
T-Labs Series in Telecommunication Services

Patrick Stewin

Detecting
Peripheral-based
Attacks on the
Host Memory

T-Labs Series in Telecommunication Services

Series editors

Sebastian Möller, Berlin, Germany
Axel Küpper, Berlin, Germany
Alexander Raake, Berlin, Germany

More information about this series at http://www.springer.com/series/10013

http://www.springer.com/series/10013

Patrick Stewin

Detecting Peripheral-based
Attacks on the Host Memory

123

Patrick Stewin
Technische Universität Berlin
Berlin
Germany

ISSN 2192-2810 ISSN 2192-2829 (electronic)
T-Labs Series in Telecommunication Services
ISBN 978-3-319-13514-4 ISBN 978-3-319-13515-1 (eBook)
DOI 10.1007/978-3-319-13515-1

Library of Congress Control Number: 2014955796

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained
herein or for any errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

To Gesche

Acknowledgments

First of all, I would especially like to thank my advisor Jean-Pierre Seifert. I am not
only grateful for many useful discussions and the excellent research environment,
but also for leaving me free to select my own thesis topic. His infections,
encouragement, motivation, and inspiration were always greatly appreciated.
Thanks to him I always believed in my research and my thesis. Next, I would like to
extend my sincerest thanks to my colleagues and friends from the Chair for Security
in Telecommunications (SecT) at TU Berlin. Special thanks go to Nico Golde and
Dmitry Nedospasov (the Ph.D. team!) as well as Iurii Bystrov, Kévin Redon, Ravi
Borgaonkar, and Collin Mulliner. Without the Ph.D. team I would still be working
on my thesis. Specifically, I thank Collin for his advice in all areas. Without Iurii
the Intel AMT/ME-related projects would not have been such a great success.

I also would like to thank the Communication and Operating Systems (KBS)
research group as well as the Workgroup for Computer Security (AGRS) at TU
Berlin for many useful comments as well as for their helpful suggestions to prepare
conference talks. Additionally, I would like to extend my thanks to Dirk Kuhlmann
and Chris Dalton from the Cloud and Security Lab (HP Labs Bristol) for their very
useful and motivating discussions that helped me to develop the idea behind BARM.

I am also grateful for the support that I got in the Software Campus program.
The Deutsche Telekom AG (DTAG)/Telekom Innovation Laboratories (T-Labs)
supported my work within the context of this program. My Software Campus
project was funded by the German Federal Ministry of Education and Research
(grant number 01IS12056). Project results are an important part of my thesis.
Hence, I would like to thank the Software Campus team for organizational support,
DTAG/T-Labs for the industrial mentoring, TU Berlin/SecT for the academic
mentoring, and the Federal Ministry of Education and Research for the financial
support.

There are many more people who helped me in various ways during my time
as a Ph.D. student. I cannot list all of them here, but I would especially like to
thank the following supporters for their assistance (incomplete list in no particular

vii

order): Yacine Gasmi, Martin Unger, Kei Ishii, and Marcel Selhorst. Additionally,
the Ph.D. board, i.e., Hans-Ulrich Heiß, Jean-Pierre Seifert, and the externel
referees Konrad Rieck as well as Volker Roth gave me valuable feedback for the
final version of my thesis for which I am also very grateful.

Furthermore, I would particularly like to thank my family, especially my parents
and my sister for their encouragement and love. Finally, I am deeply grateful to my
fiancee. Gesche, you always greatly helped me with whatever you could. Thank
you for your brilliant support, encouragement, and love!

viii Acknowledgments

Abstract

Adversaries can deploy rootkit techniques on the target platform to persistently
attack computer systems in a stealthy manner. Industrial and political espionage,
surveillance of users as well as conducting cybercrime require stealthy attacks on
computer systems. Utilizing a rootkit technique means that a part of the imple-
mented attack code is responsible for concealing the attack. Attack code that is
loaded into peripherals such as the network interface card or special micro-
controllers currently are the peak of the evolution of rootkits. This work examines
such stealthy peripheral-based attacks on the host computer. Peripherals have a
dedicated processor and dedicated runtime memory to handle their tasks. This
means that these peripherals are essentially a separate system. Attackers benefit
from this kind of isolation. Peripherals generally communicate with the host via the
host main memory. Attackers exploit this fact. All host runtime data are present in
the main memory. This includes cryptographic keys, passwords, opened files, and
other sensitive data. The attacker only needs to locate such data. Subsequently,
attackers can read and modify the data unbeknownst by utilizing the direct memory
access mechanism of the peripheral. This allows for circumventing security soft-
ware such as state-of-the-art anti-virus software and modern hardened operating
system kernels.

Detecting such attacks is the goal of this work. Stealthy malicious software
(malware) that is based on an isolated micro-controller is implemented to conduct
an attack analysis. The malware proof of concept is called DAGGER, which is
derived from Direct memory Access based keystroke code loGGER. The develop-
ment and analysis of this malware reveals important properties of peripheral-based
malware. The results of the analysis are the basis for the development of a novel
runtime detector. The detector is called BARM—Bus Agent Runtime Monitor. This
detector reveals stealthy peripheral-based attacks on the host main memory by
exploiting certain hardware properties. A permanent and resource-efficient mea-
surement strategy ensures that the detector is also capable of detecting transient
attacks. Such transient attacks are possible when the applied measurement strategy
only measures at certain points in time. The attacker exploits this measurement

ix

strategy by attacking the system in between two measurements and by destroying
all attack traces before the system is measured. The detector represents an alter-
native solution for previously proposed preventive protection approaches, i.e.,
input/output memory management units. Previously proposed approaches are not
necessarily effective due to practical issues. This fact as well as the threat posed by
peripheral-based malware demand the alternative detector solution that is presented
in this work. The detector not only reveals an attack, but also halts the malicious
device. BARM immediately detects and prevents attacks that are conducted by
DAGGER . The performance overhead is negligible. Furthermore, BARM is able to
report if the host main memory is attacked by a peripheral to an external platform.

x Abstract

Publications Related to this Thesis

The work presented in this thesis resulted in the following peer-reviewed
publications:

• Understanding DMA Malware, Patrick Stewin and Iurii Bystrov, DIMVA2012
Proceedings of the 9th Conference on Detection of Intrusions and Malware &
Vulnerability Assessment, Heraklion, Crete, Greece, July 26–27th, 2012
([see 123]/Chap. 4)

• Extended Abstract – Poster: Towards Detecting DMA Malware, Patrick Stewin,
Jean-Pierre Seifert, Collin Mulliner, CCS2011 Proceedings of the 18th ACM
Conference on Computer and Communications Security, 2011
([see 126]/Chap. 4)

• A Primitive for Revealing Stealthy Peripheral-based Attacks on the Computing
Platform’s Main Memory, Patrick Stewin, RAID2013 Proceedings of the 16th
International Symposium on Research in Attacks, Intrusions and Defenses
(RAID), St. Lucia, October 23−25, 2013
([see 122]/Chap. 5)

The following peer-reviewed publications were updated for Chapter 6 to consider
the DMA-based malware scenario, which is the focus of this thesis:

• Beyond Secure Channels, Yacine Gasmi, Ahmad-Reza Sadeghi, Patrick Stewin,
Martin Unger, N. Asokan, STC2007 Proceedings of the 2007 ACM Workshop
on Scalable Trusted Computing, 2007
([see 52])

• An Efficient Implementation of Trusted Channels based on OpenSSL, Frederik
Armknecht, Yacine Gasmi, Ahmad-Reza Sadeghi, Patrick Stewin, Martin Unger,
Gianluca Ramunno, Davide Vernizzi, STC2008 Proceedings of the 3rd ACM
Workshop on Scalable Trusted Computing, 2008
([see 10])

xi

http://dx.doi.org/10.1007/978-3-319-13515-1_4
http://dx.doi.org/10.1007/978-3-319-13515-1_4
http://dx.doi.org/10.1007/978-3-319-13515-1_5

Contents

1 Introduction. 1
1.1 Problem Statement . 3
1.2 Research Question and Methodology . 4
1.3 Impact of Thesis Contributions . 5
1.4 Structure of the Thesis . 6

2 Technical Background, Preliminaries and Assumptions 9
2.1 The Rootkit Evolution . 9
2.2 Typical x86-Based System Architecture 12
2.3 Intel x86 Based Host Central Processing Unit 14
2.4 Direct Memory Access . 16
2.5 Bus Master . 17
2.6 Input/Output Memory Management Units 18
2.7 Trust and Adversary/Attacker Model . 18

3 Related Work . 21
3.1 DMA Attacks . 21

3.1.1 Devices Connectable from the Outside 21
3.1.2 Devices Firmly Established Inside the Platform

Chassis. 23
3.2 Countermeasure Approaches . 24

3.2.1 Measured Firmware . 24
3.2.2 Signed Firmware . 25
3.2.3 Software/Latency-Based Attestation 25
3.2.4 Monitoring Approaches . 26
3.2.5 Bus Snooping Approaches . 26
3.2.6 Sensitive Data Protection . 27
3.2.7 Input/Output Memory Management Unit 27

xiii

http://dx.doi.org/10.1007/978-3-319-13515-1_1
http://dx.doi.org/10.1007/978-3-319-13515-1_1
http://dx.doi.org/10.1007/978-3-319-13515-1_1#Sec2
http://dx.doi.org/10.1007/978-3-319-13515-1_1#Sec2
http://dx.doi.org/10.1007/978-3-319-13515-1_1#Sec3
http://dx.doi.org/10.1007/978-3-319-13515-1_1#Sec3
http://dx.doi.org/10.1007/978-3-319-13515-1_1#Sec4
http://dx.doi.org/10.1007/978-3-319-13515-1_1#Sec4
http://dx.doi.org/10.1007/978-3-319-13515-1_1#Sec5
http://dx.doi.org/10.1007/978-3-319-13515-1_1#Sec5
http://dx.doi.org/10.1007/978-3-319-13515-1_2
http://dx.doi.org/10.1007/978-3-319-13515-1_2
http://dx.doi.org/10.1007/978-3-319-13515-1_2#Sec2
http://dx.doi.org/10.1007/978-3-319-13515-1_2#Sec2
http://dx.doi.org/10.1007/978-3-319-13515-1_2#Sec3
http://dx.doi.org/10.1007/978-3-319-13515-1_2#Sec3
http://dx.doi.org/10.1007/978-3-319-13515-1_2#Sec4
http://dx.doi.org/10.1007/978-3-319-13515-1_2#Sec4
http://dx.doi.org/10.1007/978-3-319-13515-1_2#Sec5
http://dx.doi.org/10.1007/978-3-319-13515-1_2#Sec5
http://dx.doi.org/10.1007/978-3-319-13515-1_2#Sec6
http://dx.doi.org/10.1007/978-3-319-13515-1_2#Sec6
http://dx.doi.org/10.1007/978-3-319-13515-1_2#Sec7
http://dx.doi.org/10.1007/978-3-319-13515-1_2#Sec7
http://dx.doi.org/10.1007/978-3-319-13515-1_2#Sec8
http://dx.doi.org/10.1007/978-3-319-13515-1_2#Sec8
http://dx.doi.org/10.1007/978-3-319-13515-1_3
http://dx.doi.org/10.1007/978-3-319-13515-1_3
http://dx.doi.org/10.1007/978-3-319-13515-1_3#Sec2
http://dx.doi.org/10.1007/978-3-319-13515-1_3#Sec2
http://dx.doi.org/10.1007/978-3-319-13515-1_3#Sec3
http://dx.doi.org/10.1007/978-3-319-13515-1_3#Sec3
http://dx.doi.org/10.1007/978-3-319-13515-1_3#Sec4
http://dx.doi.org/10.1007/978-3-319-13515-1_3#Sec4
http://dx.doi.org/10.1007/978-3-319-13515-1_3#Sec4
http://dx.doi.org/10.1007/978-3-319-13515-1_3#Sec5
http://dx.doi.org/10.1007/978-3-319-13515-1_3#Sec5
http://dx.doi.org/10.1007/978-3-319-13515-1_3#Sec6
http://dx.doi.org/10.1007/978-3-319-13515-1_3#Sec6
http://dx.doi.org/10.1007/978-3-319-13515-1_3#Sec7
http://dx.doi.org/10.1007/978-3-319-13515-1_3#Sec7
http://dx.doi.org/10.1007/978-3-319-13515-1_3#Sec8
http://dx.doi.org/10.1007/978-3-319-13515-1_3#Sec8
http://dx.doi.org/10.1007/978-3-319-13515-1_3#Sec9
http://dx.doi.org/10.1007/978-3-319-13515-1_3#Sec9
http://dx.doi.org/10.1007/978-3-319-13515-1_3#Sec10
http://dx.doi.org/10.1007/978-3-319-13515-1_3#Sec10
http://dx.doi.org/10.1007/978-3-319-13515-1_3#Sec11
http://dx.doi.org/10.1007/978-3-319-13515-1_3#Sec11
http://dx.doi.org/10.1007/978-3-319-13515-1_3#Sec12
http://dx.doi.org/10.1007/978-3-319-13515-1_3#Sec12

3.3 Secure Communication Channels Considering Platform
State Reporting . 27
3.3.1 Trusted Platform Module Based Approaches 28
3.3.2 Co-processor and Smart Card Based Approaches 30

4 Study of a Stealthy, Direct Memory Access Based Malicious
Software . 33
4.1 DMA Malware Definition . 34
4.2 DMA Malware Core Functionality . 35
4.3 Design and Implementation of DAGGER 36

4.3.1 General Design . 36
4.3.2 Implementation Based on Intel’s ME Environment 37
4.3.3 Attack Implementation Details for Linux

and Windows Targets. 39
4.4 Evaluation. 43

4.4.1 DMA Malware Fulfillment . 43
4.4.2 Effectiveness and Efficiency . 45
4.4.3 ME Firmware Condition. 47
4.4.4 I/OMMU . 47

4.5 Countermeasures Considerations . 47
4.5.1 I/OMMU Issues . 48
4.5.2 Detection Approach Based on DMA Side Effects 49

4.6 Chapter Summary . 51

5 A Primitive for Detecting DMA Malware 53
5.1 General Detection Model . 55
5.2 An Implementation of the Detection Model. 56

5.2.1 Bus Master Analysis . 57
5.2.2 Bus Agent Runtime Monitor . 62

5.3 Evaluation of the Detection Model Implementation 64
5.3.1 Tolerance Value T . 64
5.3.2 Performance Overhead When Permanently Monitoring . . . 65
5.3.3 A Use Case to Demonstrate BARM’s Effectiveness 66

5.4 Limitations of Current BARM Implementation 68
5.5 Chapter Summary . 69

6 Authentic Reporting to External Platforms 71
6.1 Implementation Independent Model . 73

6.1.1 Negotiating an Authentic Reporting Channel. 74
6.2 Implementation of the Authentic Reporting Channel

for BARM . 76
6.2.1 Bus Master Analysis: Ethernet Controller 76
6.2.2 Implementation Based on OpenSSL 80

xiv Contents

http://dx.doi.org/10.1007/978-3-319-13515-1_3#Sec13
http://dx.doi.org/10.1007/978-3-319-13515-1_3#Sec13
http://dx.doi.org/10.1007/978-3-319-13515-1_3#Sec13
http://dx.doi.org/10.1007/978-3-319-13515-1_3#Sec14
http://dx.doi.org/10.1007/978-3-319-13515-1_3#Sec14
http://dx.doi.org/10.1007/978-3-319-13515-1_3#Sec15
http://dx.doi.org/10.1007/978-3-319-13515-1_3#Sec15
http://dx.doi.org/10.1007/978-3-319-13515-1_4
http://dx.doi.org/10.1007/978-3-319-13515-1_4
http://dx.doi.org/10.1007/978-3-319-13515-1_4
http://dx.doi.org/10.1007/978-3-319-13515-1_4#Sec2
http://dx.doi.org/10.1007/978-3-319-13515-1_4#Sec2
http://dx.doi.org/10.1007/978-3-319-13515-1_4#Sec3
http://dx.doi.org/10.1007/978-3-319-13515-1_4#Sec3
http://dx.doi.org/10.1007/978-3-319-13515-1_4#Sec4
http://dx.doi.org/10.1007/978-3-319-13515-1_4#Sec4
http://dx.doi.org/10.1007/978-3-319-13515-1_4#Sec5
http://dx.doi.org/10.1007/978-3-319-13515-1_4#Sec5
http://dx.doi.org/10.1007/978-3-319-13515-1_4#Sec6
http://dx.doi.org/10.1007/978-3-319-13515-1_4#Sec6
http://dx.doi.org/10.1007/978-3-319-13515-1_4#Sec7
http://dx.doi.org/10.1007/978-3-319-13515-1_4#Sec7
http://dx.doi.org/10.1007/978-3-319-13515-1_4#Sec7
http://dx.doi.org/10.1007/978-3-319-13515-1_4#Sec8
http://dx.doi.org/10.1007/978-3-319-13515-1_4#Sec8
http://dx.doi.org/10.1007/978-3-319-13515-1_4#Sec9
http://dx.doi.org/10.1007/978-3-319-13515-1_4#Sec9
http://dx.doi.org/10.1007/978-3-319-13515-1_4#Sec10
http://dx.doi.org/10.1007/978-3-319-13515-1_4#Sec10
http://dx.doi.org/10.1007/978-3-319-13515-1_4#Sec11
http://dx.doi.org/10.1007/978-3-319-13515-1_4#Sec11
http://dx.doi.org/10.1007/978-3-319-13515-1_4#Sec12
http://dx.doi.org/10.1007/978-3-319-13515-1_4#Sec12
http://dx.doi.org/10.1007/978-3-319-13515-1_4#Sec13
http://dx.doi.org/10.1007/978-3-319-13515-1_4#Sec13
http://dx.doi.org/10.1007/978-3-319-13515-1_4#Sec14
http://dx.doi.org/10.1007/978-3-319-13515-1_4#Sec14
http://dx.doi.org/10.1007/978-3-319-13515-1_4#Sec15
http://dx.doi.org/10.1007/978-3-319-13515-1_4#Sec15
http://dx.doi.org/10.1007/978-3-319-13515-1_4#Sec20
http://dx.doi.org/10.1007/978-3-319-13515-1_4#Sec20
http://dx.doi.org/10.1007/978-3-319-13515-1_5
http://dx.doi.org/10.1007/978-3-319-13515-1_5
http://dx.doi.org/10.1007/978-3-319-13515-1_5#Sec2
http://dx.doi.org/10.1007/978-3-319-13515-1_5#Sec2
http://dx.doi.org/10.1007/978-3-319-13515-1_5#Sec3
http://dx.doi.org/10.1007/978-3-319-13515-1_5#Sec3
http://dx.doi.org/10.1007/978-3-319-13515-1_5#Sec4
http://dx.doi.org/10.1007/978-3-319-13515-1_5#Sec4
http://dx.doi.org/10.1007/978-3-319-13515-1_5#Sec5
http://dx.doi.org/10.1007/978-3-319-13515-1_5#Sec5
http://dx.doi.org/10.1007/978-3-319-13515-1_5#Sec6
http://dx.doi.org/10.1007/978-3-319-13515-1_5#Sec6
http://dx.doi.org/10.1007/978-3-319-13515-1_5#Sec7
http://dx.doi.org/10.1007/978-3-319-13515-1_5#Sec7
http://dx.doi.org/10.1007/978-3-319-13515-1_5#Sec8
http://dx.doi.org/10.1007/978-3-319-13515-1_5#Sec8
http://dx.doi.org/10.1007/978-3-319-13515-1_5#Sec9
http://dx.doi.org/10.1007/978-3-319-13515-1_5#Sec9
http://dx.doi.org/10.1007/978-3-319-13515-1_5#Sec10
http://dx.doi.org/10.1007/978-3-319-13515-1_5#Sec10
http://dx.doi.org/10.1007/978-3-319-13515-1_5#Sec11
http://dx.doi.org/10.1007/978-3-319-13515-1_5#Sec11
http://dx.doi.org/10.1007/978-3-319-13515-1_6
http://dx.doi.org/10.1007/978-3-319-13515-1_6
http://dx.doi.org/10.1007/978-3-319-13515-1_6#Sec2
http://dx.doi.org/10.1007/978-3-319-13515-1_6#Sec2
http://dx.doi.org/10.1007/978-3-319-13515-1_6#Sec3
http://dx.doi.org/10.1007/978-3-319-13515-1_6#Sec3
http://dx.doi.org/10.1007/978-3-319-13515-1_6#Sec4
http://dx.doi.org/10.1007/978-3-319-13515-1_6#Sec4
http://dx.doi.org/10.1007/978-3-319-13515-1_6#Sec4
http://dx.doi.org/10.1007/978-3-319-13515-1_6#Sec5
http://dx.doi.org/10.1007/978-3-319-13515-1_6#Sec5
http://dx.doi.org/10.1007/978-3-319-13515-1_6#Sec6
http://dx.doi.org/10.1007/978-3-319-13515-1_6#Sec6

6.3 Evaluation. 86
6.3.1 Expected Bus Activity Validation 87
6.3.2 Network Performance Overhead Evaluation 89
6.3.3 Test with DAGGER. 90

6.4 Security Considerations . 92
6.5 Chapter Summary . 93

7 Conclusions and Future Work . 95

References. 99

Contents xv

http://dx.doi.org/10.1007/978-3-319-13515-1_6#Sec7
http://dx.doi.org/10.1007/978-3-319-13515-1_6#Sec7
http://dx.doi.org/10.1007/978-3-319-13515-1_6#Sec8
http://dx.doi.org/10.1007/978-3-319-13515-1_6#Sec8
http://dx.doi.org/10.1007/978-3-319-13515-1_6#Sec9
http://dx.doi.org/10.1007/978-3-319-13515-1_6#Sec9
http://dx.doi.org/10.1007/978-3-319-13515-1_6#Sec10
http://dx.doi.org/10.1007/978-3-319-13515-1_6#Sec10
http://dx.doi.org/10.1007/978-3-319-13515-1_6#Sec11
http://dx.doi.org/10.1007/978-3-319-13515-1_6#Sec11
http://dx.doi.org/10.1007/978-3-319-13515-1_6#Sec12
http://dx.doi.org/10.1007/978-3-319-13515-1_6#Sec12
http://dx.doi.org/10.1007/978-3-319-13515-1_7
http://dx.doi.org/10.1007/978-3-319-13515-1_7

Chapter 1
Introduction

Most people, I think, don’t even know what a rootkit is, so why
should they care about it?

Thomas Hesse,
Former President of Sony’s Global Digital Business

Many people associate the term rootkit to attacks on computer platforms. In fact,
adversaries deploy rootkits to attack computer users. Rootkit-based attacks are used
to conduct industrial espionage aswell as political espionage, and cybercrime [see 16,
pp. 22–25]. Adversaries conduct industrial espionage to steal intellectual property of
competitors to slash the cost of technology development cycles. Political espionage
differs from industrial espionage. In the case of political espionage the adversaries
are interested in national secrets instead of novel technology. Cybercriminals use
rootkits to steal internet banking credentials, passwords, and other sensitive data.
Rootkits can also be utilized for conducting persistent surveillance of end users.
Rootkits are also utilized by law enforcement, as well, to perform surveillance on
suspects [see 16, p. 21]. But what exactly is a rootkit? Is it a backdoor? Is it a Trojan
horse? In other words, what kind of malicious payload does a rootkit contain and
how is the target computer infiltrated with the rootkit?

Several definitions for the term rootkit can be found in the literature such as Bill
Blunden’s The Rootkit Arsenal: Escape And Evasion In The Dark Corners Of The
System [16]. His work also evaluates the rootkit definitions of Mark Russinovich
(known from the Windows Internals series [106]) and Greg Hoglund (author of
Rootkits: Subverting the Windows Kernel [60]). Finally, Bill Blunden came up with
his own definition [see 16, p. 12]:

A rootkit establishes a remote interface on amachine that allows the system to bemanipulated
[...] and data to be collected (e. g., surveillance) in a manner that is difficult to observe (e. g.,
concealment).

All these definitions imply an important property exhibited by rootkits in general,
namely the capability of operating stealthily. Attackers deploy rootkits to camouflage
the malicious code that attacks the target computer. This answers the question about
the malicious payload of a rootkit.The payload can be anything that implements

© Springer International Publishing Switzerland 2015
P. Stewin, Detecting Peripheral-based Attacks on the Host Memory,
T-Labs Series in Telecommunication Services, DOI 10.1007/978-3-319-13515-1_1

1

2 1 Introduction

malicious behavior from the user’s perspective. This malicious behavior can also be
a backdoor. A backdoor is used to bypass securitymechanisms such as authentication
requests to gain access to a computer system.A backdoor can also provide an attacker
with remote access to a computer. From the attacker’s point of view it makes sense
to hide the backdoor. The backdoor should be used without the knowledge of the
computer user. Hence, a backdoor can benefit from rootkit mechanisms. Another
example for rootkit payload is a surveillance program that activates the microphone
andcameraof the target computer to stealthilymonitor the computer user.Akeystroke
code logger that captures all keystrokes that are entered by the computer user is also
a popular example for malicious payload.

However, the challenge for the attacker is the infiltration of the target computer
platform. The attacker has to implement some kind of rootkit installer. A rootkit
installer is commonly referred to as dropper [see 16, p. 9, 33]. Such a dropper can be
based on one of the most popular infiltration mechanism, a Trojan horse or Trojan in
short. The goal of a Trojan is to mislead the target computer in installing a desired
program, feature or function. Instead, the user installs malicious payload such as a
keystroke code logger or a backdoor. Such a payload is generally deployed in a highly
privileged environment and camouflaged using rootkit techniques. Another popular
infiltration approach is the exploitationof a security vulnerability. The rootkit installer
could implement a so-called exploit. An exploit is attack code that utilizes a security
vulnerability. So-called zero-day exploits are more threatening than non-zero-day
exploits. A zero-day exploit utilizes a previously unknown security vulnerability,
which can be advantageous for the attacker. It enables the attacker to conduct a
stealthy infiltration of the target computer.

Another key rootkit property is that the rootkit code runswith the highest privileges
as possible. The goal is to gain at least higher privileges than any potential detection
mechanism. This allows the rootkit to control and modify the detection mechanism.
At a certain point the detection mechanism will fail to detect the rootkit or the
malicious payload that is camouflaged by the rootkit. This is the reasonwhy attackers
seek new and more powerful attack vectors. The more privileges the attacker has the
more control of the target computer the attacker gains.

The goal of the attacker is to gain absolute control of the target computer. The
rootkit evolution documents the arms race between attackers and the anti-malware
community. Rootkits moved to more privileged execution environments compared
to the original rootkit. In recent years [35, 36, 47, 134, 135], the rootkit evolution
reached a new level. Attackers started to exploit the isolated execution environments
of platform peripherals. Peripherals with a dedicated processor, dedicated memory,
and a hardware feature to directly access the runtime memory of the host are able
to camouflage malicious payload that attacks the target computer. Such attacks are
supposed to be stealthy. No modern anti-virus like software that is available on
the market considers the peripheral-based execution environments. Such software is
executed on the host processor and usually only considers the harddisk and the main
memory for storing malicious code.

1.1 Problem Statement 3

1.1 Problem Statement

Malware is a threat for the confidentiality, integrity, and also for the availability of
data. In the case of peripheral-based malware, the attacker can exploit the stealth
potential of peripherals. Malware hidden in platform peripherals is not considered
by anti-virus software. Depending on the peripheral, security software can not even
access the inner workings of the device. For example, certain management controller
have access to the whole host memory and offer remote administration features. To
prevent abuse, the manufacturer applies protection mechanisms that thwart access to
the inner workings of this execution environment.

The mechanism, which is exploited by peripheral-based malware to attack the
host, is called direct memory access or DMA. In this work, wewill introduce the term
DMA malware for such classes of attacks. DMAmalware has similar characteristics
to rootkits. Current countermeasure approaches are unable to deal with the challenge
of DMA malware. For example, mechanisms such as load-time integrity checks
of the code intended to run on the peripheral does not prevent runtime attacks. The
same is true for digitally signed firmware images. Another approach is latency-based
attestation. This kind of attestation requires that a checksum be computed within a
certain timeframe. Unfortunately, it also requires the modification of the peripheral’s
firmware and does not prevent transient attacks. Further approaches such as special
monitoring and memory bus snooping are based on special hardware or hardware
features. Preventing sensitive data from being present in the main memory also does
not help. Such data can be dumped into the main memory via a DMA attack.1

A proposed countermeasure approach against DMA attacks is the utilization of
a so-called Input/Output Memory Management Unit (I/OMMU). Such a manage-
ment unit can restrict the access of peripherals to parts of the host main memory.
Unfortunately, this technology has significant deficiencies. It was demonstrated that
I/OMMUs can be attacked and circumvented [111, 146–148]. Hence, the I/OMMU
is not necessarily trustworthy. Some operating systems such as Windows do not
provide a device driver to support the I/OMMU. Additionally, not every chipset pro-
vides an I/OMMU. Furthermore, memory access policy conflicts cannot be handled
by an I/OMMU. For example, Bulygin [25] demonstrated how to use a peripheral
to reveal malware present in the host runtime memory. We use the same execu-
tion environment for our attack study in Chap. 4. If the I/OMMU is configured to
allow the peripheral to scan the whole host runtime memory to reveal rootkits, then
our attack code can also access the whole runtime memory to steal sensitive data,
for example. Hence, this work does not rely on I/OMMUs as a countermeasure.
Furthermore, I/OMMUs can introduce significant performance overhead [13, 150],
whichmakes I/OMMUsundesirable in certain scenarios.Due to these considerations,

1 Details can be found in Sect. 3.2 “Related Work–Countermeasure Approaches”.

http://dx.doi.org/10.1007/978-3-319-13515-1_4
http://dx.doi.org/10.1007/978-3-319-13515-1_3

4 1 Introduction

we believe that a runtime monitor that can detect malicious memory access with
negligible performance overhead is missing. The absence of a runtime monitor is
one of the major motivations for this work.

1.2 Research Question and Methodology

Our research interest is based on the stealth capabilities of modern x86 platforms.
These capabilities are exploited by adversaries to hidemalicious code as documented
by the rootkit evolution, see also Sect. 2.1. This raises the question whether or not
undetectable software can exist at all. To examine this question we consider the next
logical step in the evolution of rootkits, i.e., exploiting platform peripherals to attack
the host runtime memory.

We developed a malware Proof of Concept (PoC) that is executed on an isolated
peripheral. The hardware of this peripheral provides access to the host runtime mem-
ory. We implemented an attack in the form of a keystroke code logger. This means
that our malware searches for the keyboard buffer of the host operating system and
monitors that buffer to capture keystroke codes. The evaluation of the keystroke log-
ger led us to a follow-up research question, i.e., is the host system able to defend
itself against peripheral-based host main memory attacks? To answer this question,
we implemented a runtime monitor that is executed on the host CPU.With this mon-
itor we want to demonstrate that additional (malicious) accesses to the host main
memory that originate from platform peripherals can in fact be detected. We require
that the host CPU-based monitor detects malicious accesses even if it is unable to
access the isolated execution environment of the malicious peripheral.

We used ourmalware example to derive typical properties of this class ofmalware.
Afterwards, we exploited these properties to detect memory accesses conducted
by the malware. We identified a property that every peripheral-based malware that
attacks the host memory exhibits. Because of this, we consider our malware proof
of concept as typical for this malware class. We implemented the host CPU-based
detector to reveal illegitimate memory accesses conducted by platform peripherals
via direct memory access. The goal was to implement a runtime monitor that does
not only cause minimal performance overhead for the host CPU, but also prevents
transient attacks.

We also consider the network interface card in the last part of our research. The net-
work interface card could also host malware. Especially in enterprise environments
it is required that a computer platform reports its status to a central administrator
platform. Such a status report can be modified by malware that is executed on the
network interface card. Hence, we developed an authentic reporting channel. This
channel helps to reveal attacks on such a status report.

Experimental Research Environment Our experimental environment is based
on Intel x86 hardware. The isolated peripheral that we use for our peripheral-
based malware is Intel’s Manageability Engine (Intel ME [79]). The Intel ME is a

http://dx.doi.org/10.1007/978-3-319-13515-1_2

1.2 Research Question and Methodology 5

special micro-controller that runs a powerful platform management firmware. An
administrator can use the management firmware to remotely reinstall the operating
system even if the operating system is not bootable and the platform is not reachable
via the operating system’s network stack. The ME also works when the platform is
in standby or powered off. Due to these features the manufacturer Intel established
protection mechanisms that cannot be circumvented without significant effort. The
ME is isolated from the host system. The Intel ME environment is completely iso-
lated from the host, whereas other peripherals can be accessed via debug registers
and other mechanisms.

From a detector’s point of view the ME is the worst case execution environment
for hosting peripheral-based malware. The host CPU is unable to access the ME
environment. We use this worst case environment for our research. We infiltrate the
ME environment by applying an exploit that only works with a certain chipset.2

Please note, this work does not aim to find undiscovered security vulnerabilities. We
reused a known security vulnerability to set up our experimental environment due to
the lack of an appropriate Intel developer board.

1.3 Impact of Thesis Contributions

To conduct industrial espionage or steal online banking credentials, for instance,
attackers demand stealthily operating malware. Peripheral-based malware ensures
that the attack remains to be undetectable. Peripherals that fulfill the requirements
for stealthy malware operation are present in almost every modern computer plat-
form. Peripherals such as video cards, network interface cards, and management
controllers are part of desktop computers, server systems, and other computer ter-
minals. Mobile phones and tablet computers also have peripherals with a dedicated
processor, memory, and direct access to the host runtimememory. This means that all
modern platforms are susceptible to peripheral-basedmalware attacks. Suchmalware
is executed in an isolated execution environment and outside the scope of anti-virus
software and security mechanisms set up by the operating system kernel. Due to the
lack of a detector for peripheral-based malware and the lack of similar functionality
in anti-virus software, the contributions of this thesis can have impact on the men-
tioned computer devices and their users. We summarize the main contributions of
this thesis in the following:

• DMA malware study:We define DMAmalware to be able to distinguish different
DMA code. Such malware is executed on a peripheral and able to attack the host
via direct memory access. We develop a proof of concept DMA malware imple-
mentation that is able to conduct a stealthy attack using an isolated peripheral.
Our proof of concept is called DAGGER, which is derived from DmA-based key-
stroke loGGER. DAGGER can attack different host operating systems. DAGGER

2 The exploit is only applicable to Intel’s Q35 chipset with a certain BIOS version in place. Intel
closed the corresponding security vulnerability by providing a BIOS update.

6 1 Introduction

highlights how efficient and effective DMA malware is in practice. We identify
the core properties of DMA malware to learn the properties of such malicious
software. These properties are the basis for a DMA malware detector. In a first
experiment we provide evidence that DMA side effects exist.We demonstrate how
such an effect can be measured using common host CPU features. This is a first
step for the development of a DMA malware detector. (see Chap.4)

• Detecting DMA malware: We developed a monitor that detects DMA malware
by comparing actual memory bus activity with expected memory bus activity. Our
method is able to determine and compare actual bus activity without any firmware
or hardware modification. The detector is based on a feature that implements
permanent runtime monitoring and runs on the host CPU. We implemented and
evaluated a PoC that we call Bus Agent Runtime Monitor (BARM). Our monitor
implements a monitoring strategy that considers transient attacks. It does only
cause negligible performance overhead. BARM can detect and halt DMAmalware
immediately. (see Chap. 5)

• Authentic platform state reporting that excludes DMA malware: We demon-
strate that our detection method is also suitable in scenarios where a computer
platform has to report its status to a central administrator platform. We establish
an authentic reporting channel that reveals attacks conducted by malware exe-
cuted on the network interface card. This means that we enhance BARM to reveal
Man-in-the-Middle (MitM) attacks and to prevent relay attacks conducted by the
network interface card. We implemented a channel to securely transmit the plat-
form state information to an external computer. The platform state information
enables a remote party to evaluate BARM measurement results. This means that
the remote party can determine if its counterpart has been attacked by DMA mal-
ware. Our channel considers the host CPU as the channel endpoint and not the
complete target platform. This excludes the network interface card from being part
of the endpoint. We enhance BARM to account for memory bus activity that is
caused by the network interface card. The enhanced BARM utilizes OpenSSL to
implement the authentic reporting channel. We also modify the TLS handshake
protocol to already account for platform state information in the very beginning
of the communication session. Our modifications are still compliant to the TLS
specification. (see Chap.6)

A more detailed elaboration can be found in the corresponding chapters.

1.4 Structure of the Thesis

According to ourmethodologywe structured this thesis as follows. In the next chapter
wewill introduce the required technical background, preliminaries aswell as assump-
tions. The target platform for our evaluation is a modern Intel x86 based system,
see Sects. 2.2, 2.3, 2.4, 2.5, and 2.6. These sections introduce the most important
terms regarding the target platform, especially the host CPU, Direct Memory Access

http://dx.doi.org/10.1007/978-3-319-13515-1_4
http://dx.doi.org/10.1007/978-3-319-13515-1_5
http://dx.doi.org/10.1007/978-3-319-13515-1_6
http://dx.doi.org/10.1007/978-3-319-13515-1_2
http://dx.doi.org/10.1007/978-3-319-13515-1_2
http://dx.doi.org/10.1007/978-3-319-13515-1_2
http://dx.doi.org/10.1007/978-3-319-13515-1_2
http://dx.doi.org/10.1007/978-3-319-13515-1_2

1.4 Structure of the Thesis 7

(DMA) as well as bus master, and Input/Output Memory Management Unit. We also
introduce our assumptions and the resulting trust and adversary model in Sect. 2.7.
Chapter3 covers related work. Since we consider both, the attack as well as attack
detection and protection, we have to elaborate related work in both areas. Related
works regarding DMA attacks are described in Sect. 3.1. Section3.2 presents previ-
ous works that consider countermeasure approaches. Furthermore, wewant to enable
our target platform to report its status regarding DMA-based malware to an external
platform. To do so, we require a communication channel that reveals MitM attacks
of the network interface card. This is necessary, since we also consider network
interface cards as dedicated hardware that can hide DMA attack code.

We conducted a study of DMA malware and present the results in Chap.4. A
definition for DMA malware is given in Sect. 4.1. In Sect. 4.2 we present DMA
malware core functionality. The design and implementation of our DMA malware
is presented in Sect. 4.3. Section4.4 describes the evaluation of DAGGER, Sect4.5
considers countermeasures and discusses in particular I/OMMU issues. In the same
section is demonstrated how we were able to exploit these properties to demonstrate
first DMA side effects. Since the host CPU is unable to directly realize illegitimate
memory accesses conducted by compromised peripherals we try to provoke a side
effect that occurs when a peripheral accesses the main memory.

The evidence of DMA side effects presented in Chap.4 is the motivation for the
runtime monitor that we introduce in Chap. 5. In Chap.5 “A Primitive for Detecting
DMAMalware” we demonstrate how DMA side effects can be exploited to develop
a detection tool.We define a general detectionmodel that helps us to build a detection
tool, see Sect. 5.1. Afterwards we present a PoC implementation based on the popular
Intel x86 platform in Sect. 5.2. We evaluate our implementation in Sect.5.3. We also
test BARM with the DMA malware that we developed in Chap.4. Finally, BARM
exploits the fact that our DMA malware has to search for valuable data that causes
a certain amount of bus transactions.

In Chap.6 we enhance our detection tool to implement an authentic state report-
ing application. The application sends BARMmeasurements to an external platform.
The goal is a secure communication channel that excludes malware, which runs on
the network interface card, from conducting a MitM attack. In Sect. 6.1 we present a
model to negotiate an authentic reporting channel. We require a secure channel such
as TLS that is bound to the actual communication endpoint, i.e., to the host CPU. Our
PoC implementation of our authentic reporting application is based onOpenSSL, see
Sect. 6.2. This implementation section also describes the BARM enhancements that
are required to consider the network interface card. The evaluation of our implemen-
tation is presented in Sect. 6.3.We also test our network relatedBARMenhancements
with our DMA malware DAGGER. Authentic reporting channel security considera-
tions are discussed in Sect. 6.4. Our conclusions of this thesis as well as future work
are presented in the last chapter, Chap. 7.

http://dx.doi.org/10.1007/978-3-319-13515-1_2
http://dx.doi.org/10.1007/978-3-319-13515-1_3
http://dx.doi.org/10.1007/978-3-319-13515-1_3
http://dx.doi.org/10.1007/978-3-319-13515-1_3
http://dx.doi.org/10.1007/978-3-319-13515-1_4
http://dx.doi.org/10.1007/978-3-319-13515-1_4
http://dx.doi.org/10.1007/978-3-319-13515-1_4
http://dx.doi.org/10.1007/978-3-319-13515-1_4
http://dx.doi.org/10.1007/978-3-319-13515-1_4
http://dx.doi.org/10.1007/978-3-319-13515-1_4
http://dx.doi.org/10.1007/978-3-319-13515-1_4
http://dx.doi.org/10.1007/978-3-319-13515-1_5
http://dx.doi.org/10.1007/978-3-319-13515-1_5
http://dx.doi.org/10.1007/978-3-319-13515-1_5
http://dx.doi.org/10.1007/978-3-319-13515-1_5
http://dx.doi.org/10.1007/978-3-319-13515-1_5
http://dx.doi.org/10.1007/978-3-319-13515-1_4
http://dx.doi.org/10.1007/978-3-319-13515-1_6
http://dx.doi.org/10.1007/978-3-319-13515-1_6
http://dx.doi.org/10.1007/978-3-319-13515-1_6
http://dx.doi.org/10.1007/978-3-319-13515-1_6
http://dx.doi.org/10.1007/978-3-319-13515-1_6
http://dx.doi.org/10.1007/978-3-319-13515-1_7

Chapter 2
Technical Background, Preliminaries
and Assumptions

Putting a computer in front of a child and expecting it to teach
him is like putting a book under his pillow, only more expensive.

Joseph Weizenbaum,
German/American Computer Scientist

Although it is beneficial, in order to understand our later material, to know many
details aboutmodern computer architecture, itwould be unrealistic to explain all these
subtle details here. Thus, we refer the reader to literature [see 54, 59, 118, 127] for
a thorough treatment of this topic. We limit this chapter to the most important terms
that are necessary to understand this work. We start with the rootkit evolution. This
evolution highlights why the technical background that is presented in the following
sections helps to understand this work.

2.1 The Rootkit Evolution

On the popular x86 platform the power of a rootkit strongly correlates to the execution
environment, i.e., user-mode (ring 3) or kernel-mode (ring 0), for example. Modern
x86 processors provide so-called protection rings to distinguish between different
privileged execution environments, see Fig. 2.1. An analysis of the rootkit evolution
reveals that attackers discovered new and more powerful execution environments
on x86 platforms. The following paragraphs summarize different kinds of rootkits,
i.e., user-mode, kernel-mode, virtual machine based, system management mode,
firmware-based, and peripheral-based rootkits. This overview represents the rootkit
evolution and demonstrates how the term rootkit changed in the recent years.

User-mode rootkits utilize simple techniques. The basic idea is to camouflage
the rootkit as normal software [129]. For example, the attacker adds the desired
malware functionality to a common software tool that is executed in user mode
with super-user/root privileges. The modified tool replaces the original tool on the
target platform. User-mode rootkits are considered as the starting point in the rootkit
evolution. The name is derived from the privilege level that is given by the super-user

© Springer International Publishing Switzerland 2015
P. Stewin, Detecting Peripheral-based Attacks on the Host Memory,
T-Labs Series in Telecommunication Services, DOI 10.1007/978-3-319-13515-1_2

9

10 2 Technical Background, Preliminaries and Assumptions

Fig. 2.1 “Ring -3” environment compared to other rootkit environments on the x86 platform. Please
note, ring 3 and ring 0 are implemented in hardware (host CPU). The terms “ring -1”, “ring -2”,
and “ring -3” are used to emphasize the power of the corresponding execution environments. They
are not implemented in hardware

root. User-mode rootkits can be discovered by special detection software running in
kernel-mode.

Kernel-mode rootkits are based on an advanced technique to hide the rootkit using
operating system kernel components [60]. Kernel-mode rootkits modify the kernel,
or to be more precise, kernel code (for example system calls) or kernel data. Kernel
modifications change the kernel behavior to enforce certain stealth capabilities to hide
malicious activities [see 129], e.g., a keystroke code logger. The rootkit executed in
kernel-mode is immune to techniques that reveal user-mode rootkits.

Much more powerful rootkits to control a computer system are Virtual Machine
Based Rootkits (VMBR) such as SubVirt [77] and Blue Pill [108]. A controlling
instance that is called hypervisor or Virtual Machine Monitor (VMM) is normally
used to host guest operating systems in Virtual Machines (VMs). A VMBR exploits
the VMM environment to host the operating system of the target computer in a
virtual machine. Since the operating system kernel is executed on top of the VMM
environment, VMBRs can be considered to be run in “ring -1”. Thus, a malicious
controlling instance is placed between hardware and operating system. VMBRs are
hard to install. Conversely, VMBRs are also hard to detect. Blue Pill can host the
target operating system on-the-fly, i.e., without a shutdown or reboot.

Another powerful execution environment for rootkits is the System Management
Mode (SMM). SMM is a special high privileged processormode that executes special
system software. It can also be exploited to implement so-called SMM-based rootkits.
Code executed in SMM runs with the highest host CPU privileges. This means that
a SMM-based rootkit runs with more privileges than the operating system kernel
and a hypervisor. Hence, SMM-based rootkits can be considered to be executed in
protection “ring -2” [145]. In 2008, Embleton et al. [49] and Wecherowski [144]
demonstrated how SMM can be used for rootkits. SMM code is stored in firmware,
i.e., SMM rootkits can be considered as a special case of firmware rootkits.

2.1 The Rootkit Evolution 11

Fig. 2.2 Overview of dedicated isolated hardware potentially exploitable by rootkits. Rootkits
hidden in peripherals can directly access the main memory of the computer platform. Hence, they
can steal sensitive data, such as the harddisk encryption key, the video telephony session key, online
banking credentials, passwords, open files, etc. It is also possible that such rootkits modify data in
the main memory

Firmware-based rootkits are also quite powerful. Deploying rootkits in firmware is
very difficult, but not impossible. Firmware is special low-level software that is stored
on flash memory. The Basic Input/Output System (BIOS) is an example of firmware
that is stored on flash memory on the x86 platform. A firmware-based rootkit is not
deployed on a disk. Thus, it is very difficult to detect and to remove the malicious
software. An attacker can use the rootkit to control the computer hardware and to
attack the operating system, even if the user reinstalls the operating system. Heasman
[56] demonstrated how to implement and detect a BIOS-based rootkit at Black Hat
Federal 2006. Heasman [57] continued this research. Further BIOS firmware attacks
that can be the basis for a rootkit were presented by Wojtczuk and Tereshkin [149],
Loukas [84, 85], and Ortega and Sacco [97, 98]. Brossard [21, 22] also demonstrated
that hardware backdooring is practical. The author exploits the open source BIOS
coreboot1 and related tools to flash the BIOS and read-only memory of peripherals
to attack a computer platform.

Rootkits hidden in firmware can also be implemented using firmware of platform
peripherals. Such rootkits are peripheral-based rootkits. A potentially exploitable
peripheral is the network card [134]. Heasman [55] also discussed how to implement
and detect a Peripheral Component Interconnect (PCI) based rootkit deployed in
expansion Read Only Memory (ROM) that is present on the PCI device. Peripherals
are well isolated from the actual host system. Hence, the execution environments of
peripherals are unconsidered by anti-virus software. This makes peripherals quite
attractive for attackers, see Fig. 2.2.

1 See http://www.coreboot.org/Welcome_to_coreboot [accessed 25 February 2014].

http://www.coreboot.org/Welcome_to_coreboot

12 2 Technical Background, Preliminaries and Assumptions

A special micro-controller that executes platformmanagement code on a separate
processor offers nice stealth capabilities and can also be used by rootkits. During
the Black Hat USA 2009 conference Tereshkin and Wojtczuk [131] presented the
idea to use this micro-controller for rootkits. They introduced the term “ring -3” to
emphasize the stealth capabilities. Such peripheral-based rootkits are considered to
be even more stealthily than SMM-based rootkits. Bulygin [25] demonstrated how
to use this special micro-controller based environment to detect SMM-based and
VMM-based rootkits. Since peripherals such as network interface cards communicate
with the host operating system via the main memory, peripheral-based rootkits can
attack the host by illegitimately reading from or writing to the host memory. The
mechanism that enables memory access for peripherals is called Direct Memory
Access (DMA, see Sect. 2.4). Due to this mechanism peripheral-based rootkits are
supposed to be absolutely stealthy and undetectable. Such rootkit techniques are the
focus of this work. Peripheral-based rootkits can access the host memory to steal
passwords, online banking credentials, open documents, etc. that are present in the
host’s runtime memory via DMA. They can also infiltrate the host with further attack
code such as a kernel-based backdoor [47].

Note, in this work we avoid the term “ring -3”. No “ring -3” is implemented in
hardware. Terms such as “ring -1”, “ring -2”, and “ring -3” are only used to illustrate
the privilege level of the corresponding environment on the x86 platform. The lower
the ring the more powerful is the rootkit. In this thesis, we will use the term malware
(malicious software) because the attacks that we analyze are not executed on the host
CPU. Hence, root privileges are irrelevant. The malware that we focus on has only
the goal to operate stealthily in common with original user space rootkits.

2.2 Typical x86-Based System Architecture

The main components of a typical x86 system architecture as depicted in Fig. 2.3.
The linkage ofCentral Processing Unit (CPU),Memory Controller Hub (MCH), and
Input/output Controller Hub (ICH) is called the chipset [54]. This chipset solution
is also referred to as 3-chip solution. System memory (Random Access Memory or
in short RAM) as well as a display adapter are connected to the MCH. The MCH
controls access to memory. It can block requests to memory addresses or redirect the
request to the ICH, if the destination address belongs to the ICH. Peripheral devices,
such as flash memory, Network Interface Card (NIC), etc., are integrated into the
system using the Peripheral Component Interconnect express (PCIe [24]) standard.
This standard implements a serial interconnect for peripherals and the chipset. NICs
and other add-on cards can be connected to the ICH via PCIe. Flash memory, which
stores firmware such as the Basic Input/Output System (BIOS [see 54, p. 369]), is
also connected to the ICH.

Please note, Intel introduced a so-called 2-chip solution with the Intel 5 Series
chipset [121, p. 15]. 2-chip solutionmeans that theMCH functionalitymoved into the
host CPU and is called Integrated Memory Controller (IMC [32, p. 14]). The IMC

2.2 Typical x86-Based System Architecture 13

Fig. 2.3 x86 chipset and peripheral components. The chipset components are the Central Process-
ing Unit (CPU or host processor), the Memory Controller Hub (MCH, also known as northbridge)
and the Input/output Controller Hub (ICH, also known as southbridge). Peripherals do not belong
to the main chipset

is the controlling instance that controls memory accesses just as the former MCH.
The ICH was renamed to Platform Controller Hub (PCH [68]). The experiments
conducted in this thesis are based on the 3-chip solution.

Further controller devices connect other formats, such as Universal Serial Bus
(USB [8]), FireWire (FW [6]), or Serial Advanced Technology Attachment (SATA
[7]), via PCIe to the system. Legacy PCI devices are connected to the PCIe architec-
ture via a so-calledPCI-to-PCIe bridge [24]. In laptop computersPersonal Computer
Memory Card International Association (PCMCIA)/ExpressCard [139] devices are
integrated into the system utilizing PCIe. The host CPU is not necessarily the only
processor in the system. The video card, for example, supports aGraphics Processing
Unit (GPU) to efficiently modify computer graphics. Data to be processed is stored
in Video RAM (VRAM), that is separated from normal system RAM. Other devices
with similar properties are NICs and Intel’s Manageability Engine (ME [79]) in the
platform’s MCH. They also utilize separate processors as well as separate RAM to
execute firmware.

14 2 Technical Background, Preliminaries and Assumptions

2.3 Intel x86 Based Host Central Processing Unit

The Intel x86 Central Processing Unit (CPU) was announced in 1978 [see 59,
Appendix K.3]. Since then, the x86 CPU has been enhanced and nowadays x86
processors consist of several units to support proper features for different comput-
ing tasks. Modern extensions are floating point unit, Single Instruction operating on
Multiple Data items (SIMD [117, p. 524]), Streaming SIMD Extensions (SSE [117,
p. 748]), x64 [58, p. 351], Physical Address Extension (PAE [69, pp. 2–23]), multi-
level caches (L1, L2, L3 cache [59, p. 117]), Performance Monitoring Units (PMU
[see 104, p. 429]) and hardware support for virtualization as described by Grawrock
[54]. A modern x86 CPU usually consists of multiple cores [see 59, p. 117]. These
cores provide registers of different bit sizes, i.e., from 16 bit up to 512 bit [see 70,
Sect. 1.2.1].

To offer protection mechanisms the CPU supports a privilege model via the so-
called protection mode. The model provides different privilege levels also known
as rings to separate certain software running on top of the hardware. Four rings are
available if the processor is in protected mode. Ring 0 is the most privileged ring ring
3 has the fewest privileges. The operating system is executed in ring 0. Thus, it is sep-
arated from application software running in ring 3. Ring 1 was considered for device
drivers and ring 2 for services, though in practice ring 1 and 2 are not used [54, p. 41].

System Management Mode (SMM [69]) is another processor mode only available
for system firmware. That mode was introduced in x86 architectures to implement
higher energy-efficiency by, e.g., powering down unused disks and to control system
hardware by, e.g., turning on fans and shutting down systems when temperature
limits are reached. SMM is triggered by an interrupt, i.e., the System Management
Interrupt (SMI). SMI handler code is loaded from flashmemory by the BIOS into the
System Management RAM (SMRAM) early in the system initialization. To prevent
modifications of the SMI handler code from other processor modes than SMM, the
chipset provides a special bit that is called D_LCK. The D_LCK bit is set to protect
the SMI code after loading it into SMRAM. If the D_LCK bit is set no alteration of
SMRAM content is possible.

When an SMI triggers SMM, the current executed program is interrupted and the
processor state will be saved. Afterwards, the processor executes the SMI handler
code. When the execution of the handler code has been completed, the saved proces-
sor state is restored. After the processor switches back from SMM to the previous
processor mode the interrupted program can continue to operate. Note that the previ-
ous processor mode has lost CPU cycles/time, since both processor modes cannot be
executed simultaneously. SMMcan be considered to be a separate execution environ-
ment. SMRAM is a separate address space and only accessible when the processor is
in SMM. In other words, the OS has no access to SMRAM. Furthermore, privileges
in SMM are not restricted, code executed in SMM can call all I/O as well as system
instructions.

Hardware virtualization extensions in x86 are called Intel Virtualization Technol-
ogy (Intel VT) on Intel platforms [54]. Virtualization mechanisms are used to run

2.3 Intel x86 Based Host Central Processing Unit 15

multiple OSes or applications isolated from each other on a single hardware platform
in parallel. A controlling instance called a hypervisor or a Virtual Machine Monitor
(VMM) hosts guest OSes in Virtual Machines (VMs). Modern x86 CPUs provide a
special instruction set called VT-x. VT-x is part of Intel VT and is intended to support
hardware virtualization. This hardware support offers two special CPU operations:
VMX root operation andVMXnon-root operation. AVMMis run inVMX root oper-
ation. VMs running on top of the VMM are executed in VMX non-root operation
controlled by the VMM. Both operation modes support their own protection rings,
four rings each. Thus, software of the guest system (kernel, drivers, applications, etc.)
can be run in the designated privilege level. The protection rings in VMX non-root
operation are considered to be unprivileged, since these rings are controlled by the
VMM running in VMX root operation. The four rings of the VMX root operation
mode are privileged. Usually, the VMM uses only the most privileged ring. This ring
is often called “ring -1” to emphasize that it controls the unprivileged rings 0–3.

The x86micro-architecture also implements a pipelining conceptwith special exe-
cution optimization features, such as branch prediction and out-of-order execution
[118, p. 329ff] [127, p. 93ff]. The execution pipeline works with micro-operations,
i.e., computations that are implemented as stylized atomic units. Intel architecture
instructions are translated into micro-operations [118, p. 331]. For out-of-order exe-
cution a so-called Reorder Buffer (ROB [118, p. 333]) is required to keep track of
renamed registers. Register renaming occurs during out-of-order execution. Regis-
ters used in micro-operations are renamed by utilizing the Register Alias Table (RAT
[118, p. 333]) that is also referred to as the Register Allocation Table (RAT [see 127,
p. 100]).

PMUs are implemented in the form of Model-Specific Registers (MSR [69,
Sect. 9.4]) that enable software developers to count micro-architecture related events.
This helps programmers to write optimal code for a certain CPU micro-architecture
[104]. For example, the MSRs can be configured to count cache misses, RAT stalls,
and branch mispredictions that occur when executing code [69, Chaps. 18/19]. The
PMU registers that count events are also referred to Performance Counter or Hard-
ware Performance Counter (HPC). They are only available in ring 0. Another special
purpose register that is related to performance measurements is the so-called Time
Stamp Counter (TSC [69, Sect. 17.12]) register. The TSC register can be used to
count CPU cycles after a platform reset. Access to the time stamp counter register as
well as to the performance monitoring unit registers from different privilege levels
can be controlled via the x86 control register 4 (CR4) [see 69, Chap.2].

A special input/output (I/O) feature to exchange data with peripherals is the con-
cept of I/O-mapped I/O via ports (I/O ports [117, p. 70, 341]) that is provided by the
x86 CPU. This concept is complementary to memory mapped I/O (also supported
by x86 systems [117, p. 343]) where memory as well as registers of peripherals are
mapped into the memory address space of the host CPU. Peripherals also communi-
cate with the host CPU via interrupts to signal that new data is available, for example
[117, p. 252]. To communicate with the host system, peripherals can also use the
concept of direct memory access. In this case the peripheral does not communicate
directly with the host CPU, see Sect. 2.4.

16 2 Technical Background, Preliminaries and Assumptions

(a) (b)

Fig. 2.4 Third-party and first-party DMA. a Third-party DMA: The host CPU is required to (1)
configure (source and destination address) the central DMA controller via I/O ports to (2) perform a
DMAtransfer. ThehostCPU is (3) interruptedwhen theDMAtransfer has beenfinished [31, p. 454].
Hence, the host CPU is aware of a third-party DMA transfer.—b First-party DMA: The peripheral
device can (1) configure its own DMA engine. The device acts as bus master (see Sect. 2.5) to
get control of the system bus to perform a DMA transfer. The device can interrupt the host CPU
when the device (2) has completed the transfer. The transfer also works if the device does not
interrupt the host CPU at the end of the DMA transfer. In this case the CPU is unaware of the DMA
transfer

2.4 Direct Memory Access

PCIe supports Direct Memory Access (DMA) for peripherals, or to be more precise
for dedicated hardware such as video cards, NICs, andmanagement controller. DMA
enables fast memory access without the involvement of the host CPU. The aim of
DMA is to remove the burden from the host CPU. DMA allows peripherals to gain
access to the whole host memory bypassing the CPU. The CPU can perform other
tasks while DMA transfers occur. Peripherals can have their own engines to perform
DMA.This kind ofDMAis calledfirst-partyDMA[133, p. 428].Anothermechanism
is third-party DMA [133, p. 428] where a central DMA Controller (DMAC, see
Fig. 2.3) is necessary to provide legacy devices (e.g., devices based on the Industry
Standard Architecture (ISA [116]) format) without DMA engines with fast memory
access. It is also integrated in modern platforms [64, p. 128].

Figure2.4 highlights an important difference regarding stealthyoperationbetween
third-party and first-partyDMA.When using third-partyDMA the host CPU is aware
of the DMA transfer, because the peripheral needs the host CPU to configure [see
31, p. 454] the DMAC via I/O ports2 (see Sect. 2.3). When using first-party DMA the
host CPU is not necessarily aware of the transfer. Note, a DMAC or a DMA engine
can only access host memory addresses, but not host CPU cache, host CPU registers,
or the harddisk, for example. The latter implies that data swapped out from runtime
memory to the harddisk is not accessible by a DMA engine, either.

2 See the Linux source code files arch/x86/include/asm/dma.h and arch/x86/
include/asm/io.h, for example.

2.5 Bus Master 17

2.5 Bus Master

A computer platform has several bus systems, such as PCIe and Front-Side Bus
(FSB). Hence, a platform has different kinds of bus masters depending of the bus
systems, see Fig. 2.5. A bus master is a device that is able to initiate data transfers
(e.g., from an I/O device to the main memory) via a bus [58, Sect. 7.3]. A device
(CPU, I/O controller, etc.) that is connected to a bus is not per se a bus master. The
device is merely a bus agent [1, p. 13]. If the bus must be arbitrated a bus master
can send a bus ownership request to the arbiter [9, Chap. 5]. When the arbiter grants
bus ownership to the bus master, this master can initiate bus transactions as long as
the bus ownership is granted. Note, this procedure is not relevant for PCIe devices
due to its point-to-point property. PCIe requests are not required to be arbitrated and
therefore, bus ownership is not required. The bus is not shared as it was formerly the
case with the PCIe predecessor PCI.

Nonetheless, the bus master capability of PCIe devices is controlled by a certain
bit, that is called Bus Master Enable (BME). The BME bit is part of a standard
configuration register of the peripheral and is usually set by the corresponding device
driver that is executed on the host CPU. The MCH (out of scope of PCIe) still
arbitrates requests from several bus interfaces to the main memory [63, p. 27], see
Fig. 2.5. The host CPU is also a bus master. It uses the Front-Side Bus (FSB) to

Fig. 2.5 Bus master topology. Bus masters access the memory via different bus systems (e.g.,
PCIe, FSB). The MCH arbitrates main memory access requests of different bus masters. (based on
[23, p. 504][24][58, Section 7.3][63, Section 1.3][64])

18 2 Technical Background, Preliminaries and Assumptions

fetch data and instructions from the main memory. I/O controller (e.g., ethernet,
harddisk controller, etc.) provide separate DMA engines for I/O devices (e.g., USB
keyboard/mouse, harddisk,NIC, etc.). Thismeans thatwhen themainmemory access
request of a peripheral is handled by the MCH, PCIe is not involved at all.

2.6 Input/Output Memory Management Units

Intel introduced a technology called Intel Virtualization Technology for Directed I/O
(VT-d, [2]) as one of several building blocks to provide hardware supported vir-
tualization for x86 systems. VT-d can be considered as an Input/Output Memory
Management Unit (I/OMMU) to efficiently assist virtualization requirements, such
as reliable isolation of virtual machines running on a virtual machine monitor. VT-d
is mainly used in conjunction with virtualization solutions. With VT-d, system soft-
ware, that means a hypervisor or an OS, can create memory protection domains. For
example, isolated subsets of physical memory can be assigned to a virtual machine or
to memory of an I/O device driver. An I/O device that is not assigned to a protection
domain has no access to physical memory of that domain. These access restrictions
are realized using address translation tables. System software configures so-called
DMA Remapping (DMAR) engines provided by Intel VT-d. Such an engine maps a
memory request, for example triggered by an I/O device, to physical memory. VT-d
can block a memory request, if the device is not assigned to the protection domain.
Please note, an activated I/OMMU can introduce significant performance overhead
for the host CPU [13] [88, p. 29] [150]) with the result that the utilization of this
technology is often avoided.

To enable system software to configure DMAR engines, the BIOS is required
to load corresponding information in the form of Advanced Configuration Power
Interface (ACPI [44]) tables into the main memory. System software can use this
information (e.g., number of DMAR engines) to set up protection domains. Please
note, storing the ACPI tables in the main memory raises a serious security threat.
These tables are accessible via directmemory access and can bemodified as described
by Wojtczuk et al. [148] and Sang et al. [111]. System software that is responsible
to configure the DMAR engines correctly might fail if this vulnerability is exploited
by an attacker.

2.7 Trust and Adversary/Attacker Model

The attacker model provides a description for a stealthy DMA attack scenario. The
attacker is able to infiltrate dedicated hardware present in a computer platform with
malicious payload remotely. This can be carried out via an OS or firmware related
zero-day exploit [see 47, for example]. We assume the attacker is able to attack
the target platform during runtime. This can not only be done remotely using a

2.7 Trust and Adversary/Attacker Model 19

firmware exploit, but also via a remote firmware update mechanism as demonstrated
byDuflot [45] andbyTriulzi [135], respectively.Alternatively to the described remote
exploitation, the attacker can also infiltrate the peripheral before the supposed owner
gains and deploys the peripheral on the target platform.

The dedicated hardware supports first-party DMA as described in Sect. 2.4 and
accesses the main memory via the memory bus, see Fig. 2.5. We assume that the
target computer platform has usual up to date defense mechanisms such as anti-virus
software and a host firewall. The platform user does not apply additional hardware
such as a hardware firewall to protect the computer platform. We assume that only
a stealthy attack can result in a successful attack. Hence, the attacker wants to hide
the attack by using the stealth potential of dedicated hardware. Attacks on the main
memory (i.e., confidentiality and integrity violations) only originate from peripherals
via DMA. The attacker does not implement an attack that requires a cooperation
between peripheral and host to increase the probability of a stealthy attack. We
further assume that the attacker ensures that an integrity violation (memory write
access) does not result in an attack revelation. Additional hardware would decrease
the probability of a successful stealthy attack significantly. Most likely, the attacker
aims on stealing data, e.g., to conduct industrial espionage or to acquire online
banking credentials, etc. To do so, the attackerwants to read data from (confidentiality
violation) or write data to (integrity violation) the main memory via DMA.

We consider a computer platform as trustworthy if it conforms to the applied
security policy, that means in our case no DMA-based malware is attacking the host
platform by reading from or writing to the platform’s main memory via DMA. We
rely on a minimal Trusted Computing Base (TCB [37, p. 66] [99, p. 8]) that consists
of the host CPU and the RAM chip hardware as well as the communication path
in between (front-side bus, memory controller hub, memory bus). Software (system
software as well as application software) executed on the host CPU, is in a trusted
state before the platform is under attack. This means that software is loaded as well as
started correctly and behaves as expected. We do not count on preventive approaches
such as I/OMMUs due to the security issues mentioned in Sect. 2.6.

Chapter 3
Related Work

The hacker mindset doesn’t actually see what happens on the
other side, to the victim.

Kevin David Mitnick,
Security Professional

Since we determined in our methodology to consider both, the attack as well as
attack detection and mitigation, we have to elaborate on related work in both areas.
Furthermore, we want to enable our target platform to report its status regarding
DMA-based malware to an external platform. To do so, we require a communication
channel that revealsMan-in-the-Middle (MitM) attacks of the network interface card.
This is necessary, since we also consider the NIC as dedicated hardware that can hide
the attack code.

3.1 DMA Attacks

Direct memory access can be a sufficient approach to conduct stealthy attacks on the
host system. Our work analyzes attacks that implement malware functionality and
apply rootkit/stealth capabilities during runtime. In the worst case the DMA-based
malware will also survive platform reboots and standby as well as power off modes.
In the following we distinguish between peripherals that can be connected to the host
platform from the chassis outside and peripherals that are directly connected to the
chipset.

3.1.1 Devices Connectable from the Outside

Since 2004 severalDMAattacks using additional hardware such asUSBdevices [90],
special PCMCIA cards [11, 61], and FireWire devices [17, 42, 43] were presented.
The attack demonstrated by Maynor [90, p. 55ff.] exploits a Motorola mobile phone

© Springer International Publishing Switzerland 2015
P. Stewin, Detecting Peripheral-based Attacks on the Host Memory,
T-Labs Series in Telecommunication Services, DOI 10.1007/978-3-319-13515-1_3

21

22 3 Related Work

to infiltrate the target machine with attack code via USB. The attack reveals itself
by displaying a window on the screen of the target platform. Hence, the attack is a
proof of concept rather than fully operative malware.

Dornseif [43] and Dornseif et al. [42] demonstrated how to exploit an Apple iPod
that is connected via FireWire to the target to conduct a DMA attack. The authors
mention that they can copy the screen content, strings, and key material using DMA
reads. Furthermore, with DMA writes, the authors can change the screen content,
conduct a privilege escalation attack, and inject code into the runtime memory of the
host. Boileau [17] also covered a FireWire-based DMA attack. The author was able
to attack a Windows XP based laptop computer. In 2007, Piegdon and Pimenidis
[101] published another FireWire related DMA attack paper. They described how to
steal private SSH keys as well as to inject arbitrary code. The injected code imple-
ments interactive access to the target machine with administrator privileges. The
authors had to search data structures that are used by the host CPU to implement
virtual address space for processes running on the host CPU. Blass and Robertson
[15] described Tresor-Hunt, another FireWire-based attack to trick harddisk encryp-
tion mechanisms. To be more precise, host CPU bound encryption mechanisms are
attacked. CPU boundmeans that key data is never released to the main memory. That
data is kept in host CPU registers. The basic idea of Tresor-Hunt is to inject code
into kernel space (an interrupt handler is hooked). That attack code dumps the key
data from the processor registers into the main memory where it can be captured via
DMA. Blass and Robertson [15] use FireWire to dump the physical host memory.
Then, they scan the whole dumped memory for the interrupt descriptor table to hook
an interrupt handler that will eventually release the encryption key.

Hulton [61] presented how to use a Field-Programmable Gate Array (FPGA)
peripheral that is connected via cardbus to the target platform to capture passwords
and secret keys present in the main memory. Furthermore, Hulton’s FPGA device is
able to unlock screensaver screen locks. Aumaitre and Devine [11] also described
an attack that is based on an FPGA on a PCMCIA card. It can also be used to unlock
screensavers and to execute arbitrary code. To find the target memory address in the
host memory the authors apply a signature scan in all physical memory pages.

The project documented by Breuk and Spruyt [18, 19] aims to integrate DMA
attacks into exploitation frameworks. The authors discuss PCI, FireWire, USB,
SATA, DisplayPort, Thunderbolt, and PC Card (i. e., PCMCIA, Cardbus, Express-
Card). Their proof of concept is based on FireWire. To find the target address in
the host’s runtime memory, the authors implemented a signature scan that is applied
to all memory pages. The Inception tool is able to attack the target platform via
“FireWire, Thunderbolt, ExpressCard, PC Card and any other PCI/PCIe interfaces”
[87]. The tool can, amongst other things, dump the main memory, unlock the system,
and conduct a privilege escalation attack on Windows, Mac OS, and Linux based
targets. Ongoing research that describes strategies to further exploit Thunderbolt for
DMAattacks is presented by Sevinsky [114]. The author does not describe a concrete
DMA attack via Thunderbolt.

3.1 DMA Attacks 23

3.1.2 Devices Firmly Established Inside the Platform Chassis

In this work we have a clear focus on stealthiness. The attacker must not need
physical access to the target machine to increase the probability of stealthy infil-
tration. Hence, the attack devices presented in Sect. 3.1.1 are not considered by our
trust and adversary model, see Sect. 2.7. We focus on attacks that originate from
platform peripherals. This section considers DMA attacks that originate from plat-
form peripherals such as special management controller, network interface cards,
and video cards.

Tereshkin and Wojtczuk [131] demonstrated that the DMA engine of Intel’s ME
can be used towrite to hostmemory. The authors described a vulnerability that allows
to inject code into the ME environment. The code of Tereshkin andWojtczuk did not
implement any malware behavior. It reveals itself by writing to a known hard coded
host memory address. Hence, this approach implements a proof of concept and no
real malware functionality. We use Intel’s ME for our attack study, see Chap. 4. Our
DMA-based attack implements fully operative malware in the form of a keystroke
code logger that is executed in the manageability engine environment.

The network interface card based attacks described by Duflot et al. [47], Delugré
[35, 36] focus on stealthy attacks, malware functionality, and rootkit capabilities.
The attack presented by Duflot et al. [47] exploits a vulnerability in the firmware of
a NIC during runtime. The compromised NIC is used to attack the host system by
adding a backdoor. The authors described how the host could access the NIC internal
memory. This offers a possibility to detect the attack code using code executed on
the host CPU. As far as we know no anti-virus like software makes use of this. It
should bementioned that the host access to theNIC internalmemory is not a common
feature. For example, the runtime memory of the Intel ME environment that we use
for our attack study (see Chap. 4) is not accessible by the host. The work published
by Delugré [35, 36] is quite similar to the work published by Duflot et al. [47]. Both
attacks use the same NIC model. The malware presented by Delugré [35, 36] aims
to implement rootkit capabilities.

Triulzi [134, 135] presented a stealthy secure shell that offers memory inspection
using DMA. A combination of NIC and video card is used to hide the shell. The shell
is installed by reflashing firmware remotely. NIC and video card communicate via
PCI-to-PCI transfers. The author proposed to count PCI-to-PCI transfers as a coun-
termeasure, but it was not demonstrated how this can be implemented. Other video
card related work was published by Vasiliadis et al. [140]. The authors described a
method to shift performance overhead away from the host CPU to the GPU of the
video card. Parts of the code are still required to run on the host CPU. CPU and GPU
communicate via sharedmemory. The performance overhead arises when techniques
such as unpacking or runtime-polymorphism are used. Hence, Vasiliadis et al. [140]
described GPU assisted unpacking as well as runtime-polymorphism, but no specific
malware that uses DMA to attack the host system. Ladakis et al. [80] implemented

http://dx.doi.org/10.1007/978-3-319-13515-1_2
http://dx.doi.org/10.1007/978-3-319-13515-1_4
http://dx.doi.org/10.1007/978-3-319-13515-1_4

24 3 Related Work

a keystroke code logger that runs on a GPU. The keystroke logger is reminiscent of
the keystroke code logger that we published [123].1 They reused the same signature
scan to find the keyboard buffer. Furthermore, the approach requires executing the
signature scan on the host CPU in kernel mode. This Achilles’ heel can be exploited
to detect the attack. The authors actually require a kernel-based zero-day exploit to
increase the probability of a stealthy attack. According to the authors, special debug-
ging tools can be used to analyze processes executed on the GPU. These tools can be
used to develop a countermeasure for GPU-based malware. It is also unclear what
happens with the captured keystroke codes in the video card environment. Ladakis
et al. [80] do not consider exfiltration.

Recently, Domburg [41] demonstrated how to install attack code on a harddisk
controller. The attack code is stored on the harddisk controller flash memory and
loaded into the harddisk controllor’s DRAM to be executed on the processor of the
harddisk controller. The author could not demonstrate how to exploit the harddisk
controllor’s DMAengine to attack the host runtimememory. Similar work that is also
based on a harddisk controller was presented by Zaddach et al. [152]. The authors
demonstrated a stealthy hard-drive backdoor. However, they attack data stored on the
harddisk, i.e., they did not demonstrate how to exploit the controller’s DMA engine
to attack the main memory of the host system. Hence, their attack is out of scope of
this thesis. We focus on stealthy attacks on the platform’s main memory.

3.2 Countermeasure Approaches

Different approaches have been proposed that could be considered as countermea-
sures againstDMAattacks. For example,measuredfirmware2 is an approach to check
the integrity of the firmware binary. It is assumed that the firmware does not conduct
a DMA attack if the binary is unmodified. The signed firmware approach also aims
at convincing the user that the firmware does not conduct a DMA attack. The idea
is that firmware that is digitally signed by the vendor is trustworthy. Besides these
two approaches the following sections also describe related work such as latency-
based attestation, runtime monitoring, bus snooping, sensitive data protection, and
the I/OMMU.

3.2.1 Measured Firmware

The Trusted Computing Group (TCG) [136] proposed to attest the peripheral’s
firmware at load time. To be more precise, the approach is based on an additional

1 The keystroke code logger that we published [123] is the basis for our attack study in Chap.4.
2 In this case measurement means deriving a hash value.

http://dx.doi.org/10.1007/978-3-319-13515-1_4

3.2 Countermeasure Approaches 25

chip3 that is called Trusted Platform Module (TPM [99]). The TPM is similar to
a smart card chip that is firmly fixed to the chipset of a computer platform. How-
ever, the TPM can store integrity measurements in the form of hash values of binary
code before that code gets executed. This means that the measurement is at load
time. Such measurements can be used to check if the platform is trustworthy. Cur-
rent versions of Intel’s Manageability Engine execution environment also utilize a
so-called measured launch that enables the attestation of the peripheral’s firmware
using a hash value [79, Chap.15]. Unfortunately, measurements conducted at load
time do not exclude runtime attacks. Repeating the measurements during runtime
causes significant performance degradation. It can also not prevent transient attacks
where an attacker exploits the time frame between two measurements. Furthermore,
it is not ensured that the host CPU is able to access all peripheral ROM components
that stores the firmware code.

3.2.2 Signed Firmware

Signed firmware images do also not prevent runtime attacks. Firmware updates can
only be flashed to the corresponding ROM chip if the firmware image has a valid
digital signature. For example, only a BIOS firmware image that was signed by
the motherboard vendor can be flashed into the corresponding ROM chip [see 79,
Chap.14]. This does not exclude runtime attacks. Attacks were demonstrated by
Wojtczuk and Tereshkin [149] as well as Butterworth et al. [26].

3.2.3 Software/Latency-Based Attestation

Other attestation approaches were presented by Li et al. [82, 83], for example. These
approaches are based on latency-based attestation, i. e., a peripheral needs not only
to compute a correct checksum value. It also has to compute the value in a limited
amount of time. A compromised peripheral is revealed if either the checksum value is
wrong or if the checksum computation took to much time. Latency-based attestation
approaches require to modify the peripheral’s firmware and the host needs to know
the exact hardware configuration of the peripheral to be able to attest it. Li et al. [83]
also state that their approach does not work correctly when peripherals cause heavy
bus traffic. They considered only one peripheral in their evaluation. Furthermore,
Nguyen [96] revealed serious issues in attestation approaches as presented by Li
et al. [83]. It is also unclear to which extent latency-based attestation can prevent
transient attacks.

3 The TCG specification does not forbid to implement the TPM in the form of firmware. Intel [see
79, p. 108] has a TPM solution based on firmware.

26 3 Related Work

3.2.4 Monitoring Approaches

Another interesting approachwaspresentedbyDuflot et al. [46].NICadapter-specific
debug features are used tomonitor thefirmware execution. Such features are not avail-
able for other peripherals. Another deficiency is the significant performance issue
for the host (100% utilization of one CPU core). Our goal is also the development
of a runtime monitor. In contrast to the monitor described by Duflot et al. [46] our
monitor is required (i) to be independent of the inner workings of the peripheral and
(ii) to cause significant less performance overhead, see Chap.5.

Another runtime monitoring approach was presented by Zhang [153]. That
approach is based on SMM. The author proposes to periodically check the peripher-
als firmware as well as configurations. Unfortunately, the author does not describe
how the SMRAM that contains the monitor is protected against DMA attacks before
the I/OMMU is configured correctly. The author also does not explain the check-
ing interval. Hence, one has to assume that transient attacks are unconsidered. It is
also unclear how much time is required to check all peripherals. An implementa-
tion description as well as an evaluation are missing. Thus, it is not proven that the
proposed approach is applicable in practice.

3.2.5 Bus Snooping Approaches

Moon et al. [92] and Lee et al. [81] follow a different hardware-based approach.
The authors propose a system that is able to snoop the memory bus to detect kernel
integrity violations. The approach is able to prevent transient attacks. Unfortunately,
the authors do not aim at detecting DMA attacks. Furthermore, their snoop mon-
itor component is based on special hardware (Leon3 processor) that has the same
computing power as the monitored host system (also Leon3 processor). It would be
interesting to see if such a memory snooping approach can be exploited to detect
DMA-based malware.

A related approach that was presented by Eckert et al. [48] considers a kind of
DMA attack. The proposed system can be used to detect malware that is transfered
to the host memory via DMA. Hence, the authors only consider write access from
the peripheral to the host memory. The system is unable to prevent DMA read based
attacks where an attacker captures cryptographic keys or online banking credentials
that are present in themainmemory, for example. In the described attack scenario, the
authors assume that the attack code is executedon the host processor.Hence, they scan
the data that is written via DMA to the host memory for malware signatures by also
snooping the bus. The authors admit that their signature-based detection approach
has deficiencies. The proposed system requires FPGA-based hardware and it is also
unclear if they focus on first-party or third-party DMA with their implementation.

http://dx.doi.org/10.1007/978-3-319-13515-1_5

3.2 Countermeasure Approaches 27

3.2.6 Sensitive Data Protection

To protect sensitive data such as cryptographic keys from memory attacks several
approaches were presented. It is proposed to store sensitive data only in processor
registers or in the cache, but not in themainmemory [93, 94, 119, 141].Unfortunately,
Blass and Robertson [15] demonstrated how to use a DMA-based attack to enforce
the host to leak the sensitive data into the main memory, see Sect. 3.1.1.

3.2.7 Input/Output Memory Management Unit

Sensitive data, which is stored in the main memory could also be protected by an
I/OMMU as proposed by Duflot et al. [47] and Müller et al. [95]. As already consid-
ered in our trust and adversary model we do not rely on I/OMMUs (see Sect. 2.7).
This is because an I/OMMU must be configured faultlessly [83, p. 2] and because
I/OMMUs can be successfully attacked [111, 146–148]. Furthermore, I/OMMUs
are not applicable due to memory access policy conflicts [123] and they are not
supported by every chipset and OS. Sang et al. [112] also confirm that I/OMMUs
have deficiencies. Another important point that should be considered when consid-
ering an I/OMMU as a countermeasure is that an activated I/OMMU can according
to Ben-Yehuda et al. [13] and Yassour et al. [150] cause significant performance
overhead.

3.3 Secure Communication Channels Considering
Platform State Reporting

None of the related works presented in this section considers NICs as host for mal-
ware that can conduct a Man-in-the-Middle (MitM) attack. We adapt the concept
of a Trusted Channel for this purpose [10, 52]. A trusted channel has all properties
of a secure channel. Additionally, the trusted channel concept enables binding con-
figuration data of the communication endpoint to the secure channel to ensure the
authenticity (i.e., the identity as well as integrity) of the endpoint. Nonetheless, other
approaches related to trusted channels exist and are discussed in the following. To
prevent relay attacks (the attacker relays trustworthy configuration data of a third
platform), it is required to implement a secure binding between the secure channel
and the configuration data to be reported to the peer. Not all of the presented related
works implement such a secure binding.

http://dx.doi.org/10.1007/978-3-319-13515-1_2

28 3 Related Work

3.3.1 Trusted Platform Module Based Approaches

Many approaches based on Trusted Computing (TC [99]) as proposed by the Trusting
Computing Group (TCG)4 exist. Many approaches enhance existing secure channel
protocols such as Transport Layer Security (TLS [38]) or Internet Protocol Security
(IPsec [76]) to integrate or bind endpoint configuration data to the secure channel
[120]. We also prefer to benefit from an existing secure channel protocol.

Smith [120] described how to combine platform authentication as well as user
authentication to authenticate an endpoint. To do so, they introduce TLS exten-
sions for a two-phase handshake. Unfortunately, Smith’s description is not very
detailed. Relay attacks as well as endpoint configuration changes are outside the
scope. Sadeghi et al. [110] also introduced a trusted channel concept. Their concept
is based on key transport. We prefer to use contributory key agreement. We con-
sider key material contribution of the involved endpoints. Furthermore, the reference
implementation described by Sadeghi et al. [110] uses TLS to tunnel their channel.
Configuration data is not bound to the secure channel based on TLS.

The TCGdeveloped the Trusted Network Connect (TNC) architecture [138]. TNC
mainly addresses network access. Network authentication and policy enforcement is
the focus of TNC. This is not our focus. Integrity-based configuration information
are used to decide if a platform is allowed to enter the network or not. The TCG
worked on a specification that extends the TLS protocol for attestation purposes (TLS
Extensions for Attestation or TLS-Attestation in short [130, p. 51]). The document
is not publicly available via the TCG website.5 However, the TCG [137] published a
document called “Binding to TLS”. This document considers MitM attacks when a
client requests access to a network. Another approach based on TNC is discussed by
Rehbock [103]. The author extends theTNCarchitecture toweb-based environments.

The aim of Marchesini et al. [89] is to attest the trustworthiness of web applica-
tions. They introduced an architecture that is based on the proposed Bear platform.
That platform implements a trust model that aims to map a long-lived cryptographic
key pair (certified by a certification authority) to short-lived platform configuration
parts. The authors admit that their platform has some issues such as time of check to
time of use (TOCTOU, see also Sect. 3.2).

The approach described by Goldman et al. [53] also aims to link configuration
data to the endpoints of a secure channel. The authors work with the predecessor
of TLS, the Secure Socket Layer (SSL [50]) protocol. The basic idea is to add a
measurement of the SSL certificate to the integrity measurement list that is derived
from executable code. The authors do not state how exactly they prevent MitM
attacks. The SSL certificate could originate from another platform, or, in the case
of our attack scenario, from the NIC that smuggles in the certificate via DMA.
Furthermore, the NIC can attack the endpoint during runtime to compromise data
and cryptographic keys. McCune et al. [91] use a similar protocol as introduced

4 See http://www.trustedcomputinggroup.org/ [accessed 25 February 2014].
5 See Footnote4.

http://www.trustedcomputinggroup.org/

3.3 Secure Communication Channels Considering Platform State Reporting 29

by Goldman et al. [53]. The authors utilize modern chipset features such as Intel’s
Trusted eXecution Technology (TXT [see 54]) to drastically minimize the size of
the TCB. In their adversary model the authors do explicitly allow DMA attacks.
The reason is that they propose a security architecture that benefits of an isolated
execution environment. When code is executed in that environment interrupts and
DMA are turned off. Furthermore, the state of the host processor is required to be
saved and restored every time the isolated environment is used. This results in a
performance loss. Hence, this approach is only suitable for quick secure operations.
Protecting user input entered via a USB keyboard is not possible at all, since DMA
is required to copy the keystroke codes from the keyboard to the main memory.

Dietrich [39, 40] also proposes a trusted channel concept based on a TPM as well
as on TLS. He aims at reporting platform configuration changes during a sessionwith
a remote platform. His approach requires modifications to the TPM. It is uncertain
if such hardware modifications are enforceable in practice. Cheng et al. [29] also
aim to prevent MitM attacks by combining the TCG-based platform configuration
reporting approach with a TLS channel. Unfortunately, the authors do not present an
implementation. They also do not clearly describe which TLS handshake message
they use for the negotiation of the proposed channel. The approach described by
Yu et al. [151] also combines TPM-based platform configuration data with the TLS
protocol. The authors strongly focus on the TLS renegotiation attack [see 102]. They
claim that this attack is also possible with a trusted channel. We doubt this since the
attack protocol flow presented by Yu et al. [151, p. 3] demonstrates that the MitM
is required to send authentic platform configuration data to the server. Hence, the
server is able to detect the code responsible to conduct the renegotiation attack. The
authors do not explain if it is possible for the MitM to forge trustworthy platform
configuration data.

Quite an interesting trusted channel approachwith regard to privacywas presented
byCesena et al. [27]. The proposed channel is a combination of theDirect Anonymous
Attestation (DAA [20]) protocol as adapted by the TCG and TLS. In this context,
DAA allows a platform to prove that it contains a TPM without revealing which
particular TPM it is. This helps to preserve privacy if it is required to avoid the
linkage of different sessions to a TPM of a particular platform. Besides DAA, the
proposed channel is quite similar to our trusted channel. The authors exploit the TLS
handshake messages in a similar fashion to our solution.

Sadeghi and Schulz [109] enhance the secure channel protocol IPsec to implement
a trusted channel. The approach uses the Internet Key Exchange Protocol Version
2 (IKEv2 [75]) as basis to bind platform configuration information to the channel.
Configuration data can also be transmitted during an IPsec session. The authors also
consider how their approach can be integrated into the TNC architecture. Although
the presented approach is backwards compatible, minimal modifications to IKEv2
are required to fully benefit from the trusted channel.

Platform configuration information can also be included in the Diffie-Hellman
(DH) key exchange as demonstrated by Stumpf et al. [128]. The authors rely on a
command (TPM_Quote) that is responsible to get a signed report of the integrity

30 3 Related Work

measurements stored inside the TPM. The DH approach does not mitigate the
deficiencies caused by load time measurements.

Lyle and Martin [86] introduced a channel that considers web service technolo-
gies. Their special environment does not allow to apply a TLS-based channel. They
combine theTCGplatform configuration reporting approachwith so-calledmessage-
level cryptography [see 86, p. 4]. Chang et al. [28]merged the TCG approachwith the
Secure Real-time Transport Protocol (SRTP [12])/Z Real-time Transport Protocol
(ZRTP [154]). SRTP/ZRTP provides a secure channel for Voice-over-IP (VoIP [34])
transmissions. The authors aim to provide a trusted channel with the combination of
the TCG approach and SRTP/ZRTP.

Unfortunately, all the presented TPM-based approaches do not consider runtime
attacks (especially DMA-based runtime attacks) sufficiently. They also suffer from
the deficiencies described in the beginning of Sect. 3.2. Please note, our work on
trusted channels was also originally based on the TPM. In this work, we adapt
the trusted channel concept for another attack scenario where attacks originate from
peripherals.Our trustmodel (seeSect. 2.7) considers a differentTCB.Wedonot count
on load-time integrity measurements. A TPM is not required. Our measurements
are based on a runtime monitor that derives state information based on memory
bus transactions, see Chap.5. These measurements are considered by the secure
communication channel that we use in this work. The channel is based on the trusted
channel concept that we [10, 52] introduced in prior work.

3.3.2 Co-processor and Smart Card Based Approaches

The approaches described by Jiang et al. [74] and Chess et al. [30] are based on a
secure co-processor. The co-processors are used to establish trust by implementing
a concept called trusted co-servers. The co-servers execute evaluated and certified
programs to authenticate the main servers to be able to monitor their behavior. The
co-servers are more secure against physical manipulation. However, they are more
expensive than off-the-shelf hardware. Such co-servers are usually implemented in
the form of PCI(e) cards with a dedicated processor, RAM, DMA engine as well
as ethernet connectors [72, 73]. As such, they are a perfect host for DMA-based
malware.

The trusted channel protocol proposed by Akram et al. [5] is intended for a special
smart card scenario. The focus of the authors is on a privacy preserving protocol for
the smart card user. Hence, their approach is only applicable in scenarios that involve
a smart card whereby the identity of the user must not be revealed. In an earlier
publication Akram et al. [4] presented another channel that is intended for runtime
authentication and verification of a smart card application. That channel is part of a
framework that the authors implemented. The channel protocol was also verified by

http://dx.doi.org/10.1007/978-3-319-13515-1_2
http://dx.doi.org/10.1007/978-3-319-13515-1_5

3.3 Secure Communication Channels Considering Platform State Reporting 31

the authors. The channel described by Akram et al. [4] also focuses on smart cards
scenarios. Another approach that is based on smart cards was presented by Wang
et al. [143]. The authors propose and formally verify a trusted authentication protocol
for Digital Rights Management (DRM [3]) scenarios. The protocol also considers
platform configuration values. The authors do not evaluate an implementation of
their proposed protocol.

Chapter 4
Study of a Stealthy, Direct Memory Access
Based Malicious Software

In God We Trust; All Others We Monitor.
Motto of the Air Force Technical Application Center,

Part of the Air Force Intelligence,
Surveillance and Reconnaissance Agency

The arms race betweenmalware developers and the anti-malware community reached
a new level. Countermeasures for kernel level [60], hypervisor-based [77], and system
management mode based malware [49] were proposed [25, 51, 107]. As a result
researchers explored new environments for stealthymalicious software.Malware can
be placed on dedicated hardware such as video cards and network interface cards to
attack the host platform [see 47, 134, 135]. Such devices bring, among other things,
a dedicated processor and dedicated runtime memory. These devices can operate
independently from the host system. Anti-virus software cannot detect malicious
code stored in separate memory and executed on a different processor. An attacker
can use such devices, or more precisely, the direct memory access mechanism to
circumvent protection mechanisms built into the operating system by attacking the
host runtimememory directly.We call code performing targetedDMA-based stealthy
attacks to locate and read or modify target data DMA malware. Such data can be
cryptographic keys for encrypted harddisks, credentials for online banking accounts,
instant messenger chat sessions, and open documents located in the file cache.

In this chapter we characterize DMA attacks and derive the term DMA malware.
We explore the term by examining if DMA malware can significantly increase the
probability of performing a successful stealthy attack against a computer platform
while preserving efficiency and effectiveness. For the evaluation we built our DMA
malware DAGGER—aDmA-based keystroke loGGER that exfiltrates captured data
to an external entity. We are interested in the efficiency, effectiveness and especially
in the stealth properties of DMAmalware.We chose to implement a keystroke logger
to demonstrate that “short living” data can be captured by DMA malware.

Our implementation is based on Intel’s manageability engine that is part of the
popular x86 platform. Intel’s ME is implemented in business as well as consumer
platforms (see Intel vPro platforms [66]) to support different applications, such as
the Intel Active Management Technology (iAMT [39]) or the Identity Protection
Technology (IPT [67]). Our DMA malware DAGGER is not executed on the host

© Springer International Publishing Switzerland 2015
P. Stewin, Detecting Peripheral-based Attacks on the Host Memory,
T-Labs Series in Telecommunication Services, DOI 10.1007/978-3-319-13515-1_4

33

34 4 Study of a Stealthy, Direct Memory Access Based Malicious Software

processor. It is executed on the processor provided by Intel’s ME. No additional
hardware is required. DAGGER implements an isolated runtime attack on user input.
Additionally, our DMA malware could steal cryptographic keys, target OS kernel
structures in an attack, and copy files from the file cache. Although DMA malware
cannot by detected by anti-virus software, an attacker still faces certain challenges.
DMAmalware must be effective, i.e., it should be able to successfully attack various
systems. DMA malware must also be efficient, i.e., fast enough to find and process
data, even when dealing with virtual memory addresses and randomly placed data.
Such malware goes beyond the capability to exploit DMA hardware.

The main contributions of this chapter are:

• DMA malware definition: There are different kinds of code that utilizes DMA.
To clearly identify if code should be considered harmless, an attack, or DMA
malware, we introduce an appropriate definition.

• DMA malware core functionality: We present a number of requirements that
must be fulfilled by DMA malware in order to mount successful attacks.

• Evaluation of DMA malware prototype implementations: To demonstrate that
DMA malware increases the probability for successful stealthy attacks while
preserving efficiency and effectiveness, we implemented DAGGER. DAGGER
is executed on Intel’s isolated ME. DAGGER operates stealthily and can attack
multiple operating systems. Our implementation is fast and efficient that it can
capture keystrokes very early in the platform boot process, that enables DAGGER
to capture harddisk encryption passwords under Linux, for example.

• DMA side effect detection approach: We present a detection approach that can
reveal DMA malware executed in isolated hardware environments. Our work
demonstrates that DMA malware produces unexpected side effects that we mea-
sure utilizing widely used and cross platform available CPU features.

4.1 DMA Malware Definition

To define the termDMAmalware we first characterize different kinds of DMA-based
code. This helps to clearly distinguish between simple DMA usage, DMA attacks
and DMAmalware, whereby the latter has a clear focus on stealthiness. Note, DMA
malware goes beyond the capability of controlling a DMA engine. DMA-based code
that implements malicious functionality is considered a serious threat. Such code can
be operating stealthily during infiltration and runtime. It is also an advantage, e.g.,
for long-term attacks, if the code can survive platform reboots and power off as well
as standby modes. Hence, we can prioritize the following criteria to assess code that
utilizes DMA. That is, the DMA-based code:

(C1) implements malware functionality
(C2) needs no physical access to increase the probability of stealthy infiltration
(C3) applies rootkit/stealth capabilities during runtime
(C4) can survive reboot/standby/power off modes

4.1 DMA Malware Definition 35

Table 4.1 Fulfillment of criteria C1–C4 of DMA attack examples

Attack presented in C1 C2 C3 C4 DMA malware

[90] (USB) – – – � –

[15, 17–19, 42, 43, 87, 101] (FireWire) � – � � –

[11, 61, 87] (PC card) � – � � –

[131] (Intel ME) – � – � –

[35, 36, 47] (NIC) � � � � �
[134, 135] (Video card and NIC) � � � � �
[80] (Video card) � � – – –

Note, the assessment was done using publicly available material. If we could not decide with the
help of available resources whether a criterion is fulfilled, we assume that this criterion is fulfilled.

We use a binary system for our prioritization:

23 22 21 20

C1 C2 C3 C4

This system distinguishes 16 kinds of DMA-based code. We can derive a unique
number for each kind. For example, DMA-based code that does not perform mali-
cious actions (C1 = 0), leaves no traces on the host (C3 = 1), does not need physical
access (C2 = 1), and cannot survive reboots (C4 = 0) is mapped to the binary pattern
0110. This pattern corresponds to class 6 in decimal. The higher the derived number,
the more dangerous is the DMA-based code.

Our definition of DMA malware is as follows:

Definition: DMA malware is malicious software executed on dedicated hardware attacking
a computer system via a mechanism called direct memory access as well as fulfilling at least
the criteria C1, C2, and C3.

When applied to the target platform introduced in Chap.2, this definition means,
that DMA malware is based on first-party DMA and the DMA engine can be con-
figured by the attack code to not involve the host CPU. The attack code is executed
on dedicated hardware with its own processor and runtime memory, such as a NIC.
Controlling the NIC increases the probability that an attacker can hide data during
exfiltration. Table4.1 applies our binary system to the DMA attacks that are pre-
sented in Chap.3 “Related Work”. The table also depicts what related work is DMA
malware according to our definition. In this chapter we also aim to develop a DMA
malware proof of concept that fulfills at least the criteria C1, C2, and C3.

4.2 DMA Malware Core Functionality

When attacking the host, it is not enough for an attacker to control a DMA engine.
The engine enables the attacker to read from and towrite to hostmemory.However, in
most cases the target memory address is not known. This section describes the core

http://dx.doi.org/10.1007/978-3-319-13515-1_2
http://dx.doi.org/10.1007/978-3-319-13515-1_3

36 4 Study of a Stealthy, Direct Memory Access Based Malicious Software

functionality of DMA malware, i.e., overcoming address randomization, memory
mapping, and search space restriction.

The attacker has to determine memory addresses. The problem is that the memory
space allocated for, e.g., kernel data structures is not at the samememory address after
a platform reboot. Data structures are placed randomly in memory by the OS. This
can happen in a natural way when a device driver, for example, allocates memory
and gets the next free unallocated memory chunk. The memory address of that chunk
is not necessarily the same after a platform reboot. Alternatively, the OS can apply
certain randomization algorithms to ensure that data structures are not placed at the
same memory position. Of course, an attacker can scan the whole system memory
for signatures of the target data, but this is very inefficient when scanning a system
with 4GB physical memory or more.

Operating systems work with virtual memory addresses [see 31, Chap.15]), but
DMA works with physical memory addresses. The OS creates so-called page tables
that are used by the host CPU to map virtual memory addresses to physical ones.
Themapping is absolutely necessary to resolve memory address pointers when using
DMA. A special host processor control register called CR3 contains the physical
memory address of the page tables. The attacker has no access to theCR3 register. The
visibility of aDMAengine is restricted to hostmemory only.Without further analysis
the attacker has to scan the whole memory address space for relevant data. There are
two potential ways in which an attacker can overcome this problem. The first way
is to analyze if the OS places the data structures in question in approximately the
samememory area. The second possibility is to implement OSmemorymanagement
mechanisms. That is, the attacker must find a way to access memory page tables
created by the OS. With access to the page tables the attacker can then traverse page
tables and is able to resolve pointers from one data structure to another. This still
requires a known starting point for the search.

4.3 Design and Implementation of DAGGER

We present an overview of a general design for our DmA-based keystroke loGGER
DAGGER in the next subsection before we explain the details of the DAGGER
implementation in Sect. 4.3.2.

4.3.1 General Design

Our design of DAGGER is depicted in Fig. 4.1. DAGGER is DMA malware. That
is, DAGGER has to fulfill the DMAmalware definition including at least the criteria
C1, C2, and C3. DAGGER consists of three main components:

4.3 Design and Implementation of DAGGER 37

Fig. 4.1 General design of DAGGER. DAGGER is executed on a DMA capable device so that it
can (1) search and (2) process data from host runtime memory. It controls a communication path
to exfiltrate information (3)

• Search: find the address of valuable data in the host memory via DMA.
• Process data: read valuable data within the regions identified during the search
process.

• Exfiltration: exfiltrate information in a way that is invisible to the host.

4.3.2 Implementation Based on Intel’s ME Environment

To evaluate DMA malware we chose to implement DAGGER on Intel’s ME. Intel’s
ME provides some useful features for implementing DMAmalware that we describe
in the following.

The core of Intel’s ME is an embedded micro-controller placed in the platform’s
MCH. This isolated environment contains Read Only Memory (ROM), Static Ran-
dom Access Memory (SRAM), DMA hardware to access the host memory [25, 131],
and a processor as depicted in Fig. 4.2. The embedded processor of the ME is an
ARCtangent-A4 (ARC4). The isolated environment is available regardless of the
power state, even in standby or power on/off. It only requires that the chipset is con-
nectedwith a power source. Applications executed on the embeddedmicro-controller
are implemented in firmware (ME FW) and stored in flash memory together with
the BIOS. The most prominent ME firmware example is Intel’s Active Management
Technology. But depending on the kind of computer platform (business or consumer
hardware) the ME can also run other firmware. Other firmware executed by Intel’s
ME are for instance: Intel’s Identity Protection Technology, Alert Standard Format
[131, p. 46]), Intel Quiet System Technology (QST [131, p. 46]) for temperature and
fan control, and Integrated Trusted Platform Module (iTPM [79, p. 109]).

ME firmware can communicate with the host via a PCI device calledME Interface
(MEI [79, p. 71]). TheMEI can provide the version of the executedME firmware, for
example. The ME environment provides additional PCI devices1 to support certain

1 These devices can act as bus masters, see Sect. 2.5.

http://dx.doi.org/10.1007/978-3-319-13515-1_2

38 4 Study of a Stealthy, Direct Memory Access Based Malicious Software

Fig. 4.2 Intel’s Manageability Engine environment. Intel’s Manageability Engine (ME) environ-
ment consists of the Manageability Engine that is included in the MCH. Furthermore the environ-
ment consists of an isolated part of the RAM as well as isolated portions of persistent flash memory.
The ICH also contains ME environment components, especially components that implement the
out-of-band channel

AMT features such as text console and disk redirection. A serial port is emulated to
implement text console redirection [see 79, Chap.5]. Text output that is sent to this
port is forwarded to a remote console via the network. With this capability an admin-
istrator can remotely control the BIOS. To implement disk redirection a local disk is
emulated by the ME environment [see 79, Chap.5]. An administrator can remotely
mount storage media (e.g., a CDROM with an operating system installer to recover
the operating system of the AMT enabled platform) via the locally emulated disk.

During the platform power-on procedure the ME firmware image is loaded into
ME RAM. The ME firmware itself runs on the micro-controller internal ARC4
processor and it also uses some system RAM as depicted in Fig. 4.2 to store runtime
data. This runtime storage is provided by a certain memory area that is invisible to
the main CPU and the OS. The separation is enforced by the chipset [79].

TheME environment introduces Out-Of-Band (OOB) communication, i.e., a spe-
cial network traffic channel used by iAMT. The iAMT enabled computer platform
is managed by a remote management console using OOB. OOB is also available

4.3 Design and Implementation of DAGGER 39

regardless of the power state. OOB can be considered to be a separate network
connection, running on the same hardware. The ICH implements necessary compo-
nents to support the ME environment with the OOB feature. The firmware filters
network traffic intended for, e.g., iAMT and redirects the packets to the ME. The
host is unaware of the redirected ME network traffic. This kind of traffic is identified
by TCP port numbers.

4.3.3 Attack Implementation Details for Linux
and Windows Targets

We implemented two keystroke logger prototypes to attack two targets, Linux and
Windows based OSes. We decided to find and monitor the keyboard buffer address
of 32 bit versions of the target OSes. In comparison to 64 bit versions, 32 bit versions
have to dealwith amore complicatedmemorymanagement. For example, the attacker
has to consider Physical Address Extensions (PAE [105, p. 769]) or certain memory
offsets when mapping memory addresses. The following subsections describe, how
we implemented the DMA malware core functionality as described in Sect. 4.2. The
prototypes capture short living keystroke codes within their monitoring phase. Each
prototype handles the search phase for the target buffer differently. This has at least
two reasons. One reason is to evaluate as many aspects as possible of DMAmalware.
The other reason is that OSes have different memory management properties. We
use a vulnerability described by Tereshkin and Wojtczuk [131] to infiltrate the ME
environment during runtime. To call our code we hook a ME firmware function that
we identified as the library functionmemset. Tereshkin andWojtczuk [131] assumed
that they hooked a timer interrupt handler, but they actually hooked theME firmware
functionmemcpy.Wehook memset sincewedetermined that it is calledmore often.

Our Linux variant is based on a signature scan as depicted in Fig. 4.3.We analyzed
the availableLinux source code to derive a signature of our target, the physical address

Fig. 4.3 USB request block signature scan (simplified). The scan (1) begins to search for a pointer
to the USB device structure. A candidate for such a pointer is aligned to a 0x400 boundary. The
value of the structure field transfer_dmamust be aligned to a 0x20 boundary. If both conditions
are true, the product string in the USB device structure is (2) checked for the substrings “USB” and
“Keyboard” In the last step the signature scan (3) checks if the keyboard buffer contains garbage,
that is, invalid keystroke codes

40 4 Study of a Stealthy, Direct Memory Access Based Malicious Software

of the keyboard buffer. The buffer address is part of the USB Request Block (URB)
structure that is defined in the file include/linux/usb.h of the Linux source
code. The demanded structure field is called transfer_dma. The memory offsets
differ from kernel version to kernel version. We solved that problem by exploiting
theGrand Unified Bootloader (GRUB) that places an identifier at a constant physical
memory address. We implemented a function that reads the identifier via DMA and
parses the kernel version number to derive corresponding offsets. Afterwards our
prototype runs through the search phase, that is, the signature scan.

Since our Linux prototype targets kernel data structures we can restrict the search
space to the first gigabyte of system RAM. Standard Linux systems have a memory
split of 1GB/3GB, that means, 1GB for kernel space and 3GB for user space. We
were able to further restrict the search space by empirically analyzing in which
memory area the kernel places the data structures needed by our signature scan. We
determined that this memory area is between 0x33000000 and 0x36000000 for
the Ubuntu Linux kernel version 3.0.0 after a fresh platform boot. The address of the
keyboard buffer does not change after standby or hibernate mode.With this approach
we overcome the problem of inefficiently scanning the whole systemmemory for the
randomly placed signature. Mapping virtual addresses to physical ones is a minor
issue when attacking the Linux kernel. Normally, in 32 bit versions a kernel virtual
address (or more precisely kernel logical address [see 31, Chap.15]) is mapped to
its physical address by subtracting a constant offset. In 64 bit Linux versions such
an offset is not needed. Hence, there is no need to know the content of the CR3
processor register.

The search strategy for Windows-based target platforms works different. To be
able to perform the search using the search path as described below, virtual addresses
must be mapped to physical ones. This mapping is done using page tables created
by the Windows kernel. The memory address of those page tables is loaded into the
CR3 register, which an attacker cannot access via DMA. It turned out after some
empirical tests with a simple driver, that the physical address of the page tables for
the system process takes one of the following two values for Windows Vista/7 sys-
tems: 0x122000 or 0x185000. The system process is the first process created
during Windows startup. With this knowledge DAGGER can access the page tables
created by the kernel and overcomes the problem of mapping virtual addresses to
physical ones. DAGGER implements a page table traversing algorithm that takes
account of PAE.

Our Windows malware searches for a structure called DeviceExtension
that is maintained by the USB keyboard driver kbdhid.sys. This structure con-
tains a buffer that stores the codes of the last pressed keys. The source code for
kbdhid.sys is not publicly available. The most convenient way to get internal
information of that driver was to use IDA Pro,2 Windows Debugger (WinDbg) tools,
and debug symbols provided by Microsoft3 in the form of pdb files. To finally

2 See http://www.hex-rays.com/products/ida/index.shtml [accessed 25 February 2014].
3 Seehttp://msdn.microsoft.com/en-us/windows/hardware/gg462988 [accessed25February2014].

http://www.hex-rays.com/products/ida/index.shtml
http://msdn.microsoft.com/en-us/windows/hardware/gg462988

4.3 Design and Implementation of DAGGER 41

determine the location of the buffer in the DeviceExtension structure, our
research starts early in the boot process [see 105, Chap.13]. We analyzed further
internal Windows structures. To find a starting point for the search, we ana-
lyzed the Kernel Processor Control Region (KPCR [105, p. 62ff]), or more pre-
cisely KiInitialPCR, the KPCR for the processor 0. We also examined the
Object Manager Namespace Directory (OMND, part of the Windows object man-
ager). We determined that KiInitialPCR is well suited to derive a path to the
DeviceExtension structure as depicted in Fig. 4.4. KiInitialPCR is not
located at a constant memory address. DAGGER has to apply another step before it
can start with the search as depicted in Fig. 4.4.

The memory position of KiInitialPCR is determined by a function called
OslpLoadAllModulesof thewinload.exebinary as depicted inFig. 4.5. This
binary is loaded by the Windows boot manager bootmgr that in turn is loaded by
Master Boot Record (MBR) code, etc. The function loads the Hardware Abstraction
Layer (HAL) library hal.dll as well as the Windows kernel image in a more
or less random manner. The kernel image contains KiInitialPCR at a constant

Fig. 4.4 Find DeviceExtension structure (simplified). With KiInitialPCR as a start-
ing point, DAGGER finds the OMND, that provides via hash tables a path to the driver object
kbdhid. This object contains a pointer to a device object. The device object provides the
DeviceExtension structure, which contains the keystroke code buffer

42 4 Study of a Stealthy, Direct Memory Access Based Malicious Software

Fig. 4.5 Find KiInitialPCR (simplified). OslpLoadAllModules determines the exact
position of the Windows kernel image and the HAL

relative address. The disassembled code of OslpLoadAllModules is similar to
an Address Space Layout Randomization (ASLR [105, p. 757]) mechanism.

The memory buffer for the kernel image and the HAL is allocated by Oslp-
LoadAllModules via a function called BlImgAllocateImageBuffer. The
latter function returns stable address values for a Windows system. These val-
ues may vary on different systems. For every possible return value of the func-
tion BlImgAllocateImageBuffer there are 64 theoretically possible different
4KBaligned virtual addresses. These addresses need to be checked in order to find the
kernel image base address. The disassembly of OslpLoadAllModules revealed
that the randomization seed for the address randomization has a 5 bit value. This
implies 32 possible addresses for each (of two) possible load order cases, i.e., first
kernel image and then hal.dll or vice versa. As long as KiInitialPCR has a
constant relative virtual address within the kernel image, the same number of virtual
addresses to be checked also applies for a direct KiInitialPCR search without
any need to deal with the kernel image. To ensure that DAGGER found the cor-
rect KiInitialPCR we implemented a KiInitialPCR signature check. When
DAGGER has identified the correct KiInitialPCR, it continues to look for the
keyboard buffer using the search path described in Fig. 4.4.

We use ethernet controller to exfiltrate the captured keystroke codes. To be more
precise, we use theOOB features of the IntelME environment. Unfortunately, there is
no documentation that explains how to use this feature. Hence, we had to analyze the
firmware to figure out how to exfiltrate keystroke codes using the OOB channel. We
were able to find the transmit ring buffer that is used to send network packets in the
ME runtime memory. Furthermore, we were also able to find the firmware code that
is responsible for sending the next network packet from the transmit ring buffer. To
exfiltrate the captured data we prepare network packets, e.g., DHCP discover packets
as depicted in Fig. 4.6, that contain the logged keystroke code. Then, we copy the
prepared network packet to the transmit buffer. Afterwards, we trigger sending the
packet by the NIC to an external platform. Please note, the transmitted packets can
easily be found when analyzing the network traffic with an external platform. To
improve the stealthiness of the design we [124, 125] implemented a covert timing
channel that is based on a so-called Jitterbug [see 115].

4.4 Evaluation 43

Fig. 4.6 Network packet containing bytes fromkeyboard buffer. Thewireshark instance is executed
on an external platform. The network packet that has been parsed by wireshark contains 4 bytes
that represent the logged keystroke code data

4.4 Evaluation

We used an x86 platform with a Q35 chipset, 2GB RAM, a 4-core 3GHz CPU, and
iAMT firmware (version 3.2.1) to evaluate DAGGER with four different 32 bit OS
kernels:Windows Vista Business (Service Pack 2),Windows 7 Professional (Service
Pack 1) and Ubuntu Linux kernel version 2.6.32 as well as kernel version 3.0.0.

4.4.1 DMA Malware Fulfillment

We designed and implemented our DAGGER prototypes according to the DMA
malware definition described in Sect. 4.1. (C1) is clearly fulfilled since DAGGER
implements working keystroke logger functionality. DAGGER needs no physical
access for the infiltration process (C2). We infiltrate the ME environment using
a software-based exploit during runtime. DAGGER exploits dedicated hardware to
implement rootkit properties (C3).We ran host performance overhead tests (memory:
MEM, network: NET, and CPU), since host and ME environment share the NIC
as well as a RAM chip. Parallel NIC and RAM accesses must be arbitrated and
could therefore cause delays. Our measurement results depicted in Fig. 4.7 reveal
no significant overhead. The highest overhead that we could detect is approximately
1.5% when accessing the host memory during the search phase. It is extremely
unlikely that this minimal overhead would reveal DAGGER.

44 4 Study of a Stealthy, Direct Memory Access Based Malicious Software

(a)

(b)

Fig. 4.7 Host performance CPU, MEM, and NET overhead tests. a Linux 3.0.0 performance
overhead test results. b Windows 7 performance overhead test results. We used time stamp counters
to measure overhead time. We measured the time it takes to copy a 100MB test file over the
network (NET) and within RAM (MEM) as well as the time it needs to compute a SHA1 hash
sum over this test file ten times in parallel to stress all four CPU cores (CPU). Each benchmark
was performed three times: without keystroke logger (baseline), keystroke logger in search mode,
and keystroke logger in monitoring mode. For the monitoring mode we configured the keystroke
logger to constantly send network packets of approximately 1,000 packets per minute. This is equal
to 500 keystroke and 500 key release events. We repeated each test 1,000 times. A bar in the gure
represents the mean of 1,000 runs

The search times summarized in Fig. 4.8 are very short and the very aggres-
sive memory stress test we performed does not represent the memory utilization
of a normal computer system. DAGGER has solely read-only operations to ensure
stealthiness. The popular network sniffer Wireshark4 was not able to detect any
DAGGER traffic on Linux and Windows systems. Host firewalls cannot block such
traffic either. Even if anti-virus software knew DAGGER’s signature it would be
unable to access DAGGER’s memory to apply the signature scan successfully. Nev-
ertheless, we also run a software called Mamutu,5 that is, amongst other things,
specialized in detecting keylogger behavior. Even specialized software could not
find any indication of DAGGER. Regarding criterion C4 we successfully checked if

4 See http://www.wireshark.org/ [accessed 25 February 2014].
5 See http://www.emsisoft.com/en/software/mamutu/ [accessed 25 February 2014].

http://www.wireshark.org/
http://www.emsisoft.com/en/software/mamutu/

4.4 Evaluation 45

Fig. 4.8 Search time measurement results. a Linux 3.0.0 several keyboards b Windows 7 several
keyboards. The test results with several keyboards under Linux reveal a best case for search times
of around 1,000ms and a worst case of almost 30,000ms as depicted in (a). The median for all
keyboards is at 3,281ms. Useful for comparison: scanning the whole memory area determined for
Linux (see Sect. 4.3.2) search takes approximately 13,000ms. The worst case of 30,000ms is due
to an erroneous DMA transfer that we do not handle directly. This causes DAGGER to repeat the
search phase. On Windows 7 the best search time is approximately 50ms and the worst time is
around 120ms, see (b). The median for all keyboards is at 93ms. Hence, the search strategy we
implemented for Windows targets performs much better than the signature scan based strategy for
Linux

DAGGER’s attack code is fully functional after a platform reboot, after standby and
after power off state. We determined that this depends on an iAMT BIOS option.
Our code cannot survive a cold boot that happens if this option is not set.

4.4.2 Effectiveness and Efficiency

DAGGER is efficient, since it can permanently catch short living data from the key-
board buffer. To demonstrate that DAGGER is also effective we tested DAGGER
with different Windows and Linux versions as well as several keyboards. The mea-
sured search times summarized in Fig. 4.8 confirm that DAGGER is quite efficient.
We repeated the measurements for each kernel and for each keyboard 100 times.
We took a measurement after a platform (re)boot to change the target address for

46 4 Study of a Stealthy, Direct Memory Access Based Malicious Software

each test run. The Linux measurement results imply that we could further restrict the
search space. We could start the search near the lowest address we encountered most
often during our tests. Search times of around 2,500ms are due to target addresses
near 0x33c00000. Thus, we could skip almost 2,500ms if we start the search at
0x33c00000. Furthermore, we could skip the search area address range between
0x34000000 and 0x36000000. Almost no targets were found in this area. A lot
of targets were found near 0x36e0000, i.e., search times of around 12,500ms that
could also be saved. This increases the probability to miss keyboard buffer addresses.
That is, we can get better search times at the expense of effectiveness. The best case
search times are sufficient to capture hard disk encryption passwords, for example.
We tested this successfully with a Linux system. The Windows kernel can swap out
memory pages to the hard disk—Linux does not. Swapped memory pages cannot be
found by DMAmalware. Hence, we also did a test forWindows to check if swapping
has any effect on DAGGER as depicted in Fig. 4.9b.

Fig. 4.9 Search time measurement results. a Several operating systems. b Windows 7 swap on/off.
The plot in (a) compares different target kernels. DAGGER performs slightly better on Windows 7
than on Windows Vista. Linux 2.6.32 places the target memory structure closer to 0x33000000
than Linux 3.0.0. Thus, DAGGER has more hits around 1,000ms when attacking Linux 2.6.32. The
results in (b) confirm that swapping has no effect on the efficiency and effectiveness of DAGGER.
A platform reboot was only applied to change the swapping behavior. The peaks are due to restarts
of the search phase

4.4 Evaluation 47

4.4.3 ME Firmware Condition

To be really stealthy DAGGER ensures that the ME firmware is still up and running
correctly. iAMT provides a web server for remote platform management [see 79,
p. 215] that is still usable. The server responds correctly on the local platform on
Linux and Windows. Firmware tools utilizing the MEI (see Sect. 4.3.2) also work
when DAGGER is active. We successfully tested the AMT Status Tool (part of the
Local Manageability Service driver) and the Manageability Connector Tool (part
of the Manageability Developer Toolkit 7.0) under Windows. Under Linux we suc-
cessfully tested the Intel AMT Open-source Tools and Drivers (version 5.0.0.30),
or more precisely the ME Status and the ZTCLocalAgent tool. Note, we deter-
mined that DAGGER still runs even after having disabled the iAMT firmware in the
BIOS. It appears that the ME environment cannot be disabled entirely via any BIOS
options.

4.4.4 I/OMMU

To test an I/OMMU (see Sect. 2.6) as a countermeasure against DAGGERwe enabled
Intel VT-d in the BIOS. As far as we know Windows does not support I/OMMUs
directly. We could successfully attack Windows Vista and Windows 7 although
the I/OMMU was activated. Linux supports I/OMMU configuration with additional
effort. We also enabled VT-d in the BIOS and we activated I/OMMU support via the
kernel command line. With these additional steps we were able to prevent the Linux
version of DAGGER from reading short living keystroke codes from OS memory.
This protection is not activated by default. In the next section we discuss, among
other things, further issues regarding the I/OMMU.

4.5 Countermeasures Considerations

To scan for DMAmalware using software executed on the host CPU is quite difficult.
For example, current AV software does not scan the runtime memory of peripherals
or the host CPU cannot access the runtime memory due to certain isolation mech-
anisms. The worst case for a scanning approach is that the DMA malware changed
the behavior of the scan software, which would deliver incorrect results. Checking
firmware images at load time, as proposed by the TCG [136], does not prevent run-
time attacks. Furthermore, it is unclear if all ROM components are accessible by
the host.

http://dx.doi.org/10.1007/978-3-319-13515-1_2

48 4 Study of a Stealthy, Direct Memory Access Based Malicious Software

4.5.1 I/OMMU Issues

In the case of DMA attacks an appropriate configuration of the I/OMMU (see
Sect. 2.6) is proposed as a preventive countermeasure, for example by Duflot et al.
[47, p. 48]. It is required that system software configures the I/OMMU. An incorrect
configuration cannot be excluded [83, p. 2].

It is assumed that the I/OMMU is secure. Unfortunately this is not always the case.
Sang et al. [111] demonstrated that an I/OMMU configuration can be tricked with
legacy PCI devices. Wojtczuk et al. [148] revealed that an I/OMMU can be attacked
by modifying the number of DMA remapping engines provided by the BIOS (see
Sect. 2.6). This is done before the I/OMMU is configured by system software. The
environment we used for DAGGER is able to carry out such an attack. This threat
can only be mitigated by executing special hardware dependent code called SINIT.
However, on at least one previous occasion the manufacturer of the chipset failed to
release SINIT code at the launch of the chipset [147, p. 22]. This code is needed
to initialize a well known and trustworthy environment for, e.g., a hypervisor. It
checks the DMA remapping engines and can therefore prevent an attack as presented
Wojtczuk et al. [148].
SINIT belongs to and increases the size of the trusted computing base. Previous

work demonstrated that SINIT code can have exploitable security vulnerabilities
that can be used to trick I/OMMU mechanisms [see 148]. Recently, Wojtczuk and
Rutkowska [148] presented another attack that can be used to circumvent I/OMMU
mechanisms as well. To prevent the attacks presented by Wojtczuk and Rutkowska
[146, 148], a SINIT as well as a BIOS update must be applied. Wojtczuk et al.
[147] presented another I/OMMU attack. Note, SINIT is normally triggered on
hypervisor-based platforms. Platforms running a normalOS cannot necessarily count
on the I/OMMU. It should also be mentioned that SINIT requires the activation of
additional platform features, namely the Trusted eXecution Technology and the TPM
[54]. This means that users that do not want to activate the TPM for example cannot
rely on the I/OMMU. Note, the TPM is an opt-in device [see 54, p. 212] and is turned
off by default.

For a comprehensive protection against DMA malware it is absolutely necessary
to correctly configure the I/OMMU. However, the I/OMMU can only be considered
secure if the above mechanisms to protect the whole platform are secure. This is
a difficult task. Hence, alternative approaches were considered by Li et al. [83]
and Duflot et al. [46]. Li et al. [83] state that their approach requires extending the
firmware, does not work correctly if peripherals cause heavy PCIe traffic, and the
verifier component needs to know the exact hardware configuration. The approach
presented by Duflot et al. [46] is highly NIC adapter-specific and not applicable
to isolated environments such as Intel’s ME. It is worth noting that malware such
as our implementation controls the NIC without any NIC firmware modifications,
i.e., exfiltration cannot be detected by the approach described by Duflot et al. [46].
Furthermore, this approach has significant performance issues for the host CPU
(100% utilization of one CPU core).

http://dx.doi.org/10.1007/978-3-319-13515-1_2
http://dx.doi.org/10.1007/978-3-319-13515-1_2

4.5 Countermeasures Considerations 49

Memory access policies enforced by I/OMMUs can be insufficient or can even
prevent the use of some other features in some application scenarios. Consider hard-
ware supported malware scanners such as CoPilot [100] and DeepWatch [25]. The
I/OMMUcan be configured to stopCoPilot andDeepWatch fromworking or to allow
such systems to access the host memory to scan it for malicious software. In the lat-
ter case DMA malware could make use of the execution environment of CoPilot or
DeepWatch to attack the host. DAGGER, for example, uses the DeepWatch envi-
ronment, i.e., Intel’s ME. Since iAMT version 5, Intel supports a verified launch for
the firmware to be executed on Intel’s ME [see 79, p. 271]. The firmware is checked
during load time. The result of the load time check is provided to system software.
As far as we know the result is not used in practice. The mechanism cannot prevent
runtime attacks as applied by our PoC. This means, DAGGER confirms that our
assumption that an attacker already infiltrated the target system, e.g., via a zero-day
exploit (see Sect. 2.7), can also hold even if such additional security mechanisms are
in place. An appropriate configuration of the I/OMMU is a first step against DMA
malware. However, without resolving the mentioned issues a successful deployment
cannot be guaranteed.

4.5.2 Detection Approach Based on DMA Side Effects

A possible detection approach is based on DMA side effects that we observed in a
first experiment with our own DMA malware prototype DAGGER. Our detection
mechanism is based on multiple widely used and cross platform CPU features.

So far we developed, implemented, and evaluated our mechanism that is able to
detect rogue DMA usage that is not initiated and unexpected for the host system.
DMA usage is initiated by the host CPU when a peripheral has to process data on
behalf of the host CPU. Sending a network packet using the network interface card
is an example. Expected DMA usage originates from peripherals and is intended
for software running on the host CPU such as the operating system. Receiving a
network packet is an example for intended DMA usage. Our method is able to
detect a general side effect pattern. Thus, we believe it is suited to detect other kinds
of DMA malware besides the prototype we implemented. Our investigation into
detecting malicious DMA usage is based on the knowledge that both, the main CPU
and platform peripherals, can request to access the main system memory at the same
time. The memory controller hub arbitrates parallel memory access requests, see
Fig. 2.5. The interesting question for us was if this parallel memory access introduced
any measurable side effects. If side effects are present and measurable then we can
use these to detect malicious behavior.

We booted a Linux kernel and started just a root shell to ensure that the sys-
tem workload was minimized. Only one CPU core was online. We performed a
memory stress three times: without keystroke logger (baseline), keystroke logger in
search mode, and keystroke logger in monitor mode, see also Sect. 4.3.3. For the
tests we used a 100MB file that we copied from one location to another within a

http://dx.doi.org/10.1007/978-3-319-13515-1_2
http://dx.doi.org/10.1007/978-3-319-13515-1_2

50 4 Study of a Stealthy, Direct Memory Access Based Malicious Software

Fig. 4.10 Memory stress measurements. Search phase and monitor phase are depicted relative to
the baseline

RAM-based file system. We repeated the tests 1,000 times and calculated the means.
The results are depicted in Fig. 4.10. The diagram reveals howwe refined our strategy
with different and more specialized measurement tools.

GNU Time Measurements First we tried the common system tool GNU time to
determine a delay. GNU time measures system resource usages of a process, in our
case thememory stress test tool. As shown in Fig. 4.10 on the left hand side themeans
of the test runs are nearly the same. We concluded that the measurement resolution
of GNU time is insufficient to reveal delays in our experiment.

Time Stamp Counter (TSC) Measurements We repeated our measurements with
a more accurate hardware-based measurement tool, the TSC [see 69, Sect. 17.12].
The TSC counts clock ticks, see Sect. 2.3. The results are presented in the middle
in Fig. 4.10. We were able to (re)produce an overhead of 2% when our prototype
malware is in search mode. DMA was originally introduced to eliminate the burden
on the CPU. That means, to perform memory transfers without the involvement of
the host CPU. Hence, that overhead is surprising and a first piece of evidence that
detectable DMA side effects exists. When our prototype malware is in monitor mode
we cannot see noteworthy overheadwhen using TSC. The critical difference between
the two modes is that in search mode the malware copies at least a memory page
where it searches for valuable data. However, in monitor mode the malware copies
just 4 bytes from the keyboard buffer.

Hardware Performance Counter (HPC) Measurements We repeated the mea-
surements with a third approach using HPCs, a hardware-based performance moni-
toring tool for code optimization, see Sect. 2.3. These counters are special purpose
processor registers on Intel processors [69, Chaps. 18/19] that count certain events
such as cache misses, branch prediction misses, and resource stalls. Similar HPC are
also available on other platforms such as ARM and SPARC. The Intel platform we

http://dx.doi.org/10.1007/978-3-319-13515-1_2
http://dx.doi.org/10.1007/978-3-319-13515-1_2

4.5 Countermeasures Considerations 51

used for our experiments supports 340 events.6 We evaluated all of them and deter-
mined that resource stalls are a particularly effective DMA side effect. HPC events
are more precise than TSC measurements for certain events. We assume the num-
ber of resource stalls are a direct result of the delays we can measure with TSC.
As an example we present the result of a hardware performance counter called
RAT_STALLS:ROB_READ_PORT (see Sect. 2.3) in Fig. 4.10. Compared to the
baseline the overhead is more than double. Without our prototype malware the mean
of our measurements was 1,359,898 counted events. With our prototype malware in
search mode the mean was 3,161,868 counted events, and in monitor mode it was
1,535,054 counted events. The latter is only slightly higher compared to the baseline.
The refined measurements demonstrate the more accurate we measure the better is
the visibility of the DMA side effect.

Detection Based on our findings, DMA side effects can be measured. This means
we can design a DMA malware detection mechanism. The mechanism works by
establishing a measurement baseline and reference values for the TSC/HPC. Dur-
ing runtime, our system monitors the TSC/HPC values and compares them to the
reference values. If the values deviate from the reference values DMA malware is
detected. We acknowledge that an actual implementation of this delay-based detec-
tion approach needs some additional investigation. In Chap. 5 we present a more
enhanced detector that is also based on HPC. Furthermore, the artificial memory
stress is not required anymore to detect DMA malware with our enhanced method.
In this section we discuss the I/OMMU and a detection approach based on DMA
side effects as countermeasures.

4.6 Chapter Summary

In this chapterwe studiedDMAmalware, i.e.,malware hidden in dedicated hardware.
Suchmalware can circumvent protectionmechanisms run on the hostCPUbydirectly
accessing the host memory. We implemented and evaluated DAGGER, a DmA-
based keystroke loGGER. The dedicated hardware enables our prototype to benefit
from rootkit properties. DAGGER operates stealthily. It is undetectable by anti-virus
software etc. We can conclude that DAGGER is a representative malware proof of
concept when comparing it with other known DMA malware. Hence, we will reuse
DAGGER in the next chapters to develop a reliable DMA malware detector.

DMAmalware is more than controlling a DMA engine. Our evaluation confirmed
that DMAmalware is efficient even if obstacles such as memory address randomiza-
tion are in place. We also demonstrated that DMA malware can be effective, that is,
it can attack several OSes. This confirms that DMA malware is stealthy at no costs
regarding efficiency and effectiveness.The host has no reliablemeans to protect itself.

6 We used the Performance API, that is available at http://icl.cs.utk.edu/papi/software/index.html
[accessed 25 February 2014], to work with HPC in the described experiment.

http://dx.doi.org/10.1007/978-3-319-13515-1_2
http://dx.doi.org/10.1007/978-3-319-13515-1_5
http://icl.cs.utk.edu/papi/software/index.html

52 4 Study of a Stealthy, Direct Memory Access Based Malicious Software

Throughout this chapter we highlighted that the I/OMMU has several issues and the
host cannot necessarily count on this preventive countermeasure against DMA mal-
ware. Besides possible vulnerabilities and various preconditions thatmust be fulfilled
for a successful I/OMMU deployment, the most obvious issue is that common OSes
do not or do insufficiently support the I/OMMU. Hence, DMA malware can attack
OSes such as Windows. A general and reliable approach for scanning the dedicated
devices for malware does not exist. A reliable and more general DMA malware
detection mechanism is needed. Other researchers have also investigated I/OMMU
alternatives.

In this chapter we discussed an alternative approach. Our detection approach is
based on the observation that parallel memory accesses from the isolated hardware
(via DMA) and the main CPU produce measurable side effects. Hence, we can
conclude that illegitimate DMA operations are not stealthy anymore. Nonetheless,
we have to admit that the experimental setup used for the detection is rather artificial.
We conclude that the current setup is insufficient for a detection tool that can be
applied in practice. However, we demonstrated that hardware performance counters
can be the basis for a reliable detection tool. We revealed that the measurement tool
requires a sufficient measurement resolution. Hardware performance counters fulfill
this requirement. We will further investigate this point in more detail in the next
chapter.

Without an alternative, only dedicated hardware whose inner workings is acces-
sible by the host, i.e., complete RAM and ROM access, should be deployed. This
enables the host to check the device for malicious modifications from time to time.
A precondition for this is a reasonable measurement strategy and that the scanner
gets loaded first. Devices with a dedicated processor, dedicated runtime memory,
and a DMA engine are a threat for the host platform. This chapter demonstrates that
additional protection mechanisms are needed to ensure a platform’s confidentiality,
integrity, and especially its trustworthiness.

Chapter 5
A Primitive for Detecting DMA Malware

You can’t defend. You can’t prevent. The only thing you can do is
to detect and respond.

Bruce Schneier,
American Cryptographer,

Computer Security and Privacy Specialist

The previous chapters presented that computer platform peripherals, or more
precisely, dedicated hardware such as network interface cards, video cards and man-
agement controller can be exploited to attack the host computer platform. The ded-
icated hardware provides the attacker with a separate execution environment that is
not considered by state-of-the-art anti-virus software, intrusion detection systems,
and other system software security features available on the market. Hence, dedi-
cated hardware is well-suited for stealthy attacks [35, 36, 46, 123, 134, 135]. Such
attacks have also been integrated into exploitation frameworks [18, 19].

For example, Duflot et al. [47] presented an attack based on a network interface
card (NIC) to run a remote shell to take-over the host. They remotely infiltrated the
NIC with the attack code by exploiting a security vulnerability. Triulzi [134, 135]
demonstrated how to use a combination of a NIC and a video card (VC) to access the
main memory that enables an attacker to steal cryptographic keys and other sensitive
data. Triulzi remotely exploited the firmware update mechanism to get the attack
code on the system.

In Chap.4 we described how we exploited a micro-controller that is integrated
in the computer platform’s memory controller hub (MCH) to hide a keystroke code
logger that captures secret data, e.g., passwords. All these attacks have in common
that they have to access the main memory via direct memory access. By doing so,
the attacks circumvent hardened security mechanisms that are set up by host system
software. Furthermore, the attack does not need to exploit a host system software
vulnerability. Devices that are capable of executing DMA transactions are called
bus masters, see Sect. 2.5. The host CPU that usually executes security software
to reveal attacks, does not necessarily have to be involved when other bus masters
access the main memory, see Chap.4. Due to modern bus architectures, such as
peripheral component interconnect express (PCIe), a sole central DMA controller,
which must be configured by the host CPU, became obsolete. Firmware executed

© Springer International Publishing Switzerland 2015
P. Stewin, Detecting Peripheral-based Attacks on the Host Memory,
T-Labs Series in Telecommunication Services, DOI 10.1007/978-3-319-13515-1_5

53

http://dx.doi.org/10.1007/978-3-319-13515-1_4
http://dx.doi.org/10.1007/978-3-319-13515-1_2
http://dx.doi.org/10.1007/978-3-319-13515-1_4

54 5 A Primitive for Detecting DMA Malware

in the separate execution environment of the dedicated hardware can configure the
peripheral’sDMAengine to read fromor towrite to arbitrarymainmemory locations.
This is invisible to the host CPU.

In this chapter we present our Bus Agent Runtime Monitor (BARM)—a moni-
tor that reveals and halts stealthy peripheral-based attacks on the platform’s main
memory. We developed BARM to demonstrate that the host CPU is able to detect
additional (malicious) accesses to the platform’s main memory that originate from
platform peripherals, even if the host CPU is unable to access the isolated execution
environment of the suspicious peripheral. With additional access we mean access
that is not intended to deliver data to or to transfer data on behalf of the host system
software. BARM is based on a primitive that is able to analyze memory bus activity.
It compares actual bus activity with bus activity that is expected by host system soft-
ware such as the operating system or the hypervisor. BARM reports an attack based
on DMA if it detects more bus activity than expected by the host system software.
BARM is also able to identify the malicious peripheral.

In the previous chapters we also presented that several preventive approaches
concerning DMA attacks have been proposed. For example, Intel developed an
input/output memory management unit (I/OMMU) and calls the technology Intel
virtualization technology for directed I/O (VT-d [2]). The I/OMMU can be applied
to restrict access to the main memory. The aim of VT-d is to provide hardware sup-
ported virtualization for the popular x86 platform. Unfortunately, I/OMMUs cannot
necessarily be trusted as a countermeasure against DMA attacks for several reasons.
For instance, the I/OMMU (i) must be configured flawlessly [83], (ii) can be success-
fully attacked [111, 146–148], and (iii) cannot be applied in case of memory access
policy conflicts, see Chap.4. Furthermore, I/OMMUs are not supported by every
chipset and system software (e.g., Windows Vista and Windows 7). Another preven-
tive approach is to check the peripheral firmware integrity at load time.Unfortunately,
such load time checks do not prevent runtime attacks. Repeating the checks perma-
nently to prevent runtime attacks is borne at the cost of system performance. Note,
this also does not necessarily capture transient attacks. Furthermore, it is unclear if
the host CPU has access to the whole read-only memory that stores the peripheral’s
firmware.

We address the challenge of detecting malicious DMA with a primitive that runs
on the host CPU in this chapter. By monitoring bus activity our method does not
require to access the peripheral’s ROM or its execution environment. Our primitive
is implemented as part of the platform’s system software. The basic idea is: The
attacker cannot avoid causing additional bus activity when accessing the platform’s
mainmemory. This additional bus activity is theAchilles’ heel ofDMA-based attacks
that we exploit to reveal and halt the attack. Our proof of concept implementation
BARM implements a monitoring strategy that considers transient attacks. The main
goal of our technique is to monitor memory access of devices connected to the
memory bus. Especially, host CPU cores fetch data as well as instructions of a
significant amount of processes. This is aggravated by the in- and output (I/O) of
peripherals such as network interface cards and harddisks. BARM demonstrates how
to meet these challenges.

http://dx.doi.org/10.1007/978-3-319-13515-1_4

5 A Primitive for Detecting DMA Malware 55

In this chapter we present a method to detect and mitigate DMA-based attacks.
Our main contributions are:

• Model of expected bus activity and measurement of actual bus activity to
reveal attacks: A newmechanism for monitoring the complete memory bus activ-
ity via a primitive executed on the hostCPU is presented in this chapter.Ourmethod
is based on modeling the expected memory bus activity. Furthermore, we present
a technique for monitoring the actual bus activity. We reveal malicious memory
access by calculating the difference between themodeled expected activity and the
measured activity. Any additional DMA activity can be assumed to be an attack.

• Disempowerment of malicious peripheral:We can identify the offending periph-
eral. We implemented and evaluated our detection model in a PoC that we call
BARM. BARM is efficient and effective enough that it can not only detect, but
also eliminate DMA-based attacks before the attacker caused any damage.

• Runtime monitor measurement strategy:We implemented ameasurement strat-
egy for permanent runtime monitoring that considers transient attacks with negli-
gible performance overhead due to commonly available CPU features of the x86
platform.

Finally, our solution does not require hardware or firmware modifications.

5.1 General Detection Model

Two core points are the basis for our detection model. First, the memory bus is a
shared resource (see Fig. 5.1). Second, the system software, i.e., the OS, records
all I/O activity in the form of I/O statistics. Bus masters (CPU and peripherals) are
connected to the main memory via the memory bus. That bus provides exactly one
interface to the main memory that must be shared by all bus masters, see Fig. 5.1. We
see this shared resource as a kind of hook or as the Achilles’ heel of the attacker. The

Fig. 5.1 Bus master topology exploited to reveal malicious memory access. If the difference of the
measured bus activity valueAm and the expected bus activity valueAe is greater than 0, additional
bus activity Aa is measured and a DMA attack is revealed

56 5 A Primitive for Detecting DMA Malware

fact of the shared resource can be exploited by the host CPU to determine if another
bus master is using the bus. For example, if the host CPU cannot access the bus for a
certain amount of time, the OS can conclude that another bus master is using the bus.

How exactly the host CPU/OS determines malicious bus activity is dependent of
the implementation. We investigated multiple directions based on timing measure-
ments and bus transactions monitoring. Experiments with the timing measurements
of bus transactions are described by Li et al. [83], for example. Timingmeasurements
of memory transactions are given in Sect. 4.5.2. Our experiments revealed that count-
ing bus transaction events is themost reliablemethod.We present the implementation
of that novel method in Sect. 5.2.

5.2 An Implementation of the Detection Model

In this section we describe our implementation of the general detection model based
on bus transaction event counting. The purpose of our PoC implementation is to
confirm that the host CPU can detect DMA-based attacks that originate from periph-
erals. We implemented BARM for the Intel x86 platform. We developed BARM as
a Linux kernel module. According to the experiment described in Chap.4, malware,
which is executed in peripherals with a separate DMA engine, can access the main
memory stealthily. The host CPU does not necessarily have to be involved when a
DMA-basedmemory transaction is set up. Nonetheless, thememory bus is inevitable
a shared resource that is arbitrated by the MCH, see Fig. 2.5. This is the reason why
we expect side effects when bus masters access the main memory.

Weanalyzed the capabilities of performancemonitoring units (PMU, seeSect. 2.3)
to find and exploit such DMA side effects. PMUs are implemented as model-specific
registers. These registers can be configured to count performance related events. The
PMUs are not intended to detect malicious behavior on a computer system. Their pur-
pose is to detect performance bottlenecks to enable a software developer to improve
the performance of the affected software accordingly [104]. In this work we exploit
PMUs to reveal stealthy peripheral-based attacks on the platform’s main memory.
Malware executed in peripherals has no access to processor registers and therefore
cannot hide its activity from the host CPU by modifying the PMU processor regis-
ters. Our analysis revealed memory transaction events that can be counted by PMUs.
In particular, a counter event called BUS_TRANS_MEM summarizes all burst (full
cache line), partial read/write (non-burst) as well as invalidate memory transactions
[71]. This is the basis for BARM.

Depending on the precise processor architecture, Intel processors provide five to
seven performance counter registers per processor core [69, Sect. 18]. In this case,
at most five to seven events can be counted in parallel with one processor core.
Three of those counters are fixed function counters, i.e., the counted event can-
not be changed. The other counters are general purpose counters that we use for
BARM to count certain BUS_TRANS_MEM events. We are able to successfully mea-
sureAm when we apply the BUS_TRANS_MEM counters correctly. At this point, that

http://dx.doi.org/10.1007/978-3-319-13515-1_4
http://dx.doi.org/10.1007/978-3-319-13515-1_4
http://dx.doi.org/10.1007/978-3-319-13515-1_2
http://dx.doi.org/10.1007/978-3-319-13515-1_2

5.2 An Implementation of the Detection Model 57

knowledge is insufficient to decide if the transactions exclusively relate to an OS task
or if malicious transactions are also among them. In the following, we lay the ground-
work to revealmalicious transactions originating from a compromisedDMA-capable
peripheral.

5.2.1 Bus Master Analysis

In the followingwe analyze the hostCPU (related to the processor bus system) and the
UHCI controller (related to the PCIe bus system) bus masters regarding the number
of bus transactions that they cause. By doing so, we consider the most important bus
systems that share the memory bus. Other bus masters, such as harddisk and ethernet
controllers, can be analyzed in a similar way.

Host CPU The host CPU ismaybe themost challenging busmaster. The CPU causes
a huge amount of memory transactions. Several processor cores fetch instructions
and data for many processes. Monitoring all those processes efficiently regarding
the bus activity that they cause is nearly impossible. Hence, we decided to analyze
the host CPU bus agent behavior using the BUS_TRANS_MEM events in conjunc-
tion with certain control options and so-called event name extensions. We imple-
mented a Linux kernel module for this analysis. Our key results are: (i) Bus events
caused by user space and kernel space processes can be counted with one counter.
(ii) The event name extensions THIS_AGENT and ALL_AGENTS can be used in
conjunction with BUS_TRANS_MEM events [see 71]) to distinguish between bus
transactions caused by the host CPU and all other processor bus system bus masters.
THIS_AGENT counts all events related to all processor cores belonging to a CPU
bus agent. ALL_AGENTS counts events of all bus agents connected to the bus where
the host CPU is connected to. The ALL_AGENTS extension is very important for our
implementation. It enables us to measure the bus activity valueAm (see Sect. 5.1) in
terms of number of bus transactions:

Am = BUS_TRANS_MEM.ALL_AGENTS (5.1)

Furthermore, our analysis revealed that a host CPU is not necessarily exactly one
bus agent. A multi-core processor can consist of several bus agents. For example, we
used a quad-core processor (Intel Core 2 Quad CPUQ9650@3.00GHz) that consists
of two bus agents. Two processor cores embody one bus agent as depicted in Fig. 5.2.
Hence, the number of processor cores is important when determining (il)legitimate
bus transactions. Note, if the host CPU consists of several bus agents, it is necessary
to start one counter per bus agent with the THIS_AGENT event name extension.
With this knowledge we can determine bus master transactions of all bus masters
Am. We can distinguish between bus activity of the host CPU (see Eq.5.2) and bus
activity caused by all other bus masters (see Eq.5.3) that access the main memory
via the MCH.

58 5 A Primitive for Detecting DMA Malware

(a)

(b)

Fig. 5.2 Intel quad-core processor. The quad-core processor consists of two bus agents and each bus
agent consists of two cores, see (a).When countingBUS_TRANS_MEM events with both bus agents,
i. e., in (b) BA#0 and BA#1, the THIS_AGENT name extension delivers significant difference. The
kernel log in (b) also depicts that the values for the ALL_AGENTS name extension are pretty much
the same within a counter query iteration

ACPU
m =

∑H

n=0
BUS_TRANS_MEM.THIS_AGENTcpu_bus_agent#n,

H ∈ N,H = number of host CPU bus agents − 1 (5.2)

ACPU
m = Am − ACPU

m

⇔ Am = ACPU
m + ACPU

m (5.3)

This means that we can subtract all legitimate bus transactions caused by user
space and kernel space processes of all processor cores. Note, according to our trust
and adversary model (see Sect. 2.7) the measured host CPU bus activity value and
the expected host CPU bus activity value are the same (ACPU

e = ACPU
m), since all

processes running on the host CPU are trusted. Analogously the expected bus activity
value is split, i.e., Ae = ACPU

e + ACPU
e .

Universal Host Controller Interface Controller The Universal Host Controller
Interface (UHCI) controller is an I/O controller for Universal Serial Bus (USB)
devices such as a USB keyboard or a USB mouse. USB devices are polled by the
I/O controller to check if new data is available. System software needs to prepare a
schedule for the UHCI controller. This schedule determines how a connected USB
device is polled by the I/O controller. The UHCI controller permanently checks its
schedule in the main memory. Obviously, this procedure causes a lot of bus activity.
Further bus activity is generated by USB devices if a poll reports that new data is

http://dx.doi.org/10.1007/978-3-319-13515-1_2

5.2 An Implementation of the Detection Model 59

available. In the followingwe analyze howmuch activity is generated, i.e., howmany
bytes are transfered by the UHCI controller when servicing a USB device.

In our case, the I/O controller analyzes its schedule everymillisecond. Thatmeans,
the controller looks for data structures that are called transfer descriptors. These
descriptors determine how to poll theUSBdevice. Toget the descriptors the controller
reads a framepointer froma list everymillisecond.A framepointer (physical address)
references to the transfer descriptors of the current timeframe. Transfer descriptors
are organized in queues. A queue starts with a queue head that can contain a pointer
to the first transfer descriptor as well as a pointer to the next queue head [see 62,
p. 6]. According to Intel [62] the frame (pointer) list consists of 1024entries and has
a size of 4096bytes. The UHCI controller needs 1,024ms (1entrypermillisecond) for
one frame (pointer) list iteration.We analyzed the number of bus transactions for one
iteration with the help of the highest debug mode of the UHCI host controller device
driver for Linux. In that mode schedule information are mapped into the debug file
system. We determined that the frame pointers reference to interrupt transfer queues
(see Fig. 5.3d: int2, int4, …, int128) and to a queue called async. int2
means, that this queue is referenced by every second frame pointer, int4 by every
fourth, int8 by every eighth, etc. The async queue is referenced by every 128th
frame pointer.

Unassigned interrupt transfer queues, i.e., queues not used to poll a USB device,
are redirected to the queue head of the async queue, see Fig. 5.3b. Parsing the
async queue requires three memory read accesses as illustrated in Fig. 5.3a. Parsing
interrupt transfer queues that are assigned to poll a USB device needs more than
four memory reads. The exact number of memory reads depends on how many
elements the queue has. Usually, it has one element if the queue is assigned to a USB
keyboard. The queue can also have two elements if the queue is assigned to a keyboard
and mouse, for example. If the queue has one element, parsing the whole assigned
interrupt transfer queue needs six memory reads, see Fig. 5.3c. We summarize our
examination as follows:

#bus read transactions = 8× #async reads + 8× #int128 reads

+ 16× #int64 reads + 32× #int32 reads + 64× #int16 reads (5.4)

+ 128× #int8 reads + 256× #int4 reads + 512× #int2 reads

In total 4216 bus read transactions are calculated if int16 is assigned to a USB
keyboard, as depicted in Fig. 5.3d. According to Intel [62], the UHCI controller
updates queue elements. We expect this for the queue element of the int16 queue.
This queue is referenced by 64 frame pointers. Hence, we calculate with 64 mem-
ory write transactions. This means that the overall number of bus transactions is
4280. We successfully verified this behavior with a Dell USB keyboard as well as a
Logitech USB keyboard in conjunction with the single step debugging mode of the
UHCI controller [see 62, p. 11], the information was retrieved from the Linux debug
file system in /sys/kernel/debug/usb/uhci/, and performancemonitoring
units counting BUS_TRANS_MEM events.

60 5 A Primitive for Detecting DMA Malware

(a)

(b)

(c)

(d)

Fig. 5.3 UHCI schedule information (simplified). The schedule reveals that int and async
queues are in use. The physical addresses of queue link targets are denoted in brackets. A queue
link or queue element, which terminates, contains the value 00000001 instead of a physical
address. The int16 queue is responsible for our USB keyboard

5.2 An Implementation of the Detection Model 61

With the same setup we determined how many bus transactions are needed when
the USB device has new data that are to be transmitted into the main memory.
For our USB keyboard we determined that exactly two bus transactions are needed
to handle a keypress event. The same is true for a key release event. The Linux driver
handles such events with an interrupt routine. Hence, to determine the expected
bus activity AUHCI

e we request the number of handled interrupts from the OS and
duplicate it. This means that the overall number of bus transactions in our example
is AUHCI

e = 4280 + 2 × #USB interrupts.

Additional Bus Masters To handle the bus activity of the whole computer platform,
the behavior of all other bus masters, such as the ethernet controller and the harddisk
controller, must also be analyzed similar to the UHCI controller. We had to analyze
one more bus master when we tested our detection model on Lenovo Thinkpad
laptops. We were unable to turn off the fingerprint reader (FR) via the BIOS on an
older Thinkpadmodel. Hence, we analyzed the fingerprint reader and considered this
bus master for our implementation. We determined that it causes 4 bus transactions
per millisecond. For this work, or more precisely, to demonstrate that the host CPU
can detect DMA attacks, it is sufficient to consider up to five bus masters for BARM.
Besides from the two CPU-based bus masters and the UHCI controller we also
consider Intel’sManageability Engine (ME) as a busmaster.During normal operation
we assumeAME

e = 0. To be able to demonstrate that our detection model works with
a computer platform we do not use all bus masters available on the platform in
our experiment. For example, we operate the Linux OS from the computer’s main
memory in certain tests of our evaluation (see Sect. 5.3). This allows us to make use
of the harddisk controller I/O functionality as needed.

With the analysis presented in this section we can already determine which bus
master caused what amount of memory transactions. This intermediate result is
depicted in Fig. 5.4.

Fig. 5.4 Breakdown of memory transactions caused by three active bus masters. The curve at the
top depicts the number of all memory transactions of all active bus masters (in our setup), that is,
Am. The curve below depictsAm reduced by the expected memory transactions of the first CPU bus
master, that is, Am − ACPU BA#0

e . The next curve below represents Am − ACPU BA#0
e − ACPU BA#1

e .
The curve at the bottom represents Am − ACPU BA#0

e − ACPU BA#1
e − AUHCI

e

62 5 A Primitive for Detecting DMA Malware

5.2.2 Bus Agent Runtime Monitor

With the bus master analysis that we introduced in Sect. 5.2.1 we were able to imple-
ment BARM in the form of a Linux kernel module. In this section we describe how
we implemented a monitoring strategy that permanently monitors and also evaluates
bus activity. The performance monitoring units are already configured to measure
BUS_TRANS_MEM events. The permanent monitoring ofAm, i.e.,ACPU

m andACPU
m ,

is implemented using the following steps:

1. Reset counters and store initial I/O statistics of all non-CPU bus masters (e.g.,
UHCI, FR, ME, HD, ETH, VC).

2. Start counting for a certain amount of time t (implemented using high precision
timer).

3. Stop counters when time t is reached.
4. Store counter values for Am and ACPU

m (see Sect. 5.2.1) as well as updated I/O
statistics of all non-CPU bus agents.

5. Continue with step (1) and determine Ae in parallel by waking up the according
evaluation kernel thread.

We also need to compare the measured bus activity and the expected bus activity.
BARM compares ACPU

m and ACPU
e when executing the evaluation kernel thread as

follows:

1. Determine ACPU
m using the stored counter values for Am and ACPU

m (see
Sect. 5.2.1).

2. Calculate ACPU
e with AUHCI

e , AFR
e , AME

e , AHD
e , AETH

e , AVC
e , etc., which are

derived from the difference of the stored updated I/O statistics and the stored initial
I/O statistics. Note, for our implementation we assumeAHD

e = 0,AETH
e = 0, etc.

3. CompareACPU
m andACPU

e , report results and, if necessary, apply a defense mech-
anism.

Tolerance Value For practicality we need to redefine howAa is calculated. We use
Aa to interpret the PMU measurements in our PoC implementation. One reason is
that PMU counters cannot be started/stopped simultaneously. Very few processor
cycles are needed to start/stop a counter and counters are started/stopped one after
another. The same can occur in the very short amount of time, where the counters
are stopped to be read and to be reset (see timeframe between step (3) and step (2)
when permanently monitoring). Similar inaccuracies can occur when reading OS I/O
statistics. Hence, we introduce the tolerance value T ∈ N and refine Aa:

AT a =
{
0, if |Am − Ae| ∈ {0, . . . , T }
|Am − Ae|, if |Am − Ae| ∈/ {0, . . . , T } (5.5)

The value of T is a freely selectable number in terms of bus transactions
that BARM can tolerate when checking for additional bus traffic. Our evaluation

5.2 An Implementation of the Detection Model 63

Fig. 5.5 Tolerance value T . If the attacker can predict the very exact moment where BARM
determines T too little bus transactions, an attack with 2T bus transactions could theoretically
executed stealthily

demonstrates that a useful T is rather a small value (see Sect. 5.3). Nonetheless, we
have to consider that T > 0 theoretically gives the attacker the chance to hide the
attack, i.e., to execute a transient attack. In the best case (see Fig. 5.5) the stealthy
attack can have 2T bus transactions at most. It is very unlikely that 2T bus transac-
tions are enough for a successful attack. Data is most likely at a different memory
location after a platform reboot. Hence, the memory must be scanned for valuable
data and this requires a lot of bus transactions. Mechanisms such as address space
layout randomization (ASLR, see also Sect. 4.3.3) that are applied by modern OSes
can also complicate the search phase. This results in additional bus transactions.
Furthermore, the attacker needs to know the very exact point in time when BARM
must tolerate −T transactions.

Identifying and Disabling the Malicious Peripheral If AT a > 0 BARM has
detected a DMA-based attack originating from a platform peripheral. It is already of
great value to know that such an attack is executed. A simple defense policy that can
be applied to stop an attack is to remove bus master capabilities using the BME bit
(see Sect. 2.5) of all non-trusted bus masters. Such a policy can be insufficient if all
platform features are required for operation. It could also result in data loss without
further measures. However, a systemthat has been compromised via such a targeted
attack should be taken offline for a detailed examination.

When stopping the non-trusted bus masters BARM places a notification for the
user on the platform’s screen.AT a does not include any information about what plat-
form peripheral is performing the attack. To include that information in the notifica-
tion message, we implemented a simple peripheral test that identifies the suspicious
peripheral. When the DMA attack is still scanning for valuable data, we unset the
BME bits of the non-trusted bus masters one after another to reveal the malicious
peripheral. After the bit is unset, BARM checks if the additional bus activity van-
ished. If so, the malicious peripheral is identified and the peripheral name is added
to the attack notification message. If BARM still detects additional bus activity the
BME bit of the wrong peripheral is set again. The OS must not trigger any I/O tasks
during the peripheral test. Our evaluation reveals that our test is performed in a few
milliseconds, see Sect. 5.3. It is required that the attack is a bit longer active than our
peripheral test. Otherwise, it cannot be guaranteed that our test identifies the mali-
cious peripheral. The DMA attack on a Linux system described in Chap. 4 needs
between 1,000 and 30,000ms to scan the memory. Our evaluation demonstrates that
BARM can detect and stop a DMA attack much faster.

http://dx.doi.org/10.1007/978-3-319-13515-1_4
http://dx.doi.org/10.1007/978-3-319-13515-1_2
http://dx.doi.org/10.1007/978-3-319-13515-1_4

64 5 A Primitive for Detecting DMA Malware

5.3 Evaluation of the Detection Model Implementation

We evaluated BARM, which is implemented as a Linux kernel module. First, we
conducted tests to determine a useful tolerance value T . In the main part of this
section, we present the performance overhead evaluation results of our solution. We
demonstrate that the overhead caused by BARM is negligible. Finally, we conducted
some experiments to evaluate how BARM behaves during an attack.

5.3.1 Tolerance Value T

We performed several different tests to detemine a useful tolerance value. We
repeated each test 100 times. Several different tests means, we evaluated BARM
with different PMU value sampling intervals (32, 128, 512, 1,024, 2,048ms), num-
ber of CPU cores (1—4cores), RAM size (2gigabyte, 4gigabyte, 6gigabyte, 8giga-
byte), platforms (Intel Q35 Desktop / Lenovo Thinkpads: T400, X200, X61s), as
well as minimum (power save) and maximum (performance) CPU frequency to
check the impact for T . Furthermore, we evaluated BARM with a CPU and with
a memory stress test. CPU stress test means, running the sha1sum command on
a 100megabyte test file 100 times in parallel to ensure that the CPU utilization
is 100%. For the memory stress test, we copied the 100MB test file 2,000 times
from a main memory location to another. Our platforms had the following con-
figurations: Q35–Intel Core 2 Quad CPU Q9650@3.00GHz with 4gigabyte RAM,
T400–Intel Core 2 Duo CPU P9600@2.66GHz with 4gigabyte RAM, X200–Intel
Core 2 Duo CPU P8700@2.53GHz with 4gigabyte RAM, and X61s–Intel Core 2
Duo CPU L7500@1.60GHz with 2gigabyte RAM. We used a sampling interval of
32ms, 1core, 4gigabyte RAM, the Q35 platform, and the maximum CPU frequency
as basic evaluation configuration. We only changed one of those properties per test.
The results are summarized in Fig. 5.6.

Note, to determine T we considered up to five bus masters (1–2 CPU, 1 UHCI, 1
fingerprint reader, and 1ME bus master). We used the SliTaz Linux distribution1 that
allowed us to run the Linux operating system from RAM. As a result we were able
to selectively activate and deactivate different components as the harddisk controller
busmaster. The overall test results reveal a worst case discrepancy betweenmeasured
and expected bus transactions of 19 (absolute value). This result confirms that the
measurement and evaluation of bus activity yields reliable values, i.e., values without
hardly any fluctuations. Nonetheless, to be on the safe side we work with a tolerance
value T = 50 when we evaluate BARM with a stealthy DMA-based keystroke
logger, see Sect. 5.3.3.

1 See http://www.slitaz.org/ [accessed 25 February 2014].

http://www.slitaz.org/

5.3 Evaluation of the Detection Model Implementation 65

(a) (b)

(c) (d)

(e) (f)

Fig. 5.6 Determining an adequate tolerance value T . a–f present the discrepancy of Aa compu-
tations when evaluating BARM with different tests. BARM performed 100 runs on each test to
determine Aa. With discrepancy we mean the difference between the maximum and minimum Aa
value. a–f visualize the discrepancy in the form of boxplots. For each test the respective minimum,
lower quartile, median, upper quartile as well as maximum Aa value is depicted. The small point
between minimum and maximum is the average Aa value. The Aa values range mostly between
−10 and 10. The highest absolute value is 19, see e X61s

5.3.2 Performance Overhead When Permanently Monitoring

Since BARM affects only the host CPU and the main memory directly, we evalu-
ated the performance overhead for those two resources. BARM does not access the
harddisk and the network card when monitoring. We evaluated BARM on a 64bit
Ubuntu kernel (version 3.5.0-26). During our tests we run the host CPU with max-
imum frequency thereby facilitating the host CPU to cause as much bus activity as
possible. Furthermore, we executed our test with 1 CPU bus master as well as with
2 CPU bus masters to determine if the number of CPU bus masters has any impact
on the performance overhead. Eventually, we need to use more processor registers

66 5 A Primitive for Detecting DMA Malware

(a)

(c) (d)

(b)

Fig. 5.7 Host performance CPU andMEM overhead evaluation. We measured the overhead with a
memory (MEM) and aCPUbenchmark, each passedwith 1 onlineCPUcore (1CPUbusmaster) and
4 online CPU cores (2 CPU bus masters), see (a) and (b). At first, we performed the benchmarks
without BARM to create a baseline. Then, we repeated the benchmarks with BARM (sampling
interval: 32ms). The results are represented as the relative overhead. The CPU benchmark did not
reveal any significant overhead. The MEM benchmark revealed an overhead of approx. 3.5%. The
number of online CPU cores/CPU bus masters has no impact regarding the overhead. Furthermore,
we checked the overhead when running BARM with different sampling intervals, see (c) and (d).
Again, the CPU benchmark did not reveal any overhead. The MEM benchmark results reveal that
the overhead can be reduced when choosing a longer sampling interval. A longer interval does not
prevent BARM from detecting a DMA attack. A longer interval can mean that the attacker caused
some damage before the attack is detected and stopped

(PMUs) with a second CPU bus master. Another important point is the evaluation
of the sampling interval. Hence, we configured BARM with different intervals and
checked the overhead. To measure the overhead we used time stamp counters (see
Sect. 2.3) for all our tests. The evaluation results are depicted in Fig. 5.7.

5.3.3 A Use Case to Demonstrate BARM’s Effectiveness

Even if we do not consider all platform bus masters in our presented PoC imple-
mentation we can demonstrate the effectiveness of BARM. This is possible because
not all platform bus masters are needed for every sensitive application. For example,
when the user enters a password or other sensitive data, only the UHCI controller and
the CPU are required.We evaluated BARMwith password prompts on Linux.We set
up an environment where four bus masters are active (2 CPU, 1 UHCI, and 1ME bus
master)when using thesudo or ssh command. BARMwas started togetherwith the

http://dx.doi.org/10.1007/978-3-319-13515-1_2

5.3 Evaluation of the Detection Model Implementation 67

sudo or ssh command and stopped when the password had been entered. BARM
stopped unneeded bus masters and restarted them immediately after the password
prompt had been passed. We attacked the password prompt with our DMA-based
keystroke logger DAGGER, which is executed on Intel’sME, see Chap.4. DAGGER
scans the main memory via DMA for the physical address of the keyboard buffer,
which is also monitored via DMA.

Figure5.8a visualizes the measurements taken by BARM when the platform is
under attack. Under attack means that DAGGER is already loaded when the user is
asked for the password. Figure5.8b depicts the results of BARM when the platform
is attacked at an arbitrary point during runtime. For comparison Fig. 5.8a, b also
visualize BARM’s measurements when the platform is not attacked. Figure5.8c
is a fraction of the kernel log, which confirms how fast BARM stopped DAG-
GER. BARM detected the DMA attack at time stamp 350.40104s. At time stamp
350.465042s BARM identified the malicious DMA-based peripheral. This test con-
firms that BARM can even detect attacks before the attacker does damage. BARM
stopped the attackwhen the keystroke loggerwas still in the search phase. Thismeans
that the keystroke logger did not find the keyboard buffer. Hence, the attacker was
unable to capture any keystrokes.We configured BARMwith a PMU value sampling
interval of 32ms. Our evaluation revealed that the attacker already generated more

(a) (b)

(c)

Fig. 5.8 Evaluating BARM with password prompts (ssh command) and at an arbitrary point
during runtime. BARM checks for additional bus activityAa every 32ms (sampling interval).Aa is
found if the measured value is above the tolerance value T = 50. When the platform is not attacked
the values are below T , see (a) and (b) “no DAGGER”. a depicts an attack where DAGGER is
already waiting for the user password. BARM detects DAGGER with the first measurement and
stops it almost immediately. b presents DAGGER’s attempt to attack the platform at an arbitrary
point during runtime with a similar result. c is the kernel log generated by BARM during the attack
attempt presented in (b)

http://dx.doi.org/10.1007/978-3-319-13515-1_4

68 5 A Primitive for Detecting DMA Malware

than 1,000 memory transactions in that time period. This means that we could have
chosen even a significantly higher tolerance value than T = 50 bus transactions.

5.4 Limitations of Current BARM Implementation

Although the evaluation of the implementation of the detection model demonstrated
that DMA malware can be found with negligible performance overhead, the current
implementation also has several limitations. So far, we only considered a certain
UHCI controller, a fingerprint reader, two CPU bus agents, and a ME peripheral as
busmasters (seeSect. 5.3). Even thoughweknow that each busmaster can only access
the main memory via one interface, we cannot exclude the possibility that the current
approach for the detection model is insufficient to integrate all possible bus masters.
The currently integrated bus masters are sufficient to demonstrate that BARM can
detect DAGGER.Additionally, we only consider a single generation of Intel chipsets.
This means that additional investigations with other chipset generations as well as
chipsets made by other manufacturers are necessary to determine the extent to which
BARM is generic.

Another limitation is the fact we tested BARMwith one DMAmalware example.
Although DAGGER represents typical DMA malware, i.e., it has to search for valu-
able data in the host memory, does not require any cooperation with host software,
and accesses the main memory via the system memory interface, we cannot exclude
that other DMA malware implements mechanisms to circumvent BARM. Theoret-
ically, an adversary could try to exploit the 2T bus transaction range per sampling
interval (see Fig. 5.5), for example. This means that the adversary could hide up to
2T bus transactions if it is possible to predict the very exact moment where BARM
determines T too little bus transactions.

However, if the adversary finds a way to exploit the 2T bus transaction range per
sampling interval, this would also result in a slower search phase to find valuable
host data. The amount of 2T bus transactions is significantly lower compared to the
amount of bus transactions that are usually available to the adversary in a sampling
interval. Conversely, depending on the search time for the target data in the host
memory, the host CPUcould exploit the delayed search to, e.g., rearrange thememory
address space. This would enforce the adversary to restart the search phase. Hence,
BARM should be tested with additional DMA malware examples to confirm that
BARM can also detect DMA malware other than DAGGER.

Bus masters such as the ethernet controller could try to circumvent BARM by
(i) ignoring the source address of the data to be copied via DMA and (ii) exploiting
the number of bus transactions determined by the length of the data to be copied for
attacking the host memory. The source address as well as the length are provided
by the host when the host wants to send a network packet, for example. The adver-
sary only exploits the number of bus transactions determined by the length. Hence,
BARM will not detect any additional bus activity, since the adversary camouflages
the illegitimate bus transactions as expected bus transactions. This kind of attack can

5.4 Limitations of Current BARM Implementation 69

be considered a MitM attack conducted by the network interface card. To be able to
successfully conduct this MitM attack the attacker also needs to correctly determine
the number of expected ethernet controller bus transactions. Chapter6 presents how
to consider MitM attacks conducted by the network interface card. The chapter also
demonstrates that it is difficult to calculate the correct number of expected ethernet
controller bus transactions (compared to the UHCI controller). Hence, the adversary
must consider potential performance overhead caused when calculating expected
ethernet controller bus transactions.

5.5 Chapter Summary

In this chapter we demonstrate that the host CPU is able to detect additional, i.e.,
stealthy and malicious main memory accesses that originate from compromised
peripherals. The basic idea is that thememory bus is a shared resource that the attacker
cannot circumvent to attack the platform’s main memory. This is the attacker’s
Achilles’ heel that we exploit for our detectionmethod.We compare the expected bus
activity, which is known by the host system software, with the actual bus activity. The
actual bus activity can be monitored due to the fact that the bus is a shared resource.
We developed the PoC implementation BARM and evaluated our method with up to
five bus masters considering the most important bus systems (PCIe, FSB, memory
bus) of a modern computer platform. BARM can also identify the compromised
peripheral and disable it before the device causes any damage.

Since the host CPU can detect DMA attacks, we conclude that the host CPU can
defend itself without any firmware and hardware modifications. The platform user
does not have to rely on preventive mechanisms such as an I/OMMUs. We chose to
implement a runtimemonitoring strategy that permanentlymonitors bus activity. Our
monitoring strategy considers transient attacks. The countermeasures presented in the
related work chapter (see Sect. 3.2) such as signed firmware and latency-based attes-
tation do not consider transient attacks. BARM can be implemented with less effort
and without detailed knowledge of the inner workings of the peripheral’s firmware
and hardware compared to latency-based attestation approaches, see Sect. 3.2.3.

We also identified limitations of the current BARM implementation such as the
theoretically exploitable bus transaction range per sampling interval (2T) or a pos-
sible MitM attack conducted by the ethernet controller. BARM is unable to detect a
MitM attack implemented in the network interface card that could be revealed with a
latency-based attestation approach. Such attacks can also be prevented by applying
end-to-end security in the form of a trusted channel [52]. We adapt the concept of a
trusted channel in Chap.6 to enable BARM to detectMitM attacks. Nevertheless, our
BARM evaluation demonstrates that the performance overhead is negligible. Hence,
we conclude that our method can be deployed in practice.

http://dx.doi.org/10.1007/978-3-319-13515-1_6
http://dx.doi.org/10.1007/978-3-319-13515-1_3
http://dx.doi.org/10.1007/978-3-319-13515-1_3
http://dx.doi.org/10.1007/978-3-319-13515-1_6

Chapter 6
Authentic Reporting to External Platforms

Using encryption on the Internet is the equivalent of arranging
an armored car to deliver credit card information from someone
living in a cardboard box to someone living on a park bench.

Gene Spafford,
Professor of Computer Science

Our motivation for implementing an authentic channel application for state reporting
is to deliver BARM’s measurement results to an external platform protected from
DMA malware. The external communication partner can evaluate the transmitted
measurements to check if the counterpart has been attacked by DMA malware. The
measurement results are based on processor register values (see Sect. 5.2). To exclude
malware on the network interface card frommodifying and forging outgoing network
packets we need a secure communication channel. Such a channel not only assures
confidentiality, integrity, and freshness of the transmitted data, but also authenticity
of the channel endpoints. To implement such a channel we adapt the concept of a
trusted channel that we presented in prior work [10, 52].

A trusted channel is a communication channel that implements secure channel
properties and additionally binds communication endpoint state information to the
communication session. Deploying a secure channel based on IPsec or TLS is insuffi-
cient in our case. IPsec or TLS based secure channels ensure confidentiality, integrity
and freshness of the transmitted data. However, these channels are not bound to the
actual communication endpoint. We implement the trusted channel based report-
ing application for BARM to prevent at least the following attacks. Such attacks
could be conducted by malware that is executed on the network interface card. The
malware could prevent BARM from communicating with the external platform by
blocking or corrupting outgoing network packets. An attacker could also use such
malware to steal key material, which is present in the host main memory, of the
secure channel via DMA. Afterwards, the attacker can conduct a MitM attack. The
malware could also relay the platform state information of a third platform, which is
not attacked by DMA malware, to the external administrator platform. This means
that the administrator platform could be tricked by conducting a relay attack.

© Springer International Publishing Switzerland 2015
P. Stewin, Detecting Peripheral-based Attacks on the Host Memory,
T-Labs Series in Telecommunication Services, DOI 10.1007/978-3-319-13515-1_6

71

http://dx.doi.org/10.1007/978-3-319-13515-1_5

72 6 Authentic Reporting to External Platforms

We require at least secure channel properties (requirement R1) to ensure
confidentiality, integrity, and freshness of the transfered data for our authentic
reporting channel (see [52, p. 32]). The confidentiality property ensures that the
attacker only gets a minimal amount of information. The integrity property ensures
that corrupted network packets will be revealed immediately. The freshness property
prevents the attacker from conducting a replay attack where a valid communication
session is recorded to be replayed at some later time. To reveal an attack that is block-
ing packets that contain platform state information we introduce so-called heartbeat
messages as payload that has to be sent during the communication session. A heart-
beat in computing is a signal that indicates that, e. g., the corresponding software is
still up and running [132].

The heartbeat message consists of the current BARMmeasurement and log infor-
mation if an attack was prevented. If the network interface card has been stopped
due to an attack heartbeat messages will no longer be received by the external plat-
form. This behavior is interpreted by the external platform as a NIC-based attack.
The transmitted information also includes state changes. State changes were also
considered by the trusted channel concept [10, 52], but efficient and effective run-
time monitoring with negligible performance overhead as implemented in BARM
was missing (see [52, p. 36]): “A state change on one platform is noticed by CM (an
efficientmonitoring agent assumed […]”. BARMrepresents themissing “monitoring
agent” in our DMA malware scenario.

Compared to prior work [10, 52] the trust and adversary model for our DMA
malware scenario does not require trusted computed mechanisms as proposed by
the TCG, see Sect. 2.7. Our channel is not based on a TPM since we do not rely
on load-time code integrity checks, see Sect. 3.2.1. Channel linkage to load-time
measurements stored in a TPM is not required in our application. We require that
the results determined by BARM are bound to our channel (requirement R2). This
is necessary during the negotiation of the communication session as well as during
the communication session itself.

Please note that we do not count on the I/OMMU such as Intel’s VT-d imple-
mentation. This is another difference to the trust model of our prior work [52].
This technology was introduced shortly before our results were published [52]. This
means that previous authors had not been confronted with I/OMMU issues as pre-
sented in Sect. 4.5.1. Previous works assumed that drivers capable of configuring the
I/OMMU correctly exist. For this work we analyzed the I/OMMU in more detail
and we decided not to rely on VT-d for our authentic reporting channel. Our prior
work also introduced the requirement for privacy (requirement R3). This means, the
channel considered the least information paradigm to minimize the disclosure of
platform state information to only the bare necessities.

http://dx.doi.org/10.1007/978-3-319-13515-1_2
http://dx.doi.org/10.1007/978-3-319-13515-1_3
http://dx.doi.org/10.1007/978-3-319-13515-1_4

6 Authentic Reporting to External Platforms 73

The main contributions of this chapter are as follows:

• Authentic reporting channel that excludes the network interface card from
the endpoint: Malware executed on the network interface card is able to steal
secret key material from the main memory to conduct a MitM attack. Hence, we
developed an authentic reporting channel that ensures that only the host CPU is
the communication endpoint. Our channel is based on the secure channel protocol
TLS. We adapt the TLS protocol to exchange BARM measurements and to bind
the channel to its supposed endpoint. An additional feature of our communication
channel is platform state change reporting. This means that our runtime monitor
BARM permanently delivers every state change regarding DMA malware to the
communication partner via the authentic reporting channel.OurTLSmodifications
are based on TLS extensions. This means that our channel is compliant with the
TLS specification. Our TLS compliant channel is the first channel that considers
platform state reporting regarding DMA malware. It is also the first channel that
is based on an implemented effective and efficient runtime monitor to report state
changes. Previous work only assumed the presence of such a runtime monitor.

• Analysis of the ethernet controller: Our communication channel requires the
network interface card. Hence, the ethernet controller will induce bus transactions.
These bus transactions must be considered by BARM. This chapter demonstrates
how the ethernet controller can be integrated into BARM’s detection model, i.e.,
how to utilize the ethernet controller as an additional bus agent.

• Enhancing BARM’s detection model with a new parameter: The ethernet con-
troller transfers data packets, which size is greater than the size of address pointers
and keystroke codes. We demonstrate that the cache line size is an important para-
meter for BARM’s detection model. The cache line size is necessary to compute
the number of expected bus transactions correctly.

• Exploiting additional performance monitoring unit events: We demonstrate
that certain performance monitoring unit configurations can be exploited to distin-
guish between memory read bus transactions and memory write bus transactions.
This enables us to check if the number of expected read bus transactions and
expected write bus transactions that are caused by the ethernet controller are cor-
rectly determined by BARM’s detection model.

The following section starts with a description of the authentic reporting channel
model. Afterwards, we explain how we implemented this model.

6.1 Implementation Independent Model

Our channel model considers client C (target platform) and server S (external plat-
form) communication. Each endpoint may request platform state information (i.e.,
BARM measurements) of the peer. A local security policy determines what exactly
happens after the platform state information of the peer has been evaluated. Our
authentic reporting channel is controlled by host CPU software. The channel can be

74 6 Authentic Reporting to External Platforms

Fig. 6.1 Negotiating an authentic reporting channel. Negotiating an authentic reporting channel
between Client C (target platform) and Server S (e. g., external administrator platform). NIC—
Network Interface Card; Ksign—Asymmetric signing key pair (PKsign, SKsign) bound to; host CPU
software components;PK—Public key; SK—Secret key;Cert—Certified public key part of key pair
bound to host CPU; software components; BARM_ID—Host CPU software components identifier;
sec_param—Required security parameters; state_data—Platform state data determined by BARM;
SigStD—Signature of platform state data; SeKey—Session key

negotiated through a potentially compromised network interface card. We describe
a high-level protocol for negotiating and maintaining an authentic reporting channel
in the following section. Please note, in the following we omit the superscript C and
S due to the symmetric protocol characteristic.

6.1.1 Negotiating an Authentic Reporting Channel

One important idea of our authentic reporting channel is to prevent platform periph-
erals from accessing sensitive information that is related to the channel such as secret
keymaterial. Only host CPUsoftware is allowed to use sensitive channel information.

6.1 Implementation Independent Model 75

Please note, a peripheral could steal such information via DMA. However, BARM
will reveal and stop this kind of DMA attack, see Sect. 5.3.3. Figure6.1 depicts the
handshake protocol for negotiating an authentic reporting channel for BARM. In
order to conduct the handshake, both parties require a signing key Ksign that is an
asymmetric key pair, i.e., Ksign := (PKsign, SKsign). Furthermore, both peers require
a certificate Cert, which includes PKsign as well as a host CPU software components
identifier (BARM_ID). This certificate is issued by a trusted party, which can be
the external administrator platform. The signing key and the certificate are created
before negotiating an authentic reporting channel. Each peer verifies the certificate
including BARM_ID of its counterpart.

The creation of the channel begins with the negotiation of security parameters.
This means that each party sends its certificate as well as security requirements
in the form of security parameters to the peer. The security parameters determine
which party reports its platform state information. Each peer checks if the security
requirements of the counterpart are acceptable. In the next step, each party sends
its platform state data (the current BARM measurement) to the peer. The state data
is digitally signed and the corresponding signature is transmitted together with the
state data. This ensures that the received state data has been sent by the expected
communication partner. Both parties verify the signature with PKsign that was sent
by the peer as part of the certificate Cert. If the signature is valid both parties verify
the state data. The handshake may be aborted due to DMA malware that attacks the
peer. This is the case when the transmitted BARM measurement result is greater
than the tolerance value T (see Sect. 5.2.2). After both client and server have verified
the exchanged data successfully the same session key is computed and confirmed
by both platforms. The computed session key will be bound to the communication
session. After the confirmation the authentic communication session is in place and
both peers start to periodically send heartbeat messages.

State Change The heartbeat messages either confirm the current platform state
or they report a state change. The reported platform state can reveal that the peer is
under a DMAmalware attack, that the suspicious peripheral could be stopped, or that
no attack has been detected. If the peer stops sending heartbeat messages, the local
platform assumes that the peer has been attacked by DMA malware executed on the
network interface card. In this case, BARM has successfully terminated the ongoing
DMA attack by stopping the network interface card. Depending on the local security
policy a platform can tear down the channel, continue with the current session key,
or renegotiate the channel. It is advantageous to continue with the current session
key if the heartbeat message reports that the attack could be stopped immediately
and if the local security policy states that this case is tolerable. To be more precise, it
can make sense if the platform can continue to operate normally without the affected
peripheral. In the case of an involved administrator platform, we expect that the
administrator will analyze the attack in more detail as soon as possible to remove
the DMA malware from the compromised peripheral or, if absolutely necessary, to
exchange the compromised peripheral or chipset with a benign one.

http://dx.doi.org/10.1007/978-3-319-13515-1_5
http://dx.doi.org/10.1007/978-3-319-13515-1_5

76 6 Authentic Reporting to External Platforms

6.2 Implementation of the Authentic Reporting
Channel for BARM

BARMaspresented inChap.5 is insufficient for the authentic channel based reporting
application. When BARM sends network packets, it also causes bus activity that
needs to be considered by BARM’s detection model. To implement an authentic
channel application for our DMA malware scenario we have (i) enhanced BARM’s
detection model, see Sect. 6.2.1 and (ii) modified the TLS protocol to bind BARM’s
measurement (state information) to that channel, see Sect. 6.2.2.

6.2.1 Bus Master Analysis: Ethernet Controller

To consider the ethernet controller in BARM’s detection model we have to determine
the expected bus activity value AETH

e . Hence, we conducted a similar bus master
analysis as presented in Sect. 5.2.1 for the ethernet controller of our target platform.
We analyzed the ethernet controller (namely Ethernet Controller: Intel Corporation
82566DM-2 Gigabit Network Connection (rev 02) [65]) of the same target platformas
the previous experiments, see Chaps. 4 and 5. The corresponding ethernet controller
Linuxdevice driver ise1000e.ko. To simplify our analysiswe configured the driver
to use legacy interrupts and no interrupt delays as well as no interrupt throttling. We
also disabled checksumming and segmentation offloading for the network device.

The ethernet controller works with so-called descriptor rings, i.e., the transmit
descriptor ring and the receive descriptor ring, see Fig. 6.2. Each ring consists of 256
descriptors. A descriptor has a size of 16bytes. This means that the device driver
allocates 4,096bytes for each ring. If the host intends to send network packets, it
prepares transmit descriptors and informs the ethernet controller that new descriptors
are ready to be processed. The ethernet controller reads the descriptors viaDMAfrom
the host memory. After evaluating the descriptor the controller copies the network
packet data from the host memory address that is present in the descriptor (see
Fig. 6.2) to its internal memory to be able to send the packet. If the ethernet controller
has processed the descriptor, the controller “returns” the descriptor to the host by
writing the descriptor done bit in the status field of the descriptor via
DMA.When receiving network packets the process is similar except that the ethernet
controller writes the network packet data into the host memory.

Cache Line Size To integrate the ethernet controller as a bus master into BARM’s
detection model we have to consider that the size of network packets is usually
greater than keystroke codes, see Sect. 5.2.1. Keystroke codes are transfered via one
bus transaction. This is not valid for network packets that have a size of 1,514bytes
for example.To be able to determine how many bus transactions are necessary to

http://dx.doi.org/10.1007/978-3-319-13515-1_5
http://dx.doi.org/10.1007/978-3-319-13515-1_5
http://dx.doi.org/10.1007/978-3-319-13515-1_4
http://dx.doi.org/10.1007/978-3-319-13515-1_5
http://dx.doi.org/10.1007/978-3-319-13515-1_5

6.2 Implementation of the Authentic Reporting Channel for BARM 77

Fig. 6.2 Transmit/receive descriptor ring structure. When the device driver informs the NIC that
new network packets are ready to be transmitted, the ethernet controller reads transmit descriptors
from the descriptor ring. The controller also reads the corresponding packets of the size that is
stored in the length field of the descriptor from the host memory address that is stored in the
address field of the descriptor. The ethernet controller writes the descriptor done bit
in the status field of the descriptor if the the descriptor has been processed. When new network
packets arrive from the network, the ethernet controller reads receive descriptors from the descriptor
ring. Afterwards, the controller writes the corresponding packets of the size that is stored in the
length field of the descriptor to the host memory address. The address is stored in the address
field of the descriptor. The ethernet controllerwrites thedescriptor done bit in thestatus
field of the descriptor if the the descriptor has been processed

transfer a particular amount of data we introduce a new parameter, i.e., the cache
line size. The system cache is organized in cache lines. Memory accesses are handled
in cache lines of a certain cache line size C ∈ N (see [127, p. 223]). C is 64bytes
for our platform (see [63, p. 17]). That means, if one word is requested from main
memory, 64bytes are actually transfered in one memory transaction. It is assumed
that data that is adjacent in the host memory will likely be accessed in a subsequent
operation. If so, these bytes are already in the cache and no additional transaction is
needed. Memory access of peripherals is also handled in cache lines. It is possible
that such a transaction must be snooped to ensure a coherent cache line (see [63,
p. 27]).

Thedescriptor dumpof thee1000e.kodriver depicts the hostmemory addresses
of the network packet data, see Fig. 6.3. The dump also reveals that not every address
is cache line size aligned. This means that the number of bus transactions required
to transfer the network packet data via DMA is not necessarily the value stored in
the length field divided by the cache line size. Another important point relates
to the receive descriptor handling. According to Intel [65] the ethernet controller
optimizes the process of returning receive descriptors. That means, when receiving
packets the ethernet controller does not write the descriptor done bit for
each descriptor individually. Instead, it “collects” four descriptors that belong to the
same cache line to be able to write four descriptor done bits with one bus
transaction, see Fig. 6.2. We consider both scenarios for the equation to compute the
expected bus transactions caused by the ethernet controller.

78 6 Authentic Reporting to External Platforms

Fig. 6.3 Transmit descriptor/receive descriptor dump of the e1000e.ko driver. The dump reveals
the most important information to derive the number of bus transactions caused by the ethernet
controller. Some host memory addresses are not cache line size aligned. This can result in an
additional bus transaction

Expected Bus Activity of the Ethernet Controller Due to our analysis we define
the expected bus activity of the ethernet controller as follows:

AETH
e = ATXreads

e + ATXwrites
e + ARXreads

e + ARXwrites
e (6.1)

ATXreads
e is the expected bus activity that is caused by memory reads when

transmitting a packet. ATXwrites
e represents activity that is caused by memory writes.

Analogously, ARXreads
e and ARXwrites

e are introduced to consider the bus activity when
receiving network packets. To compute ATXreads

e , ATXwrites
e , ARXreads

e , and ARXwrites
e for

one BARM sampling interval we have to consider the cache line size for the mem-
ory buffers that are read and written. That means for the memory buffer that stores
the network packet data in host memory we have to align the memory buffer start
address, which is stored in the address field (hma ∈ N) of a descriptor, to the
previous cache line size aligned address. The result is ba_start ∈ N:

ba_start = hma − (hma mod C) (6.2)

The alignment for the memory buffer end address (ba_end ∈ N), which is the
sum of the value in the address field (hma) and the value of the length field
(len ∈ N) of a descriptor is as follows:

ba_end = hma + len + C − ((hma + len) mod C) (6.3)

The same alignment is required for descriptor transfers. The transfer start address
is determined by the descriptor number of the last descriptor of the previous sampling
interval (old_d ∈ N). The transfer end address is determinedby thedescriptor number

6.2 Implementation of the Authentic Reporting Channel for BARM 79

of the last descriptor of the current sampling interval (cur_d ∈ N).When considering
the cache line size the alignment results in descriptor numbers d_start ∈ N and
d_end ∈ N as follows (D ∈ N is the descriptor size in bytes, i.e., 16bytes in our case):

d_start = old_d − ((old_d × D) mod C)
D (6.4)

d_end = cur_d × D + C − ((cur_d × D) mod C)
D (6.5)

For one sampling interval ATXreads
e , ATXwrites

e , ARXreads
e , and ARXwrites

e are computed
as follows:

ATXreads
e =

cur_dTX−old_dTX∑

n=1

(
1 + ba_endTX

n − ba_startTX
n

C

)
(6.6)

It is necessary to add 1 memory read bus transaction for each transmit descriptor
because of the corresponding descriptor fetch that is (according to our experiments)
not optimized in terms of cache lines. This is handled differently when writing the
descriptor done bit. In this case the ethernet controller tries to write as
many descriptor done bits as possible. The maximum is four bits for one
bus transaction.

ATXwrites
e = (d_endTX − d_startTX) × D

C (6.7)

When receiving network packets,memory reads only occur due to receive descrip-
tor fetching. We determined that the ethernet controller fetches four receive descrip-
tors (equals to the cache line size) with one memory read bus transaction during our
experiments. We use the indicator function with N := {n ∈ [old_dRX , cur_dRX] |
(n × D mod C) = 0} in the following equation:

ARXreads
e =

cur_dRX∑

n = old_dRX

1N (n) (6.8)

The number of expected bus transactions due to memory writes are as follows:

ARXwrites
e =

cur_dRX−old_dRX∑

n=1

ba_endRX
n − ba_startRX

n

C

+ (d_endRX − d_startRX) × D
C (6.9)

80 6 Authentic Reporting to External Platforms

Fig. 6.4 BUS_TRANS event counter. The sum of BUS_TRANS_BURST, BUS_TRANS_P and
BUS_TRANS_INVAL counts results in BUS_TRANS_MEM counts [71]

We expect that network packet data must be copied to the host memory and that
corresponding descriptor done bits will be written to the descriptors in the
host memory.

Exploiting Additional BUS_TRANS Events We verified Eq.6.1 with further
BUS_TRANS event counter that are basically subsets of the event BUS_TRANS_MEM,
see Fig. 6.4. We determined that the event counter BUS_TRANS_P counts the mem-
ory reads of a peripheral and that the event counter BUS_TRANS_INVAL counts
the memory writes of a peripheral. We used these counters in conjunction with
THIS_AGENT and ALL_AGENTS name extensions as described in Sect. 5.2.1 to dis-
tinguish bus transactions caused by the host CPU and bus transactions caused by the
peripheral. The event BUS_TRANS_BURST did not occur during our experiments.
The number of bus transactions caused by the ethernet controller is computed accord-
ing to Eq.6.1 when the e1000e.ko driver function e1000_clean_tx_irq
or e1000_clean_rx_irq is called. We enhanced BARM as introduced in
Sect. 5.2.2 to consider AETH

e as described in this section.

6.2.2 Implementation Based on OpenSSL

OpenSSL is a popular software toolkit that implements cryptographic mechanisms
such as the SSL/TLS protocol and the encoding/decoding of X.509 certificates. The
toolkit provides the developer with shared libraries, i.e., libssl and libcrypto.
Theopenssl command line tool alsomakes use of these libraries. Applications that
require the cryptographic mechanisms provided by OpenSSL can use the libraries
directly. Note, the implementation presented in this section is based on our [10]
previous trusted channel implementation. Our modifications are based on TLS and
TLS related Request for Comments (RFC) documents, i.e., RFC4366 and RFC4680.
Hence, the modifications are compliant with the TLS specification.

http://dx.doi.org/10.1007/978-3-319-13515-1_5
http://dx.doi.org/10.1007/978-3-319-13515-1_5

6.2 Implementation of the Authentic Reporting Channel for BARM 81

The TLS handshake protocol used to negotiate a session key of a secure channel
needs to be adapted to consider BARM’s measurement results. Considering the mea-
surement results during the handshake enables the peer to determine if the target
platform is already attacked by DMA malware. This helps the peer to decide if the
target platform is trustworthy. The peer can abort the handshake of the authentic
reporting channel if the other endpoint is considered untrustworthy. Note, due to
our trust model we consider the host CPU as a channel endpoint. Other computing
environments including the network interface card do not belong to the endpoint. We
use asymmetric cryptographymechanisms and certificates to authenticate endpoints.
In the following paragraphs we describe the used key exchange and certificate. We
also describe extensions for the TLS Hello messages. Extensions to the TLS proto-
col are considered by Dierks and Rescorla [38]. To transmit BARM measurement
results (platform state data) additional handshake messages are required. We use
Supplemental Data messages for this purpose.

Key Exchange Type Our implementation of the authentic report channel is based on
an adapted version of the TLS Diffie-Hellman Ephemeral RSA (DHE-RSA) hand-
shake.1 That means, to authenticate endpoint data an RSA signing key pair is used.
For the negotiation of the session key Diffie-Hellman values are used. The public
Diffie-Hellman part that is transmitted to the peer is signed by the secret part of the
RSA signing key pair.

Endpoint Certificate To authenticate the endpoints, certificates (see cert in Figs. 6.6
and 6.7) are exchanged during the TLS handshake. When using DHE-RSA, the
certificates exchanged via Certificate messages contain the public part PKsign of the
signingkeypairKsign := (SKsign,PKsign).Wehave to ensure that the secret keySKsign

is only available to the endpoint. Our certificates include a BARM related identifier
to bind the TLS-based authentic reporting channel to the endpoint. A certificate that
includes a BARM identifier is issued by a trusted third party that vouches for a correct
BARM installation on the target platform and that the secret key part SKsign is only
available on that endpoint. Hence, the certificate cert links the signing key Ksign to
the endpoint that executes BARM. Ksign key pairs must be used to authenticate data
sent by the client C and server S during the handshake. This eventually binds the
transmitted platform state data to the authentic reporting channel. The trusted third
party that vouches for the correct BARM installation and for the secret signing key
part SKsign could be the administrator who also runs the evaluation platform that
receives platform state data (BARM measurements) from the target platform. The
used certificate is actually a normal TLS certificate that includes the BARM related
identifier. The certificate as well as the signing key pair Ksign are deployed together
with BARM and are considered as long-lived.

1 As described in prior work [10] other key exchange methods such as RSA and DH-RSA can also
be used to implement a trusted channel based authentic reporting application.

82 6 Authentic Reporting to External Platforms

Fig. 6.5 TLShandshake considering hello extensions and supplemental data extensions. TheClien-
tHello message contains client data and the ServerHello message contains server data.
Additional SupplementalData messages contain client supplemental data and server
supplemental data. Supplemental data is also considered as TLS extension. (based on [142])

Modifications to Hello Messages Weuse theClientHello and ServerHellomessages
to negotiate the security parameters of the authentic reporting channel, see Fig. 6.6.
The client platform C that runs BARM starts the adapted TLS client and sends the
ClientHello message to the server platform S. The server replies with ServerHello.
The Hello messages include the security parameters sec_param (see Sect. 6.1) of the
corresponding peer, see Fig. 6.6. The security parameters determine which endpoint
has to provide platform state data, i.e., BARMmeasurements. We use Hello message
extensions [38] to exchange security parameters. Our OpenSSL-based implementa-
tion makes use of the TLS Hello Extensions as described in RFC4366 [14]. A patch
for OpenSSL (0.9.8.x) implements the hello extensions, see Fig. 6.5.2 The patch
modifies code related to the library libssl. We use this patch for our authentic
reporting channel application implementation.

2 The TLS hello extensions and supplemental data patch can be found at http://openssl.6102.
n7.nabble.com/PATCH-TLS-hello-extensions-and-supplemental-data-td38202.html [accessed
25 February 2014].

http://openssl.6102.n7.nabble.com/PATCH-TLS-hello-extensions-and-supplemental-data-td38202.html
http://openssl.6102.n7.nabble.com/PATCH-TLS-hello-extensions-and-supplemental-data-td38202.html

6.2 Implementation of the Authentic Reporting Channel for BARM 83

Fig. 6.6 Adapted TLS-DHE-RSA handshake for the authentic reporting channel (a). Modifications
that were made to the TLS handshake are highlighted in bold text. The adapted handshake is
continued in Fig. 6.7

The patch provides an interface that allows the developer to register new TLS
extensions (see [142]). A TLS extension that is represented by the TLSEXT_GENE-
RAL object transmits generic data. The application that uses TLS specifies the data
format of the generic data. TLS extensions consist of a type, the data length, and

84 6 Authentic Reporting to External Platforms

Fig. 6.7 Adapted TLS-DHE-RSA handshake for the authentic reporting channel (b). After the
handshake has been finished the authentic reporting channel is used by BARM to transmit heartbeat
messages in a regular interval to communicate platform state changes, i.e., to report a DMAmalware
based attack

the generic data (type-length-value format) as well as certain flags3 and callback
functions that implement the required extension logic. Callbacks (see Fig. 6.5) are
only triggered on the peer that instantiated the corresponding TLSEXT_GENERAL
object. The generic data that is transmitted via a Hello message is one generic datum.
In our implementation the TLS extension that is exchanged viaHellomessages (hello
extension) is:

• ARCH_NEGOTIATION_EXT: This extension (EXT) for our authentic reporting
channel (ARCH) is used to negotiate security parameters sec_param.

3 The extension flags are client_required (the client will abort if the server ignores the
extension where this flag has been set), server_send (the server will send the extension where
this flag has been set), and received (internal use, e. g., to check duplicates).

6.2 Implementation of the Authentic Reporting Channel for BARM 85

Client as well as server register hello extensions (TLSEXT_GENERAL objects)
if they want to handle them. If a peer receives a Hello message that contains the
registered extension, the peer calls the corresponding extension callback, see Fig. 6.5.

Supplemental Data Messages for Platform State Data The client platform C
as well as the server platform S can provide platform state data. We use so-
called SupplementalData messages (see Fig. 6.5) as specified by the Internet Engi-
neering Task Force Networking Group in RFC4680 [113] to transmit platform
state data. The OpenSSL patch also implements SupplementalData messages for
OpenSSL (0.9.8.x).4 The details of the implementation of this patch are explained
by Davide Vernizzi [142]. As described in RFC4680 supplemental data is also used
to transmit generic data. The peer determines whether or not the generic data needs to
be transmitted using hello extensions. The OpenSSL patch also enables us to define
supplemental data extensions that we need for our authentic reporting channel. Sup-
plemental data extensions also consist of a type, the generic data, the data length,
and callback functions. Supplemental data transmitted using the SupplementalData
message can be a stack of several generic data. In our implementation the extensions
to exchange generic data via SupplementalData messages are:

• ARCH_SUPP_DATA_C_EXT: This extension is used to transmit the platform state
data PSDC (supplemental data) from the client C to the server S.

• ARCH_SUPP_DATA_S_EXT: This extension is used to transmit the platform state
data PSDS (supplemental data) from the server S to the client C.

The patched OpenSSL software handles generic data as presented in Fig. 6.5.
Callback functions that also belong to the TLS extensions are called to process the
generic data according to the required extension logic. Analogous to hello extensions,
client and server have to register for supplemental data extensions that they want to
handle via the corresponding supplemental data callbacks. Figures6.6 and 6.7 depict
how our generic data (hello extensions as well as supplemental data extensions) is
handled using the callback functions during the adapted TLS handshake.

In our proof of concept implementation the generic data format used to exchange
platform state data PSD via supplemental data is quite simple:

• barm_measurement: This data field contains the BARM measurement taken
by the BARM Linux kernel module.

• Devices flag pair list: We use a devices flag pair list to communicate if a peripheral
is attacking the target platform. The first flag represents if the corresponding device
started to attack the host and, if so, the second flag states if the malicious device
could be stopped. The devices flag pair list looks as follows:

– (uhci_attack, uhci_disabled): This flag pair represents the UHCI
controller.

– (..._attack, ..._disabled): [further devices]

4 See Footnote 2.

86 6 Authentic Reporting to External Platforms

– (me_attack, me_disabled): This flag pair represents themanageability
engine.

• nonceSD: nonceSD consists of the two elements:

– nonceC (client_random)
– nonceS (server_random)

The signature SigPSD on the platform state data PSD is also sent to the peer via the
SupplementalDatamessage, see Figs. 6.6 and 6.7. By doing so, the platform state data
PSD is also bound to the corresponding secure channel. The nonceSD included in
the supplemental data is compared with nonceC and nonceS (sent via the Hello mes-
sages) to guarantee freshness of the received platform state dataPSD. To authenticate
and to be able to check the integrity of platform state data PSD, we use the secret part
SKsign of the signing key pair to signPSD. To be able to verify the signature each peer
provides the certificate that contains the public key part PKsign using the Certificate
message directly after transmitting the SupplementalData message, see Figs. 6.6 and
6.7. The BARM measurement results that are also part of the supplemental data are
evaluated to derive the trustworthiness of the peer. Depending on the derived trust-
worthiness the local platform takes measures according to the local security policy.

Session Key Computation The session key SeK is computed on both peers as usual.
Since we use DHE-RSA, the secure channel that uses SeK is eventually linked to the
endpoints (host CPUs). The exchanged DH parts are signed using the secret part of
Ksign (SKsign) that links the DH values to Ksign. The signing key pair Ksign is bound
to exactly one endpoint due to the certificate issued by the trusted third party that
vouches for the fact that SKsign is only available on the endpoint. Hence, the session
key is also bound to the endpoint.

Heartbeat Messages After the handshake has been completed, BARM uses the
negotiated channel to send heartbeat messages in a regular interval to the external
administrator platform. These messages contain the current BARM measurement
and the devices flag pair list in a similar PSD format that has been used during
the handshake. Only nonceSD is missing. The regular heartbeat messages are used
by BARM to report platform state changes, i.e., a DMA malware based attack.
If the external platform does not receive heartbeat messages anymore we assume
that the NIC tried to attack the host platform and BARM was able to successfully
stop the attack. It is also possible that malware that is executed on the NIC blocks
the heartbeat messages. If so, the attack is also revealed.

6.3 Evaluation

We use the same platform and basic evaluation configuration as described in Sect. 5.3
to evaluate the enhanced BARM. Please note, only the client platform must transmit
platform state data.

http://dx.doi.org/10.1007/978-3-319-13515-1_5

6.3 Evaluation 87

6.3.1 Expected Bus Activity Validation

To validate Eq.6.1 we conducted different tests. The evaluation results are depicted
in Fig. 6.8. The results reveal larger fluctuations in BARM measurement results
when the ping, scp and wget command cause network traffic. Table6.1 pro-
vides information on the cause of the larger fluctuations. The table presents BARM
measurements that were taken during the download of a 1GB file using the wget
command. The applied sampling interval was 32ms. The table depicts that a larger
positive discrepancy (see BARM sample 125,924: 13 bus transactions) is followed
by a larger negative discrepancy (see BARM sample 125,925:−12 bus transactions).
We assume that a positive discrepancy occurs when network packets were already
copied to the host memory by the ethernet controller, but BARMwas unable to eval-
uate the corresponding receive descriptors in the current sampling interval. These
descriptors are available in the next sampling interval. Hence, BARM evaluates the
descriptors in the next interval, which in turn results in a negative discrepancy. BARM
subtracts expected bus transactions from themeasured transactions that were actually
measured in the last sampling interval.

As depicted in Table6.1, the positive and negative values compensate one another.
Thus, the fluctuation can be minimized by simply adding positive and negative

Fig. 6.8 Expected bus activity evaluation with network traffic. We evaluated the expected bus
activity for six different test cases. The discrepancy is visualized in the form of boxplots as known
from Fig. 5.6. In the first case (BARM) we only run the enhanced BARM and in the second case
we run the enhanced BARM together with the OpenSSL-based authentic reporting channel. We
took 100 BARM measurements in both cases. BARM and the authentic reporting channel are also
active in the remaining test cases (ping, scp, wget, wget’). We executed the ping command with
a 1,000bytes payload 100 times (ping). In the case of scp we copied a 100MB file from an external
platform to our target platform 100 times. In the wget case we downloaded a 1GB file from http://
download.thinkbroadband.com/1GB.zip [accessed 25 February 2014] using the wget command.
We applied a BARM sampling interval of 32ms for all test cases except the last one (wget’). The
boxplot for the wget’ case represents the result when using a sampling interval of 1,024ms during
a wget download of a 1GB file

http://dx.doi.org/10.1007/978-3-319-13515-1_5
http://download.thinkbroadband.com/1GB.zip
http://download.thinkbroadband.com/1GB.zip

88 6 Authentic Reporting to External Platforms

Table 6.1 BARM measurement values revealing fluctuations

BARM sampling
number

BARM measurement
value

BARM sampling
number

BARM measurement
value

125,912 5 125,944 2

125,913 2 125,945 25

125,914 3 125,946 −48

125,915 2 125,947 28

125,916 3 125,948 0

125,917 0 125,949 3

125,918 0 125,950 5

125,919 1 125,951 1

125,920 2 125,952 13

125,921 −17 125,953 −21

125,922 22 125,954 5

125,923 1 125,955 2

125,924 13 125,956 2

125,925 −12 125,957 −1

125,926 −15 125,958 4

125,927 22 125,959 3

125,928 5 125,960 −21

125,929 0 125,961 25

125,930 −2 125,962 2

125,931 5 125,963 −2

125,932 2 125,964 3

125,933 5 125,965 2

125,934 0 125,966 5

125,935 −2 125,967 2

125,936 9 125,968 −1

125,937 2 125,969 2

125,938 3 125,970 2

125,939 −2 125,971 6

125,940 8 125,972 0

125,941 −3 125,973 1

125,942 0 125,974 2

125,943 5 125,975 3

The sampling numbers and the corresponding measurement values taken are from the measurement
log that was taken when downloading a 1GB file from http://download.thinkbroadband.com/1GB.
zip [accessed 25 February 2014]. The BARM sampling interval was 32ms

BARM measurement values. As presented in Table6.1, a pair of positive and nega-
tive measurement values can also occur the other way around (see BARM samples
125,926 and 125,927, for example). This means that the negative value is deter-
mined before the positive value.We assume that this occurs when BARMhas already

http://download.thinkbroadband.com/1GB.zip
http://download.thinkbroadband.com/1GB.zip

6.3 Evaluation 89

analyzed transmit descriptors when the corresponding packets were not copied by
the ethernet controller yet. Hence, BARM already subtracts the expected bus transac-
tions from the measured ones before they are actually measured. The transactions are
measured in the next sampling interval that results in a larger positive discrepancy.

We examined the described behavior with two sampling intervals when using the
wget command to download a 1GB file. As depicted in Fig. 6.8, the fluctuations are
larger when using wget with a sampling interval of 32ms (see wget) compared to
a sampling interval of 1,024ms (see wget’).

6.3.2 Network Performance Overhead Evaluation

We conducted a network benchmark to reveal the network performance overhead
that is caused by the enhanced BARM version. The enhanced BARM version
permanently sends heartbeat messages. The results are presented in Fig. 6.9. The
results in Fig. 6.9 reveal a relative performance overhead of approximately 4.5%
when sending the heartbeat message every 32ms. This interval length corresponds
the BARM sampling interval. It is not necessary to use the same interval for reporting
as for BARMmeasurement sampling due to the heartbeat message format that we use
to transmit platform state data. The devices flag pair list represents a history of mali-
cious peripherals. Hence, the network performance overhead for 32ms sampling and

Fig. 6.9 Relative performance overhead for different reporting intervals and constant sampling
interval. The figure compares the results of three measurement series. The first measurement series
(inactive) represents the baseline. Inactive means that BARM was not running and no heartbeat
messageswere sent.Abar in thefigure represents themeanof 100measurements, see alsoSect. 5.3.2.
Wemeasured the clock cycles (with time stamp counters) that are needed to copy a 100MBfile from
an external platform with the scp command. Measurements were taken for a reporting interval of
32ms and for a reporting interval of 1,024ms. In both cases we used the same BARM sampling
interval of 32ms. The relative performance overheadwhen sending a heartbeat message every 32ms
is approximately 4.5%. The overhead is only approximately 0.5%when sending the message every
1,024ms

http://dx.doi.org/10.1007/978-3-319-13515-1_5

90 6 Authentic Reporting to External Platforms

reporting interval can be avoided. The only requirement is that the sampling interval
is less or equal than the reporting interval.

6.3.3 Test with DAGGER

We repeated the DMA malware DAGGER test (see Sect. 5.3.3) with our enhanced
bus agent runtime monitor BARM. The results are summarized in Figs. 6.10, 6.11
and 6.12.We attacked the target platform at an arbitrary point in time during runtime.
Figure6.10 confirms that the enhanced BARM could reveal the DMA attack as well
as stop the malicious peripheral. The excerpt from the log in Figs. 6.11 and 6.12
belong to the same experiment that was the basis for Fig. 6.10.

Fig. 6.10 Evaluating enhanced BARM at an arbitrary point during runtime with the authentic
reporting channel. The conducted experiment is similar to the experiment presented in Sect. 5.3.3.
BARM’s sampling interval was 32ms and the tolerance value was 50 bus transactions. This time
BARM considers the ethernet controller as an additional bus master that allowed us to start our
authentic reporting channel. Heartbeat messages were sent every 32ms. The figure compares three
curves, i. e., the tolerance value T , BARM’s measurement results without any attack, and BARM’s
measurement results with a DAGGER attack

Fig. 6.11 BARM authentic reporting channel—client side. The figure presents a part of BARM’s
log output. BARM is deployed on the target platform, i. e., the client. The log output demonstrates
that BARM revealed a DMA attack and that BARM was able to stop the malicious peripheral

http://dx.doi.org/10.1007/978-3-319-13515-1_5
http://dx.doi.org/10.1007/978-3-319-13515-1_5

6.3 Evaluation 91

Fig. 6.12 BARM authentic reporting channel—server side. The figure depicts the log output of
the adapted OpenSSL server. The log consists of the TLS handshake messages, callback call mes-
sages, and received BARM measurements. The measurement values are the same as presented in
Fig. 6.11. The BARM instance that is deployed on the client side was able to stop the attack. In this
example, the local security policy tolerates the stopped attack. Alternatively, the server could have
torn down the channel when the server received the BARM measurement of 441 bus transactions.
The server was also configured with T = 50 bus transactions

92 6 Authentic Reporting to External Platforms

6.4 Security Considerations

In this section we informally evaluate the security requirements that we introduced in
the beginning of this chapter. A formal proof is outside the scope of this work. Many
research related to security proofs of the TLS protocols have been published in the
past. An overview is presented by Kohlweiss et al. [78]. The research also considers
multiple TLS variants. We assume that our TLS-based channel can also be formally
proven. However, the focus of this chapter is the enhanced BARM that considers the
network interface card. Hence, we review the extent to which our enhanced BARM
fulfills the requirements for a secure channel (R1), binding of BARMmeasurements
to the secure channel (R2), and privacy (R3).

• R1—Secure channel properties: Due to the applied TLS protocol the secure
channel properties confidentiality, integrity, authenticity as well as freshness are
ensured for the communication channel. Due to the enhanced BARM these prop-
erties are also ensured on the endpoint, i.e., the host CPU. Given that the attacker
has to search for valuable data, BARM ensures the integrity and the confidential-
ity of data that is present in the main memory. The attacker could merely ran-
domly write to or read from the main memory without searching for valuable data.
The attacker also needs to search for nonces, keymaterial or the session key SeK as
well as the private part of the signing key pair SKsign to attack the communication
session. Hence, the enhanced BARM also takes care of the properties authenticity
and freshness on the endpoint due to the detection of additional bus traffic when
the attacker searches in the main memory.
The attacker can only conduct a MitM attack if the attacker is able to steal private
key material or the session key via DMA. Scanning the memory for this data will
be detected by BARM. BARM can also identify the malicious device. Hence, the
access to the main memory can be prevented. Note, the host CPU could enforce
the attacker to cause more bus transactions by storing parts of the sensitive data in
processor registers. This technique was proposed in related work, see Sect. 3.2.6.
This will not protect the sensitive data, since DMA attacks can be used to dump
the content of processor registers into the main memory. However, such an attack
will cause more bus activity, which will also be detected by BARM.
The attacker could attempt to modify BARMmeasurements. To do so, the attacker
could try to find the variables in the main memory where BARM stores the val-
ues of the performance monitoring units that we exploit to reveal DMA attack.
However, the DMA-based search would be revealed by BARM. Alternatively, the
attacker could try to modify the host CPU registers that correspond to the perfor-
mance monitoring units used by BARM. The attacker has no direct access to host
CPU registers. However, the attacker needs to find a memory area to store host
CPU instructions that modify the performance monitoring processor registers. It
is required that the host CPU will sooner or later consider the memory area, which
contains the malicious instructions. Again, the attacker has to search for such an
area via DMA and this DMA-based search will be revealed by BARM.

http://dx.doi.org/10.1007/978-3-319-13515-1_3

6.4 Security Considerations 93

• R2—Binding of BARM measurements to the secure channel: Authenticity of
an endpoint is ensured by providing the certificate cert that includes the BARM
identifier and the public key part of the signing key pair PKsign. The certificate is
signed by a trusted party. Two factors ensure that the BARM measurements are
bound to the channel. First, the BARM measurement that is transmitted during
the handshake is signed using the endpoint’s secret part of the signing key SKsign.
Second, the exchangedDHvalues that are used for the session key computation are
also signed with SKsign. Hence, not only the first transmitted BARMmeasurement
as well as the DH values are bound to the channel endpoint, but also the session key
SeK that eventually establishes the secure communication channel for authentic
state reporting. This means that every heartbeat message is also bound to the
channel endpoint. These messages are only transmitted in encrypted form via the
channel that is protected by SeK .
The endpoint’s authenticity also prevents a relay attack where the attacker could
send a request to a third platform to sign platform state data PSD that includes a
BARMmeasurement value that is less than 50 bus transactions. The third platform
has no access to SKsign of the target platform. That means, we can exclude that
the attacker is able to conduct a relay attack. Alternatively, the attacker could try
to forge a PSD signature. To do so, the attacker requires SKsign that is present in
the main memory. Again, when the attacker searches for SKsign via DMA, BARM
will reveal this attack and the memory access will be prevented. Hence, we can
conclude that the attacker is unable to forge digital signatures.

• R3—Privacy: The only sensitive data that is transmitted unencrypted is the first
BARM measurement value that is sent to the peer during the handshake. While
a compromised network interface card could be used to intercept this value, it is
unlikely that this first measurement value is of use for an attacker. It is independent
of further measurement values, which are required to identify when BARM deter-
mines −T bus transactions. Hence, we can conclude that our authentic reporting
channel adheres to the least information paradigm.

6.5 Chapter Summary

In this chapter we developed, implemented, and evaluated an authentic reporting
channel application for BARM. This channel is based on the secure channel protocol
TLS. We modified the TLS protocol to consider BARM measurements during the
handshake aswell as during the rest of the communication session. Ourmodifications
are based on TLS extensions. This means that our channel is compliant with the
TLS specification. Furthermore, the implementation of our reporting channel fulfills
the security requirements (host CPU endpoint authenticity and channel binding)
that we defined for the DMA malware scenario. Without the fulfillment of these
requirements malware executed on the network interface card is a threat for an
authentic communication with an external platform.

94 6 Authentic Reporting to External Platforms

Our channel is an application for our bus agent runtime monitor if platform state
change reporting is required by a communication partner. The authentic reporting
channel transmits the state changes to the peer. We confirmed BARM’s effectiveness
and efficiency with our DMA malware DAGGER in conjunction with the imple-
mented reporting channel. Previous work that is related to authentic platform state
reporting assumed the presence of an efficient runtime monitor. However, the cor-
responding proof of concept implementations presented in previous work did not
include such a monitor. Furthermore, previous work did also not consider the DMA
malware scenario.

We can also conclude that BARM can handle more complex bus masters. We
demonstrated that BARM can not only handle the host CPU, the UHCI controller,
etc., but also the ethernet controller. To integrate the ethernet controller into BARM’s
detection model we had to analyze the controller with regards to memory read and
write accesses. We were able to distinguish read and write accesses by exploiting
additional performancemonitoring unit configurations.However, to eventually deter-
mine the number of bus transactions that are caused by the ethernet controller we had
to introduce a new parameter. This new parameter is the cache line size. According to
our evaluation, BARMmeasurement fluctuations are minimally higher as compared
to the BARM version that does not consider the ethernet controller. Nonetheless,
the fluctuations are still in the range of T = +/−50 bus transactions. Our empiri-
cal measurements revealed that the performance overhead of the authentic reporting
application is negligible if heartbeat messages are sent approximately every second.
The reporting interval can be greater than BARM’s sampling interval. The loss of
DMA malware attack information is prevented by including an attack history in the
heartbeat messages.

Chapter 7
Conclusions and Future Work

Logic is a systematic method of coming to the wrong conclusion
with confidence.

Manly’s Maxim,
Murphy’s Law Collection

The compromise of computer platform peripherals to attack the host platform
memory currently represents the peak of the rootkit evolution. This thesis presents
a study on computer platform attacks that exploit such rootkit techniques. Platform
peripherals are well-suited for hiding malicious code to attack the host platform. The
peripherals consist of an isolated execution environment with a dedicated proces-
sor, dedicated memory and direct access to the host memory. Prior to this work,
attacks originating from malware that exploits direct memory access (DMA) were
considered to be invisible to the host CPU. Security software such as state-of-the-art
anti-virus software does not consider the isolated execution environments. However,
this thesis demonstrates that the host CPU is able to detect attacks that exploit DMA.
This enables the host CPU to mitigate such attacks.

Nowadays, peripherals such as management controllers and network interface
cards (NIC) are present in almost every computing device. Server systems, desktop
systems, laptops, tablets, and evenmobile phones use dedicated controllers to offload
work from the host CPU. Although it is a resource intensive task to infiltrate such a
peripheral, these environments remain attractive in terms of stealthiness. The DMA
mechanism is the basis for attacking the host memory. Hence, we call peripheral-
based attack code, that exploits direct memory access, DMA malware. With DMA
malware an attacker can read from and write to the host main memory in a stealthy
manner. The adversary can have access to all data present in the main memory.
Therefore, the attacker can steal sensitive data such as cryptographic keys, passwords,
internet banking credentials, open documents, as well as all user input. The adversary
can also insert data into the main memory to implement a kernel backdoor. However,
this lowers the probability of a successful stealthy attack, since host software could
theoretically detect the malicious modification to the host memory. Conversely, the
attacker can also attack the host detection software via DMA to prevent the detection.

© Springer International Publishing Switzerland 2015
P. Stewin, Detecting Peripheral-based Attacks on the Host Memory,
T-Labs Series in Telecommunication Services, DOI 10.1007/978-3-319-13515-1_7

95

96 7 Conclusions and Future Work

In this work we developed and analyzed a DMA malware proof of concept.
Themalware is executed on an isolated execution environment whose inner workings
is inaccessible by the host. The goal of this thesis was to demonstrate that the host
CPU can defend itself against DMAmalware even if the host CPU is unable to access
the inner workings of the suspected peripheral. The peripheral that we used for our
malware proof of concept is Intel’s Manageability Engine (IntelME). Amongst other
things, Intel utilizes the ME environment to implement a web server, which provides
system administrators with remote device management capabilities. Administrators
can recover the host OS even when the platform does not boot up anymore, e.g., due
to OS kernel integrity corruptions. Intel applied protection mechanisms to ensure
that ME features cannot be exploited to attack the host. However, this protection
also ensures that, e.g., anti-virus software is incapable of evaluating the ME environ-
ment. Conversely, an attacker capable of infiltrating the ME environment, e.g., with
a zero-day exploit, also benefits from this protection.

Our malware proof of concept is a Direct memory Access based keystroke code
loGGER. DAGGER demonstrates that it is possible to implement stealthy malware
in terms of detection capabilities of the host CPU. The attack code is executed
on the dedicated ME processor. Thus, the keystroke code logger does not result
in a measurable performance overhead for the host. Our malware is also capa-
ble of capturing short living data such as keystroke codes. We exploit the isolated
out-of-band network feature of the ME environment to exfiltrate private data such as
the captured keystrokes to an external platform. This network feature is also invisible
to the host. Our analysis of DAGGER revealed that DMA malware must search for
valuable data in the host memory. The process of searching the host memory results
in additional bus activity, which increases if memory address randomization mech-
anisms are used or if the secret data remains in the CPU cache or CPU registers.
We also determined that parallel memory access requests of different devices are
arbitrated by the memory controller hub. This led to the assumption that the arbiter
could cause DMA side effects that can be utilized to detect DMA malware. We con-
firmed this assumption by conducting a memory stress test. With this experiment we
demonstrated a reliable measurable DMA side effect. Our measurements consider
precise timing based on host CPU clock cycles in conjunction with performance
counters.

We continued this research with the goal of developing a DMAmalware detector.
We analyzed the host CPU’s performance counters. Finally, our investigation resulted
in a performance counter configuration that is capable of distinguishing legitimate
and illegitimate memory bus transactions. We modeled the expected bus activity of
the host operating system and compared it to the measured bus activity. To model
the expected bus activity we use information that is available on the host CPU in the
operating system kernel.

We implemented our model and measurement mechanism in the form of an
operating system kernel module that we call Bus Agent Runtime Monitor, in short
BARM.BARMis a runtimemonitor that also considers transient attacks.Ourmonitor
causes only negligible performance overhead. BARM does not require any firmware
and hardware modifications. Our runtime monitor also does not require any access

7 Conclusions and Future Work 97

to the inner workings of potentially compromised peripherals. After evaluating our
proof of concept implementation ofBARM,we can conclude that the hostCPU is able
to detect and halt DMAmalware. Our evaluation also revealed minimal BARMmea-
surement fluctuations. Such fluctuations can occur when working with performance
counters, which we used for our proof of concept implementation. We overcame this
issue by introducing a tolerance value. The tolerance value is an empirical value that
represents tolerable bus transactions, i.e., in our case the tolerance value is 50 bus
transactions. We demonstrated that DMA malware causes significantly higher bus
activity when searching for valuable data in the host runtime memory.

However, the tolerance value also demonstrates a limitation of the current BARM
implementation. Theoretically, an adversary could hide up to 2T bus transactions
per sampling interval. This can only work if the adversary is able to predict the exact
points in time when BARM determines−T bus transactions. Conversely, this would
also result in a slower search phase that could be exploited by the host CPU to protect
the target data in the host memory. Another limitation was a possible MitM attack
conducted by the ethernet controller.Wemitigated suchMitM attacks by implement-
ing an authentic reporting channel. The authentic channel for reporting the platform
state was another goal of this work. The platform state contains DMA malware in
our scenario. BARM delivers authentic measurement results to an external platform.

A secure channel protocol such as TLS is insufficient in our scenario.We adjusted
the TLS protocol to meet the requirements of authentic platform state reporting. It
is important to consider the NIC as well, since it could potentially modify or block
BARM packets. To avoid detection the NIC could also implement a Man-in-the-
Middle (MitM) attack by relaying benign BARMmeasurements of another platform
to the platform thatwants to evaluate the state of the target platform.Another example
is to steal secret key material that is present in the host runtimememory via DMA. To
eliminate these issues, the communication channel is bound to the actual endpoint,
i.e., the host CPU. BARM digitally signs the bus activity measurements and ensures
that the private key as well as the session key of the communication channel are
protected from DMA malware. To implement a proof of concept authentic platform
state reporting application we had to enhance BARM to consider legitimate memory
bus activity of the NIC. The evaluation of our channel application confirms that the
NIC can be reliably considered by BARM.

Future Work Although we can conclude that the host CPU is able to defend itself
against DMA malware using BARM there are still some tasks left for future work.
First of all, it would be interesting to evaluate the idea behind BARM on non-Intel
hardware. Other architectures such as ARM also provide hardware performance
counters. Platforms that are based on ARM also work with peripherals that are
potential hosts for DMA malware. This is particularly interesting when considering
that such platforms make extensive use of SoCs (System on a Chip) in their designs.
Hence, peripherals within the same device package or die can be used to implement
system backdoors.

It is also quite interesting to investigate if the timing-based DMA side effect
can also be exploited to implement a reliable detection tool. This can be useful for

98 7 Conclusions and Future Work

architectures that do not support performance counters. The BARM implementation
should also consider other peripherals as well. From our point of view it is more
important to integrate additional peripherals in BARM’s detection model. It is also
possible to eliminate fluctuations in BARM’s measurements. It is important to note
that the integration of DMA-based devices is a resource intensive task. Therefore,
a follow-up research project should examine to which extent this process can be
automated.

References

1. DougAbbott.PCI Bus Demystified. Demystifying Technology Series. Elsevier Science, 2004.
2. Darren Abramson, Jeff Jackson, Sridhar Muthrasanallur, Gil Neiger, Greg Regnier, Rajesh

Sankaran, Ioannis Schoinas, Rich Uhlig, Balaji Vembu, and JohnWiegert. Intel Virtualization
Technology for Directed I/O. Intel Technology Journal, 10(3):179–192, August 2006.

3. Grace Agnew. Digital Rights Management: A Librarian’s Guide to Technology and Practise.
Chandos Information Professional Series. Chandos Pub., 2008.

4. Raja Naeem Akram, Konstantinos Markantonakis, and Keith Mayes. Application-binding
Protocol in the User Centric Smart Card Ownership Model. In Proceedings of the 16th Aus-
tralasian Conference on Information Security and Privacy, ACISP’11, pages 208–225, Berlin,
Heidelberg, 2011. Springer-Verlag.

5. Raja Naeem Akram, Konstantinos Markantonakis, and Keith Mayes. A Privacy Preserving
Application Acquisition Protocol. In Geyong Min, Yulei Wu, Lei (Chris) Liu, Xiaolong Jin,
Stephen A. Jarvis, and Ahmed Yassin Al-Dubai, editors, TrustCom, pages 383–392. IEEE
Computer Society, 2012.

6. Don Anderson. FireWire System Architecture: IEEE 1394a. PC System Architecture Series.
Addison Wesley, 1999.

7. Don Anderson. SATA Storage Technology. MindShare Technology Series. MindShare Press,
2007.

8. DonAnderson andDaveDzatko.Universal Serial Bus System Architecture. PC SystemArchi-
tecture Series. Addison Wesley, 2001.

9. Don Anderson and Tom Shanley. PCI System Architecture. PC System Architecture Series.
Addison Wesley, 1999.

10. Frederik Armknecht, Yacine Gasmi, Ahmad-Reza Sadeghi, Patrick Stewin, Martin Unger,
Gianluca Ramunno, and Davide Vernizzi. An Efficient Implementation of Trusted Channels
based onOpenSSL. InProceedings of the 3rd ACM Workshop on Scalable Trusted Computing,
STC’08, pages 41–50, New York, NY, USA, 2008. ACM.

11. Damien Aumaitre and Christophe Devine. Subverting Windows 7 x64 Kernel with
DMAAttacks. Sogeti ESECLab: http://esec-lab.sogeti.com/dotclear/public/publications/10-
hitbamsterdam-dmaattacks.pdf [accessed 25 February 2014], July 2010.

12. M. Baugher, D. McGrew, M. Naslund, E. Carrara, and K. Norrman. The Secure Real-time
Transport Protocol (SRTP). The Internet Engineering Task Force: http://tools.ietf.org/html/
rfc3711 [accessed 25 February 2014], March 2004. RFC3711.

13. Muli Ben-Yehuda, Jimi Xenidis, Michal Ostrowski, Karl Rister, Alexis Bruemmer, and Leen-
dert van Doorn. The Price of Safety: Evaluating IOMMU Performance. In OLS’07: The 2007
Ottawa Linux Symposium, pages 9–20, July 2007.

© Springer International Publishing Switzerland 2015
P. Stewin, Detecting Peripheral-based Attacks on the Host Memory,
T-Labs Series in Telecommunication Services, DOI 10.1007/978-3-319-13515-1

99

http://esec-lab.sogeti.com/dotclear/public/publications/10-hitbamsterdam-dmaattacks.pdf
http://esec-lab.sogeti.com/dotclear/public/publications/10-hitbamsterdam-dmaattacks.pdf
http://tools.ietf.org/html/rfc3711
http://tools.ietf.org/html/rfc3711

100 References

14. S. Blake-Wilson, M. Nystrom, D. Hopwood, J. Mikkelsen, and T. Wright. Transport Layer
Security (TLS) Extensions. The Internet Engineering Task Force: http://www.ietf.org/rfc/
rfc4366.txt [accessed 25 February 2014], April 2006. RFC4366.

15. Erik-Oliver Blass and William Robertson. TRESOR-HUNT: Attacking CPU-bound Encryp-
tion. In Proceedings of the 28th Annual Computer Security Applications Conference,
ACSAC’12, pages 71–78, New York, NY, USA, 2012. ACM.

16. Bill Blunden. The Rootkit Arsenal: Escape And Evasion In The Dark Corners Of The System.
Jones & Bartlett Learning, 2012.

17. Adam Boileau. Hit by a Bus: Physical Access Attacks with Firewire. Security-Assessment.
com: http://www.security-assessment.com/files/presentations/ab_firewire_rux2k6-final.pdf
[accessed 25 February 2014], October 2006. Ruxcon 2006.

18. Rory Breuk andAlbert Spruyt. Integrating DMAAttacks in Exploitation Frameworks. Home-
page of Cees de Laat: http://www.delaat.net/rp/2011-2012/p14/report.pdf [accessed 25 Feb-
ruary 2024], February 2012.

19. Rory Breuk and Albert Spruyt. Integrating DMA Attacks in Metasploit. Sebug: http://sebug.
net/paper/Meeting-Documents/hitbsecconf2012ams/D2%20SIGINT%20-%20Rory%
20Breuk%20and%20Albert%20Spruyt%20-%20Integrating%20DMA%20Attacks%20in%
20Metasploit.pdf [accessed 25 February 2014], May 2012.

20. Ernie Brickell, Jan Camenisch, and Liqun Chen. Direct Anonymous Attestation. In Proceed-
ings of the 11th ACM Conference on Computer and Communications Security, CCS’04, pages
132–145, New York, NY, USA, 2004. ACM.

21. Jonathan Brossard. Hardware Backdooring is Pratical. Toucan System: http://www.toucan-
system.com/research/blackhat2012_brossard_hardware_backdooring.pdf [accessed 25 Feb-
ruary 2014], 2012.

22. Jonathan Brossard. Hardware Backdooring is Pratical. Black Hat USA 2012: https://media.
blackhat.com/bh-us-12/Briefings/Brossard/BH_US_12_Brossard_Backdoor_Hacking_Slid
es.pdf [accessed 25 February 2014], 2012.

23. William Buchanan. Computer Busses. Electronics & Electrical. Taylor & Francis, 2010.
24. Ravi Budruk, Tom Shanley, and Don Anderson. PCI Express System Architecture. The PC

System Architecture Series. Addison Wesley, Pearson Education, July 2010. MindShare Inc.
25. Yuriy Bulygin. Chipset based Approach to Detect Virtualization Malware. hakim.ws: http://

www.hakim.ws/BHUSA08/speakers/Bulygin_Detection_of_Rootkits/bh-us-08-bulygin_Ch
ip_Based_Approach_to_Detect_Rootkits.pdf [accessed 25 February 2014], 2008.

26. John Butterworth, Corey Kallenberg, Xeno Kovah, and Amy Herzog. Problems with the
Static Root of Trust for Measurement. Black Hat: https://media.blackhat.com/us-13/US-13-
Butterworth-BIOS-Security-WP.pdf [accessed 25 February 2014], 2013. Presented at Black
Hat, Slides: https://media.blackhat.com/us-13/US-13-Butterworth-BIOS-Security-Slides.pdf
[accessed 25 February 2014].

27. Emanuele Cesena, Hans Löhr, Gianluca Ramunno, Ahmad-Reza Sadeghi, and Davide
Vernizzi. Anonymous Authentication with TLS and DAA. In Alessandro Acquisti, Sean W.
Smith, and Ahmad-Reza Sadeghi, editors, Trust and Trustworthy Computing, volume 6101
of Lecture Notes in Computer Science, pages 47–62. Springer, Berlin Heidelberg, 2010.

28. Xiaolin Chang, Ying Qin, Zhi Chen, and Bin Xing. ZRTP-based Trusted Transmission of
VoIP Traffic and Formal Verification. In Proceedings of the 2012 Fourth International Con-
ference on Multimedia Information Networking and Security, MINES’12, pages 560–563,
Washington, DC, USA, 2012. IEEE Computer Society.

29. Song Cheng, Liu Bing, Xin Yang, Yang Yixian, Li Zhongxian, and Yin Han. A Security-
enhanced Remote Platform Integrity Attestation Scheme. In Proceedings of the 5th Inter-
national Conference on Wireless Communications, Networking and Mobile Computing,
WiCOM’09, pages 4420–4423, Piscataway, NJ, USA, 2009. IEEE Press.

30. David Chess, Joan Dyer, Noamaru Itoi, Jeff Kravitz, Elaine Palmer, Ronald Perez, and Sean
Smith. Using Trusted Co-servers to Enhance Security ofWeb Interaction. United States Patent
7,194,759: http://www.freepatentsonline.com/7194759.html [accessed 25 February 2014],
March 2007.

http://www.ietf.org/rfc/rfc4366.txt
http://www.ietf.org/rfc/rfc4366.txt
http://www.security-assessment.com/files/presentations/ab_firewire_rux2k6-final.pdf
http://www.delaat.net/rp/2011-2012/p14/report.pdf
http://sebug.net/paper/Meeting-Documents/hitbsecconf2012ams/D2%20SIGINT%20-%20Rory%20Breuk%20and%20Albert%20Spruyt%20-%20Integrating%20DMA%20Attacks%20in%20Metasploit.pdf
http://sebug.net/paper/Meeting-Documents/hitbsecconf2012ams/D2%20SIGINT%20-%20Rory%20Breuk%20and%20Albert%20Spruyt%20-%20Integrating%20DMA%20Attacks%20in%20Metasploit.pdf
http://sebug.net/paper/Meeting-Documents/hitbsecconf2012ams/D2%20SIGINT%20-%20Rory%20Breuk%20and%20Albert%20Spruyt%20-%20Integrating%20DMA%20Attacks%20in%20Metasploit.pdf
http://sebug.net/paper/Meeting-Documents/hitbsecconf2012ams/D2%20SIGINT%20-%20Rory%20Breuk%20and%20Albert%20Spruyt%20-%20Integrating%20DMA%20Attacks%20in%20Metasploit.pdf
http://www.toucan-system.com/research/blackhat2012_brossard_hardware_backdooring.pdf
http://www.toucan-system.com/research/blackhat2012_brossard_hardware_backdooring.pdf
https://media.blackhat.com/bh-us-12/Briefings/Brossard/BH_US_12_Brossard_Backdoor_Hacking_Slides.pdf
https://media.blackhat.com/bh-us-12/Briefings/Brossard/BH_US_12_Brossard_Backdoor_Hacking_Slides.pdf
https://media.blackhat.com/bh-us-12/Briefings/Brossard/BH_US_12_Brossard_Backdoor_Hacking_Slides.pdf
http://www.hakim.ws/BHUSA08/speakers/Bulygin_Detection_of_Rootkits/bh-us-08-bulygin_Chip_Based_Approach_to_Detect_Rootkits.pdf
http://www.hakim.ws/BHUSA08/speakers/Bulygin_Detection_of_Rootkits/bh-us-08-bulygin_Chip_Based_Approach_to_Detect_Rootkits.pdf
http://www.hakim.ws/BHUSA08/speakers/Bulygin_Detection_of_Rootkits/bh-us-08-bulygin_Chip_Based_Approach_to_Detect_Rootkits.pdf
https://media.blackhat.com/us-13/US-13-Butterworth-BIOS-Security-WP.pdf
https://media.blackhat.com/us-13/US-13-Butterworth-BIOS-Security-WP.pdf
http://www.freepatentsonline.com/7194759.html

References 101

31. Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman. Linux Device Drivers, 3rd
Edition. O’Reilly Media Inc, 2005.

32. RobCrooke.Accelerating Innovation in theDesktop. Intel Corporation: http://download.intel.
com/pressroom/kits/events/computex2009/Crooke_Computex_presentation.pdf [accessed
25 February 2014], April 2009.

33. Francis M. David, Ellick Chan, Jeffrey C. Carlyle, and Roy H. Campbell. Cloaker: Hardware
Supported Rootkit Concealment. In IEEE Symposium on Security and Privacy, pages 296–
310. IEEE Computer Society, 2008.

34. Jonathan Davidson. Voice Over IP Fundamentals. Cisco Press Fundamentals Series. Cisco
Press, 2006.

35. Guillaume Delugré. Closer to Metal: Reverse Engineering the Broadcom NetExtreme’s
Firmware. Sogeti ESEC Lab: http://esec-lab.sogeti.com/dotclear/public/publications/10-
hack.lu-nicreverse_slides.pdf [accessed 25 February 2014], October 2010.

36. Guillaume Delugré. How to Develop a Rootkit for Broadcom NetExtreme Network
Cards. Sogeti ESEC Lab: http://esec-lab.sogeti.com/dotclear/public/publications/11-recon-
nicreverse_slides.pdf [accessed 25 February 2014], 2011.

37. Department of Defense. DEPARTMENT OF DEFENSE TRUSTED COMPUTER SYSTEM
EVALUATION CRITERIA. NIST CSRC: http://csrc.nist.gov/publications/history/dod85.
pdf [accessed 25 February 2014], December 1985. DEPARTMENT OF DEFENSE STAN-
DARD.

38. T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.2. Internet
Engineering Task Force: http://www.ietf.org/rfc/rfc5246.txt [accessed 25 February 2014],
August 2008. Network Working Group RFC 5246.

39. Kurt Dietrich. A Secure and Reliable Platform Configuration Change Reporting Mechanism
for Trusted Computing Enhanced Secure Channels. In Proceedings of the 9th International
Conference for Young Computer Scientists, 2008. ICYCS 2008, pages 2137–2142, 2008.

40. KurtDietrich.OnReliable PlatformConfigurationChangeReportingMechanisms for Trusted
ComputingEnabledPlatforms. Journal of Universal Computer Science, 16(4):507–518, 2010.

41. Jeroen Domburg. Hard Disk Hacking. SpritesMods.com: http://spritesmods.com/?
art=hddhack&page=1 [accessed 25 February 2014], 2013. Presented at OHM2013: http://
bofh.nikhef.nl/events/OHM/video/d2-t1-13-20130801-2300-hard_disks_more_than_just_
block_devices-sprite_tm.m4v [accessed 25 February 2014].

42. Maximilian Dornseif, Michael Becher, and Christian N. Klein. FireWire - All Your Memory
Are Belong To Us. CanSecWest: http://cansecwest.com/core05/2005-firewire-cansecwest.
pdf [accessed 25 February 2014], May 2005.

43. Maximillian Dornseif. 0wned by an iPod - Hacking by Firewire. Laboratory for Depend-
able Distributed Systems University of Mannheim: http://pi1.informatik.uni-mannheim.
de/filepool/presentations/0wned-by-an-ipod-hacking-by-firewire.pdf [accessed 25 February
2014], November 2004. PacSec 2004.

44. Loïc Duflot, Olivier Levillain, and Benjamin Morin. ACPI: Design Principles and Concerns.
In Proceedings of the 2nd International Conference on Trusted Computing, Trust’09, pages
14–28, Berlin, Heidelberg, 2009. Springer-Verlag.

45. Loïc Duflot, Yves-Alexis Perez, and Benjamin Morin. Run-time Firmware Integrity
Verification: What If You Can’t Trust Your Network Card? French Network and
Information Security Agency (FNISA): http://www.ssi.gouv.fr/IMG/pdf/Duflot-Perez_
runtime-firmware-integrity-verification.pdf [accessed 25 February 2014], March 2011.

46. Loïc Duflot, Yves-Alexis Perez, and BenjaminMorin. What If You Can’t Trust Your Network
Card? InProceedings of the 2011 International Symposium on Research in Attacks, Intrusions
and Defenses (RAID), pages 378–397, 2011.

47. LoïcDuflot, Yves-Alexis Perez, GuillaumeValadon, andOlivier Levillain. CanYouStill Trust
YourNetworkCard?FrenchNetwork and InformationSecurityAgency (FNISA): http://www.
ssi.gouv.fr/IMG/pdf/csw-trustnetworkcard.pdf [accessed 25 February 2014], March 2010.

48. Marcel Eckert, Igor Podebrad, and Bernd Klauer. Hardware Based Security Enhanced Direct
Memory Access. In Bart Decker, Jana Dittmann, Christian Kraetzer, and Claus Vielhauer,

http://download.intel.com/pressroom/kits/events/computex2009/Crooke_Computex_presentation.pdf
http://download.intel.com/pressroom/kits/events/computex2009/Crooke_Computex_presentation.pdf
http://esec-lab.sogeti.com/dotclear/public/publications/10-hack.lu-nicreverse_slides.pdf
http://esec-lab.sogeti.com/dotclear/public/publications/10-hack.lu-nicreverse_slides.pdf
http://esec-lab.sogeti.com/dotclear/public/publications/11-recon-nicreverse_slides.pdf
http://esec-lab.sogeti.com/dotclear/public/publications/11-recon-nicreverse_slides.pdf
http://csrc.nist.gov/publications/history/dod85.pdf
http://csrc.nist.gov/publications/history/dod85.pdf
http://www.ietf.org/rfc/rfc5246.txt
http://spritesmods.com/?art=hddhack&page=1
http://spritesmods.com/?art=hddhack&page=1
http://bofh.nikhef.nl/events/OHM/video/d2-t1-13-20130801-2300-hard_disks_more_than_just_block_devices-sprite_tm.m4v
http://bofh.nikhef.nl/events/OHM/video/d2-t1-13-20130801-2300-hard_disks_more_than_just_block_devices-sprite_tm.m4v
http://bofh.nikhef.nl/events/OHM/video/d2-t1-13-20130801-2300-hard_disks_more_than_just_block_devices-sprite_tm.m4v
http://cansecwest.com/core05/2005-firewire-cansecwest.pdf
http://cansecwest.com/core05/2005-firewire-cansecwest.pdf
http://pi1.informatik.uni-mannheim.de/filepool/presentations/0wned-by-an-ipod-hacking-by-firewire.pdf
http://pi1.informatik.uni-mannheim.de/filepool/presentations/0wned-by-an-ipod-hacking-by-firewire.pdf
http://www.ssi.gouv.fr/IMG/pdf/Duflot-Perez_runtime-firmware-integrity-verification.pdf
http://www.ssi.gouv.fr/IMG/pdf/Duflot-Perez_runtime-firmware-integrity-verification.pdf
http://www.ssi.gouv.fr/IMG/pdf/csw-trustnetworkcard.pdf
http://www.ssi.gouv.fr/IMG/pdf/csw-trustnetworkcard.pdf

102 References

editors,Communications and Multimedia Security, volume 8099 of Lecture Notes in Computer
Science, pages 145–151. Springer, Berlin Heidelberg, 2013.

49. Shawn Embleton, Sherri Sparks, and Cliff Zou. SMMRootkits: A New Breed of OS Indepen-
dent Malware. In Proceedings of the 4th International Conference on Security and Privacy
in Communication Networks, pages 1–12, New York, NY, USA, 2008. ACM.

50. A. Freier, P. Karlton, and P. Kocher. The Secure Sockets Layer (SSL) Protocol Version 3.0.
Internet Engineering Task Force: http://tools.ietf.org/html/rfc6101 [accessed 25 February
2014], August 2011. Category: Historic.

51. Tal Garfinkel and Mendel Rosenblum. A Virtual Machine Introspection Based Architecture
for Intrusion Detection. In Proceedings of the 2003 Network and Distributed Systems Security
Symposium, February 2003.

52. Yacine Gasmi, Ahmad-Reza Sadeghi, Patrick Stewin, Martin Unger, and N. Asokan. Beyond
Secure Channels. InProceedings of the 2007 ACM Workshop on Scalable Trusted Computing,
STC’07, pages 30–40, New York, NY, USA, 2007. ACM.

53. Kenneth Goldman, Ronald Perez, and Reiner Sailer. Linking Remote Attestation to Secure
Tunnel Endpoints. In STC ’06: Proceedings of the 1st ACM Workshop on Scalable Trusted
Computing, pages 21–24, New York, NY, USA, November 2006. ACM Press.

54. David Grawrock. Dynamics of a Trusted Platform: A Building Block Approach. Intel Press,
2009.

55. John Heasman. Implementing and Detecting a PCI Rootkit. Black Hat: http://www.blackhat.
com/presentations/bh-dc-07/Heasman/Paper/bh-dc-07-Heasman-WP.pdf [accessed 25 Feb-
ruary 2014], 2006.

56. John Heasman. Implementing and Detecting an ACPI BIOS Rootkit. Black Hat Federal:
http://www.blackhat.com/presentations/bh-federal-06/BH-Fed-06-Heasman.pdf [accessed
25 February 2014], 2006.

57. John Heasman. Hacking the Extensible Firmware Interface. Black Hat USA: https://
www.blackhat.com/presentations/bh-usa-07/Heasman/Presentation/bh-usa-07-heasman.
pdf [accessed 25 February 2014], 2007.

58. John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative Approach.
Morgan Kaufmann, May 2005. 3rd edition.

59. John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative Approach.
Morgan Kaufmann, 2012. 5th edition.

60. Greg Hoglund and Jamie Butler. Rootkits: Subverting the Windows Kernel. Addison Wesley
Professional, 2005.

61. David Hulton. Cardbus Bus-Mastering: 0Wning The Laptop, January 2006. Shmoocon 2006.
62. Intel Corporation. Universal Host Controller Interface (UHCI) Design Guide. The Slack-

ware Linux Project: ftp://ftp.slackware.com/pub/netwinder/pub/misc/docs/29765002-usb-
uhci%20design%20guide.pdf [accessed 25 February 2014], March 1996. Revision 1.1.

63. Intel Corporation. Intel 3 Series Express Chipset Family. Intel Corporation: http://www.intel.
com/Assets/PDF/datasheet/316966.pdf [accessed 25 February 2014], August 2007.

64. Intel Corporation. Intel I/O Controller Hub (ICH9) Family. Intel Corporation: http://www.
intel.com/content/dam/doc/datasheet/io-controller-hub-9-datasheet.pdf [accessed 25 Febru-
ary 2014], August 2008.

65. Intel Corporation. Intel I/O Controller Hub 8/9/10 and 82566/82567/82562V Software
Developer’s Manual. Intel Corporation: http://www.intel.com/content/dam/doc/manual/i-o-
controller-hub-8-9-10-82566-82567-82562v-software-dev-manual.pdf [accessed 25 Febru-
ary 2014], July 2009.

66. Intel Corporation. 2nd Generation Intel Core vPro Processor Family. Intel Cor-
poration: http://www.intel.com/content/dam/doc/white-paper/performance-2nd-generation-
core-vpro-family-paper.pdf [accessed 25 February 2014], June 2011.

67. Intel Corporation. Access Accounts More Securely with Intel Identity Protection Technology.
Intel Corporation: http://ipt.intel.com/Libraries/Documents/Intel_IdentityProtect_techbrief_
v7.sflb.ashx [accessed 25 February 2014], February 2011.

http://tools.ietf.org/html/rfc6101
http://www.blackhat.com/presentations/bh-dc-07/Heasman/Paper/bh-dc-07-Heasman-WP.pdf
http://www.blackhat.com/presentations/bh-dc-07/Heasman/Paper/bh-dc-07-Heasman-WP.pdf
http://www.blackhat.com/presentations/bh-federal-06/BH-Fed-06-Heasman.pdf
https://www.blackhat.com/presentations/bh-usa-07/Heasman/Presentation/bh-usa-07-heasman.pdf
https://www.blackhat.com/presentations/bh-usa-07/Heasman/Presentation/bh-usa-07-heasman.pdf
https://www.blackhat.com/presentations/bh-usa-07/Heasman/Presentation/bh-usa-07-heasman.pdf
http://www.intel.com/Assets/PDF/datasheet/316966.pdf
http://www.intel.com/Assets/PDF/datasheet/316966.pdf
http://www.intel.com/content/dam/doc/datasheet/io-controller-hub-9-datasheet.pdf
http://www.intel.com/content/dam/doc/datasheet/io-controller-hub-9-datasheet.pdf
http://www.intel.com/content/dam/doc/manual/i-o-controller-hub-8-9-10-82566-82567-82562v-software-dev-manual.pdf
http://www.intel.com/content/dam/doc/manual/i-o-controller-hub-8-9-10-82566-82567-82562v-software-dev-manual.pdf
http://www.intel.com/content/dam/doc/white-paper/performance-2nd-generation-core-vpro-family-paper.pdf
http://www.intel.com/content/dam/doc/white-paper/performance-2nd-generation-core-vpro-family-paper.pdf
http://ipt.intel.com/Libraries/Documents/Intel_IdentityProtect_techbrief_v7.sflb.ashx
http://ipt.intel.com/Libraries/Documents/Intel_IdentityProtect_techbrief_v7.sflb.ashx

References 103

68. Intel Corporation. Intel 5 Series Chipset and Intel 3400 Series Chipset. Intel Corpo-
ration: http://www.intel.com/content/dam/doc/datasheet/5-chipset-3400-chipset-datasheet.
pdf [accessed 25 February 2014], January 2012.

69. Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Manual—Volume
3 (3A, 3B & 3C): System Programming Guide. Intel Corporation: http://download.intel.com/
products/processor/manual/325384.pdf [accessed 27 April 2012], March 2012.

70. Intel Corporation. Intel Architecture Instruction Set Extensions Programming Refer-
ence. Intel Corporation: http://download-software.intel.com/sites/default/files/319433-015.
pdf [accessed 25 February 2014], July 2013.

71. Intel Corporation. Intel VTune Amplifier 2013 - Document Number: 326734–004. Intel Cor-
poration: http://software.intel.com/sites/products/documentation/doclib/iss/2013/amplifier/
lin/ug_docs/index.htm [accessed 25 February 2014], 2013. External Bus Events.

72. International Business Machines Corp. IBM 4764 PCI-X Cryptographic Coprocessor. Inter-
national Business Machines Corp.: http://www-03.ibm.com/security/cryptocards/pcixcc/
overview.shtml [accessed 5 March 2012], March 2012.

73. International Business Machines Corp. IBM PCIe Cryptographic Coprocessor. International
Business Machines Corp.: http://www-03.ibm.com/security/cryptocards/pciecc/overview.
shtml [accessed 5 March 2012], March 2012.

74. Shan Jiang, Sean Smith, and Kazuhiro Minami. SecuringWeb Servers against Insider Attack.
In ACSAC ’01: Proceedings of the 17th Annual Computer Security Applications Conference,
page 265, Washington, DC, USA, 2001. IEEE Computer Society.

75. C. Kaufman, P. Hoffman, Y. Nir, and P. Eronen. Internet Key Exchange Protocol Version 2
(IKEv2). The Internet Engineering Task Force: http://www.ietf.org/rfc/rfc5996.txt [accessed
25 February 2014], September 2010. RFC5996.

76. S. Kent and K. Seo. Security Architecture for the Internet Protocol. Internet Engineering
TaskForce: http://www.ietf.org/rfc/rfc4301.txt [accessed 25February 2014],December 2005.
Network Working Group RFC 4346. Obsoletes: RCF2401.

77. Samuel T. King, Peter M. Chen, Yi-Min Wang, Chad Verbowski, Helen J. Wang, and Jacob
R. Lorch. SubVirt: Implementing Malware with Virtual Machines. In SP ’06: Proceedings of
the 2006 IEEE Symposium on Security and Privacy, pages 314–327, Washington, DC, USA,
2006. IEEE Computer Society.

78. Markulf Kohlweiss, Ueli Maurer, Cristina Onete, Björn Tackmann, and Daniele Venturi.
(De-)Constructing TLS. Cryptology ePrint Archive: http://eprint.iacr.org/2014/020.pdf
[accessed 25 February 2014], January 2014.

79. Arvind Kumar, Purushottam Goel, and Ylian Saint-Hilaire. Active Platform Management
Demystified. 2009. Intel Press.

80. Evangelos Ladakis, Lazaros Koromilas, Giorgos Vasiliadis, Michalis Polychronakis, and
Sotiris Ioannidis. You Can Type, but You Can’t Hide: A Stealthy GPU-based Keylogger.
In Proceedings of the 6th European Workshop on System Security. EuroSec, Prague, Czech
Republic, April 2013.

81. Hojoon Lee, Hyungon Moon, Daehee Jang, Kihwan Kim, Jihoon Lee, Yunheung Paek, and
Brent Byunghoon Kang. KI-Mon: A Hardware-assisted Event-triggeredMonitoring Platform
for Mutable Kernel Object. In Proceedings of the 22nd Conference on USENIX Security
Symposium, SSYM’13. USENIX Association, 2013.

82. Yanlin Li, Jonathan M. McCune, and Adrian Perrig. SBAP: Software-based Attestation for
Peripherals. In Proceedings of the 3rd International Conference on Trust and Trustworthy
Computing, TRUST’10, pages 16–29, Berlin, Heidelberg, 2010. Springer-Verlag.

83. YanlinLi, JonathanM.McCune, andAdrianPerrig.VIPER:Verifying the Integrity of PERiph-
erals’ Firmware. In Proceedings of the ACM Conference on Computer and Communications
Security (CCS), October 2011.

84. Loukas K (snare). DE MYSTERIIS DOM JOBSIVS Mac EFI Rootkits. ho/ax.: http://ho.ax/
downloads/De_Mysteriis_Dom_Jobsivs_Black_Hat_Paper.pdf [accessed 25 February 2014],
2012. Paper.

http://www.intel.com/content/dam/doc/datasheet/5-chipset-3400-chipset-datasheet.pdf
http://www.intel.com/content/dam/doc/datasheet/5-chipset-3400-chipset-datasheet.pdf
http://download.intel.com/products/processor/manual/325384.pdf
http://download.intel.com/products/processor/manual/325384.pdf
http://download-software.intel.com/sites/default/files/319433-015.pdf
http://download-software.intel.com/sites/default/files/319433-015.pdf
http://software.intel.com/sites/products/documentation/doclib/iss/2013/amplifier/lin/ug_docs/index.htm
http://software.intel.com/sites/products/documentation/doclib/iss/2013/amplifier/lin/ug_docs/index.htm
http://www-03.ibm.com/security/cryptocards/pcixcc/overview.shtml
http://www-03.ibm.com/security/cryptocards/pcixcc/overview.shtml
http://www-03.ibm.com/security/cryptocards/pciecc/overview.shtml
http://www-03.ibm.com/security/cryptocards/pciecc/overview.shtml
http://www.ietf.org/rfc/rfc5996.txt
http://www.ietf.org/rfc/rfc4301.txt
http://eprint.iacr.org/2014/020.pdf
http://ho.ax/downloads/De_Mysteriis_Dom_Jobsivs_Black_Hat_Paper.pdf
http://ho.ax/downloads/De_Mysteriis_Dom_Jobsivs_Black_Hat_Paper.pdf

104 References

85. Loukas K (snare). DE MYSTERIIS DOM JOBSIVS Mac EFI Rootkits. ho/ax.: http://
ho.ax/downloads/De_Mysteriis_Dom_Jobsivs_Black_Hat_Slides.pdf [accessed 25 February
2014], 2012. Slides.

86. John Lyle and Andrew Martin. Engineering Attestable Services. In Alessandro Acquisti,
SeanW. Smith, and Ahmad-Reza Sadeghi, editors, Trust and Trustworthy Computing, volume
6101 of Lecture Notes in Computer Science, pages 257–264. Springer, Berlin Heidelberg,
2010.

87. Carsten Maartmann-Moe. Inception. Break & Enter: http://www.breaknenter.org/projects/
inception/ [accessed 25 February 2014].

88. VinodMamtani. DMADirections AndWindows. Microsoft: http://download.microsoft.com/
download/a/f/d/afdfd50d-6eb9-425e-84e1-b4085a80e34e/sys-t304_wh07.pptx [accessed
25 February 2014], 2007.

89. John Marchesini, Sean W. Smith, Omen Wild, Josh Stabiner, and Alex Barsamian. Open-
Source Applications of TCPA Hardware. In ACSAC ’04: Proceedings of the 20th Annual
Computer Security Applications Conference (ACSAC’04), pages 294–303, Washington, DC,
USA, 2004. IEEE Computer Society.

90. David Maynor. DMA: Skeleton Key of Computing & & Selected Soap Box Rants.
CanSecWest: http://cansecwest.com/core05/DMA.ppt [accessed 25 February 2014], May
2005.

91. Jonathan M. McCune, Bryan Parno, Adrian Perrig, Michael K. Reiter, and Arvind Seshadri.
Minimal TCB Code Execution. In SP ’07: Proceedings of the 2007 IEEE Symposium on
Security and Privacy, pages 267–272, Washington, DC, USA, 2007. IEEE Computer Society.

92. Hyungon Moon, Hojoon Lee, Jihoon Lee, Kihwan Kim, Yunheung Paek, and Brent Byung-
hoon Kang. Vigilare: Toward Snoop-based Kernel Integrity Monitor. In Proceedings of the
2012 ACM Conference on Computer and Communications Security, CCS’12, pages 28–37,
New York, NY, USA, 2012. ACM.

93. Tilo Müller, Andreas Dewald, and Felix C. Freiling. AESSE: A Cold-boot Resistant Imple-
mentation of AES. In Proceedings of the Third European Workshop on System Security,
EUROSEC ’10, pages 42–47, New York, NY, USA, 2010. ACM.

94. Tilo Müller, Felix C. Freiling, and Andreas Dewald. TRESOR Runs Encryption Securely
Outside RAM. In Proceedings of the 20th USENIX Conference on Security, SEC’11, pages
17–17, Berkeley, CA, USA, 2011. USENIX Association.

95. TiloMüller, Benjamin Taubmann, and Felix C. Freiling. TreVisor: OS-independent Software-
based Full Disk Encryption Secure against Main Memory Attacks. In Proceedings of the 10th
International Conference on Applied Cryptography and Network Security, ACNS’12, pages
66–83, Berlin, Heidelberg, 2012. Springer-Verlag.

96. Quan Nguyen. Issues in Software-based Attestation. Kaspersky Lab: http://www.kaspersky.
com/images/Quan%20Nguyen.pdf [accessed 25 February 2014], November 2012.

97. Alfredo Ortega and Anibal Sacco. Deactivate the Rootkit: Attacks on BIOS Anti-theft Tech-
nologies. Black Hat USA: http://www.blackhat.com/presentations/bh-usa-09/ORTEGA/
BHUSA09-Ortega-DeactivateRootkit-SLIDES.pdf [accessed 25 February 2014], July 2009.
Slides.

98. Alfredo Ortega and Anibal Sacco. Deactivate the Rootkit: Attacks on BIOS Anti-theft Tech-
nologies. Black Hat USA: http://www.blackhat.com/presentations/bh-usa-09/ORTEGA/
BHUSA09-Ortega-DeactivateRootkit-PAPER.pdf [accessed 25 February 2014], July 2009.
Paper.

99. Siani Pearson, Boris Balacheff, Liqun Chen, David Plaquin, and Graeme Proudler. Trusted
Computing Platforms: TCPA Technology in Context. Prentice Hall PTR, Upper Saddle River,
NJ, USA, 2002. Hewlett-Packard Professional Books.

100. Nick L. Petroni, Jr., Timothy Fraser, Jesus Molina, and William A. Arbaugh. Copilot - A
Coprocessor-based Kernel Runtime Integrity Monitor. In Proceedings of the 13th Conference
on USENIX Security Symposium - Volume 13, SSYM’04, Berkeley, CA, USA, 2004. USENIX
Association.

http://ho.ax/downloads/De_Mysteriis_Dom_Jobsivs_Black_Hat_Slides.pdf
http://ho.ax/downloads/De_Mysteriis_Dom_Jobsivs_Black_Hat_Slides.pdf
http://www.breaknenter.org/projects/inception/
http://www.breaknenter.org/projects/inception/
http://download.microsoft.com/download/a/f/d/afdfd50d-6eb9-425e-84e1-b4085a80e34e/sys-t304_wh07.pptx
http://download.microsoft.com/download/a/f/d/afdfd50d-6eb9-425e-84e1-b4085a80e34e/sys-t304_wh07.pptx
http://cansecwest.com/core05/DMA.ppt
http://www.kaspersky.com/images/Quan%20Nguyen.pdf
http://www.kaspersky.com/images/Quan%20Nguyen.pdf
http://www.blackhat.com/presentations/bh-usa-09/ORTEGA/BHUSA09-Ortega-DeactivateRootkit-SLIDES.pdf
http://www.blackhat.com/presentations/bh-usa-09/ORTEGA/BHUSA09-Ortega-DeactivateRootkit-SLIDES.pdf
http://www.blackhat.com/presentations/bh-usa-09/ORTEGA/BHUSA09-Ortega-DeactivateRootkit-PAPER.pdf
http://www.blackhat.com/presentations/bh-usa-09/ORTEGA/BHUSA09-Ortega-DeactivateRootkit-PAPER.pdf

References 105

101. DavidR. Piegdon andLexi Pimenidis. TargetingPhysicallyAddressableMemory. InBernhard
Hämmerli andRobinSommer, editors,Detection of Intrusions and Malware, and Vulnerability
Assessment, volume 4579 of Lecture Notes in Computer Science, pages 193–212. Springer,
Berlin Heidelberg, 2007.

102. Marsh Ray and Steve Dispensa. Renegotiating TLS. Internet Archive Way Back Machine:
http://web.archive.org/web/20130203213851/http://extendedsubset.com/Renegotiating_TL
S.pdf [accessed 25 February 2014], November 2009.

103. SashaRehbock. TrustworthyClients: ExtendingTNC for IntegrityChecks inWeb-basedEnvi-
ronments. Master’s thesis, University of Canterbury. Computer Science and Software Engi-
neering, 2008. http://ir.canterbury.ac.nz/handle/10092/2369 [accessed 25 February 2014].

104. James Reinders. VTune Performance Analyzer Essentials: Measurement and Tuning Tech-
niques for Software Developers. Engineer to Engineer Series. Intel Press, 2005.

105. Mark E. Russinovich and David A. Solomon. Windows Internals: Including Windows Server
2008 and Windows Vista, Fifth Edition. Microsoft Press, 5th edition, 2009.

106. Mark E. Russinovich, David A. Solomon, and Alex Ionescu. Windows Internals 6th Edition,
Part 2. Microsoft Press, 2012.

107. Joanna Rutkowska. Red Pill... Or How to Detect VMM Using (almost) One CPU Instruc-
tion. Internet Archive: http://web.archive.org/web/20110726182809/http://invisiblethings.
org/papers/redpill.html [accessed 25 February 2014], November 2004.

108. Joanna Rutkowska. Subverting Vista Kernel for Fun and Profit. Black Hat: http://
blackhat.com/presentations/bh-usa-06/BH-US-06-Rutkowska.pdf [accessed 25 February
2014], August 2006.

109. Ahmad-Reza Sadeghi and Steffen Schulz. Extending IPsec for Efficient Remote Attestation.
In Radu Sion, Reza Curtmola, Sven Dietrich, Aggelos Kiayias, Josep M. Miret, Kazue Sako,
andFrancesc Seb, editors,Financial Cryptography and Data Security, volume6054ofLecture
Notes in Computer Science, pages 150–165. Springer, Berlin Heidelberg, 2010.

110. Ahmad-Reza Sadeghi, Marko Wolf, Christian Stüble, N. Asokan, and Jan-Erik Ekberg.
Enabling Fairer Digital Rights Management with Trusted Computing. In Proceedings of
the 10th International Conference on Information Security, ISC’07, pages 53–70, Berlin,
Heidelberg, 2007. Springer-Verlag.

111. Fernand Lone Sang, Éric Lacombe, Vincent Nicomette, and Yves Deswarte. Exploiting an
I/OMMUVulnerability. In Proceedings of the 5th International Conference on Malicious and
Unwanted Software (MALWARE), pages 7–14, October 2010.

112. Fernand Lone Sang, Vincent Nicomette, and Yves Deswarte. I/O Attacks in Intel-PC Archi-
tectures and Countermeasures. SysSec: http://www.syssec-project.eu/media/page-media/23/
syssec2011-s1.4-sang.pdf [accessed 25 February 2014], July 2011.

113. S. Santesson. TLSHandshakeMessage for Supplemental Data. The Internet Engineering Task
Force: http://www.ietf.org/rfc/rfc4680.txt [accessed 25 February 2014], September 2006.
RFC4680.

114. Russ Sevinsky. Funderbolt - Adventures in Thunderbolt DMA Attacks. Black Hat: https://
media.blackhat.com/us-13/US-13-Sevinsky-Funderbolt-Adventures-in-Thunderbolt-
DMA-Attacks-Slides.pdf [accessed 25 February 2014], 2013.

115. Gaurav Shah, Andres Molina, and Matt Blaze. Keyboards and Covert Channels. In Proceed-
ings of the 15th Conference on USENIX Security Symposium - Volume 15, USENIX-SS’06,
Berkeley, CA, USA, 2006. USENIX Association.

116. Tom Shanley and Don Anderson. ISA System Architecture. Mindshare PC System Architec-
ture. Addison Wesley, 1995.

117. Tom Shanley and Bob Colwell. The Unabridged Pentium 4: IA32 Processor Genealogy. PC
System Architecture Series. Addison Wesley Professional, 2005.

118. John P. Shen andMikko H. Lipasti. Modern Processor Design: Fundamentals of Superscalar
Processors. Electrical and Computer Engineering. McGraw-Hill Companies, Incorporated,
2005.

119. Patrick Simmons. Security Through Amnesia: A Software-based Solution to the Cold Boot
Attack onDiskEncryption. InProceedings of the 27th Annual Computer Security Applications
Conference, ACSAC’11, pages 73–82, New York, NY, USA, 2011. ACM.

http://web.archive.org/web/20130203213851/http://extendedsubset.com/Renegotiating_TLS.pdf
http://web.archive.org/web/20130203213851/http://extendedsubset.com/Renegotiating_TLS.pdf
http://ir.canterbury.ac.nz/handle/10092/2369
http://web.archive.org/web/20110726182809/http://invisiblethings.org/papers/redpill.html
http://web.archive.org/web/20110726182809/http://invisiblethings.org/papers/redpill.html
http://blackhat.com/presentations/bh-usa-06/BH-US-06-Rutkowska.pdf
http://blackhat.com/presentations/bh-usa-06/BH-US-06-Rutkowska.pdf
http://www.syssec-project.eu/media/page-media/23/syssec2011-s1.4-sang.pdf
http://www.syssec-project.eu/media/page-media/23/syssec2011-s1.4-sang.pdf
http://www.ietf.org/rfc/rfc4680.txt
https://media.blackhat.com/us-13/US-13-Sevinsky-Funderbolt-Adventures-in-Thunderbolt-DMA-Attacks-Slides.pdf
https://media.blackhat.com/us-13/US-13-Sevinsky-Funderbolt-Adventures-in-Thunderbolt-DMA-Attacks-Slides.pdf
https://media.blackhat.com/us-13/US-13-Sevinsky-Funderbolt-Adventures-in-Thunderbolt-DMA-Attacks-Slides.pdf

106 References

120. Ned M. Smith. System and Method for Combining User and Platform Authentication in
Negotiated Channel Security Protocols. United States Patent Application 20050216736:
http://www.freepatentsonline.com/20050216736.html [accessed 25 February 2014], Septem-
ber 2005.

121. Stephen L. Smith. Intel RoadmapOverviewAugust 20th 2008. Intel Corporation: http://down
load.intel.com/pressroom/kits/events/idffall_2008/SSmith_briefing_roadmap.pdf [accessed
25 February 2014], August 2008.

122. Patrick Stewin.APrimitive forRevealingStealthyPeripheral-basedAttacks on theComputing
Platform’s Main Memory. In Proceedings of the 16th International Symposium on Research
in Attacks, Intrusions and Defenses (RAID), 2013.

123. Patrick Stewin and Iurii Bystrov. Understanding DMA Malware. In Proceedings of the 9th
Conference on Detection of Intrusions and Malware & Vulnerability Assessment, 2012.

124. Patrick Stewin and Iurii Bystrov. Persistent, Stealthy, Remote-controlled Dedicated Hardware
Malware. http://stewin.org/slides/44con_2013-dedicated_hw_malware-stewin_bystrov.pdf
[accessed 25 February 2014], September 2013. 44CON.

125. Patrick Stewin and Iurii Bystrov. Persistent, Stealthy, Remote-controlled Dedicated Hard-
ware Malware. http://stewin.org/slides/30c3-dedicated_hw_malware-stewin_bystrov_final.
pdf [accessed 25 February 2014], December 2013. 30C3: 30th Chaos Communication
Congress.

126. Patrick Stewin, Jean-Pierre Seifert, and Collin Mulliner. Poster: Towards Detecting DMA
Malware. In Proceedings of the 18th ACM Conference on Computer and Communications
Security, CCS’11, pages 857–860, New York, NY, USA, 2011. ACM.

127. JonStokes. Inside The Machine: An Illustrated Introduction to Microprocessors and Computer
Architecture. No Starch Press Series. No Starch Press, 2007.

128. Frederic Stumpf, Omid Tafreschi, Patrick Röder, and Claudia Eckert. A Robust Integrity
Reporting Protocol for Remote Attestation. In Proceedings of the Second Workshop on
Advances in Trusted Computing (WATC’06 Fall), Tokyo, December 2006.

129. Peter Szor.The Art Of Computer Virus Research And Defense. Symantec Press Series.Addison
Wesley Publishing Company Incorporated, 2005.

130. TCG Infrastructure Working Group (IWG). TCG Infrastructure Working Group
Reference Architecture for Interoperability (Part I). Trusted Computing Group:
http://www.trustedcomputinggroup.org/files/resource_files/8770A217-1D09-3519-AD1754
3BF6163205/IWG_Architecture_v1_0_r1.pdf [accessed 25 February 2014], June 2005.
Specification Version 1.0 Revision 1.

131. Alexander Tereshkin and Rafal Wojtczuk. Introducing Ring -3 Rootkits. Black Hat:
http://www.blackhat.com/presentations/bh-usa-09/TERESHKIN/BHUSA09-Tereshkin-Rin
g3Rootkit-SLIDES.pdf [accessed 25 February 2014], July 2009.

132. The Computer Language Company Inc., Heartbeat. Computer Desktop Encyclope-
dia: http://lookup.computerlanguage.com/host_app/search?cid=C999999&term=heartbeat&
lookup.x=27&lookup.y=21 [accessed 25 February 2014], 2013.

133. Robert Bruce Thompson and Barbara Fritchman Thompson. PC Hardware in a Nutshell, 3rd
Edition. O’Reilly & Associates Inc, Sebastopol, CA, USA, 2003.

134. ArrigoTriulzi. ProjectMauxMk.II. TheAlchemistOwl: http://www.alchemistowl.org/arrigo/
Papers/Arrigo-Triulzi-PACSEC08-Project-Maux-II.pdf [accessed 25 February 2014], 2008.

135. Arrigo Triulzi. The Jedi Packet Trick Takes Over the Deathstar. The Alchemist Owl:
http://www.alchemistowl.org/arrigo/Papers/Arrigo-Triulzi-CANSEC10-Project-Maux-III.
pdf [accessed 25 February 2014], March 2010.

136. Trusted Computing Group. TCG PC Client Specific Implementation Specification
For Conventional BIOS. Trusted Computing Group: http://www.trustedcomputinggroup.
org/files/temp/64505409-1D09-3519-AD5C611FAD3F799B/PC Client Implementation for
BIOS.pdf [accessed 25 February 2014], July 2005.

137. Trusted Computing Group. TCG Trusted Network Connect—TNC IF-T: Binding to TLS.
Trusted Computing Group: http://www.trustedcomputinggroup.org/files/static_page_files/
1D8D3689-1A4B-B294-D0E7699128CB9817/TNC_IFT_TLS_v2_0_r7.pdf [accessed 25
February 2014], February 2013. Specification Version 2.0 Revision 7.

http://www.freepatentsonline.com/20050216736.html
http://download.intel.com/pressroom/kits/events/idffall_2008/SSmith_briefing_roadmap.pdf
http://download.intel.com/pressroom/kits/events/idffall_2008/SSmith_briefing_roadmap.pdf
http://stewin.org/slides/44con_2013-dedicated_hw_malware-stewin_bystrov.pdf
http://stewin.org/slides/30c3-dedicated_hw_malware-stewin_bystrov_final.pdf
http://stewin.org/slides/30c3-dedicated_hw_malware-stewin_bystrov_final.pdf
http://www.trustedcomputinggroup.org/files/resource_files/8770A217-1D09-3519-AD17543BF6163205/IWG_Architecture_v1_0_r1.pdf
http://www.trustedcomputinggroup.org/files/resource_files/8770A217-1D09-3519-AD17543BF6163205/IWG_Architecture_v1_0_r1.pdf
http://www.blackhat.com/presentations/bh-usa-09/TERESHKIN/BHUSA09-Tereshkin-Ring3Rootkit-SLIDES.pdf
http://www.blackhat.com/presentations/bh-usa-09/TERESHKIN/BHUSA09-Tereshkin-Ring3Rootkit-SLIDES.pdf
http://lookup.computerlanguage.com/host_app/search?cid=C999999&term=heartbeat&lookup.x=27&lookup.y=21
http://lookup.computerlanguage.com/host_app/search?cid=C999999&term=heartbeat&lookup.x=27&lookup.y=21
http://www.alchemistowl.org/arrigo/Papers/Arrigo-Triulzi-PACSEC08-Project-Maux-II.pdf
http://www.alchemistowl.org/arrigo/Papers/Arrigo-Triulzi-PACSEC08-Project-Maux-II.pdf
http://www.alchemistowl.org/arrigo/Papers/Arrigo-Triulzi-CANSEC10-Project-Maux-III.pdf
http://www.alchemistowl.org/arrigo/Papers/Arrigo-Triulzi-CANSEC10-Project-Maux-III.pdf
http://www.trustedcomputinggroup.org/files/temp/64505409-1D09-3519-AD5C611FAD3F799B/PC
http://www.trustedcomputinggroup.org/files/temp/64505409-1D09-3519-AD5C611FAD3F799B/PC
http://www.trustedcomputinggroup.org/files/static_page_files/1D8D3689-1A4B-B294-D0E7699128CB9817/TNC_IFT_TLS_v2_0_r7.pdf
http://www.trustedcomputinggroup.org/files/static_page_files/1D8D3689-1A4B-B294-D0E7699128CB9817/TNC_IFT_TLS_v2_0_r7.pdf

References 107

138. Trusted Network Connect Work Group. TCG Trusted Network Connect TNC Architecture
for Interoperability. Trusted Computing Group: http://www.trustedcomputinggroup.org/
files/resource_files/2884F884-1A4B-B294-D001FAE2E17EA3EB/TNC_Architecture_v1_
5_r3-1.pdf [accessed 25 February 2014], May 2012. Specification Version 1.5, Revision 3.

139. USB Implementers Forum, Inc.USB.org -ExpressCard_specs.USB Implementers Forum Inc:
http://www.usb.org/developers/expresscard/EC_specifications [accessed 25 February 2014],
2009.

140. Giorgos Vasiliadis, Michalis Polychronakis, and Sotiris Ioannidis. GPU-Assisted Malware.
In Proceedings of the 5th International Conference on Malicious and Unwanted Software
(MALWARE), pages 1–6, October 2010.

141. AmitVasudevan, JonathanMcCune, JamesNewsome,AdrianPerrig, andLeendert vanDoorn.
CARMA: A Hardware Tamper-resistant Isolated Execution Environment on Commodity x86
Platforms. In Proceedings of the 7th ACM Symposium on Information, Computer and Com-
munications Security, ASIACCS’12, pages 48–49, New York, NY, USA, 2012. ACM.

142. Davide Vernizzi. TLS Hello Extensions and Supplemental Data. Blog: http://tlsext-
general.blogspot.de/2008/12/tls-hello-extensions-and-supplemental.html [accessed 25 Feb-
ruary 2014], December 2008.

143. JianWang, Zhiyong Zhang, Fei Xiang, Lili Zhang, andQingli Chen. ATrustedAuthentication
Protocol based on SDIO Smart Card for DRM. International Journal of Digital Content
Technology & Its Applications, 6(23):222–233, December 2012.

144. Filip Wecherowski. A Real SMM Rootkit: Reversing and Hooking BIOS SMI Handlers.
Phrack Magazine Issue 0x42, Phile #0x0B of 0x11: http://www.phrack.org/issues.html?
issue=66&id=11#article [accessed 25 February 2014], June 2009.

145. Rafal Wojtczuk and Joanna Rutkowska. Attacking SMM Memory via Intel CPU Cache Poi-
soning. Invisible Things Lab: http://invisiblethingslab.com/itl/Resources.html [accessed 25
February 2014], March 2009.

146. Rafal Wojtczuk and Joanna Rutkowska. Attacking Intel TXT via SINIT Code Execu-
tion Hijacking. Invisible Things Lab: http://www.invisiblethingslab.com/resources/2011/
Attacking_Intel_TXT_via_SINIT_hijacking.pdf [accessed 25 February 2014], November
2011.

147. RafalWojtczuk and JoannaRutkowska. Following theWhite Rabbit: SoftwareAttacks against
Intel VT-d Technology. Invisible Things Lab: http://www.invisiblethingslab.com/resources/
2011/Software%20Attacks%20on%20Intel%20VT-d.pdf [accessed 25February 2014],April
2011.

148. Rafal Wojtczuk, Joanna Rutkowska, and Alexander Tereshkin. Another Way to Circum-
vent Intel Trusted Execution Technology. Invisible Things Lab: http://invisiblethingslab.com/
resources/misc09/Another%20TXT%20Attack.pdf [accessed 25 February 2014], December
2009.

149. Rafal Wojtczuk and Alexander Tereshkin. Attacking Intel BIOS. Invisible Things Lab: http://
invisiblethingslab.com/resources/bh09usa/Attacking%20Intel%20BIOS.pdf [accessed 25
February 2014], July 2009.

150. Ben-Ami Yassour, Muli Ben-Yehuda, and Orit Wasserman. On the DMA Mapping Problem
in Direct Device Assignment. In Proceedings of the 3rd Annual Haifa Experimental Systems
Conference, SYSTOR’10, pages 18:1–18:12, New York, NY, USA, 2010. ACM.

151. Yue Yu, Sun Hao, and Kong Yanan. Expand the SSL/TLS Protocol on Trusted Platform
Module. InProceedings of the International Conference on Computer Application and System
Modeling (ICCASM), volume 11, pages V11–48-V11-51, 2010.

152. Jonas Zaddach, Anil Kurmus, Davide Balzarotti, Erik Olivier Blass, Aurelien Francillon,
Travis Goodspeed,Moitrayee Gupta, and Ioannis Koltsidas. Implementation and Implications
of a Stealth Hard-Drive Backdoor. In Proceedings of the 29th Annual Computer Security
Applications Conference (ACSAC), ACSAC 13. ACM, December 2013.

http://www.trustedcomputinggroup.org/files/resource_files/2884F884-1A4B-B294-D001FAE2E17EA3EB/TNC_Architecture_v1_5_r3-1.pdf
http://www.trustedcomputinggroup.org/files/resource_files/2884F884-1A4B-B294-D001FAE2E17EA3EB/TNC_Architecture_v1_5_r3-1.pdf
http://www.trustedcomputinggroup.org/files/resource_files/2884F884-1A4B-B294-D001FAE2E17EA3EB/TNC_Architecture_v1_5_r3-1.pdf
http://www.usb.org/developers/expresscard/EC_specifications
http://tlsext-general.blogspot.de/2008/12/tls-hello-extensions-and-supplemental.html
http://tlsext-general.blogspot.de/2008/12/tls-hello-extensions-and-supplemental.html
http://www.phrack.org/issues.html?issue=66&id=11
http://www.phrack.org/issues.html?issue=66&id=11
http://invisiblethingslab.com/itl/Resources.html
http://www.invisiblethingslab.com/resources/2011/Attacking_Intel_TXT_via_SINIT_hijacking.pdf
http://www.invisiblethingslab.com/resources/2011/Attacking_Intel_TXT_via_SINIT_hijacking.pdf
http://www.invisiblethingslab.com/resources/2011/Software%20Attacks%20on%20Intel%20VT-d.pdf
http://www.invisiblethingslab.com/resources/2011/Software%20Attacks%20on%20Intel%20VT-d.pdf
http://invisiblethingslab.com/resources/misc09/Another%20TXT%20Attack.pdf
http://invisiblethingslab.com/resources/misc09/Another%20TXT%20Attack.pdf
http://invisiblethingslab.com/resources/bh09usa/Attacking%20Intel%20BIOS.pdf
http://invisiblethingslab.com/resources/bh09usa/Attacking%20Intel%20BIOS.pdf

108 References

153. FengweiZhang. IOCheck:AFramework toEnhance theSecurity of I/ODevices atRuntime. In
Proceedings of the 43rd Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN’13), June 2013.

154. P. Zimmermann, A. Johnston, and J. Callas. ZRTP: Media Path Key Agreement for Uni-
cast Secure RTP. The Internet Engineering Task Force: http://www.ietf.org/rfc/rfc6189.txt
[accessed 25 February 2014], April 2011. RFC6189.

http://www.ietf.org/rfc/rfc6189.txt

	Acknowledgments
	Abstract
	Publications Related to this Thesis
	Contents
	1 Introduction
	1.1 Problem Statement
	1.2 Research Question and Methodology
	1.3 Impact of Thesis Contributions
	1.4 Structure of the Thesis

	2 Technical Background, Preliminaries and Assumptions
	2.1 The Rootkit Evolution
	2.2 Typical x86-Based System Architecture
	2.3 Intel x86 Based Host Central Processing Unit
	2.4 Direct Memory Access
	2.5 Bus Master
	2.6 Input/Output Memory Management Units
	2.7 Trust and Adversary/Attacker Model

	3 Related Work
	3.1 DMA Attacks
	3.1.1 Devices Connectable from the Outside
	3.1.2 Devices Firmly Established Inside the Platform Chassis

	3.2 Countermeasure Approaches
	3.2.1 Measured Firmware
	3.2.2 Signed Firmware
	3.2.3 Software/Latency-Based Attestation
	3.2.4 Monitoring Approaches
	3.2.5 Bus Snooping Approaches
	3.2.6 Sensitive Data Protection
	3.2.7 Input/Output Memory Management Unit

	3.3 Secure Communication Channels Considering Platform State Reporting
	3.3.1 Trusted Platform Module Based Approaches
	3.3.2 Co-processor and Smart Card Based Approaches

	4 Study of a Stealthy, Direct Memory Access Based Malicious Software
	4.1 DMA Malware Definition
	4.2 DMA Malware Core Functionality
	4.3 Design and Implementation of DAGGER
	4.3.1 General Design
	4.3.2 Implementation Based on Intel's ME Environment
	4.3.3 Attack Implementation Details for Linux and Windows Targets

	4.4 Evaluation
	4.4.1 DMA Malware Fulfillment
	4.4.2 Effectiveness and Efficiency
	4.4.3 ME Firmware Condition
	4.4.4 I/OMMU

	4.5 Countermeasures Considerations
	4.5.1 I/OMMU Issues
	4.5.2 Detection Approach Based on DMA Side Effects

	4.6 Chapter Summary

	5 A Primitive for Detecting DMA Malware
	5.1 General Detection Model
	5.2 An Implementation of the Detection Model
	5.2.1 Bus Master Analysis
	5.2.2 Bus Agent Runtime Monitor

	5.3 Evaluation of the Detection Model Implementation
	5.3.1 Tolerance Value mathcalT
	5.3.2 Performance Overhead When Permanently Monitoring
	5.3.3 A Use Case to Demonstrate BARM's Effectiveness

	5.4 Limitations of Current BARM Implementation
	5.5 Chapter Summary

	6 Authentic Reporting to External Platforms
	6.1 Implementation Independent Model
	6.1.1 Negotiating an Authentic Reporting Channel

	6.2 Implementation of the Authentic Reporting Channel for BARM
	6.2.1 Bus Master Analysis: Ethernet Controller
	6.2.2 Implementation Based on OpenSSL

	6.3 Evaluation
	6.3.1 Expected Bus Activity Validation
	6.3.2 Network Performance Overhead Evaluation
	6.3.3 Test with DAGGER

	6.4 Security Considerations
	6.5 Chapter Summary

	7 Conclusions and Future Work
	References

