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Abstract  Limnoperna fortunei (the golden mussel), Dreissena polymorpha (the 
zebra mussel), and Dreissena rostriformis bugensis (the quagga mussel) are consid-
ered among the most aggressive freshwater invaders. All three species share several 
biological traits, such as their sessile mode of life attached to hard substrata by a 
byssus (although quagga mussels can also dwell on muddy bottoms), similar sizes, 
similar longevity, and similar time to sexual maturity. The spawning period, how-
ever, is usually longer for L. fortunei. Ecologically, they also share similarities (e.g., 
suspension feeding mode), but the dreissenids thrive and reproduce in colder waters 
(especially D. r. bugensis), and are significantly less tolerant to low pH and calcium 
concentrations, hypoxic conditions, and pollution. Rates of intrabasin spread of L. 
fortunei in South America are roughly similar to those of D. polymorpha in North 
America, but interbasin spread is generally faster for the zebra mussel, probably 
partly due to cultural and economic differences between their respective invasive 
ranges. Geographic spread of quagga mussels has been much slower than that of 
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zebra mussels, but once the former colonize waterbodies already populated by zebra 
mussels, they usually become dominant, both spatially and numerically. Judging 
from their respective environmental tolerance limits, in particular calcium concen-
trations, it is expected that both species of Dreissena may eventually colonize much 
of Europe, Asia, and North America, but colonization of South America, Africa, and 
Australia is less likely. In contrast, L. fortunei, which tolerates much lower calcium 
concentrations, could spread to areas presently occupied by the dreissenids as well 
as Africa and Australia. Should the three species overlap, it seems likely that L. 
fortunei will outcompete the dreissenids in warmer, more polluted, less oxygenated, 
and more acidic waters as well as in waters with lower calcium concentrations. 
However, the outcome of their competitive interactions when conditions are suit-
able for all three species is unclear. L. fortunei and both species of Dreissena are 
functionally similar, and as a consequence, many of their impacts on the systems 
they invade are also similar, yet the magnitude of these effects, and in some cases 
even their sign, can differ widely depending on the invasive species and environ-
mental constraints. Future research on the golden mussel should focus on shedding 
light on the many unknown aspects of its biology and ecology, which are particu-
larly critical for a comprehensive assessment of its interactions with local biota.

Keywords  Limnoperna fortunei · Dreissena polymorpha · Dreissena rostriformis 
bugensis · Ecological impact · Distribution · Environmental tolerance · Geographic 
spread

Introduction

Although Limnoperna fortunei (the golden mussel) is taxonomically unrelated to 
Dreissena polymorpha (the zebra mussel) and Dreissena rostriformis bugensis (the 
quagga mussel), they have similar life histories, share many ecological traits, and 
are functionally similar. Therefore, their ecological and economic impacts on wa-
terbodies they invade are often similar as well. Due to their high rates of spread, 
large numbers of colonized waterbodies, and the extent of their ecological and eco-
nomic impacts, both species of Dreissena and L. fortunei are considered among the 
most aggressive freshwater invaders (Karatayev et al. 2007a, 2010a). All three are 
spreading at virtually all spatial scales and are expected to continue doing so (Kara-
tayev et al. 2007a, 2007b, 2011, 2015; Pollux et al. 2010; Benson 2014; Boltovskoy 
and Correa 2015).

The overall impact of an invader depends on many factors, including, among 
others, the number of waterbodies colonized, its total population density in a given 
waterbody, its population dynamics, and distribution within a waterbody (Kara-
tayev et al. 2010b, 2011). The number of waterbodies colonized will depend on the 
invader’s ability to use different transport vectors, propagule pressure, environmen-
tal limits, and its life history and biological parameters (e.g., fecundity, growth, and 
survival), which ultimately determine total population size, population dynamics, 
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and distribution within an invaded waterbody. Therefore, to accurately predict the 
potential spread and ecological impacts of invaders, it is essential to know their 
environmental limits and their biology. Although D. polymorpha is among the best 
studied freshwater invertebrates, less data are available for D. r. bugensis and L. 
fortunei (Karatayev et  al. 2007a, 2007b, 2015, 2014a; Nalepa 2010; Boltovskoy 
and Correa 2015).

The aims of this chapter are to review similarities and differences among L. for-
tunei and both species of Dreissena in their biological traits, environmental limits, 
rates of spread, population dynamics, and ecological impacts, and to identify the 
essential information needed to better understand their geographic spread and their 
effects on ecosystems.

Life History

L. fortunei belongs to the largely marine bivalve family Mytilidae, while zebra and 
quagga mussels belong to the Dreissenidae, which is of brackish water origin. L. 
fortunei and Dreissena spp. represent an unusual ecological type in freshwaters and 
have traits typical of marine mussels, including free-swimming larvae and a sessile, 
attached adult stage.

Extensive research has been conducted on the biology, reproduction, growth and 
other life history traits of D. polymorpha, but relatively fewer studies have focused 
on D. r. bugensis and L. fortunei (Karatayev et  al. 2007a, 2007b, 2014a, 2015; 
Nalepa 2010). We know that all three species mature at approximately the same age, 
and have a similar body size (Table 1).

In L. fortunei and D. polymorpha gonads are fully developed by the spring, and 
spawning typically occurs in spring–summer (Lvova and Makarova 1994; Boltovs-
koy et al. 2009b; see Chapter “Reproductive Output and Seasonality of Limnoperna 
fortunei” in this volume). In cold deep waters, gonads of D. polymorpha and D. 
r. bugensis may be ripe for a longer period of time during the year and spawning 
extends over more months, producing smaller recruitment events over a longer pe-
riod (Bacchetta et al. 2010; Nalepa 2010). The duration of the reproductive period 
depends on the temperature regime and is longer in warmer regions. In the northern 
part of its range, spawning of Dreissena spp. lasts for about 3–5 months (Lvova and 
Makarova 1994). In Lake Mead (Arizona-Nevada, USA), however, quagga mussel 
veligers are present in the plankton year round, suggesting a much longer spawn-
ing season (Wong et al. 2012), similar to the spawning season of golden mussels in 
the tropics and subtropics (up to 10 months, Boltovskoy et al. 2009b). In contrast, 
in temperate and cold-temperate areas (Japan, Korea) L. fortunei produces larvae 
for only 1 month or less each year (Choi and Shin 1985; Nakano et al. 2010a) (see 
Figs. 2 and 3 in Chapter “Reproductive Output and Seasonality of Limnoperna for-
tunei”, this volume).

For L. fortunei, most studies from Asia and South America concur that reproduc-
tion starts when water temperatures reach around 15–18 °C (Morton 1977; Choi 



A. Y. Karatayev et al.264

and Shin 1985; Cataldo and Boltovskoy 2000; Nakano et al. 2010a; Brugnoli et al. 
2011). So far, the golden mussel has not been reported from waterbodies where 
year round temperatures are below 15–18 °C, although there are many records from 
areas where water temperature is always above 15–18 °C (Mata 2011; Oliveira 
et al. 2011). Interestingly, in these tropical waterbodies the reproductive cycle is 
less regular, and slows noticeably in the winter (July–August in the southern hemi-
sphere). Even when water temperatures are well above the threshold for reproduc-
tion (see chapter “Reproductive Output and Seasonality of Limnoperna fortunei” 
in this volume), larval production typically decreases or even ceases in the winter. 
Zebra mussels usually initiate spawning when water temperatures reach 12–15 °C, 
typically in the late spring (May to June in the northern hemisphere), and continue 
to spawn until the end of summer (August or September) (Table 1; Sprung 1987; 
Borcherding 1991; Lvova et al. 1994a; Karatayev et al. 1998, 2010b; Pollux et al. 
2010). Quagga mussels, which usually live deeper, can spawn at water temperatures 
as low as 4.5–6.0 °C (Nalepa 2010). However, in areas where they co-occur with 
zebra mussels, both dreissenid species may initiate spawning at the same time (e.g., 
18–20°C; Claxton and Mackie 1998).

Thus, the golden mussel requires higher temperatures for reproduction (15–
18 °C), followed by the zebra mussel (12–15 °C), and the quagga mussel can repro-
duce in much colder waters (variable, but occasionally as low as 5–6 °C).

Fecundity data are only available for D. polymorpha (Table 1). Female zebra 
mussels can spawn up to 106 eggs, and males up to nearly 1010 sperm, compris-
ing more than 30 % of their body weight prior to spawning (Sprung 1991). In the 

Table 1   Size and life history parameters for Limnoperna fortunei, Dreissena polymorpha, and 
Dreissena rostriformis bugensis
Parameter L. fortunei D. polymorpha D. r. bugensis
Typical [maxi-
mum] length (mm)

20–30 (Boltovskoy 
et al. 2009a), [50.5] 
(Karatayev et al. 2010a)

20–30 (Karatayev et al. 
2007a), [49] (Son 2007)

20–30 (Karatayev 
et al. 2014c)

Longevity (years) 2–3 (Boltovskoy and 
Cataldo 1999)

4–5 (Lvova et al. 1994b, 
Karatayev et al. 2006)

4–5 (Mills et al. 
1996; Orlova et al. 
2004)

Time to sexual 
maturity (months)

3–4 (Boltovskoy and 
Cataldo 1999; Darrigran 
et al. 1999)

3–11 (Lvova and 
Makarova 1994); 8–10 
(McMahon and Bogan 
2001)

No data

Typical spawning 
period (months/
year)

 < 1 (temperate areas) 
to 10 (tropical and 
subtropical areas) 
(Choi and Shin 1985; 
Boltovskoy et al. 2009b; 
Nakano et al. 2010a)

3–5 (Lvova and 
Makarova 1994)

3–10 (Nalepa et al. 
2010; Wong et al. 
2012)

Fecundity (eggs 
per reproductive 
season)

No data 275,000–300,000 (Lvova 
1977); up to 1,000,000 
(Sprung 1991)

No data
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absence of similar data for quagga mussels, their fecundity is often assumed to be 
the same as for zebra mussels (e.g., Keller et al. 2007). However, this may be not 
the case. Zebra and quagga mussels have very different population dynamics in the 
waterbodies they invade. The time lag between when a species is first detected in 
a waterbody and when it reaches its maximum population size being much shorter 
for zebra mussels (2.5 ± 0.2 years) than for quagga mussels (12.2 ± 1.5 years) (Kara-
tayev et al. 2011). The shorter lag time for zebra mussels may reflect their higher 
reproductive potential. Information for L. fortunei is still too scant and fragmentary 
for comparison, but the few data at hand seem to indicate that the lag time is closer 
to that of the quagga than the zebra mussel (see chapter “Limnoperna fortunei 
Colonies: Structure, Distribution and Dynamics” in this volume). This, however, 
does not necessarily imply comparatively lower fecundity because carrying capac-
ity depends on many intrinsic (e.g., fecundity), and extrinsic traits (e.g., predation 
pressure, competition, etc.).

Longevity of zebra mussels (up to 4–5 years, reviewed in Lvova et al. 1994b; 
Mills et  al. 1996; Orlova et  al. 2004; Karatayev et  al. 2007b), seems somewhat 
greater than that of L. fortunei (around 2–3 years; Morton 1977; Boltovskoy and 
Cataldo 1999) (Table 1).

Environmental Limits

Temperature

The lower temperature limit for both species of Dreissena is close to 0 °C. The 
upper temperature limit for D. polymorpha, determined from field observations in 
both Europe and North America, is around 32–33 °C (Aldridge et al. 1995; Kara-
tayev et al. 1998; Allen et al. 1999; Table 2). Field observations indicate that quagga 
mussels are likely somewhat less tolerant of high temperatures than zebra mussels 
(reviewed in Mills et  al. 1996; Karatayev et  al. 1998; Garton et  al. 2014). Data 
from the Zaporozhskoe Reservoir (Ukraine) show that quagga mussels survive in 
waters ≤ 30.5 °C, while zebra mussels tolerate waters ≤ 33 °C (Dyga and Zolotareva 
1976).

For L. fortunei, the upper thermal limit is around 35 °C, which is somewhat high-
er than that of both dreissenids (Table 2). In South America, minimum winter tem-
peratures of the waterbodies colonized by L. fortunei are around 10 °C, but in Japan 
golden mussels survive at water temperatures of 5–6 °C (Magara et al. 2001), and 
in Korea L. fortunei populations have been reported from the Paldang Reservoir, 
which freezes for 1–2 months every winter (Choi and Kim 1985; Choi and Shin 
1985; Park et al. 2013; Hae-Kyung Park, pers. comm.).

While on the basis of these data, it is tempting to speculate that low winter tem-
peratures are unlikely to be a deterrent for the spread of L. fortunei into cooler 
waterbodies, minimum survival temperature may not be a good indicator of the 
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mussel’s ability to maintain self-sustaining populations. Reproductive cycles (as 
evidenced by the presence of larvae in the water column) clearly show that tem-
perature is the dominant factor for spawning (see Chapter “Reproductive Output 
and Seasonality of Limnoperna fortunei” in this volume). The shorter the periods 
of high temperature, the shorter is the spawning season. Thus, while in the Upper 
Paraná River, where water temperatures range around 18 to  > 30 °C, larvae are pro-
duced for 9–10 months each year, in Japan, at  ~ 7–25 °C, larval output is restricted 
to 1–2 months, and in Korea, at 0–30 °C, reproduction is restricted to around 20 days 
(Choi and Shin 1985; Nakano et al. 2010a; Hamada 2011; Mata 2011; see Fig. 2, 3 
and 10 in Chapter “Reproductive output and Seasonality of Limnoperna fortunei” in 
this volume). Interestingly, in all of these waterbodies, summer water temperatures 
are high. Even Paldang Reservoir, which freezes in the winter, reaches  ~ 30 °C in 
the summer (Choi and Shin 1985). This suggests that the magnitude and duration 
of warm summer temperatures determine whether self-sustaining populations are 
possible, rather than minimum winter values. Data at hand indicate that the low-
est temperatures at which L. fortunei spawns are around 15–18 °C (see Chapter 
“Reproductive Output and Seasonality of Limnoperna fortunei” in this volume), 
which suggests that waterbodies whose temperature is always below these values 
are unlikely to be colonized by this mussel. Therefore, Andean Patagonian lakes 
located south of  ~ 38 °S, most of which do not freeze but never reach temperatures 
above 13–15 °C (Baigun and Marinone 1995; Díaz et al. 2000) are most probably 
not at risk of colonization by L. fortunei. In contrast, the North American Great 
Lakes, which may freeze in the winter, but usually have 3–4 month periods when 
water temperatures are above 16 °C (except Lake Superior; National Oceanic and 
Atmospheric Administration, NOAA 2014), are probably suitable for colonization 
by L. fortunei.

Salinity

In Europe and North America, D. polymorpha can form stable populations at sa-
linities below 6 ‰, which is only slightly higher than the limit for quagga mussels 
(Table 2). For L. fortunei, constant salinities around 2 ‰ are the upper limit for ex-
tended survival (Huang et al. 1981; Angonesi et al. 2008; Barbosa and Melo 2009; 
Sylvester et  al. 2013). However, at intermittent saltwater-freshwater conditions, 
such as those normally present in tidal estuaries, golden mussels can tolerate short 
periods (hours) of salinities up to 23 ‰ without significant mortality (Sylvester 
et al. 2013; see Chapter “Chemical Strategies for the Control of the Golden Mussel 
( Limnoperna fortunei) in Industrial Facilities” in this volume). This suggests that 
tests at constant salinity underestimate the tolerance of this species, and probably 
other freshwater molluscs, to saltwater exposure. Because estuarine ports repre-
sent  ~ 70 % of nonmarine ports globally, they constitute major donor and recipient 
hotspots for the spread of nonnative species into continental aquatic ecosystems 
via shipping. It is probable that the tolerance of L. fortunei to estuarine conditions 
contributes to this species’ success as an invader (Sylvester et al. 2013).



269Parallels and Contrasts Between Limnoperna fortunei …

pH and Calcium

Zebra mussels are restricted to waters with neutral or alkaline pH (> 7.3–7.5; Ta-
ble  2). To our knowledge, there are no published data on pH limits for quagga 
mussels. Both in Europe and in North America, zebra mussels have colonized 
many more waterbodies than have quagga mussels. With few exceptions, almost all 
lakes had already been colonized by zebra mussels when quagga mussels invaded, 
suggesting that the pH limits for both species of Dreissena largely overlap. The 
threshold for calcium needed to support sustainable populations of zebra mussels 
is > 23 mg/L (Fig. 1, Table 2), although values as low as 8–15 mg/L have been re-
ported (Mellina and Rasmussen 1994; Jones and Ricciardi 2005). However, these 
lower values may reflect limits for the survival of adult mussels, rather than the 
establishment of locally sustainable populations (Sprung 1987).

The calcium limits for both species of Dreissena are substantially higher than 
those for L. fortunei (Fig. 1). Calcium is generally scarce in South American flood-
plain rivers colonized by the golden mussel (3-9 mg/L; Maglianesi 1973, Bonetto 
et al. 1998), and values as low as 1 mg/L of Ca and pH<6 have been reported from 
some areas successfully colonized by L. fortunei, such as the Upper Paraguay River 
(Oliveira et al. 2011).

Dissolved Oxygen

D. polymorpha is intolerant of even moderate hypoxia. Although it may colonize the 
deep oxygenated areas of some lakes, it usually is restricted to littoral and sublittoral 
zones (reviewed in Karatayev et al. 1998, 2015) (Table 2). In contrast, D. r. bugensis 
survives at lower oxygen concentrations than the zebra mussel (Shkorbatov et al. 

Fig. 1   Mean calcium concentrations in rivers on different continents (Wetzel 1975) and minimum 
calcium requirements for Dreissena polymorpha and Limnoperna fortunei
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1994), which may be related to its lower respiration rate (Stoeckmann 2003), and at 
least partially explains the ability of quagga mussels to colonize the profundal zone 
of deep lakes. However, both species of Dreissena are absent from hypoxic areas 
(e.g., central basin of Lake Erie; Karatayev et al. 2014c).

In contrast, L. fortunei survives in areas with very low oxygen concentrations, high 
organic loads, and industrial pollution (Villar et al. 1999; Belaich et al. 2006; Boltovs-
koy et al. 2006; Perepelizin and Boltovskoy 2011; Bonel et al. 2013; Young et al. 
2014). In the delta of the Lower Paraná River, dense L. fortunei beds are present in 
the vicinity of urbanized and industrialized areas which discharge untreated domestic 
and industrial wastes. These waters and sediments contain pollutants at levels several 
times above those considered hazardous for aquatic life (e.g., Zn, Cr, Cu, Benzo[a]
pyrene, polychlorinated biphenyls (PCBs), etc.), where other organisms (e.g., the 
Asian clam, Corbicula fluminea) do not survive (Cataldo et al. 2001a, 2001b).

Substrata

Within a waterbody, one of the main factors that affect the distribution of both L. 
fortunei and Dreissena spp. is the availability of suitable substrata. These mussels 
usually require hard substrate for attachment, and therefore their distribution is ex-
tremely patchy, with harder and coarser substrata yielding the highest densities and 
biomass of mussels. The most favorable substrata for these species are rocks, gravel, 
shells, and consolidated sediments (Karatayev et al. 1998, 2010a; Boltovskoy et al. 
2006, 2009a; Burlakova et al. 2006).

In South American rivers, where hard substrata are scarce, plants may constitute 
important sites for attachment. Roots, rhizomes, and stolons of the water hyacinth 
( Eichhornia crassipes, Eichhornia azurea) seem to be particularly important sub-
strata. Although densities of L. fortunei on these plants are comparatively low (see 
Chapter “Limnoperna fortunei Colonies: Structure, Distribution and Dynamics” in 
this volume), the abundance and widespread distribution of species of Eichhornia 
make them key elements of seeding sites (Callil et al. 2006; Marçal and Callil 2008, 
2012; Rojas Molina 2010; Rojas Molina et al. 2010; Ohtaka et al. 2011; see Fig. 3e 
in Chapter “Limnoperna fortunei colonies: structure, distribution and dynamics” in 
this volume).

D. polymorpha and L. fortunei usually avoid pure mud, where they only occur on 
isolated hard objects, such as wood fragments, shells, stones, or artificial substrata 
(e.g., discarded debris). Mussels can use the hard fragments for initial attachment 
and subsequently attach to each other forming druses (Karatayev et al. 1998, 2010a, 
2015).

Although the pattern of distribution of L. fortunei across substrate types is simi-
lar to D. polymorpha, the golden mussel appears to reach higher densities and espe-
cially higher biomass per unit area (Karatayev et al. 2010a). Both zebra and golden 
mussels are largely limited to the littoral zone and usually avoid soft sediments 
of the cold profundal zone (Karatayev et al. 1998, 2010a, 2015; Burlakova et al. 
2006; Boltovskoy et al. 2009a). It is not clear, however, if golden mussels favor the 
shallow, coastal fringe because that is where hard substrata are most often found 
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(Boltovskoy et al. 2009a), or because they prefer shallower sites, regardless of sub-
strate type. Colonization of artificial substrata suggests that recruits prefer settling 
at depth (6–18 m), rather than closer to the surface (Morton 1977; Nakano et al. 
2010b; Brugnoli et al. 2011), but this pattern may also reflect differences in preda-
tion pressure. Comparison of samples scraped from the concrete wall of a penstock 
of the hydroelectric Yacyretá power plant (Upper Paraná River) yielded higher den-
sities at 10 m (248,200 ind./m2), than at the surface (170,400 ind./m2), and at 40 m 
(54,400 ind./m2) (Darrigran et al. 2007). While differences in densities at these three 
depths may reflect differences in hydrodynamics specific to this particular water 
intake structure, they still show that when offered adequate substrate, within these 
limits depth does not curtail the survival of L. fortunei.

In addition to the littoral zone, quagga mussels can colonize silty sediments, 
especially those found in the profundal zones of deep large lakes (Patterson et al. 
2005; Watkins et al. 2007; Nalepa et al. 2009a; Nalepa 2010; Karatayev et al. 2015, 
2014c). In these soft sediments, D. r. bugensis usually has a more even distribution 
across the bottom, and rarely forms large druses. Instead, single mussels or small 
aggregations almost float on the surface of the silty bottom (Nalepa 2010; Kara-
tayev et al. 2014c). Therefore, in deep lakes with large profundal zones, quagga 
mussels may be found at higher overall numbers across the whole lake than either 
zebra or golden mussels.

Rate of Spread

Of the three species considered in this chapter, D. polymorpha has by far the lon-
gest and the best-documented history of invasion. This species began to spread from 
its native range in Europe in the early 1800s (Karatayev et al. 2007b, 2011, 2015; 
Pollux et al. 2010; van der Velde et al. 2010; bij de Vaate et al. 2014).

At the global scale, three major phases in the spread of the zebra mussel can be 
recognized: (1) An initial exponential phase in the nineteenth century in Europe, 
where it spread at a rate of  ~ 3.9 geographic regions (countries, or geographic prov-
inces within large countries) per decade; (2) A period of extremely slow spread for 
almost a century during the industrial revolution and increased water pollution; and 
(3) A second period of exponential spread that started in the 1960s, and included ex-
pansion in both Europe and North America (where zebra mussels were introduced 
in the 1980s, Carlton 2008), when it spread at an average rate  ~ 6.6 regions/decade 
(Karatayev et al. 2011).

Although there was extensive ship traffic between areas inhabited by D. r. bu-
gensis (the Dnieper-Bug Liman and the lower reaches of the Southern Bug River 
in Ukraine) and other regions of eastern and western Europe through the middle of 
the twentieth century, quagga mussels remained restricted to their native range until 
the 1940s (Zhulidov et al. 2004; Karatayev et al. 2007b, 2011; Son 2007; van der 
Velde et al. 2010; Zhulidov et al. 2010). Starting in the mid-1980s, quagga mussels 
spread in Europe and North America (where this species was first discovered in 
1989, Mills et al. 1993) at a rate of 7.4 regions/decade, which is significantly faster 
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than the initial spread of zebra mussels in Europe, but similar to the current rate of 
spread of zebra mussels at a global scale (Karatayev et al. 2011, 2014a). The delay 
in the spread of D. r. bugensis was likely due to its inability to use mechanisms and 
vectors responsible for the spread as efficiently as D. polymorpha. Quagga mussels 
appear to be less resistant to dislodgment than zebra mussels (Mackie 1991; Der-
mott and Munawar 1993; Peyer et al. 2009, 2010). As a result, zebra mussels may 
be more likely to remain attached to boat hulls than quagga mussels, facilitating 
their transport to new habitats.

In Europe, most waterbodies had already been colonized by zebra mussels long 
before quagga mussels began to spread, making it difficult to compare their rates of 
spread. However, North America was colonized by both species at approximately 
the same time (1980s), in the same area (Lake Erie), making their rates of spread in 
North America directly comparable. By 2008, zebra mussels had colonized twice 
as many US states as quagga mussels, almost eight times more counties, and over 
15 times more waterbodies (Karatayev et al. 2011). By 2010, 25 years after their in-
troduction into North America, D. polymorpha had colonized 17 times more water-
bodies than D. r. bugensis (Benson 2014). These differences clearly show that zebra 
mussels are far more efficient at colonizing new waterbodies than quagga mussels.

It has been shown that estimates of the rates of spread of exotic bivalves depend 
upon the spatial resolution of the scale of spread, and may be accelerated or slowed 
by various human activities (reviewed in Karatayev et al. 2007b; see Chapter “Dis-
tribution and Colonization of Limnoperna fortunei: Special Traits of an Odd Mus-
sel” in this volume). In general, the rate of spread is slower at finer spatial scales. 
For example, aquatic exotic species may quickly spread along connected waterways 
within a recently invaded continent, and soon reach their maximum range across 
the continental scale. However, it takes much longer to colonize all regions within 
an invaded continent, and much longer again to spread to every isolated lake and 
river (waterbody scale) within a region. This difference in the rate of colonization 
across different spatial scales may be several orders of magnitude. For example, in 
the nineteenth century it took less than 40 years for D. polymorpha to spread across 
Europe, chiefly through canal systems, to present day Belarus, Poland, the Baltic 
states, Great Britain, the Netherlands, Germany, Belgium, and France (reviewed in 
Karatayev et al. 2007b). On the other hand, at the regional scale it took over 150 
years for D. polymorpha to spread across geographical barriers to Alpine regions 
(Kinzelbach 1992), and almost 200 years to colonize Ireland (Minchin 2000) and 
Spain (bij de Vaate et al. 2002).

The spread of L. fortunei outside of its purported native range in China, south of 
the Yangtze River, into tropical Indochina (Cambodia, Laos, Thailand, Vietnam), 
likely occurred centuries ago (Morton and Dinesen 2010), but the first documented 
record of expansion was in 1965, when this species colonized Hong Kong (Morton 
1975). In the late 1980s, it was recorded in Japan (Matsuda and Uenishi 1992). In 
the early 1990s, it spread to South America (Pastorino et al. 1993), and is presently 
found in Argentina, Uruguay, Paraguay, Bolivia, and Brazil (see Chapter “Coloniza-
tion and Spread of Limnoperna fortunei in South America” in this volume). A rough 
comparison of the rates of spread shows that D. polymorpha spread ~ 2800  km 
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(Minneapolis to New Orleans in 7 years (1986–1993), whereas L. fortunei spread 
3400 km (Río de la Plata estuary to the Pantanal wetland) in 8–9 years (1990–1998). 
Thus, the rates of expansion in these areas have been generally similar, but the 
major pathways used for expansion likely differed. Once D. polymorpha colonized 
the uppermost reaches of the Mississippi River system (in 1991; Benson 2014), it 
swiftly expanded southwards by means of its downstream drifting larvae (Stoeckel 
et al. 2004). In contrast, L. fortunei first invaded the outlet of the Río de la Plata 
watershed (the Río de la Plata estuary), and spread northwards and upstream. Up-
stream expansion was obviously facilitated by attachment of adult individuals to 
the hulls of commercial boats that operate along the Paraná-Paraguay waterway, 
thus fitting the “jump dispersal” mode (MacIsaac et al. 2001). For L. fortunei, the 
importance of boat traffic as a dispersal vector is reinforced by the fact that in the 
Uruguay River, much of which is not navigable, the upstream expansion has been 
much slower than in the Paraná-Paraguay system (Boltovskoy et al. 2006).

Rates of spread across river basins, on the other hand, have apparently been 
faster for D. polymorpha, especially in the USA, than for L. fortunei. In Japan, the 
golden mussel is still restricted to a rather limited part of the country (see Chap-
ter “Colonization and Spread of Limnoperna fortunei in Japan” in this volume), 
whereas in South America in more than 20 years only one major basin has been 
colonized (the Río de la Plata basin), and a few minor ones (Mar Chiquita, Patos-
Mirim, Guaíba, Tramandaí; see Chapter “Colonization and Spread of Limnoperna 
fortunei in South America” in this volume).

The main mechanisms for interbasin dispersal of freshwater mussels are man-
made canals and aqueducts, and overland transport. Canals and aqueducts are partly 
responsible for the spread of L. fortunei in China (see Chapter “Distribution and 
Spread of Limnoperna fortunei in China” in this volume), and in Japan (see Chapter 
“Colonization and Spread of Limnoperna fortunei in Japan” in this volume), but, 
for different reasons, their impact has been limited. In China, many of the major 
hydraulic projects are very recent, suggesting that the effects of invasion are still 
underway. In Japan, there are 400,000 km of man-made canals, many of which con-
nect watersheds (Ministry of Agriculture, Forestry and Fisheries 2003); however, 
because of the country’s topography, watersheds are numerous and very small (Ja-
pan Commission on Large Dams 2009). Despite a millennium of efforts by man to 
reshape the drainage network (according to the International Commission on Large 
Dams, of the 20 oldest dams in the world, 15 are located in Japan), many are still 
isolated. This may explain why the overall spread of L. fortunei in Japan has been 
comparatively slow (see Chapter “Colonization and Spread of Limnoperna fortu-
nei in Japan” in this volume). In contrast, there are many large, navigable rivers in 
the USA, and almost 20,000 man-made canals, including several major interbasin 
transfer aqueducts, some of which are known to have been instrumental for the 
rapid dispersal of dreissenids (Benson 2014). In comparison, natural basins in South 
America have suffered little modification (with the exception of dams, especially in 
the Río de la Plata watershed, see Chapter “Colonization and Spread of Limnoperna 
fortunei in South America” in this volume), and there are no man-made interbasin 
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connections (although plans to interconnect all major navigable waterways have 
been under consideration for years).

For freshwater byssate mussels, overland interbasin transfer is chiefly accom-
plished through fouling of recreational boats (Balcom 1994; Padilla et  al. 1996; 
Buch and McMahon 2001; Johnson et al. 2001). Thus, invasion pressure on uncon-
nected waterbodies is highly dependent on the number of boats (chiefly trailered), 
which in turn is associated with income and living standard levels. By all indices, 
the USA has higher economic development than China and the five South American 
countries where L. fortunei is invasive, and most probably has a significantly higher 
number of recreational, trailerable watercraft.

Another potentially important factor is the number and density of waterbodies. 
Areas where lakes and rivers are more numerous would be more susceptible to the 
dispersal of aquatic species than those where such features are scarcer. In the USA, 
the surface of lakes and rivers accounts for 6.8 % of the total land area, which is 
3–10 times higher than in any of the South American countries invaded by L. fortu-
nei, and 2 and 24 times higher than in Japan and China, respectively (Fig. 2).

Potential for Future Spread

Dispersal of exotic species can be considered at different spatial scales, includ-
ing the global, regional, local, and waterbody scales, each characterized by par-
ticular environmental constraints (Karatayev et al. 2007b). Because different exotic 
bivalves have different environmental limits (Table 2), their current and potential 
ranges are also different. Based on thermal tolerance alone, all three species have 
the potential to invade all continents except Antarctica, but none has fully reached 

Fig. 2   Percentage of total land area occupied by waterbodies and artificially irrigated in countries 
invaded by Limnoperna fortunei or Dreissena spp.
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this potential (Karatayev et al. 2007b). Both species of Dreissena are expanding 
their range in eastern and western Europe and have invaded North America. Neither 
has yet invaded Asia, Africa, South America, or Australia (Fig. 3). L. fortunei is 
spreading in Asia and has invaded South America (Fig. 3). Colonization of Asia and 

Dreissena polymorpha

Native range Invasive range Potential
Invasive range

Limnoperna fortunei

Dreissena rostriformis bugensis

Fig. 3   Current and potential worldwide distribution of Limnoperna fortunei, Dreissena poly-
morpha, and Dreissena rostriformis bugensis. For L. fortunei, records in Indochina (denoted as 
native) are probably areas invaded before the twentieth century. (Distribution of D. polymorpha 
and D. r. bugensis in North America, courtesy of the United States Geological Service, Nonindig-
enous Aquatic Species)
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Africa by D. polymorpha and D. r. bugensis has been anticipated (e.g., Staroboga-
tov and Andreeva 1994), but high calcium requirements (Ramcharan et al. 1992; 
Burlakova 1998; Karatayev et al. 2007b) may curtail their spread into these conti-
nents. Most Australian and South American fresh waters have low concentrations 
of calcium, averaging 4 and 7 mg/L, respectively, while many North American and 
most European freshwaters have calcium concentrations that normally exceed 20–
30 mg/L (Wetzel 1975; Payne 1986; Fig. 1). In South American Patagonia (Argen-
tina and Chile), the temperature of many lakes located along the Andes cordillera 
south of  ~ 38°S seems adequate for colonization by zebra and quagga mussels (2–3 
to  ~ 16 °C), but, again, the levels of dissolved calcium are most likely too low for 
these mussels. Of 21 lakes analyzed by Díaz et al. (2000), only two have Ca levels 
above 7 mg/L.

In contrast, it seems likely that L. fortunei may colonize many of the areas pres-
ently occupied by species of Dreissena, as well as those where Dreissena cannot 
live, including North America, Europe, Africa, and Australia (Karatayev et  al. 
2007b). Temperature may represent a deterrent in some regions, but the fact that 
the golden mussel thrives in Paldang Reservoir (Korea) suggests that as long as 
peak summer temperatures are high (> 18 °C) it might establish viable populations 
and survive winter temperatures as low as 0 °C. Colonization of other major South 
American watersheds, especially those that drain into the Atlantic Ocean (Tocantins, 
São Francisco, Amazonas, Orinoco, Magdalena), is probably inevitable (Boltovs-
koy et al. 2006; Oliveira et al. 2010), but so far no records of invasion by L. fortunei 
have been reported from these basins.

The spread of these three species is still far from complete. For example, in 
2008, after more than 200 years of invasion in Belarus, only 33 % of all colonizable 
lakes were invaded by the zebra mussel (Karatayev et al. 2010a). Similarly, less 
than 10 years after the initial invasion of North America, zebra mussels had spread 
throughout most of the major connected river systems east of the continental divide; 
however, this spread has been much slower at the regional scale, and even slower at 
the waterbody scale (Padilla 2005). After  more than 20 years of invasion, only 120 
of  more than 15,000 inland lakes in Wisconsin (< 1 %) were invaded by 2013 (re-
viewed in Karatayev et al. 2014a). To date, quagga mussels have not invaded any of 
the inland lakes in Belarus or in Wisconsin. Similarly, in Argentina, the golden mus-
sel is present in a small fraction of the potentially colonizable waterbodies (Fig. 4). 
In Buenos Aires Province alone, < 10 % of the  ~ 530 permanent lentic waterbodies 
(Toresani et al. 1994) are currently invaded by L. fortunei. This mussel has not yet 
expanded its range beyond the large Río de la Plata watershed, a few minor basins 
in Uruguay and southern Brazil, and a small endorheic basin (Mar Chiquita) located 
in central Argentina (see Chapter “Colonization and Spread of Limnoperna fortunei 
in South America” in this volume).

It should be noted that monitoring of South American waterbodies for the presence 
of golden mussels is nowhere as systematic and thorough as that for dreissenids in 
the northern hemisphere. None of the countries invaded has a comprehensive pro-
gram aimed at the early detection of L. fortunei, and efforts at tracking its expansion 
are isolated and uncoordinated. Furthermore, while so far the golden mussel has 
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been spreading in populated and industrialized areas of the Río de la Plata water-
shed, where the presence of this invader seldom went unnoticed, the next major 
watershed, the Amazon, is largely a very sparsely populated dense rainforest where 
most of the population lives in a few larger cities. Thus, the presence of the golden 
mussel is less likely to be noticed swiftly, and it is even less likely to be reported in 
the literature. On the other hand, because rivers are the main paths of transportation 
for people and produce, once colonization of the Amazon basin starts, the spread of 
golden mussels will likely be very fast.

Competition

The distributional ranges of zebra and quagga mussels overlap in Europe and in 
North America, and both species have the potential to overlap with L. fortunei in the 
future (Fig. 3). When co-occurring, species with similar habitat use will be expected 
to compete. Zebra and quagga mussels coexist in their native range in the Dnieper 
River delta and Dnieper-Bug Liman, Ukraine (reviewed in Zhulidov et al. 2010; 
Karatayev et al. 2011, 2014a). However, where the invasive ranges of both species 
overlap (Fig. 3), quagga mussels seem to outcompete zebra mussels over time (Na-
lepa 2010; Zhulidov et al. 2010; Karatayev et al. 2011, 2014a). This is especially 
typical for deep waterbodies and is likely due to the greater energetic efficiency of 
D. r. bugensis (Mills et al. 1999; Diggins 2001; Baldwin et al. 2002; Stoeckmann 
2003; Karatayev et al. 2010c; Nalepa 2010). In addition, D. r. bugensis can colonize 
silty habitats, is more tolerant of low oxygen levels, has higher growth rates and 

a b

Fig. 4   Waterbodies (a: lakes and rivers, b: major lakes and reservoirs) colonized by the golden 
mussel in Argentina ( red). Light blue denotes waterbodies where water temperatures are probably 
too low for the establishment of Limnoperna fortunei
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lower mortality, and reproduces at lower temperatures than D. polymorpha (Mills 
et al. 1996; Claxton and Mackie 1998; Karatayev et al. 1998, 2010c, 2014c; Nalepa 
2010). These demographic and physiological traits of quagga mussels allow them to 
colonize the large, cold profundal zone of deep lakes, which is unsuitable for zebra 
mussels. Thus, they can colonize the entire lake achieving much higher total popu-
lation sizes, and outcompete zebra mussels by depleting food resources to levels 
that are too low for zebra mussels, but sufficient to support quagga mussels (Nalepa 
2010; Karatayev et  al. 2011, 2014a, 2015). In contrast, due to their tolerance of 
some abiotic factors (Table 2), greater rate of byssal thread production, and higher 
attachment strength (Peyer et al. 2009, 2010), zebra mussels are likely to be better 
adapted to the unstable, high-energy environment of the upper littoral zone, where 
fluctuations in temperature, currents, and wave action are prominent (reviewed in 
Karatayev et al. 2011, 2014a, 2015). Zebra mussels can still have an advantage in 
shallow lakes and rivers and coexist with quagga mussels (Zhulidov et al. 2004, 
2010; Grigorovich et  al. 2008; Peyer et  al. 2009; Karatayev et  al. 2011, 2015). 
Even in Lake Erie, where ≥ 95 % of the mussels in the central and eastern basins are 
quagga mussels, D. polymorpha still composes 30 % of the mussels in the shallow 
western basin after more than 20 years of coexistence (Karatayev et al. 2014c).

Because at present L. fortunei does not co-occur with either species of Dreissena, 
it is difficult to predict if they will compete, and if they do, under what conditions 
which species will prevail. Data at hand suggest that such co-occurrence is most 
likely to happen in Europe, Asia, and/or North America (Fig. 3). D. polymorpha 
has recently been found on barges imported to Argentina from the USA for grain 
transport along the Paraná-Paraguay rivers (Pablo Almada, personal observation), 
indicating that ballast water is not the only pathway for intercontinental transport of 
invaders. However, no live mussels were found in the few samples examined, and 
even if they had zebra mussels would probably not survive in the Río de la Plata 
watershed (see above). From their corresponding environmental tolerance ranges 
(Table 2), it seems likely that L. fortunei will outcompete the dreissenids in warmer, 
more polluted, less oxygenated and more acidic waters, as well as in waters with 
lower Ca concentrations. However, the outcome of their competitive interaction 
when conditions are suitable for all three species is unclear. The niche of L. fortunei 
within a waterbody appears to be more similar to that of zebra mussels than quagga 
mussels, suggesting that the competition may be stronger between the former two 
species (Table 2). However, similarities between zebra mussels and golden mussels 
also suggest that the impact of D. r. bugensis on L. fortunei may be similar to the 
one observed on D. polymorpha.

Impacts of Invasion

L. fortunei and both species of Dreissena are functionally similar, and as a conse-
quence, many of their impacts on the systems they invade are also similar (Table 3). 
All three species are ecosystem engineers, sessile suspension feeders that attach to 
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substrate with byssal threads. All three form druses, increasing habitat complexity 
for other benthic invertebrates, and affect planktonic communities, trophic relation-
ships, and nutrient cycling via their feeding and filtering activities (Karatayev et al. 
1997, 2002, 2007a, 2007b, 2015; Darrigran 2002; Beekey et al. 2004; Boltovskoy 
et al. 2006, 2009a; Burlakova et al. 2012; Boltovskoy and Correa 2015). However, 
the magnitude of these effects, and in some cases even their sign, depends on the 
invasive species, the other species present in the native community, and waterbody 
type.

Effects on Benthic Invertebrates

By creating reef-like three-dimensional structure, both species of Dreissena and 
L. fortunei change the physical habitat and provide refuge from predation and 
from physical stressors (waves, currents, desiccation) for benthic organisms that 
would otherwise be scarce or absent. In addition to increased habitat complexity, 
the impact of these byssate bivalves is compounded by their role as suspension 
feeders. All three species increase the rates of deposition of both inorganic and 
especially organic material on the bottom, providing an enhanced food subsidy 
for benthic deposit feeders. Many studies have shown that both D. polymorpha 
and L. fortunei have positive effects on most native invertebrates, which take 
advantage of both the structural complexity and food resources provided by zebra 
and golden mussels (Botts et al. 1996, Karatayev et al. 1997, 2002, 2007a, 2007b, 
2010a; Darrigran et al. 1998; Stewart et al. 1998; Gutierrez et al. 2003; Beekey 
et  al. 2004; Sardiña et  al. 2008, 2011; Burlakova et  al. 2012; Boltovskoy and 
Correa 2015; see Chapter “Relationships of Limnoperna fortunei with Benthic 
Animals” in this volume). At the same time, a few species of invertebrates have 
occasionally been found to be less abundant in mussel beds than in nearby bare 
sediments. Sardiña et al. (2011) reported that some snails, ostracods, nematodes, 
and chironomids may be less abundant in L. fortunei beds than in nearby bare 
sediments. However, the overall diversity, density, and biomass of native inverte-
brates is always higher in druses and mussel beds compared to nearby bare sedi-
ments (Table 3).

While in the littoral zone the effects of D. r. bugensis are probably similar to those 
of zebra and golden mussels (Bially and MacIsaac 2000; Yakovleva and Yakovlev 
2011), in the cold profundal zone of deep lakes (where, unlike zebra and golden 
mussels, quagga mussels can be very abundant; Patterson et al. 2005; Watkins et al. 
2007; Nalepa 2010; Karatayev et al. 2015, 2014c), their effects are quite different. 
Quagga mussels usually do not create large druses, but rather live individually or 
form small aggregates that float on the surface of soft silt (rather than sink), sepa-
rated by the length of their siphons (Dermott and Kerec 1997, Karatayev and Bur-
lakova, personal observations). Thus, they provide fewer refugia for benthic taxa 
and can compete with native invertebrates for space and food decreasing their over-
all diversity, density, and biomass (Dermott and Kerec 1997; Lozano et al. 2001; 
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Parameter L. fortunei D. polymorpha D. r. bugensis
Water 
transparency

Increase (Boltovskoy et al. 
2009a; Kawase 2011; 
Cataldo et al. 2012a; 
Boltovskoy and Correa 
2015)a

Increase (Karatayev 
et al. 1997, 2002, 
2007a, 2007b; Van-
derploeg et al. 2002; 
Higgins and Vander 
Zanden 2010; Kelly 
et al. 2010)

Increase (Barbiero and 
Tuchman 2004; Nalepa 
2010; Pothoven and 
Fahnenstiel 2014)

Seston 
concentration

Decrease (Boltovskoy 
et al. 2009a; Kawase 
2011; Cataldo et al. 2012a, 
2012b; Boltovskoy and 
Correa 2015)a

Decrease (Karatayev 
et al. 1997, 2007a, 
2007b; Higgins and 
Vander Zanden 2010)

Decrease (Shevtsova 
1989)

Nutrients Alter nutrient cycling 
(Boltovskoy et al. 2009a; 
Kawase 2011; Cataldo 
et al. 2012a, 2012b; 
Boltovskoy and Correa 
2015)a

Alter nutrient cycling 
(Karatayev et al. 
2002, 2007a, 2007b; 
Vanderploeg et al. 
2002; Higgins and 
Vander Zanden 2010; 
Kelly et al. 2010)

Alter nutrient cycling 
(Nalepa 2010)

Phytoplankton 
and chlorophyll

Decrease, changes in 
community composition 
(Boltovskoy et al. 2009a; 
Cataldo et al. 2012a; Di 
Fiori et al. 2012; Boltovs-
koy and Correa 2015)a

Decrease, changes in 
community composi-
tion (Karatayev et al. 
2002 2007a, 2007b; 
Higgins and Vander 
Zanden 2010; Kelly 
et al. 2010)

Decrease, changes in 
community com-
position (Barbiero 
and Tuchman 2004; 
Fahnenstiel et al. 2010; 
Nalepa 2010; Pothoven 
and Fahnenstiel 2013)

Macrophytes, 
periphyton, 
benthic algae

Increase biomass and 
extent (Boltovskoy et al. 
2009a; Cataldo et al. 
2012b; Boltovskoy and 
Correa 2015)a

Increase biomass and 
extent (Karatayev 
et al. 1997; Nalepa 
et al. 1999; Vander-
ploeg et al. 2002; 
Hunter and Simons 
2004, Karatayev et al. 
2007a, Karatayev 
et al. 2007b; Higgins 
and Vander Zanden 
2010)

Increase biomass and 
extent (Nalepa 2010)

Zooplankton Decrease density, change 
community composi-
tion (Rojas Molina et al. 
2010; Fachini 2011; Rojas 
Molina et al. 2011, 2012; 
Boltovskoy and Correa 
2015)b

Decrease density, 
change community 
composition (Kara-
tayev et al. 1997, 
2007a, 2007b; Van-
derploeg et al. 2002; 
Higgins and Vander 
Zanden 2010; Kelly 
et al. 2010)

Decrease? (reviewed in 
Nalepa 2010; Pothoven 
and Fahnenstiel 2014)

Table 3   Effects of freshwater, byssate invasive mussels or mussel-related processes on invaded 
freshwater systems
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Nalepa et al. 2007, 2009a, 2009b; Watkins et al. 2007; Soster et al. 2011; Burlakova 
et al. 2014; Karatayev et al. 2015, 2014c).

Littoral 
zoobenthos

Increase density and 
diversity; changes in 
community composition 
(Darrigran et al. 1998; 
Sylvester 2006; Sylves-
ter et al. 2007a, 2007b; 
Sardiña et al. 2008, 2011, 
Karatayev et al. 2010a; 
Burlakova et al. 2012)c

Increase density; 
changes in com-
munity composi-
tion (reviewed in 
Karatayev et al. 1998, 
2007b; Higgins and 
Vander Zanden 2010; 
Kelly et al. 2010)

Increase density; 
changes in community 
composition (Bially 
and MacIsaac 2000; 
Yakovleva and Yakov-
lev 2011)

Profundal 
zoobenthos

Normally L. fortunei 
absent or very scarce 
because of lack of 
adequate substratad

D. polymorpha nor-
mally absent

Decrease, changes in 
community composi-
tion (Dermott and 
Kerec 1997; Nalepa 
et al. 1998, 2007, 
2009a, 2009b; Lozano 
et al. 2001; Watkins 
et al. 2007; Nalepa 
2010; Soster et al. 
2011)

Unionids Probably negative (Man-
sur et al. 2003; Scarabino 
2004; Karatayev et al. 
2010a)e

Negative (reviewed in 
Karatayev et al. 1997, 
2007b; Burlakova 
et al. 2000; Lucy et al. 
2014)

Negative (Schloesser 
and Masteller 1999; 
Zhulidov et al. 2010; 
Sherman et al. 2013; 
Lucy et al. 2014)

Adult and larval 
fishes

Probably positive from 
enhanced food resources 
(Montalto et al. 1999; 
Penchaszadeh et al. 2000; 
Boltovskoy et al. 2006; 
Paolucci et al. 2007; 
Paolucci et al. 2010a, 
2010b; Boltovskoy and 
Correa 2015)f

Increase density of 
benthivorous fishes, 
changes in com-
munity composi-
tion (reviewed in 
Karatayev et al. 1997, 
2002, 2007b; Molloy 
et al. 1997; Kelly 
et al. 2010)

Decrease density and 
changes in community 
composition in pro-
fundal zone (reviewed 
in Nalepa 2010; Kara-
tayev et al. 2015)

a See Chapter “Nutrient Recycling, Phytoplankton Grazing, and Associated Impacts of 
Limnoperna fortunei” in this volume
b See Chapter “Impacts of Limnoperna fortunei on Zooplankton” in this volume
c See Chapter “Relationships of Limnoperna fortunei with Benthic Animals” in this volume
d See Chapter “Limnoperna fortunei Colonies: Structure, Distribution and Dynamics” in this 
volume
e L. fortunei have been observed to attach to unionid shells, but the potential impact has not been 
investigated
f See Chapters “Trophic relationships of Limnoperna fortunei with larval fishes” and “Trophic 
relationships of Limnoperna fortunei with adult fishes” in this volume

Table 3  (continued)
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Effects on the Water Column

The effects of L. fortunei and dreissenids on the water column are associated with 
their roles as suspension feeders, and effects can be system-wide, as opposed to ef-
fects on benthic invertebrates, which are mostly local. Suspension feeding not only 
affects nutrients and planktonic communities, it also transfers materials from the 
water column to the benthos, enhancing the coupling between planktonic and ben-
thic components of the ecosystem, which can trigger a suite of changes that increase 
the relative importance of the benthic community—a process sometimes referred 
to as “benthification” (Mayer et al. 2014). The intensity and extent of these effects 
depend on many factors, including mussel population density and distribution in 
a waterbody, food resources available for the bivalves, water mixing rates, lake 
morphology, and plankton turnover rates (Karatayev et al. 1997, 2002; Kelly et al. 
2010; Boltovskoy and Correa 2015). Because D. polymorpha is usually restricted 
to the littoral zone, its impacts may be significantly greater in small, shallow lakes 
than in large, deep ones (Karatayev et al. 2015). The impacts of L. fortunei may be 
similar, but this has not been confirmed by ad hoc studies. In contrast, quagga mus-
sels are found throughout the entire waterbody, and, in deep lakes, they have larger 
total population sizes. As a consequence, they may have greater system-wide effects 
than golden or zebra mussels (reviewed in Karatayev et al. 2015).

Although there are more data on the system-wide impacts of zebra mussels than 
those of quagga and golden mussels, because of their functional similarity, their 
impacts on waterbodies are likely to be similar (Table 3), although the final out-
come may differ depending on waterbody characteristics. The feeding activity of 
these invasive bivalves boosts nutrient concentrations and alters their proportions, 
in particular increasing the phosphorus to nitrogen (P:N) ratio (Conroy and Culver 
2005; Cataldo et al. 2012b). Consumption of organic particles, including phyto- and 
zooplankton, and the rejection of organic and inorganic suspended matter as feces 
and pseudofeces decreases plankton densities and turbidity, which in turn favors 
light penetration and growth of macrophytes and periphyton. These effects have 
been described repeatedly in European, Asian, and North and South American wa-
terbodies colonized by dreissenids or L. fortunei (see references in Table  3; see 
Chapter “Nutrient Recycling, Phytoplankton Grazing, and Associated Impacts of 
Limnoperna fortunei” in this volume). However, their net impacts on the systems 
investigated are not necessarily identical, especially when comparing cold-temper-
ate North American lakes with tropical and subtropical South American freshwater 
habitats. The Paraguay-Paraná-Uruguay floodplain river system invaded by L. for-
tunei is quite different than the colder, clearer, and more oligotrophic North Ameri-
can waterbodies colonized by Dreissena. A particularly important contrast are the 
mean concentrations of particulate organic carbon (POC), which are much higher in 
South America (about 3.5 mg/L in the Paraná River, 20–40 % of it labile and avail-
able for biologic consumption; Depetris 1976; Depetris and Pasquini 2007) than 
in many of the waterbodies invaded by Dreissena (typically around 0.15–1 mg/L 
in the Great Lakes; Fanslow et al. 1995; Barbiero and Tuchman 2004; Johengen 
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et al. 2008). Filtering organisms are generally scarce and probably not food limited 
in South America (Sylvester et al. 2005), which suggests that competitive impacts 
with suspension-feeding native animals, such as those described in North America 
(Bartsch et al. 2003; Thorp and Casper 2003; Raikow 2004), are less likely in South 
America. Furthermore, indigenous suspension-feeding organisms in the Río de la 
Plata watershed are scarce, and the main source of energy for animals is of detrital 
origin. Most of the suspended organic matter is flushed out into the ocean through 
the Río de la Plata estuary (~ 1,000,000–2,000,000 t of POC per year; Depetris and 
Kempe 1993; Guerrero et al. 1997). L. fortunei, the only abundant macrobenthic 
suspension-feeder, intercepts part of this organic matter and retains it in the system 
for use by a wide array of animals. The ecosystem-wide effects of this new ener-
getic subsidy to the benthos have not been investigated, but are likely significant 
(Boltovskoy et al. 2006).

One of the most contentious questions is the impact of exotic bivalves on toxic 
cyanobacteria, in particular Microcystis spp. Several authors have suggested that 
Dreissena spp. promote toxic blooms via selective grazing and rejection of toxic 
strains of blue-green algae and excretion of soluble waste products at low nitrogen 
to phosphorus ratios (Conroy and Culver 2005; Bykova et al. 2006; Fishman et al. 
2009). Other studies (in both North America and Europe) have found that zebra 
mussels may actively consume and reduce the density of Microcystis spp. (Baker 
et al. 1998; Strayer et al. 1999; Dionisio Pires et al. 2005, 2010). It was suggested 
that the positive effect of dreissenids on Microcystis spp. is restricted to lakes with 
low to moderate total phosphorus concentrations (< 25 µg total P/L), whereas those 
with high nutrient loadings are not affected (Vanderploeg et al. 2001; Nicholls et al. 
2002; Sarnelle et al. 2005; Knoll et al. 2008). In contrast, L. fortunei boosts Mi-
crocystis spp. growth at very high P concentrations (50–100 µg/L; Cataldo et al. 
2012b).

Trophic Interactions with Fishes

In Europe and North and South America, dreissenids and L. fortunei provide an 
abundant food resource for fishes. At least 38 species of fish in Europe and in North 
America feed on Dreissena spp. (Molloy et al. 1997), and almost 50 species of fish 
consume L. fortunei in South America (see Chapter “Trophic Relationships of Lim-
noperna fortunei with Adult Fishes” in this volume). The importance of mussels in 
fish diets varies depending on the feeding mode and fish age, season of the year, and 
the morphology of the waterbody (Karatayev et al. 2002, 2007a; Strayer et al. 2004; 
Boltovskoy and Correa 2015).

In dreissenid-invaded areas, shortly after invasion there has been an increase in 
benthivorous fishes, especially in the littoral zone. This is true even for those that 
do not feed on dreissenids because of the increase in biomass of native benthic 
invertebrates that occurs with invasion (Karatayev et al. 2002, 2007a; Higgins and 
Vander Zanden 2010; Kelly et al. 2010; Burlakova et al. 2012). In Europe, a shift 
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to dreissenid-based diets has resulted in increased growth, average and maximum 
sizes, and condition for some species of fish (Lyagina and Spanowskaya 1963; Pod-
dubnyi 1966). In contrast, in the profundal zone of the Great Lakes, the introduc-
tion of zebra, and especially quagga mussels has been linked to the decline in the 
abundance, condition, and growth of several fish species. This effect has been as-
sociated with a decrease in their main food, the amphipod Diporeia spp., and to 
the lower energy content of the new food resource (mussels), which replaced the 
original forage base (Lozano et al. 2001; Hoyle et al. 2008; Nalepa et al. 2009a, 
2009b; Rennie et  al. 2009). Limited data suggest that dreissenids can have both 
negative and positive effects on planktivorous fishes. Suspension feeding by mus-
sels can reduce planktonic food resources. Increased water transparency can result 
in increased predation on larval fish, but may also facilitate prey capture by visual 
fish predators (Francis et al. 1996; Mayer et al. 2001, 2014; Mills et al. 2003). In 
the long term, however, the effects of Dreissena spp. on fish were found to decrease 
with time (Strayer et al. 2014).

Following the introduction of the golden mussel in South America, several fish 
species shifted their diet from plants and detritus to the energetically more profit-
able L. fortunei (Boltovskoy et al. 2006; see Chapter “Trophic Relationships of Lim-
noperna fortunei with Adult Fishes” in this volume). L. fortunei is consumed not 
only by fishes that can detach mussels from a clump and grind their valves, but also 
by species that swallow whole individuals, and even others that nibble on extended 
siphons and mantle edges. Many of these midsized fishes are in turn consumed by 
larger, piscivorous species with high commercial value, suggesting that improved 
feeding conditions for their prey are likely to have a positive impact on these large 
species as well.

Consumption of L. fortunei veligers by fish larvae is probably even more signifi-
cant than the consumption of adult mussels. Of 25 larval fish taxa surveyed in the 
Paraná, Paraguay, and Uruguay rivers, 18 feed on veligers, especially their earliest 
life stage (protolarvae) (Paolucci et al. 2007; Paolucci 2010; see Chapter “Trophic 
Relationships of Limnoperna fortunei with Larval Fishes” in this volume). Veligers 
are not only more abundant and easier to capture than crustacean zooplankton, but 
they also represent an energetically more profitable food resource yielding signifi-
cantly higher growth rates than crustaceans (Paolucci et al. 2010b).

Concluding Remarks

Limnoperna fortunei was originally described in 1856 (as Volsella fortunei; Dunker 
1856), and subsequently referred to under various different names including Mo-
diola lacustris, Limnoperna lacustris, Modiola siamensis, Limnoperna siamensis, 
Modiola cambodgensis, Modiola (Limnoperna) siamensis (Morton and Dinesen 
2010), in chiefly taxonomic and distributional studies. It was a species of little in-
terest until it invaded Japan and South America around 1990. After that time, the 
number of publications dedicated to the golden mussel soared from < 0.3/year as of 
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1992, to > 20/year after 1993 (see “Preface” in this volume). The striking similarity 
between L. fortunei and species of Dreissena has been noticed since the very first 
detailed studies of the biology of the golden mussel, when it invaded Hong Kong  
~ 1965 (Morton 1975). By then, D. polymorpha had been expanding across Europe 
for centuries, and there was abundant information on its biology, ecology, and im-
pacts. Thus, using Dreissena as a model and a recurrent reference in subsequent 
literature on the golden mussel was an obvious outcome.

The growing body of information on L. fortunei clearly shows that, indeed, par-
allels with the dreissenids, in particular with D. polymorpha, are numerous and 
warranted. However, proven similarities also encouraged ascribing to L. fortunei 
processes, and particularly impacts, reported for zebra mussels in the northern 
hemisphere. Although many researchers were cautious in their conclusions, stating 
that such effects were merely a possibility, others were not. These assumptions had 
a snowball effect whereby subsequent publications indiscriminately extrapolated 
results on the impacts of zebra mussels in the northern hemisphere to those of L. 
fortunei in South America.

Boltovskoy and Correa (2015) noted that “Complications for interpreting the ef-
fects of L. fortunei on the ecosystem are even more critical when attempting to label 
the impacts as negative or positive. A basic precautionary principle and the long list 
of examples where introduced species have been shown to have devastating effects 
on the biota (Simberloff 2003) clearly support the need to make all efforts possible 
to keep biological invasions at bay, or to eradicate them if feasible. However, once 
a nonnative species has been introduced and its eradication is out of the question 
(as is the case of L. fortunei), analyses of its interactions with the local biota should 
be based on evidence, rather than on extrapolations from other invasives and geo-
graphic areas. Much of the literature on the golden mussel has been oriented at forc-
ibly demonstrating the environmental harm caused by this invader, thus biasing if 
not the results, the interpretation of the evidence obtained (Bujes et al. 2007; Defeo 
et al. 2013)”.

As shown in this review, impacts of these invasive mussels vary widely among 
geographic areas and waterbodies, and even in different sectors within the same 
waterbody. Furthermore, interactions with the local biota change as a function of 
mussel species, their densities, and with time after initial colonization. Using data 
on the much more thoroughly researched dreissenids furnished useful guidelines 
for defining potential interactions and fruitful research topics, but it has also tended 
to hinder assessment of differences between the golden mussel and Dreissena spp., 
many of which have been shown to be responsible for quite dissimilar environmen-
tal impacts (Boltovskoy et al. 2006; Boltovskoy and Correa 2015). We contend that 
in order to effectively widen our current knowledge, research on L. fortunei should 
center on identifying contrasts and dissimilarities with dreissenids, rather than on 
confirming parallels.

Future research should aim at shedding light on the many unknown aspects of 
the biology and ecology of the golden mussel, which are particularly critical for 
a comprehensive assessment of its interactions with the local biota. So far, only 
a few effects at local scales have been explored, whereas at the ecosystem scale 
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our understanding of interactions of L. fortunei with the environment is still very 
limited. For example, although mussel densities are a key element for gauging the 
impacts of the invader on ecosystems, so far only one attempt has been made at as-
sessing this parameter over an entire waterbody (Boltovskoy et al. 2009a). Several 
potential traits (e.g., fecundity, metabolism) and interactions of utmost importance 
(e.g., biomagnification and transfer of contaminants, thermal shifts due to changes 
in water transparency, the homogenization of faunal composition across environ-
ments, facilitation of other invasive species, changes in macrophyte growth, modi-
fications in benthic oxygenation, overgrowth of other organisms, trophic relation-
ships with waterfowl and aquatic vertebrates other than fishes, etc.) have practically 
not been addressed so far.
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