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Abstract The only detailed survey aimed at assessing the efficacy of oxygen depri-
vation for controlling fouling by the golden mussel indicates that, at dissolved oxy-
gen levels < 0.16 mg/L, total mortality is achieved after 10–12 days (at 27 °C) to 
21–29 days (at 20 °C). At 20 °C (but not at 27 °C), small (7 mm) mussels are signifi-
cantly less tolerant than large (20 mm) individuals. Oxygen deprivation may be a 
viable alternative for the control of mussel fouling in industrial installations.
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Experimental assessment of the tolerance of Limnoperna fortunei to oxygen depri-
vation was carried out by Perepelizin and Boltovskoy (2011). They exposed small 
(7 mm) and large (20 mm) mussels to anoxic conditions (< 0.16 mg O2/L, or 1.8–
2.2 % saturation) at 20 and 27 °C, for periods ranging between 8 and 31 days, until 
100 % mortality in all (3) replicates (with 43 mussels each) occurred.

At 20 °C, small mussels started dying on day 3, with the last of 137 specimens 
enduring anoxia for 22 d (Fig. 1). Average time to 100 % mortality in all replicates 
was 20.7 d (LT50: 9.5 d). Large mussels were significantly more resistant: individual 
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survival times were 6–31 d, and average time to 100 % mortality in all replicates 
was 29.3 d (LT50: 18.0 d) (Fig. 1).

In contrast with experiments at 20 °C, large and small animals behaved almost 
identically at 27 °C. Individual survival times were between 1 and 13 days, and 
mean time to 100 % mortality was 10.2 (large; LT50: 4.7 d) to 11.6 (small; LT50: 
4.7 d) days (Fig. 1).

The distribution of L. fortunei in South America, where it often thrives under ex-
tremely adverse environmental conditions (e.g., high pollution levels, low oxygen 
concentrations, very low calcium levels, low pH; Karatayev et al. 2007) indicates 
that it is a highly tolerant species. For example, under anoxic conditions at 25 °C, 
100 % mortality of Dreissena polymorpha is achieved in only 4 days (Matthews and 
McMahon 1994) (as opposed to ca. 13 days for L. fortunei). Although the golden 
mussel can withstand dissolved oxygen levels as low as 0.5 mg/L for extended pe-
riods (Karatayev et al. 2007), its ability to survive under extreme hypoxia is limited 
(Liu et al. 2006). In raw reservoir or river water pipelines, fouling by L. fortunei 
has been observed to decrease with distance from the intake in association with 
decreasing dissolved oxygen concentrations (Ye et al. 2011). Ample differences in 
mussel densities in two closely spaced Japanese reservoirs were ascribed to the lack 
of dissolved oxygen in one of them (Nakano et al. 2010).
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Fig. 1  Mortality rates of small (7 ± 2 mm) and large (20 ± 3 mm) Limnoperna fortunei under 
anoxia. Each curve represents the mean of three replicates. (Modified from Perepelizin and 
Boltovskoy 2011, from Journal AWWA 103(3) by permission. Copyright © 2011 the American 
Water Works Association)
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In the upper Paraguay River, seasonally changing water levels are responsible 
for extensive flooding of vegetated lowlands. During inundation, aquatic plants col-
onize the area, but die shortly thereafter during the dry season, when water levels 
subside. In the subsequent flood pulse, the dead vegetation is leached and decom-
posed, strongly depressing O2 levels and pH values, and raising CO2. These condi-
tions, known locally as “dequada,” which usually last for several weeks, have been 
found to produce massive mortalities of L. fortunei (Oliveira et al. 2010).

Thus, oxygen deprivation may constitute an adequate solution to L. fortunei 
fouling. It is environmentally innocuous, economical, and does not involve hazard-
ous substances or operations. As shown by the information reviewed above, as well 
as by data on other fouling species (Sprung 1995; Johnson and McMahon 1998), it 
is particularly efficacious at high water temperatures, such as those prevailing for at 
least some months of the year in most water bodies invaded by this mussel around 
the world.

Oxygen depletion can be achieved simply by sealing off pipes and precluding 
water circulation, or with the aid of oxygen scavengers such as sodium metabisul-
fite or hydrogen sulfide gas (Smithson 1986; O’Neill 1995). Several water treat-
ment plants in Wisconsin, provided with dual intakes, add sodium bisulfite and seal 
off one of the intakes for 4–10 weeks achieving 100 % mortality of infesting zebra 
mussels (Mackie and Claudi 2010). Small water treatment facilities drawing water 
from the reservoir Embalse de Río Tercero (Córdoba Province, Argentina) expe-
rienced intake pipe clogging problems due to growth of L. fortunei (Anonymous 
2006). Some of them are provided with dual intakes, which allows for temporary 
capping of a fouled one while using the other until infesting mussels die. Backflush-
ing the sealed-off intake at the end of the inactive period is important for clearing 
the pipe of dead, loose, and weakly adhering mussels.

However, as with most other control methods, anoxia also has drawbacks. Seal-
ing off an intake for an extended period of time requires that the plant is provided 
with dual intake pipes, which is not always the case, and retrofitting in order to 
provide this alternative may be costly and complicated. This obviously also applies 
to sections other than intake pipes, where duplication of components may be even 
more costly and problematic. At high temperatures, the response of L. fortunei to 
the lack of oxygen is fairly fast (around 2 weeks for 100 % mortality at 27 °C; see 
Fig. 1), but at lower temperatures response times increase significantly. Depending 
on plant design and operating conditions, the possibilities of shutting off an impor-
tant section for weeks or months may be limited. In addition, lack of oxygen fre-
quently enhances the abundance of sulfate-reducing bacteria, which are responsible 
for microbially induced corrosion (Mackie and Claudi 2010).

Anoxia is a nonselective method, killing practically all organisms, but since it 
normally involves treating a limited volume of water, its environmental impact is 
negligible.
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