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Abstract A better understanding of the neurobiological factors that contribute to
relapse to smoking is needed for the development of efficacious smoking cessation
medications. Reinstatement procedures allow the preclinical assessment of several
factors that contribute to relapse in humans, including re-exposure to nicotine via
tobacco smoking and the presentation of stimuli that were previously associated
with nicotine administration (i.e., conditioned stimuli). This review provides an
integrated discussion of the results of animal studies that used reinstatement pro-
cedures to assess the efficacy of pharmacologically targeting various neurotrans-
mitter systems in attenuating the cue- and nicotine-induced reinstatement of
nicotine seeking. The results of these animal studies have increased our under-
standing of the neurobiological processes that mediate the conditioned effects of
stimuli that trigger reinstatement to nicotine seeking. Thus, these findings provide
important insights into the neurobiological substrates that modulate relapse to
tobacco smoking in humans and the ongoing search for novel efficacious smoking
cessation medications.
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1 Introduction

The negative impact of tobacco consumption on health remains one of the most
urgent health issues (Alberg et al. 2014) because the global number of tobacco
smokers continues to steadily increase (Ng et al. 2014). Although the health risks
associated with tobacco smoking are greatly reduced by the cessation of tobacco
consumption, fewer than 5 % of all quit attempts result in lifelong abstinence from
tobacco smoking (Hughes et al. 2004). The vast majority of current smokers have
considered or undertaken at least one quit attempt. Specifically, a recent survey of
tobacco smokers in the USA reported that two-thirds of the respondents wished to
quit their harmful habit and that over half of the respondents had undertaken one
quit attempt in the previous year (Centers for Disease Control and Prevention
2010). However, despite the currently available smoking cessation medications and
behavioral intervention treatments, an estimated half of smokers failed to quit their
habit, despite multiple quit attempts during their lifetime (Centers for Disease
Control and Prevention 2000). Relapse to tobacco seeking is thus one of the most
defining features of tobacco dependence. To decrease relapse rates, the identifica-
tion of novel pharmacological targets is needed. The development of these novel
pharmacological targets in the treatment of tobacco dependence requires the use of
procedures in experimental animals that mimic aspects of relapse in humans.

Nicotine is the main psychoactive ingredient in tobacco (Stolerman and Jarvis
1995). Therefore, experimental animal research that focuses on identifying phar-
macological targets for novel smoking aids primarily assesses the effects of nico-
tine. The reinstatement procedure is one of the most widely used tools for screening
the effects of pharmacological compounds on “relapse” to nicotine seeking in
animals. The reinstatement of nicotine-seeking behavior is broadly defined as the
continuation of the behavioral response that previously resulted in nicotine delivery
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after noncontingent exposure to nicotine (nicotine-induced reinstatement) or the
presentation of stimuli (e.g., cue light illumination and sounds associated with
activation of the pump that delivers nicotine) that were previously associated with
nicotine administration (cue-induced reinstatement) after a period of abstinence. In
the reinstatement procedure, animals are allowed to self-administer nicotine for a
prolonged period of time before undergoing extinction training. During extinction
training, the animals are placed in the chambers where they were previously
allowed to intravenously self-administer nicotine, while nicotine and its conditioned
cues are withheld. Alternatively to extinction training, animals may also undergo a
period of forced abstinence. During this period of abstinence, also referred to as the
incubation of nicotine seeking (Abdolahi et al. 2010; Bedi et al. 2011), the animals
remain in their home cages during the withdrawal period. Nicotine seeking in
animals can then be reinstated by manipulations that have been associated with
relapse in human smokers. Conditions that induce relapse to tobacco smoking in
humans include tobacco smoking itself, conditioned cues, and stress (Doherty et al.
1995). In parallel to humans, rodent studies have shown that noncontingent nicotine
administration (Dravolina et al. 2007), conditioned cues (Paterson et al. 2005), and
stress (Bruijnzeel et al. 2009) all induce the reinstatement of nicotine-seeking
behavior (see chapters entitled Behavioral Mechanisms Underlying Nicotine
Reinforcement and The Role of Mesoaccumbens Dopamine in Nicotine
Dependence; this volume). Importantly, the overlap in factors that induce relapse
in humans and reinstatement in experimental animals suggests good etiological
validity for the reinstatement model.

Predictive validity for the reinstatement procedure in terms of pharmacological
isomorphism (Geyer and Markou 1995) is provided by various studies that iden-
tified compounds that attenuate both relapse in humans and the reinstatement of
nicotine seeking in animals. For example, the opioid receptor antagonist naltrexone
facilitated smoking cessation and reduced relapse rates in humans (Epstein and
King 2004; King 2002; King et al. 2012, 2013; King and Meyer 2000) and
effectively attenuated the reinstatement of nicotine seeking in rats (Liu et al. 2009).
Another example is the cannabinoid CB1 receptor antagonist rimonabant, which
similarly decreased relapse to tobacco consumption in humans and reinstatement to
nicotine seeking in rats (Cahill and Ussher 2011; Diergaarde et al. 2008; Forget
et al. 2009). In contrast, however, two smoking cessation medications that are
currently approved by the United States Food and Drug Administration (FDA)
produced mixed results in studies of reinstatement of nicotine seeking in rats.
Specifically, bupropion enhanced cue-induced reinstatement of nicotine seeking
(Liu et al. 2008), while varenicline attenuated nicotine-induced, but not cue-
induced, reinstatement of nicotine seeking (O’Connor et al. 2010). This variability
in findings may reflect the different neurocircuits that probably underlie different
aspects of the reinstatement of nicotine seeking. Results from reinstatement studies
of drug seeking for other psychostimulant drugs, including cocaine, support the
postulation that distinct neurocircuits are involved in the regulation of diverse
aspects of the reinstatement of drug seeking (for reviews, see Kalivas and
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McFarland 2003; See et al. 2003). The sections below briefly describe several
neurocircuits that regulate diverse aspects of nicotine dependence, followed by
discussions of the various neurotransmitter systems that are of interest in studies of
the reinstatement of nicotine seeking.

2 Neurocircuits of Interest in Studies of the Reinstatement
of Nicotine Seeking

2.1 Mesolimbic System

Dopaminergic projections from the ventral tegmental area (VTA) to nucleus ac-
cumbens (NAc) are critically involved in mediating the reinforcing and motiva-
tional properties of nicotine (Gerasimov et al. 2000; Laviolette and van der Kooy
2004). Nicotine directly activates these dopaminergic projections through β2-con-
taining nicotinic acetylcholine receptors (nAChRs; see chapters entitled Structure of
Neuronal Nicotinic Receptors and Genetics of Smoking Behaviour; volume 23) on
VTA dopaminergic neurons (Mameli-Engvall et al. 2006) and indirectly through α7
nAChRs located on VTA glutamatergic neurons (Mansvelder and McGehee 2000).
Pharmacological compounds that provide low levels of stimulation of dopaminergic
projections to the NAc may therefore result in decreased nicotine-seeking behavior.
In fact, the efficacy of the nicotinic receptor partial agonist varenicline, one of the
few FDA-approved smoking cessation aids, in attenuating relapse to smoking in
humans is assumed to partially result from low stimulatory actions at β2-containing
nAChRs located on dopaminergic projections from the VTA to NAc (West et al.
2008). Alternatively, increased glutamatergic neurotransmission through the acti-
vation of excitatory α7 nAChRs, located on glutamatergic terminals that synapse on
VTA dopamine neurons, activates dopaminergic projections from the VTA to NAc
(Mansvelder and McGehee 2000). Moreover, a recent study by Gipson et al. (2013)
demonstrated that glutamatergic neurotransmission in the NAc contributed to the
cue-induced reinstatement of nicotine-seeking behavior, supporting an important
role for the mesolimbic neurocircuit in the reinforcing and motivational effects of
nicotine and the reinstatement of nicotine seeking. Findings from rat studies indi-
cated changes in glutamatergic neurotransmission in the NAc during early nicotine
withdrawal (i.e., 24 h after the cessation of nicotine self-administration; Knackstedt
et al. 2009; Liechti et al. 2007). Subsequent studies by Gipson et al. (2013) revealed
that these changes in NAc glutamatergic synaptic plasticity persist when the
withdrawal period is extended to 2 weeks. Moreover, the cue-induced reinstatement
procedure induced simultaneous increases in glutamatergic neurotransmission in
the NAc and nicotine seeking (Gipson et al. 2013), further indicating the impor-
tance of glutamatergic neurotransmission in the mediation of cue-induced
reinstatement.

128 A.K. Stoker and A. Markou

http://dx.doi.org/10.1007/978-3-319-13665-3_1
http://dx.doi.org/10.1007/978-3-319-13665-3_1
http://dx.doi.org/10.1007/978-3-319-13665-3_2


2.2 Habenulo-interpeduncular Circuit

Opposite to the role of the corticolimbic neurocircuit in the reinforcing effects of
nicotine, the habenulo-interpeduncular circuit appears to be important in mediating
the aversive effects of nicotine (Fowler et al. 2011, 2013; Frahm et al. 2011). The
medial habenula became of interest in the study of nicotine dependence when
genetic linkage studies found that genetic variation in the gene cluster that encodes
the α3, α5, and β4 nAChR subunits, which are densely located in the habenular
circuit (De Biasi and Salas 2008), was associated with lung cancer and nicotine
dependence in humans (Saccone et al. 2007, 2010). Mice null for the α5 nAChR
subunit vigorously self-administered very high concentrations of nicotine (Fowler
et al. 2011). Moreover, re-expression of the α5 nAChR subunit in the medial
habenula in these knockout mice returned their increased self-administration rates
of high nicotine doses back to rates observed in wild-type mice (Fowler et al. 2011),
highlighting the involvement of the habenula-interpeduncular pathway in the high
nicotine intake in these knockout mice. The effects of null mutation of the α5
nAChR subunit on nicotine consumption were explained in a later study by Fowler
and colleagues. This study suggested that the reward-suppressing effects that high
nicotine doses induce in wild-type mice were absent in α5 knockout mice (Fowler
et al. 2013). Similarly, increased activity of β4 nAChR subunits in mice, in which
the CHRNA5-CHRNA3-CHRNB4 gene cluster was co-expressed with a bacterial
artificial chromosome, resulted in the consumption of markedly less nicotine in a
no-choice bottle procedure, presumably because of the aversion to nicotine that
these mice exhibit in the conditioned place aversion procedure (Frahm et al. 2011;
see also chapter entitled Genetics of Smoking Behaviour; volume 23). Lentiviral
expression of the D398N α5 variant, which has been genetically associated with
nicotine dependence and lung cancer in humans (Falvella et al. 2009; Hung et al.
2008; Wang et al. 2009), in the medial habenula reversed the aversion to nicotine in
these mice (Frahm et al. 2011). These studies suggest the involvement of habenular
α5 and β4 nAChR subunits in the aversive effects of nicotine, but the role of the
habenulo-interpeduncular circuit in the reinstatement of nicotine-seeking behavior
remains to be explored. Nevertheless, the somatic signs of nicotine withdrawal were
attenuated in mice null for the both α5 and β4 nAChR subunits (Jackson et al. 2008;
Salas et al. 2007; Stoker et al. 2012), suggesting that these nAChR subunits may be
involved in mediating at least some of the aversive aspects of the nicotine with-
drawal syndrome and that pharmacologically targeting these nAChR subunits may
alleviate the negative withdrawal symptoms that ultimately result in the reinstate-
ment of nicotine seeking.
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2.3 Insular Cortex and Dorsal Striatum

Compared with the mesolimbic and habenulo-interpeduncular neurocircuits, the
insula and dorsal striatum are thought to be recruited in later stages of drug
dependence when drug-taking behavior becomes more habitual (for reviews, see
Everitt et al. 2008; Naqvi and Bechara 2009). These brain structures are therefore
particularly interesting in the study of drug reinstatement. The insular cortex
became of interest in the study of relapse to tobacco smoking when Naqvi and
colleagues reported that damage to the insular cortex facilitated spontaneous
smoking cessation in humans, presumably by relieving symptoms of craving
(Naqvi et al. 2007). Similarly, pharmacological or electrical inactivation of the
insula attenuated the cue- and nicotine-induced reinstatement of nicotine-seeking
behavior in animals (Forget et al. 2010a; Pushparaj et al. 2013). Subsequent studies
provided additional evidence that the insula critically regulates different aspects of
dependence on various psychostimulants and is particularly important in mediating
the effects of conditioned cues associated with drug craving (Abdolahi et al. 2010;
Contreras et al. 2007, 2012; Forget et al. 2010a; Hollander et al. 2008; Scott and
Hiroi 2011). The insula projects to the dorsal striatum, a brain region implicated in
the habitual and compulsive aspects of drug dependence. Interestingly, a recent case
report described a patient in whom a lesion of the dorsal striatum resulted in the
attenuation of nicotine intake (Muskens et al. 2012), similar to the effects of lesions
of the insula on smoking cessation. In animals, studies of the involvement of the
dorsal striatum in drug seeking have primarily focused on psychostimulant drugs
other than nicotine, most notably cocaine. Lesions or pharmacological inactivation
of the dorsal striatum in rats attenuated cocaine-seeking behavior (Fuchs et al. 2006;
Fucile et al. 1997; Fung and Richard 1994; Gabriele and See 2011). The effects of
conditioned cues associated with cocaine were shown to be mediated by dopami-
nergic neurotransmission in the dorsal striatum in animals (Ito et al. 2002) and
humans (Volkow et al. 2006).

3 Role of Various Neurotransmitter Systems
in Cue- and Nicotine-induced Reinstatement
of Nicotine-seeking Behavior

3.1 Acetylcholine

All smoking cessation medications that are currently approved by the FDA (i.e.,
nicotine replacement therapy, varenicline, and bupropion) have some affinity at
nAChRs (Coe et al. 2005; Slemmer et al. 2000; Thompson and Hunter 1998).
While these medications are ineffective in approximately 80 % of smokers who
attempt to quit smoking (Gonzales et al. 2006; Hughes et al. 2003; Jorenby et al.
2006), nAChRs have remained key targets in the research and development of
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novel pharmacotherapies for smoking cessation. Bupropion, a medication widely
used for smoking cessation, was initially used as an antidepressant therapy and
primarily acts as a dopamine and norepinephrine reuptake inhibitor. Interestingly,
bupropion was also found to act as an nAChR antagonist after it was marketed as a
smoking cessation medication (Slemmer et al. 2000). bupropion has had mixed
effects on smoking cessation rates in humans (Hurt et al. 1997) and actually
enhanced the cue-induced reinstatement of nicotine seeking in rats (Liu et al. 2008).
These results suggest that bupropion may have limited efficacy at treating the full
spectrum of relapse and may primarily alleviate depressive-like symptoms during
withdrawal (Cryan et al. 2003; Paterson et al. 2007).

Varenicline, a partial agonist at α4β2-containing nAChRs (Coe et al. 2005), was
synthesized after studies suggested the crucial involvement of β2 nAChRs in nic-
otine dependence (Maskos et al. 2005; Picciotto 1998). Preclinical studies that
assessed the effects of varenicline on the reinstatement of nicotine-seeking behavior
demonstrated mixed effects on cue- and nicotine-induced reinstatement. Specifi-
cally, the nicotine-induced reinstatement of nicotine seeking was attenuated by
varenicline in rats (see Fig. 1b adapted from O’Connor et al. 2010), similar to the
effects of varenicline in humans. In contrast, varenicline did not affect the cue-
induced reinstatement of nicotine-seeking behavior in rats (O’Connor et al. 2010;
Wouda et al. 2011, see Fig. 1a adapted from Wouda et al. 2011), and higher doses
of varenicline even enhanced cue-induced reinstatement (Wouda et al. 2011).
Interestingly, varenicline attenuated the cue-induced reinstatement of nicotine
seeking with a prolonged pretreatment time (Le Foll et al. 2012). When reinstate-
ment was induced by both nicotine priming and the presentation of cues, vareni-
cline also attenuated the reinstatement of nicotine seeking (O’Connor et al. 2010),
presumably because of the attenuating effect of varenicline on nicotine-induced
reinstatement. Altogether, preclinical studies on the effects of varenicline on nic-
otine seeking suggest the differential regulation of cue- and nicotine-induced
reinstatement. Furthermore, Liu (2014) demonstrated that α7 nAChR antagonism
with methyllycaconitine (MLA) but not α4β2-containing nAChR antagonism with
dihydro-β-erythroidine (DHβE) reduced the cue-induced reinstatement of nicotine
seeking. The results with varenicline and DHβE suggest that α4β2-containing
nAChRs may be involved in the regulation of nicotine-induced, but not cue-
induced reinstatement of nicotine seeking. In contrast, α7 nAChRs may be involved
in mediating the cue-induced reinstatement of nicotine seeking. The enhancement
of cue-induced reinstatement that results from administration of higher doses of
varenicline (Wouda et al. 2011) may be explained by the activation of α7 nAChRs
by varenicline, which acts as a full agonist at these receptors (Mihalak et al. 2006).
This interpretation is further supported by results from the study by Liu (2014),
which showed that α7 nAChR blockade attenuated cue-induced reinstatement.
Further support for the involvement of α7 nAChRs in nicotine seeking reinstated by
the presentation of conditioned cues, but not nicotine, is provided by the results of a
study that reported that TAT-α7-pep2, a protein that interferes with the function of
the α7nAChR–NMDA receptor complex, reduced the cue-induced reinstatement of
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Fig. 1 Effects of manipulating various neurotransmitter systems on cue- and nicotine-induced
reinstatement of nicotine-seeking behavior. The pharmacological targeting of a wide range of
neurotransmitter systems attenuated reinstatement to nicotine seeking induced by the presentation
of conditioned cues (left panel) and nicotine priming (right panel). Positive allosteric modulation
of α4β2 nAChRs with varenicline had no effect on the cue-induced reinstatement of nicotine
seeking (a, modified with permission from O’Connor et al. 2010), while varenicline attenuated the
nicotine-induced reinstatement of nicotine seeking (b, modified with permission from O’Connor
et al. 2010). The mGlu1 receptor antagonist EMQMCM attenuated both the cue-induced (c,
modified with permission from Dravolina et al. 2007) and nicotine-induced (d, modified with
permission from Dravolina et al. 2007) reinstatement of nicotine-seeking behavior. The dopamine
D4 receptor antagonist L-745,870 also attenuated the cue-induced (e, modified with permission
from Yan et al. 2013) and nicotine-induced (f, modified with permission from Yan et al. 2013)
reinstatement of nicotine seeking. The GABAB receptor agonists CPG44532 (g, modified with
permission from Paterson et al. 2005) and baclofen (h, modified with permission from Fattore et al.
2009) similarly reduced the cue- and nicotine-induced reinstatement of nicotine seeking,
respectively. Finally, the CB1 receptor antagonist rimonabant attenuated the cue-induced (i,
modified with permission from Forget et al. 2009) and nicotine-induced (j, modified with
permission from Forget et al. 2009) reinstatement of nicotine seeking
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nicotine seeking while not affecting reinstatement induced by nicotine priming
(Li et al. 2012).

In addition to the direct activation of nAChRs, cholinergic neurotransmission
can be increased by the inhibition of acetylcholinesterase, the enzyme that
metabolizes the endogenous nAChR ligand acetylcholine. Galantamine, which acts
both as an acetylcholinesterase inhibitor and positive allosteric modulator at α7- and
α4β2-containing nAChRs, reduced the cue-induced reinstatement of nicotine
seeking, suggesting that acetylcholinesterase inhibitors may be effective tools in the
prevention of nicotine reinstatement (Hopkins et al. 2012). The potential therapeutic
value of acetylcholinesterase inhibitors was supported by a study that demonstrated
that donezipil, which acts exclusively as an acetylcholinesterase inhibitor, attenu-
ated nicotine-induced reinstatement (Kimmey et al. 2012). Combined, the findings
with galantamine and donezipil suggest that acetylcholinesterase inhibitors can
attenuate both cue- and nicotine-induced reinstatement.

In summary, the pharmacological targeting of acetylcholinergic neurotransmis-
sion has been one of the most lucrative avenues in the search for smoking cessation
aids to date. However, cue- and nicotine-induced reinstatement appears to be dif-
ferentially regulated by pharmacological compounds that act on α7- and α4β2-
containing nAChRs, potentially limiting their efficacy as pharmacological targets
for smoking cessation medication. Exploring the efficacy of pharmacologically
targeting diverse nAChR subtypes, including α3-, α5-, and β4-containing nAChR
subunits, may thus be an interesting avenue in the identification of novel, highly
efficacious smoking cessation medications.

3.2 Glutamate

Glutamatergic neurotransmission is modulated by two different types of receptors:
ionotropic glutamate (iGlu) receptors and metabotropic glutamate (mGlu) receptors.
iGlu receptors are located postsynaptically and modulate fast glutamatergic neu-
rotransmission. Nicotine self-administration resulted in changes in iGlu and mGlu
receptor levels, which likely contributed to the cue-induced reinstatement of nic-
otine-seeking behavior (Gipson et al. 2013; Liechti et al. 2007). Moreover, phar-
macologically targeting iGlu receptors with the NMDA receptor antagonists
ifenprodil and acamprosate attenuated the cue-induced reinstatement of nicotine-
seeking behavior (Gipson et al. 2013; Pechnick et al. 2011). The development of
novel pharmacotherapies for the treatment of drug dependence, however, has
focused primarily on mGlu receptors because of the side effects of iGlu receptor
antagonists in humans (for review, see Gass and Olive 2008). Metabotropic glu-
tamate receptors have attracted much interest in recent years as targets for novel
therapeutics in the treatment of nicotine dependence (Markou 2007). Compared
with iGlu receptors, the activity of mGlu receptors is more slow acting and mod-
ulatory, presumably resulting in a reduced side effect profile. During nicotine
withdrawal, presynaptic mGlu2/3 receptors were downregulated in the VTA and
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NAc, and mGlu2/3 receptor activation in these brain areas induced by the agonist
LY379268 attenuated the cue-induced reinstatement of nicotine seeking (Liechti et al.
2007). N-acetylcysteine, a compound that has been suggested to increase the gluta-
matergic tone of presynaptic mGlu2/3 receptors (Kupchik et al. 2012), similarly
attenuated nicotine reinstatement elicited by environmental cues (Ramirez-Nino et al.
2013). Furthermore, the blockade of postsynaptic mGlu5 receptors (Bespalov et al.
2005) and mGlu1 receptors (see Fig. 1c adapted from Dravolina et al. 2007)
decreased cue-induced reinstatement. Specifically, nicotine seeking was attenuated by
administration of the mGlu5 receptor antagonist 2-methyl-6-(phenylethynyl)-pyridine
hydrochloride (MPEP; Bespalov et al. 2005) or mGlu1 receptor antagonist 3-ethyl-2-
methyl-quinolin-6-yl)-(4-methoxy-cyclohexyl)-methanone methanesulfonate (EM-
QMCM; Dravolina et al. 2007). In parallel to cue-induced reinstatement, EMQMCM
also decreased the nicotine-induced reinstatement of nicotine-seeking behavior in rats
(see Fig. 1d adapted from Dravolina et al. 2007). These results of experimental
studies in animals on the role of mGlu receptors in nicotine reinstatement demon-
strated that pharmacologically targeting glutamatergic neurotransmission effectively
attenuates both cue- and nicotine-induced reinstatement and may attenuate relapse to
tobacco smoking in humans. In fact, these experimental animal studies resulted in a
Phase I clinical trial by Novartis that assessed the efficacy and safety of the mGlu5
receptor antagonist AFQ056 as a treatment option for voluntary smoking cessation.
This clinical trial has been completed, but the results of the study have not yet been
published (Clinicaltrials.gov 2007).

3.3 Dopamine

As described in Sects. 2.1 and 2.3, dopaminergic neurotransmission, which is
mediated by G-protein-coupled dopamine receptors, in the mesolimbic circuit and
striatum is critically involved in drug dependence (see chapter entitled The Role of
Mesoaccumbens Dopamine in Nicotine Dependence; this volume). The cue-
induced reinstatement of nicotine-seeking behavior can be attenuated by pharma-
cological compounds that decrease dopaminergic tone, including antagonists of
dopamine D1 and D2 receptors (Liu et al. 2010), D3 receptors (Khaled et al. 2010),
and D4 receptors (see Fig. 1e adapted from Yan et al. 2013). Consistent with these
findings, a reduction of dopaminergic tone with the α-type peroxisome proliferator-
activated receptor (PPAR-α) agonist clofibrate decreased cue-induced reinstatement
in squirrel monkeys (Panlilio et al. 2012). These studies suggest that the pharma-
cological inhibition of dopaminergic neurotransmission consistently attenuates the
cue-induced reinstatement of nicotine-seeking behavior. Furthermore, nicotine-
induced reinstatement is similarly attenuated by dopamine D3 and D4 receptor
agonists (Andreoli et al. 2003; Yan et al. 2013, see Fig. 1f adapted from Yan et al.
2013) and PPAR-α agonists (Mascia et al. 2011; Panlilio et al. 2012). The inhibition
of dopaminergic neurotransmission, therefore, appears to be an interesting possi-
bility in the identification for novel smoking cessation medication targets.
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3.4 γ-Aminobutyric Acid (GABA)

GABA is the main inhibitory transmitter in the central nervous system. Inhibitory
GABAergic activity attenuates dopaminergic mesocorticolimbic neurotransmission
through GABA interneurons located in the VTA, medium spiny GABA neurons in
the NAc, and GABAergic projections to the VTA from the NAc, ventral pallidum,
and pedunculopontine tegmental nucleus (Klitenick et al. 1992). Inhibitory GABA
receptors, therefore, would have to be activated by full agonists or positive allo-
steric modulators to decrease excitatory neurotransmission in the VTA which, as
discussed above, generally attenuates the reinstatement of nicotine seeking.
GABAergic neurotransmission is regulated through ionotropic GABAA and
GABAC receptors and metabotropic GABAB receptors (Bormann 1986). Of these
various GABA receptor subtypes, G-protein-coupled GABAB receptors are pri-
marily of interest in the treatment of nicotine dependence (Li et al. 2014; Vlachou
and Markou 2010). GABAB receptor activation induced by the GABAB receptor
agonist CPG44532 attenuated the cue-induced reinstatement of nicotine seeking in
rats (see Fig. 1g adapted from Paterson et al. 2005). Similar to the GABAB agonist,
the GABAB receptor positive allosteric modulator BHF177 also decreased cue-
induced reinstatement in rats (Vlachou et al. 2011). The effects of GABAB agonists
on the nicotine-induced reinstatement of nicotine seeking have been less exten-
sively explored. One study reported that baclofen decreased reinstatement induced
by nicotine priming (see Fig. 1h adapted from Fattore et al. 2009). Furthermore, the
GABAB receptor agonist baclofen was suggested to potentially facilitate smoking
cessation in humans (Cousins et al. 2001). These studies indicate that GABAB

receptors may be a promising target in the treatment of smoking cessation.
Moreover, it has been proposed that GABAB positive allosteric modulators may be
particularly effective in the treatment of nicotine dependence because of their
modulatory actions at GABAB receptors that may result in an improved side effect
profile and decreased development of tolerance to these compounds compared with
GABAB full receptor agonists (Guery et al. 2007; Vlachou et al. 2011).

3.5 Endocannabinoids

Of the two endocannabinoid receptors cloned to date, CB1 receptors are of primary
interest in the treatment of dependence on drugs of abuse (Howlett et al. 2004)
because these receptors are found on glutamatergic and GABAergic inputs to
dopaminergic neurons (Gardner 2005). In contrast, CB2 receptors are primarily
localized on immune cells in both the central and peripheral nervous systems
(Howlett 2002). As expected, the reinstatement of nicotine-seeking behavior was
unaffected by the CB2 receptor antagonist AM630 or CB2 receptor agonist AM1241
(Gamaleddin et al. 2012b). CB1 receptors located on presynaptic glutamatergic
neurons in the VTA are hypothesized to decrease the inhibitory control that
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GABAergic neurons exert on dopaminergic neurons (Schlicker and Kathmann
2001). Consequently, CB1 receptor activation would result in the increased firing
activity of VTA dopamine neurons (French 1997; French et al. 1997) and increased
dopamine release in the NAc (Gardner and Vorel 1998; Tanda et al. 1997), sug-
gesting therapeutic potential for CB1 receptor antagonism in attenuating the rein-
statement of nicotine seeking. Indeed, antagonism of the CB1 receptor consistently
attenuated the cue-induced reinstatement of nicotine-seeking behavior, demon-
strated by the administration of rimonabant (Diergaarde et al. 2008; Forget et al.
2009, see Fig. 1i adapted from Forget et al. 2009), SR141716 (Cohen et al. 2005;
de Vries et al. 2005), and AM404 (Gamaleddin et al. 2013) in rats. The CB1/2

receptor agonist WIN 55,212-2 facilitated the cue-induced reinstatement of nico-
tine-seeking behavior (Gamaleddin et al. 2012a), presumably by activating CB1

receptors. Furthermore, antagonism at CB1 receptors attenuated nicotine-induced
reinstatement in rats, demonstrated by the administration of rimonabant (see Fig. 1j
adapted from Forget et al. 2009), AM251 (Shoaib 2008), and AM404 (Gamaleddin
et al. 2013). Additionally, reinstatement induced by the combination of both cue
presentation and nicotine priming was attenuated by administration of the CB1

receptor antagonist AM251 (Shoaib 2008).
After various clinical trials assessed the efficacy of rimonabant as a smoking

cessation medication, it was approved for this purpose in various European coun-
tries in 2006. Inopportunely, treatment of smoking cessation with rimonabant was
halted in 2007 after reports of severe side effects that included anxiety and
depression (Moreira and Crippa 2009). The development of pharmacological
compounds that target the endocannabinoid system in smoking cessation is there-
fore currently directed toward developing compounds that indirectly target endo-
cannabinoid neurotransmission, including anandamide transport inhibitors and fatty
acid amid hydrolase (FAAH). Anandamide is one of the endogenous ligands that
act at cannabinoid receptors (Giang and Cravatt 1997) and eliminated by reuptake
into cells by anandamide transporters and subsequent hydrolysis by FAAH (Belt-
ramo et al. 1997; Cravatt et al. 1996). The enhancement of endocannabinoid sig-
naling by inhibiting the reuptake or hydrolysis of anandamide attenuated both cue-
and nicotine-induced reinstatement of nicotine seeking (Forget et al. 2009; Gam-
aleddin et al. 2011). Notably, inhibiting the reuptake or hydrolysis of anandamide
opposes the effects of CB1 receptor antagonists. That is, CB1 receptor antagonists
attenuate endocannabinoid signaling, while FAAH inhibitors and anandamide
transport inhibitors enhance endocannabinoid signaling. The same direction of
effect (i.e., decrease) on the reinstatement of nicotine seeking by these seemingly
opposing mechanisms may be due to the action of CB1 receptor antagonists on
neurocircuits that express endocannabinoid ligands other than anandamide
(Scherma et al. 2008). Interestingly, compounds that target FAAH may exert dual
actions on the reinstatement of nicotine seeking because FAAH also breaks down
fatty acid amides that can activate PPAR-α (Fegley et al. 2005). As discussed
above, the activation of PPAR-α decreases the cue-induced reinstatement of

136 A.K. Stoker and A. Markou



nicotine seeking, presumably by decreasing dopaminergic neurotransmission, fur-
ther emphasizing the potential of FAAH-inhibiting compounds in treating the
reinstatement of nicotine seeking.

3.6 Other Neurotransmitter Systems

Whereas the aforementioned neurotransmitter systems have been the most exten-
sively explored as targets for pharmacotherapy in attenuating the reinstatement of
nicotine seeking, several other neurotransmitter systems have been suggested in the
development of novel smoking cessation aids. Serotonergic receptors, for example,
modulate dopaminergic neurotransmission and were suggested as potential targets
in smoking cessation medications (for review, see Fletcher et al. 2008). The
attenuation of serotonergic neurotransmission by the 5-HT2C receptor antagonists
Ro60-0175 and locaserin decreased both nicotine- and cue-induced reinstatement
(Fletcher et al. 2012; Higgins et al. 2012). Similarly, the modulation of noradren-
ergic neurotransmission was shown to effectively reduce both cue- and nicotine-
induced reinstatement with the noradrenergic α1 receptor antagonist prazosin
(Forget et al. 2010b) and β-blocker propranolol, supporting the involvement of
noradrenergic neurotransmission in cue-induced reinstatement (Chiamulera et al.
2010). Finally, the T-type calcium channel antagonist TTA-A2 also attenuated both
cue- and nicotine-induced reinstatement (Uslaner et al. 2010), potentially by
modulating glutamatergic or dopaminergic neurotransmission (Uslaner et al. 2012).
Tricyclic antidepressants, which decrease both serotonergic and noradrenergic
neurotransmission, have been suggested to facilitate smoking cessation in humans
(Edwards et al. 1989; Hall et al. 1998; Prochazka et al. 1998). However, the severe
side effects of tricyclic antidepressants, including cardiovascular effects and the
severity of overdose symptoms (Biggs et al. 1977; Roose et al. 1991), make these
compounds unfavorable as smoking cessation aids. The reversible monoamine
oxidase-A (MAO-A) inhibitor moclobemide, which reduces both serotonergic and
noradrenergic neurotransmission similarly to tricyclic antidepressants but with a
more favorable side effect profile (Stabl et al. 1989), attenuated smoking cessation
in a study group of heavy smokers (Berlin et al. 1995). These results suggest that
MAO-A inhibitors may be preferred over tricyclic antidepressants as smoking
cessation aids. However, bupropion remains the main antidepressant used as a
smoking cessation medication (Tables 1 and 2).

4 Concluding Remarks

Relapse is one of the hallmarks of tobacco dependence, but the currently available
smoking cessation medications only prevent the occurrence of relapse in a small
percentage of people who attempt to quit tobacco consumption. The limited
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effectiveness of these medications may be explained by the differential regulation of
diverse aspects of relapse by various neurotransmitter systems, as discussed in the
introduction above, which has been extensively documented for relapse to cocaine
seeking. Whereas the possibility of the regulation of the different types of rein-
statement by different neurocircuits has not yet been widely explored for relapse to
nicotine seeking, specific smoking cessation medications may only target one
aspect of relapse, resulting in decreased overall effectiveness compared with
pharmacological compounds that target the full spectrum of relapse. This concept is
supported by studies of “relapse” to nicotine seeking in animals, which demon-
strated that the reinstatement of nicotine seeking is most robust when it is elicited
by both nicotine priming and exposure to conditioned cues compared with nicotine
priming or conditioned cues themselves (Feltenstein et al. 2012; O’Connor et al.
2010). With less than 5 % of all smoking cessation attempts resulting in lifelong
abstinence from tobacco (Hughes et al. 2004), novel medications that attenuate
relapse rates are needed. Pharmacologically targeting the neurocircuits or neuro-
transmitters that are involved in multiple aspects of relapse to tobacco consumption
may improve smoking cessation rates. Preclinical models of relapse are greatly
important in this pursuit of novel pharmacological targets in the treatment of
tobacco dependence. The reinstatement procedure, an animal model widely used to
assess “relapse” to drug seeking in animals, has provided important insights into the
neurobiological effects of stimuli that trigger relapse in humans, most notably
nicotine and its conditioned cues (Shaham et al. 2003; but see Katz and Higgins
2003). The majority of nicotine reinstatement studies have assessed nicotine rein-
statement primed by nicotine or its conditioned cues separately, allowing for dif-
ferentiation of the neurotransmitters that regulate these two different manipulations
that induce the reinstatement of drug seeking.

Preclinical studies suggest the limited effectiveness of two widely used smoking
cessation medications, varenicline and bupropion, in attenuating the cue-induced
reinstatement of nicotine seeking (Liu et al. 2008; O’Connor et al. 2010, Wouda
et al. 2011). These results are consistent with the clinical observations that these
two FDA-approved medications are not very efficacious in attenuating tobacco
smoking in humans. Furthermore, these results suggest that the pursuit of the
identification of novel smoking cessation medications would be best served by
developing pharmacological compounds that effectively treat the various factors
that can induce the reinstatement of nicotine seeking, including nicotine and cues.
nAChR subunits other than the α4β2-containing nAChRs (the nAChR subtype on
which varenicline acts), including α3, α5, and β4 subunits, may be interesting in the
development of more efficacious smoking cessation medications. An increasing
body of preclinical studies also suggests that exploring other neurotransmitter
systems downstream from nAChRs may be lucrative in the quest for novel phar-
macological targets to attenuate nicotine reinstatement.

Glutamatergic neurotransmitter systems are particularly appealing targets for the
development of novel smoking cessation medications (Liechti and Markou 2008).
Glutamate critically regulates the reinstatement of nicotine seeking (Bespalov et al.
2005; Gipson et al. 2013; Liechti et al. 2007) but also cocaine seeking (for reviews,
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see Kalivas 2004; Wise 2009), suggesting that pharmacologically targeting gluta-
matergic neurotransmission may be particularly promising in the identification of
novel targets for smoking cessation medications. Nicotine reinstatement studies
found that pharmacological compounds that decrease glutamatergic neurotrans-
mission effectively attenuated both the cue- and nicotine-induced reinstatement of
nicotine seeking (Bespalov et al. 2005; Dravolina et al. 2007; Gipson et al. 2013;
Liechti et al. 2007; Pechnick et al. 2011; Ramirez-Nino et al. 2013). The promise of
targeting glutamatergic compounds as smoking cessation medications is further
demonstrated by the success of N-acetylcysteine in reducing cigarette consumption
in smokers (Knackstedt et al. 2009).

Other than glutamatergic neurotransmission, preclinical studies have suggested
that both the cue- and nicotine-induced reinstatement of nicotine seeking can be
attenuated by pharmacologically targeting various other neurotransmitters
(Table 1). Dopamine receptor antagonists, GABAB receptor agonists or positive
allosteric modulators, endocannabinoid receptor antagonists, serotonin receptor
agonists, β-blockers, and opioid receptor antagonists have been identified as
potentially efficacious as pharmacological smoking cessation medications. These
preclinical studies of nicotine seeking have greatly benefited from the synthesis and
characterization of novel pharmacological compounds that attenuate relapse to
tobacco smoking in humans. Additionally, preclinical studies on the neurobiology
of cue- and nicotine-induced reinstatement provide important insights into potential
future study directions for clinical trials in ongoing efforts to repurposing medi-
cations that have been approved by the FDA for other neurobiological disorders to
serve as smoking cessation aids.
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