
Chapter 2
Technical Background, Preliminaries
and Assumptions

Putting a computer in front of a child and expecting it to teach
him is like putting a book under his pillow, only more expensive.

Joseph Weizenbaum,
German/American Computer Scientist

Although it is beneficial, in order to understand our later material, to know many
details aboutmodern computer architecture, itwould be unrealistic to explain all these
subtle details here. Thus, we refer the reader to literature [see 54, 59, 118, 127] for
a thorough treatment of this topic. We limit this chapter to the most important terms
that are necessary to understand this work. We start with the rootkit evolution. This
evolution highlights why the technical background that is presented in the following
sections helps to understand this work.

2.1 The Rootkit Evolution

On the popular x86 platform the power of a rootkit strongly correlates to the execution
environment, i.e., user-mode (ring 3) or kernel-mode (ring 0), for example. Modern
x86 processors provide so-called protection rings to distinguish between different
privileged execution environments, see Fig. 2.1. An analysis of the rootkit evolution
reveals that attackers discovered new and more powerful execution environments
on x86 platforms. The following paragraphs summarize different kinds of rootkits,
i.e., user-mode, kernel-mode, virtual machine based, system management mode,
firmware-based, and peripheral-based rootkits. This overview represents the rootkit
evolution and demonstrates how the term rootkit changed in the recent years.

User-mode rootkits utilize simple techniques. The basic idea is to camouflage
the rootkit as normal software [129]. For example, the attacker adds the desired
malware functionality to a common software tool that is executed in user mode
with super-user/root privileges. The modified tool replaces the original tool on the
target platform. User-mode rootkits are considered as the starting point in the rootkit
evolution. The name is derived from the privilege level that is given by the super-user

© Springer International Publishing Switzerland 2015
P. Stewin, Detecting Peripheral-based Attacks on the Host Memory,
T-Labs Series in Telecommunication Services, DOI 10.1007/978-3-319-13515-1_2

9

10 2 Technical Background, Preliminaries and Assumptions

Fig. 2.1 “Ring -3” environment compared to other rootkit environments on the x86 platform. Please
note, ring 3 and ring 0 are implemented in hardware (host CPU). The terms “ring -1”, “ring -2”,
and “ring -3” are used to emphasize the power of the corresponding execution environments. They
are not implemented in hardware

root. User-mode rootkits can be discovered by special detection software running in
kernel-mode.

Kernel-mode rootkits are based on an advanced technique to hide the rootkit using
operating system kernel components [60]. Kernel-mode rootkits modify the kernel,
or to be more precise, kernel code (for example system calls) or kernel data. Kernel
modifications change the kernel behavior to enforce certain stealth capabilities to hide
malicious activities [see 129], e.g., a keystroke code logger. The rootkit executed in
kernel-mode is immune to techniques that reveal user-mode rootkits.

Much more powerful rootkits to control a computer system are Virtual Machine
Based Rootkits (VMBR) such as SubVirt [77] and Blue Pill [108]. A controlling
instance that is called hypervisor or Virtual Machine Monitor (VMM) is normally
used to host guest operating systems in Virtual Machines (VMs). A VMBR exploits
the VMM environment to host the operating system of the target computer in a
virtual machine. Since the operating system kernel is executed on top of the VMM
environment, VMBRs can be considered to be run in “ring -1”. Thus, a malicious
controlling instance is placed between hardware and operating system. VMBRs are
hard to install. Conversely, VMBRs are also hard to detect. Blue Pill can host the
target operating system on-the-fly, i.e., without a shutdown or reboot.

Another powerful execution environment for rootkits is the System Management
Mode (SMM). SMM is a special high privileged processormode that executes special
system software. It can also be exploited to implement so-called SMM-based rootkits.
Code executed in SMM runs with the highest host CPU privileges. This means that
a SMM-based rootkit runs with more privileges than the operating system kernel
and a hypervisor. Hence, SMM-based rootkits can be considered to be executed in
protection “ring -2” [145]. In 2008, Embleton et al. [49] and Wecherowski [144]
demonstrated how SMM can be used for rootkits. SMM code is stored in firmware,
i.e., SMM rootkits can be considered as a special case of firmware rootkits.

2.1 The Rootkit Evolution 11

Fig. 2.2 Overview of dedicated isolated hardware potentially exploitable by rootkits. Rootkits
hidden in peripherals can directly access the main memory of the computer platform. Hence, they
can steal sensitive data, such as the harddisk encryption key, the video telephony session key, online
banking credentials, passwords, open files, etc. It is also possible that such rootkits modify data in
the main memory

Firmware-based rootkits are also quite powerful. Deploying rootkits in firmware is
very difficult, but not impossible. Firmware is special low-level software that is stored
on flash memory. The Basic Input/Output System (BIOS) is an example of firmware
that is stored on flash memory on the x86 platform. A firmware-based rootkit is not
deployed on a disk. Thus, it is very difficult to detect and to remove the malicious
software. An attacker can use the rootkit to control the computer hardware and to
attack the operating system, even if the user reinstalls the operating system. Heasman
[56] demonstrated how to implement and detect a BIOS-based rootkit at Black Hat
Federal 2006. Heasman [57] continued this research. Further BIOS firmware attacks
that can be the basis for a rootkit were presented by Wojtczuk and Tereshkin [149],
Loukas [84, 85], and Ortega and Sacco [97, 98]. Brossard [21, 22] also demonstrated
that hardware backdooring is practical. The author exploits the open source BIOS
coreboot1 and related tools to flash the BIOS and read-only memory of peripherals
to attack a computer platform.

Rootkits hidden in firmware can also be implemented using firmware of platform
peripherals. Such rootkits are peripheral-based rootkits. A potentially exploitable
peripheral is the network card [134]. Heasman [55] also discussed how to implement
and detect a Peripheral Component Interconnect (PCI) based rootkit deployed in
expansion Read Only Memory (ROM) that is present on the PCI device. Peripherals
are well isolated from the actual host system. Hence, the execution environments of
peripherals are unconsidered by anti-virus software. This makes peripherals quite
attractive for attackers, see Fig. 2.2.

1 See http://www.coreboot.org/Welcome_to_coreboot [accessed 25 February 2014].

http://www.coreboot.org/Welcome_to_coreboot

12 2 Technical Background, Preliminaries and Assumptions

A special micro-controller that executes platformmanagement code on a separate
processor offers nice stealth capabilities and can also be used by rootkits. During
the Black Hat USA 2009 conference Tereshkin and Wojtczuk [131] presented the
idea to use this micro-controller for rootkits. They introduced the term “ring -3” to
emphasize the stealth capabilities. Such peripheral-based rootkits are considered to
be even more stealthily than SMM-based rootkits. Bulygin [25] demonstrated how
to use this special micro-controller based environment to detect SMM-based and
VMM-based rootkits. Since peripherals such as network interface cards communicate
with the host operating system via the main memory, peripheral-based rootkits can
attack the host by illegitimately reading from or writing to the host memory. The
mechanism that enables memory access for peripherals is called Direct Memory
Access (DMA, see Sect. 2.4). Due to this mechanism peripheral-based rootkits are
supposed to be absolutely stealthy and undetectable. Such rootkit techniques are the
focus of this work. Peripheral-based rootkits can access the host memory to steal
passwords, online banking credentials, open documents, etc. that are present in the
host’s runtime memory via DMA. They can also infiltrate the host with further attack
code such as a kernel-based backdoor [47].

Note, in this work we avoid the term “ring -3”. No “ring -3” is implemented in
hardware. Terms such as “ring -1”, “ring -2”, and “ring -3” are only used to illustrate
the privilege level of the corresponding environment on the x86 platform. The lower
the ring the more powerful is the rootkit. In this thesis, we will use the term malware
(malicious software) because the attacks that we analyze are not executed on the host
CPU. Hence, root privileges are irrelevant. The malware that we focus on has only
the goal to operate stealthily in common with original user space rootkits.

2.2 Typical x86-Based System Architecture

The main components of a typical x86 system architecture as depicted in Fig. 2.3.
The linkage ofCentral Processing Unit (CPU),Memory Controller Hub (MCH), and
Input/output Controller Hub (ICH) is called the chipset [54]. This chipset solution
is also referred to as 3-chip solution. System memory (Random Access Memory or
in short RAM) as well as a display adapter are connected to the MCH. The MCH
controls access to memory. It can block requests to memory addresses or redirect the
request to the ICH, if the destination address belongs to the ICH. Peripheral devices,
such as flash memory, Network Interface Card (NIC), etc., are integrated into the
system using the Peripheral Component Interconnect express (PCIe [24]) standard.
This standard implements a serial interconnect for peripherals and the chipset. NICs
and other add-on cards can be connected to the ICH via PCIe. Flash memory, which
stores firmware such as the Basic Input/Output System (BIOS [see 54, p. 369]), is
also connected to the ICH.

Please note, Intel introduced a so-called 2-chip solution with the Intel 5 Series
chipset [121, p. 15]. 2-chip solutionmeans that theMCH functionalitymoved into the
host CPU and is called Integrated Memory Controller (IMC [32, p. 14]). The IMC

2.2 Typical x86-Based System Architecture 13

Fig. 2.3 x86 chipset and peripheral components. The chipset components are the Central Process-
ing Unit (CPU or host processor), the Memory Controller Hub (MCH, also known as northbridge)
and the Input/output Controller Hub (ICH, also known as southbridge). Peripherals do not belong
to the main chipset

is the controlling instance that controls memory accesses just as the former MCH.
The ICH was renamed to Platform Controller Hub (PCH [68]). The experiments
conducted in this thesis are based on the 3-chip solution.

Further controller devices connect other formats, such as Universal Serial Bus
(USB [8]), FireWire (FW [6]), or Serial Advanced Technology Attachment (SATA
[7]), via PCIe to the system. Legacy PCI devices are connected to the PCIe architec-
ture via a so-calledPCI-to-PCIe bridge [24]. In laptop computersPersonal Computer
Memory Card International Association (PCMCIA)/ExpressCard [139] devices are
integrated into the system utilizing PCIe. The host CPU is not necessarily the only
processor in the system. The video card, for example, supports aGraphics Processing
Unit (GPU) to efficiently modify computer graphics. Data to be processed is stored
in Video RAM (VRAM), that is separated from normal system RAM. Other devices
with similar properties are NICs and Intel’s Manageability Engine (ME [79]) in the
platform’s MCH. They also utilize separate processors as well as separate RAM to
execute firmware.

14 2 Technical Background, Preliminaries and Assumptions

2.3 Intel x86 Based Host Central Processing Unit

The Intel x86 Central Processing Unit (CPU) was announced in 1978 [see 59,
Appendix K.3]. Since then, the x86 CPU has been enhanced and nowadays x86
processors consist of several units to support proper features for different comput-
ing tasks. Modern extensions are floating point unit, Single Instruction operating on
Multiple Data items (SIMD [117, p. 524]), Streaming SIMD Extensions (SSE [117,
p. 748]), x64 [58, p. 351], Physical Address Extension (PAE [69, pp. 2–23]), multi-
level caches (L1, L2, L3 cache [59, p. 117]), Performance Monitoring Units (PMU
[see 104, p. 429]) and hardware support for virtualization as described by Grawrock
[54]. A modern x86 CPU usually consists of multiple cores [see 59, p. 117]. These
cores provide registers of different bit sizes, i.e., from 16 bit up to 512 bit [see 70,
Sect. 1.2.1].

To offer protection mechanisms the CPU supports a privilege model via the so-
called protection mode. The model provides different privilege levels also known
as rings to separate certain software running on top of the hardware. Four rings are
available if the processor is in protected mode. Ring 0 is the most privileged ring ring
3 has the fewest privileges. The operating system is executed in ring 0. Thus, it is sep-
arated from application software running in ring 3. Ring 1 was considered for device
drivers and ring 2 for services, though in practice ring 1 and 2 are not used [54, p. 41].

System Management Mode (SMM [69]) is another processor mode only available
for system firmware. That mode was introduced in x86 architectures to implement
higher energy-efficiency by, e.g., powering down unused disks and to control system
hardware by, e.g., turning on fans and shutting down systems when temperature
limits are reached. SMM is triggered by an interrupt, i.e., the System Management
Interrupt (SMI). SMI handler code is loaded from flashmemory by the BIOS into the
System Management RAM (SMRAM) early in the system initialization. To prevent
modifications of the SMI handler code from other processor modes than SMM, the
chipset provides a special bit that is called D_LCK. The D_LCK bit is set to protect
the SMI code after loading it into SMRAM. If the D_LCK bit is set no alteration of
SMRAM content is possible.

When an SMI triggers SMM, the current executed program is interrupted and the
processor state will be saved. Afterwards, the processor executes the SMI handler
code. When the execution of the handler code has been completed, the saved proces-
sor state is restored. After the processor switches back from SMM to the previous
processor mode the interrupted program can continue to operate. Note that the previ-
ous processor mode has lost CPU cycles/time, since both processor modes cannot be
executed simultaneously. SMMcan be considered to be a separate execution environ-
ment. SMRAM is a separate address space and only accessible when the processor is
in SMM. In other words, the OS has no access to SMRAM. Furthermore, privileges
in SMM are not restricted, code executed in SMM can call all I/O as well as system
instructions.

Hardware virtualization extensions in x86 are called Intel Virtualization Technol-
ogy (Intel VT) on Intel platforms [54]. Virtualization mechanisms are used to run

2.3 Intel x86 Based Host Central Processing Unit 15

multiple OSes or applications isolated from each other on a single hardware platform
in parallel. A controlling instance called a hypervisor or a Virtual Machine Monitor
(VMM) hosts guest OSes in Virtual Machines (VMs). Modern x86 CPUs provide a
special instruction set called VT-x. VT-x is part of Intel VT and is intended to support
hardware virtualization. This hardware support offers two special CPU operations:
VMX root operation andVMXnon-root operation. AVMMis run inVMX root oper-
ation. VMs running on top of the VMM are executed in VMX non-root operation
controlled by the VMM. Both operation modes support their own protection rings,
four rings each. Thus, software of the guest system (kernel, drivers, applications, etc.)
can be run in the designated privilege level. The protection rings in VMX non-root
operation are considered to be unprivileged, since these rings are controlled by the
VMM running in VMX root operation. The four rings of the VMX root operation
mode are privileged. Usually, the VMM uses only the most privileged ring. This ring
is often called “ring -1” to emphasize that it controls the unprivileged rings 0–3.

The x86micro-architecture also implements a pipelining conceptwith special exe-
cution optimization features, such as branch prediction and out-of-order execution
[118, p. 329ff] [127, p. 93ff]. The execution pipeline works with micro-operations,
i.e., computations that are implemented as stylized atomic units. Intel architecture
instructions are translated into micro-operations [118, p. 331]. For out-of-order exe-
cution a so-called Reorder Buffer (ROB [118, p. 333]) is required to keep track of
renamed registers. Register renaming occurs during out-of-order execution. Regis-
ters used in micro-operations are renamed by utilizing the Register Alias Table (RAT
[118, p. 333]) that is also referred to as the Register Allocation Table (RAT [see 127,
p. 100]).

PMUs are implemented in the form of Model-Specific Registers (MSR [69,
Sect. 9.4]) that enable software developers to count micro-architecture related events.
This helps programmers to write optimal code for a certain CPU micro-architecture
[104]. For example, the MSRs can be configured to count cache misses, RAT stalls,
and branch mispredictions that occur when executing code [69, Chaps. 18/19]. The
PMU registers that count events are also referred to Performance Counter or Hard-
ware Performance Counter (HPC). They are only available in ring 0. Another special
purpose register that is related to performance measurements is the so-called Time
Stamp Counter (TSC [69, Sect. 17.12]) register. The TSC register can be used to
count CPU cycles after a platform reset. Access to the time stamp counter register as
well as to the performance monitoring unit registers from different privilege levels
can be controlled via the x86 control register 4 (CR4) [see 69, Chap.2].

A special input/output (I/O) feature to exchange data with peripherals is the con-
cept of I/O-mapped I/O via ports (I/O ports [117, p. 70, 341]) that is provided by the
x86 CPU. This concept is complementary to memory mapped I/O (also supported
by x86 systems [117, p. 343]) where memory as well as registers of peripherals are
mapped into the memory address space of the host CPU. Peripherals also communi-
cate with the host CPU via interrupts to signal that new data is available, for example
[117, p. 252]. To communicate with the host system, peripherals can also use the
concept of direct memory access. In this case the peripheral does not communicate
directly with the host CPU, see Sect. 2.4.

16 2 Technical Background, Preliminaries and Assumptions

(a) (b)

Fig. 2.4 Third-party and first-party DMA. a Third-party DMA: The host CPU is required to (1)
configure (source and destination address) the central DMA controller via I/O ports to (2) perform a
DMAtransfer. ThehostCPU is (3) interruptedwhen theDMAtransfer has beenfinished [31, p. 454].
Hence, the host CPU is aware of a third-party DMA transfer.—b First-party DMA: The peripheral
device can (1) configure its own DMA engine. The device acts as bus master (see Sect. 2.5) to
get control of the system bus to perform a DMA transfer. The device can interrupt the host CPU
when the device (2) has completed the transfer. The transfer also works if the device does not
interrupt the host CPU at the end of the DMA transfer. In this case the CPU is unaware of the DMA
transfer

2.4 Direct Memory Access

PCIe supports Direct Memory Access (DMA) for peripherals, or to be more precise
for dedicated hardware such as video cards, NICs, andmanagement controller. DMA
enables fast memory access without the involvement of the host CPU. The aim of
DMA is to remove the burden from the host CPU. DMA allows peripherals to gain
access to the whole host memory bypassing the CPU. The CPU can perform other
tasks while DMA transfers occur. Peripherals can have their own engines to perform
DMA.This kind ofDMAis calledfirst-partyDMA[133, p. 428].Anothermechanism
is third-party DMA [133, p. 428] where a central DMA Controller (DMAC, see
Fig. 2.3) is necessary to provide legacy devices (e.g., devices based on the Industry
Standard Architecture (ISA [116]) format) without DMA engines with fast memory
access. It is also integrated in modern platforms [64, p. 128].

Figure2.4 highlights an important difference regarding stealthyoperationbetween
third-party and first-partyDMA.When using third-partyDMA the host CPU is aware
of the DMA transfer, because the peripheral needs the host CPU to configure [see
31, p. 454] the DMAC via I/O ports2 (see Sect. 2.3). When using first-party DMA the
host CPU is not necessarily aware of the transfer. Note, a DMAC or a DMA engine
can only access host memory addresses, but not host CPU cache, host CPU registers,
or the harddisk, for example. The latter implies that data swapped out from runtime
memory to the harddisk is not accessible by a DMA engine, either.

2 See the Linux source code files arch/x86/include/asm/dma.h and arch/x86/
include/asm/io.h, for example.

2.5 Bus Master 17

2.5 Bus Master

A computer platform has several bus systems, such as PCIe and Front-Side Bus
(FSB). Hence, a platform has different kinds of bus masters depending of the bus
systems, see Fig. 2.5. A bus master is a device that is able to initiate data transfers
(e.g., from an I/O device to the main memory) via a bus [58, Sect. 7.3]. A device
(CPU, I/O controller, etc.) that is connected to a bus is not per se a bus master. The
device is merely a bus agent [1, p. 13]. If the bus must be arbitrated a bus master
can send a bus ownership request to the arbiter [9, Chap. 5]. When the arbiter grants
bus ownership to the bus master, this master can initiate bus transactions as long as
the bus ownership is granted. Note, this procedure is not relevant for PCIe devices
due to its point-to-point property. PCIe requests are not required to be arbitrated and
therefore, bus ownership is not required. The bus is not shared as it was formerly the
case with the PCIe predecessor PCI.

Nonetheless, the bus master capability of PCIe devices is controlled by a certain
bit, that is called Bus Master Enable (BME). The BME bit is part of a standard
configuration register of the peripheral and is usually set by the corresponding device
driver that is executed on the host CPU. The MCH (out of scope of PCIe) still
arbitrates requests from several bus interfaces to the main memory [63, p. 27], see
Fig. 2.5. The host CPU is also a bus master. It uses the Front-Side Bus (FSB) to

Fig. 2.5 Bus master topology. Bus masters access the memory via different bus systems (e.g.,
PCIe, FSB). The MCH arbitrates main memory access requests of different bus masters. (based on
[23, p. 504][24][58, Section 7.3][63, Section 1.3][64])

18 2 Technical Background, Preliminaries and Assumptions

fetch data and instructions from the main memory. I/O controller (e.g., ethernet,
harddisk controller, etc.) provide separate DMA engines for I/O devices (e.g., USB
keyboard/mouse, harddisk,NIC, etc.). Thismeans thatwhen themainmemory access
request of a peripheral is handled by the MCH, PCIe is not involved at all.

2.6 Input/Output Memory Management Units

Intel introduced a technology called Intel Virtualization Technology for Directed I/O
(VT-d, [2]) as one of several building blocks to provide hardware supported vir-
tualization for x86 systems. VT-d can be considered as an Input/Output Memory
Management Unit (I/OMMU) to efficiently assist virtualization requirements, such
as reliable isolation of virtual machines running on a virtual machine monitor. VT-d
is mainly used in conjunction with virtualization solutions. With VT-d, system soft-
ware, that means a hypervisor or an OS, can create memory protection domains. For
example, isolated subsets of physical memory can be assigned to a virtual machine or
to memory of an I/O device driver. An I/O device that is not assigned to a protection
domain has no access to physical memory of that domain. These access restrictions
are realized using address translation tables. System software configures so-called
DMA Remapping (DMAR) engines provided by Intel VT-d. Such an engine maps a
memory request, for example triggered by an I/O device, to physical memory. VT-d
can block a memory request, if the device is not assigned to the protection domain.
Please note, an activated I/OMMU can introduce significant performance overhead
for the host CPU [13] [88, p. 29] [150]) with the result that the utilization of this
technology is often avoided.

To enable system software to configure DMAR engines, the BIOS is required
to load corresponding information in the form of Advanced Configuration Power
Interface (ACPI [44]) tables into the main memory. System software can use this
information (e.g., number of DMAR engines) to set up protection domains. Please
note, storing the ACPI tables in the main memory raises a serious security threat.
These tables are accessible via directmemory access and can bemodified as described
by Wojtczuk et al. [148] and Sang et al. [111]. System software that is responsible
to configure the DMAR engines correctly might fail if this vulnerability is exploited
by an attacker.

2.7 Trust and Adversary/Attacker Model

The attacker model provides a description for a stealthy DMA attack scenario. The
attacker is able to infiltrate dedicated hardware present in a computer platform with
malicious payload remotely. This can be carried out via an OS or firmware related
zero-day exploit [see 47, for example]. We assume the attacker is able to attack
the target platform during runtime. This can not only be done remotely using a

2.7 Trust and Adversary/Attacker Model 19

firmware exploit, but also via a remote firmware update mechanism as demonstrated
byDuflot [45] andbyTriulzi [135], respectively.Alternatively to the described remote
exploitation, the attacker can also infiltrate the peripheral before the supposed owner
gains and deploys the peripheral on the target platform.

The dedicated hardware supports first-party DMA as described in Sect. 2.4 and
accesses the main memory via the memory bus, see Fig. 2.5. We assume that the
target computer platform has usual up to date defense mechanisms such as anti-virus
software and a host firewall. The platform user does not apply additional hardware
such as a hardware firewall to protect the computer platform. We assume that only
a stealthy attack can result in a successful attack. Hence, the attacker wants to hide
the attack by using the stealth potential of dedicated hardware. Attacks on the main
memory (i.e., confidentiality and integrity violations) only originate from peripherals
via DMA. The attacker does not implement an attack that requires a cooperation
between peripheral and host to increase the probability of a stealthy attack. We
further assume that the attacker ensures that an integrity violation (memory write
access) does not result in an attack revelation. Additional hardware would decrease
the probability of a successful stealthy attack significantly. Most likely, the attacker
aims on stealing data, e.g., to conduct industrial espionage or to acquire online
banking credentials, etc. To do so, the attackerwants to read data from (confidentiality
violation) or write data to (integrity violation) the main memory via DMA.

We consider a computer platform as trustworthy if it conforms to the applied
security policy, that means in our case no DMA-based malware is attacking the host
platform by reading from or writing to the platform’s main memory via DMA. We
rely on a minimal Trusted Computing Base (TCB [37, p. 66] [99, p. 8]) that consists
of the host CPU and the RAM chip hardware as well as the communication path
in between (front-side bus, memory controller hub, memory bus). Software (system
software as well as application software) executed on the host CPU, is in a trusted
state before the platform is under attack. This means that software is loaded as well as
started correctly and behaves as expected. We do not count on preventive approaches
such as I/OMMUs due to the security issues mentioned in Sect. 2.6.

	2 Technical Background, Preliminaries and Assumptions
	2.1 The Rootkit Evolution
	2.2 Typical x86-Based System Architecture
	2.3 Intel x86 Based Host Central Processing Unit
	2.4 Direct Memory Access
	2.5 Bus Master
	2.6 Input/Output Memory Management Units
	2.7 Trust and Adversary/Attacker Model

