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Abstract  Settlement of new recruits of Limnoperna fortunei occurs preferentially 
on areas already colonized by conspecifics, and on surfaces with well-developed 
periphytic biofilms. Hard substrata (immobile rocks, wood) are preferred by the 
mussel, but colonization can also take place on muddy areas stabilized by roots 
or fibrous debris, on floating and submerged plants, and on mussel shells, crus-
taceans, etc. Colonization starts in crevices, angles and other sites inaccessible to 
large predators, but it often extends over open areas as well. Mussel beds rarely 
exceed 7–10 cm in thickness, with most adults being at least partially attached to the 
substrate. Juveniles often settle on larger shells. Densities of over 200,000 ind./m2 
have been reported occasionally, but such high numbers are invariably dominated 
by specimens  < 2 mm in length. Densities of adult mussels (>5-7 mm) are usually 
below 10,000 ind./m2. The only site where densities were estimated over an entire 
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water body, the reservoir Embalse de Río Tercero, yielded an average of 959 ind./m2. 
Mussel colonies are usually most abundant and dense along the coastal fringe, where 
rock outcrops are common. Deeper areas are covered with clay and silt, and are 
therefore unfit for mussel colonization. Data at hand are still insufficient for describ-
ing multiannual trends in mussel abundance in South America; however, ancillary 
evidence suggests that, after having peaked 7–10 years after introduction, densities 
have been waning. Size structure of individuals in mussel colonies depends strongly 
on the time of the year. During periods of peak recruitment (spring to late summer) 
juveniles  <  Size structure of individual > 2 mm in length can represent >90% of the 
population, whereas during the winter they normally account for 10-15%.

Keywords  Limnoperna fortunei · Golden mussel · Colonies · Recruits · Substrate 
· Density · Size structure · Biomass · Multiannual cycles

Settlement of Recruits

The ecological and economic impacts of Limnoperna fortunei are due in part to life 
history traits typical of its marine ancestors, but very unusual among freshwater 
animals. Unlike most freshwater bivalves, L. fortunei possesses a series of free-
swimming larval stages, the last one of which, the pediveliger, can either swim 
using its velum or crawl using its foot (Cataldo and Boltovskoy 2000; Cataldo et al. 
2005; see Chapter “Larval Development of Limnoperna fortunei” in this volume). 
Upon receiving the proper cues, the pediveliger will settle onto an appropriate sur-
face and secrete byssal threads; once anchored, it will complete its metamorphosis 
to become a postveliger or plantigrade mussel.

Settlement is an active process in which the pediveliger selects the site and sub-
strate on which to settle (Rodriguez et al. 1993). Pediveligers of L. fortunei have 
been shown to recruit preferentially to sites providing some kind of protection. In 
his pioneering work on L. fortunei, Morton (1977) reported that in Plover Cove 
Reservoir, Hong Kong, L. fortunei larvae always prefer to settle into crevices or 
joints, as compared to open surfaces, and the same was observed by Boltovskoy and 
Cataldo (1999) and by Sylvester et al. (2007) for larvae settling onto experimental 
frames in the Lower Paraná River. This behaviour has been extensively addressed 
in studies of marine sessile invertebrates and is thought to be effective in escaping 
predation and dislodgement by physical disturbances such as waves and currents 
(Walters and Wethey 1996).

Aggregates of conspecifics and surfaces covered with a dense biofilm are 
also preferred by L. fortunei for settlement over clean substrata (Morton 1977, 
Sardiña et al. 2009; Balazote Oliver 2011). Many studies attest to the fact that larvae 
of marine mussels and other sessile invertebrates are influenced by specific chemi-
cal cues to settle and metamorphose within conspecific colonies (Burke 1986; Had-
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field and Paul 2001; Tamburri et al. 2008). While settlement cues have not yet been 
identified in L. fortunei, there is considerable evidence from field experiments (see 
below) for the existence of site-specific chemical cues that promote larval settle-
ment in this species.

Using artificial tiles in a 3-month field experiment, Sardiña et al. (2009) found 
significantly higher numbers of recruits on tiles with conspecific adults than on tiles 
without conspecifics, and a positive relationship between the number of recruits and 
the number of adults on the tiles was also observed (Fig. 1). However, a density-
dependent response was also detected when the population appeared to reach the 
carrying capacity (ca. 112,000–170,000 ind./m2). As the experiment progressed, the 
rate of larval settlement on tiles highly covered by mussels diminished (Fig. 1). It 
was suggested that settlement cues provided by attached individuals (adults and 
newly established settlers) induced larvae to settle preferentially on substrata with 
conspecifics, as reported for Dreissena polymorpha by Chase and Bailey (1996). 
Sardiña et  al. (2009) hypothesized that these chemical cues have threshold con-
centrations above which settlement is hindered signaling that the site is no longer 
advantageous for establishment, for example, because of intraspecific competition 
for limited food resources when population density is too high. Such a mechanism 
was also suggested for D. polymorpha (Hebert et al. 1991; Wood 2013), as well as 
for many marine invertebrates (Browne and Zimmer 2001).

The presence of a biofilm was also found to enhance settlement of L. fortunei 
postveligers. In a field experiment, artificial tiles on which a biofilm had developed 
after exposure underwater in laboratory conditions for different periods of time (0, 
1, 2, and 4 weeks) were immersed in the lower Paraná River for 2 weeks to test the 
response of L. fortunei larvae to the presence and age of the biofilm. Larvae were 
found to recruit more actively on tiles initially covered with heavy biofilm (2 and 
4 weeks old) than on tiles with weak biofilm (1 week old) or no biofilm at the time 
of deployment (Fig. 2; Balazote Oliver 2011). This behaviour mimics settlement 
of D. polymorpha larvae under similar conditions (Wainman et al. 1996; Kavouras 
and Maki 2003).

Fig. 1   Limnoperna fortunei 
recruits settled on artificial 
tiles after 1 and 3 months 
of deployment in the lower 
Paraná River delta ( bars 
denote means of three 
replicates, error bars are SE). 
Tiles were deployed on 28 
December 2007. (Based on 
data from Sardiña et al. 2009)
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The above experiments, confirmed by subsequent studies (e.g. Nakano et  al. 
2010; Nakano et  al. 2011) elsewhere, indicate that recruitment patterns are gov-
erned by two potentially synergistic mechanisms: (1) Conspecifics and biofilms 
promote larval settlement through specific settlement cues. These chemical cues 
may not only be released to the medium, but may also act on contact of a larva 
with a sessile conspecific or biofilm. This conclusion is supported by the results of 
Morton (1977) and Uryu et al. (1996), who reported strong thigmotaxis in L. fortu-
nei larvae, stressing the importance of stimulus of contact for larval settlement. (2) 
Conspecifics and biofilms provide protection to the newly settled larvae, and thus 
survival is enhanced compared to barren areas.

These two mechanisms are intimately linked, since enhanced survival rates and 
other fitness payoffs (e.g. fertilization success in the case of gregarious settlement) 
would result in the evolutionary acquisition of mechanisms that attract larvae to-
ward a surface covered by conspecifics or biofilms (Sardiña et al. 2009).

Types of Substrata Colonized

Highest mussel densities occur on hard, immobile substrata. In many areas, such 
substrata are associated with man-made structures, including piers, spur dikes, 
groynes, pilings, breakwaters, revetments, rock armors, gabions, quay walls, boat 
hulls, etc., for which reason mussel densities in the vicinity of populated sites are 
often higher than elsewhere (especially in areas dominated by soft, unconsolidated 
substrata), and are therefore a poor indicator of overall population numbers.

Colonization by L. fortunei, however, is not restricted to hard substrata. In the 
Paraná River delta mussel clusters occur on soft, silty bottom stabilized with reed or 
rush roots and fibrous plant debris (Fig. 3a; Boltovskoy et al. 2006). Along the coasts 
of Salto Grande Reservoir (Argentina/Uruguay), L. fortunei thrives on soft silty-
sandy areas covered by a thin hardened crust (Fig. 3d). Plants may constitute impor-
tant sites for attachment, including reed and rush roots (Fig. 3b; Mansur et al. 2003), 

Fig. 2   Number of Lim-
noperna fortunei recruits 
settled on artificial substrata 
after 2 weeks in November 
2009 in the lower delta of 
the Paraná River. Substrata 
were previously exposed to 
periphytic colonization for 
periods of 0–4 weeks. (Based 
on data from Balazote Oliver 
2011)
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Fig. 3   Limnoperna fortunei on different substrata. a On muddy bottom, attached to loose fibers of 
plant debris and roots (lower delta of the Paraná River); b attached to reed (Scirpus californicus) 
stems and roots (lower delta of the Paraná River); c forming a druse around a large L. fortunei 
specimen (Embalse de Río Tercero reservoir); d on hardened crust overlaying soft sediments 
(Salto Grande Reservoir); e attached to roots of water hyacinth (Eichhornia crassipes) (Middle 
Paraná River); f Attached to a larger bivalve (Unionidae) (Embalse de Río Tercero reservoir); g 
and h entirely covering a GRP (fiberglass reinforced plastic) boat hull (Embalse Río Tercero reser-
voir); i and j on tree remains recovered from the bottom of Salto Grande Reservoir. (a and d from 
Boltovskoy et al. 2006; e from Rojas Molina 2010)
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roots, rhizomes and stolons of the water hyacinth ( Eichhornia crassipes, E. azurea; 
Callil et al. 2006; Marçal and Callil 2008, 2012; Rojas Molina 2010; Rojas Molina 
et al. 2010; Ohtaka et al. 2011; Fig. 3e), waterweed ( Egeria densa) stems and leaves 
(Alvarenga et al. 2005), bahiagrass ( Paspalum sp.; Darrigran and Ezcurra de Drago 
2000), hydrilla or water thyme ( Hydrilla verticillata; Michelan et  al. 2014), etc. 
Although densities on these plants are usually comparatively low (Table 1), they are 
most probably very important for the dispersion of the species, especially in areas 
where hard surfaces are scarce, as in most of the habitats associated with the Paraná 
and Paraguay rivers.

Mussels and other freshwater invertebrates provided with hard shells or exo-
skeletons are also used by L. fortunei for settling. Shu and Wu (2005) reported that 
35 % of the bivalves ( Arconaia lanceolata, Larnprotula leai, Larnprotula caveata 
and Larnprotula rochechouarti) of Poyang Lake (China) are “infected” by the mus-
sel, with an average of 6.6 mussels per clam. Both in Asia and in South America, L. 
fortunei has been observed on several bivalves ( Anodontites trapesialis, A. trapeze-
us, A. tenebricosus, Diplodon koseritzi, Corbicula fluminea, Leila blainvilliana), 
gastropods ( Pomacea canaliculata), crustaceans ( Aegla platensis, Trichodactylus 
borellianus), and even freshwater sponges ( Trochospongilla sp.) (Darrigran and Ez-
curra de Drago 2000; Darrigran 2002; Mansur et al. 2003; Ezcurra de Drago et al. 
2004; Lopes et al. 2009; Karatayev et al. 2010; Ohtaka et al. 2010; Rojas Molina 
and Williner 2013). These associations between L. fortunei and live substrata may 
sometimes represent a significant negative impact for the organisms “infected” (as 
has been suggested for D. polymorpha, e.g., Schloesser et  al. 1996; see Chapter 
“Relationships of Limnoperna fortunei with Benthic Animals” in this volume). For 
the mussel, they can also be of significance; although population densities recorded 
are low, the availability of isolated hard objects for attachment in areas otherwise 
barren of adequate settling surfaces may represent important seeding spots or step-
ping stones for further dispersion.

As opposed to Dreissena species, where empty shells have been observed to rep-
resent an important source of substrate (Strayer et al. 1996; Burlakova et al. 2006; 
Strayer and Malcom 2006), dead conspecifics and other bivalve and gastropod re-
mains are seldom significant for L. fortunei in South America. This difference with 
D. polymorpha is likely due to the fact that calcium concentrations in South Ameri-
can inland waters are normally much lower than those in Europe and North America 
(Boltovskoy et al. 2006; Karatayev et al. 2007), and therefore dead mollusc shells 
dissolve before they are colonized. In some water bodies, dissolution of the shells is 
so fast that it often precedes decomposition of the soft parts, as indicated by the oc-
currence of dead, softened shells embedded in abundant organic remains (Boltovs-
koy et al. 2009b).
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Location and Structure of Mussel Colonies

Almost invariably, colonization of a new substrate starts in the crevices, holes, cor-
ners, angles and other less accessible areas. This tendency to form clusters is not 
restricted to the larvae (Morton 1977; see above), but is also displayed by dislodged 
adults, which normally crawl around for some time before reattaching, reattachment 
being more frequent in the angles than elsewhere (Uryu et al. 1996; see Chapter 
“Behavior and Taxis of Young and Adult Limnoperna fortunei” in this volume). In 
many cases, colonization is restricted to these protected sites and, regardless of the 
age of the mussel bed, does not extend beyond them (Fig. 4). In others, however, 
colonization starts there but eventually covers the entire surface available (Fig. 3g, 
h; 4 and 5). Aggregation in mussels and other sessile organisms, both freshwater 
and marine, has been described for numerous species. Experimental studies indicate 
that this gregarious behaviour confers better protection against water movements 
and predators, increases the amount of surface available for attachment, and im-
proves the chances of successful fertilization (Côté and Jelnikar 1999; Cheung et al. 
2004; Kobak et al. 2010).

Colonization of unprotected, widely open areas is sometimes clearly associated 
with the abundance and diversity of predators. In most areas of the Paraná River, 
including its lower delta and the Río de la Plata estuary, dense L. fortunei beds 
develop on many hard substrata, but boat hulls are never colonized (regardless 
of the presence, age and type of their antifouling coatings), with the exception of 
restricted crevices and angles around propellers, submerged components of rudder 
mechanisms and scupper pipe fittings. On the other hand, in the reservoir Embalse 
de Río Tercero, boat hulls, especially those whose antifouling coating has not been 
maintained for some time, are completely overgrown (Fig. 3g and h). A major dif-
ference between these two habitats is that while the Paraná River hosts anywhere 
between 200 and  > 500 fish species (Bonetto 1998; López et al. 2008), in the res-
ervoir only 13 species have been recorded (Freyre et al. 1983). Furthermore, most 
of the ca. 50 fishes known to consume adult mussels (see Chapter “Trophic Re-
lationships of Limnoperna fortunei with Adult Fishes” in this volume and review 
in Boltovskoy and Correa 2015) are absent from Embalse de Río Tercero. In the 
Lower Paraná delta, predators (chiefly fishes) eliminate up to 95 % of the mussel 

Fig. 4   Different degrees of development of mussel beds on pilings along the coast of the Luján 
River (lower delta of the Paraná River). (From Boltovskoy et al. 2006)
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biomass (Sylvester et al. 2007), which suggests that the lower predation pressure 
in Embalse de Río Tercero allows mussel beds to develop in unprotected areas (but 
see below).

Nevertheless, predation is most probably not the only deterrent to mussel 
colonization. In the Luján River (Lower Paraná delta), concrete pilings locat-
ed a few hundred meters apart host very different population densities (Fig.  4; 
Boltovskoy et al. 2006). Widely dissimilar degrees of mussel coverage and extremely 
high patchiness unassociated with more or less obvious causes, like differences 
in predation pressure or substrate availability, seem to be common throughout the 
range of the species. In an attempt to pinpoint the factors responsible for the uneven 
distribution of mussel beds on mudrock substrata along the coast of the Río de la 
Plata estuary (Fig. 6), Boltovskoy et al. (unpublished data) monitored changes in 
nine fixed areas 70 × 70 cm in size for 36 months. Aside from a general trend to-
ward decreasing mussel densities with increasing air exposure (Fig. 7), none of the 
variables considered (small-scale topographic differences, insolation, substrate tilt, 
wave exposure, etc.) were associated with mussel coverage. Thus, there probably 
are complex biotic and abiotic interactions, as well as intrinsic factors, whose sig-
nificance still eludes our comprehension.

November 2005 September 2013
Fig. 5   Mussel beds on rock outcrops in the reservoir Embalse de Río Tercero in 2005 and 8 years 
later, in 2013. (Courtesy of Miguel Hechem)
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Several authors investigated L. fortunei’s preferences for attachment as a func-
tion of the orientation of the substrate, but the results are still inconclusive. Morton 
(1977) suggested that a combination of depth-dependent geotactic and phototactic 
responses may be responsible for dissimilar settling rates on vertical and horizon-
tal upward- and downward-facing surfaces of experimental substrata. Uryu (1996) 
performed a series of laboratory experiments which also suggest that geotaxis and 
phototaxis affect settlement. These experiments yielded interesting data on the be-
haviour of the mussels, but they may not necessarily constitute an adequate proxy of 
actual settling rates in nature. For example, horizontal upward-facing surfaces often 
host much lower mussel densities than vertical and horizontal downward-facing 

Fig. 6   L. fortunei beds on mudrock along the coast of the upper Río de la Plata estuary

 

Fig. 7   Relationship between height of substrate (coastal mudrock along the Río de la Plata estu-
ary) and Limnoperna fortunei densities on two different sampling dates. Substrate height is given 
as the mean proportion of overall time when the corresponding site is exposed to air (i.e. above the 
waterline). Exposure to air is based on a long-term series of historical water-level readings (rather 
than on calculated tide values, which are very strongly influenced by wind direction, intensity and 
duration). Dotted line indicates suggested trend
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ones because the former retain more sediments (Xu et al. 2013b). Also in pipes, 
when the lower half accumulates clay and silt, colonization is restricted to the sides 
and roof of the ducts.

The height of mussel beds can occasionally exceed 10 cm (Xu et al. 2013b), but 
normally it is around 5–7 cm. Unlike the zebra mussel, whose colonies can attain a 
vertical thickness of up to 20–30 individuals (Burks et al. 2002), in golden mussel 
colonies most adults tend to be at least partly attached to the substrate, and although 
the irregular distribution of the shells does not allow defining the number of mussel 
layers involved precisely, large (> 7–10 mm) specimens supported only by underlying 
shells are comparatively few (Fig. 8a). On the other hand, juveniles up to 3–4 mm in 
length are often attached only to the sides of larger conspecifics (Fig. 8b).

As shown by studies of the zebra mussel, this spatial organization may partly re-
flect the fact that veligers tend to settle onto the surface of colonies, which results in a 
vertical stratification with larger individuals at the bottom and younger ones at the top 
(Burks et al. 2002). However, there probably is also active migration of the smaller 
specimens from deep and intermediate positions toward the top of the mussel bed. 
Burks et al. (2002) found significant differences between the quality of the interstitial 
water at the bottom, middle and top of colonies of D. polymorpha, whereby oxygen 
was the lowest and NO2–N (but not NO3–N) were the highest at the base. Presum-
ably in response to this gradient, as well as the relative scarcity of food at the base 
of the colony (Tuchman et  al. 2004), mussels were observed to migrate upwards, 
with significantly higher relocation rates for the smaller (< 13 mm) individuals. Con-
comitantly, mortality rates were higher in the bottom layers of the colony than at the 
surface. This suggests that as L. fortunei individuals grow in size, they are gradually 
displaced down toward the bottom of the mussel bed. By this time their capacity to 
detach, migrate and reattach has diminished, while their tolerance to adverse condi-
tions has increased allowing them to survive in this harsher environment. Although 
environmental conditions at the bottom of the mussel bed are less favourable, direct 
attachment to the substrate should be more favourable than attachment to the shells 
of other mussels, since there is a risk of dislodgement when the substrate mussels die.

Differences in colony structure between L. fortunei (single-layered) and D. poly-
morpha (multi-layered) may also be due to the very fast postmortem dissolution 
of dead golden mussel shells in the Ca-poor waterbodies colonized (see Chapter 
“Parallels and Contrasts Between Limnoperna fortunei and Species of Dreissena” 
in this volume). Dead individuals are but a very small proportion of the population 
(usually less than 5 %), which indicates that dislodgment, dissolution and destruc-
tion of dead mussels is fast.

Fig. 8   Cross-section of a 
rock covered by mussels (a) 
and top view of a mussel 
bed showing small juveniles 
attached to the shells of larger 
individuals (b)
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Densities

Reported L. fortunei densities on natural and artificial substrata are extremely vari-
able (Table 1). Differences are primarily associated with type of substrate, but also 
with other factors, including time after initial colonization, season, depth, water 
quality, etc. Curiously, the highest value reported in the literature is from Bagliardi 
Beach, in the Río de la Plata estuary, where L. fortunei was first detected in South 
America (Pastorino et  al. 1993). Here, on granite revetments, in February 2002, 
Spaccesi and Rodrigues Capítulo (2012) recorded over 700,000 ind./m2 (Table 1). 
The second highest estimate (203,000 ind./m2) is that of Sylvester (2006) on PVC 
artificial substrata in the lower delta of the Paraná River.

Assuming that the footprint of a 5–25 mm shell is ca. 10–70 mm2, and that no 
space is left between shells, 1 m2 of substrate can theoretically accommodate around 
15,000–100,000 animals. Thus, extremely high densities are obviously largely due 
to the overwhelming dominance of tiny recent recruits below 1–2 mm in length. 
Densities above 30,000–50,000 ind./m2 are almost invariably strongly dominated 
by very small mussels (Fig. 9), and seasonal changes in mussel densities are chiefly 
a reflection of recruitment processes (Fig.  10). For example, the second highest 
density record (203,000 ind./m2) corresponds to a sample recovered in December 
2003 from an artificial substrate where 97 % of the specimens were below 2 mm in 
length (Sylvester et al. 2007).

Despite the fact that mussel densities have been estimated numerous times in 
different areas and on different substrata (Table 1), their usefulness as an indicator 

Fig. 9   Relationship between 
mean mussel size and overall 
mussel density in 11 samples 
from artificial substrata 
deployed in the Lower 
Paraná River delta between 
December 2002 and June 
2004. (Based on data from 
Sylvester 2006)

 

0

50

100

0

40000

80000

120000

%
 in

d.
 <

2 
m

m

In
d.

 / 
m

2

1998
J F M A M J J A S O N D J F

1999

Months

Fig. 10   Changes in mussel 
total densities and in the 
proportions of individuals 
< 2 mm in length on artificial 
substrata deployed in the 
Lower Paraná River between 
20 Jan 1998 and 17 Dec 1998 
(Based on data from Boltovs-
koy and Cataldo 1999)

 



132 N. Correa et al.

of the ecological importance of the bivalve is very limited. Indeed, practically all 
these figures refer to abundances over very restricted areas, usually less than 1 m2 
in size, and the sites in question are not selected at random, but because they are 
densely covered by mussels. Assessment of average densities over large areas is 
complicated by the fact that beds of L. fortunei have an extremely patchy distribu-
tion (Fig. 6). This seems to be associated not only with the uneven distribution of 
available substrate, but also with some other less obvious traits (see above).

The only work that attempted to produce density estimates over a large area 
(an entire water body) is that of Boltovskoy et al. (2009a), in a 47 km2 reservoir 
(Embalse de Río Tercero, Argentina). Densities were assessed on the basis of 
diver-collected samples along 25 transects perpendicular to the coast. According 
to this survey, the reservoir hosted 4.5 × 1010 mussels, over 98 % of them along 
the coastal fringe between depths of  ~ 1 and 10 m (Figs. 11 and 12). Deeper areas 
were invariably covered by a thick (up to over 23 m) layer of silt with practically 
no mussels. Mussel presence was closely associated with bottom type, where 
rocks yielded the highest mean values, and silt the lowest (Figs. 12 and 13). The 
mean density for the entire reservoir was 959 ind./m2, or around 0.1 ind. per liter 
of reservoir water.
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In lakes and rivers, removal and resettlement of sediment particles decreases 
with depth (Bloesch 2004); this process is responsible for the fact that the deepest 
areas are usually covered by fine-grained sediments (clay and silt), whereas ex-
posed rock, boulders and pebbles are restricted to shallower areas, normally along 
the coasts. Thus, the type of distribution of L. fortunei found in Embalse de Río 
Tercero reservoir, where colonization is restricted to the coastal fringe down to 
depths < 10 m, is probably characteristic of many other reservoirs, lakes and riv-
ers. This constraint imposes a severe cost on the bivalve, especially in waterbodies 
where water-level fluctuations are large exposing extensive L. fortunei beds for 
periods long enough to produce massive kills. Such events have been observed in 

Fig. 12   Limnoperna for-
tunei densities on different 
substrata as a function of 
water depth in Embalse Río 
Tercero reservoir. The highest 
value (12,096 ind./m2 on silty 
bottom) was recorded on an 
isolated hard object lying on 
the mud. (From Boltovskoy 
et al. 2009a)

 

Fig. 13   Mean densities and 
variabilities of L. fortunei 
recorded on different sub-
strate types (standard errors 
and coefficients of varia-
tion) in Embalse Río Tercero 
reservoir. (Modified after 
Boltovskoy et al. 2009a)
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several Argentine reservoirs, including Embalse de Río Tercero and Salto Grande 
(Figs. 5 and 14).

With the exception of the Uruguay River, where coastal stretches with rock out-
crops and large boulders are common, the margins of most other rivers of the Río 
de la Plata basin are largely dominated by loose sediments, ranging from clay to 
sand (the main river channels are invariably soft bottom throughout). Hard substrata 
are therefore scant in most of the area colonized by the mussel, which may suggest 
that sessile populations are few, small and scattered. However, indirect evidence 
does not support this conclusion. According to data collected in 2005–2006, the 
mean annual density of L. fortunei planktonic larvae in Embalse de Río Tercero is 
4168 ind./L, which are produced by a total population of 4.5 × 1010 animals spread 
over 47 km2, or 959 mussels/m2 (Boltovskoy et al. 2009a). Mean annual larval densi-
ties in the Paraná and Río de la Plata are around 6000–7000 larvae/m3, (Boltovskoy 
et al. 2009b); assuming that the mussel’s fertility is roughly similar in these water 
bodies (fertility is probably somewhat lower in Embalse de Río Tercero; Boltovs-
koy et al. 2009b), adult densities needed to produce the larval output recorded in 
the Paraná and Río de la Plata must be at least comparable to those of Embalse de 
Río Tercero. Thus, the significance of alternative substrata, in particular biological 
substrata (reed roots, emergent, submerged and floating plants, tree branches and 
trunks, Fig. 3), must be more important than the impression conveyed by a visual 
assessment of these environments.

In areas subject to tidal and/or wind-induced changes in water level, mussels 
have some tolerance to air exposure (see Chapter “Control of Limnoperna fortunei 
Fouling by Desiccation” in this volume), but densities drop sharply away from the 
permanently submerged sectors. Mudrock substrata along the coasts of the Río de la 
Plata estuary host extensive L. fortunei beds (Fig. 6); the tidal span in these areas is 
about 1–1.5 m, but the effects of wind can increase these values to over 5 m. Analy-
sis of L. fortunei densities along transects perpendicular to the coastline shows that 
an increase in air exposure from 5 % (of the overall time) to 25 % results in a four-
fold density drop (from ca. 8000–2000 ind./m2, Fig. 7).

Fig. 14   Empty Limnoperna 
fortunei shells along Salto 
Grande Reservoir resulting 
from a massive mortality 
event due to extended expo-
sure of coastal mussel beds 
during a period of low water 
levels. (From Boltovskoy 
et al. 2006)
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L. fortunei is clearly a ubiquitous species with very broad environmental toler-
ance. Most of the limiting factors that are important for D. polymorpha, includ-
ing temperature, pollution, pH, nutrients and dissolved calcium (Ramcharan et al. 
1992b, 1992a) seem to be well within the tolerance ranges of the golden mussel 
(Karatayev et al. 2007; Xu et al. 2013a). However, in some areas, such as the Panta-
nal wetlands associated with the Paraguay River, extreme conditions (e.g. very low 
calcium concentrations and carbonate mineral undersaturation, extensive anoxic 
events) may limit the distribution of L. fortunei or produce important seasonal die-
offs (Oliveira et al. 2010a, 2010b, 2010c, 2011). Pollution is tolerated by the mussel 
(Contardo-Jara et al. 2009; Young et al. 2014), but at a cost: contaminated areas host 
lower densities and individuals have a lower length:width ratio, probably reflecting 
a slower growth rate (Bonel et al. 2013).

Depth-Related Colonization Trends

Some studies have noticed differences in the density and/or size structure of mus-
sel beds in association with water depth. These variations have been tentatively 
ascribed to vertical gradients in the abundance of larvae (probably in response to 
environmental parameters, including light penetration, turbidity, food availability, 
temperature, dissolved oxygen), to behavioural responses of the recruits (Uryu et al. 
1996), and/or to differences in predation pressure.

On artificial substrata deployed in Plover Cove Reservoir (Hong Kong) at five 
depths between 0 and 12 m, the highest densities of recruits were found between 
6 and 9 m (Morton 1977). Brugnoli et al. (2011) also recorded higher densities of 
recruits at 10 m depth than at 0.5 m (Palmar Reservoir, Uruguay). In a study using 
artificial substrata deployed at 6, 12 and 18 m, Nakano et al. (2010) concluded that, 
after 105 days at 18 m densities of recruits were higher, but their sizes were lower 
than higher up in the water column.

In a series of laboratory experiments, Iwasaki (1997) noticed that mussels kept 
in a fish tank tend to climb up the glass walls, nearly 40 % of them attaching just 
beneath the water surface (see Chapter “Behavior and Taxis of Young and Adult 
Limnoperna fortunei” in this volume). A similar behaviour was also attributed to 
populations in aqueducts. He speculated that such behaviour may respond to several 
factors, including avoidance of deeper, brackish water in estuaries, avoidance of 
siltation, of deoxygenated water layers, and of benthic predators. Our own (unpub-
lished) observations confirm that many mussels of variable size climb up the walls 
of the fish tank and re-attach next to the air–water interface, but the advantages of 
this behaviour are still unclear because most of these animals die when the water 
level in the tank drops from evaporation (as would presumably happen in nature).

While there is little doubt that recruits favour precolonized areas and crevices 
over open surfaces, it is not yet clear whether variations in mussel beds associated 
with depth are due to differences in the preferred living depth of the larvae, in their 
settling depths, or to postsettling effects associated with differential survival and 
predation.
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Multiannual Changes in Adult Densities

The difficulties described above concerning estimates of adult densities that are 
unbiased by the patchy distribution of mussel beds are also responsible for the lack 
of reliable information on the evolution of L. fortunei populations over multiannual 
periods. Surveys aimed at investigating reproduction and population dynamics, 
both on natural substrata (Iwasaki and Uryu 1998; Belz et al. 2010; Spaccesi and 
Rodrigues Capitulo 2012) and on artificial ones (Morton 1977; Boltovskoy and 
Cataldo 1999; Pestana 2006; Sylvester 2006; Santos et al. 2008; Nakano et al. 2010, 
2011; Bonel 2011; Brugnoli et al. 2011), yielding precise abundance estimates (al-
beit on small areas), are normally restricted to a single annual cycle.

Darrigran et  al. (2003) reported densities of settled individuals at Bagliardi 
Beach (Río de la Plata estuary) between October 1991 and October 2001. However, 
interpretation of these data is difficult since only one or two monthly values were 
available for most years, and studies were not carried out in 1996, 1997, 1999 and 
2000. Mata (2011) produced a similar series for Itaipú Reservoir between 2001 and 
2010, based on 6–12 data points per year. A potential problem of comparing these 
abundance estimates is that they were performed collecting and counting all mus-
sels from a known surface, which was obviously different on each new sampling 
date. Thus, the resulting series reflects two sources of variation (time and site), 
rather than time only. Despite these shortcomings, both studies concluded that L. 
fortunei reached peak densities 3–5 years after invading the corresponding water 
body, and decreased thereafter.

The longest multiannual record for the golden mussel is a 9-year series (2004–
2013) of the abundance of its larvae in the reservoir Embalse de Salto Grande, based 
on weekly plankton samples (Boltovskoy et al. 2009b, 2013). Limnoperna fortunei 
was first detected in this reservoir around 2000, and by 2013 larval densities did not 
show signs of decreasing (Boltovskoy et al. 2013). It should be noted, however, that 
recruitment of the mussel in this water body is strongly affected by recurrent cyano-
bacterial blooms that kill L. fortunei larvae (Boltovskoy et al. 2013), and this may 
account for a unique long-term trend in these populations (see Chapter “Reproduc-
tive Output and Seasonality of Limnoperna fortunei” in this volume).

The fact that L. fortunei, as any other introduced species, needs some time 
to build up its population numbers after invading is obvious and has been ob-
served repeatedly (Boltovskoy et  al. 2009a, 2009b). On the other hand, subse-
quent density declines or significant interannual variations, like those described 
for D. polymorpha (Stanczykowska 1977; Ramcharan et  al. 1992b; Burlakova 
et al. 2006; Strayer and Malcom 2006) have not yet been unequivocally demon-
strated, although there are some hints that support the notion that populations of 
the golden mussel in South America have been waning in recent years. Observa-
tions in the lower delta of the Paraná River and Río de la Plata estuary seem to 
indicate that mussel beds are less dense and occur more sparsely than 10 years 
ago. This impression is confirmed by comments from local residents, who agree 
that mussel presence has decreased in recent years. Evidence from other water-
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bodies, such as the Embalse de Río Tercero reservoir, also point in the same direc-
tion. In particularly dry years, the water level in this reservoir can drop over 10 m 
exposing colonized areas. One such event occurred in November 2005, exposing 
hard substrata very densely covered by mussel growth. Eight years later the same 
substrata were exposed again by another strong drawdown, showing a dramatic 
decrease in L. fortunei densities (Fig. 5). Although none of this has been evalu-
ated and quantified objectively, it agrees with the notion of a cycle characteris-
tic of many invasive species, whereby the initial explosive population growth, 
shortly after introduction, is followed by a decline and subsequent stabilization 
(e.g. Stanczykowska 1977). Limitations in the carrying capacity, including avail-
ability of food and substrate, could explain a stabilization of population densities 
(although food shortage is unlikely, at least in the Paraná watershed; Sylvester 
et al. 2005), but not a decline. On the other hand, an increase in predation pressure 
by organisms that consume L. fortunei, due to growth of predators favoured by 
the availability of more high quality food, could account for lower survival rates. 
In the Great Lakes, Dreissena species have been observed to decline steadily after 
an initial density peak due to increasing predation pressure by several water fowl 
attracted to the area by the availability of mussels (Petrie and Knapton 1999). 
Many fish species have been reported to feed actively on both adults and larvae of 
the golden mussel (see Chapters “Trophic Relationships of Limnoperna fortunei 
with Larval Fishes” and “Trophic relationships of Limnoperna fortunei with adult 
fishes” in this volume); several of these take years to reach maturity (e.g. Sverlij 
et al. 1993), which could account for the lag between the mussel's peak population 
densities and their subsequent decline as predator populations increase.

Size Structure in Mussel Colonies

The size-frequency distribution in mussel beds depends chiefly on the time of year. 
During the reproductive season (typically between spring and autumn; see Chapter 
“Reproductive Output and Seasonality of Limnoperna fortunei” in this volume), 
tiny recruits 0.5–2 mm in length account for over 90 % of the population. In winter, 
their proportion is the lowest (5–20 %), but they rarely drop to zero, suggesting 
that reproduction never stops altogether (Fig. 15; Cataldo and Boltovskoy 2000). 
Sylvester et  al. (2007) noticed that highest mortalities occur immediately after 
settlement, at sizes below 1  mm, when over 93 % of the juveniles are lost. For 
animals > 1 mm, mortality between successive size classes drops sharply, oscillat-
ing around 20 % for the interval between 2 and 20–23 mm. These data indicate that 
approximately 2 % of the animals that reach the settling stage survive until first 
reproduction (at about 7 mm, cf. Darrigran et al. 1999), and only 0.5 % survive the 
first year of life (approximately 20 mm, cf. Boltovskoy and Cataldo 1999). Overall 
densities decrease sharply during the winter, chiefly due to reduced recruitment and, 
probably, to enhanced mortality.
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Biomass

The biomass of mussels is closely associated with their size; the function that best 
describes the relationship between length and dry tissue weight is a power func-
tion (see Chapter “Population Dynamics and Growth of Limnoperna fortunei” 
and Fig.  6 in this volume). The strength of this association, however, changes 
with mussel size, with cutoff values at 10–15 mm (Sylvester 2006). While both 
size and weight increase with age, weight obviously increases faster, and growth 
from 2.5 to 30  mm in length involves a 12-fold length increase in size, but a 
427-fold increase in tissue dry weight. Although this contrast may seem obvi-
ous, it underscores limitations of data reporting mussel densities alone, without 
information on the size structure of the population involved (Fig. 16; Young et al. 
1996; Burlakova et al. 2006).

Fig. 15   Changes in the 
size–frequency distribution 
of Limnoperna fortunei shells 
a during the reproductive 
season (February) and b dur-
ing the period of reproductive 
relaxation (October). (Based 
on data from Sylvester 2006)

 

Fig. 16   Seasonal changes in 
Limnoperna fortunei density 
and biomass on artificial sub-
strata deployed in the lower 
delta of the Paraná River 
between 6 November 2002 
and 15 June 2004. (Based on 
data from Sylvester 2006)
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The valve accounts for approximately 80 % of the overall (dry) weight of the 
mussel. This proportion changes little throughout the life of the animal. Water 
represents around 93–94 % of the weight of the mussel’s tissue (excluding the 
shell), with slightly higher values in older specimens (Sylvester 2006).
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