Chapter 4
Study of a Stealthy, Direct Memory Access
Based Malicious Software

In God We Trust; All Others We Monitor.
Motto of the Air Force Technical Application Center,
Part of the Air Force Intelligence,
Surveillance and Reconnaissance Agency

The arms race between malware developers and the anti-malware community reached
anew level. Countermeasures for kernel level [60], hypervisor-based [77], and system
management mode based malware [49] were proposed [25, 51, 107]. As a result
researchers explored new environments for stealthy malicious software. Malware can
be placed on dedicated hardware such as video cards and network interface cards to
attack the host platform [see 47, 134, 135]. Such devices bring, among other things,
a dedicated processor and dedicated runtime memory. These devices can operate
independently from the host system. Anti-virus software cannot detect malicious
code stored in separate memory and executed on a different processor. An attacker
can use such devices, or more precisely, the direct memory access mechanism to
circumvent protection mechanisms built into the operating system by attacking the
host runtime memory directly. We call code performing targeted DM A-based stealthy
attacks to locate and read or modify target data DMA malware. Such data can be
cryptographic keys for encrypted harddisks, credentials for online banking accounts,
instant messenger chat sessions, and open documents located in the file cache.

In this chapter we characterize DMA attacks and derive the term DMA malware.
We explore the term by examining if DMA malware can significantly increase the
probability of performing a successful stealthy attack against a computer platform
while preserving efficiency and effectiveness. For the evaluation we built our DMA
malware DAGGER—a DmA-based keystroke loGGER that exfiltrates captured data
to an external entity. We are interested in the efficiency, effectiveness and especially
in the stealth properties of DMA malware. We chose to implement a keystroke logger
to demonstrate that “short living” data can be captured by DMA malware.

Our implementation is based on Intel’s manageability engine that is part of the
popular x86 platform. Intel’s ME is implemented in business as well as consumer
platforms (see Intel vPro platforms [66]) to support different applications, such as
the Intel Active Management Technology 1IAMT [39]) or the Identity Protection
Technology (IPT [67]). Our DMA malware DAGGER is not executed on the host

© Springer International Publishing Switzerland 2015 33

P. Stewin, Detecting Peripheral-based Attacks on the Host Memory,
T-Labs Series in Telecommunication Services, DOI 10.1007/978-3-319-13515-1_4

34 4 Study of a Stealthy, Direct Memory Access Based Malicious Software

processor. It is executed on the processor provided by Intel’s ME. No additional
hardware is required. DAGGER implements an isolated runtime attack on user input.
Additionally, our DMA malware could steal cryptographic keys, target OS kernel
structures in an attack, and copy files from the file cache. Although DMA malware
cannot by detected by anti-virus software, an attacker still faces certain challenges.
DMA malware must be effective, i.e., it should be able to successfully attack various
systems. DMA malware must also be efficient, i.e., fast enough to find and process
data, even when dealing with virtual memory addresses and randomly placed data.
Such malware goes beyond the capability to exploit DMA hardware.
The main contributions of this chapter are:

e DMA malware definition: There are different kinds of code that utilizes DMA.
To clearly identify if code should be considered harmless, an attack, or DMA
malware, we introduce an appropriate definition.

e DMA malware core functionality: We present a number of requirements that
must be fulfilled by DMA malware in order to mount successful attacks.

e Evaluation of DMA malware prototype implementations: To demonstrate that
DMA malware increases the probability for successful stealthy attacks while
preserving efficiency and effectiveness, we implemented DAGGER. DAGGER
is executed on Intel’s isolated ME. DAGGER operates stealthily and can attack
multiple operating systems. Our implementation is fast and efficient that it can
capture keystrokes very early in the platform boot process, that enables DAGGER
to capture harddisk encryption passwords under Linux, for example.

e DMA side effect detection approach: We present a detection approach that can
reveal DMA malware executed in isolated hardware environments. Our work
demonstrates that DMA malware produces unexpected side effects that we mea-
sure utilizing widely used and cross platform available CPU features.

4.1 DMA Malware Definition

To define the term DMA malware we first characterize different kinds of DM A-based
code. This helps to clearly distinguish between simple DMA usage, DMA attacks
and DMA malware, whereby the latter has a clear focus on stealthiness. Note, DMA
malware goes beyond the capability of controlling a DMA engine. DMA-based code
that implements malicious functionality is considered a serious threat. Such code can
be operating stealthily during infiltration and runtime. It is also an advantage, e.g.,
for long-term attacks, if the code can survive platform reboots and power off as well
as standby modes. Hence, we can prioritize the following criteria to assess code that
utilizes DMA. That is, the DMA-based code:

(C1) implements malware functionality

(C2) needs no physical access to increase the probability of stealthy infiltration
(C3) applies rootkit/stealth capabilities during runtime

(C4) can survive reboot/standby/power off modes

4.1 DMA Malware Definition 35

Table 4.1 Fulfillment of criteria C1-C4 of DMA attack examples

Attack presented in C1 c2 C3 C4 DMA malware
[90] (USB) - - - v

[15,17-19, 42, 43, 87, 101] (FireWire) v - v v -

[11, 61, 87] (PC card) v - v v -

[131] (Intel ME) - v - v -

[35, 36, 47] (NIC) v v v v v

[134, 135] (Video card and NIC) v v v v v

[80] (Video card) v v - - -

Note, the assessment was done using publicly available material. If we could not decide with the
help of available resources whether a criterion is fulfilled, we assume that this criterion is fulfilled.

We use a binary system for our prioritization:

23 22 ol 20
C1C2C3C4

This system distinguishes 16 kinds of DMA-based code. We can derive a unique
number for each kind. For example, DMA-based code that does not perform mali-
cious actions (C1 = 0), leaves no traces on the host (C3 = 1), does not need physical
access (C2 = 1), and cannot survive reboots (C4 = 0) is mapped to the binary pattern
0110. This pattern corresponds to class 6in decimal. The higher the derived number,
the more dangerous is the DM A-based code.

Our definition of DMA malware is as follows:

Definition: DMA malware is malicious software executed on dedicated hardware attacking
a computer system via a mechanism called direct memory access as well as fulfilling at least
the criteria C1, C2, and C3.

When applied to the target platform introduced in Chap. 2, this definition means,
that DMA malware is based on first-party DMA and the DMA engine can be con-
figured by the attack code to not involve the host CPU. The attack code is executed
on dedicated hardware with its own processor and runtime memory, such as a NIC.
Controlling the NIC increases the probability that an attacker can hide data during
exfiltration. Table4.1 applies our binary system to the DMA attacks that are pre-
sented in Chap. 3 “Related Work™. The table also depicts what related work is DMA
malware according to our definition. In this chapter we also aim to develop a DMA
malware proof of concept that fulfills at least the criteria C1, C2, and C3.

4.2 DMA Malware Core Functionality

When attacking the host, it is not enough for an attacker to control a DMA engine.
The engine enables the attacker to read from and to write to host memory. However, in
most cases the target memory address is not known. This section describes the core

http://dx.doi.org/10.1007/978-3-319-13515-1_2
http://dx.doi.org/10.1007/978-3-319-13515-1_3

36 4 Study of a Stealthy, Direct Memory Access Based Malicious Software

functionality of DMA malware, i.e., overcoming address randomization, memory
mapping, and search space restriction.

The attacker has to determine memory addresses. The problem is that the memory
space allocated for, e.g., kernel data structures is not at the same memory address after
a platform reboot. Data structures are placed randomly in memory by the OS. This
can happen in a natural way when a device driver, for example, allocates memory
and gets the next free unallocated memory chunk. The memory address of that chunk
is not necessarily the same after a platform reboot. Alternatively, the OS can apply
certain randomization algorithms to ensure that data structures are not placed at the
same memory position. Of course, an attacker can scan the whole system memory
for signatures of the target data, but this is very inefficient when scanning a system
with 4 GB physical memory or more.

Operating systems work with virtual memory addresses [see 31, Chap. 15]), but
DMA works with physical memory addresses. The OS creates so-called page tables
that are used by the host CPU to map virtual memory addresses to physical ones.
The mapping is absolutely necessary to resolve memory address pointers when using
DMA. A special host processor control register called CR3 contains the physical
memory address of the page tables. The attacker has no access to the CR3 register. The
visibility of a DMA engine is restricted to host memory only. Without further analysis
the attacker has to scan the whole memory address space for relevant data. There are
two potential ways in which an attacker can overcome this problem. The first way
is to analyze if the OS places the data structures in question in approximately the
same memory area. The second possibility is to implement OS memory management
mechanisms. That is, the attacker must find a way to access memory page tables
created by the OS. With access to the page tables the attacker can then traverse page
tables and is able to resolve pointers from one data structure to another. This still
requires a known starting point for the search.

4.3 Design and Implementation of DAGGER

We present an overview of a general design for our DmA-based keystroke loGGER
DAGGER in the next subsection before we explain the details of the DAGGER
implementation in Sect.4.3.2.

4.3.1 General Design

Our design of DAGGER is depicted in Fig.4.1. DAGGER is DMA malware. That
is, DAGGER has to fulfill the DMA malware definition including at least the criteria
C1, C2, and C3. DAGGER consists of three main components:

4.3 Design and Implementation of DAGGER 37

Host DMA capable Computer Platform
CPU
l First-party DMA
Runtime capable Device
Memory o [Runtime Memory
< £ Firmware NIC @ i
Applications @searching and =9 Control | NIC _ J\=/ Outgoing|
= brocessing data muﬂl DAGGER Code |[T Mechanism Data
OS Kernel 2 Processor

Fig. 4.1 General design of DAGGER. DAGGER is executed on a DMA capable device so that it
can (/) search and (2) process data from host runtime memory. It controls a communication path
to exfiltrate information (3)

e Search: find the address of valuable data in the host memory via DMA.

e Process data: read valuable data within the regions identified during the search
process.

o Exfiltration: exfiltrate information in a way that is invisible to the host.

4.3.2 Implementation Based on Intel’s ME Environment

To evaluate DMA malware we chose to implement DAGGER on Intel’s ME. Intel’s
ME provides some useful features for implementing DM A malware that we describe
in the following.

The core of Intel’s ME is an embedded micro-controller placed in the platform’s
MCH. This isolated environment contains Read Only Memory (ROM), Static Ran-
dom Access Memory (SRAM), DMA hardware to access the host memory [25, 131],
and a processor as depicted in Fig.4.2. The embedded processor of the ME is an
ARCtangent-A4 (ARC4). The isolated environment is available regardless of the
power state, even in standby or power on/off. It only requires that the chipset is con-
nected with a power source. Applications executed on the embedded micro-controller
are implemented in firmware (ME FW) and stored in flash memory together with
the BIOS. The most prominent ME firmware example is Intel’s Active Management
Technology. But depending on the kind of computer platform (business or consumer
hardware) the ME can also run other firmware. Other firmware executed by Intel’s
ME are for instance: Intel’s Identity Protection Technology, Alert Standard Format
[131, p. 46)), Intel Quiet System Technology (QST [131, p. 46]) for temperature and
fan control, and Integrated Trusted Platform Module (iTPM [79, p. 109]).

ME firmware can communicate with the host via a PCI device called ME Interface
(MEI[79, p. 71]). The MEI can provide the version of the executed ME firmware, for
example. The ME environment provides additional PCI devices! to support certain

! These devices can act as bus masters, see Sect.2.5.

http://dx.doi.org/10.1007/978-3-319-13515-1_2

38 4 Study of a Stealthy, Direct Memory Access Based Malicious Software

Platform
cPU x86 Platfo
’ Operating System ‘
| DDR2
(G)MCH (Northbridge)
RAM
Manageability Engine =
(embedded pController)
| SRAM |
ARC4 Core Flash
| DMA | BIOS
MEBx
VT-d ME FW
I ME Data
GbE FW
ICH (Southbridge) - 3PDS
Filters LAN Controller
Sensors || Wired Wireless | f====USB
MAC 00B 0oB PCle
PHY | [802.11 iAMT/ME Environment
Components

Fig. 4.2 Intel’s Manageability Engine environment. Intel’s Manageability Engine (ME) environ-
ment consists of the Manageability Engine that is included in the MCH. Furthermore the environ-
ment consists of an isolated part of the RAM as well as isolated portions of persistent flash memory.
The ICH also contains ME environment components, especially components that implement the
out-of-band channel

AMT features such as text console and disk redirection. A serial port is emulated to
implement text console redirection [see 79, Chap.5]. Text output that is sent to this
port is forwarded to a remote console via the network. With this capability an admin-
istrator can remotely control the BIOS. To implement disk redirection a local disk is
emulated by the ME environment [see 79, Chap. 5]. An administrator can remotely
mount storage media (e.g., a CDROM with an operating system installer to recover
the operating system of the AMT enabled platform) via the locally emulated disk.

During the platform power-on procedure the ME firmware image is loaded into
ME RAM. The ME firmware itself runs on the micro-controller internal ARC4
processor and it also uses some system RAM as depicted in Fig. 4.2 to store runtime
data. This runtime storage is provided by a certain memory area that is invisible to
the main CPU and the OS. The separation is enforced by the chipset [79].

The ME environment introduces Out-Of-Band (OOB) communication, i.e., a spe-
cial network traffic channel used by iAMT. The iAMT enabled computer platform
is managed by a remote management console using OOB. OOB is also available

4.3 Design and Implementation of DAGGER 39

regardless of the power state. OOB can be considered to be a separate network
connection, running on the same hardware. The ICH implements necessary compo-
nents to support the ME environment with the OOB feature. The firmware filters
network traffic intended for, e.g., iAMT and redirects the packets to the ME. The
host is unaware of the redirected ME network traffic. This kind of traffic is identified
by TCP port numbers.

4.3.3 Attack Implementation Details for Linux
and Windows Targets

We implemented two keystroke logger prototypes to attack two targets, Linux and
Windows based OSes. We decided to find and monitor the keyboard buffer address
of 32 bit versions of the target OSes. In comparison to 64 bit versions, 32 bit versions
have to deal with a more complicated memory management. For example, the attacker
has to consider Physical Address Extensions (PAE [105, p. 769]) or certain memory
offsets when mapping memory addresses. The following subsections describe, how
we implemented the DMA malware core functionality as described in Sect.4.2. The
prototypes capture short living keystroke codes within their monitoring phase. Each
prototype handles the search phase for the target buffer differently. This has at least
two reasons. One reason is to evaluate as many aspects as possible of DMA malware.
The other reason is that OSes have different memory management properties. We
use a vulnerability described by Tereshkin and Wojtczuk [131] to infiltrate the ME
environment during runtime. To call our code we hook a ME firmware function that
we identified as the library function memset. Tereshkin and Wojtczuk [131] assumed
that they hooked a timer interrupt handler, but they actually hooked the ME firmware
function memcpy. We hook memset since we determined that it is called more often.

Our Linux variant is based on a signature scan as depicted in Fig. 4.3. We analyzed
the available Linux source code to derive a signature of our target, the physical address

Start URB signature scan @

If pointermod 0x400 == 0

v

struct usb_device *dev

Constant
offset

Check substrings
“USB “and “Keyboard* |

4

Constant
offset

c-har *product —

dma_addr_t transfer_dma

A
T Check physical buffer address for garbage @ ¢\f substrings"USB * and “Keyboard" found

Fig. 4.3 USB request block signature scan (simplified). The scan (/) begins to search for a pointer
to the USB device structure. A candidate for such a pointer is aligned to a 0x400 boundary. The
value of the structure field transfer_dma must be aligned to a 0x2 0 boundary. If both conditions
are true, the product string in the USB device structure is (2) checked for the substrings “USB” and
“Keyboard” In the last step the signature scan (3) checks if the keyboard buffer contains garbage,
that is, invalid keystroke codes

40 4 Study of a Stealthy, Direct Memory Access Based Malicious Software

of the keyboard buffer. The buffer address is part of the USB Request Block (URB)
structure that is defined in the file include/linux/usb.h of the Linux source
code. The demanded structure field is called transfer_dma. The memory offsets
differ from kernel version to kernel version. We solved that problem by exploiting
the Grand Unified Bootloader (GRUB) that places an identifier at a constant physical
memory address. We implemented a function that reads the identifier via DMA and
parses the kernel version number to derive corresponding offsets. Afterwards our
prototype runs through the search phase, that is, the signature scan.

Since our Linux prototype targets kernel data structures we can restrict the search
space to the first gigabyte of system RAM. Standard Linux systems have a memory
split of 1 GB/3 GB, that means, 1 GB for kernel space and 3 GB for user space. We
were able to further restrict the search space by empirically analyzing in which
memory area the kernel places the data structures needed by our signature scan. We
determined that this memory area is between 0x33000000 and 0x36000000 for
the Ubuntu Linux kernel version 3.0.0 after a fresh platform boot. The address of the
keyboard buffer does not change after standby or hibernate mode. With this approach
we overcome the problem of inefficiently scanning the whole system memory for the
randomly placed signature. Mapping virtual addresses to physical ones is a minor
issue when attacking the Linux kernel. Normally, in 32 bit versions a kernel virtual
address (or more precisely kernel logical address [see 31, Chap. 15]) is mapped to
its physical address by subtracting a constant offset. In 64 bit Linux versions such
an offset is not needed. Hence, there is no need to know the content of the CR3
processor register.

The search strategy for Windows-based target platforms works different. To be
able to perform the search using the search path as described below, virtual addresses
must be mapped to physical ones. This mapping is done using page tables created
by the Windows kernel. The memory address of those page tables is loaded into the
CR3 register, which an attacker cannot access via DMA. It turned out after some
empirical tests with a simple driver, that the physical address of the page tables for
the system process takes one of the following two values for Windows Vista/7 sys-
tems: 0x122000 or 0x185000. The system process is the first process created
during Windows startup. With this knowledge DAGGER can access the page tables
created by the kernel and overcomes the problem of mapping virtual addresses to
physical ones. DAGGER implements a page table traversing algorithm that takes
account of PAE.

Our Windows malware searches for a structure called DeviceExtension
that is maintained by the USB keyboard driver kbdhid. sys. This structure con-
tains a buffer that stores the codes of the last pressed keys. The source code for
kbdhid. sys is not publicly available. The most convenient way to get internal
information of that driver was to use IDA Pro,> Windows Debugger (WinDbg) tools,
and debug symbols provided by Microsoft® in the form of pdb files. To finally

2 See http://www.hex-rays.com/products/ida/index.shtml [accessed 25 February 2014].
3 See http://msdn.microsoft.com/en-us/windows/hardware/gg462988 [accessed 25 February 2014].

http://www.hex-rays.com/products/ida/index.shtml
http://msdn.microsoft.com/en-us/windows/hardware/gg462988

4.3 Design and Implementation of DAGGER 41

determine the location of the buffer in the DeviceExtension structure, our
research starts early in the boot process [see 105, Chap. 13]. We analyzed further
internal Windows structures. To find a starting point for the search, we ana-
lyzed the Kernel Processor Control Region (KPCR [105, p. 62ff]), or more pre-
cisely KiInitialPCR, the KPCR for the processor 0. We also examined the
Object Manager Namespace Directory (OMND, part of the Windows object man-
ager). We determined that KiInitialPCR is well suited to derive a path to the
DeviceExtension structure as depicted in Fig.4.4. KiInitialPCR is not
located at a constant memory address. DAGGER has to apply another step before it
can start with the search as depicted in Fig. 4.4.

The memory position of KiInitialPCR is determined by a function called
OslpLoadAllModules ofthewinload. exe binary asdepictedin Fig.4.5. This
binary is loaded by the Windows boot manager bootmgr that in turn is loaded by
Master Boot Record (MBR) code, etc. The function loads the Hardware Abstraction
Layer (HAL) library hal.d1l1l as well as the Windows kernel image in a more
or less random manner. The kernel image contains KiInitialPCR at a constant

bprootDirec’(oryObject
: |

16: Driver
19: Device 24: Kbdhid N Driver-Object-kbdhid-
36: i8042prt — DeviceObject
! |
. v

I Keystroke Code Buffer I

Fig. 44 Find DeviceExtension structure (simplified). With KiInitialPCR as a start-
ing point, DAGGER finds the OMND, that provides via hash tables a path to the driver object
kbdhid. This object contains a pointer to a device object. The device object provides the
DeviceExtension structure, which contains the keystroke code buffer

42 4 Study of a Stealthy, Direct Memory Access Based Malicious Software

Memory Buffer

_ hal.dll Image
[(BIOS g MBR- mg bootmar— g g winload-exe- pg
Buffer address stable
for one system

OslpLoadAllModules f_J

Kernel Image
...... . P
‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ KilnitialPCR
Constant relative| _
virtual address T

Fig. 4.5 Find KiInitialPCR (simplified). OslpLoadAllModules determines the exact
position of the Windows kernel image and the HAL

May vary from
system to system

relative address. The disassembled code of OslpLoadAllModules is similar to
an Address Space Layout Randomization (ASLR [105, p. 757]) mechanism.

The memory buffer for the kernel image and the HAL is allocated by Oslp-
LoadAllModules viaa function called B1ImgAllocateImageBuffer. The
latter function returns stable address values for a Windows system. These val-
ues may vary on different systems. For every possible return value of the func-
tion BlImgAllocateImageBuf fer there are 64 theoretically possible different
4 KB aligned virtual addresses. These addresses need to be checked in order to find the
kernel image base address. The disassembly of OslpLoadAllModules revealed
that the randomization seed for the address randomization has a 5 bit value. This
implies 32 possible addresses for each (of two) possible load order cases, i.e., first
kernel image and then hal.dl1l or vice versa. As long as KiInitialPCRhasa
constant relative virtual address within the kernel image, the same number of virtual
addresses to be checked also applies for a direct K1InitialPCR search without
any need to deal with the kernel image. To ensure that DAGGER found the cor-
rect KiInitialPCR we implemented a KiInitialPCR signature check. When
DAGGER has identified the correct KiInitialPCR, it continues to look for the
keyboard buffer using the search path described in Fig.4.4.

We use ethernet controller to exfiltrate the captured keystroke codes. To be more
precise, we use the OOB features of the Intel ME environment. Unfortunately, there is
no documentation that explains how to use this feature. Hence, we had to analyze the
firmware to figure out how to exfiltrate keystroke codes using the OOB channel. We
were able to find the transmit ring buffer that is used to send network packets in the
ME runtime memory. Furthermore, we were also able to find the firmware code that
is responsible for sending the next network packet from the transmit ring buffer. To
exfiltrate the captured data we prepare network packets, e.g., DHCP discover packets
as depicted in Fig.4.6, that contain the logged keystroke code. Then, we copy the
prepared network packet to the transmit buffer. Afterwards, we trigger sending the
packet by the NIC to an external platform. Please note, the transmitted packets can
easily be found when analyzing the network traffic with an external platform. To
improve the stealthiness of the design we [124, 125] implemented a covert timing
channel that is based on a so-called Jitterbug [see 115].

4.4 Evaluation 43

Wl O (Untitied) - Wireshark

file Edit View Go Capture Analyze Statistics Telephony Tools Help Logged bytes from
PEsee mEXes “evaTFEEE aaal keyboard buffer
itd] l'iller:l j « Expression... | a Clea[| " Apply

¢ Ethernet II, Src: IntelCor_14:a3:c3 (88:1c:c@:14:a3:c3), Dst: Bioadcast (FF:FF:ff:ff:FF:FF)
¢ Internet Protocol, Src: 0.08.06.6 (0.8.8.8), Dst: 255.255.255.735 (255.255.255.255)

v User Datagram Protocol, Src Port: bootpc (68), Dst Port: kootps (67)

¢ Bootstrap Protocol

0x04: character 'a'

f ff 88 1c B 14 a3 c¢3 68 80 4500
6 60 49 11 79 9f 00 60 00 00 fr ff
8 43 01 34 6e bS5 01 AL AR AC AA b1
6 80 00 68 60 00 BB B2 00 B4 v BB
8 80 80 1c <8 14 a3 s oo wonw 088
@ B0 B0 60 60 00 0O BB 0B 0O 80 Uo
6 60 BB 60 60 B0 6O PO 0D 0O B0 88
@ 60 B 0B 60 0@ B0
]
L]

0x02: left shift key

060 60 66 ea e
60 60 06 ©0 00 60 6O 00 00 60 00
66 60 06 00 00 00 60 00 0O 6O 80

Fig.4.6 Network packet containing bytes from keyboard buffer. The wireshark instance is executed
on an external platform. The network packet that has been parsed by wireshark contains 4 bytes
that represent the logged keystroke code data

4.4 Evaluation

We used an x86 platform with a Q35 chipset, 2GB RAM, a 4-core 3 GHz CPU, and
i1AMT firmware (version 3.2.1) to evaluate DAGGER with four different 32 bit OS
kernels: Windows Vista Business (Service Pack 2), Windows 7 Professional (Service
Pack 1) and Ubuntu Linux kernel version 2.6.32 as well as kernel version 3.0.0.

4.4.1 DMA Malware Fulfillment

We designed and implemented our DAGGER prototypes according to the DMA
malware definition described in Sect.4.1. (C1) is clearly fulfilled since DAGGER
implements working keystroke logger functionality. DAGGER needs no physical
access for the infiltration process (C2). We infiltrate the ME environment using
a software-based exploit during runtime. DAGGER exploits dedicated hardware to
implement rootkit properties (C3). We ran host performance overhead tests (memory:
MEM, network: NET, and CPU), since host and ME environment share the NIC
as well as a RAM chip. Parallel NIC and RAM accesses must be arbitrated and
could therefore cause delays. Our measurement results depicted in Fig.4.7 reveal
no significant overhead. The highest overhead that we could detect is approximately
1.5% when accessing the host memory during the search phase. It is extremely
unlikely that this minimal overhead would reveal DAGGER.

44 4 Study of a Stealthy, Direct Memory Access Based Malicious Software

(a)

I baseline
searchmode
1.01 4| [J monitormode

] ||| ||| {_W
0.98
CPU MEM

1.02

Relative Overhead in %
|

NET
Benchmark
. (b)
2 1.02 -
c I baseline
'.; searchmode
s 1.01 9| [monitormode
£
o
> 1
(o]
o
2 0.99
e
K]
&
0.98
CPU MEM NET
Benchmark

Fig. 4.7 Host performance CPU, MEM, and NET overhead tests. a Linux 3.0.0 performance
overhead test results. b Windows 7 performance overhead test results. We used time stamp counters
to measure overhead time. We measured the time it takes to copy a 100MB test file over the
network (NET) and within RAM (MEM) as well as the time it needs to compute a SHA1 hash
sum over this test file ten times in parallel to stress all four CPU cores (CPU). Each benchmark
was performed three times: without keystroke logger (baseline), keystroke logger in search mode,
and keystroke logger in monitoring mode. For the monitoring mode we configured the keystroke
logger to constantly send network packets of approximately 1,000 packets per minute. This is equal
to 500 keystroke and 500 key release events. We repeated each test 1,000 times. A bar in the gure
represents the mean of 1,000 runs

The search times summarized in Fig.4.8 are very short and the very aggres-
sive memory stress test we performed does not represent the memory utilization
of a normal computer system. DAGGER has solely read-only operations to ensure
stealthiness. The popular network sniffer Wireshark* was not able to detect any
DAGGER traffic on Linux and Windows systems. Host firewalls cannot block such
traffic either. Even if anti-virus software knew DAGGER’s signature it would be
unable to access DAGGER’s memory to apply the signature scan successfully. Nev-
ertheless, we also run a software called Mamutu,’ that is, amongst other things,
specialized in detecting keylogger behavior. Even specialized software could not
find any indication of DAGGER. Regarding criterion C4 we successfully checked if

4 See http://www.wireshark.org/ [accessed 25 February 2014].
3 See http://www.emsisoft.com/en/software/mamutu/ [accessed 25 February 2014].

http://www.wireshark.org/
http://www.emsisoft.com/en/software/mamutu/

4.4 Evaluation 45

‘ ~ Logitech - Dell FujitsuSiemens |

[}
a

Search Time in ms

Search Time in ms

1
20 40 60 80 100
Test Run Number

Fig. 4.8 Search time measurement results. a Linux 3.0.0 several keyboards b Windows 7 several
keyboards. The test results with several keyboards under Linux reveal a best case for search times
of around 1,000ms and a worst case of almost 30,000 ms as depicted in (a). The median for all
keyboards is at 3,281 ms. Useful for comparison: scanning the whole memory area determined for
Linux (see Sect.4.3.2) search takes approximately 13,000 ms. The worst case of 30,000 ms is due
to an erroneous DMA transfer that we do not handle directly. This causes DAGGER to repeat the
search phase. On Windows 7 the best search time is approximately 50 ms and the worst time is
around 120 ms, see (b). The median for all keyboards is at 93 ms. Hence, the search strategy we
implemented for Windows targets performs much better than the signature scan based strategy for
Linux

DAGGER’s attack code is fully functional after a platform reboot, after standby and
after power off state. We determined that this depends on an iAMT BIOS option.
Our code cannot survive a cold boot that happens if this option is not set.

4.4.2 Effectiveness and Efficiency

DAGGER is efficient, since it can permanently catch short living data from the key-
board buffer. To demonstrate that DAGGER is also effective we tested DAGGER
with different Windows and Linux versions as well as several keyboards. The mea-
sured search times summarized in Fig.4.8 confirm that DAGGER is quite efficient.
We repeated the measurements for each kernel and for each keyboard 100 times.
We took a measurement after a platform (re)boot to change the target address for

46 4 Study of a Stealthy, Direct Memory Access Based Malicious Software

each test run. The Linux measurement results imply that we could further restrict the
search space. We could start the search near the lowest address we encountered most
often during our tests. Search times of around 2,500 ms are due to target addresses
near 0x33c00000. Thus, we could skip almost 2,500 ms if we start the search at
0x33c00000. Furthermore, we could skip the search area address range between
0x34000000 and 0x36000000. Almost no targets were found in this area. A lot
of targets were found near 0x36e0000, i.e., search times of around 12,500 ms that
could also be saved. This increases the probability to miss keyboard buffer addresses.
That is, we can get better search times at the expense of effectiveness. The best case
search times are sufficient to capture hard disk encryption passwords, for example.
We tested this successfully with a Linux system. The Windows kernel can swap out
memory pages to the hard disk—Linux does not. Swapped memory pages cannot be
found by DMA malware. Hence, we also did a test for Windows to check if swapping
has any effect on DAGGER as depicted in Fig.4.9b.

(a)
E S 10 000 | i8¢ gg:w&&%i e
£8 1 ; 1
g] i i R i ¥
E 8 1,000 4 Windows: i Vista —— 7 [
:E 1 Linux: - 2632 3.0.0
o=
S 5 T r" ity "HH'HHM'"r Hlmhr‘ﬂ#uﬂl&mﬂn#‘u ity
Ew 100 —_W
] . :
100
Test Run Number
(b)
600 —
®]
E 500
E -
o 400 — | — Swap on Swap off |
E 300
=]
o 200 J M
5 100] x N A
(% 100 . =
0 T T T [T T T '| T T T I T T T '| T T T I

20 40 60 80 100
Test Run Number

Fig. 4.9 Search time measurement results. a Several operating systems. b Windows 7 swap on/off.
The plot in (a) compares different target kernels. DAGGER performs slightly better on Windows 7
than on Windows Vista. Linux 2.6.32 places the target memory structure closer to 0x33000000
than Linux 3.0.0. Thus, DAGGER has more hits around 1,000 ms when attacking Linux 2.6.32. The
results in (b) confirm that swapping has no effect on the efficiency and effectiveness of DAGGER.
A platform reboot was only applied to change the swapping behavior. The peaks are due to restarts
of the search phase

4.4 Evaluation 47

4.4.3 ME Firmware Condition

To be really stealthy DAGGER ensures that the ME firmware is still up and running
correctly. iAMT provides a web server for remote platform management [see 79,
p. 215] that is still usable. The server responds correctly on the local platform on
Linux and Windows. Firmware tools utilizing the MEI (see Sect.4.3.2) also work
when DAGGER is active. We successfully tested the AMT Status Tool (part of the
Local Manageability Service driver) and the Manageability Connector Tool (part
of the Manageability Developer Toolkit 7.0) under Windows. Under Linux we suc-
cessfully tested the Intel AMT Open-source Tools and Drivers (version 5.0.0.30),
or more precisely the ME Status and the ZTCLocalAgent tool. Note, we deter-
mined that DAGGER still runs even after having disabled the iIAMT firmware in the
BIOS. It appears that the ME environment cannot be disabled entirely via any BIOS
options.

4.4.4 I/OMMU

To test an JOMMU (see Sect. 2.6) as a countermeasure against DAGGER we enabled
Intel VT-d in the BIOS. As far as we know Windows does not support /OMMUs
directly. We could successfully attack Windows Vista and Windows 7 although
the /OMMU was activated. Linux supports /OMMU configuration with additional
effort. We also enabled VT-d in the BIOS and we activated /OMMU support via the
kernel command line. With these additional steps we were able to prevent the Linux
version of DAGGER from reading short living keystroke codes from OS memory.
This protection is not activated by default. In the next section we discuss, among
other things, further issues regarding the /OMMU.

4.5 Countermeasures Considerations

To scan for DM A malware using software executed on the host CPU is quite difficult.
For example, current AV software does not scan the runtime memory of peripherals
or the host CPU cannot access the runtime memory due to certain isolation mech-
anisms. The worst case for a scanning approach is that the DMA malware changed
the behavior of the scan software, which would deliver incorrect results. Checking
firmware images at load time, as proposed by the TCG [136], does not prevent run-
time attacks. Furthermore, it is unclear if all ROM components are accessible by
the host.

http://dx.doi.org/10.1007/978-3-319-13515-1_2

48 4 Study of a Stealthy, Direct Memory Access Based Malicious Software

4.5.1 I/OMMU Issues

In the case of DMA attacks an appropriate configuration of the /OMMU (see
Sect.2.6) is proposed as a preventive countermeasure, for example by Duflot et al.
[47, p. 48]. It is required that system software configures the /OMMU. An incorrect
configuration cannot be excluded [83, p. 2].

Itis assumed that the /OMMU is secure. Unfortunately this is not always the case.
Sang et al. [111] demonstrated that an /OMMU configuration can be tricked with
legacy PCI devices. Wojtczuk et al. [148] revealed that an /OMMU can be attacked
by modifying the number of DMA remapping engines provided by the BIOS (see
Sect.2.6). This is done before the /OMMU is configured by system software. The
environment we used for DAGGER is able to carry out such an attack. This threat
can only be mitigated by executing special hardware dependent code called STNTT.
However, on at least one previous occasion the manufacturer of the chipset failed to
release SINIT code at the launch of the chipset [147, p. 22]. This code is needed
to initialize a well known and trustworthy environment for, e.g., a hypervisor. It
checks the DMA remapping engines and can therefore prevent an attack as presented
Wojtczuk et al. [148].

SINIT belongs to and increases the size of the trusted computing base. Previous
work demonstrated that SINIT code can have exploitable security vulnerabilities
that can be used to trick /OMMU mechanisms [see 148]. Recently, Wojtczuk and
Rutkowska [148] presented another attack that can be used to circumvent /OMMU
mechanisms as well. To prevent the attacks presented by Wojtczuk and Rutkowska
[146, 148], a SINIT as well as a BIOS update must be applied. Wojtczuk et al.
[147] presented another /OMMU attack. Note, SINIT is normally triggered on
hypervisor-based platforms. Platforms running a normal OS cannot necessarily count
on the /OMMU. It should also be mentioned that SINIT requires the activation of
additional platform features, namely the Trusted eXecution Technology and the TPM
[54]. This means that users that do not want to activate the TPM for example cannot
rely on the /OMMU. Note, the TPM is an opt-in device [see 54, p. 212] and is turned
off by default.

For a comprehensive protection against DMA malware it is absolutely necessary
to correctly configure the /OMMU. However, the /OMMU can only be considered
secure if the above mechanisms to protect the whole platform are secure. This is
a difficult task. Hence, alternative approaches were considered by Li et al. [83]
and Duflot et al. [46]. Li et al. [83] state that their approach requires extending the
firmware, does not work correctly if peripherals cause heavy PCle traffic, and the
verifier component needs to know the exact hardware configuration. The approach
presented by Duflot et al. [46] is highly NIC adapter-specific and not applicable
to isolated environments such as Intel’s ME. It is worth noting that malware such
as our implementation controls the NIC without any NIC firmware modifications,
i.e., exfiltration cannot be detected by the approach described by Duflot et al. [46].
Furthermore, this approach has significant performance issues for the host CPU
(100 % utilization of one CPU core).

http://dx.doi.org/10.1007/978-3-319-13515-1_2
http://dx.doi.org/10.1007/978-3-319-13515-1_2

4.5 Countermeasures Considerations 49

Memory access policies enforced by /OMMUSs can be insufficient or can even
prevent the use of some other features in some application scenarios. Consider hard-
ware supported malware scanners such as CoPilot [100] and DeepWatch [25]. The
[/OMMU can be configured to stop CoPilot and DeepWatch from working or to allow
such systems to access the host memory to scan it for malicious software. In the lat-
ter case DMA malware could make use of the execution environment of CoPilot or
DeepWatch to attack the host. DAGGER, for example, uses the DeepWatch envi-
ronment, i.e., Intel’s ME. Since iAMT version 5, Intel supports a verified launch for
the firmware to be executed on Intel’s ME [see 79, p. 271]. The firmware is checked
during load time. The result of the load time check is provided to system software.
As far as we know the result is not used in practice. The mechanism cannot prevent
runtime attacks as applied by our PoC. This means, DAGGER confirms that our
assumption that an attacker already infiltrated the target system, e.g., via a zero-day
exploit (see Sect.2.7), can also hold even if such additional security mechanisms are
in place. An appropriate configuration of the /OMMU is a first step against DMA
malware. However, without resolving the mentioned issues a successful deployment
cannot be guaranteed.

4.5.2 Detection Approach Based on DMA Side Effects

A possible detection approach is based on DMA side effects that we observed in a
first experiment with our own DMA malware prototype DAGGER. Our detection
mechanism is based on multiple widely used and cross platform CPU features.

So far we developed, implemented, and evaluated our mechanism that is able to
detect rogue DMA usage that is not initiated and unexpected for the host system.
DMA usage is initiated by the host CPU when a peripheral has to process data on
behalf of the host CPU. Sending a network packet using the network interface card
is an example. Expected DMA usage originates from peripherals and is intended
for software running on the host CPU such as the operating system. Receiving a
network packet is an example for intended DMA usage. Our method is able to
detect a general side effect pattern. Thus, we believe it is suited to detect other kinds
of DMA malware besides the prototype we implemented. Our investigation into
detecting malicious DMA usage is based on the knowledge that both, the main CPU
and platform peripherals, can request to access the main system memory at the same
time. The memory controller hub arbitrates parallel memory access requests, see
Fig.2.5. The interesting question for us was if this parallel memory access introduced
any measurable side effects. If side effects are present and measurable then we can
use these to detect malicious behavior.

We booted a Linux kernel and started just a root shell to ensure that the sys-
tem workload was minimized. Only one CPU core was online. We performed a
memory stress three times: without keystroke logger (baseline), keystroke logger in
search mode, and keystroke logger in monitor mode, see also Sect.4.3.3. For the
tests we used a 100 MB file that we copied from one location to another within a

http://dx.doi.org/10.1007/978-3-319-13515-1_2
http://dx.doi.org/10.1007/978-3-319-13515-1_2

50 4 Study of a Stealthy, Direct Memory Access Based Malicious Software

2

M baseline

®m search mode (bulk transfer)

3 monitor mode (4 bytes transfer)
1 __l __' o
B 4

GNU time TSC HPC

Fig. 4.10 Memory stress measurements. Search phase and monitor phase are depicted relative to
the baseline

RAM-based file system. We repeated the tests 1,000 times and calculated the means.
The results are depicted in Fig. 4.10. The diagram reveals how we refined our strategy
with different and more specialized measurement tools.

GNU Time Measurements First we tried the common system tool GNU time to
determine a delay. GNU time measures system resource usages of a process, in our
case the memory stress test tool. As shown in Fig. 4.10 on the left hand side the means
of the test runs are nearly the same. We concluded that the measurement resolution
of GNU time is insufficient to reveal delays in our experiment.

Time Stamp Counter (TSC) Measurements We repeated our measurements with
a more accurate hardware-based measurement tool, the TSC [see 69, Sect.17.12].
The TSC counts clock ticks, see Sect.2.3. The results are presented in the middle
in Fig.4.10. We were able to (re)produce an overhead of 2 % when our prototype
malware is in search mode. DMA was originally introduced to eliminate the burden
on the CPU. That means, to perform memory transfers without the involvement of
the host CPU. Hence, that overhead is surprising and a first piece of evidence that
detectable DMA side effects exists. When our prototype malware is in monitor mode
we cannot see noteworthy overhead when using TSC. The critical difference between
the two modes is that in search mode the malware copies at least a memory page
where it searches for valuable data. However, in monitor mode the malware copies
just 4 bytes from the keyboard buffer.

Hardware Performance Counter (HPC) Measurements We repeated the mea-
surements with a third approach using HPCs, a hardware-based performance moni-
toring tool for code optimization, see Sect.2.3. These counters are special purpose
processor registers on Intel processors [69, Chaps. 18/19] that count certain events
such as cache misses, branch prediction misses, and resource stalls. Similar HPC are
also available on other platforms such as ARM and SPARC. The Intel platform we

http://dx.doi.org/10.1007/978-3-319-13515-1_2
http://dx.doi.org/10.1007/978-3-319-13515-1_2

4.5 Countermeasures Considerations 51

used for our experiments supports 340 events.® We evaluated all of them and deter-
mined that resource stalls are a particularly effective DMA side effect. HPC events
are more precise than TSC measurements for certain events. We assume the num-
ber of resource stalls are a direct result of the delays we can measure with TSC.
As an example we present the result of a hardware performance counter called
RAT_ STALLS:ROB_READ_PORT (see Sect.2.3) in Fig.4.10. Compared to the
baseline the overhead is more than double. Without our prototype malware the mean
of our measurements was 1,359,898 counted events. With our prototype malware in
search mode the mean was 3,161,868 counted events, and in monitor mode it was
1,535,054 counted events. The latter is only slightly higher compared to the baseline.
The refined measurements demonstrate the more accurate we measure the better is
the visibility of the DMA side effect.

Detection Based on our findings, DMA side effects can be measured. This means
we can design a DMA malware detection mechanism. The mechanism works by
establishing a measurement baseline and reference values for the TSC/HPC. Dur-
ing runtime, our system monitors the TSC/HPC values and compares them to the
reference values. If the values deviate from the reference values DMA malware is
detected. We acknowledge that an actual implementation of this delay-based detec-
tion approach needs some additional investigation. In Chap.5 we present a more
enhanced detector that is also based on HPC. Furthermore, the artificial memory
stress is not required anymore to detect DMA malware with our enhanced method.
In this section we discuss the /OMMU and a detection approach based on DMA
side effects as countermeasures.

4.6 Chapter Summary

In this chapter we studied DM A malware, i.e., malware hidden in dedicated hardware.
Such malware can circumvent protection mechanisms run on the host CPU by directly
accessing the host memory. We implemented and evaluated DAGGER, a DmA-
based keystroke lo0GGER. The dedicated hardware enables our prototype to benefit
from rootkit properties. DAGGER operates stealthily. It is undetectable by anti-virus
software etc. We can conclude that DAGGER is a representative malware proof of
concept when comparing it with other known DMA malware. Hence, we will reuse
DAGGER in the next chapters to develop a reliable DMA malware detector.

DMA malware is more than controlling a DMA engine. Our evaluation confirmed
that DMA malware is efficient even if obstacles such as memory address randomiza-
tion are in place. We also demonstrated that DMA malware can be effective, that is,
it can attack several OSes. This confirms that DMA malware is stealthy at no costs
regarding efficiency and effectiveness.The host has no reliable means to protect itself.

6 We used the Performance API, that is available at http://icl.cs.utk.edu/papi/software/index.html
[accessed 25 February 2014], to work with HPC in the described experiment.

http://dx.doi.org/10.1007/978-3-319-13515-1_2
http://dx.doi.org/10.1007/978-3-319-13515-1_5
http://icl.cs.utk.edu/papi/software/index.html

52 4 Study of a Stealthy, Direct Memory Access Based Malicious Software

Throughout this chapter we highlighted that the /OMMU has several issues and the
host cannot necessarily count on this preventive countermeasure against DMA mal-
ware. Besides possible vulnerabilities and various preconditions that must be fulfilled
for a successful /OMMU deployment, the most obvious issue is that common OSes
do not or do insufficiently support the /OMMU. Hence, DMA malware can attack
OSes such as Windows. A general and reliable approach for scanning the dedicated
devices for malware does not exist. A reliable and more general DMA malware
detection mechanism is needed. Other researchers have also investigated /OMMU
alternatives.

In this chapter we discussed an alternative approach. Our detection approach is
based on the observation that parallel memory accesses from the isolated hardware
(via DMA) and the main CPU produce measurable side effects. Hence, we can
conclude that illegitimate DMA operations are not stealthy anymore. Nonetheless,
we have to admit that the experimental setup used for the detection is rather artificial.
We conclude that the current setup is insufficient for a detection tool that can be
applied in practice. However, we demonstrated that hardware performance counters
can be the basis for a reliable detection tool. We revealed that the measurement tool
requires a sufficient measurement resolution. Hardware performance counters fulfill
this requirement. We will further investigate this point in more detail in the next
chapter.

Without an alternative, only dedicated hardware whose inner workings is acces-
sible by the host, i.e., complete RAM and ROM access, should be deployed. This
enables the host to check the device for malicious modifications from time to time.
A precondition for this is a reasonable measurement strategy and that the scanner
gets loaded first. Devices with a dedicated processor, dedicated runtime memory,
and a DMA engine are a threat for the host platform. This chapter demonstrates that
additional protection mechanisms are needed to ensure a platform’s confidentiality,
integrity, and especially its trustworthiness.

	4 Study of a Stealthy, Direct Memory Access Based Malicious Software
	4.1 DMA Malware Definition
	4.2 DMA Malware Core Functionality
	4.3 Design and Implementation of DAGGER
	4.3.1 General Design
	4.3.2 Implementation Based on Intel's ME Environment
	4.3.3 Attack Implementation Details for Linux and Windows Targets

	4.4 Evaluation
	4.4.1 DMA Malware Fulfillment
	4.4.2 Effectiveness and Efficiency
	4.4.3 ME Firmware Condition
	4.4.4 I/OMMU

	4.5 Countermeasures Considerations
	4.5.1 I/OMMU Issues
	4.5.2 Detection Approach Based on DMA Side Effects

	4.6 Chapter Summary

