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    Chapter 22   
 Role of Free Radicals in Head 
and Neck Cancer 

             Carter     Van Waes     

22.1             Overview 

 Oxidative stress and free radical production from metabolism by host cells and 
 resident microbiota is a continuous process for which cells have protective antioxi-
dant defenses, which usually mitigate damage to prevent or delay development of 
cancer (Gorrini et al.  2013 ). These defenses include sensors of oxidative stress, such 
as KEAP1, and transcription factor NRF2, that induce detoxifi cation enzymes. In the 
head and neck, these defenses may be overwhelmed by long-term exposure to 
tobacco or ultraviolet light carcinogens that cause head and neck squamous cell car-
cinomas (HNSCC), each arising respectively from the squamous epithelia of the 
aerodigestive tract or skin. These carcinogens induce free radical-mediated or direct 
DNA damage that result in cancer initiating mutations (   Choudhari et al.  2014 ). 
Alterations affecting key tumor suppressor genes such as  TP53 , related oncogene 
 ΔNp63 , and  PIK3CA , the PI3kinase catalytic subunit alpha, are prevalent (Walter 
et al.  2013 ). These DNA damaging signals and genomic alterations in turn may acti-
vate transcription factor Nuclear Factor-κB to promote cell survival and host infl am-
matory responses (Yang et al.  2011 ; Vander Broek et al.  2014 ; Du et al.  2014 ; Cooks 
et al.  2013 ), which further enhance free radical production and cumulative DNA 
damage, resulting in cancer progression. Mutations in genes such as KEAP1 and 
NRF2 critical to sensing and inducing antioxidant and survival responses, or the 
Fanconi/BRCA pathway important in DNA repair, enhance susceptibility to HNSCC 
(Walter et al.  2013 , Van Waes  2005 ). Anti-infl ammatory drug celecoxib in 
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combination with Epidermal Growth Factor Receptor inhibitor erlotinib has 
 demonstrated activity in premalignant lesions. In genetically engineered experimen-
tal animal models with genetic defects in Fanconi D2/TP53 or TGFβ receptor 1/Pten 
genes that activate PI3K signaling, synthetic antioxidants, or PI3K inhibitors may 
delay onset of cancer, and have clinical translational potential (Zhang et al.  2008 ; 
Herzog et al.  2013 ).  

22.2     Tobacco-Related Free Radical Damage 

 Development of HNSCC is most frequently associated with exposure to tobacco 
products, and further enhanced when combined with alcohol. Tobacco smoke and 
smokeless tobacco contain nitrosamine and polyaromatic hydrocarbon carcinogens 
whose electrophilic metabolites induce reactive oxygen species (ROS) and reactive 
nitrogen species (RNS) that modify or disrupt DNA, as well as form direct DNA 
adducts whose faulty repair cause mutations (Fig.  22.1 ) (Choudhari et al.  2014 ; 
Hecht  2012 ). One of the major consequences of tobacco and smoke metabolites or 
induced ROS is increased formation of 8-hydroxy-deoxyguanosine (8-OHdG), 
which is potentially mutagenic (Hecht  2012 ). In parallel, chronic nicotine and car-
cinogen exposure can induce PI3K-Akt and PKA signal activation of transcription 
factor NF-κB (Fig.  22.1 ), which promotes cell survival and proliferation, and addi-
tional ROS production by infi ltrating infl ammatory cells, exposing progeny to 
cumulative mutations (Hecht  2012 ; West et al.  2004 ; Tsurutani et al.  2005 ; Dennis 
et al.  2005 ). As a result, tobacco metabolite- and ROS-related mutations across the 
genome are frequent, and cumulatively affect key tumor suppressor genes and onco-
genes, resulting in autonomous loss of growth  control, genomic instability, ROS 
homeostasis, and malignant transformation.   

22.3     Activation of NF-κB and Infl ammation-Related 
Free Radical Damage 

 The NF-κB/REL family transcription factors are aberrantly activated in HNSCC 
and other cancers, and critically promote cell survival, infl ammation, and angiogen-
esis (Fig.  22.1 ) (Van Waes  2007 ). As aforementioned, nicotine and tobacco metabo-
lites can promote PI3K-Akt and PKA signaling, and my laboratory showed that 
PI3K and PKA contribute to aberrant transactivation of NF-κB observed in HNSCC 
(Fig.  22.1 ) (Bancroft et al.  2002 ; Arun et al.  2009 ). Additionally, many injury and 
pathogen inducible signal pathways converge to activate NF-κB (Van Waes  2007 ). 
Carcinogen and ROS-induced DNA damage can promote sumoylation and activa-
tion of Inhibitor-κB kinases (IKKs), which mediate NF-κB nuclear translocation 
and activation. Further, ROS can promote degradation of ubiquitin ligase KEAP1, 
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enhancing IKK-mediated signaling (Fig.  22.1 ). Bacterial, human papilloma virus 
(HPV) and Epstein Barr Virus (EBV) pathogens have also been implicated in devel-
opment of HNSCC, and can induce activation of Toll-Like Receptor, IKKs, and 
alternative pathways that promote NF-κB activation (Van Waes  2007 ; James et al. 
 2006 ; Szczepanski et al.  2004 ) (Fig.  22.1 ). 

 The consequences of such chronic injury-induced signal activation of NF-κB are 
pathologic. NF-κB promotes expression of  Cyclin D1  and  BCL - XL  genes that pro-
mote cell proliferation and survival of HNSCC cells (Van Waes  2007 ; Lee et al. 
 2008 ; Duan et al.  2007 ). NF-κB also promotes expression of angiogenesis factors 
 IL - 6 ,  IL - 8 ,  GRO1 , and  VEGF  (Duffey et al.  1999 ; Bancroft et al.  2001 ; Loukinova 
et al.  2001 ) that recruit and activate monocytic and myeloid infl ammatory cells 
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  Fig. 22.1    Tobacco carcinogen and infl ammatory response-induced reactive oxygen species 
(ROS), bacterial, and viral products mediate inducible and genomic alterations in the PI3K-NF-κB, 
TP53/63, and KEAP1/NRF2 pathways in HNSCC. ( a ) Tobacco carcinogen and infl ammatory cell- 
induced ROS cause DNA damage and degrade sensor and ubiquitin ligase KEAP1, inducing acti-
vation of the classical Inhibitor-κB kinase (IKK)-NF-κB pathway, which elicits transcription of 
cancer promoting genes. Carcinogen and ROS-induced genomic mutations in tumor suppressor 
TP53 and amplifi cations causing overexpression of oncogenic family member ΔNp63 and PI3- 
Kinase (PI3K) result in loss of growth control and enhance NF-κB signaling. Classical NF-κB 
activation may be enhanced by bacterial and viral products, infl ammatory and growth factors. ( b ) 
Alternative NF-κB pathway activation (and TP53 inactivation) can be directly mediated by HPV 
E6 and EBV LMP1 oncogenes. ROS-induced KEAP1 and NRF2-mediated transcription of endog-
enous antioxidants may also be compromised by genomic alterations       
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(   Loukinova et al.  2000 ; Young et al.  2001 ). Activated myeloid-derived cells produce 
ROS, which likely further exacerbates cell and DNA damage, related signaling and 
mutations, and compromises immune defenses to malignant cells (Kotsakis et al. 
 2012 ; Vasquez-Dunddel et al.  2013 ).  

22.4     Role TP53 and p63/PI3KCA Genetic Alterations 
in Genomic Instability and Infl ammation in HNSCC 

 Among genetic alterations, mutation or deletion of TP53 is the most frequent, 
occurring in over 70 % of 279 HNSCC tumors studied as part of The Cancer 
Genome Atlas (TCGA) (Fig.  22.2 ) (TCGA Network  2015 ). TP53 is a ROS and 
DNA damage inducible transcription factor that mediates growth arrest and DNA 
damage repair, or death of cells with irreversibly damaged DNA (Fig.  22.1 ). Hence, 
TP53 serves as the “Guardian of the genome,” and its loss leads to uncontrolled 
proliferation, genomic instability, and progressive genomic alterations (Lane  1992 ; 
Stiewe  2007 ). Among the gains, amplifi cation of the locus containing the gene 
encoding a  TP53  family oncogene  ΔNp63 , and amplifi cation or activating mutations 
of  PIK3CA , the PI3kinase catalytic subunit alpha, are prevalent (Fig.  22.2 ) (Walter 
et al.  2013 ). In ~20 % cases,  ΔNp63  and  PIK3CA  are included in the same amplicon, 
while overall,  PIK3CA  is amplifi ed or mutated in 36 % of cases. Interestingly, these 
genomic alterations in  TP53 ,  ΔNp63 , and  PIK3CA  may contribute to inactivation of 
TP53-dependent responses, and constitutive activation of transcription factor 
Nuclear Factor-κB, cell survival, and host infl ammatory responses (Fig.  22.1 ) (Yang 
et al.  2011 ; Vander Broek et al.  2014 ; Du et al.  2014 ; Cooks et al.  2013 ), that further 
enhance free radical production and cumulative DNA damage, resulting in cancer 
progression.   

Case set: Tumors with sequencing and aCGH data: All tumor samples that have CNA and sequencing data (279 samples)
Altered in 242 (87%) of cases
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  Fig. 22.2    Genomic alterations in TP53, TP63, PIK3CA, KEAP1, and NFE2L2 genes in 
HNSCC. Publically available data for the genes indicated were queried from 279 head and neck 
squamous cell carcinomas from The Cancer Genome Atlas (TCGA) using cbioportal (  http://www.
cbioportal.org/public-portal/    ). TP53 is mutated in over 70 % of tumors. The adjacent loci contain-
ing TP63 and PI3K catalytic subunit PIK3CA are co-amplifi ed in ~20 % of HNSCC, and activating 
mutations in PIK3CA are observed in additional tumors. Mutations in the oxidative stress pathway 
including KEAP1 mutations (~5 %) and amplifi cation or mutation of NRF2 (~12 %) are found. 
Key,  red bars , amplifi cations;  blue bars , homozygous deletion;  green bars , mutations       
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22.5     Role of KEAP1/NRF2 Genetic Alterations 
in HNSCC Susceptibility 

 KEAP1 is an important sensor of oxidative stress, and ubiquitin ligase, which in the 
absence of stress binds and promotes proteasomal degradation of IKKβ proteins, 
inhibiting NF-κB activation and cell survival, and of transcription factor NRF2, 
inhibiting antioxidant genes (Fig.  22.1 ) (Tian et al.  2012 ). In the presence of ROS, 
KEAP1 cysteine residues undergo conformational changes that promote IKK- 
induced NF-κB activation and cell survival, while releasing NRF2 for nuclear trans-
location and activation of antioxidant genes. The antioxidant genes include 
glutathione-S-transferases (GSTs), NADP(H) quinone oxidoreductase (NQO1), 
catalase, and superoxide dismutases (SODs), important in neutralizing ROS. In 
HNSCC, mutations of KEAP1 are observed in ~5 % and in NRF2 are observed in 
~12 % of HNSCC (Fig.  22.2 ), suggesting genomic alterations affect KEAP1 regu-
lated NF-κB prosurvival signaling and NRF2 antioxidant responses in a subset of 
HNSCC. Most HNSCC tumors with alterations in KEAP1 and NRF2 also appear to 
have undergone mutations in TP53 (Fig.  22.2 ). Studies in transgenic mouse models 
suggest NRF2 may inhibit initiation of tumorigenesis, but enhance progression of 
established tumors (Satoh et al.  2013 ). This observation involving NRF2 and endog-
enous antioxidants mirrors the cautionary observation that antioxidant β-carotene 
can inhibit initiation in preclinical models of lung cancer, while enhancing progres-
sion and mortality in smokers (ATBC  2003 ), who could have had premalignant 
lesions with TP53 mutations.  

22.6     Role of Alterations in Fanconi/BRCA DNA Damage 
Response in HNSCC Susceptibility 

 The Fanconi Anemia (FANC) and Breast/ovarian cancer (BRCA) genes and pro-
teins are now known to comprise a pathway critical in mediating repair of ROS- 
mediated DNA damage by nonhomologous recombination (   Kee and D’Andrea 
 2012 ). Overall, the pathway includes 15 FANC genes, BRCA1 and BRCA2. 
Mutations in FANCA, FANCB, FANCC, FANCE, FANCF, FANCG, FANCL, and 
FANCM account for approximately 90 % of patients. These result in loss of 
FANCD2 and FANCI monoubiquitylation, the key regulatory event in the FA path-
way. Besides loss of DNA repair, FANCD2 activates transcription of a TP53 homo-
logue TAp63 that suppresses tumorigenesis (Park et al.  2013 ). Patients with FANC 
mutations are prone to bone marrow failure with anemia and leukemia in childhood, 
or development of HNSCC and genitourinary tract SCCs in young adulthood. While 
BRCA gene mutations predispose to breast and ovarian cancer, they have also been 
detected in patients with HNSCC. Overall, genomic alterations in FANC and BRCA 
genes are detected in 86/279 (~31 %) of HNSCC tumors in TCGA (Fig.  22.3 ). 
The HNSCC that arise in patients with FA patients in their 20–40 s frequently occur 
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in the absence of tobacco use, and occur in the oral cavity in the tongue and mucosa 
adjacent to areas of exposure to dental trauma and microbiota (Van Waes  2005 ). The 
FA pathway has recently been shown to limit human papilloma virus replication and 
transformation by the HPV E7 gene (Hoskins et al.  2012 ; Park et al.  2010 ). However, 
the extent of the role of HPV in FA HNSCC remains unclear, as others report that 
the mutational spectrum in HNSCC in FA includes genes such as TP53, similar to 
that in tobacco-related HNSCC (van Zeeburg et al.  2008 ). Increased oxidative stress 
and potential for mutations and malignant transformation has been detected in FA 
cells (Du et al.  2008 ), and is enhanced by infl ammatory signaling and induction of 
ROS by TNFα (Li et al.  2007 ).   

22.7     Potential of Anti-infl ammatory Agents, Antioxidants, 
and PI3K-mTOR Inhibitors to Delay Malignant 
Progression and for Clinical Translation 

 Based on the potential role of HNSCC-associated infl ammation and ROS in promot-
ing HNSCC, anti-infl ammatory drugs have been of interest. Many anti- infl ammatory 
drugs inhibit NF-κB or NF-κB targets such as Cyclooxygenases, responsible for 
infl ammatory prostaglandins (Van Waes  2007 ). Proteasome inhibitors preventing 
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  Fig. 22.3    Genomic alterations in Fanconi and BRCA genes in HNSCC. Publically available data 
for the genes indicated were queried from 279 head and neck squamous cell carcinomas from The 
Cancer Genome Atlas (TCGA) using cbioportal (  http://www.cbioportal.org/public-portal/    ). 
Fanconi genes include named FANC, and other genes listed. Most genes exhibit deletions or inac-
tivating mutations, but FANCG is more often amplifi ed, which could enhance or repair of ROS- 
mediated genomic instability, respectively. Key,  red bars , amplifi cations;  blue bars , homozygous 
deletion;  green bars , mutations       
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IκB degradation and NF-κB activation and infl ammation yielded incomplete and 
transient responses in preclinical and clinical trials, which were found to be due to 
compensatory activation of other prosurvival signaling pathways (Allen et al.  2008 ; 
Chen et al.  2008 ). Cyclooxygenase inhibitor ketorolac inhibited infl ammatory cells 
in response to HNSCC in preclinical studies, but showed a similar 30 % response rate 
as placebo in reducing leukoplakia (Hong et al.  2000 ; Mulshine et al.  2004 ). However, 
Cyclooxygenase 2 plus Epidermal Growth Factor Receptor inhibitors were found to 
synergistically inhibit head and neck squamous cell carcinoma tumorigenesis in pre-
clinical and clinical studies (Saba et al.  2014 ). In a phase I study with a combination 
of COX2 inhibitor celecoxib and EGFR inhibitor erlotinib in patients with advanced 
premalignant lesions, the overall histologic response rate was 63 % (complete 
response 43 %, partial response 14 %, stable disease 29 %, disease progression 
14 %). With median follow-up of 36 months, mean time to progression to higher-
grade dysplasia or carcinoma was 25.4 months. Encouraging responses to the cele-
coxib and erlotinib combination correlated with EGFR pathway inhibition, where 
downregulation of EGFR and p-ERK in follow-up biopsies correlated with response 
to treatment (Vander Broek et al.  2013 ). 

 With evidence for a relatively high prevalence of PI3K-mTOR pathway altera-
tions HNSCC, and their importance in activation of NF-κB and infl ammatory 
responses (Vander Broek et al.  2013 ), PI3K and mTOR inhibitors have been the 
subject of preclinical and clinical investigation. In genetically engineered experi-
mental animal models with genetic defects in TGFβ receptor 1/Pten genes and acti-
vated PI3K signaling, a synthetic PI3K-mTOR inhibitor delayed onset of HNSCC, 
demonstrating clinical translational potential (Herzog et al.  2013 ). In a clinical trial 
of mTOR inhibitor rapamycin underway at NIH, clinical responses have been 
observed in patients with stage II–IV oral and oropharyngeal cancers [C. Van Waes, 
unpublished observations]. 

 Based on the hypothesis that FA cells are more prone to oxidative damage, we 
examined and demonstrated an increase in ROS DNA marker 8-OHdG in human FA 
fi broblast lines relative to control cell lines (Zhang et al.  2008 ). A synthetic nitrosa-
mine antioxidant tempol reduced 8-OHdG similar to normal levels in these FA cells, 
and cells from Fancd2 knockout mice. Fancd2−/− Trp53+/− mice on a tempol diet 
showed a signifi cantly longer mean tumor-free survival (mean = 390 days) than the 
mice on placebo diet (mean = 308 days) ( P  < 0.01). After early deaths due to leuke-
mias, statistical analysis revealed that tempol treatment signifi cantly increased the 
mean epithelial tumor-free survival time by 38 % in Fancd2−/− Trp53+/− mice 
( P  < 0.0001). These data suggest that tempol may have a role in reducing oxidative 
DNA damage and malignant transformation in FA (Zhang et al.  2008 ), although 
naturally occurring antioxidant resveratrol or  n -acetylcysteine did not have signifi -
cant chemopreventive effects in the same model (Zhang et al.  2014 ). 

 In conclusion, anti-infl ammatory, antioxidants, and PI3K-mTOR inhibitors tar-
geting specifi c genetic alterations have preclinical or clinical activity and potential 
for further clinical investigation in prevention of HNSCC.     
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