i.e. tools supporting: (i) the compila-
tion of security properties, (ii) the generation and validation of composition plans, and
(iii) the deployment of a composite service. The corresponding feedback is provided
below, but it does not go into as much details as for the aforementioned Aniketos
design-time methods and tools.

The compilation of security properties is ensured by the Conspec editor. The
Conspec Editor allows for the editing of the security properties specified in the Ser-
vice Composition Framework. Encoding and saving is then done into an eXtensible
Mark-up Language (XML) file, for reuse by other Aniketos modules. This additional
and redundant format was found to be tedious and a potential source of inconsisten-
cies and regression within the secure service engineering framework. Moreover, it is
very complex to use, and the approach does not scale.

The SCF allows for generating composition plans for all possible compositions of
service components. It is then possible to browse through the plans, as shown in Fig. 11.
However, the number of plans rises dramatically fast, and the value of this browsing
capability does not extend beyond toy examples, especially with respect to the human
cognitive capability to select one composition plan amongst hundreds of options.

Generation and verification of composition plans allows for the short-listing and
sorting of plans according to security properties: trustworthiness, credibility (based on
how many security properties have been verified) and validity (based on when the
verified security properties are to expire). This capability was not assessed.

216 S. Paul et al.

Fig. 11. Generating composition plans and selecting alternatives for deployment

Deploying composite services was however quite straightforward, using the built
in function for connecting to a service runtime environment (SRE). We were able to
use an already operational SRE infrastructure, with an execution engine for running
the BPMN process provided by Activiti. The composite service process could be in-
voked as expected, as a web service.

5.5 Conclusion

The Service Composition Framework was found to be a reliable framework providing
a rich set of security properties to work with. Even though the ATM SWIM test case
provided us with a well-defined evaluation context, none of the security requirements
that we worked on were ATM specific. Therefore SCF seems to be a sound and ge-
neric baseline for future industrial exploitation. However, the engineering process
with SCF requires service discovery to support security requirements specification at
design-time (cf. § 5.2): this engineering process issue must absolutely be solved before
considering industrial exploitation. Moreover, SCF suffers from a number of weak-
nesses that also need to be corrected before considering industrial exploitation, e.g.
unclear semantics for some concepts (cf. § 5.3), inconsistent integration of satellite
tools, and unnecessary technical complexities (cf. § 5.4).

6 Conclusion

The ATM SWIM case-study (cf. § 2 3) was specified from the start as a design-time
case. Naturally, it focused on the Aniketos Socio-Technical Security Requirements
package and on the Aniketos Secure Service Specification and Deployment package
(cf. Chapter 4).

The Socio-Technical Security modelling language, methodology and tool were ex-
tensively used. The overall assessment was definitely positive, even if some issues
were raised with respect to rapid industrial use, but nothing unusual with respect to a
research prototype (cf. § 4). The main strength of the STS-tool is that it corresponds to
a real Air Traffic Management (ATM) community need for a tool to support the elici-
tation of security requirements in the current phase of System Wide Information
Management (SWIM) development.

The Aniketos Secure Service Specification and Deployment package prompts
stronger reservations. This package was found to be a reliable framework providing a

 The Aniketos Design-Time Framework Applied –A Case in Air Traffic Management 217

rich set of security properties to work with, and therefore seems to be a sound base-
line for future industrial exploitation (cf. § 5). However, SCF suffers from a number of
weaknesses, e.g., unclear semantics for some concepts, fuzzy integration of satellite
tools, and unnecessary technical complexities. Moreover, end-users (both Aniketos
partners and external ATM and SESAR stakeholders) had difficulties in understand-
ing and applying the overall design-time security engineering process. From our pers-
pective, the Technology Readiness Level (TRL) of this package still requires to be
raised before considering industrial application in the ATM domain.

More information on the Aniketos SWIM test case and its detailed evaluation can
be found in [15, 16].

7 Disclaimer

© SESAR JOINT UNDERTAKING, 2014. The content of this section was provided
under the responsibilities of the Aniketos Case Study B partners, including NATMIG
for the SESAR JOINT UNDERTAKING within the frame of the SESAR programme
co-financed by the EU and Eurocontrol. The opinions expressed herein reflect the
authors’ view only. The SESAR JOINT UNDERTAKING is not liable for the use of
any information included herein. Reprint with approval of publisher and with refer-
ence to source code only.

References

1. Deliverables of SESAR Project 08.01.04 – Aeronautical information (AIS Airport Manning,
Airport Network, Terrain and Obstacles)

2. Deliverables of SESAR Project 08.01.06 – Information Modelling Meteorological Domain
3. Deliverables of SESAR Project 08.03.03 – Identify and Develop Aeronautical Information

ATM Services
4. Deliverables of SESAR Project 09.19 – SWIM Air-Ground Capability
5. Deliverables of SESAR Project 09.31 – Aeronautical databases
6. Deliverables of SESAR Project 09.48 – AIS/MET Serv. & Data Distr.
7. Deliverables of SESAR Project 13.2.2 – Aeronautical Information Management

sub-system definition
8. Deliverables of SESAR Work Package 14 Projects – System Wide Information Manage-

ment (SWIM)
9. Deliverables of SESAR Project 16.06.02 – Security support and coordination function

10. SESAR Joint Undertaking, SESAR Factsheet n°02/2010, Business Trajectory / ‘4D’
Trajectory (2010),
http://www.sesarju.eu/sites/default/files/documents/reports/
SESAR_Factsheet_4DTrajectory__2_.pdf (accessed June 06, 2014)

11. Paja, E., et al.: Final version of the socio-technical security modelling language and tool.
Deliverable D1.4, FP7 ICT Secure and Trustworthy Composite Services (ANIKETOS)
project (Mai 2013)

12. French national agency for the security of IT systems (ANSSI). Expression of Needs and
Identification of Security Objectives (EBIOS), Risk management method (2010)

13. CRAMM – the Total Information Security Toolkit, http://www.cramm.com/

218 S. Paul et al.

14. Lund, M.S., Solhaug, B., Stølen, K.: Model-Driven Risk Analysis – The CORAS
Approach. Springer (2011)

15. D’Errico, M., et al.: Final report on Aniketos applied to industrial case studies. Deliverable
D6.4, FP7 ICT Secure and Trustworthy Composite Services (ANIKETOS) project
(June 2014)

16. Beck, E., et al.: Results of the final validation and evaluation of the ANIKETOS platform.
Deliverable D7.3, FP7 ICT Secure and Trustworthy Composite Services (ANIKETOS)
project (June 2014)

A.D. Brucker et al. (Eds.): Secure Service Composition, LNCS 8900, pp. 219–233, 2014.
© Springer International Publishing Switzerland 2014

Supporting Security and Trust
in Complex e-Government Services

Vasilis Tountopoulos1,*, Ira Giannakoudaki2, Konstantinos Giannakakis1,
Lefteris Korres2, and Leonidas Kallipolitis1

1 Athens Technology Center S.A., Halandri, Athens, Greece
{v.tountopoulos,k.giannakakis,l.kallipolitis}@atc.gr

2 DAEM, Athens, Greece
{i.giannakoudaki,l.korres}@daem.gr

Abstract. The next generation e-Government will be based on Future Internet
applications, which can be dynamically composed of complex services, by util-
ising the mass data being made available in heterogeneous online archives and
information sources. Such data can be synthesised as the outcome of a plethora
of atomic services, which process and collaboratively handle digital information
to facilitate the current business needs of the Public Administration. However,
the providers of public services face the problem of maintaining security and
preserving data privacy, when integrating this data into dynamically changing
composite service environments. In that respect, this chapter presents the appli-
cation of the design time and runtime capabilities of the Aniketos platform to
support the whole data driven secure service development life cycle and ensure
trust in service compositions, which can be consumed in value-added public
service delivery processes.

Keywords: socio-technical security, trusted public services, secure service-
based e-Government.

1 Introduction

The plethora of Web content offers the environment for leveraging innovation in ICT
systems and building on new business paradigms to increase user satisfaction and
bring benefits to society as a whole. Modern Governments try to follow the advances
in the service and software engineering field to bring innovation in everyday life and
offer a totally new experience of how public services are being provided to citizens,
enterprises and other Governments as well, taking into account the need to address
security and trust, when delivering such services.

Modern e-Government applications can integrate available common vocabularies,
geospatial information, regulatory publications and citizens’ deliberation data, which
enhance the experience and the innovation of such applications. Towards this direc-
tion, the next generation of e-Government will involve a multi-provider environment

* Corresponding author.

220 V. Tountopoulos et al.

for delivering data intensive composite service processes, which expose a set of secu-
rity and trustworthiness concerns.

During the composition of such service processes, the Aniketos platform (see
Chapter 4 for details) can be adopted to fill in the current lack of existing secure solu-
tions to effectively deliver data streams, being classified under various privacy and
trustworthiness levels [1], according to stated legislation and public administration
policies. These data may exhibit different security requirements on various dimen-
sions, such as the value of the information that is delivered as a result of the service
provisioning chain and the responsible organisation or the application role in provid-
ing the resulting information.

Subsequently, this chapter will elaborate on addressing the security and trust re-
quirements attributed both to the data holders and the data content itself when design-
ing, developing and implementing public services to deliver such type of data. The
chapter is structured as follows. Section 2 identifies and elaborates on the problem for
delivering secure public services. Section 3 describes the use of the Aniketos platform
to support security requirements in the design and specification of secure composite
service specifications, while section 4 presents the exploitation of the Aniketos plat-
form offerings at runtime to consume the secure composite services in building busi-
ness applications for the e-Government domain. Section 5 analyses our considerations
and assessment from the application of the Aniketos platform in this specific domain
and the chapter is concluded in section 6, briefly introducing the future directions for
the further adoption of the Aniketos platform in the public service delivery process.

2 Problem Statement

In the context of online public services, security is considered as a major strategic and
technological challenge that needs to be addressed in all e-Government service cases.
Data exchanged among the involved parties in a public service paradigm should be
safeguarded with respect to key security attributes, including data integrity and trust-
worthiness of the participating roles and systems.

The current European initiative for public services is headed towards a brand new
approach, in which the technological advances in the ICT domain (including the
Web2.0 paradigm and the SOA-based architectures) appear to be the solution for
providing accurate, secure and trusted electronic public services to citizens, enter-
prises and public organisations.

2.1 An Introduction to Existing Solutions

Current e-Government systems focus on establishing the routes for making the public
service delivery an online experience for all interacting stakeholders. Up to now,
closed systems have been implemented, which may automate the processes, but they
offer an isolating approach on the way data is exchanged between multiple providers
and consumers. In alignment with the business needs in this domain and the pillars
drawn in the Digital Agenda for Europe, e-Government applications move to the next
step and aim to address the key objective of integrating service delivery at the
most digital service level within the next few years. As a result, the achievement of

 Supporting Security and Trust in Complex e-Government Services 221

interoperability between existing or developing IT systems arises as the major step to
bridge the gap in existing complex e-Government applications.

However, the synthesis of heterogeneous data in composite public service chains
raises major concerns about the security and trustworthiness maintenance, when offer-
ing such services. Thus, as the maturity level of the existing solutions on the field of
electronic public services appears to be rather low, the majority of data exchange is
currently handled manually, especially in cross public bodies transactions, which
actually affects the performance and the quality of the service delivery process, espe-
cially whenever a critical decision has to be made on the process outcome.

Data involved in public service processes can be classified, according to their pri-
vacy level, as defined in local, national and international legislation, such as the Di-
rective 95/46/EC [2], while the respective mechanisms for securing services may be
controlled from the impact imposed by the loss of data integrity. The problem be-
comes more challenging as alternative end user devices (desktop PCs, mobiles, smart
cards, etc.) and service channels, such as Central Governmental Portals, are to be
supported in order to improve the citizens’ experience on public service delivery and
increase their satisfaction.

2.2 The Case Study

In order to define the problem we are trying to solve, we consider DAEM, the City of
Athens IT Company, as the organisation dedicated in developing and providing e-
Government related implementation services to local authorities and other public
bodies and organisations. The following domain specific case study represents the
implementation of the supporting service framework related to the scenario of when,
where and what to acquire when searching for a piece of land (lot), so as to build a
residence for individual or professional use.

Such a scenario involves many factors affecting decisions that should be made at vari-
ous stages of the scenario implementation. Such factors involve among others the credi-
bility of the lot owner to publish correct information about the lot, the trustworthiness of
the solicitors that could be selected to assist in deciding which lot to acquire and the accu-
racy of the lot information, as it is delivered from the various roles involved in the sce-
nario. In addition, for each decision point, a variety of security threats and vulnerabilities
(i.e. denial of service, fake identity, inappropriate access control, breaches on sensitive
data, etc.) are in place as a result of the nature of the e-Government scenario itself and the
current regulatory framework. Therefore, in order to build the application that would
facilitate the lot acquisition process, DAEM should meet the objective of enabling both
citizens or the various service consumers and involved organisations to interact within a
complex secure public service provisioning scenario.

Existing approaches limit the scope of this scenario by enabling partial electronic
access to only a subset of available online information. On the contrary and in order
to bypass the deficiencies of current systems in terms of trust and security, the com-
plete service process for lot acquisition is split into manually and automatically
accomplished steps. For example, as part of their commercial business, DAEM has
developed two different systems, which are, currently, in operational mode to facili-
tate selected functionalities, while other steps can only be accomplished through indi-
vidual and ad hoc access to external third party sources or public administrations.

222 V. Tountopoulos et al.

This raises significant overhead, in both a time and cost manner, for those being inter-
ested in the lot acquisition service process.

Thus, the problem lies on how to use the Aniketos platform and develop a service-
based application to effectively tackle the security and trustworthiness concerns that
prevent the consumers of Governmental services from the use of electronic means to
complete their interactions with the Public Administration.

2.3 Security and Trustworthiness Concerns

Focusing on the case of the lot acquisition service process, vast data is exchanged to
accomplish the foreseen tasks for searching and managing a lot and issuing the relevant
building permits as well. All this amount of information is generated by multiple provid-
ers, ranging from public organisations and the involved end users to other external
stakeholders. Based on both the European and Greek e-government interoperability
frameworks [3,4], which provide the specifications and guidelines on how such public
services can be electronically assembled, the relevant infrastructure should implement
many interaction points and interfaces, through the realisation of secure Web services.

Security at this point spans across many attributes due to the fact that the ex-
changed data can be classified according to their privacy level, as it was stated above.
A general classification can, for instance, be the following:

• Information on the lot properties, such as the geographical coordinates, the build-
ing terms that apply to the specific area that the lot resides in and other lot informa-
tion are considered as data publicly available, which can be subsequently accessed
by all involved stakeholders without any need for authentication.

• Lot owner information, such as the VAT number and personal ID card number,
which should be securely submitted to the relevant systems in DAEM in order for
the house building permit to be issued.

• If the application process for issuing the house building permit is performed over a
Governmental Service Portal (GSP) and not directly from DAEM systems, the
necessary trustworthiness between both the end user and the GSP, and the GSP and
the DAEM system as well, should be established.

In the above described examples, we can identify two different levels of data privacy.
In the first case, we deal with public data, which can be accessed by anyone, thus the
services exposing such data should bear trust properties only with respect to the data
accuracy. However, if a security service violation occurs and the relevant trust level is
not contained, then the impact of inaccurate data on the process may not be critical.

In the second case, the data exchanged refer to private data, which should be as ac-
curate as possible in order for the permit to be issued and access is only granted to
authorised roles. In consequence, the trustworthiness of services is extended to the
authenticated and role-based service access.

In the third case, a different business model is adopted by introducing the concept
of a service broker that can act on behalf of the end users. The problem of security
and trustworthiness in service engineering (including service design, access, execu-
tion and consumption) is further extended here to the exchange of service trust levels
among multiple stakeholders.

 Supporting Security and Trust in Complex e-Government Services 223

2.4 The Aniketos Platform Perspective

In order to address the challenges raised in the previous section, the Aniketos plat-
form (see Chapter 4 for details) is used by DAEM to support the specification and
development of secure composite public service processes, involving sensitive classi-
fied information. The platform offers design time and runtime support of security and
trust in the development of the service processes that will be used in the Web applica-
tion, which DAEM will offer to citizens, enterprises and any other interested party to
facilitate the needs of the lot acquisition case study.

The Aniketos platform is exploited in the development process of the lot acquisi-
tion case study in two different phases, as explained here:

• At design time, the composition of the services processes involved in the execution
of the application for the lot acquisition case study is specified, based on the secu-
rity requirements of the business stakeholders and the required trust level of envi-
ronment, in which these processes will be executed

• At runtime, the execution of the composite public service processes is monitored to
ensure that the security and trust properties of the service-based environment are
maintained, while appropriate service adaptation actions are enforced, as a re-
sponse to changes in the security provisions of the service execution chain.

Through the Aniketos platform, this case study can be eventually evolved to a secure
Web application, which fades the security concerns of the Internet-skilled users and
boosts the economic impact from the adoption of secure ICT systems in the e-
Government domain. At design-time, the platform offers the providers of public and
private services the capability to identity the security breaches and the relevant
threats, which are associated with the particular service processes that need to be im-
plemented, and control the runtime behaviour of such services to effectively respond
to environment changes.

Furthermore, the use of the Aniketos platform in the development of this case
study demonstrates how specific end user security and trust requirements are evolved
to system level security mechanisms to offer complex interactive Web service based
applications that require the integration of open, linked, personal and sensitive data.

The next section provides highlights on the use of the Aniketos platform software
components and the technologies developed there, as they are analysed in Chapters 3,
4, 5 and 8, to support the full scale development cycle of this case study.

3 Developing Secure Public Services

3.1 Requirements-Based Service Specification

In order to define the abstract level security requirements for the lot acquisition case
study, the relevant service designer, the public administration business executive and
potentially a security expert can work together using the Socio-technical Security
Requirements software package (see Chapters 4 and 7 for details). Through this

224 V. Tountopoulos et al.

package, all the necessary actions that should be taken in order to realize the case
study, along with the involved stakeholders for the objective of identifying a suitable
lot and building permit to be issued from the local authorities and handed to the inter-
ested party as well.

Each objective is presented in the form of goals that are decomposed and delegated
among the scenario roles and agents based on specific security and trustworthiness
requirements and the possible security threats involved in the scenarios. The steps that
the service designer should follow to model the use case, with the support of the pub-
lic administration executive and the security expert, are based on the STS-ml method-
ology (see Chapter 5 for details) and can be summarised in the following:

1. Identify and structure the ecosystem actors
2. Describe the ecosystem actors
3. Identify the assets of the ecosystem actors
4. Identify actor capabilities and potential co-operations
5. Describe the resources
6. Link the primary assets together
7. Delegate collaborative goals and describe security needs
8. Ensure validity of delegations
9. Identify possible threats

10. Define, review and approve the security requirements (Trustworthiness, Integrity,
Availability and Confidentiality)

Through these steps, the service designer can have the complete overview of the defi-
nition and specification of the security requirements needed for each scenario of the
land acquisition and building permit case study. An extract of the generated model is
depicted in Fig. 1.

Here, we focus on the goal for getting a map view of the available lots when
searching for the most suitable one in the area of interest. For this goal, we are inter-
ested in defining a minimum threshold for the trustworthiness of the services accom-
plished this goal. The extracted set of commitments [5, 6] that are generated from the
above model into a machine readable (XML like) security requirements specification
(SRS) document is shown in Fig. 2.

Using the Secure Service Specification and Deployment package (see Chapters 4
and 9 for details), the SRS commitments can be translated into a formal service speci-
fication language, which is a variant of the Business Process Modelling Notation
(BPMN) [7], enhanced with security properties [8], for our case (see Chapter 8 for
details). This specification is a process diagram that depicts the process flows of the
described scenarios. The SRS commitments are inherited into the corresponding ser-
vices tasks to exhibit the service level security requirements that should be fulfilled.
Such requirements, include the trustworthiness of the providers, the integrity of the
data involved, the confidentiality of the data-based service delivery, fundamental
access control checks with respect to separation and binding of duty restrictions and
the threats that can be associated with specific actions in this case study. The visual
depiction of the package to perform these service level requirements is shown in
Fig. 3.

 Supporting Security and Trust in Complex e-Government Services 225

Fig. 1. The generated socio-technical security requirements specification model

Fig. 2. The security requirements specification document

226 V. Tountopoulos et al.

Fig. 3. The formal representation of the service process for Process for retrieving a lot

3.2 Analysis of Security Properties in Service Specifications

The defined values for the security requirements that should be addressed by the ser-
vice specification can be modified or updated through the Secure Service Specifica-
tion and Deployment package (see Chapters 4 and 9 for details). This package offers a
service configuration tab, which hosts the security requirements that have been
associated with a certain service process task. Additionally, the package provides the
definition of requirements for the composite service process view. The whole set of
security requirements, either referring to the composite process or the process tasks, is
considered as the policy to which the actual service process execution should comply
with. For example, as shown in Fig. 3, the task for getting a map view of the area of
interest with the available lots should be provided by a separate service provider com-
pared to the one delivering the lot information, since a separation of duty requirement
is applied.

The service process view defines an abstract view of the functional and security
characteristics that should be addressed by the actual implementation. In order to
realise the composition and associate it with existing services, the package facilitates
service discovery requests to identify the most suitable service components, which
should be attached to the service process tasks, according to functional and security
characteristics checks. An example of the service discovery process for the case of the
available service implementations with respect to getting a list of lots is depicted in
Fig. 4. In order to accomplish this step, the service designer has to define the type of
the operation of the web service that must be bound to the selected service process
task.

Following the service binding process, a number of available combinations for the
composite service specification of retrieving a lot are created. The service developer
is assisted in the selection of the most appropriate one by invoking the Security Ser-
vice Validation and Verification package (see Chapters 4 and 10 for details), which

 Supporting Security and Trust in Complex e-Government Services 227

performs security analysis checks, both for the composite service process and the
atomic service components. The checks aim to identify which are the strongest com-
binations of existing service parts that can satisfy the range of the already defined
security requirements and facilitate the secure and trusted execution of the composite
service. The outcome of this process is the selection of the most suitable secure
composite service specification.

Fig. 4. Discovering existing service implementations

4 Using Secure Composite Services in Operational
Environments

4.1 Monitoring Secure Service Compositions

Using the Aniketos platform, a service developer in DAEM can deploy the selected
secure service composition and monitor the proper execution to ensure that the de-
fined security properties are continuously monitored to verify the maintenance of
certain trust and security values. DAEM needs this service to be consumed in the
context of a business application that is implemented to facilitate the lot acquisition
and issuing the building permit business case study. Given the operational environ-
ment of such an application, the identification of vulnerabilities and the exposure of
threats are probable to the extent that the secure composite service execution might be
at risk. As such, the deployment of the selected secure composite service specification
needs to be enriched with the definition of rules, which should govern the runtime
behaviour of the service execution for appropriate response.

Thus, upon the development of the composite secure service specification and prior
to the actual deployment of the selected composition as a Web Service, the service
provider needs to define rules for the runtime behaviour. This can be done through the
Security Monitoring and Notification package of the Aniketos platform (see Chapters
4, 12 and 13 for details), which enables defining multiples rules that can be created
for different security violation cases, such as threat level change, trust level change,

228 V. Tountopoulos et a

security property change, e
depicted in Fig. 5. This fig
rence during the composite
view” process of the secu
‘Anywhere in the process”
configuration’.

Furthermore, the Securit
and 13 for details) offers t
scribe to the Aniketos platf
cases. These subscriptions
service, within the context o
alerts, in case of an event ex

4.2 Dynamically Adapt

In order to trigger the Anik
assess the effectiveness to
Lot Manager prototype imp
Lot Manager is a Web app
vices, which are made avai
perform lot management op
the Lot Manager applicatio
of the previous section so
publishing a lot that is for
getting a map view of the s
the lot acquisition process.

A normal service operat
there, the user can navigat
available lots. This is done
and lot state. Also a desired
order to define the search a
able lots. Additional inform
description, the seller cont

al.

etc. For that reason, a rule editor has been developed
gure shows a rule about a trust level change event occ
e service execution, which is associated to the “Get m

ure service specification of Fig. 3. The rule scope is
” and the action defined is ‘Try re-composition and

Fig. 5. Run Time Rule Definition

ty Monitoring and Notification package (see Chapters 4
the ability for the composite service specification to s
form monitoring components for certain security violat
are used to track the normal operation of the compo

of the business application, and the generation of classif
xposure.

ting Public Service Delivery Process

ketos platform provisions to handle security violations
dynamically support service adaptation, we have built

plementation of the business case study for lot acquisiti
plication that consumes Aniketos compliant composite
ilable through the Aniketos Marketplace, and allows us
perations in a secure way. To this end, we have connec
on with the selected secure composite service deploym

that it offers the end user functionalities with respec
sale, searching for available lots near a specified addr
elected lots and selecting a solicitor to help the user acr

tion for this application is shown in Fig. 6. As it is s
te to the Lot Search Tab in order to perform a search
e by defining values for lot type, registration date wind
d address is given as well as the range from this address
area of interest. The output of this search is a list of av

mation for each of the lots of the list is provided, such as
tact information, etc. For this specific operation, the

, as
cur-
map

set
re-

, 12
sub-
tion

osite
fied

and
the

ion.
ser-
sers
cted

ment
t to

ress,
ross

seen
for

dow
s, in
vail-
s lot
Lot

 Supporting Security and Trust in Complex e-Government Services 229

Manager application consumes the Aniketos compliant services that facilitate func-
tionalities with respect to getAlistofAvailableLots and getLotInformation service proc-
ess tasks of Fig. 3. These two processes are supported by the same (Lot Information)
service provider, implementing the binding of duty security requirement, which has
been specified for the respective service tasks on the process flow model.

Fig. 6. The Lot Manager application – Facilitate maps through Provider A

By selecting a specific lot from the resulting list, the end user can navigate to the
list of available lots through a map view. At this specific step of the Lot Manager
execution, the getMapView service process is invoked, which consumes an external
Web service from a service provider A (see Fig. 6). During the service discovery
phase for the service process task, two candidate map service providers (A and B)
have been discovered, due to the fact that the trustworthiness requirement, which is
presented in Fig. 2, is being satisfied by both providers, and the selected secure ser-
vice composition has been based on this service provider A.

The assessment of the service candidates is a dynamic process. If the bound actual
Web Service no longer fulfils the security requirements, then the Aniketos platform
should seamlessly react and determine the type of the service adaptation that should
be adopted. Thus, we assume that the trustworthiness value of the map service pro-
vider A deteriorates to be below the requirement of Fig. 2, which triggers specific
alerts and the service adaptation process of the Aniketos platform.

To this end, the runtime verification process of the Security Service Validation and
Verification package (see Chapters 4 and 10 for details) is invoked, which offers the
Aniketos platform a realisation on which is the most appropriate action to redress the
violation occurred. The decision is made as a combination of the outcome of the veri-
fication process and the expected behaviour of the composite service, as it has been
defined through the rules that were analysed in Section 4.1.

230 V. Tountopoulos et al.

The result of the dynamic adaptation involves runtime recompositon, in which the
map view process part of the composite service that is consumed in the Lot Manager
business application changes to be provided by the map service provider B, as shown
in Fig. 7. This result still addresses the security requirements, as they have been
expressed in the design time.

Fig. 7. The Lot Manager application – Adapt the provision of the map service from Provider B

5 Evaluation Considerations

Following the development of business case study using the capabilities of the Anike-
tos platform to support security and trust both at design time and runtime, we high-
light that, in order to make use of the full range of the Aniketos functionalities,
different levels of skills and expertise are required. Although this seems to be a consi-
derable risk towards the adoption of the Aniketos platform in a business application, it
is an actual benefit for the effective collaboration of various experts that should be
inheritably involved to realise and build really trusted and secure services and appli-
cations.

At design time and based on the work that was described in section 3, the adoption
of the Aniketos components enabled us to define security and trust requirements at
two different levels. First, on a high, conceptual level, the use of the Socio-technical
Security Requirements package helped us setting the problem, visually describing the
security needs and for which goals and documents they should apply and assessing

 Supporting Security and Trust in Complex e-Government Services 231

the risks arising from our perspective on how the scenarios should be executed busi-
ness-wise. At this step, both business executives and security experts in the e-
Government domain are required to assist service designers in effectively providing a
representation of the high level requirements when designing secure public services.

As a second step, the use of the Secure Service Specification and Deployment
package brought to us the depiction of the service developer perspective. However,
even at this point, the contribution of the security experts and the business executives
is necessary to calibrate the secure specification of the composite services and align it
to the actual business needs and security restrictions that are applied in the public
service delivery domain, as a result of both the legal framework and the public ad-
ministration security policies.

At runtime and based on the work that was described in section 4, the Aniketos
platform has been used to deploy and operate secure composite services, which have
been consumed in order to build the application logic of the lot acquisition business
case study. The enactment of rules to control the runtime behaviour of the services
helped us building on test scenarios and assessing how we can bring the notion of
business continuity to the e-Government sector, by attributing the monitoring of com-
posite public services, with respect to their security robustness, to the Aniketos run-
time components. Through the runtime service adaptation features, we evaluated the
efficiency of the Aniketos platform to dynamically support the business continuity
when operating open to the public services for citizens and enterprises with com-
pletely different computer skills.

At this point, we should also consider that the e-Government domain strongly in-
volves the legal dimension in the provision of online secure applications. By bringing
together multi-discipline experts in front of simple and usable ICT-based tools, they
are capable of “communicating” their own knowledge in a transparent way, making
the tools their semantic playground to mutually understand the objectives of the dif-
ferent worlds.

Using the Aniketos platform, it turns out that service composition can be enhanced,
enabling the involved stakeholders establishing a sense of trust when using the re-
spective software packages. In many business domains, like the e-Government one,
service composition is subject to restrictions, concerns and, in general, considerations,
which have to be effectively tackled if service and application providers want to offer
real secure products to their customers.

In the e-Government domain, in which citizens and enterprises’ trust on ICT
systems, owned by the local authorities, increases with the credibility of the public
bodies, a third party “certification” of best practice development is necessary. The
methodology and tools that the Aniketos platform brings to the open source ICT mar-
ket can facilitate this specific need. We highlight here the reference to the Aniketos
open source solution, because the research trends in the e-Government field encour-
age the use of open source (and open standards) solutions, which may minimize the
final costs for developing applications for secure public service delivery, both for the
public authorities, which provide these applications, and the citizens and enterprises,
which consume such applications.

232 V. Tountopoulos et al.

6 Conclusions and Future Directions

The business case study that was presented in this chapter refers to a real life applica-
tion example, targeting the e-Government domain. It involves multiple service pro-
viders and consumers, who interact with each other to enable accessing the most
up-to-date procedures, information on relevant regulations and advice on associated
costs, which affect decisions when acquiring a lot and issuing the respective building
permit. Within the scope of this scenario, the chapter presented how the Aniketos
platform facilitates the definition of security and trustworthiness requirements, which
are identified in order to address the corresponding security problems being faced
today, when dealing with traditional approaches in applications for public service
delivery.

As the information, which is exchanged between the relevant stakeholders in such
a business scenario, can be classified according to privacy and trustworthiness levels,
the Aniketos platform has been used to support the secure specification of composite
service processes and the appropriate monitoring of their runtime execution, when
such specifications are deployed and integrated into modern service-based systems.
The lack of the currently available solutions on providing the adequate level of trust
and security in the execution of the involved service processes reinforces the adoption
of the Aniketos platform provisions to fill in the gap between policy-driven public
service delivery and trusted service consumption.

As a future step, the platform has to be adopted in a number of public service de-
livery case studies to broaden the scope of the security property based service specifi-
cation and enhance or even extend the functionalities provided by the platform both at
design time and runtime.

Through the use of the Aniketos platform to design, develop and implement the
Lot Manager application that consumes secure composite services, we managed to
showcase that secure service composition can be achieved for real life situations. The
Aniketos platform functionalities, such as the service discovery and composition,
based on security properties and trust, the notification of service consumers with re-
spect to the secure execution of the service compositions, and the runtime service
adaptation for policy driven service provisioning scenarios, can potentially address
the user expectations from a multi-service provider environment and improve their
online experience on modern and secure public service delivery paradigms.

References

1. Meland, P.H., Guerenabarrena, J.B., Llewellyn-Jones, D.: The challenges of secure and
trustworthy service composition in the Future Internet. In: Proceeding of 2011 6th Interna-
tional Conference on System of Systems Engineering (SoSE). IEEE Computer Society
(2011)

2. Directive 95/46/EC of the European Parliament and of the Council of 24 October 1995 on
the protection of individuals with regard to the processing of personal data and on the free
movement of such data. Official Journal L 281, 0031–0050 (November 23, 1995)

3. EIF - European Interoperability Framework for pan-European eGovernment services,
http://ec.europa.eu/idabc

 Supporting Security and Trust in Complex e-Government Services 233

4. Greek e-Government Interoperability Framework, http://www.e-gif.gov.gr/
portal/page/portal/egif/

5. Paja, E., Choprab, A.K., Giorgini, P.: Trust-based specification of sociotechnical systems.
Data & Knowledge Engineering 87, 339–353 (2013), doi:10.1016/j.datak.2012.12.005

6. Paja, E., Dalpiaz, F., Giorgini, P.: Managing Security Requirements Conflicts in Socio-
Technical Systems. In: Ng, W., Storey, V.C., Trujillo, J.C. (eds.) ER 2013. LNCS,
vol. 8217, pp. 270–283. Springer, Heidelberg (2013), doi:10.1007/978-3-642-41924-9_23.

7. Business Process Modelling and Notation (BPMN), http://www.bpmn.org
8. Brucker, A.D., Malmignati, F., Merabti, M., Shi, Q., Zhou, B.: A Framework for Secure

Service Composition. In: Procs. of the International Conference on Social Computing 2013
(SocialCom), pp. 647–652. IEEE (2013), doi:10.1109/SocialCom.2013.97

Characteristics and Addressed

Challenges in Evaluating
the Aniketos Project Outcome

Elke Beck, Sandra Trösterer, Alexander G. Mirnig, and Manfred Tscheligi

HCI & Usability Unit, ICT&S Center, University of Salzburg
Sigmund-Haffner-Gasse 18, 5020 Salzburg, Austria

{elke.beck,sandra.troesterer,alexander.mirnig,
manfred.tscheligi}@sbg.ac.at

www.icts.uni-salzburg.at

Abstract. Aside from technical R&D and outreach activities in the
Aniketos project, one part of the project work comprised of validation
and end user evaluation tasks. We describe the particular characteristics
of the Aniketos project evaluation and the overall challenges we encoun-
tered during our evaluation tasks. These challenges are structured along
four elements of evaluation work; viz., 1) project-internal stakeholders
who were doing evaluation work or benefiting from the findings, 2) the
developed objects that were evaluated, 3) the development process in
which the evaluation process was embedded, and 4) the beneficiaries of
the project outcome who participated in evaluation studies. We outline
the multi-perspective evaluation approach pursued to address these chal-
lenges and to ultimately conduct evaluations of such a highly complex
and multifaceted project. We conclude with examples and lessons learned
from our evaluation work and provide recommendations for project eval-
uations under similar conditions.

Keywords: Evaluation, HCI, user-centred evaluation, project manage-
ment.

1 Introduction

As presented in Chapter 4, the Aniketos project’s R&D outcome is the Anike-
tos platform, i.e., scenarios, methods, tools, and security services. Next to these
technical R&D activities in the Aniketos project, one part of project work com-
prised validation and end user evaluation tasks. The objectives of these tasks
were to systematically validate the Aniketos results with regard to specific qual-
ity criteria (e.g., functionality, usability), as well as to perform end user focused
evaluations of the Aniketos platform in the context of the projects’ three indus-
try case studies representing future European composite services (see Chapter
14 and 15). The Aniketos project was a relatively large undertaking, divided into
twelve work packages, eight of which were dedicated for research and technologi-
cal development. It took seventeen partners from across Europe (all of them large

A.D. Brucker et al. (Eds.): Secure Service Composition, LNCS 8900, pp. 234–246, 2014.
c© Springer International Publishing Switzerland 2014

www.icts.uni-salzburg.at

Aniketos Evaluation Approach 235

players in either industry or research) 46 months to go from an initial concept
to a working platform. In order to comprehensively assess the effectiveness and
impact of the project outcome over such an expansive time period and project
structure, we strived for an evaluation process with specific characteristics.

First, we aimed at applying a combination of different validation and evalua-
tion approaches, taking into account the plurality of scientific and professional
backgrounds in the project. For instance, we combined test-driven development
[4] with a user-centred evaluation approach [5], which ensured that the devel-
oped modules, tools, and the Aniketos platform will be secure, trustworthy, and
easy to use by developers and the diverse stakeholders. Since the project results
were practically applied in the industry case studies, we were also interested in
case study specific validation methodologies, such as the European Operational
Concept Validation Methodology (E-OCVM) [6] for the Air Traffic Management
case study (see Chapter 14).

Second, in striving for a comprehensive evaluation within Aniketos, we aimed
at considering a multitude of evaluation objectives, criteria, and methods for
assessing the projects’ outcome. The Aniketos platform modules were assessed
from a technical perspective with regard to, e.g., functionality, performance,
scalability, and integration. Some of the methods used were, e.g., JUnit tests
(TimedTests and LoadTests). From a Human-Computer Interaction (HCI) and
Usability viewpoint, we were also interested in understanding users and their
interaction with the user interfaces in Aniketos and thus investigated, for in-
stance, usability, user experience, technology acceptance, suitability, and com-
pliance with standard work practices of users. We conducted interviews, surveys,
usability tests and inspections, observations, group discussions, expert reviews,
and walkthroughs to assess these quality criteria.

While working towards a comprehensive assessment of the project outcome,
we encountered several challenges and difficulties with the evaluation work in
the course of the project, which we present and discuss in this chapter. More
specifically, we reflect on the user and technology-centred evaluation work in
the Aniketos project. We offer our experiential knowledge gained in our work,
i.e., a summary of challenges and characteristics of the evaluation work and
lessons learned from doing evaluation work. We hope this chapter will be helpful
for project participants in similar projects, who want to design and conduct
multi-perspective evaluations (i.e., technology- and user-centred) within these
projects. The presented challenges and related recommendations can serve as an
information pool for other project participants who (plan to) conduct evaluation
work in large-scale interdisciplinary R&D projects.

2 Identified Challenges

In the following section, we provide an overview about the identified challenges.
For describing the challenges we encountered, we structure them along four dis-
tinguished elements of evaluation work:

236 E. Beck et al.

Project-Internal Stakeholder Related Challenges. One element of the
evaluation work is the project-internal stakeholders who are doing evalu-
ation work or benefiting from the findings. It took an effort to establish
collaboration for aligning evaluation activities and communicating evalua-
tion findings among project stakeholders due to a plurality of scientific and
professional backgrounds in the project.

Evaluation-Object Related Challenges. Another element is the developed
objects that are evaluated. In Aniketos, evaluation had to handle a highly
complex and pioneering object of evaluation (i.e., the Aniketos complete
solution, see Chapter 4).

Development-Process Related Challenges. The evaluation process was
embedded in the overall development process in Aniketos in order to en-
able iterative evaluation of the developed components in the course of the
project. Therefore both processes had to be aligned in terms of matching the
evaluation procedure with the status of the developed component. Still, eval-
uation had to face the challenge that single components of the platform were
developed at different speeds. Thus, in addition to the individual component
evaluations, only at the end of the project was a unified whole available for
evaluation.

Evaluation-Participants Related Challenges. Finally, there are challenges
related to the beneficiaries of the project outcome, such as the envisioned
future users of the Aniketos platform, e.g., composite web service providers,
service developers, and service users. In a user-centred approach to evalua-
tion, actual users are often invited to participate in evaluation studies. In
Aniketos, we also aimed at accessing user groups for user-centred evalua-
tions, which however was challenging due to the geographically dispersed
and partly unknown group of prospective Aniketos users.

In the following sections, we will individually address each of the four types of
challenges. Each section is organized by listing our recommendations and lessons
learned related to the challenges as subsections. In each subsection, we explain
the sources and characteristics of the challenges and how we tried to solve or
mitigate them. Moreover, we provide examples from our evaluation activities
over the lifetime of the project to better illustrate our lessons learned.

3 Project-Internal Stakeholder Related Challenges:
Establishing Collaboration in Evaluation

3.1 Definition of Evaluation Standards and Structures Early in the
Project

The project’s partners come from a wide range of facilities and institutions, each
with a lot of experience in their fields and an according number of work practices
they adhere to. This includes how they structure their evaluation activities and
format their outcome reports. Having access to existing expertise is beneficial,
since it means that the partners can start their share of the work immediately. It

Aniketos Evaluation Approach 237

also means that the results of their work can vary greatly in structure and detail,
depending on their background and the workflow(s) they are used to. Evalua-
tion results and written reports need to be brought into one single format, so
consistency needs to be established early on in a project. The challenging aspect
of this is that one cannot arbitrarily impose a certain workflow on other part-
ners and hope that they adjust immediately to it (if at all). Enthusiasm is high,
especially at the beginning of a project, and partners are often willing to get to
work immediately, leaving details and organizational issues to be resolved at a
later date. While this might seem reasonable in general, pursuing the complete
opposite has turned out to be an effective and simple way to combat inconsis-
tency; by establishing mundane details, such as a concrete semantic structure
for all deliverables, down to the chapter names, total number of subsections,
and page estimates, everyone had a clear idea about not only what their output
would look like, but also knew, in principle, what everyone else would eventually
deliver. In Aniketos, in addition to the pre-emptive deliverable structuration, a
test case template (specifying, for instance, tested modules, preconditions, steps
taken, expected and actual results) was developed and supplied to all evaluation
work partners, which served as an aid for their evaluation activities and helped
keep results in a consistent and easily readable format. This way, less effort is
spent on editing partner contributions and, unintuitive as it may sound, it is
worth spending a considerable amount of effort in the beginning phases on sim-
ple formatting and structure issues, as this will have to be done sooner or later
anyway and ensures consistent output among project partners at the earliest
possible stage in the project.

3.2 Networking and Multiple Communication Channels

Another aspect related to the different scientific and professional backgrounds of
the Aniketos partners, in addition to the wide variety of nationalities, was com-
munication. This concerned both overall coordination, as well as communication
of evaluation findings to the technical work packages. A lot of effort could have
been spent on finding a common communication terminology and format, but a
completely different and overall more efficient approach led to just as positive
results: open access and redundancy. Project partners had open access to all
relevant data in the Aniketos project through not only the deliverables, but also
through a project-internal repository, which contained evaluation planning files,
study materials, raw data collections from evaluation studies, as well as separate
evaluation reports. In addition, no single communication channel was enforced
and communication among partners happened via e-mail, VoIP, or the online
repository’s notification function. If a partner could make neither head nor tails
of, e.g., a result they read in another deliverable, they could simply have a look
at the corresponding study concept and raw data in the repository or contact
the author directly via their communication means of preference. In a nutshell,
everyone was given different possibilities and more information than necessary,
which was available to them at all times. This open approach eventually led to

238 E. Beck et al.

natural networking among project participants and commonly preferred com-
munication channels.

3.3 Making Sure That the Results Reach Their Target Audience:
Active and Passive Methods

Having an entire work package dedicated to evaluation tasks has both its bene-
fits as well as drawbacks. The main benefit is obvious: a centralized location for
all evaluation results and documentation makes it relatively easy to assess the
current status of the project and identify areas for improvement (e.g., tasks for
the immediate future). The potential problem of such a dedicated work package,
however, is that it can devolve into becoming its own isolated entity, detached
from the components it is supposed to evaluate. This happens when the results
of the evaluations are not communicated clearly and transparently enough to
the technical personnel on the implementation side. The technical work pack-
ages have to deal with their own slew of problems and it cannot be expected
that every developer is aware of every single evaluation activity at all times, con-
sidering that only a small part of all evaluations will touch on the component
they are actively developing. A way to bridge this information gap is to make
sure that the partners who would benefit from a particular evaluation activity
are involved in said activity in one capacity or another. For Aniketos, this meant
that evaluations would always be conducted as joint activities between technical
and scientific evaluation partners, if at all possible. While having many partners
involved might initially seem like an inefficient use of resources, it is arguably
much less wasteful than an evaluation conducted only by a single work part-
ner, which is never read or acted upon by anyone. Whenever such collaboration
activities were not possible or feasible for whatever reason, the work package
coordinator took particular care to foster transparency further and communi-
cate with the developers directly and update them on any on-going evaluation
activities or outcomes regarding their component(s).

4 Evaluation-Object Related Challenges: Evaluating a
Highly Complex and Pioneering Project Outcome

4.1 Method Triangulation to Tackle a Complex Evaluation Object

In order to achieve a high validity of our evaluation results, we pursued a method
triangulation approach (e.g., [2]), i.e., evaluation data is collected via different
methods, measures, and approaches, and the analysis and interpretation of the
collected data should lead to similar conclusions [3]. Relying on more than one
data source for answering certain research questions also helps to get a deeper
understanding of the collected examined phenomena. This is very helpful if the
evaluation object is complex. For example, during an evaluation workshop on the
Socio-Technical Security modelling language and its support tool (STS-ml and
STS tool, see Chapter 5), we used questionnaires, cards, observation, structured

Aniketos Evaluation Approach 239

interviews, and a group discussion in order to gain a comprehensive assessment
of the usability of STS-ml and the STS tool. All of those methods were care-
fully chosen in order to answer our initial research questions concerning the
usability and adequacy of the modelling language and tool. Using such an ap-
proach certainly requires effort and also one has to carefully consider the data
analysis procedure. However, the great advantage is the high degree of compre-
hensiveness. In the mentioned evaluation, some problems were identified with
all methods, but some could only be detected with a certain method or method
combination. In Aniketos we also aimed for the adjustment and customisation
of existing evaluation methods to the particularities of the Aniketos project.
Existing (user-centred) evaluation methods range from expert-based evaluations
(e.g., walkthroughs, heuristics for usability and trust) to end-user-based evalu-
ations (e.g., investigating trust-related end-user behaviour via logging analysis,
surveys, interviews, focus groups). As an example, one of our current long-term
evaluation activities is the collection of (general) feedback about the various
Aniketos tools via a short online feedback journal (see Figure 1). We developed
this feedback journal to enable people to take notes about positive or negative
usability issues with Aniketos tools and services at any time and any place. In
contrast to a usability test, the journal collects the issues close to their actual
occurrence in natural work environments and with greater user-centred focus
than more traditional methods such as, e.g., bug trackers.

4.2 Differing Abstraction Levels for Evaluation Objectives

To make the evaluation of the project outcome manageable, we followed two
strategies in defining our evaluation objects when creating our evaluation plan.
First, we decomposed the envisioned platform along its building blocks, namely
the tools, modules, and components that were defined in the platform design
process. This was a viable solution for the technology-centred evaluation ac-
tivities, which aimed at testing, e.g., the functionality of each platform part.
However, for the user-centred evaluation approach, this decomposition of the
whole Aniketos platform into single parts for evaluation was less suitable. This
approach required user scenarios and user interfaces (in the form of concep-
tual designs, low- and high-fidelity prototypes) for evaluation, whose definitions
were naturally still vague at the beginning of the project. As a second strategy,
we therefore also defined more generic, high-level evaluation objectives in the
Aniketos Evaluation Plan [1], such as “Aniketos results for architecting and de-
sign phases” and “Aniketos platform concepts and user interface”. Consequently,
the Aniketos targets of evaluation ranged from work package related tools, mod-
ules, and components of the Aniketos platform to trans-work-package evaluation
targets, i.e., Aniketos results for specific development phases (architecting and
design phases), as well as general concepts and user interfaces of tools, methods,
and techniques developed within Aniketos. These evaluation targets were also
further investigated within each case study.

240 E. Beck et al.

4.3 Identify Your Internal Users

From our experiences, we conclude that it is very important in a project with
such a complex and new evaluation target, to identify the designated project-
internal users of the Aniketos outcome – the people from the three industry case
studies, using the diverse modules and interfaces developed within the project
– as soon as possible. For our evaluation activities, which focused on diverse
bits and pieces of the unified whole and required different people to participate
depending on the evaluation target, it was always a challenge to find the appro-
priate people. For this purpose, an online project collaboration platform served
as a helpful starting point, as it provided an overview of all project members and
their company and work package associations. Furthermore, we, e.g., used a short
online-questionnaire (asking about project activities per person) in order to find
out which project members are involved in modelling tasks. This later helped

Fig. 1. Online feedback journal and output excerpts

Aniketos Evaluation Approach 241

us to decidedly choose participants for the different evaluations concerning the
modelling language developed within Aniketos.

4.4 Finding the Right Amount of Training Needed for Evaluations

Due to the complexity of the evaluation object, most evaluation studies had to
be combined with presentation sessions and/or training activities for the study
participants. In many cases, there were not enough or no experienced users
available. Thus, the evaluation study participants would not have been able to
sufficiently understand the evaluated object (e.g., the Service Composition Mod-
eller (Chapter 9) or the Model Transformation Module (Chapter 6)) and perform
tasks with it, without any presentation or training lessons beforehand. Further-
more, the differing maturity levels of the respective components or tools had to
be taken into consideration for the training, as well as the interdependency with
other modules (if applicable), which had to be made clear to the participants.
But here also lies the challenge: What is the right amount of training? On one
hand, the evaluation participants need certain guidance in order to perform their
tasks. On the other hand, if the training already provides solutions for each step
too accurately, the participants may just follow this way and certain issues may
remain completely unnoticed. Within our evaluation activities, we tried to find
a compromise, which was tailored to the evaluation objectives. For instance, in
the very first evaluation workshop of STS-ml and the STS tool that primar-
ily focused on usability issues and appropriateness of the modelling language,
the participants were given a presentation about the modelling language and
the modelling tool on the first day, each lasting about 90 minutes. During the
presentations participants were allowed to ask questions at any time. The part
covering the modelling language was a presentation, while the participants had
the opportunity to do some exercises with the modelling tool on a predefined
scenario during the presentation of the modelling tool. Also, for the actual eval-
uation session (see Figure 2), participants were provided a scenario description
where certain stakeholders were already identified (a task that normally would
be done by the modeller him/herself when modelling a scenario on his/her own).
However, in this case, it made sense to provide the information, as otherwise it
would have been rather difficult to use the tool. In another evaluation that aimed
at evaluating the Aniketos design-time support tools for the ATM domain, we
also pursued a combined demo and evaluation approach. From our perspective,
we believe that it is very important to find the right balance of training levels.

4.5 Close Cooperation with Technical Partners in Evaluation
Studies Needed

A general challenge within the Aniketos project was that the evaluation re-
searchers who focused on the human-centred perspective came from a different
research area (HCI). However, experiences with and knowledge of the – some-
times less familiar – technical details of the object of evaluation was still an

242 E. Beck et al.

absolute necessity. Therefore, even for less technical (i.e., user-centred) evalu-
ation activities, we experienced it as very important to closely cooperate with
the technical partners in our evaluations. For example, we conducted a work-
shop with four technical partners who, apart from providing demos of Aniketos
design-time support tools, were also available for the actual evaluation sessions
in order to answer upcoming questions. We believe that this is very important,
especially to avoid the identification of pseudo-problems – issues that only seem
problematic due to missing knowledge about the tools. However, one also has to
keep in mind that the presence of module developers might also lead to unneces-
sarily lengthy and/or digressive in-depth discussions. Therefore, it is important
that the evaluator also takes care in terms of an adequate moderation. Further-
more, it is also important to define with the technical partners their degree of
involvement in advance. That is, for some evaluations it can also make sense
that technical people only react to severe issues because otherwise a certain task
would become too easy if a developer answered any upcoming question. In con-
clusion, the close cooperation with the technical partners is important in advance
– in order to define a tailored evaluation procedure –, during the evaluation ac-
tivities – in case the evaluator does not have an in-depth understanding of the
evaluation object –, and also afterwards – when it comes to the interpretation
of evaluation results.

4.6 If Possible, Keep It Simple

Within our evaluation activities, we had to investigate whether users were able to
use certain developed modules and interfaces without problems. That is, we took

Fig. 2. Workshop participants creating a STS model based on a scenario description

Aniketos Evaluation Approach 243

a closer look at issues regarding usability, suitability, or scalability. In order to do
so, we used different scenarios or user interface prototypes within our evaluation
activities. From our experiences, we conclude that in order to identify very basic
issues (especially at the beginning), it is feasible to keep the complexity of the
scenarios rather simple as long as it makes sense. For example, for identifying
usability issues of STS-ml and the STS tool, we used a straightforward scenario
that had to be modelled by the participants. Hence, we primarily focussed on
the use of STS-ml and the STS tool rather than on issues that might relate to
scalability issues, which may arise if the complexity of the scenario increases.
However, in order to investigate the appropriateness of the modelling language
and tool for more complex scenarios, further evaluations were conducted within
the Air Traffic Management case study (see Chapter 14) to address the issue of
scalability and suitability for the case study domain. Regarding user interface
prototypes, low-fidelity prototypes have generally proven to be at least as im-
portant as functional prototypes and should not be seen as tools suitable merely
for the preliminary phases of development. For example, for investigating a tool
to generate training materials, we conducted a heuristic evaluation with a paper
prototype in order to identify key problems. This strongly helped to guide the
further development of the tool. In conclusion, we believe that it is important to
always keep in mind which objective needs to be investigated and to choose the
scenario accordingly. At the same time, one has to keep the big picture in mind,
and should invest in an evaluation at least once that brings in a higher degree
of complexity.

5 Development-Process Related Challenges: Aligning
Evaluation with Development Processes

5.1 Early Conceptual Evaluation of the Aniketos Platform

The development process of the Aniketos platform is, like in most large-scale
software development processes, characterized by parallel work on different com-
ponents in order to achieve common project goals. As defined in the Aniketos
architecture description, the platform consists of various parts, which are individ-
ually built and put together by the technical partners as the project progresses.
However, components are developed at different speeds and only towards a later
phase of a project are the components integrated into a unified whole. This poses
a challenge for evaluation work, which also aims at doing “whole platform” eval-
uations. It’s important to ensure an early start of such iterative evaluation ac-
tivities and receive feedback for improvements early in the development process
to save development time and costs, even when there is no coherent platform
available. In the first half of the projects’ timeline, comprehensive platform con-
cepts and scenarios were therefore developed, which could then be evaluated in
order to get an early assessment of the project’s planned outcome.

244 E. Beck et al.

5.2 Strong Focus on Formative, Chunk-Wise Evaluation

When planning the evaluation work at the beginning of the project, we aimed at
balancing formative evaluation (evaluation that is carried out during the devel-
opment process) and summative evaluation approaches (evaluations of the final
system). Ideally, evaluation takes place continuously and iteratively during the
course of the project. Once the evaluation of initial concepts (see section 5.1) was
complete, we then moved on to test non-functional, as well as functional, user
interface prototypes and finally investigated the quality and impact of different
versions of the Aniketos platform modules. An example for such activities is the
intense evaluation efforts spent for the STS-ml and its support tool (STS-ml
and the STS tool), which were developed for Aniketos, allowing for continuous
improvement of the language and tool. In summary, there have been three us-
ability evaluations of STS-ml and STS tool and six end-user evaluations in the
Air Traffic Management case study during the lifetime of the project. Perform-
ing summative evaluations of the final system turned out to be more critical
and difficult to accomplish, mainly due to the aforementioned component-wise
development process of the Aniketos platform. Consequently, in order to match
our evaluation work with the development processes (see section 5.1), we had a
strong focus on formative evaluation of single platform chunks. The vast majority
of evaluation studies were performed during module development, accompanying
the development process and offering findings for iterative improvement of the
single modules and components.

6 Evaluation-Participants Related Challenges: Identifying
and Accessing User Groups

6.1 Small-Cale User Studies

In a user-centred evaluation approach, a large amount of evaluation work is
done with the participation of actual users of a developed system who provide
the researchers with their points of view and experiences. For Aniketos, however,
there was no existing pool of prospective Aniketos user from which individuals
could be recruited for evaluations, mainly due to the pioneering research topic of
the project. Thus, we had to face the challenge of doing user-centred evaluations
of the Aniketos outcome with very small groups of potential (but not actual)
users. We mainly conducted small-scale user studies (i.e., studies with a small
number of people from the industrial case studies as study participants) while
large-scale user studies were not feasible. For instance, in the first STS-ml and
STS tool evaluation workshop, we had in total seven application domain experts
who participated at the workshop and worked with the modelling language and
tool. The third usability evaluation of the STS modelling language and tool
was completed with people who were not associated with the Aniketos project,
i.e., students who learned to use the modelling language and tool in a course
conducted at the University of Trento. In total, 36 students participated in the
evaluation. Aniketos-external experts from different fields (Institutions, Industry,

Aniketos Evaluation Approach 245

ASNPs, Research) are also hard to reach and motivate to take part in evaluation
studies. For instance, for a one-day ATM case study evaluation workshop, we
had ten selected ATM experts that took part in the validation and consolidation
process of Aniketos results applied to the ATM domain. A larger number of
participants would have been too difficult to get. Still, we can say that even such
small sets of study participants helped us greatly to detect possible problems
with the projects’ outcome early.

6.2 Remote or Local Evaluation Study Set-Ups, but No Mixture of
Both at the Same Time

For some user-centred evaluation methods, there is a need to (geographically or
virtually) bring together people in one place to take advantage of group dynamics
in group work. In Aniketos, this was relevant in most cases because of geograph-
ically dispersed user groups and project partners. We, therefore, tried different
study set-ups in several evaluation workshops. We held evaluation workshops
which required participants to be locally present, workshops which connected
remotely located participants via Internet-based facilities, and workshops which
had one part of the participants work together face-to-face, while the other part
was virtually present. Based on our experience, we can conclude that a solely
remote or local setup of a workshop worked well and arguably better than a
combination of local and remote participants would have. In such a mixed study
set-up, workshop participants unfortunately rarely discussed with each other.

7 Conclusion

In this Chapter, we have given an overview of the Aniketos evaluation approach,
the overall challenges we encountered during evaluation, and practices employed
to address these challenges. We structured the identified challenges with re-
gard to which evaluation aspects they were related to. These aspects were 1)
project-internal stakeholders, 2) evaluation objects, 3) development processes,
and 4) evaluation participants. The applied practices comprise measures related
to project-internal communication, evaluation planning and methods, and eval-
uation study designs. As our discussion of theses methods and practices showed,
addressing the Aniketos challenges required not only evaluation best practices,
but also project management and communication strategies. In fact, both as-
pects received an approximately equal degree of attention and consideration.

The Aniketos project was a difficult case for user-centred evaluations, due
to its structure of multiple intertwined components with different development
cycles, combined with a very wide potential user base. Careful planning and
execution was necessary to ensure that user-centred evaluation activities covered
all necessary aspects of the Aniketos framework, without exceeding the allotted
resources. In today’s age of ever-increasing demands and complexity in IT, highly
complex and multi-faceted projects, like Aniketos, are not a rarity anymore.
Thus, it will be increasingly important to gather and exchange knowledge of

246 E. Beck et al.

evaluation-related best practices, so that evaluation does not lag behind the
bars set by technological progress in modern IT projects.

References

1. Aniketos D7.1 - Validation and evaluation plan, http://www.aniketos.eu/

content/deliverables

2. Golafshani, N.: Understanding Reliability and Validity in Qualitative Research. The
Qualitative Report 8(4), 597–606 (2003)

3. Wilson, C.E.: Triangulation: the explicit use of multiple methods, measures, and
approaches for determining core issues in product development. Interactions 13(6),
46 (2006)

4. Janzen, D.S., Saiedian, H.: Test-driven development: Concepts, taxonomy, and fu-
ture direction. Computer Science and Software Engineering 38(9), 43–50 (2005)

5. International Standard: ISO 9241-210:2010: Ergonomics of human-system interac-
tion – Part 210: Human-centred design for interactive systems

6. EUROCONTROL. European Operational Concept Validation Methodology
(E-OCVM),
http://www.eurocontrol.int/eec/public/standard_page/validation_ocvm.

html

http://www.aniketos.eu/content/deliverables
http://www.aniketos.eu/content/deliverables
http://www.eurocontrol.int/eec/public/standard_page/validation_ocvm.html
http://www.eurocontrol.int/eec/public/standard_page/validation_ocvm.html

Author Index

Asim, Muhammad 10, 173, 192
Ayed, Dhouha 10, 173

Beck, Elke 234
Botvich, Dmitri 150
Brucker, Achim D. 50, 110, 121, 136,
192

Compagna, Luca 136

Dalpiaz, Fabiano 10, 63, 95
D’Errico, Michela 79

Elshaafi, Hisain 150

Félix, Edith 10

Giannakakis, Konstantinos 36, 219
Giannakoudaki, Ira 219
Giorgini, Paolo 10, 63, 95
Gjære, Erlend Andreas 203
Gonzáles, Susana 10
Guilleminot, Pierre 136

Herrera, Ivonne 203

Iturbe, Eider 79

Kallipolitis, Leonidas 219
Korres, Lefteris 219

Lempereur, Brett 10, 173, 192

Malmignati, Francesco 79, 121
McGibney, Jimmy 150
Meland, Per H̊akon 1, 10, 50
Merabti, Madjid 121, 173
Mirnig, Alexander G. 234

Paja, Elda 63, 95
Paul, Stéphane 203
Poggianella, Mauro 95

Rios, Erkuden 50, 79
Roberti, Pierluigi 95
Ronan, John 10

Salnitri, Mattia 79
Shi, Qi 121, 173, 192

Tedeschi, Alessandra 203
Tountopoulos, Vasilis 50, 219
Trösterer, Sandra 234
Tscheligi, Manfred 234

Yautsiukhin, Artsiom 192

Zhou, Bo 121

	Foreword
	Preface
	Table of Contents
	State of the Art in Secure and Trustworthy Composite Services
	Composite Services with Dynamic Behaviour
	1 Introduction
	2 Characteristics
	3 Related Work
	3.1 Literature
	3.2 Projects
	3.3 Tools and Standards

	4 Conclusion
	References

	Security and Trustworthiness Threats to Composite Services: Taxonomy, Countermeasures, and Research Directions
	1 Introduction
	2 Research Method
	3 A Taxonomy of Threats for Composite Services
	3.1 Threat Categories
	3.2 Threat Classes

	4 Countermeasure Methods for the Threats
	5 Research Directions
	– Trustworthiness/ReputationManagement.
	– Expressive Security Interfaces for Services.
	– Early Warning and Response.
	– Certification at Deployment Time.
	– Service Recomposition Revisited.
	– Representing Laws, Checking and Enforcing Their Compliance.
	– Robust Identity Management Systems.
	– Methodologies and CASE Tools.
	– Automated Policy Negotiation via Flexible Templates.
	– Testing Techniques for Composite Services.

	6 Related Work
	7 Conclusion
	References

	Adopting Existing Communication Platforms for Security Enabling Technologies
	1 Introduction
	2 Modular Design
	2.1 Design Time Modularity
	2.2 Runtime Modularity

	3 Integration of Existing Technologies
	3.1 Interaction with Enterprise Applications
	3.2 Security Considerations

	4 Cloud Deployment
	4.1 Discovery
	4.2 Deployment

	5 Technology Stack
	5.1 Apache Karaf
	5.2 Activiti

	6 Aniketos Service Runtime Environment
	6.1 Architecture
	6.2 Deployment of Composite Services
	6.3 Execution of a Composite Service

	7 Conclusions
	References

	The Aniketos Platform
	The Aniketos Platform
	1 Introduction
	2 The Aniketos Platform at a Glance
	2.1 Design-Time Support
	2.2 Runtime Support
	2.3 Community Support
	2.4 Overview of Stakeholders

	3 Aniketos Components and Packaging
	3.1 Socio-technical Sec curity Requirements Package
	3.2 Secure Service Specification and Deployment Package
	3.3 Security Service Validation and Verification Package
	3.4 Security Monitoring and Notification Package

	4 Conclusion

	The Socio-technical Security Requirements ModellingLanguage for Secure Composite Services
	1 Introduction
	2 STS-ml: An Overview
	2.1 Multi-view Modelling
	2.2 Security Requirements in STS-ml

	3 Security Requirements Specification for Composite Services with STS-ml
	4 Automated Analysis
	4.1 Well-Formedness Analysis
	4.2 Security Analysis: Reasoning over Security Requirements
	4.3 Threat Analysis

	5 Conclusions
	References

	From Consumer Requirements to Policies in Secure Services
	1 Introduction
	2 A Framework for Modelling Security Requirements and Contracts
	2.1 Modelling of Socio-technical Security Requirements
	2.2 Modelling Security Properties in BPMN with Aniketos Extensions
	2.3 Modelling of Security Policies

	3 Transforming SRS to Security Properties in Service BPMN Process
	4 Transforming SRS to Consumer Security Policies
	5 Conclusions
	References

	Design-Time Support Framework
	Security Requirements Engineering with STS-Tool
	1 Introduction
	2 Overall Features of STS-Tool
	3 Architecture
	4 Installation Details
	5 Technical Implementation Details of STS-Tool
	5.1 Modelling with STS-Tool
	5.2 Security Requirements Derivation
	5.3 Reasoning about Security Requirements
	5.4 Generating the Security Requirements Document

	6 Conclusions
	References

	Using SecureBPMN for Modelling Security-Aware Service Compositions
	1 Introduction
	2 Using BPMN for Modelling Service Orchestrations
	3 Security in Service Orchestrations
	4 SecureBPMN
	5 Discussion and Future Work
	5.1 Security and Compliance Properties
	5.2 Visualising Security Properties
	5.3 Diagrams vs. Models
	5.4 Runtime Enforcement

	6 Conclusion and Related Work
	References

	The Aniketos Service Composition Framework
	1 Introduction
	2 The Aniketos Secure Service Composition Framework
	3 Modelling and Verifying Security Properties
	3.1 Analysing SecureBPMN Models

	4 Quantifying and Ranking Service Compositions
	4.1 Encryption – The Weakest Link
	4.2 Availability
	4.3 Cost
	4.4 Ranking Compositions

	5 Conclusion and Related Work
	5.1 Related Work
	5.2 Lessons Learned
	5.3 Conclusion and Future Work

	References

	Compliance Validation of Secure Service Compositions
	1 Introduction
	2 The Composition Security Validation Module (CSVM)
	2.1 Business Process Compliance Problem (BPCP)
	2.2 The CSVM Architecture
	2.3 The REST-Based Interaction Protocol

	3 Lessons Learned
	4 Conclusion and Related Work
	4.1 Related Work
	4.2 Conclusion and Further Work

	References

	Aggregation and Optimisation of Trustworthiness of Composite Services
	1 Introduction
	2 Background and Related Work
	2.1 Trust and Reputation Systems and Models
	2.2 Trustworthiness of Services and Components
	2.3 Threats against Determination of Component Trustworthiness
	2.4 Trustworthiness Attributes of Services
	2.5 Aggregation of Attributes

	3 Trustworthiness Attributes and Aggregation
	3.1 Trustworthiness Attributes
	3.2 Service Composition Constructs
	3.3 Aggregation of Attributes
	3.4 Trustworthiness Update Procedure

	4 Service Trustworthiness and Selection
	4.1 Aggregated Trustworthiness
	4.2 Trustworthiness Module
	4.3 Optimal Service Composition

	5 Simulation and Experiments
	5.1 Description of GA
	5.2 Comparison to Other Approaches

	6 Summary
	References

	Run-Time Support Framework
	Monitoring Threats to Composite Services within the Aniketos Run-Time Framework
	1 Introduction
	2 Requirements for Threat Monitoring in Composite Service Architectures
	3 Architecture of the Service Threat Monitoring Module
	4 Implementation
	4.1 Data Model
	4.2 Composite Service Dependency Graphs
	4.3 Complex Event Processing Engine
	4.4 Monitoring Patterns and Templates

	5 Evaluation
	5.1 Integration with the Aniketos Platform
	5.2 Denial-of-Service Detection

	6 Conclusions and Futher Work
	References

	Security Policy Monitoring of Composite Services
	1 Introduction
	2 Service Composition: An Example
	3 Policy Language
	4 Event Model
	5 The Monitoring Framework
	6 Conclusion
	References

	Case Studies and Evaluation
	The Aniketos Design-Time Framework Applied – A Case in Air Traffic Management
	1 Introduction
	2 Methodology
	2.1 Single Components Evaluations
	2.2 On-the-Job Evaluation
	2.3 Presentations to ATM Stakeholders

	3 The System Wide Information Management Case
	4 Eliciting the Sec curity Requirements with STS
	4.1 Study of the Contex xt
	4.2 Study of the Assets
	4.3 Study of the Securi ity Policies
	4.4 Conclusion

	5 Designing and Securing the SWIM Business Process with SCF
	5.1 Designing the (Unsecure) SWIM Business Process with SCF
	5.2 Discovering Services: A Prerequisite to Security Specification
	5.3 Securing the ATM SWIM Business Process
	5.4 A Seamless Transition from Design-Time to Runtime
	5.5 Conclusion

	6 Conclusion
	7 Disclaimer
	References

	Supporting Security and Trust in Complex e-Government Services
	1 Introduction
	2 Problem Statement
	2.1 An Introduction to Existing Solutions
	2.2 The Case Study
	2.3 Security and Trustworthiness Concerns
	2.4 The Aniketos Platform Perspective

	3 Developing Secure Public Services
	3.1 Requirements-Based Service Specification
	3.2 Analysis of Security Properties in Service Specifications

	4 Using Secure Composite Services in Operational Environments
	4.1 Monitoring Secure Service Compositions
	4.2 Dynamically Adapt ting Public Service Delivery Process

	5 Evaluation Considerations
	6 Conclusions and Future Directions
	References

	Characteristics and Addressed Challenges in Evaluating the Aniketos Project Outcome
	1 Introduction
	2 Identified Challenges
	3 Project-Internal Stakeholder Related Challenges: Establishing Collaboration in Evaluation
	3.1 Definition of Evaluation Standards and Structures Early in the Project
	3.2 Networking and Multiple Communication Channels
	3.3 Making Sure That the Results Reach Their Target Audience: Active and Passive Methods

	4 Evaluation-Object Related Challenges: Evaluating a Highly Complex and Pioneering Project Outcome
	4.1 Method Triangulation to Tackle a Complex Evaluation Object
	4.2 Differing Abstraction Levels for Evaluation Objectives
	4.3 Identify Your Internal Users
	4.4 Finding the Right Amount of Training Needed for Evaluations
	4.5 Close Cooperation with Technical Partners in Evaluation Studies Needed
	4.6 If Possible, Keep It Simple

	5 Development-Process Related Challenges: Aligning Evaluation with Development Processes
	5.1 Early Conceptual Evaluation of the Aniketos Platform
	5.2 Strong Focus on Formative, Chunk-Wise Evaluation

	6 Evaluation-Participants Related Challenges: Identifying and Accessing User Groups
	6.1 Small-Cale User Studies
	6.2 Remote or Local Evaluation Study Set-Ups, but No Mixture of Both at the Same Time

	7 Conclusion
	References

	Author Index

