
Analysing Scalability Strategies for Service
Choreographies on Cloud Environments

Raphael Gomes1,2(B), Fabio Costa1, and Ricardo Rocha1

1 Instituto de Informática, Universidade Federal de Goiás, Goiânia, Brazil
{fmc,ricardo}@inf.ufg.br

2 Instituto Federal de Goiás, Itumbiara, Brazil
raphael.gomes@ifg.edu.br

Abstract. Scalability is one of the major advantages brought by cloud
computing environments. This advantage can be even more evident when
considering the composition of services through choreographies. However,
when dealing with applications that have quality of service concerns scal-
ability needs to be performed in an efficient way considering both hori-
zontal scaling - adding new virtual machines with additional resources,
and vertical scaling - adding/removing resources from existing virtual
machines. By efficiency we mean that non-functional properties must be
offered in the choreographies while is made effective/improved resource
usage. This paper discusses scalability strategies to enact service chore-
ographies using cloud resources. We present efforts at the state of the art
technology and an analysis of the outcomes in adopting different strate-
gies of resource scaling. We also present experiments using a modified
version of CloudSim to demonstrate the effectiveness of these strategies
in terms of resource usage and the non-functional properties of chore-
ographies.

Keywords: Cloud computing · Scalability · Choreography · Auto-
scaling

1 Introduction

The provision of quality of service (QoS) is one of the main challenges in cloud
computing [5], since this paradigm must provide assurances that go beyond the
typical maintenance activities and must provide high reliability, scalability and
autonomous behaviour. Many QoS aspects of an application are related with the
scalability provided by the hardware resources used to deploy it. As a matter
of fact, cloud environments are increasingly used due to their elasticity and
the illusion of infinite resources. Increasing degrees of scalability are achieved
through the automated management of resources, typically using horizontal scal-
ing, which means changing the amount of resources used, by adding or removing
virtual machines (VM) according to policies related to the use of such resources
or non-functional properties of the application.

c© Springer International Publishing Switzerland 2014
F. Pop and M. Potop-Butucaru (Eds.): ARMS-CC 2014, LNCS 8907, pp. 128–143, 2014.
DOI: 10.1007/978-3-319-13464-2 10

Analysing Scalability Strategies for Service Choreographies 129

Another strategy for scalability is the use of vertical scaling, i.e. on-the-
fly changing of the amount of resources allocated to an already running VM
instance, for example, allocating more physical CPU time to a running virtual
machine. In a complementary manner, we can have a hybrid approach where we
increase both the number and the configuration of virtual machines.

Although there are different scalability strategies they must be used in an
efficient way, regarding the consumption of resources. This is due to the fact that
a poor management of resources can result in unnecessary spending in the case
of public clouds, as well as problems related to energy consumption and loss of
investment in the case of private clouds. Another issue that must be taken into
account is the QoS offered to applications since some functionalities may not be
useful if certain non-functional attributes are not guaranteed [8].

These challenges are even more evident in the so called Future Internet,
which results from the evolution of the current Internet, in combination with
the Internet of Content [9], the Internet of Services [24] and the Internet of
Things [2]. In this new paradigm there are thousands of services belonging to
different organizations that have to cooperate with each other in a distributed
and large scale environment. This integrated view of services highlighted some
problems that were not readily apparent in previous integration efforts, which
hardly reached the scale that systems of web services now have [30].

Keeping centralized coordinators for these new types of applications is infeasi-
ble due to requirements like fault tolerance, availability, heterogeneity and adapt-
ability. For this reason, the most promising solution may be the organization of
decentralized and distributed services through choreographies. Choreographies
are service compositions that implement distributed business processes, typically
between organizations in order to reduce the number of exchanged messages and
distribute business logic, without the need for centralized coordinators, since
each service “knows” when to perform its operations and which other services it
must interact with [3].

This paper discuss the state of the art in providing scalability for cloud-based
service choreographies, considering both technologies and cloud providers. We
discuss the outcomes of using cloud environments and the main advantages and
disadvantages of adopting different scalability strategies to enact choreographies
on cloud resources. We strengthen this discussion with some preliminary evalua-
tion of these strategies. Although this article does not address aspects related to
the implementation of choreographies, the analysis presented here can be used
as input to different approaches regarding choreography execution in cloud, as
well as general applications. The remaining of this paper is as follows: Sect. 2
presents a motivating example; Sect. 3 discusses how actual virtualization tech-
nologies and cloud providers handle scalability strategies, while Sect. 4 presents
some results of the evaluation of these strategies in choreography enactment.
Finally, Sect. 5 discusses related work and Sect. 6 presents the final remarks.

2 Motivating Example

Media sharing is one of the main Internet applications [21]. This type of appli-
cation was driven by the increasing use of social networks and content sharing

130 R. Gomes et al.

platforms such as YouTube, Instagram and Facebook, and its growth brings scal-
ability problems, with increasing demands for data storage and transfer, and the
pressure to deliver faster service and other quality attributes. Cloud computing
is therefore an increasingly used alternative for resource providers to circum-
vent these problems. Therefore, in this section we will explore some scenarios to
illustrate the complexities involved in the management of scalability issues.

Let us suppose a fictitious organization that uses a public cloud provider or
a datacenter (using some virtualization technology) to obtain resources for its
applications. One of the applications consists in a choreography of services for
media sharing on the web. This application comprises a service for media upload
that communicates with other two services: one to perform media storage and
another to perform media indexing. There is also a service that provides the
website front end.

The services of the application have associated quality of service require-
ments: initially the upload service must handle at least 100 concurrent requests;
data storage must be performed in a secure environment; and indexing overhead
should be less than 1 s for at least 90 % of the requests. Based on these require-
ments and on the expected demand, let us suppose that in order to enact the
choreography, it is necessary to allocate one VM for the upload service, as well
as using a scalable architecture for media storage, a relational database for data
indexing, and another VM for the front end. The services and resources of the
initial scenario are illustrated in Fig. 1(a).

After choreography deployment and application execution starts, suppose
there is a considerable increase in demand. This behaviour is common in many
web applications, which typically starts with only a handful of users but quickly
grow to reach thousands and even millions of users. As an example, Facebook
has an average growth of 250,000 new users per day [12].

In addition to increased demand, in our scenario another requirement was
raised - the viewing of media in various formats. Accordingly, it is necessary to
convert the original media, which is a intensive processing task. Thus, two new
services must be added to the choreography: one to perform media processing
before storage and another to control the queue for this. Furthermore, aiming
to increase competitiveness, the upload QoS was modified, aiming to be able to
handle ten times more requests concurrently. To meet this new scenario, it is
necessary to review the initial resource allocation.

In the additional resource allocation we can adopt the strategies cited before:
the first one is to do horizontal scaling. Accordingly, we can create other VM
instances and get something like allocation A in Fig. 1(b). On the other hand,
we can use vertical scaling and keep the number of resources but increasing their
configuration, as in the allocation B in Fig. 1(b).

The main problem in this scenario is to decide which scalability strategy is the
preferred option given the quality of service requirements and the cloud provider
or technology features, e.g. performance, security, cost, etc. For instance, at a first
glance horizontal scaling is a good choice for the media processing service due
concurrency issues but what are the outcomes of adopting this strategy instead

Analysing Scalability Strategies for Service Choreographies 131

(a) Initial choreography.

(b) Adapted choreography.

Fig. 1. Choreography deployment for the media sharing application.

of vertical scaling? In addition we can even use both strategies by allocating more
instances with an increased configuration. Another point is ability to determine
the overhead as well as the ability to adopt each of these strategies when using
a the given provider/technology.

3 Scalability Strategies in Cloud Platforms

Current virtualization technologies allow the addition of new VM instances as
well as the re-dimensioning of running VMs. For horizontal scaling, experiments
have shown different values for VM startup time [4,17], although on average it
takes about 1 min, while vertical scaling allows to double the processing power
in less than 1 s [34]. Gong et al. [15] indicate that changes in the amount of CPU
take on average 120 ± 0.55 ms.

132 R. Gomes et al.

Another positive factor for the adoption of a hybrid approach rather than the
commonly adopted practice of only scaling resources horizontally is that vertical
scaling is quite advantageous in some cases, as Dawoud et al. [10] demonstrate.
According to these authors, a web server running on a vertically scaled VM
offers better performance than a web server running multiple VMs, i.e. a VM
with 4 cores implies a lower response time compared to 4 VM instances running
in parallel.

Table 1 presents details on automated resource scaling for some of the main
providers and cloud technologies. As can be seen, the majority of them do not
support automatic scaling but provide APIs that allow one to perform this task.

Table 1. Scalability in cloud providers/technologies.

Cloud Provider/Technology Automatic Automatic

horizontal vertical

scaling scaling

Amazon (aws.amazon.com) yes no

Windows Azure (www.windowsazure.com) yes no

Google App Engine (developers.google.com/appengine) yes no

Google Compute Engine (cloud.google.com/products/compute-engine) yes no

Rackspace (www.rackspace.com) no yes

Flexiscale (flexiscaletechnologies.co.uk) no yes

GoGrid (www.gogrid.com) no no

Joyent Cloud (www.joyent.com) no yes

Eucalyptus (www.eucalyptus.com) no no

Xen (www.xenproject.org) no yes

By using the Auto Scaling and Cloud Watch in Amazon EC2, it is possible
define policies for VM creation and destruction. The average startup time for
a new instance on this provider is between 2 and 10 min, though this time is
close to 100 s for instances running Linux [20]. Similarly, VM startup time in
Windows Azure is around 10 min, although different requests for VM creation
may take up different amounts of time. Experiments in [17] indicate a delay of
4 min between the startup time of the first and fourth instance using Azure.
Some cloud providers like Google App and Compute Engine1 offer horizontal
auto scaling, although it is not possible manage its operation.

Regarding vertical scaling, in Rackspace, Flexiscale and Joyent Cloud it is
possible to do scaling of processor but this requires VM reboot. CPU scaling
can be performed until it reaches the full capacity of the underlying physical
machine [32]. In Xen we can also have scaling of memory, which is performed by
a process known as memory ballooning, which allows changing of the amount of
memory to a VM while it is running. A similar mechanism is offered for CPU
scaling [27].
1 In the Google Compute Engine horizontal auto scaling is implemented as an appli-

cation from App Engine.

http://aws.amazon.com
www.windowsazure.com
http://developers.google.com/appengine
http://cloud.google.com/products/compute-engine
www.rackspace.com
http://flexiscaletechnologies.co.uk
www.gogrid.com
www.joyent.com
www.eucalyptus.com
www.xenproject.org

Analysing Scalability Strategies for Service Choreographies 133

In addition to the APIs offered by cloud providers is possible to use frame-
works to achieve automated scaling of resources. Table 2 [13] shows some of these
frameworks, together with the providers they support and details on the scaling
capacity.

Table 2. Frameworks for cloud resource management.

Framework Supported providers Scaling strategy

Cloudify (www.
cloudifysource.org)

Amazon, OpenStack,
Azure, HP Cloud,
Rackspace

Automated scaling based
on metrics related to
VM configuration and
number of instances

Cloud Foundry (www.
cloudfoundry.com)

Amazon, OpenStack,
Rackspace, Eucalyptus

Manual change in the
number of VMs
associated with an
application

Scalr (www.scalr.com) Amazon, OpenStack,
Rack- space, Nimbula,
Eucalyptus, IDC
Frontier, CloudStack,
Cloud Foundry

Automated scaling of
infrastructure and
database when they are
overloaded or when
scheduling is done

OnApp (onapp.com) Xen, KVM, VMware and
other smaller public
provider

Vertical scaling with
automated VM
migration when the
physical machine does
not have enough
resources

Besides scaling, it is necessary to take into account the time required to per-
form VM migration from one physical machine to another when the existing
resources are insufficient. Considering Xen for instance, VM migration requires
the transfer of all memory. However, the migration mechanism hides the latency
by continuing running the application on the original VM while the memory
contents are transferred. Experiments in [25] show that the migration of a VM
with 800 MB of memory on a LAN using Xen caused unavailability of 165 ms
to 210 ms and increased application execution time in 17–25 s. However, during
this period throughput decreases only 12 %. The results in [31] show that, in an
instance of an almost overloaded system (serving 600 concurrent users), migra-
tion causes significant downtime (about 3 s) but the 99th SLA percentile could
be met, i.e. 99 % of more critical SLA could be met.

Based on the above, although there are no records of accurate results for all
technologies in the literature, we can state that the achievement of scaling in
two dimensions (vertical and horizontal) is feasible. Having said that, we now
present some experiments to evaluate how these strategies work in the context
of service choreographies.

www.cloudifysource.org
www.cloudifysource.org
www.cloudfoundry.com
www.cloudfoundry.com
www.scalr.com
http://onapp.com

134 R. Gomes et al.

4 Evaluating Scalability Strategies to Service
Choreographies

We performed some preliminary experiments to analyse the scalability strategies
and evaluate how it interferes in the resource usage and the QoS offered to
choreographies. Through this experiment, we expect to answer the following
research questions:

– Does the cost associated with the allocation of resources justify potential
advantages obtained?

– Which one is the best strategy for resource scaling in a choreography enact-
ment?

– How different scaling policies interfere in the usage of resources and non-
functional characteristics of services choreographies?

The experiments were performed using simulations through a modified ver-
sion of CloudSim [7]. Initially we present the modifications implemented and
then we describe the experiments and their results. To design and describe the
experiments we follow our structure proposed by Wohlin et al. [33].

4.1 Simulator

CloudSim [7] is an extensible toolkit that enables modelling and simulation of
clouds, as well simulation of policies for resource provisioning. This simulator
is usually used to investigate the infrastructure design decisions by analysing
different configurations [6]. Cloud providers are modelled in the simulator as
Datacenters receiving service requests. These requests are elements encapsulated
in VMs that need to allocate shared processing power in a given Host in the
datacenter. The VMScheduler component is responsible for scheduling the host
that runs each VM.

Applications running in the cloud environment are represented as a set of
Cloudlets, which store execution data as request size in millions of instructions
(MI); and utilization modes of CPU, memory and bandwidth. The Datacenter-
Broker component is responsible for simulation and management of cloudlets,
and to configure their policies of resource management.

CloudSim has some limitations that hinder the simulation of our scenario.
For example, it does not enable the simulation of automatic resource provision-
ing and it simulates just a single service. Thus, we implemented an extension of
CloudSim to overcome these limitations and enable the simulation of choreogra-
phy enactment. The implementation of auto scaling mechanism was made using
a simplified version of the model proposed by Amazon for its services Cloud-
Watch and Auto Scaling. According to this model, it is possible to establish
metrics for resource monitoring, and policies for VM manipulation.

For representation of choreographies, we adopted the semantics of Web Ser-
vice Choreography Description Language (WS-CDL) [19], an XML-based lan-
guage to describe collaboration between multiple stakeholders in a process of

Analysing Scalability Strategies for Service Choreographies 135

business. WS-CDL is a W3C recommendation detailed at http://www.w3.org/
TR/2005/CR-ws-cdl-10-20051109.

The modifications made in CloudSim not influence the core operation, since
we added only metrics collection and resource allocation policies. Thus, the
results remain equivalent to a real scenario.

4.2 Simulation of Resource Allocation Policies Applied to a Service
Choreography

We performed simulations of running the media sharing application in a cloud
environment adopting different policies for resource allocation. In those simula-
tions, we aimed to analyse how those policies impact in resource usage and the
application QoS.

Experiment Design. Our experiment evaluates how different resource scaling
policies interfere in the usage of cloud resources and the resulting choreography’s
QoS.

Experiment Planning. We evaluate the scalability by simulating horizontal,
vertical and hybrid scaling policies. The simulated scenario is the enactment of
the media sharing choreography (Sect. 2) in a single cloud provider. The following
variables were analysed:

– Latency: mean enactment time of the choreography.
– Usage (VM): mean and variance of the load in the virtual machines.
– Usage (Host): mean and variance of the load in the hosts (physical machines).
– AWRT: Average Weighted Response Time, as proposed by Grimme et al. [16],

which measures how much, on average, users should expect to have their
requests met.

– Execution Overhead: how much, on average, the execution time differs from
an estimated optimal value. This value is taken assuming that the request in
question is the only one in the cloud, i.e., no other concurrent requests share
the same resource.

The size of the media used as input in the simulation was obtained randomly,
whereas values between 0 and 10 GB. The activities duration, expressed in MI,
that composes the choreography was estimated according to the size of the media,
considering the average connection speed in Brazil and values obtained with
benchmarks [22,23,26].

We evaluated scenarios with different requests per second rates: 1, 5, 10
and 30. For the horizontal scaling we performed scenarios with 1, 5, 10 and 30
running VMs. We used VM configurations equivalent to the types of Amazon
EC2 m1.small, m1.medium, m1.large and m1.xlarge for the vertical scaling. In
the hybrid approach, both the amount and configuration of VMs have changed.
For each simulation, we consider a fixed amount of resources allocated. The
simulated cloud consists of 10 hosts with same configuration: equivalent to a
machine Intel R© Xeon R© Processor X5570, 8 GB of RAM.

http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109
http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109

136 R. Gomes et al.

Experiment Execution. This experiment is based on the modified version
CloudSim described above. The choreographies submitted in the simulation were
generated and stored so that the same input sets were used in the three scaling
strategies.

There was no need of any treatment regarding the validity of the data.

Analysis and Interpretation of Results. Each experiment starts with the
same scenario of one VM type small and load of one request/s. To evidentiate
the difference among results, charts were plotted on a logarithmic scale, except
for the chart of strategy costs (Fig. 3).

The first variable taken was the latency. As can be seen in Fig. 2(a), when
there is 1 req/s the increase in VM number only brings high gains when going
from 1 to 5 VMs, with a decrease of 52.8 % on average latency. With scaling to
10 VMs the gain decreases to 4.14 % and after that no more gains are obtained.
This is due the fact that there are few requests, since a similar behaviour is
observed in horizontal scaling when there are 5 req/s. Therefore, the horizontal
scaling can only be justified for large-scale scenes, such as 30 req/s, where the
gain is always greater than 50 % (Fig. 2(a)).

(a) (b)

(c)

Fig. 2. Latency. (a) Horizontal strategy. (b) Vertical strategy. (c) Hybrid strategy.

Analysing Scalability Strategies for Service Choreographies 137

(a) (b)

(c) (d)

Fig. 3. Cost of scaling. (a) Horizontal strategy. (b) Vertical strategy. (c) Hybrid strat-
egy. (d) Comparative among strategies.

Comparing the horizontal and vertical approaches (Figs. 2(a) and (b)), we
can see that, regarding latency, to use only 1 VM type medium is almost as
satisfying as using 5 VMs type small. For types large and xlarge the vertical
strategy is more advantageous than the horizontal strategy. This shows that the
allocation of a larger number of VMs is not the best approach in this scenario.
This is mainly because of the cost: considering a public cloud, the most extreme
case (30 req/s) would require the expenditure of $2.40 per hour in a horizontal
approach and $0.64 using the vertical strategy2.

The hybrid strategy (Fig. 2(c)) shows that increasing the amount and con-
figuration of VMs only bring benefit in the first modification, i.e. move from
one VM type small to 5 VMs type medium. The only exception is the case of
30 req/s, for which the second modification also brought gains. Comparing the
vertical and hybrid approaches (Figs. 2(a) and (b)) we found that the hybrid
strategy has not brought gains in some cases. This reinforces the argument that
changing the configuration of VMs can be a better strategy than allocate a
greater amount of VMs.
2 This estimation is using Amazon EC2 resources in São Paulo (Brazil) availability

zone in February/2014.

138 R. Gomes et al.

To compare each scaling strategy, we defined the cost of each scaling, called
normalized cost, by the expression cost per hour/(QoS× load), where cost per
hour is the cost to implement the strategy, considering the number and type
of VMs, QoS is the inverse of latency and load is the number of requests per
seconds. Thus, a scaling strategy is better when the normalized cost decreases
as the scale increases, for a same load. To a fair comparison among different
strategies, we converted each strategy scale to a relative scale cost (per hour),
considering that one small VM has a cost of one unit.

Figure 3 shows graphs of the normalized cost for each scaling strategy.
Figure 3(d) shows a comparison between the cost of each strategy, on a load
of 30 request/s. Figure 3(d) endorses the idea that the vertical strategy is the
best strategy for the simulated scenario. Also, each strategy presents a point
where it does not produce any benefit. As shown in Figs. 3(a) and (c), scaling in
horizontal and hybrid approaches is only a beneficial approach at higher loads
(close to 30 request/s).

The execution overhead and AWRT presented the same behaviour of latency,
so the corresponding charts will not be shown or discussed. We also analyse the
impact of scaling approaches on the use of resources, since the use of resources
must be maximized in private clouds. Initially we analyse the use of physical
machines. Since this factor depends solely on the amount and configuration of
VMs created and there is no change in these attributes at runtime, the results
are similar for all the requests rate and, so we put them together to facilitate
comparison.

 0.01

 0.1

 1

 10

 100

Horiz. Vert. Hyb.

H
os

t u
til

iz
at

io
n

m
ea

n
(%

)

Strategy

Host utilization (all strategies)

(a)

 0.001

 0.01

 0.1

 1

 10

 100

Horiz. Vert. Hyb.

H
os

t u
til

iz
at

io
n

va
ria

nc
e

(%
)

Strategy

Host utilization (all strategies)

(b)

Fig. 4. Host usage. (a) Average. (b) Variance.

In Fig. 4 we can see the average and variance of utilization of physical machines.
As showed in Fig. 4(a), the average host usage has no major changes when compar-
ing the horizontal and vertical approaches, despite a much larger amount of VM
created in the horizontal approach. Regarding the hybrid approach, only there
was considerable use of resources in the latter case (30 VMs type xlarge), where
the average utilization of physical machines was above 50 %. The low utilization
rates for the other cases is due to the large number of available resources in the
cloud.

Analysing Scalability Strategies for Service Choreographies 139

The usage variance (Fig. 4(b)) shows that resources were allocated almost
uniformly. The only exception occurred in the vertical approach using VM type
xlarge for which variance was 26.31 %.

Regarding the VM usage, we note that even with a greater number of instances,
the horizontal approach has a higher average utilization (Fig. 5(a)). This was
expected since, by having a more limited setting, VMs need to conduct a more
intensive processing to complete the activities. On the contrary, the creation
of 30 VMs makes the average utilization of VMs lesser than 2 % for 1, 5 and
10 req/s. Even at 30 req/s the usage is no more than 25 %, which shows that
most of these resources are idle, representing a loss. On the other hand, use
only 1 or 5 VMs (with same configuration) causes the average utilization be near
100 % when there are many requests.

The vertical approach also seemed to be the best alternative with respect to
the use of resources. Mean usage (Fig. 5(b)) with the type medium was around
50 % in almost all cases. For the type large this value was lower, not exceeding
25 %. The use of type xlarge makes the average utilization be very low, less
than 4 % in all cases. For the hybrid case (Fig. 5(c)) the scaling only improves
substantially the usage from the first to the second simulated case (5 VMs type
medium), since allocation of more resources decrease the average usage to a low
percentage, no more than 1 %.

In the analysis of usage variance it makes no sense to take into account the
cases with only one VM running. As a result, according to Figs. 5(d) and (e) we
can see that there are major differences only in extreme cases where the amount
of VMs is greater than or equal to 10. This happens because in the other cases
there is a limited number of VM, which makes usage occurs almost uniformly.

With this experiment we concluded that the allocation of a greater number
of VMs is not the best strategy when considering services choreographies. Our
results suggest that, due to dependencies between choreography activities, the
use of a strategy that minimizes the execution time may produce improved
results. However it is still necessary a mechanism to decide which strategy is the
best in each scenario, using adaptive algorithms that learn with the execution
historic. For services choreographies we can even use different strategies to each
services set. In a future experiment, we plan to evaluate how a choreography
style and architecture may influence the gain of each scaling strategy.

5 Related Work

There have been significant research efforts on the analysis of virtualization
technologies [18,31] or cloud providers performance [11,17], mainly related to
effects of horizontal or vertical scaling on the perceived latency.

Vaquero et al. [29] survey various approaches for application scalability in
clouds at three different levels: server, network and platform; they also discrim-
inate the two types of scalability: horizontal and vertical.

Suleiman et al. [28] identify a series of research challenges related to the
scalability of existing solutions. Their work aims to determine how much to scale,

140 R. Gomes et al.

 0.1

 1

 10

 100

1.0 5.0 10.0 30.0

V
M

 m
ea

n
ut

ili
za

tio
n

(%
)

Req/s

VM mean utilization using horizontal strategy

VM
1 small
5 small

10 small
30 small

(a)

 0.1

 1

 10

 100

1.0 5.0 10.0 30.0

V
M

 m
ea

n
ut

ili
za

tio
n

(%
)

Req/s

VM mean utilization using vertical strategy

VM
1 small

1 medium
1 large

1 xlarge

(b)

 0.1

 1

 10

 100

1.0 5.0 10.0 30.0

V
M

 m
ea

n
ut

ili
za

tio
n

(%
)

Req/s

VM mean utilization using hybrid strategy

VM
1 small

5 medium
10 large

30 xlarge

(c)

 0.01

 0.1

 1

 10

 100

1.0 5.0 10.0 30.0

V
M

 u
til

iz
at

io
n

va
ria

nc
e

(%
)

Req/s

VM utilization variance using horizontal strategy

VM
1 small
5 small

10 small
30 small

(d)

 0.001

 0.01

 0.1

 1

 10

 100

1.0 5.0 10.0 30.0

V
M

 u
til

iz
at

io
n

va
ria

nc
e

(%
)

Req/s

VM utilization variance using hybrid strategy

VM
1 small

5 medium
10 large

30 xlarge

(e)

Fig. 5. VM usage. Average on horizontal (a), vertical (b) and hybrid (c) strategy.
Variance on horizontal (d) and hybrid (e) strategy.

taking into account automated scaling mechanisms and the costs associated with
licensing, as well as the flexibility enabled by the size and type of resources that
can be scaled. They also analysed how to scale, and which scaling strategy to
choose, conducting a trade-off analysis between horizontal and vertical solutions.

Nevertheless none of these works considers scalability in clouds to enact ser-
vice choreographies. As we pointed out above, there are some particularities that
must be taken into account, like dependencies between services or concurrency
issues. To the best of our knowledge there is no other work that considers this
subject.

Analysing Scalability Strategies for Service Choreographies 141

6 Final Remarks

In this paper we discuss how the main cloud providers and virtualization tech-
nologies provide scalability. By means of experiments carried out through sim-
ulation, we investigate the impacts of using three scalability strategies do enact
service choreographies on cloud resources.

While vertical scalability is possible in principle for all applications, it largely
depends on the service provider to offer the mechanisms to implement this type
of scaling dynamically. Horizontal scalability on the other hand mostly depends
on the application components and the application as a whole to support it as an
option [1]. As pointed out the overhead of each strategy also needs to be taken
into account. Horizontal scaling, for instance, requires on average 10 min to start
a new VM instance, which may not be feasible in scenarios that involve real-time
applications.

We evaluated some scalability scenarios to enact service choreographies. In
our analysis we concluded that vertical scaling is the best option in terms of
cost, resource usage and application QoS attributes for the application con-
sidered. This result, although not be general for various application areas, it
has applicability in resource allocation in approaches that use cloud comput-
ing in the general case. For instance, a model-driven development process can
manage the relation between the infrastructure and the actual application non-
functional requirements choosing the most suitable scalability strategy to meet
these requirements [14].

Nevertheless important scenarios with scalability patterns still need to be
evaluated. In addition, a more precise analysis must be performed in order to
provide elements that will enable a more effective scalability strategy. In partic-
ular, it is necessary to characterize the nature and behaviour of choreographies,
including the characteristics of each individual service, using this information to
refine the evaluation of scalability strategies. In our work the main focus was
application load but this analysis can take into account other aspects such as
service load and the use of public vs. private clouds.

References

1. Andrikopoulos, V., Binz, T., Leymann, F., Strauch, S.: How to adapt applications
for the Cloud environment. Computing 95(6), 493–535 (2013)

2. Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw.
54(15), 2787–2805 (2010)

3. Barker, A., Walton, C., Robertson, D.: Choreographing web services. IEEE Trans.
Serv. Comput. 2(2), 152–166 (2009)

4. Bellenger, D., Bertram, J., Budina, A., Koschel, A., Pfänder, B., Serowy, C.,
Astrova, I., Grivas, S., Schaaf, M.: Scaling in cloud environments. Recent
Researches in Computer Science (2011)

5. Blair, G., Kon, F., Cirne, W., Milojicic, D., Ramakrishnan, R., Reed, D., Silva, D.:
Perspectives on cloud computing: interviews with five leading scientists from the
cloud community. J. Internet Serv. Appl. 2(1), 3–9 (2011)

142 R. Gomes et al.

6. Caglar, F., An, K., Shekhar, S., Gokhale, A.: Model-driven performance estimation,
deployment, and resource management for cloud-hosted services. In: Proceedings
of the 2013 ACM Workshop on Domain-Specific Modeling, pp. 21–26. ACM (2013)

7. Calheiros, R., Ranjan, R., Beloglazov, A., De Rose, C., Buyya, R.: CloudSim: a
toolkit for modeling and simulation of cloud computing environments and evalua-
tion of resource provisioning algorithms. Softw. Pract. Exper. 41(1), 23–50 (2011)

8. Chung, L., do Prado Leite, J.C.S.: On non-functional requirements in software
engineering. In: Borgida, A.T., Chaudhri, V.K., Giorgini, P., Yu, E.S. (eds.) Con-
ceptual Modeling: Foundations and Applications. LNCS, vol. 5600, pp. 363–379.
Springer, Heidelberg (2009)

9. Daras, P., Williams, D., Guerrero, C., Kegel, I., Laso, I., Bouwen, J., Meunier, J.,
Niebert, N., Zahariadis, T.: Why do we need a content-centric future Internet?
Proposals towards content-centric Internet architectures. Inf. Soc. Media J. (2009)

10. Dawoud, W., Takouna, I., Meinel, C.: Elastic virtual machine for fine-grained cloud
resource provisioning. In: Krishna, P.V., Babu, M.R., Ariwa, E. (eds.) ObCom
2011, Part I. CCIS, vol. 269, pp. 11–25. Springer, Heidelberg (2012)

11. Dejun, J., Pierre, G., Chi, C.-H.: EC2 performance analysis for resource provision-
ing of service-oriented applications. In: Dan, A., Gittler, F., Toumani, F. (eds.)
ICSOC/ServiceWave 2009. LNCS, vol. 6275, pp. 197–207. Springer, Heidelberg
(2010)

12. Facebook: Statistics (2013). https://newsroom.fb.com
13. Ferry, N., Rossini, A., Chauvel, F., Morin, B., Solberg, A.: Towards model-driven

provisioning, deployment, monitoring, and adaptation of multi-cloud systems. In:
CLOUD 2013: IEEE 6th International Conference on Cloud Computing, pp. 887–
894 (2013)

14. Gomes, R., Costa, F., Bencomo, N.: On modeling and satisfaction of non-functional
requirements using cloud computing. In: Proceedings of the 2013 IEEE Latin Amer-
ica Conference on Cloud Computing and Communications (2013)

15. Gong, Z., Gu, X., Wilkes, J.: Press: predictive elastic resource scaling for cloud
systems. In: 2010 International Conference on Network and Service Management
(CNSM), pp. 9–16. IEEE (2010)

16. Grimme, C., Lepping, J., Papaspyrou, A.: Prospects of collaboration between com-
pute providers by means of job interchange. In: Frachtenberg, E., Schwiegelshohn,
U. (eds.) JSSPP 2007. LNCS, vol. 4942, pp. 132–151. Springer, Heidelberg (2008)

17. Hill, Z., Li, J., Mao, M., Ruiz-Alvarez, A., Humphrey, M.: Early observations
on the performance of Windows Azure. In: Proceedings of the 19th ACM Inter-
national Symposium on High Performance Distributed Computing, pp. 367–376.
ACM (2010)

18. Huang, X., Bai, X., Lee, R.M.: An empirical study of VMM overhead, configura-
tion performance and scalability. In: 2013 IEEE 7th International Symposium on
Service Oriented System Engineering (SOSE), pp. 359–366 (2013)

19. Kavantzas, N., Burdett, D., Ritzinger, G., Fletcher, T., Lafon, Y., Barreto, C.:
Web services choreography description language version 1.0. W3C candidate rec-
ommendation, 9 (2005)

20. Li, A., Yang, X., Kandula, S., Zhang, M.: CloudCmp: comparing public cloud
providers. In: Proceedings of the 10th ACM SIGCOMM Conference on Internet
Measurement, pp. 1–14. ACM (2010)

21. Miller, M.: Cloud Computing: Web-Based Applications that Change the Way You
Work and Collaborate Online. Que Publishing, Indianapolis (2008)

22. Movavi: Faster Performance with Cutting-Edge Tech (2014). http://www.movavi.
com/videoconverter/performance.html

https://newsroom.fb.com
http://www.movavi.com/videoconverter/performance.html
http://www.movavi.com/videoconverter/performance.html

Analysing Scalability Strategies for Service Choreographies 143

23. MySQL: Estimating Query Performance (2014). http://dev.mysql.com/doc/
refman/5.0/en/estimating-performance.html

24. Papadimitriou, D.: Future Internet - The cross-ETP vision document. European
Technology Platform, Alcatel Lucent 8 (2009)

25. Ruth, P., Rhee, J., Xu, D., Goasguen, S., Kennell, R.: Autonomic live adaptation of
virtual networked environments in a multidomain infrastructure. J. Internet Serv.
Appl. 2(2), 141–154 (2011)

26. Seagate: Savvio R© 10K.5 SAS Product Manual (2012)
27. Senthil N.: Dynamic resource provisioning for virtual machine through vertical scal-

ing and horizontal scaling. Ph.D. Dissertation. Department of Computer Science
and Engineering, Indian Institute of Technology (2013)

28. Suleiman, B., Sakr, S., Jeffery, R., Liu, A.: On understanding the economics and
elasticity challenges of deploying business applications on public cloud infrastruc-
ture. J. Internet Serv. Appl. 3(2), 173–193 (2012)

29. Vaquero, L.M., Rodero-Merino, L., Buyya, R.: Dynamically scaling applications in
the cloud. SIGCOMM Comput. Commun. Rev. 41(1), 45–52 (2011)

30. Vincent, H., Issarny, V., Georgantas, N., Francesquini, E., Goldman, A., Kon, F.:
CHOReOS: scaling choreographies for the internet of the future. In: Middleware’10
Posters and Demos Track, p. 8. ACM (2010)

31. Voorsluys, W., Broberg, J., Venugopal, S., Buyya, R.: Cost of virtual machine live
migration in clouds: a performance evaluation. In: Jaatun, M.G., Zhao, G., Rong,
C. (eds.) Cloud Computing. LNCS, vol. 5931, pp. 254–265. Springer, Heidelberg
(2009)

32. Voorsluys, W., Broberg, J., Buyya, R.: Introduction to cloud computing. In: Cloud
Computing, pp. 1–41 (2011)

33. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M., Regnell, B., Wesslén, A.: Experi-
mentation in Software Engineering: An Introduction. Kluwer Academic Publishers,
Boston (2000)

34. Yazdanov, L., Fetzer, C.: Vertical scaling for prioritized VMs provisioning. In: 2012
Second International Conference on Cloud and Green Computing (CGC), pp. 118–
125. IEEE (2012)

http://dev.mysql.com/doc/refman/5.0/en/estimating-performance.html
http://dev.mysql.com/doc/refman/5.0/en/estimating-performance.html

	Analysing Scalability Strategies for Service Choreographies on Cloud Environments
	1 Introduction
	2 Motivating Example
	3 Scalability Strategies in Cloud Platforms
	4 Evaluating Scalability Strategies to Service Choreographies
	4.1 Simulator
	4.2 Simulation of Resource Allocation Policies Applied to a Service Choreography

	5 Related Work
	6 Final Remarks
	References

