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Preface

Cloud Computing concerns large-scale interconnected systems and it has the main
purpose to aggregate and to effcient exploit the power of widely distributed resources.
Resource Management and Task Scheduling play an essential role, in cases where one
is concerned with optimized use of resources. The ubiquitous networks are highly
dynamic distributed systems so the changes in overlay are frequent. On the other hand,
the Cloud systems are highly dynamic in its structure because the user requests must be
respected as an agreement rule. When ubiquitous networks become clients for Cloud
systems new algorithm for events and tasks scheduling and new methods for resource
management should be designed in order to increase the performance of such systems.
The adaptive methods used in context are oriented on: self-stabilizing, self-organizing,
and autonomic systems; dynamic, adaptive, and machine learning-based distributed
algorithms; fault tolerance, reliability, availability of distributed systems.

This volume contains the papers presented at ARMS-CC-2014: Workshop on
Adaptive Resource Management and Scheduling for Cloud Computing held in con-
junction with PODC 2014 (ACM Symposium on Principles of Distributed Computing)
in Paris, France, on July 15, 2014. The papers of this volume have identified several
important aspects of the problem addressed by ARMS-CC: foundational models for
resource management in Cloud, scheduling algorithms, and services and applications.
We strongly believe that the papers included in this volume will serve as reference for
the researchers and scientists in the field of Cloud Computing. The selected papers for
this volume comprise a variety of successful approaches including: Distributed
Scheduling Algorithms; Load-Balancing and Co-Allocation; Dynamic, Adaptive, and
Machine Learning-based Distributed Algorithm; Many-Task Computing in the Cloud;
Self-* and Autonomic Cloud Systems; Cloud Resource Virtualization and Composi-
tion; Fault Tolerance, Reliability, Availability of Cloud Systems; Cloud Workload
Profiling and Deployment Control; Cloud Quality Management and Service Level
Agreement (SLA); High-Performance Cloud Computing, Mobile Cloud Computing;
and Green Cloud Computing.

There were 29 initial submissions. Each submission was peer-reviewed by Program
Committee members or invited external reviewers. Each submission was reviewed by
three Program Committee members. Finally, 14 high-quality papers were selected
(about 48 % acceptance ratio) for publishing in the LNCS Post-Proceedings and pre-
sented during the workshop. This volume consists of 15 papers (14 papers from
ARMS-CC and 1 short invited paper) and two invited talks, which are organized as
follows.

The two invited talks were given by Thilo Kielmann (VU Amsterdam, Netherlands)
and Marc Shapiro (INRIA & LIP6, Université Pierre et Marie Curie, Paris, France).

The invited paper, “In-Memory Runtime File Systems for Many-Task Computing”
by Alexandru Uta, Andreea Sandu, Ion Morozan, and Thilo Kielmann, presents a
distributed, in-memory runtime file system called MemFS that replaces data locality by



uniformly spreading file stripes across all storage nodes. Due to its striping mechanism,
MemFS leverages full network bisection bandwidth, maximizing I/O performance
while avoiding storage imbalance problems.

The 14 papers presented in ARMS-CC workshop are organized as follows.
In the first paper, titled “A Multi-Capacity Queuing Mechanism in Multi-Dimen-

sional Resource Scheduling,”Mehdi Sheikhalishahi et al. present a queuing mechanism
based on a multi-resource scheduling technique by modeling multi-resource scheduling
as a multi-capacity bin-packing scheduling algorithm at the queue level to reorder the
queue in order to improve the packing and as a result improve scheduling metrics. The
proposed solution demonstrates performance improvements in terms of wait-time and
slowdown metrics.

The second paper, “A Green Scheduling Policy for Cloud Computing,” presented by
Jordi Vilaplana et al., introduced a power-aware scheduling policy algorithm called
Green Preserving SLA (GPSLA) for Cloud Computing systems with high workload
variability. GPSLA aims to guarantee the SLA (Service-Level Agreement) by mini-
mizing the system response time and, at the same time, tries to reduce the energy
consumption. The authors present a formal solution, based on linear programming, to
assign the system load to the most powerful Virtual Machines, while respecting the
SLA and lowering the power consumption as far as possible.

Ansuman Banerjee et al. describes in the third paper, “A Framework for Speculative
Scheduling and Device Selection for Task Execution on a Mobile Cloud,” the problem
of opportunistic task scheduling and workload management in a mobile cloud setting
considering computation power variation. The authors gathered mobile usage data for a
number of persons and applied supervised clustering to show that a pattern of usage
exists and that follows a state-based model. The proposed solution is used as a strategy
to choose and offoad work on a mobile device.

The fourth paper, named “An Interaction Balance Based Approach for Autonomic
Performance Management in a Cloud Computing Environment,” was presented by
Rajat Mehrotra et al. In this paper, a performance management approach is introduced
that provides dynamic resource allocation for deploying a general class of services over
a federated Cloud Computing infrastructure. This performance management approach
is based on distributed control, and is developed by using an interaction balance
methodology, which has previously been successfully used in developing management
solutions for traditional large-scale industrial systems.

Jordi Arjona Aroca et al. present the problem Virtual Machine Assignment (VMA)
in the fifth paper, “Power-Efficient Assignment of Virtual Machines to Physical
Machines.” The optimization criterion is to minimize the power consumed by all the
physical machines. The authors present in this paper four VMA problems depending on
whether the capacity or the number of physical machines is bounded or not.

Alexandru-Florian Antonescu and Torsten Braun in the sixth paper, named “Sim-
ulation of Multi-Tenant Scalable Cloud-Distributed Enterprise Information Systems,”
present a simulation approach for validating and comparing SLA-aware scaling policies
using the CloudSim simulator, using data from an actual Distributed Enterprise
Information System (dEIS). This work extends CloudSim with concurrent and multi-
tenant task simulation capabilities.

VI Preface



Vlad Serbanescu et al. present in the seventh paper, “Towards Type-Based Opti-
mizations in Distributed Applications using ABS and JAVA 8,” an API to support
modeling applications with Actors based on the paradigm of the Abstract Behavioral
Specification (ABS) language. The authors validate this solution through a case study
where we obtain significant performance improvements as well as illustrating the ease
with which simple high- and low-level optimizations can be obtained by examining
topologies and communication within an application.

The eighth paper, “A Parallel Genetic Algorithm Framework for Cloud Computing
Applications,” presented by Elena Apostol et al. describes the use of subpopulations for
the GA MapReduce implementations. Second, the paper proposes new models for two
well-known genetic algorithm implementations, namely island and neighborhood
model.

Raphael Gomes et al. discuss in the ninth paper the scalability strategies to enact
service choreographies using cloud resources. The authors present efforts at the state-
of-the-art technology and an analysis of the outcomes in adopting different strategies of
resource scaling. The paper is titled “Analysing Scalability Strategies for Service
Choreographies on Cloud Environments.”

Shadi Ibrahim et al., on behalf ok KerData team from Inria Rennes, presents in the
10th paper, “Towards Efficient Power Management in MapReduce: Investigation of
CPU-Frequencies Scaling on Power Effciency in Hadoop,” the impact of dynamically
scaling the frequency of compute nodes on the performance and energy consumption of
a Hadoop cluster. Taking into account the nature of a MapReduce application (CPU-
intensive, I/O-intensive, or both) and the fact that its subtasks execute different
workloads (disk read, computation, network access), there is significant potential for
reducing power consumption by scaling down the CPU frequency when peak CPU
performance is not needed. To this end, a series of experiments are conducted to
explore the implications of Dynamic Voltage Frequency scaling (DVFS) settings on
power consumption in Hadoop-clusters: benefiting from the current maturity in DVFS
research and the introduction of governors (e.g., performance, power-save, on-demand,
conservative, and user-space).

The 11th paper, “Self-management of Live Streaming Application in Distributed
Cloud Infrastructure,” presented by Patricia Endo et al., describes an autonomic
strategy that manages the dynamic creation of reectors for reducing redundant traffic in
live streaming applications. Under this strategy, nodes continually assess the utilization
level by live streaming ows. When necessary, the network nodes communicate and
self-appoint a new reector node, which switches to multicasting video ows hence
alleviating network links.

Cristina Marinescu et al., in the 12th paper, “Towards the Impact of Design Flows
on the Resources Used by an Application,” make the assumption that the presence of
design aws in the implementation of a software system may lead to a suboptimal
resource usage. The investigations on the impact of several design aws on the amount
of resources used by an application indicate that the presence of design aws has an
inuence on memory consumption and CPU time, and that proper refactoring can have a
beneficial inuence on resource usage.

“Policy-Based Cloud Management Through Resource Usage Prediction” is the 13th
paper, presented by Catalin Leordeanu et al. The paper proposes a novel solution,
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which offers an efficient resource management mechanism for Clouds. The solution is
based on monitoring hosts belonging to the Cloud in order to obtain load data.
A policy-based system uses the monitoring information to make decisions about
deployment of new virtual machines and migration of already running machines from
overloaded hosts.

In the last paper, “An Inter-Cloud Architecture for OpenStack Infrastructures,”
Stelios Sotiriadis et al. explore an inter-cloud model by creating a new cloud platform
service to act as a mediator among OpenStack, FI-WARE datacenter resource man-
agement, and Amazon Web Service cloud architectures, therefore to orchestrate
communication of various cloud environments.

Florin Pop and Maria Potop-Butucaru acknowledge support by PHC Bilateral
Research Project: SideSTEP – Scheduling Methods for Dynamic Distributed Systems:
a self-* approach, ID: PN-II-CT-RO-FR-2012-1-0084.

We also express our gratitude and thank to all of the members of the Program
Committee, to all of the reviewers, for their hard work in finalizing the reviews on time,
as well as the authors for submitting their papers to ARMS-CC-2014. We address our
personal warm regards to PODC-2014 organizers, especially to Workshop chairs,
Sebastien Tixeuil and Dariusz Kowalski for their support and advices offered during
the workshop organization. The editors would like to thank Alfred Hofmann, Peter
Steasser, and Anna Kramer for the editorial assistance and excellent cooperative col-
laboration to produce this valuable scientific work. We appreciate the support offered
by EasyChair system team to handle the paper submission, review process, and
communications with authors and reviewers. We thank them for this important support.

July 2014 Florin Pop
Maria Potop-Butucaru
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In-Memory Runtime File Systems
for Many-Task Computing

Alexandru Uta, Andreea Sandu, Ion Morozan, and Thilo Kielmann(B)

Department of Computer Science, Vrije Universiteit, Amsterdam, The Netherlands
Thilo.kielmann@vu.nl

1 Introduction

Many scientific computations can be expressed as Many-Task Computing (MTC)
applications. In such scenarios, application processes communicate by means of
intermediate files, in particular input, temporary data generated during job exe-
cution (stored in a runtime file system), and output. In data-intensive scenarios,
the temporary data is generally much larger than input and output. In a 6 × 6
degree Montage mosaic [3], for example, the input, output and intermediate data
sizes are 3.2 GB, 10.9 GB and 45.5 GB, respectively [6]. Thus, speeding up I/O
access to temporary data is key to achieving good overall performance.

General-purpose, distributed or parallel file systems such as NFS, GPFS,
or PVFS provide less than desirable performance for temporary data for two
reasons. First, they are typically backed by physical disks or SSDs, limiting
the achievable bandwidth and latency of the file system. Second, they provide
POSIX semantics which are both too costly and unnecessarily strict for tem-
porary data of MTC applications that are written once and read several times.
Tailoring a runtime file system to this pattern can lead to significant performance
improvements.

Memory-based runtime file systems promise better performance. For MTC
applications, such file systems are co-designed with task schedulers, aiming at
data locality [6]. Here, tasks are placed onto nodes that contain the required
input files, while write operations go to the node’s own memory. Analyzing the
communication patterns of workflows like Montage [3], however, shows that, ini-
tially, files are created by a single task. In subsequent steps, tasks combine several
files, and final results are based on global data aggregation. Aiming at data local-
ity hence leads to two significant drawbacks: (1) Local-only write operations can
lead to significant storage imbalance across nodes, while local-only read opera-
tions cause file replication onto all nodes that need them, which in worst case
might exceed the memory capacity of nodes performing global data reductions.
(2) Because tasks typically read more than a single input file, locality-aware task
placement is difficult to achieve in the first place.

To overcome these drawbacks, we designed a distributed, in-memory runtime
file system called MemFS that replaces data locality by uniformly spreading file
stripes across all storage nodes. Due to its striping mechanism, MemFS leverages
full network bisection bandwidth, maximizing I/O performance while avoiding
storage imbalance problems.
c© Springer International Publishing Switzerland 2014
F. Pop and M. Potop-Butucaru (Eds.): ARMS-CC 2014, LNCS 8907, pp. 3–5, 2014.
DOI: 10.1007/978-3-319-13464-2 1



4 A. Uta et al.

2 MemFS

The MemFS distributed file system [5] consists of three key components: a stor-
age layer, a data distribution component, and a file system client. Typically, all
three components run on all application nodes. In general, however, it would
also be possible to use a (partially) disjoint set of storage servers, for example
when the application itself has large memory requirements.

The storage layer exposes a node’s main memory for storing the data in a
distributed fashion. We use the Memcached [2] key-value store. MemFS equally
distributes the files across the available Memcached servers, based on file strip-
ing. For mapping file stripes to servers, we use a hashing function provided by
Libmemcached [1], a Memcached client library. We use the file names and stripe
numbers as hash keys for selecting the storage servers. We expose our storage sys-
tem using a FUSE [4] layer, exposing a regular file system interface to the MTC
applications. At startup, the FUSE clients are configured with a list of storage
servers. Through the Libmemcached API, the FUSE file system communicates
with the Memcached storage servers.

Figure 1 shows the overall system design of MemFS, using the example of
a write operation, issuing Memcached set commands; for read operations, get
commands would be used instead.

Fig. 1. MemFS system design
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MemFS had originally been designed for tightly-coupled compute clusters
where premium networks like Infiniband provide intersection bandwidth of sev-
eral tens of Gb per second. Experimentation has shown that MemFS works very
well with these networks. But also with slower interconnects, like Gb Ethernet,
MemFS shows its superiority, compared to locality-based approaches.

Currently, a limiting factor for MemFS performance is the user-space imple-
mentation based on FUSE, that causes significant CPU load for processing file-
system operations on the client side. An alternative MemFS implementation is
providing a kernel-based file system that reduces the amount of context switches
between user space and kernel space to the absolute minimum. Our kernel-based
version of MemFS shows significant reduction in CPU loads on the client side.

The drawback of a kernel-space file system is that it requires superuser
privileges, which can be a limiting factor for deployment on cluster machines.
When using MemFS in virtualized cloud environments, however, the kernel-space
implementation can be used easily and efficiently.

3 Conclusions

MemFS is a fully-symmetrical, in-memory distributed runtime file system. Its
design is based on uniformly distributing file stripes across the storage nodes
belonging to an application by means of a distributed hash function, purposefully
sacrificing data locality for balancing both network traffic and memory consump-
tion. This way, reading and writing files can benefit from full network bisection
bandwidth, while data distribution is balanced across the storage servers.

Acknowledgments. This work is partially funded by theDutch public-private research
community COMMIT/.
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A Multi-capacity Queuing Mechanism
in Multi-dimensional Resource Scheduling

Mehdi Sheikhalishahi1(B), Richard M. Wallace2, Lucio Grandinetti1,
José Luis Vazquez-Poletti2, and Francesca Guerriero1

1 Department of Electronics, Computer Sciences and Systems,
University of Calabria, Rende, CS, Italy

mehdi.alishahi@gmail.com
2 Department of Computer Architecture and Automation,

Complutense University, Madrid, Spain

Abstract. With the advent of new computing technologies, such as cloud
computing and contemporary parallel processing systems, the building
blocks of computing systems have become multi-dimensional. Traditional
scheduling algorithms based on a single-resource optimization like proces-
sor fail to provide near optimal solutions. The efficient use of new comput-
ing systems depends on the efficient use of all resource dimensions. Thus,
the scheduling algorithms have to fully use all resources. In this paper, we
propose a queuing mechanism based on a multi-resource scheduling tech-
nique. For that, we model multi-resource scheduling as a multi-capacity
bin-packing scheduling algorithm at the queue level to reorder the queue
in order to improve the packing and as a result improve scheduling met-
rics. The experimental results demonstrate performance improvements in
terms of waittime and slowdown metrics.

Keywords: Multi-resource · Queuing mechanism · Resource manage-
ment · Scheduling · Bin-packing · Performance

1 Introduction

From a scheduling and resource view for computing, there can be a few major
issues and problems to consider: low utilization, overloaded systems, poor per-
formance, and resource contention. Solving these issues and problems requires
answering complex questions that start with, “When...,” “Which...,” and
“Where....” For instance, “Which types of applications should be consolidated
together in a server?”, “When should some workloads be migrated to other
servers?”, and “Where should a workload be placed?” These examples are the
type of resource management questions to consider and this list has many more
resource management questions of this type.

Scheduling algorithms based on First-Come First-Served schemes (FCFS)
pack jobs from the job queue into the system in order of their arrival until
a resource is exhausted. If there is a large job at the head of the queue which
c© Springer International Publishing Switzerland 2014
F. Pop and M. Potop-Butucaru (Eds.): ARMS-CC 2014, LNCS 8907, pp. 9–25, 2014.
DOI: 10.1007/978-3-319-13464-2 2
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requires more resources than those left available in the system, the job allocation
scheme is blocked from scheduling further jobs until sufficient resources become
available for this large job. This results in potentially large resource fragments
being under-utilized. Back-filling mechanisms overcome this issue by skipping
over jobs that cannot be allocated and by finding smaller jobs that can make
use of remaining resources.

With the advent of new computing technologies such as cloud computing as
a recent development in the field of computing and massively parallel process-
ing systems such as the most recent Cray JK7 system (Titan), the Chinese
Tianhe-1A system (NUDT YH MPP)1, and the quite old SUN E10000 and SGI
O2K systems, the building blocks of computing systems have become
multi-dimensional. The Titan system is installed at Oak Ridge, achieving
17.59 Petaflop/s on the Linpack benchmark with 560,640 processors, including
261,632 NVIDIA K20x accelerator cores2.

Scheduling in older computer systems, such as the massively parallel process-
ing systems TMC CM-5 and the CRAY T3E, were focused on a single resource
dimension allocation (processing nodes) where single capacity bin-packing algo-
rithms were used to solve this problem3.

From the processing point of view, according to the Top500 list, a total
of 62 systems on the Top500 list are using accelerator/co-processor technology
including Titan and the Chinese Tianhe-1A system which uses NVIDIA GPUs
to accelerate its computation. Moreover, Stampede and six other supercomputers
are accelerated by the new Intel Xeon Phi processors (Intel MIC architecture)4.
As a result there are multiple computing elements to be taken into account in
scheduling at the processor level.

In multi-dimensional resource environment a single resource still becomes
exhausted while others remain under-used even with the back-filling strategy as
the scheduling algorithm. This is due to the design of FCFS algorithms which are
restricted in job selection based on their arrival order and not addressing capac-
ity imbalance between resources in a multi-resource environment. Back-filling
strategy is an instance of FCFS mechanism. Thus, single capacity bin-packing
algorithms are inadequate as they are unable to provide optimal scheduling for
multi-dimensional resources of CPU, GPU, memory, shared memory, large disk
farms, I/O channels, bandwidth, network input, network output, and even soft-
ware licenses of current computing system architectures.

The scheduling scheme must be free to select any job based on matching all
of the jobs’ resource requirements with the available system resources in order to
address the efficient use of resources in a multi-resource environment. Therefore,
the target of efficient use of new computing architectures depends on efficient
usage of all resource dimensions with the scheduling algorithm fully using all
resources.
1 http://top500.org/lists/2012/11/
2 https://www.olcf.ornl.gov/titan/
3 http://www.top500.org/system/166997
4 https://www.tacc.utexas.edu/stampede/

http://top500.org/lists/2012/11/
https://www.olcf.ornl.gov/titan/
http://www.top500.org/system/166997
https://www.tacc.utexas.edu/stampede/
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In this paper, we investigate research onmulti-resource scheduling by modeling
this problem as amulti-capacity bin-packing problem. We propose a queuing mech-
anism based on multi-resource scheduling technique. We model multi-resource
scheduling as a multi-capacity bin-packing scheduling algorithm at the queue level
to reorder the queue in order to improve the packing and as a result to improve
scheduling metrics.

In summary, our paper makes the following contributions:

– A proposal for multi-capacity bin-packing algorithms for scheduling problem.
– A proposal for queuing mechanism based on multi-capacity bin-packing

scheduling algorithm.
– We show experimentally that our multi-capacity bin-packing queuing policy

performs more efficiently than the back-filling policy as measured by waittime
and slowdown metrics.

The remainder of this paper is organized as follows. Section 2 reviews related
work. Section 3 presents our multi-resource scheduling approach that is mod-
eled based on a multi-capacity bin-packing algorithm. Then, it details a queuing
mechanism based on multi-capacity bin-packing algorithm. Section 4 explains
detailed design and implementation issues such as workload traces, and resource
model for experiments of this paper. After that, it discusses simulation exper-
imentations and experimental results. Finally, Sect. 5 presents our conclusions
and future work.

2 Related Work

Single-and multi-capacity bin-packing problems and their connection to the gen-
eralized scheduling problem have been studied in [5,6,10,11,25].

The two-dimensional vector packing problem [25] consists in orthogonally
packing a subset of a set of rectangular-shaped boxes, without overlapping, into
a single bounding rectangular area, maximizing the ratio between the area occu-
pied by the boxes and the total available area.

The d -capacity bin-packing solution approaches extend the single capacity
bin-packing solutions, i.e., First-Fit (FF), Next-Fit (NF), and Best-Fit (BF),
to deal with the d -capacity jobs (items) and nodes (bins). FF, NF, and BF
are considered as Job-To-Node placement rules. Those d -capacity bin-packing
algorithms that are extensions of the single capacity bin-packing do not scale
well with increasing d since they do not take advantage of the information in the
additional capacities. [2] presents a first-fit approximation algorithm for the bin
packing problem. The algorithm was devised for the single resource problem, but
tips are given about the extension to multiple resources. Orthogonal to the Job-
To-Node placement rules is the job queue preprocessing method used before the
packing operation. For the single capacity bin-packing algorithm sorting the list
based on a scalar value in a non-increasing order with respect to the job resource
requirement improves the performance of the packing. The First-Fit Decreasing
(FFD) algorithm first sorts the list in a non-increasing order and then applies
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the FF packing algorithm. The NF and BF algorithms can be extended in a
similar manner.

Leinberger et al. [15] proposed a d -capacity bin-packing algorithm named
Multi-Capacity Bin Packing (MCBP). It is a particular vector packing algo-
rithm that uses the additional capacity information to provide better packing
by addressing the capacity imbalance. Authors show how their algorithms lead
to better multi-resource allocation and scheduling solutions.

In addition, the problem of optimally mapping virtual machines (VMs) to
servers can be reduced to the bin packing problem [1,20,24]. This problem is
known to be NP-hard, therefore heuristic approaches can only lead to sub-
optimal solutions. With regard to recent work finding a FFD algorithm that
has better execution time [19] provides an algorithm that maximizes the dot
product between the vector of remaining capacities and the vector of remaining
or residual capacities of the current open bin, i.e. subtract from the bin’s capac-
ity the total demand of all the items currently assigned to it. It places the item
that maximizes the weighted dot product with the vector of remaining capacities
without violating the capacity constraint vector of demands for the item. This
bin-centric method did show better performance. This method is an alternative
to our method and is intended for allocation of VM images rather than scientific
job placement. The argument can be made that a VM image can have the same
processing footprint as a long-lived scientific application.

Moreover, novel job scheduling mechanisms use d -capacity bin-packing algo-
rithms. For instance, [22,23] employ an algorithm based on MCBP proposed by
Leinberger et al. in [15]. In [23], a novel job scheduling approach for homoge-
neous cluster computing platforms is proposed. Its key feature is the use of VM
technology to share fractional node resources in a precise and controlled man-
ner. Other VM-based scheduling approaches have focused primarily on technical
issues or extensions to existing batch scheduling systems, while in [23] authors
take a more aggressive approach and seek to find heuristics that maximize an
objective metric correlated with job performance. They derive absolute perfor-
mance bounds and develop algorithms for the online, non-clairvoyant version
of scheduling problem. Their results demonstrate that virtualization technol-
ogy coupled with lightweight online scheduling strategies can afford dramatic
improvements in performance for executing high performance computing (HPC)
workloads.

Eco4cloud [16] adaptively consolidates the workload using VM migration
and balances the assignment of CPU - and RAM -intensive applications on each
server, which helps to optimize the use of resources. Live migration of VMs
between servers is adopted by the VMware Distributed Power Management
system, using lower and upper utilization thresholds to enact migration pro-
cedures [13]. The heuristic approaches presented in [1] and in [20] use techniques
derived from the Best Fit Decreasing and the First Fit Decreasing algorithms,
respectively. In both cases, the goal is to place each migrating VM on the server
that minimizes the overall power consumption of the data center. On the other
hand, consolidation is a powerful means to improve IT efficiency and reduce
power consumption [3,12,21]. Some approaches - e.g., [4,17] - try to forecast
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the processing load and aim at determining the minimum number of servers
that should be switched on to satisfy the demand, so as to reduce energy con-
sumption and maximize data center revenues. However, even a correct setting of
this number is only a part of the problem: algorithms are needed to decide how
the VMs should be mapped to servers in a dynamic environment, and how live
migration of VMs can be exploited to unload servers and switch them off when
possible, or to avoid SLA violations. In [9] the multi-resource scheduling problem
is tackled by using an linear programming (LP) formulation that gives higher
priority to VMs with more stable workload. ReCon [18] is a tool that analyzes
the resource consumption of various applications, discovers applications which
can be consolidated, and subsequently generates static or dynamic consolidation
recommendations. In ReCon, only CPU utilization is considered, the complete
extension to the multi-resource problem is left to future research.

In comparison, these works are coupled with advanced technologies, like vir-
tualization, to improve scheduling metrics. Our approach is based on optimiza-
tion techniques to improve pure scheduling metrics with simple heuristics. The
framework presented in [7] tackles the consolidation problem by exploiting con-
straint programming paradigm. Rule-based constraints concerning SLA nego-
tiation are managed by an optimizer that adopts a branching approach: the
variables are considered in a priority descending order, and at each step one of
the variables is set to the value that is supposed to guide the solver to a good
solution. The Entropy resource manager presented in [14] performs dynamic con-
solidation based on constraint programming, where constraints are defined on
CPU and on RAM utilization. All these approaches represent important steps
ahead for the deployment of green-aware data centers, but they do not model
multi-resource aspects of scheduling in their problem completely.

Our multi-resource scheduling approach is in line with consolidation
approaches in such a way to increase the number of allocated workloads to a
node. With that we increase the consolidation degree of nodes leading to improve-
ment of resources utilization, and consequently improving energy efficiency.

3 Multi-resource Scheduling

In this section, first we review bin-packing algorithms. We then devise the basics
of a multi-capacity bin-packing algorithm to address the problem of multi-
resource scheduling. After that, we develop this algorithm as part of the queuing
mechanism of the scheduler.

3.1 The Multi-capacity Bin-Packing Problem

Due to multiple resource dimensions in computing systems, resource alloca-
tion problem is related to the multi-dimensional bin-packing, or vector packing.
Vector packing is bin-packing with multi-dimensional items and bins. In order
to model the parallel job scheduling problem as a multi-capacity bin-packing
problem the parallel system node is represented by a bin with d capacities,
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e.g.
−→
Bk, corresponding to the multiple resources in the system. And a job (item)

is represented by a d -capacity, e.g.
−→
Ji , resource requirements vector. Jobs are

obtained from a list L, and the total number of jobs to be packed is denoted by n.
In a homogeneous computing system, the capacity of each node is represented

by a d -capacity vector,
−→
C = (C1, ..., Cj , ..., Cd), where Cj , Cj ≥ 0, represents the

j th component capacity, so that
∑d

j=1 Cj > 0. A job is also represented by a

d -capacity vector,
−→
Ji = (Ji1, ..., Jij , ..., Jid), where Jij , 0 ≤ Jij ≤ Cj , denotes the

j -th component requirement of the ith job, and ∀i | 1 ≤ i ≤ n and
∑d

j=1 Jij > 0.
−→
Bk represents node k. A job

−→
Ji can be packed into a node (bin)

−→
Bk, if−→

Bk +
−→
Ji ≤ −→

C , or ∀j | 1 ≤ j ≤ d and Bkj + Jij ≤ Cj , i.e., there is enough
free capacity for all resources in node

−→
Bk for job

−→
Ji placement.

The FF algorithm tries to fit the next job to be placed into any of the
currently non-empty nodes. If the next job cannot fit into any of the current
nodes, then the next node is considered. Or, if it does not fit into any of the nodes,
it will return to queue and it will be considered at the next scheduling cycle.
The BF algorithm adds a further node selection heuristic to the FF algorithm
by scheduling the best-fit job from the queue on a node which minimizes unused
resources.

The NF algorithm takes the next d -capacity job
−→
Ji and attempts to place it

in the current node
−→
Bk. If it does not fit: If Bkj + Jij > Cj for some j, then the

next node
−→
B k+1 is considered. The point being that no node that does not meet

the condition
−→
Bl, 1 ≤ l < k is considered as a candidate for job

−→
Ji .

In d-capacity formulation the jobs are sorted based on a scalar representation
of the d components; that is the summation of d components. Other extensions
include the maximum component, sum of squares of components, etc. The goal
is to somehow capture the relative size of each d-capacity item.

3.2 A Heuristic to the Multi-capacity Bin-Packing Problem

Bin-packing in the computing system scheduling domain is basically an abstrac-
tion of a restricted batch processing scenario in which all jobs arrive before
processing begins and all jobs have the same execution time. The goal is to
process the jobs as fast as possible. Basically, each bin corresponds to a schedul-
ing cycle on the system resources, and the scheduling algorithm must pack jobs
onto the system in an order such that all jobs are scheduled using the fewest
cycles. Thus, the scheduling goal is to partition the list L into as few nodes (bins)
as possible.

At the start of a scheduling cycle, a bin is created in which each component
is initialized to reflect the amount of the corresponding machine resource which
is currently available. Jobs are selected from the job queue (list L) and packed
into the machine until there are not sufficient quantities of resources to fill the
needs of any of the remaining jobs.

The prior Job-To-Node placement rules described in Sect. 2 fails to provide
a near optimal scheduling solution. For example, in the FF algorithm the node
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selection mechanism for job placement ignores the resources’ requirement
(weights) for the job and the current component capacities of the nodes and
its only criteria for job placement is that the job fits. Hence, a single capacity of
a node may fill up sooner than the other capacities, which leads to lower overall
utilization. Based on this analysis, a Job-To-Node placement would provide more
optimized packing if the current relative weights or rankings of d -capacities are
considered; that is, if Bkj has the lowest available capacity, then search for a
job

−→
J i which fits into

−→
B k and has Jij as its smallest component weight. This

reduces pressure on Bkj , which may allow additional jobs to be added to the
node

−→
B k. This heuristic attempts to correct a capacity imbalance in the node.

Thus, the capacities are all kept balanced, so that more jobs will likely fit into
the node which gives a multi-capacity aware approach and is the basis of this
paper.

Our proposed heuristic attempts to find jobs in which the largest components
are exactly ordered with respect to the ordering of the corresponding smallest
elements in the current node. For instance, in the case of d = 5 with the capacities
of the current node

−→
B k ordered as follows:

Bk1 ≤ Bk3 ≤ Bk4 ≤ Bk2 ≤ Bk5

In this instance, the algorithm would first search the list L for a job in which
the resource requirements were ranked as follows:

Ji1 ≥ Ji3 ≥ Ji4 ≥ Ji2 ≥ Ji5

which is exactly opposite of the current node state. Adding
−→
J i to

−→
B k has the

effect of increasing the capacity levels of the smaller components more than it
increases the capacity levels of the larger components. If no jobs were found with
this relative ranking between their components, then the algorithm searches the
list again, relaxing the ordering of the smallest components first, working up to
the largest components. For example, the next two job rankings that would be
searched for are:

Ji1 ≥ Ji3 ≥ Ji4 ≥ Ji5 ≥ Ji2
and
Ji1 ≥ Ji3 ≥ Ji2 ≥ Ji4 ≥ Ji5
... and finally,
Ji5 ≥ Ji2 ≥ Ji4 ≥ Ji3 ≥ Ji1

The algorithm searches each logical sublist in an attempt to find a job which fits
into the current node. If no job is found in the current logical sublist, then the
sublist with the next best ranking match is searched, and so on, until all lists
have been searched.

In summary, these heuristics match jobs to hosts, based on sorting the host
resources according to their capacity, and the jobs requirements in the oppo-
site order, such that the largest requirement would correspond to the highest
capacity.
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3.3 Multi-capacity Queuing Mechanism

In this paper, we focus on queuing mechanism of scheduling system. We extend
the proposed packing technique of the multi-capacity bin-packing algorithm
developing a multi-capacity bin-packing queuing mechanism.

Our multi-capacity bin-packing queuing mechanism heuristic orders jobs
based on the free capacity ordering of nodes. Free capacities at the next schedul-
ing cycle are considered by sorting the resources of the nodes based on their free
capacity; that is, from highest to lowest free capacity. The mechanism then tran-
sits the resource ordering for the nodes evaluating the best match of job resource
requirements to a node by summing the differences between job resource require-
ments. This summation reflects the degree to which it is feasible to use a node
based on the capacity imbalance for a job. This step attempts to correct a capac-
ity imbalance.

The pseudo code of multi-capacity aware queuing mechanism is represented
in the algorithm 1. t as an input parameter is the next scheduling cycle. Some
description about the data structures used in the algorithm 1 are as the following:

– A slot table is essentially just a collection of resource reservations. It tracks
the capacity of the physical nodes on which jobs can be scheduled, contains
the resource reservations of all the jobs, and allows efficient access to them.

– A particularly important operation with the slot table is determining the
“availability window” of resources starting at a given time. Availability win-
dow provides easier access to the contents of a slot table by determining the
availability in each node starting at a given time.

– getAvailabilityWindow function creates an availability window starting at a
given time.

In brief, an availability window provides a convenient abstraction over the
slot table, with methods to answer questions such as:

– “If I want to start at least at time T, are there enough resources available to
start the job?”

– “Will those resources be available until time T+t?”
– “If not, what is the longest period of time those resources will be available?”

and so on.

4 Experiments

In this section, we present simulation experiments to evaluate the multi-capacity
bin-packing queuing policy in terms of scheduling metrics. For that, we first
describe resource model and workload characteristics, then we present workload
traces explored. In closing we give specific and precise configuration used.
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Algorithm 1. MultiCapacityQueuingMechanism(t: the next scheduling cycle)
multi capacity queue = []
job res req = {}
job res req[RES CPU ] = 0
job res req[RES MEM ] = 0

job res req[RES IO] = 0
job res req[RES NETIN ] = 0
job res req[RES NETOUT ] = 0
node free capacity norm = {}
node free capacity res ordering = {}
for res ∈ job res req.keys() do

node res capacity[res] = slottable.nodes[1].capacity.get by type(res)
end for
aw = slottable.get availability window(t)
for node id ∈ slottable.nodes.keys() do

node free capacity norm[node id] = {}
for res ∈ job res req.keys() do

node free capacity norm[node id][res] =
aw.get availability(t, node id).get by type(res)/node res capacity[res]

end for
node free capacity norm items[node id] = node free capacity norm[node id].items()
<Sorting resources for a node id based on the free resource capacity, in

descending order.>
node free capacity norm items[node id].sort()
node free capacity res ordering[node id] = [ res for res, capacity in

node free capacity norm items[node id]]
end for
while Queue is not empty do

<Get the job at the head of the queue.>
job = queue.dequeue()
score = 0
<Traversing all nodes and evaluating the job score.>
for node id ∈ slottable.nodes.keys() do

for r1 ∈ node free capacity res ordering[node id] do
del node free capacity res ordering[node id][0]
for r2 ∈ node free capacity res ordering[node id] do

if node free capacity norm[node id][r1] >
node free capacity norm[node id][r2] then
score+ = job res req[r1] − job res req[r2]

end if
end for

end for
end for
multi capacity queue.append((job, score))

end while
<Sorting the multi-capacity queue based on the job score in descending order
and moving the best matched jobs to the head of the queue.>
multi capacity queue.sort()
multi capacity queue = [l for (l, s) in multi capacity queue]
<Copying the multi-capacity queue into the wait queue.>
for l ∈ multi capacity queue do

queue.enqueue(l)
end for
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4.1 Resource Model and Workload Characteristics

We consider commodity cluster infrastructure as resource model in this study
each physical node has CPU, Memory, IO, Network input, and Network output as
resource types and conventional interconnection between them. Furthermore, the
simulated cluster of a configuration is modeled after the corresponding workload
trace’s cluster.

4.2 Workload Traces

For this paper, we construct workloads by adapting the SDSC Blue Horizon
cluster job submission trace5 from the Parallel Workloads Archive. We alter
these derived traces to incorporate all resource dimensions requirements. For
that, we simply add Net-in, Net-out, and IO resource types to jobs resource
requirements that were missing, and set their resource requirements based on
a random uniform distribution to present a random use of resources for jobs.
This is to present multi-dimensional resource requirements for jobs. We treat
all resource types the same. That is a job can be allocated to a node if all its
resources requirements will be satisfied by the node.

4.3 Configurations

We conduct a number of experiments over a wide range of derived traces. We
extract all 30 -day traces from SDSC Blue Horizon to build derived traces for
our experiments. Specifically, the extract is from the beginning of day 300 until
day 330. This would be trace one. From day 330 to day 360 would be trace
two, and so on. In sum, we build 21 derived traces from day 300 until day 960 in
increments of 30 days. For each trace, we carry out two experiments: one for the
multi-capacity queuing policy(MCBP), and the other for back-filling queuing
policy(BKFL).

In addition to the variable parameters, we have fixed parameters such as an
intermediate back-filling strategy as the packing mechanism. Thus, the schedul-
ing function periodically evaluates the queue, using an intermediate back-filling
algorithm to determine whether any job can be scheduled. In sum, we compare
a multi-capacity-enabled back-filling queuing policy against a pure back-filling
queuing policy.

4.4 Results

In simulation experiments, we explore the impact of the multi-capacity bin-
packing queuing mechanism on the waittime, and slowdown metrics. We per-
formed experiments on the 21 derived workload traces of SDSC Blue Horizon
according to configurations above.
5 http://www.cs.huji.ac.il/labs/parallel/workload/l sdsc blue/index.html

http://www.cs.huji.ac.il/labs/parallel/workload/l_sdsc_blue/index.html
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Fig. 1. Average of simulation results for experiments 300 to 750

For each experiment, for each job, we collected time values: ta, the arrival
time, or time when the job request is submitted; ts, the start time of the job;
and te, the time the job ends. At the end of an experiment, we compute the
following metrics:
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Fig. 2. Average of simulation results for experiments 780 to 960

– Waittime: This is time ts−ta, the time a job request must wait before it starts
running. The time units are in minute.

– Slowdown: If tu is the time the job would take to run on a dedicated physical
system, the job’s slowdown is (te − ta)/tu. If tu is less than 10 seconds, the
slowdown is computed the same way, but assuming tu to be 10 seconds [8].

The optimization of these two metrics is a minimization problem. We analyze
simulation results for each experiment based on mean and standard deviation
statistics measure. Mean statistics are illustrated in Figs. 1, 2, and standard devi-
ation are illustrated in Figs. 3, 4. In order to compare two policies, we normalize
MCBP results to BKFL results, i.e., MCBP/BKFL. All values presented in
the graphs are based on this normalized value. This is to better present and
compare two policies with a value.

In general, we have got better results for both metrics in terms of mean
statistic measure. However, in terms of standard deviation waittime metric gets
higher values for MCBP policy, while slowdown gets lower values. While on
average we have got better results for waittime and slowdown metrics, we have
more discrepancy of waittime values for MCBP policy respect to BKFL pol-
icy. Nonetheless, we have got more concentrated values for slowdown metric for
MCBP policy. This observation implies that in total we have better scheduling
with MCBP policy respect to BKFL policy. This means that with MCBP total
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Fig. 3. Standard deviation of simulation results for experiments 300 to 750

jobs get allocated to the system faster (as it is also demonstrated with statistics
measure over all experiments in Table 1). In sum, MCBP outperforms BKFL
policy in terms of both scheduling metrics.
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Fig. 4. Standard deviation of simulation results for experiments 780 to 960

Table 1. Statistics measures of simulation results over all experiments

(a) Mean

Config Waittime (minute) Slowdown

BKFL 324.58 48.03
MCBP 270.31 30.02

(b) Standard deviation

Config Waittime (minute) Slowdown

BKFL 606.40 149.24
MCBP 723.23 133.29

In addition, Table 1 presents the outcome of mean and standard deviation
statistics measures over all experiments. These results demonstrate that the
multi-capacity queuing approach provides a consistent performance improve-
ment over the back-filling one. More specifically, in total we have 54 minutes
improvement for the waittime metric, and 18 unit improvement of the slow-
down metric.

5 Conclusions and Future Work

The building blocks of contemporary computing systems are multi-dimensional.
Therefore, architecture of these systems and algorithms which deal with these
systems have to take into account this shift from single-dimension resource
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model. In this paper, we considered scheduling aspects of such a systems. Tradi-
tional scheduling algorithms based on single-resource optimization cannot pro-
vide optimal solutions. As a result, the efficient utilization of new computing
systems depends on the efficient use of all resource dimensions. The scheduling
algorithms have to fully utilize all resources. To address this problem, we have
proposed a multi-resource scheduling mechanism at the queuing mechanism. For
that, we studied multi-capacity bin-packing queuing policy.

Through exhaustive simulation experimentation on 21 derived workload
traces of SDSC Blue Horizon, we have demonstrated that the multi-capacity
bin-packing queuing policy addresses multi-dimensional scheduling aspects of
computing system resources to achieve improved waittime, slowdown. In addi-
tion, this approach provides better consolidation degree, that is, it increases the
number of allocated workloads to a node leading to an improvement of resources
utilization, and energy efficiency.

In this paper we conducted experiments with homogeneous systems based
on realistic simulation while our multi-capacity bin-packing queuing policy can
support more general instances. In addition, our solution can be integrated with
real frameworks, like Nimbus Toolkit, and OpenNebula resource managers.

In this paper, we studied multi-capacity bin-packing queuing policy for each
single job. We can apply this heuristic at a group of jobs to address capacity
imbalance. For example, as a future work we plan to study how to schedule a
group of jobs at the queue based on the multi-capacity heuristic.
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Abstract. This paper presents a power-aware scheduling policy algo-
rithm called Green Preserving SLA (GPSLA) for cloud computing sys-
tems with high workload variability. GPSLA aims to guarantee the SLA
(Service-Level Agreement) by minimizing the system response time and,
at the same time, tries to reduce the energy consumption. We present a
formal solution, based on linear programming, to assign the system load
to the most powerful Virtual Machines, while respecting the SLA and
lowering the power consumption as far as possible. GPSLA is thought
for one node load-aware and jobs formed by embarrassingly parallel het-
erogeneous tasks.

The results obtained by implementing the model with the IBM CPLEX
prove the applicability of our proposal for guaranteeing SLA and saving
energy. This also encourages its applicability in High Performance Com-
puting due to its good behavior when scaling the model and the workload.
The results are also highly encouraging for further research into this model
in real federated clouds or cloud simulation environments, while adding
more complexity.

Keywords: Green cloud computing · SLA · Power-aware scheduling ·
Linear programming

1 Introduction

In cloud computing, hardware and software services can be added and released
dynamically in order to guarantee an SLA (Service-Level Agreement) to clients [1].
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An SLA is an agreement between a service provider and a consumer where the
provider agrees to deliver a service to the consumer under specific terms, such as
time or performance. In order to comply with the SLA, the service provider must
monitor the QoS (Quality of Service) closely through such performance metrics
as response or waiting time, throughput or makespan [2].

We focus our attention on the response time as the QoS metric. In this
scenario, the SLA contract usually states that the consumer only pays for the
resources and services used according to the agreed QoS requirements at a given
price [3]. Studying and determining SLA-related issues is a big challenge, mainly
due to the complex nature of cloud computing and especially its high variabil-
ity [5].

Our proposal, Green Preserving SLA (GPSLA), is designed to lower power
consumption [6] as much as possible. At the same time, GPSLA is aimed at
guaranteeing a negotiated SLA and power-aware [4] solutions, leaving aside such
other cloud-computing issues as variability [5], system security [6] and avail-
ability [7]. Job response time is perhaps the most important QoS metric in a
cloud-computing context [3]. For this reason, it is also the QoS parameter cho-
sen in this work. In addition, despite good solutions having been presented by
some researchers in the literature dealing with QoS [8,9] and power consump-
tion [10,11], the model presented aims to obtain the best scheduling taking both
criteria into account.

There is a great deal of work in the literature on linear programming (LP)
solutions and algorithms applied to scheduling, as the one presented in [14,15].
Other remarkable work was performed in [12], where authors designed a Green
Scheduling Algorithm that integrated a neural network predictor in order to
optimize server power consumption in Cloud Computing. Also, in [13] authors
proposed a genetic algorithm that takes into account both makespan and energy
consumption. Our main objective is the designing of an LP scheduling algorithm
to minimize power consumption and maximizing SLA guaranties (based on the
response time as the QoS performance metric) at the same time.

An important contribution of this paper is the way we model the power
of the virtual machines in function of its workload. We rely on the work done
in [16], where the authors formulate the problem of assignment of persons from
various groups to different jobs who may complete them in minimum time as
an stochastic programming problem. The job completion times were assumed
to follow a Gamma distribution. To model the influence of the workload we
weighted the powerful of the Virtual Machine by a load factor determined by an
Erlang distribution (equivalent to a Gamma). Finally, we obtained an stochastic
programming problem and transformed to an equivalent deterministic problem
with linear objective function.

The remainder of the paper is organized as follows. In the Green Preserving
SLA Schedulers section we present our main contributions, a sort of schedul-
ing policies. These proposals are arranged in order of increasing complexity.
The experimentation showing the good behavior of our cloud model is presented
in the Results section. Our proposal was tested with the http://www-01.ibm.
com/software/commerce/optimization/cplex-optimizer/CPLEX mathematical

http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/CPLEX
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/CPLEX
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optimizer, which provides tools to implement the mathematical models presented
in the Green Preserving SLA Schedulers section. Finally, the Conclusions section
outlines the main conclusions and possible research lines to explore in the near
future.

2 Green Preserving SLA Schedulers

Our scheduling proposals are based on linear programming (LP). LP consists of
trying to find an objective function (OF) representing one, or if possible more
than one, performance criteria. Multiple performance criteria can be taken into
account in order to choose the optimal scheduler. The most widely used are the
minimization of the power consumption of the cloud and the mean response time
of tasks. These are also the ones chosen in this article.

LP applied to scheduling deals with finding one assignment that maximizes
or minimizes the OF. This will give the assignment of tasks to VMs or the con-
solidation of VMs to nodes that maximizes the gains in the chosen performance
metric. The formulated solution, the OF and the constraints, can be resolved by
any solver, such as IBM CPLEX, or the open-source http://lpsolve.sourceforge.
net/5.5/lp solve.

Cloud scheduling can be split into two more specific phases, the scheduling
itself and the consolidation phase. The scheduling phase is the one that assigns
tasks to virtual machines (VMs). As an example of this, simple requests/tasks
entering a cloud system will be scheduled for execution in one of the VMs that
make it up. Then the consolidation phase ensures the efficient use of resources
avoiding under-utilized VMs. However, energy savings are related to these two
phases, thus encouraging the use of one-step scheduling.

A two-step scheduler can give very distinct results to the ones given by a
one-step scheduler. For example, a two-step task scheduler can assign tasks to 2
VMs residing on two different nodes. However, a single-stage task scheduler can
only assign these to one VM, thus enabling the idle node to be stopped, and so
saving power. The cause of this failure is to consider the return time in the first
step and power saving in the second. Incorporating energy savings is the main
reason behind that design decision.

We next present our scheduling proposals, called Green Preserving SLA
(GPSLA). To better understand the most complete proposal better, we present
3 different scheduler models, arranged according to their increasing complexity.

2.1 GPSLA. One Node

This policy assigns as many requests (tasks) as possible to the most powerful
Virtual Machines (VMs), leaving aside the remaining ones. The unused VMs
could be then turned off to save energy. The method is based on the computing
capacity of the VMs, making assignments in descendent order to their computing
power, processing as many requests as possible per unit of time, thus prioritizing
the preservation of the SLA contract (for some QoS) with the clients.

http://lpsolve.sourceforge.net/5.5/lp_solve
http://lpsolve.sourceforge.net/5.5/lp_solve
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We take a cloud made up of a single node, allocating V heterogeneous VMs.
Each VM V Mv has a specific amount of Memory Mv. This restricts the workload
each VM can host. Given T tasks, all of which are supposed to be homogeneous
and, for reasons of simplicity, have the same computing and memory require-
ments, a single generic unit.

We define the relative computing power (Δv) of a V Mv as the normalized
score of such a VM. Formally, given V VMs, Δv = δv∑V

k=1 δk
, where

∑V
k=1 Δv = 1.

δv is the score (i.e. the computing power) of VMv. Although δv is a theoretical
concept, there are many valid benchmarks to obtain it (i.e. Linpack, Lapack
or SPEC). Linpack (available in C, Fortran and Java) for example, is used to
obtain the number of floating-point operations per second. Note that the closer
the relative computing power is to one (in other words, more powerful), the more
likely it is that the requests will be mapped into such a VM.

The scheduling is obtained by considering the maximum computing power
(tvΔv) of each V Mv. So, we firstly assign tasks to the most powerful VMs. This
is a design decision in order to optimize the cloud resources, based on optimizing
some QoS performance metrics, such as response or waiting time, throughput or
makespan.

As mentioned above, the chosen QoS metric is the response time. Further-
more, by doing it this way, priority is also given to guaranteeing SLA until a
certain limit is reached (the one imposed by the cloud capacity) is also prioritized.
This objective can be formally defined with the following linear programming
model:

max(
V∑

v=1

tvΔv) (1)

s.t. :
V∑

v=1

= T (2)

tv ≤ Mv,∀v ≤ V (3)

Equation 1 is the Objective Function (OF) to be maximized. Equality in Eq. 2
and inequality in Eq. 3 are the constraints of the objective function variables.
Given the constants T (the total number of requests or tasks), and Δv and Mv

for each V Mv, the solution that maximizes OF will obtain the values of the
variables tv, representing the number of tasks assigned to V Mv. Thus, the tv
obtained will be the assignment found by this model.

2.2 GPSLA. One Node Load-Aware

Going a step further in the previous model, the loss of power in function of the
VM workload is also taken into account. We first consider that VM efficiency
rises with the load until some a certain number number of tasks is reached. From
then on, the efficiency starts falling asymptotically towards zero. We can model
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this behaviour with an Erlang distribution. Erlang is a continuous probability
distribution with two parameters α and λ. The parameter α is called the shape
parameter, and the parameter λ is called the rate parameter. These parameters
depend on the VM characteristics. When the parameter α equals 1, the distrib-
ution simplifies to the exponential distribution. The Erlang probability density
function is:

E(x;α, λ) = λe−λx (λx)α−1

(α − 1)!
∀x, λ ≥ 0 (4)

We consider that the Erlang modelling parameters of each VM can easily
be obtained empirically in an easy way (i.e. by increasing the workload and
measuring the mean response times). Figure 1 shows various Erlang plots for
some α and λ values by varying the x, designed in this case to represent the
workload.
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Fig. 1. Erlang plots for different α and λ values.

The Erlang distribution was developed to examine the number of telephone
calls which that might be made at the same time to the operators on a switch-
board. We use it here to weigh the computing power (tvΔv) of each V Mv by
multiplying it by an Erlang distribution. Here, the x Erlang parameter is replaced
by tv in order to model this distribution in function of each VM workload. Thus
giving the new model:

max(
V∑

v=1

tvΔvE(tv;α, λ)) (5)

s.t. :
V∑

v=1

= T (6)

tv ≤ Mv,∀v ≤ V (7)
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2.3 GPSLA. One Node Load-Aware and Heterogeneous Tasks

Going even further, we are now also interested in to considering in addition the
heterogeneity of task computing requirements. In other words, each task ti has
its Processing cost Pvi, representing the execution time of task ti, in V Mv with
respect to the execution time of task ti in the less powerful V Mv (this is, with
the lowest Δv). Mvi is defined as the amount of Memory allocated to task ti in
V Mv. We can suppose that Memory requirements do not change between VMs,
so Mvi = Mv′i∀v, v′ ≤ V . We define the Boolean variable tvi, representing the
assignment of task ti to V Mv. Then, the new linear model is:

max(
V∑

v=1

(
T∑

i=1

Pvitvi)ΔvE(
T∑

j=1

Pvjtvj ;α, λ)) (8)

s.t. :
T∑

i=1

= Mvi ≤ Mv∀v ≤ V (9)

V∑

v=1

tvi = 1∀i ≤ T (10)

Pvitvi takes into account the computing cost of task ti in its assigned V Mv.
As tv, representing the number of tasks assigned to V Mv has been changed by
the Booleans tvi, which represent the assignment of each task ti to V Mv, the
Erlang function must also be changed in order to compute all the tasks assigned
to each VM, so tv is changed to

∑T
j=1 Pvjtvj .

3 Results

Several experiments were performed in order to test the GPSLA results in dif-
ferent configurations and for the different stages of complexity of the scheduling
policy (Sects. 2.1, 2.2 and 2.3). The experimental results were obtained using the
CPLEX mathematical optimizer.

The experimentation case shown here was defined with 3 VMs and 50 tasks.
The VM configurations are shown in Table 1.

Table 1. VM configurations.

VM Relative computing power (Δv) Memory Erlang distribution

1 0.45 50 α = 3, λ = 8

2 0.35 40 α = 2, λ = 8

3 0.2 10 α = 2, λ = 4

This simulation was performed by applying the GPSLA policy to the three
models described.
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3.1 GPSLA. One Node

For the first model (GPSLA. One node), described in Sect. 2.1, the resulting
assignation is shown in Table 2.

Table 2. Task distribution obtained with the “GPSLA. One node” model.

VM 1 VM 2 VM 3

50 0 0

As the efficiency drop caused by overloading is not taken into account, all
tasks were assigned to VM 1. As VM 2 and VM 3 are not used, they could be
turned off to save energy.

In this case, the results obtained are consistent with the model, which tries
to consolidate all the tasks in the most powerful virtual machine.

3.2 GPSLA. One Node Load-Aware

For the second model (GPSLA. One node load-aware), described in Sect. 2.2, the
Erlang distributions described in Table 1 was applied. The three Erlang charts
can be seen in Fig. 2, 3 and 4.

Fig. 2. Erlang distribution chart for VM 1.

These Erlang distributions model the behavior of the VM with different
amounts of load. To obtain the best task allocation considering the saturation
of virtual machines in the addition of more and more tasks, it is compulsory
the Erlang discretization. To realize this discretization, each number or differ-
ent range of tasks must correspond to a specific discrete value. The set of all
these values will be used to calculate the time of the optimization objective func-
tion. Thus the parameter relating to the Erlang always have a discrete value.
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Fig. 3. Erlang distribution chart for VM 2.

Fig. 4. Erlang distribution chart for VM 3.

This way, the stochastic programming problem is transformed to an equivalent
deterministic problem with linear objective function.

It can be seen how, according to its Erlang distribution function, VM 1
reaches its maximum performance between 15 and 25 tasks. VM 2 and VM
3 will have a slightly different behavior and will reach their maximum with
fewer tasks. Note that these distributions should be fine-tuned according to each
specific system when working with real environments.

Table 3. Task distribution obtained with the “GPSLA. One node load-aware” model.

VM 1 VM 2 VM 3

25 17 8

The resulting assignation is shown in Table 3. It can be seen that when tak-
ing into account the system overload the distribution of tasks among virtual
machines changes. The scheduler now tries to put all the possible tasks in the
most powerful VM, but when the performance starts decreasing significantly,
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it starts sending further tasks to the other available virtual machines. This
behavior is more accurate as, although energy saving is a priority, we still want
to preserve a certain degree of quality of service.

3.3 GPSLA. One Node Load-Aware and Heterogeneous Tasks

The third model (GPSLA. One node load-aware and heterogeneous tasks),
described in Sect. 2.3, shows the same behavior when tasks are defined with
different weights. So the results proved consistent.

4 Conclusions

This paper presents a cloud-based system scheduling mechanism able to respond
successfully to a high degree of variability complying with low power consump-
tion and SLA agreements. The complexity of the model developed was increased,
thus adding more factors to be taken into account. The model was also tested
using the CPLEX mathematical optimizer, and the results obtained proved con-
sistent over a range of scenarios. However, these scenarios have to be tested in
such real and simulated cloud environments such as OpenStack and CloudSim.
So, the applicability of the algorithm for designing variability- and power-aware
cloud systems was proven. To summarize, although more experiments are needed,
these preliminary results corroborate the usefulness of our proposal. Future
trends are in the direction of exploring different heterogeneous workloads
(i.e. jobs/tasks with different computing needs and communication paradigms,
and not only the embarrassingly parallel) by expanding the linear program-
ming proposal. The upper and lower SLA boundaries should also be considered.
Finally, we want to assess the design of cloud architectures (bearing in mind
cloud federation) and VM consolidation. Nevertheless, we believe that this pre-
liminary work is very encouraging and could be further developed and applied
in real cloud platforms.
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Abstract. In this paper, we study the problem of opportunistic task
scheduling and workload management in a mobile cloud setting consid-
ering computation power variation. We gathered mobile usage data for
a number of persons and applied supervised clustering to show that a
pattern of usage exists and that follows a state-based model. Based on
this model, we present a strategy to choose and offload work on a mobile
device. We present a framework and experimental results showing the
efficacy of our proposed approach.

1 Introduction

The growing market for smart devices is stimulating the prospect of utilizing
them as computing resources [2,13]. Recent studies on the computing capacity
of mobile devices claim that their computing power is comparable to that of desk-
tops [17]. This has led to several proposals of Mobile Cloud Computing (MCC)
for collaborative execution for executing compute-intensive workflows [3,5,8,10].
The MCC paradigm has attracted considerable attention both in academia and
industrial community in recent times.

Several challenges remain to engage a mobile device as part of a computing
infrastructure [15]. Some of these challenges are bandwidth, energy constraints,
memory capacity, intermittent availability, proper incentive schemes against uti-
lization, security, privacy, etc. In a controlled environment, some of these con-
straints can be addressed adequately in order to utilize the computation capacity
of the mobile devices. For example, many of the reputed commercial organiza-
tions distribute smart phones among their senior employees [1]. In such a cor-
porate environment, it is possible to make it a policy that such phones be used
for computation for the benefit of the company’s infrastructure. Such a device
can be used by the infrastructure whenever the device is present in the premises
of the organization and is connected to the internal communication network.
In such a scenario, the issues of communication reliability and cost, security,
c© Springer International Publishing Switzerland 2014
F. Pop and M. Potop-Butucaru (Eds.): ARMS-CC 2014, LNCS 8907, pp. 36–51, 2014.
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privacy are mitigated. To encourage such an environment, the organization may
as well provide incentives in suitable forms. In the company of the authors, points
are awarded for additional participation in company tasks (apart from regular
assigned duties) and these points can be redeemed against purchases promoted
by the organization.

In this paper, we adopt a simple localized mobile grid setting where the
devices are accessible through a WiFi connectivity, and examine the problem of
computation scheduling and workload management for improved timing perfor-
mance. We consider a private company infrastructure with a gateway device and
a mobile grid, with the gateway device hosting and assimilating an information
database on which some computation needs to be executed. The gateway device
needs to decide on a computation scheduling and selection mechanism to engage
the mobile devices and utilize their donated computation cycles. The primary
objective driving this selection is to be able to finish execution of the application
in the earliest possible time.

The gateway device is enabled with a task offloader which is the controller
of the task selection framework. When the offloader wants to execute a task
(in the form of a downloadable application), it invites bids from the owners of
all devices connected to the offloader. Additionally, the offloader announces a
deadline by which the computation has to finish. Associated with the task is a
suitable reward to be earned by the selected bidder and a penalty. Each owner,
intending to participate in the bid, executes a pre-installed analysis agent on
his device. The agent takes as input the advertised application and the dead-
line and comes back to the owner with an advice whether to bid or not on
the basis of its estimation of the execution time. In this paper, we consider the
estimation of execution time of a task with various levels of information avail-
able about the device usage pattern. In our architecture, the mobile devices are
active agents, who learn and build models of their owner usage patterns. The
owner places a bid only if the estimated execution time is less than the adver-
tised deadline of the job. The bid is the promised completion time within which
the corresponding device can complete the advertised task. The offloader can
possibly select one of the bidding agents for offloading the task based on some
criterion. In the simplest case, it may choose the one with earliest promised
completion time and offload the task to the selected device. We assume that the
owners are rational (aware of penalty) and honest (no false bids). The interest-
ing activity from the device’s perspective is to analyze how/when/what to bid
for, while designing the selection and scheduling mechanism is the offloader’s
challenge.

This paper is organized as follows. We present a motivating example in
Sect. 2. Section 3 presents a model of the bidding and selection process. Section 4
describes our experiments while the following section presents related work.
Finally, Sect. 6 concludes the paper.
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2 Motivation for This Work

In this section, we present an example to illustrate the need for modelling a
mobile device for its usage. A mobile device has various operational modes in
its usage cycle. For example, when a user attends to a call, its communication
modules are busy, when he listens to music or radio, its audio system is busy;
when he watches a movie, its GPU remains busy. Manufacturers of mobile devices
usually specify an operating model of their devices. An operating model is a state
transition system where the states represent some high level operation modes
(e.g. charging, audio on, network on, etc.) with average / maximum / minimum
resource usage estimates when the device operates in that particular state, and
possible interstate transitions. The operating condition of the device in these
states can be attributed to its usage of processor, memory, cache, priority of
the running jobs, battery power state, etc. The transitions in such a system
are triggered by user interaction of the device and usage of device resources by
various applications running in the system. In this paper, we extend this model
to an usage-induced operating state model, a transition system based on the
operating model and additionally, specialized by the usage pattern of the device
owner.

In the context of exploiting a mobile device in our setting, we are interested
in the availability of different resources in the device to utilize it for running
an external computation. For simplicity, we assume here the states in the usage
model of a device are characterized only by the percentage of CPU available.
We also assume that the execution time of the advertised application on a given
device architecture is known a-priori (or can be computed by dynamic simula-
tion against a given data set or by using established methods like Worst Case
Execution Time estimation [19]). Such an estimate typically assumes full (100 %)
utilization of the resources in the device. In this work, we assume the execution
time of the task is solely and linearly dependent on available CPU cycles in the
devices. This essentially implies that if the execution time of a task is estimated
as 10 time units, then the task is estimated to be complete in 20 time units when
there are competing processes such that the job can avail only 50 % of the CPU.

As an example, we consider here a simple case of two mobile devices and one
task to be offloaded to one of the devices. The task has a deadline of 60 time
units. Each mobile device needs to estimate its bid based on its operational state
model, as depicted in Fig. 1. The events triggering the transitions are not shown
in the figure, since they are not required for presentation of these examples.
Each state in the state model is annotated with the fraction of CPU available
for external computation at that state, which can be used for executing the
external task. For the sake of simplicity, we assume here that the device takes
one of the out-bound transitions from its current state, including the self loop,
after every unit time. In other words, the device stays at each state for one
unit of time, executes one of the outgoing transitions from the present state and
moves to the next state (may be same as the current one) where it stays for one
more unit, and this continues. We assume such transitions are instantaneous.
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Fig. 1. Usage model with CPU availability

The Simplest Case. Both the devices have an estimate of the execution time
of the advertised application on their architecture. Let us assume both of them
come up with a value of 40 time units. When bids are invited, Device-1 is in
the charging state and Device-2 is idle. If the devices always remain in the
same state, the completion time of the task on Device-1 is 40 time units (100 %
CPU availability in charging state), while that for Device-2 is 40 × 100

90 = 44.44
time unit. Thus Device-1 bids with a value of 40 and Device-2 bids with 44.44.
Assuming the offloader awards the job to the one with earlier completion time,
Device-1 is selected.

A More Realistic Scenario. In a more realistic setting, each device is expected
to transit away from its current state during the job execution and therefore
cannot guarantee constant CPU availability. In such a setting, the device can
explore all possible paths in its state graph and optimistically choose a path
which provides the best estimated completion time. Such a path obviously would
go through states with high CPU availabilities. For example, Device-1 would
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Table 1. Execution on Device-1

State CPU availability Time in the State Effective execution

charging 100 % 1 s 1 s

idle 90 % 10 s 9 s

calling 60 % 50 s 30 s

Completion time : 61 s

Table 2. Estimated completion time with best transition

Device-1 Device-2

CPU Time in Effective CPU Time in Effective

State availability the State execution State availability the State execution

charging 100 % 40 s 40 s idle 90 % 10 s 9 s

charging 100 % 31 s 31 s

Completion TIme : 40 s Completion time : 41 s

consider the path involving only the charging state, which always guarantees
it 100 % CPU availability for the external job and can bid with value 40. On
the other hand, Device-2 would consider the path from idle to the highest CPU
available state, i.e. charging. Table 2 shows the estimated completion times in
this case and the offloader may again select Device-1 for offloading.

Typically a state transition is triggered by external events, for example,
incoming call, user’s operation, etc. The execution paths chosen for bid as
depicted above is therefore too optimistic. Consider the following scenario. At
the time of execution of the external task, Device-1 remains in charging state
for 1 time unit, in idle state for 10 time units and then moves to the calling
state and remains there. The execution completion time is shown in Table 1.
The device thus completes 40 time units of computation in an effective duration
of 61 time units and exceeds the deadline. This shows that only the best timing
is not always a good candidate to decide on the bid, since a penalty is involved.
A rational owner should ideally take this into account. On the other hand, a pes-
simistic strategy considering a maximal timing path may yield a completion time

Table 3. Estimated completion time with AP

Device-1 Device-2

CPU Time in Effective CPU Time in Effective

State availability the State execution State availability the State execution

charging 100 % 30 s 30 s idle 90 % 10 s 9 s

idle 90 % 10.1 s 10 s charging 100 % 31 s 31 s

Completion time : 41.1 s Completion time : 41 s
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Fig. 2. Usage model with average permanence

beyond the deadline. In either of the strategies, the path chosen for computation
of a bid may not be the actual path taken during execution of the external task.

A more realistic estimate can be obtained by considering paths induced by
the average usage by the user. To incorporate this, we further associate with
each state an average permanence (AP) value [11] and a transition probability
on each out-going edge. AP implies the average time the device stays at the
associated state. The revised model of the devices is depicted in Fig. 2. Now
we apply the same optimistic bid selection method based on the AP on states,
assuming all transitions are equally likely. Also for each path we compute the
probability of taking the path. This probability is a measure of confidence of
the device taking that path. Device-1 chooses the path charging → idle which
is associated with confidence value of 1 (since there is a single transition from
charging state). The best confidence value (1/8 = 0.125 considering each of the
8 outgoing transitions are equally likely) for Device-2 occurs for the path idle →
charging. The completion time is computed in Table 3. The offloader may choose
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Device-2 based on the better bid proposed by it. The example above assumes
the transitions are equally likely. However in reality, they may not be so, as we
show in our experiments. We can learn the transition likelihood probabilities
from user usage data and utilize them to enrich the bid above with these values.

3 Proposed Methodology

In this section, we present a detailed description of our approach. As discussed
earlier, we have an application J with a deadline Δ. Each device has an usage
based model as described below.

3.1 Usage Model of Device

We model the mobile device as a Probabilistic Finite State Machine with Average
Permanence (PFSM-AP). The PFSM-AP model is defined as a tuple U =<
S, I,T, λ,H,C > where,

– S denotes the set of states.
– I is the set of external events.
– T denotes the transition function T ⊆ S × S × I.
– λ is the transition probability function, defined as

λ (si, sj) = pij where, si, sj ∈ T

such that, for each si the sum of the transition probabilities on its outgoing
edges is 1.

– H : S → � is the average permanence function, defined as,

H (si) = ti where, si ∈ S, ti ∈ �
� is the set of reals.

– C : S → [0, 1] is the CPU availability fraction (or equivalently availability
percentage as used in the example).

3.2 Detailed Methodology

The objective of the PFSM-AP described above is to characterize the device
based on its free CPU cycles and duration the device is likely to remain in that
state, as depicted in the motivating examples in Sect. 2.

Given a mobile device Di with a PFSM-AP model Ui =< Si, Ii,Ti, λi,Hi,
Ci >, a task J with its dataset, the device needs to calculate its bid which can
be presented to the offloader by the owner. Let us assume the task needs an
estimated execution time of wi on this device. As discussed earlier, this estimate
is agnostic to the state model and assumes 100 % CPU utilization. This is where
PFSM-AP provides a better estimate. If wi > Δ, there is no point for the device
to participate in the bid (intuitively there is no path in which the task can be
completed within deadline even with 100 % utilization all-through). The case
is interesting only when wi ≤ Δ. The principle behind our bid computation
algorithm is as follows.
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Algorithm 1. Bid computation on a mobile device
input : J : The task to be executed along with dataset
input : Δ : Deadline for the tasks
input : s : Present state of the device Di

begin
1 Compute wi of J ;
2 if wi > Δ then No bid and return ;
3 bt ← ∅ // best time

4 Πi ← paths (πi
j) on Ui satisfying C1 and C2;

5 for each path pi
j ∈ Πi do

if ρi(pi
j) < Υ then continue ;

t ← δi(pi
j);

if (bt > t) then bt ← t;

6 Bid with bt;

1. Examine all possible paths in the PFSM-AP graph from the state the device
is in, at the time when bids are invited

2. Compute expected completion times on each of these paths considering that
states in the path have different CPU availability

3. Exclude paths where the expected completion time is greater than the dead-
line

4. Exclude paths where the corresponding confidence value is less than some
pre-determined threshold

5. Determine a path which meets the deadline best and present the expected
completion time on that path as the bid.

Execution Path Enumeration. Given the state machine of a device and the
current state, there are potentially infinite number of paths from the start state.
However, we are interested only in those paths where computation of the task
can be completed within the advertised deadline. Since deadline is finite, such
paths (excluding cycles involving states which offer 0 % computing capacity) are
also finite in number. Let us denote this set of paths as Πi = {πi

1, π
i
2, . . . π

i
k} for

the device Di where k denotes the number of such deadline-constrained paths.
A path πi

j is a state transition sequence, < si1, s
i
2, . . . s

i
m >, in the underlying

PFSM-AP of Di. We assume transitions to be 0-delay.
For each path πi

j =< si1, s
i
2, . . . s

i
m >, we compute the following attributes

which are useful for our algorithm.

– Path execution time (δi(πi
j)): The execution time of the application on the

path πi
j

δi(πi
j) = Z +

wi − Z

C(sim)
where, Z =

m−1∑

l=1

(
H(sil) × C(sil)

)
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The value of Z denotes the execution time on the first m − 1 states on the
path. The other term in δi(πi

j) is the time required to finish the remaining
fraction of work in the last state (sim).

– Confidence Value (ρi(πi
j)): The confidence value on the path πi

j is computed
as a product of the likelihood values on the transitions (assuming transition
probabilities to be independent for simplicity) as below:

ρi(πi
j) =

m∏

l=2

λi(sl−1, sl)

The following constraints are to be applied on valid paths to bound the search.

– Task completion constraint:

C1 :
m∑

l=1

C(sil) × H(sl) ≥ wi

where the term C(sil) × H(sl) denotes the quantum of computation done at
the state sil considering the average permanence and the CPU availability.
The summation on the left hand side yields the total computation time on
a given path. So the above constraint essentially limits our computation to
paths whose time is more than wi.

– Deadline constraints: Paths where the completion time of the task is more
than Δ are not useful for bidding. Therefore,

C2 : δi(πi
j) < Δ

We modify the standard depth-first traversal [4] algorithm with constraints C1
and C2, and also ignoring self loops involving a state with 0 % CPU availabil-
ity. These conditions bounds the length of the paths (step 4 of Algorithm 1) to
finite value since wi is finite. Therefore the algorithm terminates in finite time.
The paths enumerated in the state graph are associated with different confi-
dence values. A path with low confidence of traversing should be excluded to
avoid penalties. An example of such a computation was presented in Sect 2.
Algorithm 1 uses a threshold Υ to filter out such paths.

4 Experiments and Results

Experiments with our proposed job-offloading technique were carried out in three
phases on a set of seven mobile devices which seven of our employees volunteered
to donate. The description of the devices are shown in Table 4. Our system had
access to two Sony Experia devices, three Samsung Galaxy devices, and one each
of Google Nexus and Micromax Canvas devices.
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Table 4. Configuration of Mobile devices used in our experiment

OS CPU

Device name Model Android Ver core @ clock speed Memory

Samsung Galaxy GT-S6802 2.3.6 Single Core @ 832 MHz 512 MB

Sony Experia L C2104 4.1.2 Dual Core @ 1 GHz 1 GB

Micromax Canvas 2+ A110Q 4.2 (Jelly Bean) Quad Core @ 1.2 GHz 1 GB

Google Nexus Nexus-4 4.2 (Jelly Bean) Quad Core @ 1.5 GHz 2 GB

4.1 Model Generation

During the first phase of the experiment, we worked towards building the PFSM-
AP models of the mobile devices participating in our experiments. We developed
and installed a small android application which collects device usage trace data
(like free memory and CPU usage) for every second and logs into the devices.
The users carried this application, active in their devices, and the application
gathered data for a week. We then collected this data and analyzed them offline
to discover PFSM-AP models. We extracted the percentage of free CPU cycles
only from the data and applied clustering to build the PFSM-AP. The outline
of the clustering technique is shown in Algorithm 2.
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Fig. 3. CPU usage pattern

The first phase of the algorithm creates an initial set of clusters based on the
CPU availability (data gathered as % of free CPU cycles). In this part, we create
buckets of different sizes and assign data points to these buckets. For example,
when bucket size is 2, data points in [0, 1] are put into one bucket, points in
[2, 3] are put in another bucket, and so on. Since the CPU availability values are
in [0, 100], we will have 50 buckets to be considered in this case. After creation
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of these buckets, we compute the deviation of the number of points in these
buckets. The exact values of a and b are chosen depending on the number of
observations. It is intuitively obvious that a very high bucket size will create too
few clusters. Then we choose the bucket size where the deviation is the highest.
Empirically this captures points which are close in one cluster. This serves as
an initial cluster to be refined in the subsequent phase of the algorithm. In the
next phase, we identify clusters (formed in the initial stage) where membership
count is low. The parameter Δ is used as the threshold of count of data points in
a cluster and any cluster having number of data points less than the threshold
are removed and data points in this cluster are reassigned to other clusters. The
threshold is Δ percent of the average data points in clusters. The Δ value is small
and in our experiment Δ = 5. The value indicates cluster removal threshold is
5 % of the average cluster size. We applied this clustering algorithm on the system
traces collected from mobile devices by our mobile application and constructed
the PFSM-AP models of these devices. Figure 3 shows a part of the CPU usage
pattern of one of the users and the PFSM-AP model constructed thereafter is
shown in Fig. 4.

Algorithm 2. PFSM-AP Model Determination
begin

// Initial Clustering : Empirical Analysis

1 for i ← a to b do
cluster data points in buckets of size i;
δi ← deviation of cluster size values;

2 Choose i∗ s.t. δi∗ is the highest in {δi : a ≤ i ≤ b};
3 C ← cluster data points in clusters of size i∗;

// Reclustering

while No change in cluster composition do
4 {CCk} ← Compute cluster centers of C;
5 Recluster data points around cluster centers {CCk} based on the

distance of a point from cluster centers;
6 Remove a cluster if the size of the cluster is less than

No of data points
|C| × Δ

100
;

7 Each cluster is a state and the mean value is the percentage of the free CPU
cycles;
// Transition and Transition Probabilities

8 Traverse the data and compute average time in a state;
9 Traverse the data and compute number of transitions for all pairs of states;

10 Compute the transition probability of an edge s → d as the fraction of
transitions from state s to d against all transitions out of state s, i.e. ,

No. of transitions from s to d∑
∀p No. of transitions from s to p
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Fig. 4. PFSM-AP model

4.2 Simulation of Offloading System

We developed a simulation system to observe the behavior of our task offloading
infrastructure. We simulated the offloader system and also the task execution
on device VMs. The VMs simulate the PFSM-AP models generated from the
traces on the mobile devices. The simulated offloader generated tasks of various
kinds to be offloaded to these devices. When awarded a task, a device simulates
task execution while simulating the state transition based on its model. For
each task type, 100 similar tasks were generated and offloaded to devices. The
number of these tasks successfully completed on the devices (i.e. completed
within the given deadline) are recorded and used for computing performance of
the offloading method. The performance of the system is simply the fraction of
the offloaded jobs successfully completed by the bidding device.

In our simulation system, the offloader generates jobs of various durations,
assigns various deadlines to these jobs, invites bid and submits the job to the
winning device. Figure 5(a) shows the job offloading performance for job execu-
tion times ranging from 4 to 29, and deadlines varying from 2× to 10× of the
job execution time. The horizontal axis of the figure represents variation in job
execution duration, while the vertical axis represents the offloading performance.
The offloading performance, as discussed earlier, is the fraction of the number
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Fig. 5. Experiment results

of jobs the infrastructure could complete by offloading them to winning devices
and the devices subsequently could complete execution within given deadline. A
value of 0 as performance indicates that the infrastructure was unable to effec-
tively utilize any device for computation. On the other hand a value of 1 indicates
the infrastructure could execute all jobs using the devices. Please note that in
our experiment the infrastructure offloaded one job at a time and concurrent
offloading was not considered.
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It is evident from the experiment that, when task runtime is low, success
rate of task-offloading is low as well. Also when the deadline is very tight in
comparison to execution time of the task, task offloading is not beneficial. When
deadline is tight, if the device cannot operate with near 100 % CPU availability
all the time, the corresponding completion time is more likely to overshoot the
task deadline. When the deadline is very relaxed (e.g. approximately 7× that of
job execution length) offloading works well and is beneficial.

4.3 Working with Real Devices

In this phase, we evaluated the performance of our offloading system with an
offloader which has the seven devices, described earlier, for it to exploit. For
this experiment, we used an application which estimates the value of π, which is
written as a native android application. The application is a compute intensive
one. Longer the application runs, the estimation is better. We conducted the
experiment for various job durations and the job duration was varied by chang-
ing the desired accuracy of π calculation. Figure 5(b) shows the job offloading
performance of the system. The result of this experiment shows that jobs with
relaxed deadlines are good candidates for offloading.

5 Related Work

In recent times, there has been significant research on the theme of Mobile
Cloud Computing (MCC) which propose the use of a collaborative comput-
ing infrastructure consisting of mobile devices and a backend cloud. MAUI [5]
and CloneCloud [3] are two notable systems which use a backend comput-
ing infrastructure for collaborative job execution. Several other articles as well
address the problem of workflow partitioning in an MCC setting [16]. The basic
intuition behind these partitioning strategies is to decide on the best platform
(mobile device or cloud) to execute each sub-task of a given workflow with an
objective of optimizing the cost (in terms of energy, time, communication, etc.).

Authors in [14] address the problem of intermittent disconnection and ana-
lyzes the problem using Markov-chain model. Markov Decision Process (MDP)
has been used to model the behavior of mobile devices to achieve objectives like
optimization of power usage [9]. However in our case, we resort to a simpler
model since we do not need the full capabilities of an MDP for this problem.
A comprehensive survey of Mobile Cloud Computing (MCC) can be found in [6].
Systems like Misco [7] and Hyrax [12] extend MapReduce so that computation
capabilities of mobile devices can be utilized. Serendipity is a task dissemination
system over a mobile grid [18]. The system relies on collaboration among mobile
devices using WiFi connection to share collective computation power. The design
of the system accepts that disconnection of devices is a norm and its underly-
ing architecture incorporates the assumption. We consider a more generic usage
model driven scenario in this work.
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6 Conclusion and Future Work

Proposals of using mobile devices to augment computing infrastructure have
been proposed in literature. In this paper we present a basic scheme of job
offloading on a mobile grid. Mechanisms for automatic learning of likelihood
probabilities, using more advanced models for analysis (e.g. MDP), execution
time estimation, designing more effective bidding, reward-penalty schemes may
be looked into for future explorations. In this paper we also assume the network
and the devices are reliable. Issues of fault tolerance in this context are our
future research agenda.
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Abstract. In this paper, an autonomic performance management app-
roach is introduced that provides dynamic resource allocation for deploy-
ing a set of services over a federated cloud computing infrastructure by
considering both, the availability and the demand of the cloud comput-
ing resources. This distributed control based approach is developed by
using an interaction balance (decomposition-coordination) methodology
for interactive bidding of computing resources in cloud computing envi-
ronment. The primary goals of the proposed approach are to maintain the
service level agreements, maximize the profit, and minimize the operat-
ing cost for both, the service providers and the cloud brokers. The cloud
brokers are considered third party organizations that work as intermedi-
aries between the service providers and the cloud providers to sublet the
cloud resources that the cloud brokers rent or lease from a number of
cloud providers. The developed approach is novel in applying interaction
balance methodology, and giving priority to the profit maximization for
both the cloud broker and service providers, while assigning the cloud
computing resources.

Keywords: Interaction balance · Autonomic Computing · Cloud bro-
ker · Cloud computing

1 Introduction

Recently, research shows an increasing trend towards hosting services in a cloud
computing environment in order to eliminate the need for setting up a physi-
cal infrastructure, decrease the launching time for a service, provide on demand
availability of computing resources, and transfer the management responsibil-
ity to the cloud providers, such as Google Apps [7], Amazon Web Services [6],
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F. Pop and M. Potop-Butucaru (Eds.): ARMS-CC 2014, LNCS 8907, pp. 52–70, 2014.
DOI: 10.1007/978-3-319-13464-2 5



An Interaction Balance Based Approach 53

IBM Cloud [10], and Microsoft Windows Azure [26]. The cloud providers deploy
services on multiple computing nodes in accordance with the service level agree-
ments (SLAs) negotiated between the cloud provider and the service provider
for a given system resource availability and a specified pay-per-use. According
to a survey [9] published in year 2011, only 26% of the organizations reported
improvement in the performance of their applications in a cloud computing envi-
ronment. The primary reason for this decreased application performance is that
these applications (and their various services) require complex configurations of
computing, network, and storage resources. Currently, the SLAs between a ser-
vice provider and a cloud provider cover only resource availability aspects of a
cloud computing infrastructure. There is no agreement specifying the application
level performance or quality of service (QoS) that the given resources are able to
provide to the applications and their underlying services. In general, the design-
ers of service deployment schemes consider multi-dimensional objectives, which
are often mutually conflicting in nature. These objectives may include operat-
ing costs, SLAs, configuration constraints, resource utilization, availability of
the resources, and others. If the deployment scheme is too optimistic (with an
underestimation of the resource requirement), it may result in excessive scarcity
of resources, leading to the SLA violations. However, in the case of a pessimistic
scheme (overestimation of the resource requirement), the deployment may be
less efficient with respect to resources, and may result in an increased operat-
ing cost for the cloud operation without an increased revenue [22]. Moreover,
these deployment schemes are applicable only to the specific application domain
and operating conditions. Therefore, the underlying system design process has
limited utility, reliability, and scope.

Recently, the use of a third party entity, called a Cloud Broker, has become
popular for selecting the appropriate cloud provider in the interest of service
providers, and deploy their services either in a single or in a federated cloud
infrastructure [18,20]. In other words, the cloud brokers work as intermediaries
between cloud providers and service providers to select the appropriate cloud
provider, negotiate the contract conditions, and facilitate the deployment of a
service in the federated cloud infrastructure. In more advanced cases, a cloud
broker can rent the resources from multiple cloud providers and host a service
in multiple cloud providers; then, a cloud broker can charge the service provider
for these cloud resources at higher cost than the actual cost paid to the cloud
providers. The business and profit models for the cloud brokers are still evolving
and research is ongoing for its development.

This paper considers a federated cloud computing environment, where a cloud
broker has the ability to integrate resources from more than one cloud provider
to support several service providers [18]. The cloud broker pays the usage (base)
cost of the cloud resources to the cloud provider, and charges the service provider
for these resources at some premium on the base cost. In this scenario, the cloud
broker and service provider(s) try to maximize their respective profits, such that
the service provider aims to satisfy the service level agreements (SLAs) of the ser-
vices that it hosts by using the minimum amount of hardware resources from the
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cloud broker, whereas the cloud broker improves its profits by leasing maximum
percentage of computing resources to the service providers. These objectives are
conflicting and contradictory to each other. In addition, due to unpredictable
variations in the computing environment, the incoming web request rate towards
the services may exceed its expected value, making it necessary for the service
providers to request additional resources from the cloud broker. The service
providers must negotiate for these resources with the cloud broker using some
pricing scheme to maintain its SLAs while minimizing the cost of the utilized
cloud resources. Moreover, the cloud broker may be hosting multiple services
that may be requesting additional resources at the same time, leading to a com-
petition among the service providers for obtaining these resources, which are
limited in number or quantity. This paper introduces a novel negotiation app-
roach between the cloud broker and the various service providers to compute
an optimized allocation of cloud resources. The proposed approach is a proof
of concept using an interaction-balanced technique for solving the negotiation
problem between the cloud broker and the service providers, and represents a
step towards a model-based autonomous deployment of robust, adaptive, and
reliable services in a cloud computing environment.

This paper is organized as follows. Research efforts made by other groups
are presented in Sect. 2, and the proposed performance management approach
is introduced in Sect. 3. The application of the proposed approach in a typical
cloud infrastructure is demonstrated in Sect. 4, and the benefits of the approach
are highlighted in Sect. 5. Finally, conclusions and future work are presented in
Sect. 6.

2 Related Work

2.1 Resource Allocation in Cloud Computing Environment

Efficient resource allocation is one of the most challenging problems faced by the
cloud infrastructure as a service (IaaS) providers. Academia and research com-
munities have proposed several new technologies for dynamic resource allocation
in this domain to maintain the SLAs. A dynamic resource allocation method is
developed by considering the SLAs between the user and the Software as a Ser-
vice (SaaS) provider while allocating resources [27]. The authors ensure that
SaaS providers are able to manage the dynamic change in customer’s requests,
mapping customer requests to infrastructure level parameters, and handling the
heterogeneity of the Virtual Machines (VMs). This approach also considers the
customers’ QoS parameters, such as response time, and the infrastructure level
parameters such as service initiation time. However, the burden of evaluating
SLAs between the user and the SaaS providers may become a bottleneck for the
IaaS cloud provider when the number of SaaS providers is considerably large.
Another prominent approach of resource allocation that has been investigated
by researchers, is priority driven resource allocation [8,19]. These approaches
are classified in two categories: (i) user priority based and (ii) resource prior-
ity based. These approaches only consider resource allocation to a single service
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provider for solving the load balancing problem. A neural network based resource
allocation is introduced in [5], where authors focus on maximizing the resource
utilization via an efficient resource allocation strategy provided by the genetic
algorithms. However, this approach targets a system where the resources are not
scarce. There is no competition among the users for obtaining a set of required
resources. Another approach uses genetic algorithms to find the optimal resource
allocation and assigns resources to the clients or users based on the outcome of
the genetic algorithm [2].

Recently, researchers have focused on cloud resource allocation by applying
auctioning schemes to the SaaS providers. In these auctioning schemes, the cloud
IaaS providers accept requests from SaaS providers and perform an auction of
the cloud resources. The highest bidder will be allocated the set of auctioned
resources. To deal with such complexities of the resource allocation problem in a
dynamic and evolutionary environment, a number of researchers have focused on
a study of game theoretical approaches [12]. Game-theory based resource alloca-
tion mechanisms have received a considerable amount of attention in cloud com-
puting to solve the optimization problem of resource allocation. However, the
recent survey shows that these techniques do not take into consideration essen-
tial parameters such as, fairness, resource availability, service deadline and exe-
cution efficiency, resource reliability, and others. More often, the game-theoretic
approaches focus on solving the cost optimization problems. A combinatorial
auction-based mechanism has also been investigated for the allocation and pric-
ing of VM instances in cloud computing platforms [28]. This approach uses three
different schemes: fixed-price scheme, linear programming, and a greedy scheme.
However, this approach only considers maximizing the user gains as a single
constraint that limits the allocation of each type of VM to a pre-determined
value.

2.2 Significance of Cloud Brokers

The approaches discussed in the previous subsection present solutions to address
the challenges of efficient resource management between a cloud provider and
a (or many) service provider(s). However, these approaches do not address the
resource management problems in an enterprise framework, which makes use of
services provided by various cloud providers to fulfill SLAs. The main advan-
tage of using the cloud brokers in this scenario, is their ability to integrate more
than one cloud provider. These capabilities need to be exposed to enable the
fulfillment of all orchestration requirements. According to the recent literature,
due to the increase in the demand for a federated cloud computing framework,
efficient management and operation of cloud computing environment is the most
prominent requirement [18,21]. The cloud brokers are the most promising solu-
tion available to deal with the complexities of a federated cloud environment.
Therefore, there is a tremendous need for applying efficient resource allocation
and management in a cloud broker model.

Recently, researchers in this domain have proposed various solutions to add-
ress the problem at different levels, such as, managing the information of a large
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number of cloud service providers via a unique indexing technique [24], enabling
the cloud-computing services broker to use derivative contracts in combination
to reliably providing cheaper resources to the consumer and predicting future
usage [21], proposing novel algorithms for a secure cloud bursting and aggrega-
tion operation, using a secure sharing mechanism such that the cloud resources
are shared in a secure manner among different cloud environments [11], and oth-
ers. However, none of these research directions address the issues of dynamic
resource allocation and performance management of hosted services in a cloud
broker model. In addition, these resource allocation and performance manage-
ment issues become more critical in the case of large number of hosted ser-
vices with limited amount of cloud resources. In these situations, maintaining
the SLAs of the service providers’ becomes crucial and requires an autonomic
performance management approach which can dynamically reallocate the cloud
resources among services while maximizing the profitability of the cloud broker.

2.3 Large Scale Control-Based Performance Management
Approaches

Large scale control-based methods have recently emerged as promising ways
to automate certain system management tasks encountered in distributed com-
puting systems. Algorithms have been developed for optimal control of large
scale systems by decomposing the large systems into a number of interconnected
subsystems. Thus, the system wide optimization problem is also divided into a
number of subsystem optimization problems. These subsystems coordinate with
each other through a coordinator using interaction inputs, and thus achieve the
system wide performance objectives. These interaction inputs are applied to each
subsystem in the form of constraints. These “decomposition and coordination”
strategies are primarily implemented in two ways: Interaction Balance (Goal
Coordination) and Interaction Prediction (Model Coordination) [25]. Both of
these approaches have been applied successfully to a number of large scale sys-
tems, where subsystems are “coupled with each other in both system dynamics
and system wide performance objectives” [25].

Furthermore, application performance issues in cloud broker environment can
be addressed by service providers through developing service specific controllers
that can manage the web service requirements for computing, network, and
storage resources. These service level controllers can be designed, developed,
and deployed by the service providers at each service independent of the cloud
level controllers. The cloud level controllers are deployed by the cloud brokers
(or providers) to ensure resource availability and minimum downtime for the
deployed service as negotiated in SLAs with the service providers. Thus service
providers can choose and customize their own control policies inside service level
controllers according to the service requirements.

Contribution of this paper: In this paper, a distributed control-based per-
formance management approach is developed for performance management of
services hosted in distributed cloud broker environment. The proposed algorithm
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utilizes the interaction balance based management approach, where each service
is decoupled from other services with respect to system dynamics, while coupled
in terms of overall deployment wide operating cost functions by limited amount
of system resources in a cloud computing infrastructure. In this performance
management approach, we first dynamically allocate the computational resources
to all of the service providers through an interaction balance based approach,
and then the service level controllers utilize the allocated resources for service
deployment to maintain the SLAs their respective services. Important results
from prior work on the distributed control of large scale systems [15,16,23,25]
are utilized in this paper, where the main idea is of cooperation among multiple
independent services to optimize a global cost function under certain constraints
(limitation of resources) by independently optimizing the local cost function at
each service. Based on our survey, until now, there is no published research
or study about applying the interaction balance method for optimal control of
service providers and cloud broker (or provider) profit maximization in cloud
computing systems. Therefore, our work is a novel contribution to this problem
domain.

3 A Distributed Control-Based Performance
Management Approach Using the Interaction
Balance Principle

In this paper, a single cloud broker interacts with multiple service providers
during auctioning of the available cloud computing resources. In this situation,
the cloud broker broadcasts the initial unit price βini of the resource per unit
time to the service providers. Service providers solve their control problem by
using their own utility function, compute the optimal value of a cloud resource,
and request the resource from the cloud broker. If the total amount of resource
requested by the service providers is greater than the available resource, the
cloud broker increases the unit price of the resource, otherwise the cloud broker
reduces the price to encourage the service providers to reserve a higher amount
(or number) of resources. The cloud broker sends the updated unit price to
the service providers; the service providers again compute the required amount
of resource on the updated price. This cycle continues until either the cloud
broker sub-lets all of its resources (or very small percentage ε left unassigned),
or the unit price becomes lower than the minimum (or threshold) price βmin, or
the service providers refuse to pay the current price considered as βmax. Here,
βmin ≤ βini ≤ β(k) ≤ βmax, where β(k) is the unit price of the cloud resources
during time sample k.

In this scenario, N services need to be deployed in the cloud infrastructure
through a cloud broker as shown in Fig. 1. The proposed management approach
is based on the decomposition of the global profit maximization problem of
cloud broker in to N sub-problems, which are further solved by each service
provider. These service providers are contesting for total cloud resources U(k) at
a particular time instance k. Therefore, in case of limited resources, the resources
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acquired by the i-th service provider will impact the resource available to all the
other service providers j (where j �= i) because they are competing for the same
type of cloud resource. The state dynamics at each service provider i can be
described by the following set of equations.

q̂i(k + 1) =
[

qi(k) + ω̂i(k)) − ui(k)T
ĉi(k)

]+

(1)

r̂i(k + 1) = (1 + q̂i(k + 1))
ĉi(k)

ui(k + 1)
(2)

ui(k) = αi(k) U(k) (3)

where [a]+ = max(0, a), qi(k) is the local queue size of the service i, and ω̂i(k) is
the expected arrival rate of web requests at the service. q̂i(k +1) is the expected
queue level of the service i, r̂i(k + 1) is the expected response time, T is sam-
pling interval, and ui(k) is the amount of computational resources (in frequency)
acquired by the i-th service provider as fraction αi(k) from the total available
cloud resource U(k). ĉi(k) is the predicted average service time per request at
one unit of computational resource (1 GHz. frequency).

These Eqs. (1, 2, and 3) represent the aggregate performance behavior of the
service providers with respect to available computing resources ui(k), incoming
workload ωi(k), and existing queue size qi(k). The actual i-th service deployment

Fig. 1. A Two-level distributed control structure for resource allocation and perfor-
mance management
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problem on multiple computing nodes, and the resource allocation map among
these computing nodes is not considered in this paper. However, this problem
has already been addressed by the authors previously in a very generic manner
[15,16]. Similarly, the problem of allocating the desired resources to each of the
service providers by the cloud broker via an appropriate placement map, is also
not addressed in this paper. This paper considers the computational resources
as a chunk of resources, while solving specific control problems.

The operating cost of the service provider i for a look ahead horizon of
H steps, Ji(k) includes SLA violation penalty and renting cost of the cloud
resources as expressed in Eq. 4. The renting cost of the cloud resources depends
on its computational resource ui(k) (CPU core frequency) and represented as
E(ui(k)). Ai, Bi, and Ci are user defined norm weights. To include the effect of
the coordinated goal, the operating cost Ji at the service provider i is indirectly
coupled with all the other service providers through limited cloud resources as
shown in Eq. 5. Therefore, changes in ui(k) at service i affects the cost function
Ji(k) as well as Jj(k), where j �= i.

Ji(k) =
H∑

k=1

‖qi(k + 1) − qsi ‖Ai
+ ‖ri(k + 1) − rsi ‖Bi

+ ‖E(ui(k))‖Ci
(4)

ui(k) = αi(k) U(k) (5)

P (k) = β(k)
N∑

i=1

ui(k) − βmin(k)U(k) (6)

Here, k = 1, 2, ..,H represents the sampling instances in the trajectory of the
system operation. According to this quadratic cost function in Eq. 4, the service
providers are penalized for the number of the requests remaining in the queue
qi(k) and the average response time ri(k) observed at the service providers.
Therefore, qsi is generally set to zero for the complete depletion of the queue,
and rsi is set according to the SLAs. Also, P (k) (in Eq. 6) represents the prof-
itability of the cloud broker for acquiring the cloud resources, and then subletting
them out to the service providers. U(k) represents the total resources offered for
auction at time instance k.

As described previously, the profitability of the cloud broker will be max-
imized if it allocates the maximum (close to 100%) available resources to the
service providers. In this process, the cloud broker may have to decrease the unit
price β(k) (from the initial unit price βini) of the cloud resources too in order
to encourage the service providers for extra resource allocation. Otherwise, the
cloud broker can also increase the unit price of a resource (from the initial unit
price βini) when there are not enough resources available to satisfy the require-
ment of all the service providers. The total revenue of the cloud provider from
Eq. 6 can be maximized by having the perfect balance of unit price β(k) with
total allocated cloud resource

∑N
i=1 ui(k).

Therefore, the overall cloud resource optimization problem is : find the opti-
mal value for unit price β(k) of cloud resources and resource fraction αi(k)
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Fig. 2. Service provider level control structure

at each service provider, such that the cloud broker can maximize its profits
while service providers maintain their own profitability, SLAs, and operational
constraints.

3.1 Problem Decomposition

The cloud broker considered here hosts N service providers, which are coupled
only through the cloud resources ui(k) and cloud level cost function J(k). The
cloud level cost function J(k) is the sum of the cost functions related to each
service provider i as Ji(k) in Eq. 4. For a proper decomposition, an interaction
variable Zi(k) must be defined at the service provider i to represent the effect
of the service provider dynamics on the global cost. Zi(k) is chosen as the sum
of the fractions α∗

j of the cloud resources acquired by other service providers j

(∀j, j �= i) as follows. That is, Zi(k) =
∑N

j �=i α
∗
j (k). The constraint at the service

provider i is αi(k) = 1 − Zi(k) or
∑N

j=1,j �=i α
∗
j (k) + αi(k) = 1. The Lagrangian

of each service provider Li can be represented as follows.

Li(k) = Ji(k) +
H∑

k=1

βi(k)(1 − αi(k) −
N∑

j �=i

α∗
j (k)) (7)

where βi ∈ RH is the price vector corresponding to the service provider i that is
extracted from the Lagrange multiplier vector β received from the cloud broker
(see Fig. 1), where β ∈ RNH . The price vector β is chosen as Lagrange multiplier
here because it reflects the change in price with respect to the constraints of total
acquired resources (

∑N
i=1 α∗

i (k)) by the service provider. If service providers
miss the constraint negatively (1 <

∑N
i=1 α∗

i (k)), the Lagrange multiplier β will
increase which is equivalent to increasing the price of the resources if the demand
is higher than the availability. Similarly, when constraint is missed positively
(1 >

∑N
i=1 α∗

i (k)), the Lagrange multiplier β will decrease, which is the same as



An Interaction Balance Based Approach 61

decreasing the price of the resources if the demand is lower than the availability
to encourage maximum allocation.

The Lagrangian L(k) for the cost function J(k) can be represented as sum
of Li(k): L(k) =

∑N
i=1 Li(k). The overall problem of minimizing cost function J

can be decomposed in to N first level problems of minimizing Li, such that Eq. 1
is satisfied with qi(1) = 0. The problem at the cloud broker level can be expressed
as updating the value of β, so that the interaction error (see Eq. 9) can become
less than a pre-defined small value ε, where ε can be chosen in percentage of the
resource not assigned to any of the service provides (5%). It indicates that cloud
broker will keep running the auction until at least 95% (or maximum 105%)
of the available resources (U(k)) are desired by the service providers. Once the
auction is complete, all the service providers will receive resources at the current
per unit price β(k).

Algorithm 1. Predictive Control Algorithm at the Service Provider-i:
PredictiveControli(k)
Input: Service Provider queue qi(k), Prediction Horizon H,
Input: Total amount of cloud resource available for auction U(k),

Input: β and α
∗(l)
j (k) received from the cloud broker,

Input: ω̂i(k) estimated by the traffic estimator
Input: Fraction Set at the service provider i, Fi = [Fi1, Fi2, ..., FiR]
Input: Resource share expected at the service provider i, αl

i = [αl
i(1), α

l
i(2), .., α

l
i(H)]

1: service provider state xi(k) = [qi(k) ri(k)]
2: sk := x(k), Cost(k) = 0
3: for all fraction set f ∈ Fi do
4: αl

i(1) = αl
i(2) = .. = αl

i(H) = f /* Same resource share at each step */
5: for all k within prediction horizon of depth H do
6: sk+1 := φ
7: for all x ∈ sk do
8: Compute q̂i(k + 1) /* using Equation 1 */
9: Compute r̂i(k + 1) /* using Equation 2 */

10: Compute Li(k + 1) /* using Equation 7 */
11: Cost(k + 1) := Cost(k) + Li(k + 1)
12: x̂ = [q̂i(k + 1) r̂i(k + 1)]
13: sk+1 := sk+1 ∪ {x̂}
14: end for
15: k := k + 1
16: end for
17: end for
18: Find xmin ∈ sN having minimum Cost(k)

19: Choose f with minimum Li(k), where f = α
∗(l)
i = [α

∗(l)
i (k), .., α

∗(l)
i (k + H − 1)]

20: return α
∗(l)
i
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3.2 Service Provider Level Control

At the service provider level, the Lagrangian Li is minimized using service
dynamics (Eqs. 2 and 3) with the cloud resource as control input ui(k). We
create a uniform discretization for the resource fraction αi, and with that deter-
mine the optimal value of the control inputs ui(k), which minimizes Li(k) by
using the following steps.

1. Use βl
i(k) and α

∗(l)
j (k) (where j �= i) as received from the cloud broker to

compute the optimal sequence of (α∗(l)
i (k)) over the horizon k ∈ [1,H] by

using Algorithm 1, which minimizes the Lagrangian Li(k) in Eq. 7 through a
tree search method [1]. Here, l indicates the iteration instance between the
service provider and the coordinator within time sample k.

2. Forward the optimal values of α
∗(l)
i to the cloud broker.

3.3 Cloud Broker Level Control

At the cloud broker level, the goal is to update the values of the Lagrange
multipliers β to decrease the interaction error e, defined as:

eli(k) = 1 −
N∑

j=1

α
∗(l)
j (k) (8)

el =
(
el1 el2 . . . eli . . . elN

)T
(9)

eli =
(
eli(1) eli(2) . . . eli(k) . . . eli(H)

)T
(10)

The interaction error vector e is used as a gradient to modify the Lagrange
multipliers β(k) using the conjugate gradient method [25] as per following set of
equations:

β(l+1)(k) = β(l)(k) + ξl dl(k) (11)

Where, ξl represents the step length, and dl the represents search direction.
dl(k) is calculated using following set of equations with d0 = e0.

dl+1(k) = −el+1(k) + σl+1 dl(k) (12)

σl+1 =
‖el+1‖
‖el‖ (13)

‖ · ‖ denotes the (Cartesian) �2-norm. The main steps of the algorithm at the
cloud broker level are as follows:

1. Set initial values of the Lagrange multipliers vector β as the initial unit price
of a resource (βini), and forward it to the service provider level controllers.
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2. The cloud broker uses the values of α∗
i received from the service provider to

calculate the interaction error e using Eq. 9.
3. If ‖el‖2 ≤ ε, stop and assign the cloud resource to service providers in

requested ratio, else go to next step.
4. Calculate the values of the Lagrange multipliers β for the next iteration by

using Eqs. 11, 12, and 13. If calculated value of β is more than the maxi-
mum unit price (βmax) of the resources, or less than the minimum unit price
(βmin), stop and assign the requested amount of cloud resources to each
service provider. Otherwise, send this updated value of β to the service con-
trollers for solving the service provider level optimization problem. Increment
l and jump to Step 2. This exchange of information is shown in Fig. 1.

3.4 Forecasting the Environmental Inputs at Each Service Provider:

These services are deployed in a dynamic and open distributed environment,
where the incoming web requests are generated from external users (or clients)
that cannot be controlled by the services. In addition, these web requests show
a cyclic pattern in the arrival rate based upon the service popularity and time of
the day [3]. These web requests vary significantly within a short duration of a few
minutes. However, this variation in the arrival rate of the incoming web requests
can be estimated within certain accuracy using Autoregressive Moving Average
(ARIMA) filters [4] or Kalman filters [13], as done in earlier work [14,17]. In this
paper, an ARIMA filter based prediction module is developed to estimate the
future environmental input at each of the service providers ω̂i(k) (web requests)
in Eq. 14, which is similar to the approach used in [14]. This module is shown in
Fig. 2.

ω̂i(k) = θ(ωi(k−1, r)) = γi1 ωi(k−1)+γi2 ωi(k−2)+(1−(γi1+γi2)) ω̄i(k−3, r)
(14)

where, γi1 and γi2 are user specified weights on the current and previous arrival
rates. ω̄(k−3, r) represents the average value of the environment inputs between
time samples k − 3 and k − 3− r. This prediction module continuously monitors
the arrival rate of the incoming web requests and estimates their future values
at each sample.

4 Performance Management of Service Providers
in a Cloud Computing Environment

The proposed interaction balance based resource allocation approach is simu-
lated in Matlab for deriving an optimal resource allocation and manage the
performance of four service providers that are hosting their respective service in
a cloud computing environment. Details of the simulations are described in the
following subsections.
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4.1 Service Provider Level Control Setup

The service provider level controller dynamics is shown in Fig. 2. Each of the ser-
vice providers receives incoming web requests ωi(k) from the Dispatcher at the
cloud broker during time sample k. Each service deployment processes the incom-
ing web requests by using the allocated computational resource ui(k), which is a
fraction αi(k) of the computational resource available at the cloud broker. The
controller module C receives the current system state [qi(k), ri(k)] from the ser-
vice deployment, future workload arrival rate ω̂i(k+1) from the traffic estimator,
and the Lagrange multipliers β from the cloud broker. Now, controller module
(C) uses the service provider model (M) and the available control algorithms to
obtain the optimal value of resource share αi(k + 1)] by using Algorithm 1. The
calculated resource share αi(k + 1) is sent back to the cloud broker to calculate
the interaction error e.

4.2 Simulation Setup

The simulation settings and the coefficients used in the cost function are shown
in Fig. 3(a). The Service provider 3 and 4 are assigned higher penalty for queue
size and response time compared to the service provider 1 and 2. Therefore, the
service provider 3 and 4 are expected to choose higher amount of computational
resource compared to service provider 1 and 2. All of these service providers
are assigned lower penalty for resource cost compared to the queue size and the
response time, which will force all of these to focus more on the SLAs (queue
size and response time) while calculating the optimal values of computational
resources.

(a) The Parameter Values used for the Simula-
tion Experiment.

(b) Simulated Incoming Web Requests To-
wards Services.

Fig. 3. Simulation parameters and generated web requests for each service provider

During this simulation, different web request workloads (see Fig. 3(b)) are
generated for each services by utilizing the 1998 Football World Cup [3] traces.
The tolerance value ε of the interaction error is set to 0.05 and the lookahead
horizon H is set to 2. In addition, the minimum (βmin), maximum (βmax),
and initial (βini) unit price of cloud computing resource is set to 1000, 10000,
and 2500 pricing unit, respectively. The total available cloud resources for the
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simulation is constant as 16 Ghz during the entire simulation. These simulations
can also be repeated with higher amount of total cloud resources, different pricing
value, and higher rate of web requests for each service.

4.3 Simulation Results

This simulation is conducted to demonstrate the performance of the proposed
performance management approach in a cloud computing environment for max-
imizing the profitability of the cloud broker while managing the SLAs of the
service providers in a dynamic environment. During the simulation, extremely
dynamic workloads (see Fig. 3(b)) are utilized for the service providers that
facilitate competition among the service providers to acquire higher amount (or
number) of cloud resources during few time samples due to an extremely high
rate of incoming web requests. In contrast to this, during a few time samples,
the total desired amount of resources is much smaller than the total amount of
available resources at the cloud broker due to extremely low rate of incoming
web requests towards the services. The results of this simulation are shown in
Figs. 4, 5, and 6.

(a) Computational Resource Share Statistics at
each Service Provider.

(b) Total Web Requests and Total Resource
Share Statistics.

Fig. 4. Computational resource sharing among service providers and total workload
analysis for the cloud broker

(a) Queue Size Statistics at each Service
Provider.

(b) Response Time Statistics at each Service
Provider.

Fig. 5. Queue size and response time statistics at each service provider



66 R. Mehrotra et al.

Computational Resource Statistics. Figure 4(a) shows the share of com-
putational resource acquired by each of the service providers to maintain their
respective SLAs. These service providers change their resource share based on
the intensity of incoming web requests (see Fig. 3(b)). Initially, service provider
3 receives a higher number of web requests compared to other service providers,
therefore in the beginning, service provider 3 acquires maximum share of com-
putational resources. Similar phenomenon is observed in case of service provider
1, 2, and 4 during other time samples. Furthermore, the resource allocations
adapts to the changes in the workload arrival rate by changing the resource dis-
tribution on the services to maintain their individual SLAs and maximizing the
profitability of the cloud broker simultaneously.

Figure 4(b) shows the total web requests (sum of the workload of all the ser-
vice providers) arrived at the cloud broker during a time sample, and the total
share of cloud resources acquired by the service providers. Ideally, the total share
of workload should always be 1, i.e., cloud broker should be able to change the
unit price of the computational resource to facilitate 100% allocation. How-
ever, in some scenarios when the total incoming web requests are too low (see
Fig. 4(b), during time sample 160, 240, etc), the total allocation is lower than
100% (less than 1). In a few time samples, this total resource allocation goes
to as minimum as 80% (or 0.8). On the contrary, when the total web requests are
at the peak rate, the total share of desired workload increases beyond 1 (100%
allocation), because in these situations, the service providers compete for extra
computational resources.

Queue Size and Response Time Statistics. Figure 5 shows the queue
size and the response time observed at the service providers by using the pro-
posed interaction balance based resource allocation approach. By comparing
the observed queue size among service providers in Fig. 5(a), it is obvious that
the queue size of the service providers 3 and 4 is lower than the queue size at the
service providers 1 and 2, where incoming request rates are in similar range. The
primary reason of this phenomenon is the higher penalty on SLAs (see Fig. 3(a))
in the cost function of service provider 3 and 4. Similar observation is also valid
for the response time statistics in Fig. 5(b). This lower queue size and response
time on service providers 3 and 4 do not hold true during a few time samples,
when the incoming web request rate towards service provider 3 and 4 is much
higher than the total towards service providers 1 and 2, such as time samples
0–50, 120–140, etc.

Interaction Count and Interaction Error. Figure 6(a) shows the number of
interactions between the service providers and a cloud broker for determining the
optimal unit price β(k) of the cloud resources and the share of cloud resources
αi(k) assigned to each service provider for maximizing the cloud broker profit
and maintaining the SLAs of the service provider. According to this figure, the
number of interactions between the service providers and the cloud broker varies
with the variation in total incoming web requests towards the cloud broker
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(a) Interactions between Cloud Broker and
Service Providers.

(b) Unit Price and Profit Statistics at Cloud
Broker.

Fig. 6. Interaction error and cloud broker’s profitability statistics by using Eq. 6

(see Fig. 4). The number of interactions increase from 1 to 40 when the total
incoming web requests are either minimum or maximum. In case of a low rate of
incoming web requests, not all of the service providers require all the available
computational resource, therefore a large number of interactions take place to
decrease the unit price of the resource to facilitate the 100% resource allocation.
Similarly, when the incoming web request rate is extremely high, these interac-
tions take place for increasing the unit price of a resource, which also reflects
that these service providers are willing to pay more for acquiring more resources
to maintain their SLAs.

Pricing of the Resource and Profitability. Figure 6(b) shows the unit price
of the computational resources during simulation and profitability of the cloud
broker, which is calculated using Eq. 6. By comparing Fig. 6(b) with Fig. 4(b), it
is evident that the unit price of the computational resource increases when the
total incoming web requests are increasing, and it finally results in an increased
profit of the cloud broker. This observation can be explained by the basic mech-
anism of the proposed approach, that in case of limited resources, a cloud broker
can increase the price, which will maximize its profit. All the service providers
will either compete for the limited resources by paying the increased price or
decrease their share to maintain the cost of operation. At a few instances of
simulation, when the incoming request rate is too low, profitability of the cloud
decreases because the unit price of the cloud resource is too low and some of the
resources remain unassigned too.

5 Benefits of the Proposed Approach

In this paper, a cloud computing infrastructure is considered for optimally
deploying a set of services, on a set of available cloud computing resources by
using a cloud broker. According to the simulation results presented in the previ-
ous section, the proposed performance management approach derives an optimal
resource allocation strategy to maintain the SLAs of the service providers, while
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at the same time maximizing the profitability of the cloud broker. The pro-
posed approach is developed as a generic framework, which makes it a suitable
candidate for being applied to a general class of services and resources. The pro-
posed approach is also adaptive to the variations in the incoming web requests
towards the hosted services. This approach is independent of the deployment
environment and do not require any prior knowledge of the service provider per-
formance behavior with respect to cloud resources at the cloud broker involved
in dynamic resource allocation. Furthermore, the proposed approach is scalable
in the number of service providers as these service providers only interact with
the cloud broker.

The detailed performance and the overhead analysis of the proposed app-
roach is already done by the authors [15]. In addition, the authors have demon-
strated that the proposed approach supports dynamic addition of more services
or deletion of existing services from the distributed environment while comput-
ing the optimal distribution of resources [15]. Moreover, this distributed control
based approach has a lower computational overhead compared to the one of
a centralized resource allocation approach that uses a large number of service
providers [15]. In addition, this existing computational overhead can be further
lowered by tuning the error tolerance ε and step length ξ at the cloud broker
level control algorithm. At the service provider level, the computational overhead
can be lowered by using more advanced tree search techniques (greedy, pruning,
heuristics, and A∗) [1].

6 Conclusion and Future Work

In this paper, a distributed control-based performance management approach is
introduced for efficiently managing the SLAs of a service deployed in a cloud
computing environment and for maximizing the profitability of the cloud broker
at the same time. The proposed approach is adaptive to the rate of the incoming
web requests towards services and dynamically changes the resource allocation
such that the service providers can maintain their SLAs. The proposed app-
roach is novel in the terms of giving priority to the profit maximization for both
the cloud broker and service providers while computing the optimal resource
assignment. None of the research groups in academia or industry have published
research or studies about applying the interaction balance method for optimal
resource allocation through interactive bidding in cloud computing (or broker)
environment.

In the future, the proposed approach will be extended on real cloud comput-
ing platforms for performance management of the service providers in a broker-
based cloud computing environment, where the cloud resources will also have
different reliability index with the varying unit price. The proposed approach
will be used to derive an optimal deployment strategy for hosting a set of a wide
range of services onto the most suitable set of cloud resources such that, in terms
of efficiency and reliability, the overall performance of the system is optimized,
while keeping the profitability considerations intact.
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Abstract. Motivated by current trends in cloud computing, we study
a version of the generalized assignment problem where a set of virtual
processors has to be implemented by a set of identical processors. For
literature consistency, we say that a set of virtual machines (VMs) is
assigned to a set of physical machines (PMs). The optimization criteria
is to minimize the power consumed by all the PMs. We term the problem
Virtual Machine Assignment (VMA). Crucial differences with previous
work include a variable number of PMs, that each VM must be assigned
to exactly one PM (i.e., VMs cannot be implemented fractionally), and
a minimum power consumption for each active PM. Such infrastructure
may be strictly constrained in the number of PMs or in the PMs’ capacity,
depending on how costly (in terms of power consumption) it is to add
a new PM to the system or to heavily load some of the existing PMs.
Low usage or ample budget yields models where PM capacity and/or the
number of PMs may be assumed unbounded for all practical purposes.
We study four VMA problems depending on whether the capacity or
the number of PMs is bounded or not. Specifically, we study hardness
and online competitiveness for a variety of cases. To the best of our
knowledge, this is the first comprehensive study of the VMA problem for
this cost function.
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1 Introduction

The current pace of technology developments, and the continuous change in busi-
ness requirements, may rapidly yield a given proprietary computational platform
obsolete, oversized, or insufficient. Thus, outsourcing has recently become a pop-
ular approach to obtain computational services without incurring in amortization
costs. Furthermore, in order to attain flexibility, such service is usually virtual-
ized, so that the user may tune the computational platform to its particular
needs. Users of such service need not to be aware of the particular implementa-
tion, they only need to specify the virtual machine they want to use. This con-
ceptual approach to outsourced computing has been termed cloud computing, in
reference to the cloud symbol used as an abstraction of a complex infrastruc-
ture in system diagrams. Current examples of cloud computing providers include
Amazon Web Services [3], Rackspace [34], and Citrix [17].

Depending on what the specific service provided is, the cloud computing model
comes in different flavors, such as infrastructure as a service, platform as a service,
storage as a service, etc. In each of these models, the user may choose specific para-
meters of the computational resources provided. For instance, processing power,
memory size, communication bandwidth, etc. Thus, in a cloud-computing service
platform, various virtualmachines (VM) with user-defined specifications must
be implemented by, or assigned to1, various physical machines (PM)2. Fur-
thermore, such a platform must be scalable, allowing to add more PMs, should
the business growth require such expansion. In this work, we call this problem the
Virtual Machine Assignment (VMA) problem.

The optimization criteria for VMA depends on what the particular objective
function sought is. From the previous discussion, it can be seen that, underlying
VMA, there is some form of bin-packing problem. However, in VMA the number
of PMs (i.e., bins for bin packing) may be increased if needed. Since CPU is gen-
erally the dominant power consumer in a server [7], VMA is usually carried out
according to CPU workloads. With only the static power consumption of servers
considered, previous work related to VMA has focused on minimizing the num-
ber of active PMs (cf. [11] and the references therein) in order to minimize the
total static energy consumption. This is commonly known as VM consolidation
[26,32]. However, despite the static power, the dynamic power consumption of
a server, which has been shown to be superlinear on the load of a given com-
putational resource [9,23], is also significant and cannot be ignored. Since the
definition of load is not precise, we borrow the definition in [7] and define the load
of a server as the amount of active cycles per second a task requires, an absolute
metric independent of the operating frequency or the number of cores of a PM.
The superlinearity property of the dynamic power consumption is also confirmed
1 The cloud-computing literature uses instead the term placement. We choose here the

term assignment for consistency with the literature on general assignment problems.
2 We choose the notation VM and PM for simplicity and consistency, but notice that

our study applies to any computational resource assignment problem, as long as the
minimization function is the one modeled here.
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by the results in [7]. As a result, when taking into account both parts of power
consumption, the use of extra PMs may be more efficient energy-wise than a
minimum number of heavily-loaded PMs. This inconsistency with the literature
in VM consolidation has been supported by the results presented in [7] and,
hence, we claim that the way consolidation has been traditionally performed has
to be reconsidered. In this work, we combine both power-consumption factors
and explore the most energy-efficient way for VMA. That is, for some parame-
ters α > 1 and b > 0, we seek to minimize the sum of the α powers of the PMs
loads plus the fixed cost b of using each PM.

Physical resources are physically constrained. A PMs infrastructure may be
strictly constrained in the number of PMs or in the PMs CPU capacity. However,
if usage patterns indicate that the PMs will always be loaded well below their
capacity, it may be assumed that the capacity is unlimited. Likewise, if the
power budget is very big, the number of PMs may be assumed unconstrained
for all practical purposes. These cases yield 4 VMA subproblems, depending on
whether the capacity and the number of PMs is limited or not. We introduce
these parameters denoting the problem as (C,m)-VMA, where C is the PM
CPU capacity, m is the maximum number of PMs, and each of these parameters
is replaced by a dot if unbounded.

In this work, we study the hardness and online competitiveness of the VMA
problem. Specifically, we show that VMA is NP-hard in the strong sense (in par-
ticular, we observe that (C,m)-VMA is strongly NP-complete). Thus, VMA
problems do not have a fully polynomial time approximation scheme (FPTAS).
Nevertheless, using previous results derived for more general objective functions,
we notice that (·,m)- and (·, ·)-VMA have a polynomial time approximation
scheme (PTAS). We also show various lower and upper bounds on the offline
approximation and the online competitiveness of VMA. Rather than attempting
to obtain tight bounds for particular instances of the parameters of the prob-
lem (C,m,α, b) we focus on obtaining general bounds, whose parameters can be
instantiated for the specific application. The bounds obtained show interesting
trade-offs between the PM capacity and the fixed cost of adding a new PM to
the system. To the best of our knowledge, this is the first VMA study that is
focused on power consumption.

Roadmap. The paper is organized as follows. In what remains of this section,
we define formally the (·, ·)-VMA problem, we overview the related work, and
we describe our results in detail. Section 2 includes some preliminary results that
will be used throughout the paper. The offline and online analyses are included in
Sects. 3 and 4 respectively. Section 5 discusses some practical issues and provides
some useful insights regarding real implementation. For succinctness, many of
the proofs are left to the full version of this paper in [8].

1.1 Problem Definition

We describe the (·, ·)-VMA problem now. Given a set S = {s1, . . . , sm} of m > 1
identical physical machines (PMs) of capacity C; rational numbers μ, α and b,
where μ > 0, α > 1 and b > 0; a set D = {d1, . . . , dn} of n virtual machines and
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a function � : D → R that gives the CPU load each virtual machine incurs3, we
aim to obtain a partition π = {A1, . . . , Am} of D, such that �(Ai) ≤ C, for all
i. Our objective will be then minimizing the power consumption given by the
function

P (π) =
∑

i∈[1,m]:Ai �=∅

(

μ
( ∑

dj∈Ai

�(dj)
)α

+ b

)

. (1)

Let us define the function f(·), such that f(x) = 0 if x = 0 and f(x) = μxα+b
otherwise. Then, the objective function is to minimize P (π) =

∑m
i=1 f(�(Ai)).

The parameter μ is used for consistency with the literature. For clarity we will
consider μ = 1 in the rest of the paper. All the results presented apply for other
values of μ.

We also study several special cases of the VMA problem, namely (C,m)-
VMA, (C, ·)-VMA, (·,m)-VMA and (·, ·)-VMA. (C,m)-VMA refers to the case
where both the number of available PMs and its capacity are fixed. (·, ·)-VMA,
where (·) denotes unboundedness, refers to the case where both the number of
available PMs and its capacity are unbounded (i.e., C is larger than the total
load of the VMs that can ever be in the system at any time, or m is larger than
the number of VMs that can ever be in the system at any time). (C, ·)-VMA and
(·,m)-VMA are the cases where the number of available PMs and their capacity
is unbounded, respectively.

1.2 Related Work

To the best of our knowledge, previous work on VMA has been only experimen-
tal [16,27,30,36] or has focused on different cost functions [1,11,15,18]. First, we
provide an overview of previous theoretical work for related assignment prob-
lems (storage allocation, scheduling, network design, etc.). The cost functions
considered in that work resemble or generalize the power cost function under
consideration here. Secondly, we overview related experimental work.

Chandra and Wong [15], and Cody and Coffman [18] study a problem for
storage allocation that is a variant of (·,m)-VMA with b = 0 and α = 2. Hence,
this problem tries to minimize the sum of the squares of the machine-load vector
for a fixed number of machines. They study the offline version of the problem
and provide algorithms with constant approximation ratio. A significant leap
was taken by Alon et al. [1], since they present a PTAS for the problem of
minimizing the Lp norm of the load vector, for any p ≥ 1. This problem has the
previous one as special case, and is also a variant of the (·,m)-VMA problem
when p = α and b = 0. Similarly, Alon et al. [2] extended this work for a more
general set of functions, that include f(·) as defined above. Hence, their results
can be directly applied in the (·,m)-VMA problem. Later, Epstein et al. [20]
extended [2] further for the uniformly related machines case. We will use these
results in Sect. 3 in the analysis of the offline case of (·,m)-VMA and (·, ·)-VMA.

3 For convenience, we overload the function �(·) to be applied over sets of virtual
machines, so that for any set A ⊆ D, �(A) =

∑
dj∈A �(dj).
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Bansal, Chan, and Pruhs minimize arbitrary power functions for speed scaling
in job scheduling [9]. The problem is to schedule the execution of n computational
jobs on a single processor, whose speed may vary within a countable collection
of intervals. Each job has a release time, a processing work to be done, a weight
characterizing its importance, and its execution can be suspended and restarted
later without penalty. A scheduler algorithm must specify, for each time, a job to
execute and a speed for the processor. The goal is to minimize the weighted sum
of the flow times over all jobs plus the energy consumption, where the flow time of
a job is the time elapsed from release to completion and the energy consumption
is given by sα where s is the processor speed and α > 1 is some constant. For
the online algorithm shortest remaining processing time first, the authors prove
a (3 + ε) competitive ratio for the objective of total weighted flow plus energy.
Whereas for the online algorithm highest density first (HDF), where the density
of a job is its weight-to-work ratio, they prove a (2 + ε) competitive ratio for the
objective of fractional weighted flow plus energy.

Recently, Im, Moseley, and Pruhs studied online scheduling for general cost
functions of the flow time, with the only restriction that such function is non-
decreasing [24]. In their model, a collection of jobs, each characterized by a release
time, a processing work, and a weight, must be processed by a single server whose
speed is variable. A job can be suspended and restarted later without penalty.
The authors show that HDF is (2+ε)-speed O(1)-competitive against the optimal
algorithm on a unit speed-processor, for all non-decreasing cost functions of
the flow time. Furthermore, they also show that this ratio cannot be improved
significantly proving impossibility results if the cost function is not uniform
among jobs or the speed cannot be significantly increased.

A generalization of the above problem is studied by Gupta, Krishnaswamy,
and Pruhs in [23]. The question addressed is how to assign jobs, possibly frac-
tionally, to unrelated parallel machines in an online fashion in order to minimize
the sum of the α-powers of the machine loads plus the assignment costs. Upon
arrival of a job, the algorithm learns the increase on the load and the cost of
assigning a unit of such job to a machine. Jobs cannot be suspended and/or
reassigned. The authors model a greedy algorithm that assigns a job so that the
cost is minimized as solving a mathematical program with constraints arriving
online. They show a competitive ratio of αα with respect to the solution of the
dual program which is a lower bound for the optimal. They also show how to
adapt the algorithm to integral assignments with a O(α)α competitive ratio,
which applies directly to our (·,m)-VMA problem. References to previous work
on the particular case of minimizing energy with deadlines can be found in this
paper.

Similar cost functions have been considered for the minimum cost network-
design problem. In this problem, packets have to be routed through a (possibly
multihop) network of speed scalable routers. There is a cost associated to assign-
ing a packet to a link and to the speed or load of the router. The goal is to route
all packets minimizing the aggregated cost. In [4,5] the authors show offline algo-
rithms for this problem with undirected graph and homogeneous link cost func-
tions that achieve polynomial and poly-logarithmic approximation, respectively.
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The cost function is the α-th power of the link load plus a link assignment
cost, for any constant α > 1. The same problem and cost function is stud-
ied in [23]. Bansal et al. [10] study a minimum-cost virtual circuit multicast
routing problem with speed scalable links. They give a polynomial-time O(α)-
approximation offline algorithm and a polylog-competitive online algorithm,
both for the case with homogeneous power functions. They also show that the
problem is APX-hard in the case with heterogeneous power functions and there
is no polylog-approximation when the graph is directed. Recently, Antoniadis
et al. [6] improved the results by providing a simple combinatorial algorithm
that is O(logα n)-approximate, from which we can construct an Õ(log3α+1 n)-
competitive online algorithm. The (·,m)-VMA problem can be seen as a especial
case of the problem considered in these papers in which there are only two nodes,
source and destination, and m parallel links connecting them.

To the best of our knowledge, the problem of minimizing the power con-
sumption (given in Eq. 1) with capacity constraints (i.e., the (C,m)-VMA and
(C, ·)-VMA problems) has received very limited attention, in the realm of both
VMA and network design, although the approaches in [5,10] are related to or
based on the solutions for the capacitated network-design problem [14].

The experimental work related to VMA is vast and its detailed overview is out
of the scope of this paper. Some of this work does not minimize energy [13,28,31]
or it applies to a model different than ours (VM migration [33,35], knowl-
edge of future load [29,35], feasibility of allocation [11], multilevel architec-
ture [25,30,33], interconnected VMs [12], etc.). On the other hand, some of the
experimental work where minimization of energy is evaluated focus on a more
restrictive cost function [25,38,40].

In [35], the authors focus on an energy-efficient VM placement problem with
two requirements: CPU and disk. These requirements are assumed to change
dynamically and the goal is to consolidate loads among servers, possibly using
migration at no cost. In our model VMs assignment is based on a CPU require-
ment that does not change and migration is not allowed. Should any other
resource be the dominating energy cost, the same results apply for that require-
ment. Also, if loads change and migration is free, an offline algorithm can be
used each time that a load changes or a new VM arrives. In [35] it is shown
experimentally that energy-efficient VMA does not merely reduce to a packing
problem. That is, to minimize the number of PMs used even if their load is close
to their maximum capacity. For our model, we show here that the optimal load
of a given server is a function only of the fixed cost of being active (b) and the
exponential rate of power increase on the load (α). That is, the optimal load is
not related to the maximum capacity of a PM.

1.3 Our Results

In this work, we study offline and online versions of the four versions of the
VMA problem. For the offline problems, the first fact we observe is that there
is a hard decision version of (C,m)-VMA: Is there a feasible partition π of the
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set D of VMs? By reduction from the 3-Partition problem, it can be shown that
this decision problem is strongly NP-complete.

We then show that the (·, ·)-VMA, (C, ·)-VMA, and (·,m)-VMA problems are
NP-hard in the strong sense, even if α is constant. This result implies that these
problems do not have FPTAS, even if α is constant. However, we show that the
(·, ·)-VMA and (·,m)-VMA problems have PTAS, while the (C, ·)-VMA problem
can not be approximated beyond a ratio of 3

2 · α−1+( 2
3 )

α

α (unless P = NP). On the
positive side, we show how to use an existing Asymptotic PTAS [21] to obtain
algorithms that approximate the optimal solution of (C, ·)-VMA. (See Table 1.)

Then we move on to online VMA algorithms. We show various upper and
lower bounds on the competitive ratio of the four versions of the problem. (See
Table 1.) Observe that the results are often different depending on whether x∗ is
smaller than C or not. In fact, when x∗ < C, there is a lower bound of (3/2)2α−1

2α−1

Table 1. Summary of bounds on the approximation/competitive ratio ρ. All lower
bounds are existential. The number of PMs in an optimal (C, ·)-VMA solution is
denoted as m∗. The number of PMs in an optimal Bin Packing solution is denoted
as m. The load that minimizes the ratio power consumption against load is denoted as
x∗. The subset of VMs with load smaller than x∗ is denoted as Ds.
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Table 2. Summary of bounds on the approximation/competitive ratio ρ for α = 3,
b = 2, and C = 2 on the left and C = 1 on the right. All lower bounds are existential.
The number of PMs in an optimal (C, ·)-VMA solution is denoted as m∗. The number
of PMs in an optimal Bin Packing solution is denoted as m. The load that minimizes
the ratio power consumption against load is denoted as x∗. The subset of VMs with
load smaller than x∗ is denoted as Ds.

that applies to all versions of the problem. The bounds are given as a function
of the input parameters of the problem, in order to allow for tighter expressions.
To provide intuition on how tight the bounds are, we instantiate them for a
realistic4 value of α = 3, and normalized values of b = 2 and C ∈ {1, 2}. The
resulting bounds are shown in Table 2. As can be observed, the resulting upper
and lower bounds are not very far in general.

2 Preliminaries

The following claims will be used in the analysis. We call power rate the power
consumed per unit of load in a PM. Let x be the load of a PM. Then, its power
rate is computed as f(x)/x. The load at which the power rate is minimized,
denoted x∗, is the optimal load , and the corresponding rate is the optimal
power rate ϕ∗ = f(x∗)/x∗. Using calculus we get the following observation.

4 The values for α in the servers studied in [7] (denoted as Erdos and Nemesis) are
close to 1.5 and 3 and x∗ values of 0.76C and 0.9C respectively.
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Observation 1. The optimal load is x∗ = (b/(α − 1))1/α
. Additionaly, for any

x �= x∗, f(x)/x > ϕ∗.

The following lemmas will be used in the analysis.

Lemma 1. Consider two solutions π = {A1, . . . , Am} and π′ = {A′
1, . . . , A

′
m}

of an instance of the VMA problem, such that for some x, y ∈ [1,m] it holds that

– Ax �= ∅ and Ay �= ∅;
– A′

x = Ax ∪ Ay, A′
y = ∅, and Ai = A′

i, for all i �= x and i �= y; and
– �(Ax) + �(Ay) ≤ min{x∗, C}.
Then, P (π′) < P (π).

From this lemma, it follows that the global power consumption can be
reduced by having 2 VMs together in the same PM, when its aggregated load
is smaller than min{x∗, C}, instead of moving one VM to an unused PM. When
we keep VMs together in a given partition we say that we are using Lemma 1.

Lemma 2. Consider two solutions π = {A1, . . . , Am} and π′ = {A′
1, . . . , A

′
m}

of an instance of the VMA problem, such that for some x, y ∈ [1,m] it holds that

– Ax ∪ Ay = A′
x ∪ A′

y, while Ai = A′
i, for all x �= i �= y;

– none of Ax, Ay, A′
x, and A′

y is empty; and
– |�(Ax) − �(Ay)| < |�(A′

x) − �(A′
y)|.

Then, P (π) < P (π′).

Corollary 1. Consider a solution π = {A1, . . . , Am} of an instance of the VMA
problem with total load �(D), such that exactly k of the Ax sets, x ∈ [1,m], are
non-empty (hence it uses k PMs). Then, the power consumption is lower bounded
by the power of the (maybe unfeasible) solution that balances the load evenly, i.e.,
P (π) ≥ kb + k(�(D)/k)α.

3 Offline Analysis

3.1 NP-Hardness

As was mentioned, it can be shown that deciding whether there is a feasible
solution for an instance of the (C,m)-VMA problem is NP-complete or not,
by a direct reduction from the 3-Partition problem. However, this result does
not apply directly to the (C, ·)-VMA, (·,m)-VMA, and (·, ·)-VMA problems. We
show now that these problems are NP-hard. We first prove the following lemma.

Lemma 3. Given an instance of the VMA problem, any solution π =
{A1, . . . , Am} where �(Ai) �= x∗ for some i ∈ [1,m] : Ai �= ∅, has power con-
sumption P (π) > ρ∗�(D) = ρ∗ ∑

d∈D �(d).

We show now in the following theorem that the different versions of the (C,m)-
VMA problem with unbounded C or m are NP-hard.
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Theorem 1. The (C, ·)-VMA, (·,m)-VMA and (·, ·)-VMA problems are strongly
NP-hard, even if α is constant.

It is known that strongly NP-hard problems cannot have a fully polynomial-time
approximation scheme (FPTAS) [37]. Hence, the following corollary.

Corollary 2. The (C, ·)-VMA, (·,m)-VMA and (·, ·)-VMA problems do not
have fully polynomial-time approximation schemes (FPTAS), even if α is
constant.

In the following sections we show that, while the (·,m)-VMA and (·, ·)-VMA
problems have polynomial-time approximation schemes (PTAS), the (C, ·)-VMA
problem cannot be approximated below 3

2 · α−1+(2/3)α

α .

3.2 The (·,m)-VMA and (·, ·)-VMA Problems have PTAS

We have proved that the (·,m)-VMA and (·, ·)-VMA problems are NP-hard in
the strong sense and that, hence, there exists no FPTAS for them. However,
Alon et al. [2], proved that if a function f(·) satisfies a condition denoted F∗,
then the problem of scheduling jobs in m identical machines so that

∑
i f(Mi) is

minimized has a PTAS, where Mi is the load of the jobs allocated to machine i.
This result implies that if our function f(·) satisfies condition F∗, the same PTAS
can be used for the (·,m)-VMA and (·, ·)-VMA problems. From Observation 6.1
in [20], it can be derived that, in fact, our power consumption function f(·)
satisfies condition F∗. Hence, the following theorem.

Theorem 2. There are polynomial-time approximation schemes (PTAS) for the
(·,m)-VMA and (·, ·)-VMA problems.

3.3 Bounds on the Approximability of the (C, ·)-VMA Problem

We study now the (C, ·)-VMA problem, where we consider an unbounded number
of machines with bounded capacity C. We will provide a lower bound on its
approximation ratio, independently on the relation between x∗ and C; and upper
bounds for the cases when x∗ ≥ C and x∗ < C.

Lower Bound on the Approximation Ratio. The following theorem shows a
lower bound on the approximation ratio of any offline algorithm for (C, ·)-VMA.

Theorem 3. No algorithm achieves an approximation ratio smaller than 3
2 ·

α−1+( 2
3 )

α

α for the (C, ·)-VMA problem unless P = NP.

Upper Bound on the Approximation Ratio for x∗ ≥ C. We study now
an upper bound on the competitive ratio of the (C, ·)-VMA problem for the
case when x∗ ≥ C. Under this condition, the best is to load each PM to its full
capacity. Intuitively, an optimal solution should load every machine up to its
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maximum capacity or, if not possible, should balance the load among PMs to
maximize the average load. The following lemma formalizes this observation.

Lemma 4. For any system with unbounded number of PMs where x∗ ≥ C the
power consumption of the optimal assignment π∗ is lower bounded by the power
consumption of a (possibly not feasible) solution where �(D) is evenly distributed
among m PMs, where m is the minimum number of PMs required to allocate
all VMs (i.e., the optimal solution of the packing problem). That is, P (π∗) ≥
m · b + m(�(D)/m)α.

Now we prove an upper bound on the approximation ratio showing a reduction
to bin packing [22]. The reduction works as follows. Let each PM be seen as a
bin of capacity C, and each VM be seen as an object to be placed in the bins,
whose size is the VM load. Then, a solution for this bin packing problem instance
yields a feasible (perhaps suboptimal) solution for the instance of (C, ·)-VMA.
Moreover, using any bin-packing approximation algorithm, we obtain a feasible
solution for (C, ·)-VMA that approximates the minimal number of PMs used.
The power consumption of this solution approximates the power consumption
of the optimal solution π∗ of the instance of (C, ·)-VMA. In order to compute an
upper bound on the approximation ratio of this algorithm, we will compare the
power consumption of such solution against a lower bound on the power con-
sumption of π∗. The following theorem shows the approximation ratio obtained.

Theorem 4. For every ε > 0, there exists an approximation algorithm for the
(C, ·)-VMA problem when x∗ ≥ C that achieves an approximation ratio of

ρ < 1 + ε +
Cα

b
+

1
m

,

where m is the minimum number of PMs required to allocate all the VMs.

Upper Bound on the Approximation Ratio for x∗ < C. We study now
the (C, ·)-VMA problem when x∗ < C. In this case, the optimal load per PM
is less than its capacity, so an optimal solution would load every PM to x∗ if
possible, or try to balance the load close to x∗. In this case we slightly modify the
bin packing algorithm described above, reducing the bin size from C to x∗. Then,
using an approximation algorithm for this bin packing problem, the following
theorem can be shown.

Theorem 5. For every ε > 0, there exists an approximation algorithm for the
(C, ·)-VMA problem when x∗ < C that achieves an approximation ratio of

ρ <
m

m∗

(

(1 + ε) +
1

α − 1

)

+
1

m∗ ,

where m∗ is the number of PMs used by the optimal solution of (C, ·)-VMA,
and m is the minimum number of PMs required to allocate all the VMs without
exceeding load x∗ (i.e., the optimal solution of the bin packing problem).
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4 Online Analysis

In this section, we study the online version of the VMA problem, i.e., when the
VMs are revealed one by one. We first study lower bounds and then provide
online algorithms and prove upper bounds on their competitive ratio.

4.1 Lower Bounds

In this section, we compute lower bounds on the competitive ratio for (·, ·)-VMA,
(C, ·)-VMA, (·,m)-VMA, (C,m)-VMA and (·, 2)-VMA problems. We start with
one general construction that is used to obtain lower bounds on the first four
cases. Then, we develop special constructions for (·,m)-VMA and (·, 2)-VMA
that improve the lower bounds for these two problems.

General Construction. We prove lower bounds on the competitive ratio of
(·, ·)-VMA, (C, ·)-VMA, (·,m)-VMA and (C,m)-VMA problems. These lower
bounds are shown in the following two theorems. In Theorem6, we prove a lower
bound on the competitive ratio that is valid in the cases when C is unbounded
and when it is larger or equal than x∗. The case C ≤ x∗ is covered in Theorem 7.

Theorem 6. There exists an instance of problems (·, ·)-VMA, (·,m)-VMA,
(C, ·)-VMA and (C,m)-VMA when C > x∗, such that no online algorithm can
guarantee a competitive ratio smaller than (3/2)2α−1

2α−1 .

Theorem 7. There exists an instance of problems (C, ·)-VMA and (C,m)-VMA
when C ≤ x∗ such that no online algorithm can guarantee a competitive ratio
smaller than (Cα + 2b)/(b + max(Cα, 2(C/2)α + b)).

Special Constructions for (·,m)-VMA and (·, 2)-VMA. We show first
that for m PMs there is a lower bound on the competitive ratio that improves
the previous lower bound when α > 4.5. Secondly, we prove a particular lower
bound for problem (·, 2)-VMA, that improves the previous lower bound when
α > 3.

Theorem 8. There exists an instance of problem (·,m)-VMA such that no
online algorithm can guarantee a competitive ratio smaller than 3α/(2α+2 + ε)
for any ε > 0.

Now, we show a stronger lower bound on the competitive ratio for (·, 2)-VMA
problem.

Theorem 9. There exists an instance of problem (·, 2)-VMA such that no online
algorithm can guarantee a competitive ratio smaller than 3α/2α+1.
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4.2 Upper Bounds

Now, we study upper bounds for (·, ·)-VMA, (C, ·)-VMA, and (·, 2)-VMA prob-
lems. We start giving an online VMA algorithm that can be used in (·, ·)-VMA
and (C, ·)-VMA problems. The algorithm uses the load of the new revealed VM
in order to decide the PM where it will be assigned. If the load of the revealed
VM is strictly larger than min{x∗, C}/2, the algorithm assigns this VM to a
new PM without any other VM already assigned to it. Otherwise, the algorithm
schedules the revealed VM to any loaded PM whose current load is smaller or
equal than min{x∗,C}

2 . Hence, when this new VM is assigned, the load of this PM
remains smaller than min{x∗, C}. If there is no such loaded PM, the revealed
VM is assigned to a new PM. Note that, since the case under consideration
assumes the existence of an unbounded number of PMs, there exists always one
new PM. A detailed description of this algorithm is shown in Algorithm1. As
before, Aj denotes the set of VMs assigned to PM sj at a given time.

Algorithm 1. Online algorithm for (·, ·)-VMA and (C, ·)-VMA problems.
for each VM di do

if �(di) > min{x∗,C}
2

then
di is assigned to a new PM

else

di is assigned to any loaded PM sj where �(Aj) ≤ min{x∗,C}
2

. If such
loaded PM does not exist, di is assigned to a new PM

We prove the approximation ratio of Algorithm1 in the following two
theorems.

Theorem 10. There exists an online algorithm for (·, ·)-VMA and (C, ·)-VMA
when x∗ < C that achieves the following competitive ratio:

ρ = 1, if no VM di has load such that �(di) < x∗,

ρ ≤ (
1 − 1

α

(
1 − 1

2α

)) (
2 + x∗

�(Ds)

)
, otherwise.

Theorem 11. There exists an online algorithm for (C, ·)-VMA when x∗ ≥ C

that achieves competitive ratio ρ ≤ 2b
C

(
1 + 1

(α−1)2α

)(
2 + C

�(D)

)
.

Proof. We proceed with the analysis of the competitive ratio of Algorithm1 in
the case when x∗ ≥ C. The analysis uses the same technique used in the proof
for the previous theorem. Hence, we just show the difference.

On one hand, when x∗ ≥ C, it holds that f(�(Ai))/�(Ai) ≥ f(C)/C due to
the fact that f(x)/x is monotone decreasing in interval (0, C]. It is also obvious
that all the PMs will be loaded no more C. As a result, the optimal power
consumption for (C, ·)-VMA can be bounded by P (π∗) ≥ f(C)�(D)/C. On the
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other hand, the solution given by Algorithm1 can also be upper bounded. We
consider the following two cases.

Case 1: �(Âi) ≥ C/2 for all i. In this case, every PM will be loaded between C/2
and C. Consequently,

P (π) =
∑

C
2 ≤�(Âi)≤C

f(�(Âi)) ≤ f(C
2 )

C
2

�(D).

The competitive ratio ρ then satisfies

ρ ≤
f(C

2 )
C
2

�(D)
f(C)

C �(D)
= 2

f(C
2 )

f(C)
≤ 2b

C

(

1 +
1

(α − 1)2α

)

.

Case 2: there exists si such that �(Âi) < C/2. In this case, it holds:

P (π) =
∑

C
2 ≤�(Âi)≤C

f(�(Âi)) + f(�(Âs′))

≤ f(C
2 )

C
2

⎛

⎝
∑

di:�(di)≤C

�(di) − �(Âs′)

⎞

⎠ + f(�(Âs′))

=
f(C

2 )
C
2

(
�(D) − �(Âs′)

)
+ �(Âs′)α + b.

The competitive ratio ρ then satisfies

ρ ≤ P (π)
f(C)

C �(D)
≤ 2b

C

(

1 +
1

(α − 1)2α

)

+
�(Âs′)α − �(Âs′) f(C

2 )
C
2

+ b

f(C)
C �(D)

≤ 2b

C

(

1 +
1

(α − 1)2α

)

+
�(Âs′)α + b

f(C)
C �(D)

≤ 2b

C

(

1 +
1

(α − 1)2α

)

+
(C
2 )α + b

f(C)
C �(D)

=
2b

C

(

1 +
1

(α − 1)2α

)(

2 +
C

�(D)

)

.

Upper Bounds for (·, 2)-VMA Problem. We now present an algorithm
(detailed in Algorithm2) for (·, 2)-VMA problem and show an upper bound on
its competitive ratio. A1 and A2 are the sets of VMs assigned to PMs s1 and s2,
respectively, at any given time.
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Algorithm 2. Online algorithm for (·, 2)-VMA.
for each VM di do

if �(di) + �(A1) ≤ (b/(2α − 2))1/α or �(A1) ≤ �(A2) then
di is assigned to s1;

else
di is assigned to s2;

We prove the approximation ratio of Algorithm2 in the following theorem.

Theorem 12. There exists an online algorithm for (·, 2)-VMA that achieves the
following competitive ratios.

ρ = 1, for �(D) ≤
(

b
2α−2

)1/α

,

ρ ≤ max

{

2,

(
3
2

)α−1
}

, for �(D) >
(

b
2α−2

)1/α

.

5 Discussion

We discuss in this section practical issues that must be addressed to apply our
results to production environments.

Heterogeneity of Servers. For the sake of simplicity, we assume in our model
that all servers in a data center are identical. We believe this reasonable, con-
sidering that modern data centers are usually built with homogeneous com-
modity hardware. Nevertheless, the proposed model and derived results are also
amenable to heterogeneous data center environments. In a heterogeneous data
center, servers can be categorized into several groups with identical servers in
each group. Then, different types of applications can be assigned to server groups
according to their resource requirements. The VMA model presented here can
be applied to the assignment problem of allocating tasks from the designated
types of applications (especially CPU-intensive ones) to each group of servers.
The approximation results we derive in this paper can be then combined with
server-group assignment approximation bounds (out of the scope of this paper)
for energy-efficient task assignment in real data centers, regardless of the homo-
geneity of servers.

Consolidation. Traditionally, consolidation has been understood as a bin pack-
ing problem [31,39], where VMs are assigned to PMs attempting to minimize
the number of active PMs. However, the results we derived in this paper, as well
as the results in [7], show that such approach is not energy-efficient. Indeed, we
showed that PM’s should be loaded up to x∗ to reduce energy consumption, even
if this requires having more active PMs.

VM arrival and departure. When a new VM arrives to the system, or
an assigned VM departs, adjustments to the assignment may improve energy
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efficiency. Given that the cost of VM migration is nowadays decreasing dramat-
ically, our offline positive results can also be accommodated by reassigning VMs
whenever the set of VM demands changes. Should the cost of migration be high
to reassign after each VM arrival or departure, time could be divided in epochs
buffering newly arrived VM demands until the beginning of the next epoch,
when all (new and old) VMs would be reassigned (if necessary) running our
offline approximation algorithm.

Multi-resource scheduling. This work focuses on CPU-intensive jobs
(VMs) such as MapReduce-like tasks [19] which are representative in production
datacenters. As the CPU is generally the dominant energy consumer in a server,
assigning VMs according to CPU workloads entails energy efficiency. However,
there exist types of jobs demanding heavily other computational resources, such
as memory and/or storage. Although these resources have limited impact on a
server’s energy consumption, VMs performance may be degraded if they become
the bottleneck resource in the system. In this case, a joint optimization of mul-
tiple resources (out of the scope of this paper) is necessary for VMA.
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Abstract. Cloud Computing is an enabler for delivering large-scale,
distributed enterprise applications with strict requirements in terms of
performance. It is often the case that such applications have complex
scaling and Service Level Agreement (SLA) management requirements.
In this paper we present a simulation approach for validating and com-
paring SLA-aware scaling policies using the CloudSim simulator, using
data from an actual Distributed Enterprise Information System (dEIS).
We extend CloudSim with concurrent and multi-tenant task simulation
capabilities. We then show how different scaling policies can be used for
simulating multiple dEIS applications. We present multiple experiments
depicting the impact of VM scaling on both datacenter energy consump-
tion and dEIS performance indicators.

Keywords: Cloud computing · Service level agreement · Scaling

1 Introduction

Cloud Computing [1] is an enabler for delivering large-scale, distributed enter-
prise applications with strict requirements in terms of performance. It is often the
case that such applications have complex scaling and Service Level Agreement
(SLA) management requirements. As example, distributed Enterprise Informa-
tion Systems [2] often interact with large-scale distributed databases, requiring
distributed processing of results coming from multiple systems. Specific to cloud
environments is the distribution of available cloud resources among multiple ten-
ants, each running a specific set of applications with different workload patterns
and SLA requirements.

The advent of Internet applications created new requirements for distrib-
uted software running in cloud environments, as the heterogeneity of physical
computing infrastructure and application workloads increased. Thus, there is a
need for testing the impact of different task allocation and resource scheduling
c© Springer International Publishing Switzerland 2014
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policies on the performance of distributed applications running in these distrib-
uted environments.

One way of achieving these goals of quantifying the performance impact of
different resource allocation policies in cloud environments is by using simula-
tions based on previously recorded performance monitoring traces. We extend
our work in [3] by using the Distributed Enterprise Information System (dEIS)
application model for simulating different SLA-based resource scaling policies in
the CloudSim [7] simulator environment.

Our main contributions can be summarized as follows. We extend the
CloudSim simulator with support for (1) multiple tenants with a dynamic num-
ber of VMs, and for (2) concurrent-tasks simulation at Virtual Machine (VM)
level. We also present how to simulate different SLA scaling policies for multiple
cloud tenants.

The rest of our paper is organized as follows. Section 2 presents the related
work in the field of cloud simulators as well as modeling and simulation of dis-
tributed cloud applications.

Section 3 introduces the SLA scaling algorithms and CloudSim extensions
required for supporting dynamic resource allocation and scaling. Section 4
presents the evaluation results, and finally, Sect. 5 draws conclusions and gives
future research directions.

2 Related Work

There are many publications describing modeling approaches at simulation of
cloud infrastructures and applications, focusing on both infrastructure modeling
and resource utilization in virtual machines. We present a short overview of some
of these works, along with a short description of CloudSim.

Sandhu et al. [4] present an approach at modeling dynamic workloads in
CloudSim by considering both random-non-overlap and workload-based profile
policies, similar to our approach for modeling dynamic enterprise workloads.
However, we extend this work by considering SLA-based VM scaling, multiple
tenants and concurrent execution/simulation of application tasks.

Buyya et al. [5] describe a model for simulating cloud resources using CloudSim.
They focus on modeling physical and virtual cloud resources, such as physical
servers, virtual machines, tasks, allocation and scheduling policies. However, they
do not focus on describing application performance models, VM scaling policies
or dynamic VM instantiation in CloudSim.

Long et al. [6] present the requirements for evaluating cloud infrastructures
using CloudSim. They describe VM CPU utilization models using monitoring
information gathered from a set of experiments, and use a power model of repre-
senting the energy consumption model in physical hosts. While we also employ a
similar approach at modeling VM dynamic workload, we extend this by consid-
ering also the concurrent application workload, as well as considering a dynamic
allocation of cloud resources by using SLA scaling.
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2.1 CloudSim Cloud Simulator

As we used the CloudSim for running the allocation and scaling simulations, we
describe briefly its architecture and main components.

CloudSim [7] positions itself as a simulator for both cloud applications and
infrastructure. It accomplishes this by allowing modeling of hardware and soft-
ware cloud resources. Among the modeled physical entities there are: hosts,
network links and datacenters, while the modeled software entities are: virtual
machines (VMs), brokers and cloudlets (tasks). This is achieved by offering the
mentioned entities as Java classes that can be extended according to simulation
requirements. The simulator is implemented using discrete events communica-
tion, fired at a specified minimum time interval. Cloud tasks (cloudlets) are
created by brokers, which send them to VMs for execution on the resources of
the hosts forming the datacenter. Upon completion of each cloudlet’s execution,
its parent broker is notified.

In CloudSim, a datacenter is composed of (1) a collection of hosts, (2) storage
devices, (3) a policy controlling the allocation of VMs to hosts, and (4) resource
utilization costs for comsumed computing time, memory, storage and network
bandwidth. Each host is defined by (1) its number of processing elements and
their Millions Instructions Per Second (MIPS) rating, (2) RAM memory size,
(3) storage size, (4) network bandwidth, and (5) VM scheduling policy. As VM
allocation policies it supports (1) time-shared, (2) space-shared, and (3) time-
shared with over-subscription. The datacenter network is given using a BRITE
[14] network topology specification.

VMs are described by their requirements in terms of (1) number of CPU cores
and MIPS rating, (2) memory size, (3) network bandwidth, (4) virtual machine
manager, and (5) cloudlet execution policy. There are four built-in cloudlet exe-
cution policies: (1) time-shared, (2) space-shared, (3) dynamic-workload, and
(4) network space-shared. The CloudSim API allows for easy development of
new cloudlet execution policies.

CloudSim models cloud tasks as cloudlet entities, defined by (1) comput-
ing requirements given as number of processing elements, and computing task
length given in MIPS, (2) network bandwidth consumption for input and out-
put, (3) CPU utilization model, (4) memory utilization model, and (5) network
bandwidth utilization model.

Cloudlets are generated by Datacenter Brokers, which are equivalent to cloud
services. Each broker controls one or more VMs and it implements a selection
algorithm for choosing which VM to receive a given cloudlet. The broker also
implements the algorithm for reacting to the completion of various cloudlets it
has generated.

For simulating a distributed application, one must create one or more cloud
brokers and implement the algorithms for generating cloudlets, as well as han-
dling their completion. Also, at least one datacenter needs to be defined, includ-
ing its hosts and network. In Sect. 2.2 we present the architecture of such a
distributed enterprise application.



94 A.-F. Antonescu and T. Braun

2.2 Distributed Enterprise Information System Architecture

A typical dEIS application consists of the following tiers, each contributing to the
SLA management problem: consumer/thin client, load balancer, business logic
and storage layer. Figure 1 provides an overview of the overall EIS topology. We
shortly present the structure of the EIS system used, with more details found
in [8,10]. This class of systems is representative for core enterprise management
systems, such as ERP [13].

Datacenter 
Network

Worker

OSGi Registry CXF 

Message Bus

Storage

OSGi Registry CXF 

Message Bus

Consumer 

Load Generator

OSGi Registry 

CXF Message Bus

Load Balancer

OSGi Registry 

CXF Message Bus

Fig. 1. dEIS architecture

As representative dEIS distributed application we used the one described
in [3,8–11]. Targeted dEIS system is composed of four core services: one or
more Thin Clients (CS), a Load Balancer (LB), one or more Worker services
(WK), and one or more Database Storage services (ST). Each service runs in
its own VM and communicates asynchronously with the other services using a
distributed service messaging bus.

The CS service contains the graphical user interface, as well as logic for initi-
ating data sessions and issuing requests. The LB service provides load balancing
logic, while also maintaining session information about connected clients. The
WK services implement data queries, analysis, transactional and arithmetic logic
for the application. The ST service contains interfaces and mechanisms for cre-
ating, reading, updating and deleting store data. A detailed presentation of the
performance model of dEIS can be found in [3].

3 SLA-Driven Distributed Systems Scaling

In this section we present the SLA-based scaling approach for managing VMs.
We first describe the Parallel CloudSim Cloudlet Scheduler (PCCS) in
Subsect. 3.1, and then, in Subsect. 3.2 we present the SLA scaling manager used
for dynamically creating VMs based on SLA policies and application perfor-
mance indicators.

3.1 Parallel CloudSim Cloudlet Scheduler

Out-of-the-box, the CloudSim simulator does not support either simulation of
time-based application level tasks, nor parallel simulation of multiple tasks in
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a VM. For these reasons, we developed a new time-shared CloudSim cloudlet
scheduler, which works as follows. First, the application task’s duration is con-
verted from milliseconds to MIPS by considering the MIPS rating of the CPU
originally running the task and the average CPU utilization during its execution,
as defined by Eq. 1

clMIPS =
1000 · clms

CPUMIPS
· CPU (1)

where clMIPS is the calculated cloudlet’s MIPS length, clms is the cloudlet’s dura-
tion in milliseconds when executed on a CPU with a MIPS rating of CPUMIPS

and an average utilization of CPU .
Next, the PCCS will calculate the available CPU MIPS capacity cap of the

current time slice ts using the formula presented in Eq. 2

cap = CPUVM
MIPS · cores · ts (2)

where CPUVM
MIPS is the MIPS capacity of the CPU belonging to the VM exe-

cuting the cloudlet, and cores is the number of cores of the CPU.
Finally, the PCCS will evenly distribute the available MIPS resources between

all running cloudlets, each cloudlet receiving a MIPS amount equal to cap/n,
where n is the number of active cloudlets in the considered time slice. During
our simulations the scheduling time slice was equal to 1 millisecond.

3.2 SLA-Based Scaling Manager

The SLA Scaling Manager (SSM) is responsible for dynamically adjusting the
number of VMs for each of the services of the distributed applications and for
each of the cloud tenants. It accomplishes this using invariant conditions formed
with terms obtained from the performance indicators of the services running in
VMs. An example of an invariant condition can be: “average distributed trans-
action execution time is below one second”. The threshold contained in the SLA
invariant is then used by the SSM for determining the conditions for performing
either a scale-out action [12] (creating one or more VMs), or a scale-in action
(terminating one or more VMs).

The SSM operates according to Algorithm 1, mainly by calculating the SLA
ratio sr as the factor by which the average over the moving time window W of
SLA metric m is approaching its maximum threshold maxSLA(m). If sr is above
a given threshold SUP (e.g. 0.9) and sr is increasing from the last check then a
scale-out operation is flagged. Similarly, if sr is below a threshold SDOWN (e.g.
0.6) and sr is decreasing, then a scale-in operation is flagged. Either scale-out
or scale-in operations will be executed only if the number of such operations
ss is below a given threshold ssMAX (e.g. 2) in the last WS seconds (e.g. 40 s,
chosen as 1.5 times the time it takes for a VM to become fully operational), for
ensuring system stability by preventing (1) fast-succeeding transitory scale-in
and scale-out actions, and (2) oscillations in the number of VMs.

For the scale-in operation it is notable that the VM selected for shutdown
(with lowest utilization value) is not immediately terminated, but first its broker
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Algorithm 1. SSM Scaling algorithm
Data: per tenant: SLA scaling thresholds, monitoring information
Result: per tenant: scale-out, scale-in VM operations
while not at end of simulation do

foreach tenant e do
calculate average value mSLA of SLA metric m over the sliding time window
W mSLA ← average (m(t),m(t − 1), ...,m(t − W ));

calculate SLA ratio sr for metric m: sr ← mSLA
maxSLA(m)

;

evaluate scale-out condition: up ← (sr > sUP )AND(sr(t) > sr(t − WS));
evaluate scale-in condition:
down ← (sr < SDOWN )AND(sr(t) < sr(t − WS));
calculate scaling speed ss as the number of scale-out or scale-in operations in
the last time window WS ;

if (up = true)AND (ss < ssMAX) then
create new VM;

else if (down = true)AND (ss < ssMAX)AND(count(VM) > 1) then
select vm for shutdown with lowest load;
inform VM ’s broker of imminent shutdown for preventing sending to
workload to VM ;
wait for T seconds before shutting-down the VM ;

end

end
schedule next scheduling check;

end

is informed about the scale-in operation for preventing new load being sent to
the VM and then after a given time period T (e.g. 10 s), during which tasks
running in the VM will get a chance to complete, the VM is finally terminated.

4 Evaluation Results

In order to evaluate the integration of the SLA Scaling Manager and Parallel
Cloudlet Scheduler into CloudSim simulator we ran three different simulations
testing both the handling of multiple cloud tenants and the ability to scale the
number of VMs according to high-level SLAs.

4.1 Simulation 1

In this simulation we considered a single cloud tenant running a constant load of
20 concurrent distributed transactions, with the dEIS system configured to use
only one VM for each service. We used this simulation as a base for comparing
the others simulations where we will introduce multi-tenancy and varying scaling
conditions.

In Fig. 2a we display the simulated load, which varied between 19 and 20
concurrent requests due to asynchronous sampling of the number of active dEIS
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requests. Figure 2b shows the response time measured at the CS service for each
distributed concurrent transaction, under the given workload. As the simulation
model uses datasets from a real distributed application [3], it has a rather large
variance. Figure 2c displays the distribution of response times at CS service.
The average CS response time was 2200 ms at the considered workload level of
20 concurrent transactions per second.

In Fig. 3a we display the execution times at the WK service, respectively
in Fig. 3b at the ST service. This shows the breakdown of total transaction
execution time between WK and ST services, with an average WK execution
time of 1652 ms and a standard deviation of 1025 ms, and an average of 533 ms
and standard deviation of 329 ms for the ST service respectively.
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Figure 4a displays the hosts’ average CPU utilization as calculated from the
VMs’ CPU utilization, while Fig. 4b shows the energy consumption of the hosts,
by considering a linear dependency model between the CPU utilization and
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Fig. 4. Simulation 1 (a) Hosts CPU utilization (b) Hosts power consumption

host’s power consumption. It is important to note the fact that hosts with no
active utilization still consumed a large amount of energy.

Figure 9a shows the total power consumption at datacenter level, summed
over every second, for the first simulation. The total simulated energy consump-
tion had a value of 335.9 KJ, distributed evenly across the entire simulation
duration, as a consequence of the constant workload.

4.2 Simulation 2

In the second simulation we considered two cloud tenants (client-organization),
each executing a varying workload as shown in Fig. 5a, which increased from 1
to 20 concurrent transactions and then decreased back to 1. The first tenant
(#0) executed its workload on a fixed virtual infrastructure (static number of
VMs/no scaling), while the second tenant (#1) had scaling enabled at 1000 ms
for WK the service, and at 400 ms for the ST service respectively.

As shown in Figs. 5b and c, tenant #1 (SLA scaling enabled) had a lower
average transaction execution time of 965.8 ms, compared to tenant #0, who had
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an average execution time of 1144.1 ms. This shows the advantages of running
the cloud workload under SLA conditions on a dynamically scaled infrastructure,
compared to running it on a fixed-sized virtual infrastructure.

The scaling behavior for tenant #1 is described separately for WK and ST
services. Figure 6a shows the average execution time for the WK VMs calculated
over a moving time window of 40 seconds, correlated with the concurrent work-
load presented in Fig. 5a. Figure 6b shows the SLA ratio between the average
execution time and the SLA threshold of 1000 ms. As the SLA ratio approached
the SLA scaling threshold (0.9 for scale-out, respectively 0.6 for scale-in), the
SSM algorithm varied accordingly the number of VMs, as shown in Fig. 6c.

Similarly, the ST service was scaled based on the average execution time
shown in Fig. 7a. The SLA scaling ratio for ST service is shown in Fig. 7b, while
the actual number of ST VMs is displayed in Fig. 7c. The maximum number of ST
VMs varied from 1 to 3 and then back to 1. It is important to note that the system
did not oscillate as the SLA scaling ratio approached the scaling threshold,
because of the scaling speed limitation mechanism described in Sect. 3.2.

The effect of scaling VMs on the average CPU utilization of hosts can be
observed in Fig. 8a, while the energy consumption per host can be observed in
Fig. 8b. The total datacenter’s power consumption can be visualized in Fig. 9b
and had a value of 538 KJ. As the VMs’ utilization increases the effect on
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datacenter’s power consumption is an increase with approx. 20 %, as the idle
hosts still contribute significantly to the total power consumption.

4.3 Simulation 3

The third simulation consisted of two tenants, each with SLA scaling enabled.
The SLA scaling thresholds were the same for both tenants, 1000 ms for the WK
services, respectively 400 ms for ST services.

The workload executed by the first tenant was varying from 1 to 20 and
back to 1 concurrent transactions, while the workload of the second tenant was
constant at 20 concurrent transactions as shown in Fig. 10a. The execution time
per request of each tenant at the CS service is displayed in Fig. 10b, and had an
average value of 1017.4 ms for tenant 1, and 1802.2 ms for tenant 2 respectively.
The measured average values are consistent with the ones obtained in simulations
1 and 2. The histogram of tenants’ execution times measured at the CS service
is displayed in Fig. 10c.
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The WK’s average execution time per tenant is displayed in Fig. 11a, while
the SLA ratios are displayed in Fig. 11b, and the number of WK’s VMs is shown
in Fig. 11c. The simulated values are consistent with the ones produced in the
previous two simulations.

5 Conclusions

We have shown how CloudSim can be used as a simulation platform for testing
SLA-based infrastructure scaling policies using application performance traces
recorded from a small-scale cloud deployment. We described, implemented and
validated a time-shared parallel cloudlet scheduler for CloudSim, which we used
for building and evaluating a SLA scaling manager for VMs, by running three
simulations of varying workloads in a multi-tenant cloud environment.

We have also proposed and validated a CloudSim model for translating
application-level performance profiling information to VM-level CloudSim sched-
uler resource utilization level. We have also identified some possible optimization
points in cloud infrastructure management, regarding energy consumption of idle
servers. We have shown that SLA guarantees can be used for VM scaling pur-
poses when it is possible to convert them to SLA ratios.

As future work we consider evaluating more complex scaling algorithms by
using prediction of both the workload and the SLA usage ratios.
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Abstract. In this paper we present an API to support modeling appli-
cations with Actors based on the paradigm of the Abstract Behavioural
Specification (ABS) language. With the introduction of JAVA 8, we
expose this API through a JAVA library to allow for a high-level actor-
based methodology for programming distributed systems which sup-
ports the programming to interfaces discipline. We validate this solution
through a case study where we obtain significant performance improve-
ments as well as illustrating the ease with which simple high and low-level
optimizations can be obtained by examining topologies and communica-
tion within an application. Using this API we show it is much easier to
observe drawbacks of shared data-structures and communications meth-
ods in the design phase of a distributed application and apply the nec-
essary corrections in order to obtain better results.

Keywords: Cloud computing · Programming models · Distributed
applications · Formal methods · Optimization

1 Introduction

The Java language is one of the mainstream object oriented programming lan-
guages that supports a programming to interfaces discipline. It has evolved into a
platform to design and implement standards in several domains of both research
and industry, along with supporting its community with new language features
and standards. With application reaching exascale dimensions in terms of data
volumes and requiring a lot of computing power, focus has increased in research-
ing numerous libraries and frameworks with an attempt to provide distribution
and concurrency at the level of Java language. However, it is widely recognized
that the thread-based model of concurrency in Java that is a well-known app-
roach is not appropriate for realizing distributed systems because of its inher-
ent synchronous communication model. A powerful concept on the other hand
is the event-driven actor model of concurrency introduced in [9] which allows
many applications to extend these actors to suit their behaviour. Examples of
these domains include designing embedded systems [5], wireless sensor networks
c© Springer International Publishing Switzerland 2014
F. Pop and M. Potop-Butucaru (Eds.): ARMS-CC 2014, LNCS 8907, pp. 103–112, 2014.
DOI: 10.1007/978-3-319-13464-2 8
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[4], distributed web-services [19], multi-core programming [12,18] and delivering
cloud services through SaaS or PaaS [14,17]. Furthermore, it provides the basis
for increasingly popular languages in parallel and distributed computing like
Scala [8]. However, such a language uses an explicit mechanism at application
level to support message passing and handling, which diminishes the general
object-oriented approach of method look-ups that forms the basis of program-
ming to interfaces.

We introduce Java 8 API [15] to program distributed systems and to formalize
actor-based programming which implies asynchronous message passing together
with the evergrowing object-oriented software engineering approach. Using asyn-
chronous message passing and a corresponding actor programming methodology
which abstracts invocation from execution (e.g. thread-based deployment), we
want to fully support and emphasize the programming to interfaces discipline.
The main research question of this paper is to demonstrate that using this API,
several type-based optimizations can be achieved at the design phase as well
as detecting possible bottlenecks in distributed applications using the simple
example of The Sieve of Eratosthenes [3,16]. This is the first step in researching
how to use type-systems to automate optimizations in parallel and distributed
applications.

2 The ABS Language

Our starting point for the actor programming model assumed in this paper is
the Abstract Behavioral Specification language (ABS) introduced in [11]. ABS
offers programmers several features such as asynchronous method calls, futures
to control these calls, interfaces for encapsulation and cooperative scheduling of
method invocations inside concurrent (active) objects. Specifically any object
created in ABS represents an actor with encapsulated data. Similar to JAVA,
their behaviour and state is defined by implementing interfaces with their cor-
responding methods. Thus they interact by making asynchronous calls to these
methods which generate messages that are pushed into a queue specific to each
actor. An actor progresses by taking a message out of its queue and process-
ing it by executing its corresponding method. This feature combination results
in a concurrent object-oriented model which is inherently compositional. The
simplicity of ABS results from the fact that each actor is viewed as a separate
processor making it very suitable for modeling distributed applications similar to
MPI [6], with the added benefit of specifying a distinct behaviour for each actor
without the connectivity issue. Finally asynchronous method calls use futures as
dynamically generated references to return values.

3 The ABS-API Library

In this section we focus on the features in Java 8 that allow us to have an efficient
and easy to use implementation of the actor model in ABS. First, methods in
an interface are declared as Defender Methods using the default keyword. This
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allows actors to have a default behaviour and optionally override this behaviour
to suit a specific function. For instance, in Java 8 java.util.Comparator provides
a default method named reversed() that creates a reversed-order comparator of
the original one. Such default method eliminates the need for any implementing
class to provide such behavior by inheritance. Second, the introduction of Java
Functional Interfaces and lambda expressions is a fundamental change in Java
8. All interfaces that contain only one abstract method are now functional inter-
faces that at runtime can be turned into lambda expressions. This means that the
same lambda expression can be statically cast to a different matching functional
interface based on the context. This is a fundamental new feature in Java 8 that
facilitates application of functional programming paradigm in an object-oriented
language. This API makes use of these new features available in JAVA 8 because
many of the interfaces found in the Java libraries are now marked as functional
interfaces, most important of which in this context are java.lang.Runnable and
java.util.concurrent.Callable. This means that a lambda expression can replace
an instance of Runnable or Callable at runtime by JVM. Therefore a lambda
expression equivalent of a Runnable or a Callable can be treated as a queued mes-
sage of an actor and executed. Finally, Java Dynamic Invocation and execution
with method handles enables JVM to support efficient and flexible execution
of method invocations in the absence of static type information. This feature
introduces a new API, available through java.lang.invoke.MethodHandles that
allows translation of a lambda expression in Java 8 at runtime to be executed
by JVM. Furthermore, this feature has been validated performance-wise over
anonymous inner classes and the Java Reflection API. Thus, lambda expressions
are compiled and translated into method handle invocations rather reflective
code or anonymous inner classes.

The ABS-API library has a fundamental interface namely the Actor Inter-
face. Using an interface for an actor allows an object to preserve its own inter-
faces, and also it allows for multiple interfaces to be implemented and composed.
A Java API for the implementation of ABS models should have the following
main features. First, one actor should be able to asynchronously send an arbi-
trary message in terms of a method invocation to a receiver actor. Second, send-
ing a message can optionally generate the equivalent of an ABS future that
the sending actor can use to refer to the return value. Finally, an object dur-
ing the processing of a message should have a context reference to the sender
of a message in order to reply to the message via another message. All these
characteristics must co-exist without requiring any modification of the intended
interface, for an object to act like an actor. The Actor interface provides a set of
default methods, namely the run and send methods, as well as a queue that sup-
ports concurrent features of Java API 5. On one hand, the default run method
takes a message from the queue, checks its type and executes the message cor-
respondingly. On the other hand, the default (overloaded) send method stores
the sent message in the corresponding queue. As mentioned before, in ABS we
use futures to control synchronization. In the ABS-API we model messages that
are expected to return a result as instances of Callable and a future is created
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by the send method which is returned to the caller, while those messages that
need to run in parallel without a future reference to the outcome are modeled
as instances of Runnable.

4 Case Study

Using our solution, we present in this section a parallelized implementation of
the Sieve of Eratosthenes [3,16]. We aim to illustrate the benefit of using the Java
language to program in an actor-based model while at the same time showing
the performance improvement compared to other actor models, the benefit of
observing certain behaviours in the programming phase, as well as showing that
the actor-based model still performs well when compared to implementations
that apply low-level optimizations. Generating prime numbers is a key factor
in authentication algorithms. With distributed applications running on several
cloud environments, the need to authenticate securely and transparently without
a sizable overhead is constantly increasing. At the same time our case study is
perfect for modeling partitions as actors as well as making it easy to simulate an
application that can work on a multi-core platform using a shared memory or a
distributed platform where communication between actors is key. The Sieve of
Eratosthenes also allows us to illustrate several optimizations that result from
the actor based model, as well as how certain well known optimizations are easy
to apply in this model without significantly increasing the code size and therefore
the design phase of a distributed application.

To model the algorithm using actors we use the well-known partitioning
parallel algorithm and represent each partition as an actor. In this algorithm,
the numbers are partitioned into smaller sequences of numbers with the same
size. Based on this algorithm, the size of each partition must be equal or greater
than(except probably for the last partition) �√n�, and the number of partitions
must be equal or less than �n/�√n��, where n is the target number. Following the
above-mentioned constraints, the first partition contains all the prime numbers
required to sieve, therefore the first actor in the model will be responsible for
sending asynchronous messages to the others that will invoke the sieving process.
With asynchronous messages written as regular method calls in Java, there is
a significant improvement in the ease of programming compared to a similar
solution that uses specialized directives like in MPI.

We decided to implement a data structure optimization, and therefore use a
BitSet data structure and also half the amount of processing work by eliminating
even numbers. These two optimizations clearly improve results and therefore
needed to be applied before testing our model to other implementations which
have at least these optimizations. We tested our solution on the SurfSara [13]
cluster using a 16 CPU machine with 128 GB of memory. A small example of a
sieve invocation and using a future to synchronize on the result for checking the
correctness of the prime numbers found at the end of the program is given in
the following.
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for (Actor s : actors) {
//sieving process invocation for a new prime number
Future<Object> r = this.send(()->{s.sieve(prime)});
futures.add(r);
}

Our main result in this paper is that with just the two standard optimiza-
tions, we obtained instant results for candidates up to 108 and 2.6 s when testing
with 109 candidates. We decided to compare our results to the fastest sieving
algorithm that further has cache-friendly memory management, wheel factoriza-
tion and segmented sieve [20]. Our model is only 10 times slower with the record
program finishing for a target of 109 in 0.26 s. What we want to emphasize how-
ever is that the source code size for this record implementation is 505 K compared
to 30 K, the size of the Actor-based model. This significantly improves the ease
of programming even in a simple distributed application. Further comparisons
with other Actor-based models will be discussed in the following section.

4.1 Type-Based Optimization

As discussed before, we aim to use this API to observe certain drawbacks or bot-
tlenecks from the programming phase of the application. In this simple example
it is easy to observe that the number of asynchronous messages sent between
actors is very high. With the API exposed in the Java language we can easily
use a shared data structure to eliminate the messages sent corresponding to each
prime number used to sieve the partitions. While this is something very trivial,
what we actually aim to extract from this ABS-API is the possibility to detect
and automate such optimizations depending on the application that is modeled.
We want to be able to analyze several applications which can be CPU-intensive,
IO-intensive or with multiple memory accesses and be able to detect performance
penalties just like the one above.

5 Experimental Methodologies and Results

The development of multicore CPUs rapidly provides a bigger need for par-
allel and concurrent programming. Currently there are multiple open source
frameworks such as Akka, Erlang, Scala, Finagle, Storm, Hadoop, Ruby, Go
Language, Hive and Pig available for distributed parallel and concurrent pro-
gramming. Further Akka, Finagle, Storm and MapReduce are different elegant
solutions for distributed computing and are based on functional programming
languages. Pig programs are more complex, and can be compiled into an execu-
tion plan consisting of several stages of MapReduce jobs, some of which can run
concurrently. Further Pig and Hive are script based data flow languages and thus
more volatile and harder to debug during programming and provides a higher
level of abstraction for MapReduce programming that is similar to SQL, but it
is procedural code, not declarative. They can be extended with User Defined
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Functions (UDFs) written in Java, Python, JavaScript, Ruby, or Groovy and
includes tools for data execution but was not ideal for implementing the Sieve
of Eratosthenes case demonstrated in the proposed paper.

Also there are various actor oriented libraries and languages in the existing
techniques for implementing some variant of actor semantics and are based on
object oriented programming languages. The actor oriented languages includes
but are not limited to Erlang, SALSA, E language and AXUM that are based on
message passing. Further one of the important programming models based on
message passing is the Actor model. The Actor model is an inherently concurrent
model based on asynchronous message passing. Moreover the Actor based model
includes many important features such as encapsulation, fair scheduling, loca-
tion transparency, locality of references which makes the actor model a suitable
programming model for distributed parallel and concurrent programming. ABS
is a concurrent, object-oriented modeling language that features functional data
types. The ABS model uses asynchronous method calls, interfaces for encap-
sulation, and cooperative scheduling of method activations inside concurrent
objects. In specific the ABS language is a class-based object-oriented language
that features algebraic data types and side effect-free functions. Also Actors [22]
implement a shared-nothing model for concurrency. A model represents a frag-
ment of the state of sieve, specifically some subset of the primes discovered cur-
rently in the existing techniques. Further the existing open source frameworks
are compared with the ABS model proposed in the paper for performance by
implementing the Sieve of Eratosthenes case using the ABS API.

Currently there is a plurality of concurrent programming languages that
use the Actor-based model approach for computing the primes using Sieve of
Eratosthenes Algorithm. The results obtained from the existing concurrent pro-
gramming languages such as Scala, Erlang and Go Programming Language are
compared with the Actor based model approach implemented for Sieve of Eratos-
thenes Algorithm in the proposed paper. As discussed in the previous section,
the Actor-based model approach proposed in the paper generates primes at 2.6 s
until 109 on 16 CPU machines using Sieve of Eratosthenes Algorithm.

In the existing implementation for Sieve of Eratosthenes Algorithm in Ruby
using JRuby and Akka [23], both the controller and model actors are defined
as distinct classes. The message sent between the actors is a list with a leading
symbol and a payload contained in the remainder of the list. The model only
considers a value prime if it does not equal or divide evenly into any previously
observed primes. The Sieve of Eratosthenes algorithm implemented in Ruby
using JRuby and Akka computes primes until 104 in 77.114 s. This method was
not effective and the performance was really slow once we got past an upper
bound of about 10,000 numbers.

This follows a similar implementation [21] for the Sieve of Eratosthenes Algo-
rithm in Erlang where tuples are used for sending messages instead of lists. The
Sieve of Eratosthenes algorithm implemented using Erlang calculates primes until
106 in 3.6 s. This method was effective for calculating primes until 106, but the
performance was really slow for higher numbers between the range of 107 to 109.
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Further there are other actor-based languages, like Scala which closely follows the
object-oriented model of programming though it has many functional program-
ming features included to support message passing and handling but this method
diminishes the general object-oriented approach of method look-ups that forms
the basis of programming to interfaces.

Further in the existing technique, the Sieve of Eratosthenes Algorithm is
implemented using the Go programming language. Go programming language
[2] is a compiled language that combines some of the syntax of C with some
more dynamic aspects to form a next generation systems programming lan-
guage. One interesting feature of the Go language is the built-in multithreading
feature which is based on channels and goprocesses. For the Sieve of Eratosthenes
implementation using GoLangauge, each time a candidate makes it through the
sieve and is returned as a new prime number. Further a new goroutine is cre-
ated to check future candidates and reject them if they divide evenly by the
new prime. The implementation is not useful as a standalone application since it
includes no termination condition and also there are other disadvantages in the
model as each goroutine knows only about the prime it contains and the channel
where candidates should be sent if they pass. Once the goroutine is created its
state does not change and also new state is added by creating a new goroutine
for a newly-discovered prime and the state is never deleted. Moreover once a
prime is discovered, removing it from consideration is non-sensical due to all
states being completely distributed and no entity in the system knows about all
discovered primes. The Sieve of Eratosthenes algorithm implemented using Go
programming language calculates primes until 107 in 1 m 33.62 s. This method
was effective for calculating primes until 107 and could be further optimized
using the Wheel Factorization optimization technique which in turn provided
better time performance and calculated primes in 12 s for primes until 107.

Using the approach of the Go Programming Language, we tried the same
modeling in ABS. We created an object which generated candidate numbers and
created new objects with new found primes. The numbers were then sent through
asynchronous messages to objects containing primes up until the last object
which spawned a separate object with the newly found prime. Each object oper-
ated as a separate thread which verified candidate numbers and discarded them.
In this manner we discovered that the JAVA backend of ABS was extremely
costly performance-wise when sending asynchronous messages and creating new
objects. Even after buffering several prime numbers into the same object and
balancing the verification load we still obtained very slow results compared even
to a naive sequential approach. These results are what prompted us to develop
the ABS-API as a layer of translation between ABS and the JAVA backend to
both reduce code size and improve performance.

We also looked at some optimizations possible from the API perspective.
One interesting optimization was using instruction level parallelism by sieving
with more than one prime number at a time. While this is a very trivial task for
this application, we want to investigate the possibility of adjusting the overall
work of an actor as a load balancing technique implemented directly in the
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coding phase using the ABS-API. Furthermore we want to introduce a notion
of location-awareness to our ABS-API such that actors know when they can
communicate using just reads and writes from a shared data structure and when
actual asynchronous messages need to be passed in between them depending on
the machine that the actors run on. This memory-management optimization is
be a significant benefit to Cloud-distributed applications.

6 Related Work

Our Java ABS-API solution was constructed after looking at several works of
research and development in the domain of actor modeling and implementation
in different languages [10]. We discuss a few languages at the level of modeling
and implementation with more focus on Java and JVM-based efforts. Erlang [1]
is a programming language used to build massively scalable soft real-time sys-
tems with requirements on high availability. It is a functional language, which
extends to its native actors support. Its runtime system has built-in support
for concurrency, distribution and fault tolerance. Erlang provides language-level
features for creating and managing processes with the aim of simplifying concur-
rent programming. The processes in Erlang communicate using message passing
instead of shared variables, which removes the need for locks, but makes all syn-
chronization explicit. Scala [8] is both a functional and object-oriented language
that unifies thread-based and event-based programming model to fill the gap for
concurrency programming. Like Java it provides the same features for handling
concurrency, but it is not possible to manage and schedule priorities on messages
sent to other actors. We also compared our results to Akka [7] implementation
of the actor model. This toolkit allows to build highly concurrent, distributed,
and fault tolerant event-driven applications on the JVM based on actor model.

7 Conclusions

In this paper, we discussed an implementation of the actor-based ABS modeling
language in Java 8 which uses the basic object-oriented mechanisms, principles
of method look-up and programming to interfaces. We have used the API to
model a simple distributed application that remains performant without apply-
ing specific optimization and fares much better than other actor-based models.
We also showed the functionality of using Java to program distributed applica-
tions as well as making it possible to detect possible optimizations at the design
phase.

The underlying modeling language has an executable semantics and supports
a variety of formal analysis techniques, including deadlock and schedulability
analysis. Further it supports a formal behavioral specification of interfaces to
be used as contracts. As discussed in Sect. 4.1 our research will focus on using
type systems to automate optimization, extend our solution to identify resource
usage of programs and communication topologies and apply a corresponding
optimization table from which to eliminate drawbacks and bottlenecks during
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code generation. Our future work will also focus on modeling more difficult
distributed applications at testing important cloud features such as reliability,
resource-provisioning, multitenancy and scalability. We also aim to automatically
generate ABS models from Java code which follows the ABS design methodol-
ogy. Model extraction allows industry level applications be abstracted into mod-
els and analyzed for different goals such as deadlock analysis and concurrency
optimization.
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Elena Apostol(B), Iulia Băluţă, Alexandru Gorgoi, and Valentin Cristea

University Politehnica Bucharest, Bucharest, Romania
{elena.apostol,valentin.cristea}@cs.pub.ro,
{iulia.baluta,alexandru.gorgoi}@cti.pub.ro

Abstract. Genetic Algorithms (GA) are a subclass of evolutionary algo-
rithms that use the principle of evolution in order to search for solutions
to optimization problems. Evolutionary algorithms are by their nature
very good candidates for parallelization, and genetic algorithms do not
make an exception. Moreover, researchers have stated that genetic algo-
rithms with larger populations tend to obtain better solutions with faster
convergence. These are the main reasons why they can benefit from a
MapReduce implementation. However, research in this area is still young,
and there are only a few approaches for adapting genetic algorithms to
the MapReduce model.

In this article we analyze the use of subpopulations for the GA MapRe-
duce implementations. MapReduce naturally creates subpopulations, and
if this characteristic is properly explored, we can find better solutions for
genetic algorithm parallelization. In this context, we propose new mod-
els for two well know genetic algorithm implementations, namely island
and neighborhood model. Our solutions are using the island model, with
isolated subpopulations, and the neighborhood model, with overlapping
subpopulations. We incorporate these solutions in a framework, that
makes the development of Cloud applications using Genetic Algorithm
easier.

Keywords: Cloud applications · Map-reduce · Parallel genetic algo-
rithms · Sub-populations

1 Introduction

In the past few years, the increase in the information available on the Internet
and the large volumes of information captured by complex scientific equipment
in domains like High Energy Physics or Astronomy have determined researchers
to explore the domain of data intensive computing. Data-intensive frameworks
were developed to deal with these situations. Among them, the MapReduce
framework and Hadoop - its open source implementation, are widely used in
research these days.

The power of the MapReduce framework comes from the fact that it splits
the data into smaller blocks that can be processed in parallel by the mappers
c© Springer International Publishing Switzerland 2014
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and then transmitted to the reducers for merge. This approach is similar to
SIMD processors. For the user of the framework, the process is translated into
two functions: a map function and a reduce function. The framework takes care
of splitting the data into chunks and passing the results from the mappers to
the reducers. The intensive parallel processing nature of this framework makes
it a good candidate for execution of parallel algorithms.

Genetic algorithms are a subclass of evolutionary algorithms, and are based
on the darwinian principles of evolution and natural selection. A genetic algo-
rithm searches for a solution to a problem by evolving a population of individuals
towards fitness maximization. The essential aspects of any genetic algorithm are:
how to represent a solution to the problem as an individual (encoding), how to
evaluate how good an individual is (fitness) and how to evolve better individuals
from the existing ones (selection, crossover).

Evolutionary algorithms are by their nature very good candidates for paral-
lelization, and genetic algorithms do not make an exception. Moreover, researchers
have stated that genetic algorithms with larger populations tend to obtain better
solutions with faster convergence [4,10]. These are the main reasons why they can
benefit from a MapReduce implementation. However, research in this area is still
young, and there are only a few approaches for adapting genetic algorithms to
the MapReduce model [2,4,6,9]. These approaches, however, explore but a small
part of the parallelization approaches existing in the field. Moreover, they do not
discuss the use of subpopulations in their MapReduce implementations. This is
an important discussion, as MapReduce naturally creates subpopulations, and if
we manage to properly explore and exploit this characteristic we can find better
solutions for genetic algorithm parallelization. We propose two alternative solu-
tions to the implementation suggested in [9]: the island model, with isolated sub-
populations, and the neighborhood model, with overlapping subpopulations. We
proposed and implemented these methods as part of a framework for genetic algo-
rithms in Hadoop. The purpose of the framework is to make the development of
genetic algorithms easier and to enhance in this way the research in this area.
The framework has two different approaches for adapting genetic algorithms to
MapReduce: a coarse grained approach, that follows the island model and a dis-
tributed fitness evaluation approach, with three possible models: global popula-
tion, island model and neighborhood model.

The rest of the paper is structured as follows. In Sect. 2 we present some
relevant related work. In Sect. 3 we present the architecture of the framework.
In Sect. 4 we describe the methods of applying map reduce. We then describe the
distributed fitness evaluation mechanism and the three models that we devel-
oped using this method: the global population model, the island model and the
neighborhood model. In the fifth section, we present the experiments that we
have conducted for the distributed fitness evaluation method. We then evaluate
and interpret those results, and, in the last section, we provide conclusions and
some ideas for future work.
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2 Related Work

Using map reduce for running genetic algorithms has been a subject of research
in the last few years. In [2], an adapted model of map reduce with an additional
reduce step, has been proposed in order to deal with iterative algorithms like
evolutionary algorithms. However, there were some drawbacks regarding that
method, mainly the fact that there was a lot of serial execution time and the
fact that this model does not use the benefits that map reduce offers but instead
forces a new model.

In [9], it is argued that there is no need for adapting the map reduce model
for genetic algorithms, but instead we should try to adapt the genetic algorithms
to fit into the model. The author succeeds in doing just that and introduces a
new model of fine-grained parallel genetic algorithm adapted for MapReduce.
In this model, each iteration of the algorithm is transformed into a map reduce
job. He also extends his model for two classes of GAs: compact and extended
compact genetic algorithms.

This work becomes the starting point of other projects, among which the
most notable is [4]. In this article, the job shop scheduling problem is tested
using the model in [9], slightly adapted and tuned. The main merit of this work
is that it introduces the idea that map reduce might be fit to work with very
large populations, that, correctly handled, can lead to faster convergence with
very good solutions. It is common for map reduce to work with big data, so this
approach suits it.

Our work differs from these previous works in that it incorporates these
approaches in a more generic implementation, inside a framework for genetic
algorithms in Hadoop. Another contribution that we brought was the discussion
regarding the imminent separation of the global population into subpopulations
handled by reducers, and the way that we could use this to implement some well-
known models for parallel genetic algorithms. We note that implementing these
models involve no additional costs, but provides good results for some classes of
problems.

3 The Proposed GA Framework Architecture

In order to create a distributed genetic algorithm we must consider the indepen-
dent elements of the algorithm which will be executed in parallel. Because on
Hadoop each mapper takes independent tasks we considered the multiple pop-
ulation coarse grained GA model. Each mapper takes as input a subpopulation
and for each individual computes the fitness function and takes care of crossover
and mutation. The Reducer’s job is to migrate individuals from one subpopula-
tion to another. This way we enlarge the solution space by bringing novelty to
populations. We denoted our framework as IGAF, which stands for “Improved
Genetic Algorithm Framework”.

IGAF is designed on three different levels regarding to the accessibility and
configuration from the user’s point of view. It consists of several interconnected
modules, as depicted in Fig. 1.
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Fig. 1. IGAF framework architecture

At the upper layer stays the GA User Configuration module, which is the
interface that the user has towards the configuration of the algorithm imple-
mentation. Here, the user can set the parameters of the algorithm for the next
two levels of the implementation. The parameters that can be set using the
configuration model can also be spread into two categories: genetic algorithms
parameters, map reduce implementation parameters. The first category con-
sists of the genetic parameters, such as: mutation, crossover, selection and other
parameters needed for the tuning of the genetic algorithms: mutation rate, stop
criteria, population size, etc. In the second category there are parameters spe-
cific to the chosen map reduce implementation: migration percentage, retain best
individuals, distributed model, partitioner implementation, etc.

The next level is represented by the GA Manager, which contains the logic for
the evolutionary algorithms. This module controls the different types of behav-
iors that can be impose to the Map Reduce stage, such as the ‘distributed fitness
evaluation’ or the ‘island model’.

In the third level, and the closest to the Hadoop core, there is the GA MapRe-
duce Controller which contains two sub-modules. The first sub-module manages
the mappers, the reducers and the partitioner. It provides different behaviors
for those components and an interface in order to dynamically add new types of
behaviors. The second sub-module manages the Map Reduce pipeline, verifies
the stop criteria and writes the result in the HDFS at the end of the algorithm.

When dealing with Evolutionary and in particular with Genetic Algorithms
there are many parameters to be taken into consideration in order to obtain the
best results. These parameters may refer to how the initial populations will be
generated, what genetic algorithm model to be used, the migration frequency
and rate, the percentage of individual to be removed for the next generation
and so on. The Benchmark module gives the user the possibility to adjust these
parameters in order to achieve a certain performance regarding the execution
time or the solution accuracy.
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4 Framework Functionality

In this section we will describe the possible behaviors of the framework, based on
the user configuration: the island behavior or the distributed fitness evaluation
behavior. We adapted these models to better suit data-intensive Cloud applica-
tions. We will present a series of implementation details and the modifications
we added to these models.

4.1 The Improved Island Model Coarse-Grained Implementation

The island model works at subpopulation level. Each subpopulation will evolve
independently, without any kind of interaction. After all the subpopulations
evolved, a migration process will start. The migration process is responsible of
diversifying each subpopulation with individuals from other subpopulation.

The framework will pass a subpopulation to each mapper and then, each
mapper will evolve its subpopulation. This approach can be seen as a number
of genetic algorithms running in parallel and solving the same problem. Initially
the solution space of each mapper is different. After the number of pipeline steps
increases the solution space of the mappers begins to resemble and to converge.

In a pipeline step the mapper tries to evolve the subpopulation and after the
maximum number of generations is reached or the subpopulation cannot evolve
anymore, it writes the output (the evolved subpopulation) for the reducers. Each
subpopulation has a specific identifier. The reducer decodes the subpopulations
and starts the migration process. The default migration process consists of select-
ing the best p% chromosomes of the subpopulation i and replacing the worst p%
chromosomes of the subpopulation i+1. This behavior can, however, be changed
by the user through the configuration section.

Depending on the genetic problem the migration frequency may vary. For
example, a genetic problem can have the migration frequency in such way that
the migration will be performed in each pipeline step, in random pipeline steps
or in every k step.

When migration is complete the reducers write all the subpopulations on the
HDFS file system as a final result or for the next pipeline step. The framework
analyzes the output received from the reducers and decides if the solution satisfies
the input conditions. If more work is required the next pipeline step is prepared
and launched on Hadoop.

Since each mapper process starts with a different subpopulation, generic drift
will tend to drive these populations into different directions. By introducing
migration, the island model is able to exploit differences in various subpopula-
tions; this variation represents a source of genetic diversity. However, migrating
a large number of individuals too often may lead to destroying the global diver-
sity (the islands will be less different). On the other hand, if migration doesn’t
occur often, it may lead to premature convergence of the subpopulations. So
when dealing with the island model some aspects need to be considered:



118 E. Apostol et al.

– each reducer must choose the right subpopulations when exchanging individ-
uals

– the migration frequency - how often individuals are exchanged
– the migration rate - the number of individuals exchanged between subpopu-

lations
– the individuals chosen for exchange
– the individuals removed after the new individuals are received [3]

The user can use the Benchmark module in order to obtain a set of configu-
ration parameters that will better suit his/her implementation.

4.2 An Efficient Distributed Fitness Evaluation

This approach is suitable when the fitness function is hard to compute and a
lot of data is required for processing. The framework splits the entire popula-
tion equally to mappers and each mapper will compute the fitness for every
individual.

For the implementation of this model, we followed the work of A. Verma [9],
and added some improvements.

The main idea is that each iteration of the algorithm will be transformed in
a MapReduce job. The mappers will evaluate the time consuming fitness func-
tion for each individual, and then the reducers will perform selection, crossover
and mutation to produce a new population for the next generation. Figure 2
depicts how the populations are distributed among the mappers and the reduc-
ers. Besides these general lines, the mapper and reducer can have additional
improvements, depending on the implemented problem.

Because our framework is meant to be generic enough to capture any problem
and to allow the user to implement a genetic algorithm in his specific way, much
of the mapper’s functionality can be configured and changed without the user
modifying the specific mapper class.

Fig. 2. Distributed fitness evaluation - global population
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The Mapper. Each mapper receives a list of individuals and its main purpose
is to evaluate the fitness function of each of them and to pass to the reducers
the individuals with the fitness value set. Ideally, one mapper per individual
would be used, and the calculated fitness should be enough computationally
intensive to make the overhead of creating the mappers a small fraction of the
total processing time.

Fitness evaluation is generally the first step performed in an iteration of the
genetic algorithm, and it is also the part of the algorithm that is most suited for
parallelization.

Besides the fitness evaluation, the mapper can include some local search
mechanism in order to improve the chromosome that it receives. Also, the map-
per can keep track of the best individual it has seen in order to treat it separately.
In the implementation in [4], the best individuals are assigned a separate key,
in order to be handled by a specific reducer that would determine the best indi-
vidual at each generation. In our framework, we wanted to leave the decision
regarding the handling of the best individuals to the user, by a parameter in
the Configuration class indicating that the best individuals should be stored
separately.

The Reducer. The reducer has the main purpose of selecting the chromosome
for crossover and then performing crossover and mutation to obtain a set of
individuals to pass to the next generation.

The selection mechanism, as well as crossover and mutation operators are
up to the user. In other implementations of genetic algorithms that we have
seen, variants of tournament selection seem to be the top choices. The user of the
framework can choose to use this method or selection, as well as other methods
with a default implementation offered by the framework, or to implement his
own selection method. The same case also happens for the genetic operators of
crossover and mutation.

The Partitioner. The partitioner is the one that assigns a certain (key-value)
pair representing the output of a mapper to a reducer. By default, the partitioner
in Hadoop assigns tasks according to the hash of the key.

In [9] it is argued that this implementation hurts the genetic algorithm, as
it can make it converge slower or not converge at all. The reason for this is that
the default partitioner sends all the individuals with the same key to the same
reducer, creating in this way isolated partitions instead of simulating a global
population. The proposed solution was to rewrite the partitioner to distribute
randomly individuals from mappers to reducers, not taking in consideration the
key assigned by the mapper. In our opinion, if a global population is wanted,
then it can be achieved by making each mapper randomly generate a key for each
chromosome from a list of keys with different hash values and leaving the default
partitioner on. This requires that each mapper will know how many reducers are
created, something that we can obtain in our mapper implementation from the
Configuration object. Also, another reason why we can take this approach is
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that we considered IDs as keys, that are meaningful solely for the map-reduce
process, as all the information about the individual is retained in the value field
attached to the key.

However, the partitioner can be modified in order to handle the best indi-
viduals received from each mapper. In [4], the best individual of each mapper
was assigned a special key: null. The partitioner wouldn’t have known how to
handle this key, so a new partitioner was implemented, that would group all the
individuals with null keys to the same reducer, that would evaluate them. We
can also note that in this implementation, the authors considered sending the
best individuals to a reducer along with other individuals normally assigned by
the partitioner to that reducer based on their hash value. However, other vari-
ations are possible: a reducer can handle only best individuals or they can be
spread uniformly through the reducers. In order to know which way is better,
one would have to consider all the possible ways of handling the best individuals
and carefully select the one that would best suit its problem.

Population Initialization. The initialization of the population can be a real
performance issue if it is done in a serial manner. This is the reason why in
parallel implementations of genetic algorithms it is common to also parallelize
this part of the algorithm. In the other map reduce implementations that we have
study, the solution that was used was to make the initialization in a separate map
reduce job, with the mappers generating the initial chromosomes. In this case
the reduce phase is skipped and the output from the mappers is the final one.
However, this approach creates a map reduce job just for initialization, which
means additional overhead. We consider that this section can be incorporated in
the first map reduce job. In this case, the mapper will receive a null value instead
of an already generated chromosome. Also, before the evaluation of fitness, the
mapper can generate a new individual that it will then evaluate normally.

4.3 Working with Subpopulations

The approach we presented so far follows the fine-grained model of parallel
genetic algorithms. The original algorithm treats each individual independently
and does not evolve subpopulations in isolation.

However, working at subpopulation level can be achieved by ensuring that
at each generation, the mappers handling specific individuals and their offspring
will always map the results to the same key, thus sending them to the same
reducer for selection and mating. The exchange between the subpopulations can
be done synchronously after a specific number of generations or asynchronously,
each mapper at a random generation.

Isolated Subpopulations. In order to keep subpopulations isolated, we added
a key attribute to all individuals, that will be also written in the representation
in HDFS. Each reducer associates the key it receives to all individuals in its sub-
population and to all the offspring it creates from parents in the subpopulation.
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In this way, all individuals in the same subpopulation will be recognized by the
mappers and always sent together to a common reducer. The mapper randomly
generates a key in the interval [0, number of reducers − 1] for each individual
in the first generation. In the next generations, since the individual already has
a key, it uses that key to associate the individual with calculated fitness to a
certain reducer.

Migration can happen, as we already mentioned, synchronously or asynchro-
nously. Migration means that a mapper decides (based on a migration probability
or at a certain generation) to send some individuals to another reducer than the
one indicated by their associated key. In this case, the mapper generates another
random key for a migrated individual and resets the key in its representation.

Migration causes certain reducers to receive more individuals than the nor-
mal configured subpopulation size. In this case, the individuals with the lowest
fitness values are dropped, to maintain a constant subpopulation size (we can
say that the newly received individuals replace the weaker ones in the existing
subpopulation). Other reducers might receive less individuals than the subpopu-
lation size. In this case, the receiver produces more offspring to compensate the
migrated individuals (Fig. 3).

Fig. 3. Distributed fitness evaluation - isolated populations

Overlapping Subpopulations. Also, based on this approach, another well-
known model of parallel GAs can be obtained: the neighborhood model, also
known as fine grain model, with small overlapping subpopulations. This can be
obtained by allowing each mapper to have a specific set of keys, thus communi-
cating with a number of reducers common to other mappers in the neighborhood.
In this way, each mapper will communicate through the reducers with only a
fraction of the other mappers, the neighborhood of the mappers overlapping in
such a way that would allow evolution in all population.

We keep the idea presented in the island model, and we give to each individual
a subpopulation id. The set of keys for each mapper is constructed by creating
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a neighborhood of consecutive ids derived from the subpopulation id of the
individual. So, for each individual, there are a number of reducers that will
receive it. In this respect, the subpopulation id can also be seen as a node id, if
we think of a grid representation (Fig. 4).

Fig. 4. Distributed fitness evaluation - overlapping subpopulations

Following this analogy, each node in the grid is represented as a mapper
and a reducer. This means that the number of mappers will be equal to the
number of reducers in this implementation. The mapper will handle the phase
of spreading the value of the node in the neighborhood. The reducer will have
the role of selecting among the individuals from the subpopulation represented
by chromosomes that are locally stored in the node and those received from
the neighborhood. After selection, crossover and mutation are performed and,
in the end, only a number of individuals equal to the size of the node are kept
for the next generation.

In the next generation, based on its id, each individual will be sent to the right
reducers, so that the neighborhood relationships are kept. In the first iteration,
the mapper is responsible for setting the subpopulation id of the newly generated
chromosomes.

This technique of overlapping subpopulations can be efficient in some situa-
tions, as it follows the fine grained model of parallel genetic algorithms.

Parametrization. There are a few important decisions to take when imple-
menting a genetic algorithm and when using distributed fitness evaluation. First
of all, there are design decisions common for a genetic algorithm: choosing a chro-
mosome representation, implementing a fitness function, determining the genetic
operators: selection, crossover, mutation. The genetic operators must ensure the
convergence of the algorithm, while also allowing diversity inside the population
for a continuum improvement of the solution from one generation to another and
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thus to ensure the evolution of the population. Then there are some parameters
that can be setup to improve the algorithm: stop criteria, mutation probability,
chromosome sampling, population size or the use of a local optimizer.

Population size is especially important when using the distributed fitness
evaluation approach, as the individuals of the population will be spread across
the mappers for fitness evaluation and then grouped in subpopulations on each
reducer for selection, crossover and mutation. It is important that each sub-
population has enough individuals to ensure that the individuals selected for
reproduction will be good enough to produce offspring that will improve the
overall population. So, population size has to be carefully selected together with
the number of mappers and the maximum number of reducers that will be cre-
ated at each generation. The number of mappers and reducers are also dependent
on the environment on which the algorithm is deployed.

Another important configuration option is the model that will be used in
order to spread the individuals on the reducers. Naturally, the map reduce model
creates subpopulations in the reduce step. However, the way subpopulations are
used in the three models presented in the previous section are different and can
impact the performance and convergence of the algorithm. In the results section,
we try to compare the performances of these models on two different problems.
However, choosing the best model depends on each problem and on the number
of machines available in the environment.

Other decisions that can be taken in order to improve the algorithm for the
distributed fitness evaluation approach are: to keep the best individuals on each
mapper separately, to override the default partitioner in order to send the best
individuals to one reducer or spread them to all reducers.

5 Experiments

5.1 Test Problems

In this section we will present the experiments that we conducted in order to
test our framework. We will present the problems we choose for testing, the
configurations for those problems and the results that we obtained. We tested
our framework on two problems: the Traveling Salesman Problem and the Job
Shop Scheduling Problem. Both of them are hard problems that are frequently
used for benchmarking of genetic algorithm implementations.

The Traveling Salesman Problem (TSP) consists of finding the minimum
path across N cities, starting from one city, visiting all cities exactly once and
returning to the starting point. This is equivalent to finding a minimum Hamil-
tonian cycle in a complete graph with N nodes. For each instance of the problem,
it is given the number of cities (N) and the distance between each two cities (or
the coordinates of the cities).

For our tests, we used an instance of the problem with 38 cities, corresponding
to the state of Djibouti, taken from [8].

The Job Shop Scheduling Problem (JSS) aims at scheduling N jobs, each with
M tasks on M machines so that the makespan is minimized. The maskespan of
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a schedule is the time needed for all jobs to complete their execution, or more
specific, the time that passes from the beginning of the first scheduled task until
the completion of the last running task. Each task requires to be deployed on a
specific machine. The tasks of a job must be executed in a specific order.

For testing we used a classical instance of the job shop scheduling problem:
FT10. It consists of 10 jobs, each with 10 tasks that must be scheduled on 10
machines. The input data is taken from the OR library [1].

5.2 Conducted Experiments

We deployed our solution on the Grid 5000’s distributed environment [5], using
Hadoop version 1.0.1. We used OpenNebula Cloud toolkit [7] for deploying a
Cloud infrastrucure on the Grid 5000’s site.

We conducted several experiments in order to compare the three models for
handling subpopulations: the global population model, the island model and the
neighborhood model. We wanted to compare them in terms of result quality. In
execution time we cannot see any significant variation, because the operations
done by the mappers and reducers are almost the same, the only difference being
the mechanism of handling subpopulation, which does not result in significant
overhead.

The experiment consisted of varying population size while keeping the num-
ber of mappers and reducers constant, with all three models. For the first set of
tests we chose as application the Job Shop Scheduling Problem (JSS). We used
50 mappers and 10 reducers, and subpopulations varying from 1000 to 10000
individuals for the first two models. For the neighborhood model, we need to
have the same number of mappers and reducers, so we used 50 mappers and
50 reducers, with an overlapping window of 2. This means that a mapper will
send its results to two reducers. Overall, the neighborhood model will have more
reducers with smaller subpopulations, with the same population size.

The results we obtained are depicted in Fig. 5. We can see that, for all three
models, the tendency is to obtain better results with bigger populations. Also,
we can see that both the island model and the neighborhood model outperform
the global population model. Moreover, the neighborhood model obtains with a
population of 1000 better results than the other models obtain with a population
of 7000, and the time therefore is considerably smaller. Besides that, we observed
that the neighborhood model tends to converge faster than the other two models.
The tests were made for 50 generations, and if the other two models were not
converging after 50 generations, the neighborhood model was converging in 35 to
45 generations, which again was improving the time needed to run. On the other
hand, a faster convergence presents the risk of converging to a local optima.

In order to properly evaluate the difference between the neighborhood model
and the other two models, we tested the neighborhood model and the global
population model for a more complex problem. We chose the instance of TSP
with 38 cities.
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Fig. 5. Island vs. global population vs neighborhood model for JSS

We used 10 mappers and 5 reducers for the global population model and 10
mappers and 10 reducers for the neighborhood model. We kept the overlapping
window at 2. The results are depicted in Fig. 6.

Fig. 6. Global population model vs neighborhood model for TSP

We can observe that in this case, too, the neighborhood model outperforms
the global population model, and the difference is even bigger than for the pre-
vious test. Moreover, we can see that the global population model does not show
much progress for larger populations, while the neighborhood model has a higher
evolution rate.

6 Conclusions

Due to its powerful mechanism of handling large amounts of data and its mas-
sive parallelization technique, the MapReduce framework can be successfully
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used for running parallel algorithms. Genetic algorithms, due to their parallel
nature and the need of using large populations to solve complex optimization
problems, are one of the classes of algorithms that can benefit from this method
of parallelization.

Research in the area of genetic algorithm parallelization using Hadoop is
still in the beginning, and only a few works in adapting genetic algorithms to
this model exist. The most convincing method used so far was to make each
generation a MapReduce job. In this article, we used the same concept, but we
enhanced it with different methods of handling subpopulations. We observed
that is natural for the MapReduce model to form subpopulations, and thus the
handling of subpopulations can be done with insignificant additional overhead.
We used this characteristic to develop two alternative models: the island model
and the neighborhood model. Both models rely on existing parallelization tech-
niques for genetic algorithms, our contribution being to adapt these techniques
to the MapReduce model and to add some modifications in order to improve the
results.

Overall, we implemented three models for distributed fitness evaluation, with
three methods of handling subpopulations: with a global population, isolated
subpopulations and overlapping subpopulations. We tested all three implemen-
tations on two different problems: the job shop scheduling problem and the
traveling salesman problem. There was no significant difference in execution
time between the three models, but the quality of the solution was definitely
higher for the neighborhood model over the other two models. The island model
also outperformed the global population model. Moreover, as the complexity
of the problem grows, the difference between the neighborhood model and the
other models grows as well. This proved the fact that correctly handling the
subpopulations formed by MapReduce can significantly improve the obtained
results.

In our tests, we also measured the increase in execution time while increasing
the size of the population. Also, we considered the variation in execution time
when the number of mappers is increasing. We found that the number of mappers
influences the execution time per iteration. The optimum number of mappers
must be properly determined through tests. This is an important matter, as a
too small number of mappers might get overloaded and a too large number of
mappers might lead to additional overhead.

We implemented these models as part of a framework designed specifically for
running genetic algorithms in Hadoop. The implementations are generic, so that
each new problem could be easily implemented, with their specific parameters
and genetic operators. We developed this framework having in mind the fact
that, with a starting point and an easier way to develop genetic algorithms in
Hadoop, research will grow and new improved models will be implemented.

As future work, we believe it is worth researching ways to reduce the overhead
between mappers and reducers, by compressing the representations of individuals
and thus reducing the I/O overhead.
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Abstract. Scalability is one of the major advantages brought by cloud
computing environments. This advantage can be even more evident when
considering the composition of services through choreographies. However,
when dealing with applications that have quality of service concerns scal-
ability needs to be performed in an efficient way considering both hori-
zontal scaling - adding new virtual machines with additional resources,
and vertical scaling - adding/removing resources from existing virtual
machines. By efficiency we mean that non-functional properties must be
offered in the choreographies while is made effective/improved resource
usage. This paper discusses scalability strategies to enact service chore-
ographies using cloud resources. We present efforts at the state of the art
technology and an analysis of the outcomes in adopting different strate-
gies of resource scaling. We also present experiments using a modified
version of CloudSim to demonstrate the effectiveness of these strategies
in terms of resource usage and the non-functional properties of chore-
ographies.

Keywords: Cloud computing · Scalability · Choreography · Auto-
scaling

1 Introduction

The provision of quality of service (QoS) is one of the main challenges in cloud
computing [5], since this paradigm must provide assurances that go beyond the
typical maintenance activities and must provide high reliability, scalability and
autonomous behaviour. Many QoS aspects of an application are related with the
scalability provided by the hardware resources used to deploy it. As a matter
of fact, cloud environments are increasingly used due to their elasticity and
the illusion of infinite resources. Increasing degrees of scalability are achieved
through the automated management of resources, typically using horizontal scal-
ing, which means changing the amount of resources used, by adding or removing
virtual machines (VM) according to policies related to the use of such resources
or non-functional properties of the application.
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Another strategy for scalability is the use of vertical scaling, i.e. on-the-
fly changing of the amount of resources allocated to an already running VM
instance, for example, allocating more physical CPU time to a running virtual
machine. In a complementary manner, we can have a hybrid approach where we
increase both the number and the configuration of virtual machines.

Although there are different scalability strategies they must be used in an
efficient way, regarding the consumption of resources. This is due to the fact that
a poor management of resources can result in unnecessary spending in the case
of public clouds, as well as problems related to energy consumption and loss of
investment in the case of private clouds. Another issue that must be taken into
account is the QoS offered to applications since some functionalities may not be
useful if certain non-functional attributes are not guaranteed [8].

These challenges are even more evident in the so called Future Internet,
which results from the evolution of the current Internet, in combination with
the Internet of Content [9], the Internet of Services [24] and the Internet of
Things [2]. In this new paradigm there are thousands of services belonging to
different organizations that have to cooperate with each other in a distributed
and large scale environment. This integrated view of services highlighted some
problems that were not readily apparent in previous integration efforts, which
hardly reached the scale that systems of web services now have [30].

Keeping centralized coordinators for these new types of applications is infeasi-
ble due to requirements like fault tolerance, availability, heterogeneity and adapt-
ability. For this reason, the most promising solution may be the organization of
decentralized and distributed services through choreographies. Choreographies
are service compositions that implement distributed business processes, typically
between organizations in order to reduce the number of exchanged messages and
distribute business logic, without the need for centralized coordinators, since
each service “knows” when to perform its operations and which other services it
must interact with [3].

This paper discuss the state of the art in providing scalability for cloud-based
service choreographies, considering both technologies and cloud providers. We
discuss the outcomes of using cloud environments and the main advantages and
disadvantages of adopting different scalability strategies to enact choreographies
on cloud resources. We strengthen this discussion with some preliminary evalua-
tion of these strategies. Although this article does not address aspects related to
the implementation of choreographies, the analysis presented here can be used
as input to different approaches regarding choreography execution in cloud, as
well as general applications. The remaining of this paper is as follows: Sect. 2
presents a motivating example; Sect. 3 discusses how actual virtualization tech-
nologies and cloud providers handle scalability strategies, while Sect. 4 presents
some results of the evaluation of these strategies in choreography enactment.
Finally, Sect. 5 discusses related work and Sect. 6 presents the final remarks.

2 Motivating Example

Media sharing is one of the main Internet applications [21]. This type of appli-
cation was driven by the increasing use of social networks and content sharing
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platforms such as YouTube, Instagram and Facebook, and its growth brings scal-
ability problems, with increasing demands for data storage and transfer, and the
pressure to deliver faster service and other quality attributes. Cloud computing
is therefore an increasingly used alternative for resource providers to circum-
vent these problems. Therefore, in this section we will explore some scenarios to
illustrate the complexities involved in the management of scalability issues.

Let us suppose a fictitious organization that uses a public cloud provider or
a datacenter (using some virtualization technology) to obtain resources for its
applications. One of the applications consists in a choreography of services for
media sharing on the web. This application comprises a service for media upload
that communicates with other two services: one to perform media storage and
another to perform media indexing. There is also a service that provides the
website front end.

The services of the application have associated quality of service require-
ments: initially the upload service must handle at least 100 concurrent requests;
data storage must be performed in a secure environment; and indexing overhead
should be less than 1 s for at least 90 % of the requests. Based on these require-
ments and on the expected demand, let us suppose that in order to enact the
choreography, it is necessary to allocate one VM for the upload service, as well
as using a scalable architecture for media storage, a relational database for data
indexing, and another VM for the front end. The services and resources of the
initial scenario are illustrated in Fig. 1(a).

After choreography deployment and application execution starts, suppose
there is a considerable increase in demand. This behaviour is common in many
web applications, which typically starts with only a handful of users but quickly
grow to reach thousands and even millions of users. As an example, Facebook
has an average growth of 250,000 new users per day [12].

In addition to increased demand, in our scenario another requirement was
raised - the viewing of media in various formats. Accordingly, it is necessary to
convert the original media, which is a intensive processing task. Thus, two new
services must be added to the choreography: one to perform media processing
before storage and another to control the queue for this. Furthermore, aiming
to increase competitiveness, the upload QoS was modified, aiming to be able to
handle ten times more requests concurrently. To meet this new scenario, it is
necessary to review the initial resource allocation.

In the additional resource allocation we can adopt the strategies cited before:
the first one is to do horizontal scaling. Accordingly, we can create other VM
instances and get something like allocation A in Fig. 1(b). On the other hand,
we can use vertical scaling and keep the number of resources but increasing their
configuration, as in the allocation B in Fig. 1(b).

The main problem in this scenario is to decide which scalability strategy is the
preferred option given the quality of service requirements and the cloud provider
or technology features, e.g. performance, security, cost, etc. For instance, at a first
glance horizontal scaling is a good choice for the media processing service due
concurrency issues but what are the outcomes of adopting this strategy instead
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(a) Initial choreography.

(b) Adapted choreography.

Fig. 1. Choreography deployment for the media sharing application.

of vertical scaling? In addition we can even use both strategies by allocating more
instances with an increased configuration. Another point is ability to determine
the overhead as well as the ability to adopt each of these strategies when using
a the given provider/technology.

3 Scalability Strategies in Cloud Platforms

Current virtualization technologies allow the addition of new VM instances as
well as the re-dimensioning of running VMs. For horizontal scaling, experiments
have shown different values for VM startup time [4,17], although on average it
takes about 1 min, while vertical scaling allows to double the processing power
in less than 1 s [34]. Gong et al. [15] indicate that changes in the amount of CPU
take on average 120 ± 0.55 ms.



132 R. Gomes et al.

Another positive factor for the adoption of a hybrid approach rather than the
commonly adopted practice of only scaling resources horizontally is that vertical
scaling is quite advantageous in some cases, as Dawoud et al. [10] demonstrate.
According to these authors, a web server running on a vertically scaled VM
offers better performance than a web server running multiple VMs, i.e. a VM
with 4 cores implies a lower response time compared to 4 VM instances running
in parallel.

Table 1 presents details on automated resource scaling for some of the main
providers and cloud technologies. As can be seen, the majority of them do not
support automatic scaling but provide APIs that allow one to perform this task.

Table 1. Scalability in cloud providers/technologies.

Cloud Provider/Technology Automatic Automatic

horizontal vertical

scaling scaling

Amazon (aws.amazon.com) yes no

Windows Azure (www.windowsazure.com) yes no

Google App Engine (developers.google.com/appengine) yes no

Google Compute Engine (cloud.google.com/products/compute-engine) yes no

Rackspace (www.rackspace.com) no yes

Flexiscale (flexiscaletechnologies.co.uk) no yes

GoGrid (www.gogrid.com) no no

Joyent Cloud (www.joyent.com) no yes

Eucalyptus (www.eucalyptus.com) no no

Xen (www.xenproject.org) no yes

By using the Auto Scaling and Cloud Watch in Amazon EC2, it is possible
define policies for VM creation and destruction. The average startup time for
a new instance on this provider is between 2 and 10 min, though this time is
close to 100 s for instances running Linux [20]. Similarly, VM startup time in
Windows Azure is around 10 min, although different requests for VM creation
may take up different amounts of time. Experiments in [17] indicate a delay of
4 min between the startup time of the first and fourth instance using Azure.
Some cloud providers like Google App and Compute Engine1 offer horizontal
auto scaling, although it is not possible manage its operation.

Regarding vertical scaling, in Rackspace, Flexiscale and Joyent Cloud it is
possible to do scaling of processor but this requires VM reboot. CPU scaling
can be performed until it reaches the full capacity of the underlying physical
machine [32]. In Xen we can also have scaling of memory, which is performed by
a process known as memory ballooning, which allows changing of the amount of
memory to a VM while it is running. A similar mechanism is offered for CPU
scaling [27].
1 In the Google Compute Engine horizontal auto scaling is implemented as an appli-

cation from App Engine.

http://aws.amazon.com
www.windowsazure.com
http://developers.google.com/appengine
http://cloud.google.com/products/compute-engine
www.rackspace.com
http://flexiscaletechnologies.co.uk
www.gogrid.com
www.joyent.com
www.eucalyptus.com
www.xenproject.org
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In addition to the APIs offered by cloud providers is possible to use frame-
works to achieve automated scaling of resources. Table 2 [13] shows some of these
frameworks, together with the providers they support and details on the scaling
capacity.

Table 2. Frameworks for cloud resource management.

Framework Supported providers Scaling strategy

Cloudify (www.
cloudifysource.org)

Amazon, OpenStack,
Azure, HP Cloud,
Rackspace

Automated scaling based
on metrics related to
VM configuration and
number of instances

Cloud Foundry (www.
cloudfoundry.com)

Amazon, OpenStack,
Rackspace, Eucalyptus

Manual change in the
number of VMs
associated with an
application

Scalr (www.scalr.com) Amazon, OpenStack,
Rack- space, Nimbula,
Eucalyptus, IDC
Frontier, CloudStack,
Cloud Foundry

Automated scaling of
infrastructure and
database when they are
overloaded or when
scheduling is done

OnApp (onapp.com) Xen, KVM, VMware and
other smaller public
provider

Vertical scaling with
automated VM
migration when the
physical machine does
not have enough
resources

Besides scaling, it is necessary to take into account the time required to per-
form VM migration from one physical machine to another when the existing
resources are insufficient. Considering Xen for instance, VM migration requires
the transfer of all memory. However, the migration mechanism hides the latency
by continuing running the application on the original VM while the memory
contents are transferred. Experiments in [25] show that the migration of a VM
with 800 MB of memory on a LAN using Xen caused unavailability of 165 ms
to 210 ms and increased application execution time in 17–25 s. However, during
this period throughput decreases only 12 %. The results in [31] show that, in an
instance of an almost overloaded system (serving 600 concurrent users), migra-
tion causes significant downtime (about 3 s) but the 99th SLA percentile could
be met, i.e. 99 % of more critical SLA could be met.

Based on the above, although there are no records of accurate results for all
technologies in the literature, we can state that the achievement of scaling in
two dimensions (vertical and horizontal) is feasible. Having said that, we now
present some experiments to evaluate how these strategies work in the context
of service choreographies.

www.cloudifysource.org
www.cloudifysource.org
www.cloudfoundry.com
www.cloudfoundry.com
www.scalr.com
http://onapp.com
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4 Evaluating Scalability Strategies to Service
Choreographies

We performed some preliminary experiments to analyse the scalability strategies
and evaluate how it interferes in the resource usage and the QoS offered to
choreographies. Through this experiment, we expect to answer the following
research questions:

– Does the cost associated with the allocation of resources justify potential
advantages obtained?

– Which one is the best strategy for resource scaling in a choreography enact-
ment?

– How different scaling policies interfere in the usage of resources and non-
functional characteristics of services choreographies?

The experiments were performed using simulations through a modified ver-
sion of CloudSim [7]. Initially we present the modifications implemented and
then we describe the experiments and their results. To design and describe the
experiments we follow our structure proposed by Wohlin et al. [33].

4.1 Simulator

CloudSim [7] is an extensible toolkit that enables modelling and simulation of
clouds, as well simulation of policies for resource provisioning. This simulator
is usually used to investigate the infrastructure design decisions by analysing
different configurations [6]. Cloud providers are modelled in the simulator as
Datacenters receiving service requests. These requests are elements encapsulated
in VMs that need to allocate shared processing power in a given Host in the
datacenter. The VMScheduler component is responsible for scheduling the host
that runs each VM.

Applications running in the cloud environment are represented as a set of
Cloudlets, which store execution data as request size in millions of instructions
(MI); and utilization modes of CPU, memory and bandwidth. The Datacenter-
Broker component is responsible for simulation and management of cloudlets,
and to configure their policies of resource management.

CloudSim has some limitations that hinder the simulation of our scenario.
For example, it does not enable the simulation of automatic resource provision-
ing and it simulates just a single service. Thus, we implemented an extension of
CloudSim to overcome these limitations and enable the simulation of choreogra-
phy enactment. The implementation of auto scaling mechanism was made using
a simplified version of the model proposed by Amazon for its services Cloud-
Watch and Auto Scaling. According to this model, it is possible to establish
metrics for resource monitoring, and policies for VM manipulation.

For representation of choreographies, we adopted the semantics of Web Ser-
vice Choreography Description Language (WS-CDL) [19], an XML-based lan-
guage to describe collaboration between multiple stakeholders in a process of
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business. WS-CDL is a W3C recommendation detailed at http://www.w3.org/
TR/2005/CR-ws-cdl-10-20051109.

The modifications made in CloudSim not influence the core operation, since
we added only metrics collection and resource allocation policies. Thus, the
results remain equivalent to a real scenario.

4.2 Simulation of Resource Allocation Policies Applied to a Service
Choreography

We performed simulations of running the media sharing application in a cloud
environment adopting different policies for resource allocation. In those simula-
tions, we aimed to analyse how those policies impact in resource usage and the
application QoS.

Experiment Design. Our experiment evaluates how different resource scaling
policies interfere in the usage of cloud resources and the resulting choreography’s
QoS.

Experiment Planning. We evaluate the scalability by simulating horizontal,
vertical and hybrid scaling policies. The simulated scenario is the enactment of
the media sharing choreography (Sect. 2) in a single cloud provider. The following
variables were analysed:

– Latency: mean enactment time of the choreography.
– Usage (VM): mean and variance of the load in the virtual machines.
– Usage (Host): mean and variance of the load in the hosts (physical machines).
– AWRT: Average Weighted Response Time, as proposed by Grimme et al. [16],

which measures how much, on average, users should expect to have their
requests met.

– Execution Overhead: how much, on average, the execution time differs from
an estimated optimal value. This value is taken assuming that the request in
question is the only one in the cloud, i.e., no other concurrent requests share
the same resource.

The size of the media used as input in the simulation was obtained randomly,
whereas values between 0 and 10 GB. The activities duration, expressed in MI,
that composes the choreography was estimated according to the size of the media,
considering the average connection speed in Brazil and values obtained with
benchmarks [22,23,26].

We evaluated scenarios with different requests per second rates: 1, 5, 10
and 30. For the horizontal scaling we performed scenarios with 1, 5, 10 and 30
running VMs. We used VM configurations equivalent to the types of Amazon
EC2 m1.small, m1.medium, m1.large and m1.xlarge for the vertical scaling. In
the hybrid approach, both the amount and configuration of VMs have changed.
For each simulation, we consider a fixed amount of resources allocated. The
simulated cloud consists of 10 hosts with same configuration: equivalent to a
machine Intel R© Xeon R© Processor X5570, 8 GB of RAM.

http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109
http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109
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Experiment Execution. This experiment is based on the modified version
CloudSim described above. The choreographies submitted in the simulation were
generated and stored so that the same input sets were used in the three scaling
strategies.

There was no need of any treatment regarding the validity of the data.

Analysis and Interpretation of Results. Each experiment starts with the
same scenario of one VM type small and load of one request/s. To evidentiate
the difference among results, charts were plotted on a logarithmic scale, except
for the chart of strategy costs (Fig. 3).

The first variable taken was the latency. As can be seen in Fig. 2(a), when
there is 1 req/s the increase in VM number only brings high gains when going
from 1 to 5 VMs, with a decrease of 52.8 % on average latency. With scaling to
10 VMs the gain decreases to 4.14 % and after that no more gains are obtained.
This is due the fact that there are few requests, since a similar behaviour is
observed in horizontal scaling when there are 5 req/s. Therefore, the horizontal
scaling can only be justified for large-scale scenes, such as 30 req/s, where the
gain is always greater than 50 % (Fig. 2(a)).

(a) (b)

(c)

Fig. 2. Latency. (a) Horizontal strategy. (b) Vertical strategy. (c) Hybrid strategy.
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(a) (b)

(c) (d)

Fig. 3. Cost of scaling. (a) Horizontal strategy. (b) Vertical strategy. (c) Hybrid strat-
egy. (d) Comparative among strategies.

Comparing the horizontal and vertical approaches (Figs. 2(a) and (b)), we
can see that, regarding latency, to use only 1 VM type medium is almost as
satisfying as using 5 VMs type small. For types large and xlarge the vertical
strategy is more advantageous than the horizontal strategy. This shows that the
allocation of a larger number of VMs is not the best approach in this scenario.
This is mainly because of the cost: considering a public cloud, the most extreme
case (30 req/s) would require the expenditure of $2.40 per hour in a horizontal
approach and $0.64 using the vertical strategy2.

The hybrid strategy (Fig. 2(c)) shows that increasing the amount and con-
figuration of VMs only bring benefit in the first modification, i.e. move from
one VM type small to 5 VMs type medium. The only exception is the case of
30 req/s, for which the second modification also brought gains. Comparing the
vertical and hybrid approaches (Figs. 2(a) and (b)) we found that the hybrid
strategy has not brought gains in some cases. This reinforces the argument that
changing the configuration of VMs can be a better strategy than allocate a
greater amount of VMs.
2 This estimation is using Amazon EC2 resources in São Paulo (Brazil) availability

zone in February/2014.
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To compare each scaling strategy, we defined the cost of each scaling, called
normalized cost, by the expression cost per hour/(QoS× load), where cost per
hour is the cost to implement the strategy, considering the number and type
of VMs, QoS is the inverse of latency and load is the number of requests per
seconds. Thus, a scaling strategy is better when the normalized cost decreases
as the scale increases, for a same load. To a fair comparison among different
strategies, we converted each strategy scale to a relative scale cost (per hour),
considering that one small VM has a cost of one unit.

Figure 3 shows graphs of the normalized cost for each scaling strategy.
Figure 3(d) shows a comparison between the cost of each strategy, on a load
of 30 request/s. Figure 3(d) endorses the idea that the vertical strategy is the
best strategy for the simulated scenario. Also, each strategy presents a point
where it does not produce any benefit. As shown in Figs. 3(a) and (c), scaling in
horizontal and hybrid approaches is only a beneficial approach at higher loads
(close to 30 request/s).

The execution overhead and AWRT presented the same behaviour of latency,
so the corresponding charts will not be shown or discussed. We also analyse the
impact of scaling approaches on the use of resources, since the use of resources
must be maximized in private clouds. Initially we analyse the use of physical
machines. Since this factor depends solely on the amount and configuration of
VMs created and there is no change in these attributes at runtime, the results
are similar for all the requests rate and, so we put them together to facilitate
comparison.
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Fig. 4. Host usage. (a) Average. (b) Variance.

In Fig. 4 we can see the average and variance of utilization of physical machines.
As showed in Fig. 4(a), the average host usage has no major changes when compar-
ing the horizontal and vertical approaches, despite a much larger amount of VM
created in the horizontal approach. Regarding the hybrid approach, only there
was considerable use of resources in the latter case (30 VMs type xlarge), where
the average utilization of physical machines was above 50 %. The low utilization
rates for the other cases is due to the large number of available resources in the
cloud.
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The usage variance (Fig. 4(b)) shows that resources were allocated almost
uniformly. The only exception occurred in the vertical approach using VM type
xlarge for which variance was 26.31 %.

Regarding the VM usage, we note that even with a greater number of instances,
the horizontal approach has a higher average utilization (Fig. 5(a)). This was
expected since, by having a more limited setting, VMs need to conduct a more
intensive processing to complete the activities. On the contrary, the creation
of 30 VMs makes the average utilization of VMs lesser than 2 % for 1, 5 and
10 req/s. Even at 30 req/s the usage is no more than 25 %, which shows that
most of these resources are idle, representing a loss. On the other hand, use
only 1 or 5 VMs (with same configuration) causes the average utilization be near
100 % when there are many requests.

The vertical approach also seemed to be the best alternative with respect to
the use of resources. Mean usage (Fig. 5(b)) with the type medium was around
50 % in almost all cases. For the type large this value was lower, not exceeding
25 %. The use of type xlarge makes the average utilization be very low, less
than 4 % in all cases. For the hybrid case (Fig. 5(c)) the scaling only improves
substantially the usage from the first to the second simulated case (5 VMs type
medium), since allocation of more resources decrease the average usage to a low
percentage, no more than 1 %.

In the analysis of usage variance it makes no sense to take into account the
cases with only one VM running. As a result, according to Figs. 5(d) and (e) we
can see that there are major differences only in extreme cases where the amount
of VMs is greater than or equal to 10. This happens because in the other cases
there is a limited number of VM, which makes usage occurs almost uniformly.

With this experiment we concluded that the allocation of a greater number
of VMs is not the best strategy when considering services choreographies. Our
results suggest that, due to dependencies between choreography activities, the
use of a strategy that minimizes the execution time may produce improved
results. However it is still necessary a mechanism to decide which strategy is the
best in each scenario, using adaptive algorithms that learn with the execution
historic. For services choreographies we can even use different strategies to each
services set. In a future experiment, we plan to evaluate how a choreography
style and architecture may influence the gain of each scaling strategy.

5 Related Work

There have been significant research efforts on the analysis of virtualization
technologies [18,31] or cloud providers performance [11,17], mainly related to
effects of horizontal or vertical scaling on the perceived latency.

Vaquero et al. [29] survey various approaches for application scalability in
clouds at three different levels: server, network and platform; they also discrim-
inate the two types of scalability: horizontal and vertical.

Suleiman et al. [28] identify a series of research challenges related to the
scalability of existing solutions. Their work aims to determine how much to scale,
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Fig. 5. VM usage. Average on horizontal (a), vertical (b) and hybrid (c) strategy.
Variance on horizontal (d) and hybrid (e) strategy.

taking into account automated scaling mechanisms and the costs associated with
licensing, as well as the flexibility enabled by the size and type of resources that
can be scaled. They also analysed how to scale, and which scaling strategy to
choose, conducting a trade-off analysis between horizontal and vertical solutions.

Nevertheless none of these works considers scalability in clouds to enact ser-
vice choreographies. As we pointed out above, there are some particularities that
must be taken into account, like dependencies between services or concurrency
issues. To the best of our knowledge there is no other work that considers this
subject.



Analysing Scalability Strategies for Service Choreographies 141

6 Final Remarks

In this paper we discuss how the main cloud providers and virtualization tech-
nologies provide scalability. By means of experiments carried out through sim-
ulation, we investigate the impacts of using three scalability strategies do enact
service choreographies on cloud resources.

While vertical scalability is possible in principle for all applications, it largely
depends on the service provider to offer the mechanisms to implement this type
of scaling dynamically. Horizontal scalability on the other hand mostly depends
on the application components and the application as a whole to support it as an
option [1]. As pointed out the overhead of each strategy also needs to be taken
into account. Horizontal scaling, for instance, requires on average 10 min to start
a new VM instance, which may not be feasible in scenarios that involve real-time
applications.

We evaluated some scalability scenarios to enact service choreographies. In
our analysis we concluded that vertical scaling is the best option in terms of
cost, resource usage and application QoS attributes for the application con-
sidered. This result, although not be general for various application areas, it
has applicability in resource allocation in approaches that use cloud comput-
ing in the general case. For instance, a model-driven development process can
manage the relation between the infrastructure and the actual application non-
functional requirements choosing the most suitable scalability strategy to meet
these requirements [14].

Nevertheless important scenarios with scalability patterns still need to be
evaluated. In addition, a more precise analysis must be performed in order to
provide elements that will enable a more effective scalability strategy. In partic-
ular, it is necessary to characterize the nature and behaviour of choreographies,
including the characteristics of each individual service, using this information to
refine the evaluation of scalability strategies. In our work the main focus was
application load but this analysis can take into account other aspects such as
service load and the use of public vs. private clouds.
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Abstract. With increasingly inexpensive cloud storage and increasingly
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ment to store and analyze data. Most of the large-scale data compu-
tations in the cloud heavily rely on the MapReduce paradigm and its
Hadoop implementation. Nevertheless, this exponential growth in popu-
larity has significantly impacted power consumption in cloud infrastruc-
tures. In this paper, we focus on MapReduce and we investigate the
impact of dynamically scaling the frequency of compute nodes on the
performance and energy consumption of a Hadoop cluster. To this end,
a series of experiments are conducted to explore the implications of
Dynamic Voltage Frequency scaling (DVFS) settings on power consump-
tion in Hadoop-clusters. By adapting existing DVFS governors (i.e.,
performance, powersave, ondemand, conservative and userspace) in the
Hadoop cluster, we observe significant variation in performance and
power consumption of the cluster with different applications when apply-
ing these governors: the different DVFS settings are only sub-optimal
for different MapReduce applications. Furthermore, our results reveal
that the current CPU governors do not exactly reflect their design goal
and may even become ineffective to manage the power consumption in
Hadoop clusters. This study aims at providing more clear understanding
of the interplay between performance and power management in Hadoop
cluster and therefore offers useful insight into designing power-aware
techniques for Hadoop systems.
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1 Introduction

Power consumption has started to severely constrain the design and the way
data-centers are operated. Power bills became a substantial part of the monetary
cost for data-center operators. Hamilton [11] estimated that money spent on
electrical power of servers and cooling units had exceeded 40 percent of total
expenses of data-centers in 2008.

The surging costs of operating large data-centers have been mitigated by
the advent of cloud computing, which allowed for better resource management,
facilitated by the adoption of virtualization technologies. Nevertheless, overall
energy consumption is continuously increasing as a result of the rapidly growing
demand for computing resources. While various energy-saving mechanisms have
been devised for large-scale infrastructures, not all of them are suitable in a cloud
context, as they might impact the performance of the executed workloads. For
instance, shutting down nodes to reduce power consumption may lead to aggres-
sive virtual machine consolidation and resource over-provisioning, with dramatic
effects on application performance. green cloud computing has thus emerged in
an attempt to find a proper tradeoff between performance requirements and
energy efficiency. To address this challenge, green clouds focus on the use of
renewable energy sources, as well as on optimizing energy-saving mechanisms at
the level of the data-center. Many research efforts have targeted power-saving
techniques based on the Dynamic Voltage Frequency Scaling (DVFS) support in
modern processors. In this paper, we aim at investigating the efficiency of such
techniques in the context of large-scale data processing, which covers a major
share of all cloud applications.

The most popular paradigm for data processing has been proposed by Google
through their MapReduce model [6], which gained a wide adoption due to fea-
tures including scalability, fault tolerance, and simplicity. Its most well-known
open-source implementation, Hadoop [10], was designed to process hundreds
of terabytes of data on thousands of cores at Yahoo!. As such large-scale
deployments become a distinctive characteristic of cloud infrastructures, energy-
efficient MapReduce is nowadays an essential concern in data-centers. Several
studies have explored power saving in Hadoop clusters, through various tech-
niques [2,4].

MapReduce systems span over a multitude of computing nodes that are fre-
quency and voltage-scalable. Our study, conducted on a Grid’5000 cluster [17],
investigates the CPU-usage variation for three representative MapReduce bench-
marks (Pi, Grep and Sort). As shown in Fig. 1, the CPU load is high (more than
90 %) during almost 75 % of the job running time for the Pi application and is
relatively high (more than 75 %) only during 65 % and 15 % of the job running
time for Grep and Sort jobs, respectively. Thus, there is a significant potential
for reducing energy consumption by scaling down the CPU when the peak CPU
performance is not required by the workload.

The contribution of this paper is to investigate such opportunities for opti-
mizing energy consumption in Hadoop clusters. We rely on a series of exper-
iments to explore the implications of DVFS settings on power consumption
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in Hadoop clusters. As DVFS research has reached a certain maturity, several
CPU Frequency Scaling tools and governors have been proposed and imple-
mented in the Linux kernel. For instance, governors such as ondemand or per-
formance tune the CPU frequency to optimize application execution time, while
powersave is designed to lower energy consumption.

We study the impact of different governors on Hadoop’s performance and
power efficiency. Interestingly, our experimental results report not only a notice-
able variation of the power consumption and performance with different appli-
cations and under different governors, but also demonstrate the opportunity to
achieve a better tradeoff between performance and power consumption.

Fig. 1. CPU utilization when running Pi , Grep and Sort benchmarks with
7.5GB of data in a 15-node Hadoop cluster: for the Pi and Grep applications,
which represent CPU-intensive MapReduce applications, we observe that the CPU load
is either high - more than 90 % and 80 % during 75 % and 55 % of the job running time -
or low - less than 1 % for 21 % of the job running time, respectively. Conversely, for
Sort application, a mostly I/O-intensive application, the CPU load has more variation.

The primary contributions of this paper are as follows:

1. It experimentally demonstrates that MapReduce applications experience vari-
ations in performance and power consumption under different CPU frequen-
cies (similar to [32]) and also under different governors. A micro-analysis
section is provided to explain this variation and its cause.

2. It illustrates in practice how the behavior of different governors influences the
execution of MapReduce applications and how it shapes the performance of
the entire cluster.

This study aims at providing a more clear understanding of the interplay
between performance and power management in Hadoop clusters, with the pur-
pose of deriving useful insights for designing power-aware techniques for Hadoop.
Paper Organization. The rest of this paper is organized as follows: Sect. 2
briefly presents Hadoop and the existing CPU power-management techniques.
This section also discusses the related work. Section 3 describes an overview of
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our methodologies, followed by the experimental results in Sects. 4 and 5. Finally,
we conclude the paper and propose our future work in Sect. 6.

2 Background and Related Work

In this section, we briefly introduce Hadoop and existing DVFS mechanisms.
This section also presents related work on MapReduce energy consumption in
data-centers and clouds.

2.1 Hadoop

Yahoo!’s Hadoop project [10] is a collection of various sub-projects for supporting
scalable and reliable distributed computing. The two fundamental sub-projects
feature a distributed file system (HDFS) and a Java-based open-source imple-
mentation of MapReduce through the Hadoop MapReduce framework. HDFS
is a distributed file system that relies on a master/slave architecture to pro-
vide high-throughput access to application data [10]. The master server, called
namenode, splits files into chunks and distributes them across the cluster with
replication for fault tolerance. It holds all metadata information about stored
files. The HDFS slaves are called datanodes and are designed to store data
chunks, to serve read/write requests from clients and propagate replication tasks
as directed by the namenode. Hadoop MapReduce is a software framework for
distributed processing of large data sets on compute clusters. It runs on top of
HDFS, thus collocating data storage with data processing. A centralized Job
Tracker (JT) is responsible of: (a) querying the namenode for the block loca-
tions, (b) scheduling the tasks on Task Trackers (TT), based on the information
retrieved from the namenode, and (c) monitoring the success and failures of the
tasks.

2.2 Power Management at CPU Level

Modern processors offer the ability to tune the power mode of the CPU through
the introduction of idle processor operating states (C-states) and CPU perfor-
mance states (P-states). A C-state indicates whether the processor is currently
active or not: processors in C0 state are executing instructions while processors
in higher C-states (Ci where i = 1, 2, etc.) are considered idle. Higher C-states
reflect a deeper sleep mode, and thus increased power savings.

The P-states determine the processor frequencies and their associated volt-
age: Processors in the P0 state run at the highest frequency and processors in
the highest P-state run at the lowest frequency. The number of available P-states
varies by processor type.

Dynamic Voltage Frequency Scaling (DVFS) is a commonly used technique
that improves CPU utilization and power management by tuning the CPU fre-
quency according to the current load. The ideal DVFS mechanism can instan-
taneously change the voltage/frequency values. Since the 2.6.10 version of the
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Table 1. CPU Governors

CpuFreq Goal Short description Downsides

Goevrnor

Performance Maximize
performance

Statically sets the CPU
frequency to the
highest available
frequency

High power
consumption

Powersave Maximize power
savings

Statically sets the CPU
frequency to the
lowest available
frequency

Long response
time

Ondemand Power efficiency
with
reasonable
performance

Dynamically adjusts
the CPU frequency
to the highest
available frequency
when the load is
high and gradually
degrades the CPU
frequency when the
load is low

Low perfor-
mance/power
saving benefits
when the
system
switches
between idle
states and
heavy load
often

Conservative Power efficiency
with
reasonable
performance

Gradually upgrades the
CPU frequency
when the load is
high and gradually
degrades the CPU
frequency when the
load is low

Worse
performance
than
Ondemand

Userspace Support for
user-defined
frequencies

Statically sets the CPU
frequency to a
user-defined value

-

Linux kernel, there are five different governors available to dynamically scale the
CPU frequency according to the CPU utilization. Each governor favors either
performance or power efficiency, as shown in Table 1. More details can be found
in [26]). Moreover, setting the governor to userspace allows users to use their own
strategy in adjusting the CPU frequency. Additionally, modern CPUs provide a
new feature called Turbo Boost which enhances the performance of a subset of
a machine’s cores by boosting their clock speed, while the rest of the available
cores are in a sleep state.

2.3 Related Work

MapReduce has attracted much attention in the past few years [18]. Substantial
research efforts have been dedicated to either adopting MapReduce in different
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environments such as multi-core [25], graphics processors (GPU)s [12], and virtual
machines [15,30] or to improving MapReduce performance through skew-handling
[16,21] and locality-execution [14,33].

There have been several studies on evaluating and improving the MapReduce
energy consumption in data-centers and clouds. Many of these studies focus on
power-aware data-layout techniques [1,19,20,23,28,29], which allow servers to
be turned off without affecting data availability. GreenHDFS [19] separates the
HDFS cluster into hot and cold zones and places the new or high-access data in
the hot zone. Servers in the cold zone are transitioned to the power-saving mode
and data are not replicated, thus only the server hosting the data will be woken
up upon future access. Rabbit [1] is an energy-efficient distributed file system
that maintains a primary replica on a small subset of always on nodes (active
nodes). Remaining replicas are stored on a larger set of secondary nodes which
are activated to scale up the performance or to tolerate primary failures. These
data placement efforts could be combined with our approach to reduce the power
consumption of powered servers. Instead of covering a set of nodes, Lang and
Patel propose an all-in strategy (AIS) [22]. AIS saves energy in an all-or-nothing
fashion: the entire MapReduce cluster is either on or off. All MapReduce jobs
are queued until a certain threshold is reached and then all the jobs are executed
with full cluster utilization.

Some works consider energy saving for MapReduce in the cloud [2,34].
Cardosa et al. [2] present virtual machines (VMs) replacement algorithms that
co-allocate VMs with similar runtime on the same physical machine in a way
that the available resources are highly utilized. Consequently, this maximizes the
number of idle servers that can be deactivated to save energy. Chen et al. [5] ana-
lyze how MapReduce parameters affect energy efficiency and discuss the compu-
tation versus I/O tradeoffs when using data compression in MapReduce clusters
in terms of energy efficiency [4]. Chen et al. [3] present the Berkeley Energy Effi-
cient MapReduce (BEEMR), an energy efficient MapReduce workload manager
motivated by empirical analysis of real-life MapReduce with Interactive Analy-
sis (MIA) traces at Facebook. They show that interactive jobs operate on just a
small fraction of the data, and thus can be served by a small pool of dedicated
machines with full power, while the less time-sensitive jobs can run in a batch
fashion on the rest of the cluster. Recently, Goiri et al. [9] present GreenHadoop,
a MapReduce framework for a data-center powered by renewable green sources
of energy (e.g. solar or wind) and the electrical grid (as a backup). GreenHadoop
schedules MapReduce jobs when green energy is available and only uses brown
energy to avoid time violations.

Closely related works focus on achieving power efficiency in Hadoop clusters by
using DVFS [27,32]. Li et al. [27] discuss the implications of temperature (machine
heat) on performance and energy tradeoffs of MapReduce. Based on the obser-
vation that higher temperature causes higher power consumption even with the
same DVFS settings, they propose a temperature-aware power allocation (TAPA)
that adjusts the CPUs frequencies according to their temperature. TAPA favors
the maximum possible CPU frequency, thus maximizing computation capacity,
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without violating the power budget. Wirtz and Ge [32] compare the power con-
sumption and the performance of Hadoop applications in three settings: (1) fixed
frequencies, (2) setting the frequencies to maximum frequencies when executing
the map or reduce otherwise minimum, and (3) performance-constraint frequency
settings that tolerate some performance degradation while achieving better power
consumption. Our work relies on the ”Fine-grained” frequencies assignment, aim-
ing to achieve the same performance while minimizing the power consumption.

Dynamic Voltage Frequency Scaling Techniques. There is a large body
of work on techniques that control the DVFS mechanism for power-scalable PC
cluster [7,8,13,24,31]. Some of these techniques control the CPU frequencies
at runtime [13] and some scale the frequencies statically, based on extensive
and expensive application profiling [7]. However, our approach differs from such
works in the target applications (MapReduce applications).

3 Methodology Overview

The experimental investigation conducted in this paper focuses on exploring the
implications of executing MapReduce applications in different DVFS settings.
We conducted a series of experiments in order to assess the impact of various
DVFS configurations on both power consumption and application performance.
We further describe the experimental environment: the platform, deployment
setup and used tools.

3.1 Platform

The experiments were carried out on the Grid’5000 [17] testbed. The Grid’5000
project provides the research community with a highly-configurable infrastruc-
ture that enables users to perform experiments at large scales. The platform
is spread over 10 geographical sites located in France. For our experiments,
we employed nodes belonging to the Nancy site on the Grid’5000. These nodes
are outfitted with a 4-core Intel 2.53 GHz CPU and 16 GB of RAM. Intra-cluster
communication is done through a 1 Gbps Ethernet network. It is worth mention-
ing that only 40 nodes of the Nancy site are equipped with power monitoring
hardware consisting of 2 Power Distribution Units (PDUs), each hosting 20 out-
lets. Since each node is mapped to a specific outlet, we are able to acquire coarse
and fine-grained power monitoring information using the Simple Network Man-
agement Protocol (SNMP). It is important to state that Grid’5000 allows us to
create an isolated environment in order to have full control over the experiments
and the obtained results.

3.2 Benchmarks

MapReduce applications are typically categorized as CPU-intensive, I/O bound,
or both. For our analysis, we chose 3 applications that are commonly used for
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benchmarking MapReduce frameworks: distributed grep, distributed sort and dis-
tributed pi.

– Distributed grep. This application scans the input data in order to find the
lines that match a specific pattern. The grep example can be easily expressed
with MapReduce: the map function processes the input file line by line and
matches each single line against the given pattern; if the matching is successful,
then the line is emitted as intermediate data. The reduce function simply
passes the intermediate data as final result.

– Distributed sort. The sort application consists in sorting key/value records
based on key. With MapReduce, both the map and reduce functions are trivial
computations, as they simply take the input data and emit it as output data.
The sort MapReduce implementation takes advantage of the default optimiza-
tions performed by the framework that implicitly sorts both intermediate data
and output data.

– Distributed pi. This benchmark estimates the value of pi based on sampling.
The estimator first generates random points in a 1×1 area. The map phase
checks whether each pair falls inside a 1-diameter circle; the reduce phase
computes the ratio between the number of points inside the circle and the
ones outside the circle. This ratio gives an estimate for the value of pi.

Of these 3 benchmarks, pi is purely CPU-intensive, while grep and sort are
also I/O bound. However, sort is more data-intensive than grep, since it generates
significantly more output data.

3.3 Hadoop Deployment

On the testbed described in Sect. 3.1, we configured and deployed a Hadoop
cluster using the Hadoop 1.0.4 stable version [10]. The Hadoop instance consists
of the namenode, the jobtracker and the Hadoop client, each deployed on a
dedicated machine, leaving 13 nodes to serve as both datanodes and tasktrackers.
The tasktrackers were configured with 4 slots for running map tasks and 2 slots
for executing reduce tasks. At the level of HDFS, we use the default chunk
size of 64 MB and the default replication factor of 3 for the input and output
data. In addition to facilitating the tolerance of faults, data replication favors
local execution of mappers and minimizes the number of remote map executions.
Prior to running the benchmarks, we generated 900 chunks of text (adding up to
56 GB) to feed the grep and sort applications. This input size results in fairly
long execution time which allows us to thoroughly monitor power consumption
information.

3.4 Dynamic Voltage Frequencies Settings

The experiments involve running the benchmarks with various CPU settings and
monitoring the power consumed by each node in this time frame. We distinguish
a total of 15 scenarios corresponding to various values for CPU governors and
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frequencies. We were able to set the governor to conservative, on demand, perfor-
mance, powersave, and userspace. With the governor set to userspace, we tune
the CPU frequency to one of the following values: 1.2 GHz, 1.33 GHz, 1.47 GHz,
1.6 GHz, 1.73 GHZ, 1.87 GHZ, 2 GHz, 2.13 GHZ, 2.27 GHZ, 2.4 GHZ, 2.53 GHZ.

4 Macroscopic Analysis

In this section, we provide a high-level analysis of the experimental results we
obtained. Our goal is to study the impact of various governors or CPU frequen-
cies on the performance of several classes of MapReduce applications.

Figure 2 depicts the completion time and the energy consumption of each
governor for our three applications: pi, grep and sort. Each point on the graphs
stands for the application runtime and the total energy consumption of the
Hadoop cluster during its execution for a specific CPU frequency or governor.
We computed the total energy consumption for each application as the sum of
the measured utilized power of each cluster node with a resolution of 1 second
between measurements. In addition, Fig. 3 displays a comparative view of the
average power consumption of a job for each of the three applications and DVFS
settings.

Fig. 2. Application runtime vs Energy consumption under various DVFS settings

Fig. 3. Average Power consumption under various DVFS settings
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4.1 Performance Analysis

The results show the job completion time increases as the employed CPU fre-
quency decreases, for each of the three applications. In the case of the pi and
grep applications, the runtime increases by 104 % and 70 %, respectively, when
replacing the highest frequency, that is 2.53 GHz, with the lowest one, namely
1.2 GHz. The explanation for this behavior comes from the fact that the runtime
of these two applications mostly accounts for computation, as they produce very
little output data. Thus, the CPU performance has a significant impact on appli-
cation execution time. The sort application is IO-bound, generating the same
amount of output data as the input data. As in our experiments we employed
an input file of 900 chunks replicated 3 times, i.e. 56 GB of processed data and
168 GB of output data, sort spent a significant percentage of its execution time
in reading data from and writing it to HDFS. Consequently, unlike pi and grep,
the sort application exhibits a different behavior: reducing the CPU frequency
from the highest to the lowest possible value only results in a 38 % runtime
increase.

These results are consistent with the CDF of the CPU usage depicted in
Fig. 1. Pi is a purely CPU-intensive application and consequently its CPU usage
is the highest, amounting over 80 % for most of the CPU frequencies and gov-
ernors. At the other end of the spectrum, the IO-bound workload of sort is the
main factor that accounts for an average CPU usage between 20 % and 28 %.

4.2 Energy Consumption

The energy consumption on a Hadoop cluster depends on several parameters.
One key factor is the CPU frequency, as low CPU frequencies also trigger low
power consumption for a specific node. The application workload can however
have an essential influence on the total energy utilized by the cluster. On the
one hand, CPU-bound applications account for high CPU usage and thus for
an increased energy consumption. Additionally, the application runtime directly
impacts on the energy needed by the cluster, and thus attempts to improve
application performance may result in better energy-efficiency. In this section
we analyze the tradeoff between the aforementioned factors in the case of our
three types of applications.

Figure 3(a) details the mean power consumption of a cluster node for each of
the available fixed frequencies and all the governors, computed over the execution
time of each application and the averaged across all cluster nodes. The average
power consumption of a cluster node for pi is significantly lower for inferior
CPU frequencies, as well as for the powersave governor. This observation would
typically translate into an efficient total energy consumption at the level of
the cluster for low frequencies. However, as Fig. 2(a) demonstrates, the highest
CPU frequency, that is 2.53 GHz, achieves the best results both in terms of
performance and energy-efficiency. This behavior can be explained by analyzing
the workload: pi is a CPU-intensive application, which can achieve 104 % better
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performance by employing the highest CPU frequency, as shown in Section 4.1,
whereas the average power consumption only increases by 48 %.

The same trend can be noticed for the grep and sort applications. Neverthe-
less, the energy savings induced by using the highest available frequency pro-
portionally decrease with the percentage of CPU usage of the application. Thus,
as sort uses the least amount of CPU power, its runtime is not significantly
impacted by reducing the CPU frequency and the total energy consumption of
the application only increases by 15 % between the highest and lowest CPU fre-
quency values. The average power consumption for sort displayed in Fig. 3(c)
confirms this behavior, as the low CPU utilization at high CPU frequencies such
as 2.53 GHz leads to only a 22 % increase of the consumed power per node.

Consequently, the workload properties play an essential role in establishing
the energy-consumption profile of an application. When the application runtime
predominantly accounts for CPU usage, the most power-consuming CPU settings
can surprisingly trigger a better total energy efficiency. Accordingly, applications
that feature both IO- and CPU-intensive phases, can benefit from adaptive CPU
frequency policies, aiming at maximizing the CPU performance only during the
computation stages of the application. Such policies can ensure a reduced energy
consumption at the level of the application in two steps. First, for the CPU-
intensive phases the total energy can be decreased by reducing the execution
time, as it is the case for Pi. Second, the duration of the IO-bound phases is not
dependent of the CPU frequency settings and therefore, low CPU frequencies
can be used to save energy.

5 Microscopic Analysis

In this section, we present a detailed comparative discussion of various CPU
frequencies and policies and we explain their effects on the total energy con-
sumption of applications.

5.1 Dynamic Frequency Scaling

The highest frequency that can be statically configured on the cluster nodes
is 2.53 GHz, this being also the default frequency employed by the operating
system. We consider this frequency as the baseline against which we study the
two dynamic governors, as it provides the default application performance that
can be achieved by the given machines. Both the ondemand and conservative
governors are designed to dynamically adjust the CPU frequency to favour either
performance or energy consumption.

CPU-Bound Applications. When running the pi benchmark, both governors
achieve slightly better performance than the default CPU frequency, as shown in
Fig. 2(a). This behavior can be explained by the fact that both governors attempt
to increase the employed CPU frequency as much as possible when dealing with
a CPU-intensive workload, as it is the case for pi.
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Fig. 4. CDF of the average power consumption and CPU usage across nodes during
application execution for various frequency and scaling policy settings.

Figure 4 presents the cumulative distribution function (CDF) of the average
power consumption and average CPU usage during benchmark execution across
the cluster nodes, for the various CPU frequency settings and in each of the
three scenarios we analyzed. The CPU utilization is higher than 98 % for more
than 80 % of the execution time (as shown in Fig. 4d) for both governors. The
CPU-bound nature of the pi application accounts for these values, as well as for
the identical behavior of the two governors. Thus, as the CPU usage increases to
almost 100 % when the application is executed, the conservative and ondemand
governors switch to the highest available frequency and do not shift back to lower
frequencies until the job has finished and the CPU is released.

Interestingly, Fig. 2(a) shows that the total energy consumption of the pi
benchmark for the default frequency does not match the one corresponding to
the performance-oriented governors, in spite of their similar execution times.
The explanation lies in the processor ability to use the Turbo Boost capability
when configured to employ an adaptive governor instead of a fixed frequency.
The power consumption CDF for pi in Fig. 4(a) shows the used power for the
default CPU frequency is almost constant to 120 Watts for 80 % of the job. As
the CPU usage does not decrease during the execution of the pi application,
this value represents the maximum power that the node can consume within a
fixed frequency setting. However, the power consumption achieved by the two
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governors exceeds that of the default frequency, as emphasized by the pi CDF
in Fig. 4(a). This outcome is only possible if the governors take advantage of
the CPU Turbo Boost capability, that is they employ a frequency higher than
2.53 GHz and in turn consume an increased amount of energy. Figure 6 provides
an insight into the percentage of the job execution time spent by each governor
with an enabled Turbo feature for each of the three applications. As previously
anticipated, in the case of pi, the conservative governor invokes Turbo frequencies
for 70 % of the total time, while the ondemand governor requires Turbo for 65 %
of the running time.

IO-Bound Applications. However, the conservative and ondemand governors
behave differently for the sort application. As Fig. 2 shows, when using the onde-
mand governor, Hadoop requires more time to sort the input data than when it is
configured with the conservative governor. This longer running time also results
in higher power consumption. To better understand how these two governors
function, we analyze the CPU usage as a function of execution time on a single
datanode, during the sort benchmark (Fig. 5). Both governors start the execu-
tion at the default frequency (2.53 GHZ), but they adjust the CPU frequency
according to the CPU usage and how it compares to predefined thresholds.

The ondemand governor uses as threshold a default value of 95 %: when
the CPU usage is greater than 95 %, the CPU frequency is increased to the
highest available frequency, i.e. 2.53 GHZ; if the CPU usage is less than this
value, the governor gradually decreases the frequency to lower values. In the
case of the sort benchmark, this policy allows Hadoop to run at the highest
frequency in some points corresponding to the CPU usage peaks above the 95 %
threshold (Fig. 5a). Nevertheless, the rest of the CPU-intensive phase of the
sort application is executed at lower CPU frequencies, since the CPU usage
during this phase is less than 95 %. The conservative governor employs two
thresholds for tuning the CPU frequency: an up-threshold set to 80 % and a
down-threshold of 20 %. The frequency is progressively increased and decreased
by comparing the system usage to the two thresholds: CPU usage peaks above
the up-threshold result in upgrading the frequency to the next available value;

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  100  200  300  400  500  600  700  800

C
P

U
 U

sa
ge

 (
%

)

Time (s)

(a) Ondemand

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  100  200  300  400  500  600  700  800

C
P

U
 U

sa
ge

 (
%

)

Time (s)

(b) Conservative

Fig. 5. CPU usage on a Hadoop datanode during the execution of the sort application.
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when the usage goes below the down-threshold, the CPU switches to the next
lower frequency. Figure 5(b) shows that the computational-intensive phase of the
sort benchmark exhibits CPU usage peaks greater than 80 %. This enables the
conservative governor to keep the CPU at the highest frequency of 2.53 GHZ
during most of this phase. Also, the down-threshold allows the I/O-bound part
of the application to be executed at low CPU frequencies.

The internal implementation of the two governors is also responsible for
the overall variation in performance and consumed energy between the static
2.53 GHZ setting and the dynamic governors detailed in Fig. 2(c). Thus, in the
case of sort, the conservative governor achieves a better runtime than ondemand,
despite the fact that the latter governor should favour performance. While the
improvement accounts for less than 5 % of the execution time of the ondemand
governor, it can be explained by the fact that the conservative governor spends
more time at the highest frequency setting, speeding up the computational-
intensive phases of sort. As most peaks in the CPU load do not reach the 95 %
threshold required by the ondemand governor, it cannot take advantage of the
highest available frequency, leading to a worse application runtime. Energy-wise,
this behaviour translates into a total energy gain when using the fixed 2.53 GHZ
frequency setting, on account on the longer execution time triggered by the
ondemand governor. The conservative governor is in this case the best choice
for saving energy, as it enables the application to take advantage of both high
and low frequency settings, reducing the execution time of CPU-intensive phases
and decreasing energy consumption during IO-intensive ones.

5.2 Statically-Configured Frequencies

In this section we focus on the performance and powersave governors, which
set the CPU to a fixed frequency, either the maximum available one, that is
2.53 GHZ or the minimum 1.2 GHZ, respectively. While they should exhibit sim-
ilar behaviour with the fixed frequency, the performance governor features an
interesting capability, that is to use Turbo Boost when executing heavy loads.

As far as the pi application is concerned, both performance and the fixed
2.53 GHZ frequency setting deliver relatively similar running times. The Turbo
feature allows the performance governor to go past the 2.53 GHZ CPU frequency
for 70 % of the job execution time and thus consume more power, as confirmed by
the CDF in Fig. 4(a). A notable side effect is that the usage of the performance
governor is less efficient from an energy standpoint (Fig. 2a). Figure 4(b) shows a
similar behaviour in the case of grep, as it exhibits a sufficiently similar workload.
Consequently, for CPU-bound applications, performance-oriented governors pro-
vide a convenient alternative over a fixed frequency, when the user tends to favor
performance. To achieve energy savings without significantly sacrificing execu-
tion time, the default kernel setting, the fixed maximum frequency still provides
the best alternative. As for sort, the generated CPU peaks account for a limited
usage of the Turbo CPU feature, as detailed in Fig. 6. As a result, sort does not
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Fig. 6. Turbo Boost: The total usage of the Turbo feature for the duration of the
application execution.

benefit from the performance governor in terms of energy, providing a better
performance-energy tradeoff when using the 2.53 GHZ setting or the conserva-
tive governor.

6 Summary and Future Work

Energy efficiency has started to severely constrain the design and the way
data-centers are operated, becoming a key research direction in the develop-
ment of cloud infrastructures. As processing huge amounts of data is a typical
task assigned to large-scale cloud platforms, several studies have been dedicated
to improving power consumption for data-intensive cloud applications. In this
study, we focus on MapReduce and we investigate the impact of dynamically scal-
ing the frequency of compute nodes on the performance and energy consumption
of a Hadoop cluster. We provide a detailed evaluation of a set of representative
MapReduce workloads, highlighting a significant variation in both the perfor-
mance and power consumption of the applications with different governors.

Furthermore, our results reveal that the current CPU governors do not
exactly reflect their design goal and may even become ineffective at improving
power consumption for Hadoop clusters. In addition, we unveil the correlations
between the power efficiency of a Hadoop deployment, application performance
and power-management mechanisms, such as DVFS or Turbo capabilities. We
believe the insights drawn from this paper can serve as guidelines for efficiently
deploying and executing data-intensive applications in large-scale data-centers.

As future work, we plan to extend our empirical evaluation for a wider diver-
sity of MapReduce applications, such as scientific applications and the more
complex pipeline MapReduce applications, and for various platforms (e.g., vir-
tualized data-centers). In addition, we intend to explore different techniques and
approaches to optimize power management in Hadoop clusters. As a first step, we
are currently investigating the possibility of building dynamic frequency tuning
tools specifically tailored to match MapReduce application types and execution
stages.
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Abstract. Currently, live streaming traffic is responsible for more than half of
aggregated traffic from fixed access networks in North America. But, due to
traffic redundancy, it does not suitably utilize bandwidth and network resources.
To cope with this problem in the context of Distributed Clouds (DClouds) we
present RBSA4LS, an autonomic strategy that manages the dynamic creation of
reflectors for reducing redundant traffic in live streaming applications. Under
this strategy, nodes continually assess the utilization level by live streaming
flows. When necessary, the network nodes communicate and self-appoint a new
reflector node, which switches to multicasting video flows hence alleviating
network links. We evaluated RBSA4LS through extensive simulations and the
results showed that such a simple strategy can provide as much as 40 % of
reduction in redundant traffic even for random topologies and reaches 85 % of
bandwidth gain in a scenario with a large ISP topology.

Keywords: Cloud computing � Self-management � Live streaming �
Simulation

1 Introduction

The Internet supports content dissemination towards the network edges. Its users may
consume and produce shareable contents that should travel quickly over the core
network. According to the Global Internet Phenomena Report [1], taking into con-
sideration North America, the real-time entertainment traffic is responsible for around
61.45 % and 37.53 % of aggregated traffic in peak periods from fixed access network
and mobile access network (Fig. 1a and b, respectively).

In [2], Kurt Michel, Director of Product Marketing at Akamai, stated that “live
video streaming has become an increasingly important part of the web content
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universe, as a variety of businesses and organizations attempt to capture a ‘share of
eyeball’ and deliver richer, more HDTV-like experiences”. In [3], authors also say that
live streaming is becoming increasingly popular, and it is expected to be more per-
vasive in the near future. At the same time, the quality expectations of these ever-
increasing audiences continue to grow. HD quality is becoming the de facto standard
for all viewing experiences, from HDTV home viewing to “anywhere” viewing on
mobile devices [2].

In the other side, the Internet yet presents challenges for live streaming delivery due
to its own architectural design concept including the lack of end-to-end reliability or
performance guarantees. Furthermore, traffic redundancy is a particular problem
resultant from the way live streaming applications individually transfer information
over the network to independent subscribers. Basically, when serving live video
content the content provider creates single unicast flows from the video source to each
client resulting in the transport of several copies of the same content packets over the
network. Due to such traffic redundancy, expensive bandwidth and network resources
are not adequately utilized [4].

A solution to address some of these challenges lies in the caching strategy com-
monly utilized by Content Delivery Network (CDN) providers [5]. According to [1],
originally the CDN concept improved application performance by caching static and
popular content at the edge of the Internet, close to end users, in order to avoid “middle
mile” bottlenecks and minimize traffic redundancy as much as possible. However,
applications like live multimedia streaming often generate dynamic and non-cacheable
content, and therefore it is necessary to rethink the solution, just as major CDN pro-
viders (such as Akamai, Limelight, and Internap) have already evolved to support live
streaming delivery [3].

Alternatively, Cloud Computing can be seen as a solution to support live streaming
applications, since it is possible to rent virtual servers hence offering a scalable backend
infrastructure to support a variable number of live video viewers. One can also make

(b)(a)

Fig. 1. Peak period aggregate traffic composition from (a) fixed access network and (b) mobile
access network [1].
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use of a Distributed Cloud (DCloud) [6–10] that represents a Cloud provider composed
of small and distributed datacenters located at different geographical regions, to provide
live streaming. But despite this, it is still necessary to implement solutions to deal with
video distribution by mitigating traffic redundancy.

Since classical caching mechanisms and IP multicast present many issues to sup-
port live streaming application, looking for a new scalable autonomic strategy that
focuses on reducing redundant traffic in a DCloud infrastructure can be seen as a
potential field for research, development and innovation.

In this paper, we present an autonomic strategy based on a Role-Based Self-
Appointment (RBSA) framework proposed in [11]. In a nutshell, RBSA is a generic
framework that can be used for several management purposes in which nodes interact
with their neighbors to exchange information, and decide by themselves which role
they should perform. We adopted this framework in a scenario for managing live
streaming application and called the resulting architecture RBSA4LS. RBSA4LS can
be used by the DCloud infrastructure provider to offer video a streaming application
while also optimizing its network resources usage autonomously. The main goal of this
paper is to describe in detail how RBSA4LS optimizes link usage through an infra-
structure provider that offers a live video streaming application by establishing, at the
heart of our proposal, reflector and router roles. Moreover, we simulate RBSA4LS for
different scenarios in order to gain insights on and discuss how it performs in terms of
bandwidth reduction.

This paper is organized as follows: in Sect. 2, we describe the DClouds infra-
structure in order to clarify the advantages obtained for working in this environment;
Sect. 3 describes the RBSA instantiation special case to support a live streaming
application; in Sect. 4 we present results from conducted simulations; we discuss
RBSA4LS performance in Sect. 5; related works are described in Sect. 6, and final
considerations and future works are delineated in Sect. 6.

2 Distributed Cloud

Current Cloud Computing providers mainly rely on large and consolidated datacenters
in order to offer their services. The physical infrastructure is composed of many nodes
(processing elements and network entities) to which users gain access through some
virtualization technology. At the same time, small and geographically distributed
datacenters can also be attractive for Cloud providers since this type of datacenters can
offer a cheaper and low-power consumption alternative that reduces the costs of large
and centralized ones. These small and distributed datacenters can be built at different
geographical regions and can be connected to form a Distributed Cloud (DCloud). We
believe that this scenario gives a good opportunity to develop mechanisms to optimize
the usage of resources appropriated to this type of application in an innovative way.

We decided to use DClouds because we obtain more flexibility to deal with the
resources within the infrastructure. We require such flexibility as we are looking for
applying an autonomic management strategy.

The main objective of a video streaming application is to carry video signals to
viewers while assuring minimum quality. Such objective can be supported by
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well-dimensioned Streaming Servers (SS) and a content distribution network that
transports video information through several geographically distributed servers in a
timely fashion. One can consider three distinct stakeholders in this scenario: the
Application Provider, the DCloud Infrastructure Provider, and the Viewer.

(1) Application Provider: is the entity that requests to the DCloud Infrastructure
Provider (computational and network) resources to host a video streaming
application. The streaming application is characterized by the Streaming Server
(SS) harnessed to a specific geographical region. Beyond this, the Application
Provider is responsible for producing the content of the video streaming
application;

(2) DCloud Infrastructure Provider: represents the provider responsible for
accommodating different types of services on its physical infrastructure. The
DCloud Provider can make use of virtualization technologies to deal with this
heterogeneity of services. These services can be an IaaS, PaaS, or SaaS. However,
the focus of this paper is a DCloud Infrastructure Provider selling a specific
network configuration for use by video streaming applications; and

(3) Viewer: is the end-user of the video streaming application that is served by the
DCloud Infrastructure Provider. The viewer (or service subscriber) accesses the
application though an edge router.

Figure 2 shows an example of a DCloud hosting service using virtualization
technology. The SSs are responsible for providing the origin server and for leading
with video signals. DCloud is responsible for the actual distribution of such signals to
the subscribers who are accessing the SSs through edge routers. Any node in the
infrastructure can be assigned as an edge router; if all nodes are edge routers, then this
means that all viewers can directly access the head-end through any node in the
network. If a node is not an edge router or an SS, then it is a core router. In Fig. 2, we
are considering five edge routers, two SSs providing different live videos, and eight
core routers. The flows from SSs to viewers are assigned in yellow; the width of the
flow represents the network traffic in the path taken.

Fig. 2. Live streaming application over DCloud.
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This scenario supports several alternatives for managing the video streaming
application. Among these is the creation of a virtual overlay network in the DCloud
infrastructure. In this case, the virtual network would be seen as a virtual forest-like
structure: the SS would be the root server of this forest while the core and edge routers
would form the live streaming delivery tree. In the next Section, we describe an
autonomic mechanism based on RBSA, where nodes are able to appoint themselves,
when needed, roles autonomously depending on network and service performance.

3 Role-Based Self-appointment for Live Streaming
(RBSA4LS)

The proposed RBSA [11] is a mechanism executed by a node in order to choose by
itself a suitable new role it should play in order to optimally manage resources in a
distributed networked environment, such as Distributed Cloud.

In a general way, we can describe the node’s behavior as follows: nodes monitor
their resources continuously and, when predetermined conditions are met, for example
through trigger fires or other observed indicators, a communication process is initiated in
order to achieve an optimized state performing aggregation over video flows. A trigger
is considered as an event that indicates context state changes. These could reflect pos-
sible operational problems, such as bottleneck, or performance loss. Next, nodes
exchange messages and analyze their states. Processing of the interchanged information
takes then place to autonomously reach decisions upon which to act. In the context of
our approach, a node may even chose to spin a new role or maintain its current one based
on the acquired intelligence. Roles are then mapped into local actions, according to pre-
established rules. Since nodes do not have a global knowledge about the whole system
they only take decisions that have local scope effects. One may describe the resulting
behavior where a node assumes a specific role without seeking prior agreement from the
others as self-appointment, a special type of self-configuration.

Authors in [11] provide some examples of RBSA applicability such as live
streaming optimization, caching in CDN, and virtual machine management. In this
Section, we will describe an RBSA instantiation scenario (called RBSA4LS) used to
deal with our special problem: to provide a live streaming application that focuses on
the reduction of network resource usage.

To this end, we introduce a new processing role some nodes may tale, namely, that
of a reflector. The reflector acts as a flow concentrator with the sole responsibility of
reducing redundant flows generated from for the same video server in the network. The
main idea is that a node with many redundant flows from the same video streaming
should be able to aggregate their traffic and redirect it to its subscribers. For this, our
nodes in a network are constantly running RBSA4LS that will decide when to become
a reflector based on two variables: (a) the amount of redundant flows crossing itself;
and (b) the distance in hops to the server.

Table 1 shows the adaptation made in RBSA to comply with the requirements of
the video streaming application. We established that the desired global behavior is to
reduce the redundant traffic in the network. When the number of flows passing through
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a node reaches a specific value (called threshold), the node becomes a candidate for
aggregating such flows and announces itself as one, i.e., it will send messages
informing that it wants to be a reflector. The metric used to choose the best candidate is
the distance in hops to the video server. The distance value can be obtained through
some existing routing protocol and nodes do not need to know the distance of all
others. Hence towards the end of the communication period (called cycle, i.e., the
maximum amount of time units used to take a decision after messages were exchange
was started), the candidate node to become reflector will be the one that experiences
“considerable” load and is the farthest away from the existing servers.

Hence towards the end of the communication period (called cycle, i.e., the maxi-
mum amount of time units used to take a decision after messages were exchange was
started), the candidate node to become reflector will be the one that experiences
“considerable” load and is the farthest away from the existing servers.

When this node starts on its new role as a reflector, one expects to see a local
reduction in streaming traffic hence alleviating network bandwidth resources. It is
important to highlight that we are not interested in ensuring mutual exclusion; then it
means that more than one node can become reflector at same time, and improve the
bandwidth together.

In the same way nodes decide to become a reflector, they also can decide to return
to router role. When nodes observed that the number of flows is less than the defined
threshold, they can autonomously become a router and work normally.

4 Evaluation and Results

In order to analyze the RBSA4LS, we choose to use the NetLogo1 simulator that is a
multi-agent programmable modeling environment as our underlying simulation tool.
We divided the analysis in two parts: the first set of simulations was carried out with
the initial simple goal to configure the RBSA4LS. To achieve this, we used a random
topology network composed of 50 nodes and executed as many as 25000 simulations
of random topologies. The second set of simulations was conducted by using a real
topology of a Tier 1 Internet Service Provider. The objective of the simulations now is

Table 1. RBSA instantiation for a live streaming application

Global
behavior

Reduce redundant traffic and alleviate links in the network

Monitored
variable

Number of flows of a video streaming from the same video server passing
through a node

Metric Distance in hops to the original video server
Roles Router: it routes live streaming flows normally

Reflector: it aggregates redundant flows and performs multicast

1 http://ccl.northwestern.edu/netlogo/
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to evaluate the RBSA4LS behavior; more specifically, we intend to evaluate the fol-
lowing metrics:

(1) Bandwidth: the goal is to measure the efficiency and gain in the reduction of link
load. The bandwidth is measured as the sum of flows over each link in the
network per time unit; and

(2) Messages: the main idea is to evaluate the overhead caused by exchanging
messages between nodes to give these sufficient information to self-organize in an
optimal way. This metric is calculated as the mean of all messages per time unit.

4.1 Configuration Scenario

The configuration scenario was used as a calibration phase to analyze the influence of
the threshold and the cycle parameters that are previously configured. The topology is a
random network composed of 50 nodes plus five edge nodes and one video server that
are allocated randomly in each simulation. We built 50 different topologies generated
according to the Barabási-Albert approach with only one initial node and Δm = 1 [12]
generating a tree-based topology. Each combination of these factors composes an
experiment that was subsequently repeated 50 times for each combination of the
present factors and their levels shown in Table 3 (totalizing 22600 simulations) to
obtain statistical confidence.

A scenario is simulated as follows. The clients arrive to the system and are attached
randomly (using a uniform distribution) to one of the five edge nodes. Each client starts
one video flow and remains viewing the video to its end. The video server sends video
streams (a flow per subscriber) to clients located near the edge nodes. The time unit in
NetLogo is measured in ticks. Table 2 shows the parameters used in the simulations
and their respective values.

Table 2. Simulation parameters and respective values

Parameter Level

Number of nodes 50
Number of edge nodes 5
Number of video streaming server 1
Cost between links 1
Mean of video streaming duration (exponential distribution) 5 ticks

Table 3. Simulation factors and levels

Parameter Level

Threshold 15, 20, 25 flows
Cycle 5, 7, 10, and 15 ticks
Arrival rate (Poisson distribution) 10 and 20 clients per tick
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The stop condition was calculated based on the statistical error accuracy consid-
ering 95 % of confidence on our two metrics: the average consumed bandwidth per tick
and the average number of messages exchanged between nodes per tick.

The bandwidth error accuracy is calculated as 1:96�sx
�X� ffiffiffi

n
p , where 1.96 is the value of the

0.975 percentile of the normal distribution, �X is a moving average made over the
consumed bandwidth, sx is the standard deviation of this average, and n is the size of
the time window used to compute the average that is chosen to be 500 times the cycle
length. The message accuracy error is calculated similarly, but the statistics are made
over the number of messages exchanged between nodes. Thus, to obtain a low vari-
ance, the simulation finishes when the error accuracy drops below 5 % for both metrics.

Regarding consumed bandwidth, we concentrated all results in Figs. 3 and 4 and
compare with the reference baseline case, i.e., without RBSA self-appointment. Each
point of the graphics represents a mean of all simulations made for each topology, with
its respective factors and levels in the legend. The confidence interval was omitted
because it is very small and does not offer additional insights to the analysis.

Fig. 3. Mean bandwidth for arrival rate 10.

Fig. 4. Mean bandwidth for arrival rate 20.
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The results show a reduction of overall bandwidth consumption provided by the
usage of RBSA4LS and such reduction is more accentuated when more clients enter
the system. As expected, doubling the clients’ arrival rate (from 10 to 20 clients per tick
for example), also doubles the usage of the links in the network when RBSA4LS is not
used. Thus, one expects to see a sharper resource savings than with the scenario with a
smaller arrival rate 10. Note that the results show that a best case scenario gain is
obtained for the configuration (cycle = 5 ticks, threshold = 15 flows, and arrival
rate = 20 clients per tick). Here the reduction was as much as 60 %.

A second aspect to be noted is that for all the values of cycle length, the bandwidth
consumption of RBSA4LS with threshold 15 is statistically lower than RBSA4LS with
threshold 20 and RBSA4LS with threshold 25. This occurs because the lower the
threshold value is, the earlier nodes start to exchange messages and to decide when to
become a reflector. In other words, if the threshold value is set high, the nodes would
have to transfer more flow loads before triggering the self-appointment selection
process and hence would inject more redundant streaming traffic in the network.

Regarding the number of locally exchanged messages, we focused our study to the
results in Figs. 5 and 6 while comparing these against the worst case scenario. We are

Fig. 5. Mean of messages for arrival rate 10.

Fig. 6. Mean of messages for arrival rate 20.
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considering that under the worst case scenario all nodes send messages to all their
neighbors at the beginning of a cycle. Each bar of the graphics represents a mean of all
simulations made for all experimented topologies, with its respective factors and levels
listed in the legend.

With a 10 clients per tick arrival rate one note that, for fixed cycle value, when the
threshold value increases, the mean of messages per tick decreases. See that this occurs
for all cycles (5, 7, 10, and 15 ticks). As mentioned earlier, this means that the threshold
causes a direct impact over the number of messages exchanged. This result was
expected since it represents the amount of time to take a decision once message
exchange is started by some node.

However, when the arrival rate is 20 clients per tick we can see that the threshold
value has a low impact on the amount of exchanged messages per tick. This occurs
because when arrival rate is 20 clients per tick, we have more active video flows in the
network, consequently nodes will reach the defined threshold value quickly. Anyway,
it is clear that the cycle length influences the number of messages.

We note that there is a variation when the cycle length is increased. This increase is
expected since the cycle length represents how long nodes have to wait to take the
decision to become a reflector, i.e., the higher the cycle length, the higher the time to
initiate the message exchange phase and, consequently, the higher is the number of
messages exchanged in the system. For all values of cycle and threshold, the number of
messages is always much better than the worst case.

4.2 Cogent Topology

Cogent2 is a multinational Tier 1 Internet Service Provider ranked, according to its
website, as one of the top five networks in the world. Its network covers 37 countries in
North America, Europe, and Asia. In this scenario, we use a version of the 2010’s
Cogent topology available at the Topology Zoo site.3 Such topology covered only
America and Europe and it consisted of 197 connection points and 243 links. Such
representation was treated to remove duplicated links and redundant paths using out
proposed self-appointment technique.

We located the server in a node with just one link, and located edge nodes by using
the same rule, totalizing 22 edge nodes. Since a server could be located at any of the
different nodes, we repeated the experiment 50 times to obtain statistical confidence.
Other parameters and levels were maintained as in the last scenario. However, the factors
were adjusted and considering the results, their configuration followed Table 4: the
threshold is 20, the cycle length is 5 ticks, and the arrival rate is set to 20 clients per tick.

The stop condition was calculated based on the statistical error of 5 % on our two
metrics: the average consumed bandwidth and the average number of messages
exchanged between nodes (in the same way as in the first set of simulations); or 10000
ticks of simulation.

2 http://www.cogentco.com/
3 http://www.topology-zoo.org/
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For comparison, this time we created a static solution (called static reflectors), in
which reflectors are previously located in the Cogent topology since the creation of the
network and remain active throughout the simulation lifetime with no new reflectors
being spawn.

program StaticReflectorsSolutionAlgorithm (topology)
foreach node in topology

if (node.isEdge()) then
reflector.add(node)

else if (node.amountLinks - 1 > threshold) then
reflector.add(node)

end
return(reflector)

end

This algorithm uses a centralized strategy to allocate reflectors in static way by in
an initial scenario. The rationale behind this algorithm is that reflectors created near of
edge nodes can minimize bandwidth consumption for more links in the path between
reflectors and the video server. Furthermore, the algorithm also considers that nodes
very connected may become a bottleneck and should be alleviated in preference to
others. Please recall that this solution is not adaptive.

Figure 7 shows the mean of consumed bandwidth representing both the total of
consumed network bandwidth and the one occupied in the core of the network while
disregarding the edge links. RBSA4LS successfully decreases the consumed bandwidth
by as much as 85 % when compared with the scenario without the presence of
RBSA4LS reflectors. Note that even the static solution decreases resource occupation
by as much as 77 % when compared with the baseline configuration.

Since the static reflectors solution do not engage in the exchange of messages by
definition, we show no comparisons here but the mean of messages per tick when
RBSA4LS was used in the Cogent topology reached 89.43 message per tick.

In this last scenario, besides observing bandwidth and messages exchange, we
introduced a new metric: that of the number of reflectors present by cycle. The goal of
this metric is to evaluate the number of nodes performing the reflector role per cycle
compared to the static case. This metric is important because reflectors represent a cost
(hardware and software) and it could turn the solution impracticable due to the total

Table 4. Parameters and its respective values for the Cogent topology simulation

Parameter Value

Number of nodes 197
Number of edge nodes 22
Number of video streaming server 1
Cost between links 1
Mean of video streaming duration (exponential distribution) 5 ticks
Threshold 20 flows
Cycle 5 ticks
Arrival rate (Poisson distribution) 20 clients per tick
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cost. Figure 8 represents the mean of such number per simulation (RBSA4LS and static
reflectors solution) as well as the maximum and the minimum number of reflectors per
simulation using RBSA4LS.

5 Discussion

RBSA has many configurable parameters such as the cycle value it defines and the
threshold condition continuously tested. We analyzed through simulations the impact
of each one on our observable output metrics, namely, bandwidth and additional
message exchange overhead.

When we increased the cycle length value, we noted an increase in the number of
exchanged messages. As mentioned earlier, this behavior is expected since the cycle
length represents the time in which RBSA4LS exchanges messages to take a decision.
The results also showed that a low threshold has a significant impact on consumed
bandwidth. A low threshold reduces the consumed bandwidth because the entire system
can react earlier and waiting a long time to introduce a new reflector into the network.

In bandwidth consumption, a low threshold will activate the message exchange
earlier and it will promote the reduction in bandwidth consumption earlier. In the other
hand, with a low threshold, message exchange will be activated more times hence
increasing their overhead.
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In a real topology, we compared the RBSA4LS with a scenario where static
reflectors were pre-configured. Despite the algorithms bandwidth gain was lower as
opposed to the gain against the scenario without RBSA4LS, the mean number of
simultaneous reflectors per cycle for RBSA4LS remained close to that of the static case.

These results point the trade-off between centralized and autonomic distributed
solutions. Centralized solutions can have a better performance, but require knowledge
about all the elements of the network. Sometimes, the decision time is crucial and it is
difficult to collect such information of all elements in the system. Anyway, the
important key concept advocated by RBSA4LS is role creation, and we can show that it
provides a good performance close to the static solution.

Finally, the technical feasibility for RBSA4LS implementation is currently pro-
vided by technologies such as Network Virtualization (NV) and Software Defined
Networking (SDN) due to its capacity of managing flows over network. Using these
approaches one can construct prototypes for future testing with RBSA4LS.

6 Related Work

According to [13], multicast is a key enabler to transfer high-bandwidth multimedia
broadcasts and seminars on IP networks, since multicast promotes reduction of network
traffic and video server load. However, there are factors that contribute to turn IP-layer
multicast into an unfeasible solution for live streaming. For instance, its commercial
deployment has been very limited, mainly because in order to support IP multicast
all components in the infrastructure (video source servers, video client devices,
and intermediate routers) should be made multicast-aware. Thus the video clients and
servers must have support to IP multicast reception in the TCP/IP protocol stack, and
the network routers must be able to build packet distribution trees that allow sources to
send packets to all clients [14]. Authors in [Rajkumar and Swaminathan 2013] also say
that IP multicast and Application Layer multicast create duplicate packets which
deteriorates the redundant network traffic.

Another technical aspect contributing to the unfeasibility of IP-layer multicast is
that the traditional multicast routing protocols, such as Distance Vector Multicast
Routing Protocol (DVMRP), Multicast Open Shortest Path first (MOSPF), Protocol
Independent Multicast Dense-Mode (PIM-DM), and Protocol Independent Multicast
Sparse-Mode (PIM-SM) suffer from scaling problems [15]: DVMRP and PIM-DM
initially send data everywhere and also require routers out of the distribution tree to
hold prune state to prevent this flooding from persisting; MOSPF requires all routers to
know where all receivers are located; and PIM-SM needs pre-distribution of infor-
mation about the set of core routers called Rendezvous Point (RP). Since traffic needs
to flow to the RP, a RP cannot handle too many groups simultaneously; therefore many
RPs are needed globally.

Despite the existence of academic works having proposed infrastructure dedicated
for the support of live streaming using CDNs (such as [3, 16]), none of them is focused
on a Cloud virtualized infrastructure. Furthermore, there are proposals for the usage of
centralized strategies for creating overlay multicast with the surrogates or servers that
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are part of the CDN infrastructure. Our main contribution in this paper was the proposal
of an autonomic management of live streaming application over DCloud infrastructure,
focusing on minimizing redundant traffic and on creating of reflectors.

7 Final Considerations and Future Work

In this paper, we presented RBSA4LS an autonomic strategy to manage creation of
reflectors for reducing redundant traffic in a live streaming application over Distributed
Cloud infrastructures. Such strategy is based on the RBSA framework that provides
self-organizing solutions for node autonomic management in a network.

In RBSA4LS the network nodes continually sense the network and check for-
warding packets to assess if the live streaming flows of a content source have achieved
a high utilization level. If so, the nodes communicate and appoint a new reflector node,
which will transparently start to multicast video flows to clients while alleviating the
network links that goes through the content servers and reducing the redundant flows in
the network.

We evaluated RBSA4LS through extensive simulations and the results showed that
such simple strategy can reduce 40 % of the redundant traffic in random topologies
with 50 nodes. We also simulated RBSA4LS in a large ISP topology obtaining a
reduction of 85 % in the redundant traffic, which is close to the best result obtained by a
static strategy that positions reflectors in the border of the network. Nevertheless,
RBSA4LS autonomously appoints reflectors where they are needed and adapts such
roles according to viewers’ fluctuations.

As future work we are planning to take in consideration the cost of nodes and the
cost of changing roles. We would like to study when reflector´s should cease to exist as
streaming traffic diminishes in the network as well as their life migration impact.
We are also prototyping the RBSA4LS in a physical and virtual testbed in order to
verify the applicability of the proposal in a real environment. Moreover, we intend to
apply the RBSA framework in other contexts, such as autonomic caching in CDNs.
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Abstract. One major research direction in cloud computing deals with
the reduction of energy consumption. This can be seen as an optimization
problem that must be addressed both at the hardware and the applica-
tion (i.e., software) level. At the software level, optimizing energy con-
sumption is usually related with scaling down the resources required for
running an application (e.g., memory, CPU usage). In this context we
can make the assumption that the presence of design flaws in the imple-
mentation of a software system may lead to a suboptimal resource usage.
Our investigations on the impact of several design flaws on the amount
of resources used by an application indicate that the presence of design
flaws has an influence on memory consumption and CPU time and that
proper refactoring can have a beneficial influence on resource usage.

Keywords: Design flaws · Resource usage · Energy optimization · Energy
consumption · Cloud computing

1 Introduction

Over the last years, cloud computing has become an increasingly widespread app-
roach for deploying software systems. Consequently, an ever growing number of
applications have been deployed on cloud infrastructures. However, hiring com-
puting power for running an application in a cloud raises different issues related
with energy consumption [25]. In this context, an important research direction
in cloud computing deals with the issue of minimizing energy consumption, by
optimizing resource usage [15].

Energy consumption may be reduced by optimizing the hardware side (e.g.,
by using more energy efficient cooling systems). However, in many cases the
optimization can be even more cost-effective if, additionally, it addresses the
software side, too. This can be done by reducing the used resources (e.g., memory,
CPU time) claimed by the applications which run in the cloud since it seems
that energy consumption is affected by these resources [5].

The optimal usage of computing resources is an important factor of external
quality. Therefore, in order to assess and control it, this quality factor must be
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put in relation with the internal quality criteria [11]. One approach for quantify-
ing the internal quality of an application is the Factor-Strategy Model [17]. This
model captures deviations from design rules and principles of software design in
terms of design flaws (see [6,23]).

Over the last years various empirical studies have shown that code entities
affected by design flaws are harder to maintain [4], change more often [12] and
exhibit more defects [16,20] than other entities which do not reveal design flaws.
Therefore, a legitimate hypothesis is that one of the factors that may influence
the amount of computing resources used by an application is the quality of its
design.

In this paper we start an investigation for the following research question:
does the existence of design flaws in the implementation of a software system
lead to a suboptimal resource usage? This research question is particularly rel-
evant considering the increasing number of cloud providers that offer solutions
for deploying object-oriented applications to the cloud. Additionally, there is
potential interest in the HPC area, as energy efficiency is a must for achieving
“petaFLOPS computational speeds and beyond” [24].

To the best of our knowledge there are no previous results that investigate if
the presence of design flaws is correlated with an increased usage of computing
resources.

The paper is structured as follows: in Sect. 2 we relate our investigation to
previous work. In the first part of Sect. 3 we present the addressed research
question, as well as the impact of a well-known design flaw towards the resource
usages of a very simple program. We continue with an investigation towards the
impact of design flaws against a well know open source software system. We end
the section by pointing out the results of the study. The threats to the validity
are presented in Sect. 4. In the last section (Sect. 5) we summarize the results
and hint towards future work.

2 Related Work

In this section we relate our work to the two domains we are investigating:
energy optimization and design flaws. Additionally, an overview of cloud-specific
approaches on energy efficiency is offered.

2.1 Energy Optimization

Energy optimization at the application-level is a topic that has lately gained
much attention from both the research community, as well as the industry.
According to [5] energy consumption scales linearly with resource utilization.
Therefore, we can consider the memory and CPU time used by an application
as valuable metrics in the context of energy reduction.

Hindle [10] has performed a study that investigates the correlation between
software changes and power consumption. His results show performance opti-
mization across the versions of the investigated systems. The major difference
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to the work presented in our paper is that we manually refactored the available
source code in order to reduce the number of the exhibited design flaws. By
contrast, in the work of Hindle various measurements were performed on differ-
ent versions of the analyzed systems without isolating changes made for system
improvement.

Grosskop and Visser [9] proposed an energy model of an application and
suggested some optimizations at the application level. However, none of the
proposed optimization are related to the presence of design flaws in the source
code of the application.

{
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Fig. 1. The two experimentation scenarios.
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2.2 Design Flaws

Design flaws are deviations from the principles, patterns and best practices of
software design, like the ones presented in [7,19,23]. Fowler defined in [6] a set
of 22 design flaws which are considered to hamper the maintenance of object-
oriented software systems. Most of the time it is desirable to get rid off the flawed
entities and in order to do this the first step is to find the existing flawed entities
within the systems.

Finding manually flawed entities is time-consuming and this was the main
reason automatic detection techniques of design flaws appeared. Probably the
most used automatic approach for finding entities affected by various design
flaws is the metrics-based technique. Currently there are many design flaws that
can be detected automatically (see [12,16]) and different tools like inFusion1

accompany the extraction of design flaws. Usually these tools parse the source
code in order to extract the necessary information.

There are many recent empirical investigations, like the ones from [4,12,16],
which show that design flaws have a strong negative influence on external quality
factors like number of changes and/or defects. However, as already mentioned,
we are not aware of any studies that investigate the impact of design flaws on
the computational resources (memory, CPU) used by an application.

2.3 Cloud Computing Energy Efficiency

In the context of cloud computing, energy efficiency offers important research
challenges and issues [25,27]. Different approaches for a “Green Cloud” exist, like
the Green Cloud simulator2 [14], supported by the University of Luxemburg, or
the Green Cloud Project3 [8], from the CLOUDS Laboratory of the University
of Melbourne. An overview of power and energy management in data centers
and cloud computing was offered by Beloglazov et al. [3], showing that “Cloud
computing naturally leads to power efficiency” by providing a series of energy-
oriented characteristics, including scaling up and down of resources, an approach
that was considered in the context of our research.

Different researches directions also exists, including Virtual Machine (VM)
placement and selection, together with appropriate selection policies [2,8,13] by
employing power-aware scheduling mechanisms, provisioning and management
of resources.

3 Case-Study Setup

The different approaches for an energy-aware cloud computing that currently
exist are rather investigating optimization of cloud resource usage, by exploiting
the energy-oriented characteristics of cloud computing [3]. Even if there is a clear

1 http://www.intooitus.com/products/infusion
2 http://greencloud.gforge.uni.lu/
3 http://www.cloudbus.org/greencloud/

http://www.intooitus.com/products/infusion
http://greencloud.gforge.uni.lu/
http://www.cloudbus.org/greencloud/


184 C. Marinescu et al.

relationship between power consumption and CPU utilization [5], there are few
investigations on the impact of design flaws on the computational resources (e.g.,
memory, CPU time) used by an application.

In order to address this intriguing research direction we arranged and per-
formed two experimental studies, which are described in this Section.

3.1 A Small Case Study: The Data Class Design Flaw

The goal of this study is the measurement of the influence of the Data Class [23]
design flaw on the used resources. Data Classes are mainly data containers which
expose data instead of providing significant functionality. We choose to start our
investigation with the influence of the Data Class flaw as previous studies have
shown that this flaw has a very large lifespan in software projects [21].

As shown in Fig. 1, our experiment starts with an Employee class which con-
tains four data members, as well as the full set of accessor methods (getters
and setters) for the data members. In the first scenario (see left side of Fig. 1),
we also defined a simple service for the Employee class that returns its string
representation, by concatenating the representation of its four data members.

In the second scenario, we created the EmployeeUser class which just aggre-
gates an Employee object. However, the key element of the second scenario is
the transformation of Employee in a pure Data Class by moving its sole service
to the EmployeeUser class. Table 1 summarizes the size of the generated .class

files, for all the classes involved in the two experimentation scenarios. The results
indicate that the storage space is significantly larger in the second scenario.

Table 1. Dimensions of the involved .class files.

Case study File(.class) Size(bytes)

No Data Class Employee 1096

Main 824

Data Class Employee 833

EmployeeUser 667

Main 953

In order to run the experiment for the two scenarios we defined for each a
driver class (i.e., Main1 and Main2). Each of the two drivers is doing a very
simple job: creates a large number of objects and calls the service. Thus, in
Scenario 1 we create Employee objects and call the toString() method, while
in Scenario 2 we create EmployeeUser objects, and call the print() service. For
each scenario, we executed 40 iterations on a MacBook Pro with an Intel Core i5
2.53 GHz processor and 4 GB of RAM. In the first iteration we instantiate 100 000
objects, and in the following iteration we increase the number of instantiated
objects by another 100 000.
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Fig. 2. Resource usages for the first experiment.

At each iteration we measured the resident memory and the CPU time used
by the two versions of the target program, by using the Hyperic Sigar4 tool. The
results are summarized in Fig. 2, showing that, in most cases that are running in
Scenario 2 (i.e., the one that contains a Data Class) the usage of memory and
CPU time is larger.

Next, based on the obtained data, we will answer the following research
question: Do the runs of Scenario 1 tend to use fewer resources than the runs
4 http://www.hyperic.com/products/sigar

http://www.hyperic.com/products/sigar
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of Scenario 2? We consider that a run tends to exhibit a particular property
if the chances of fulfilling that property are greater than 50 %. We answer this
research question by employing the proportion test and running it in R [22].

According to the data from Fig. 2, for 37 of the 40 runs the used memory
of the program from Scenario 1 is less than the used memory of the program
from Scenario 2 and for 36 of the 40 runs the CPU time of the program from
Scenario 1 is smaller than the CPU time of the program from Scenario 2. We
firstly employed the following statistical test:

prop.test(37, 40, 0.5, alternative="greater")

where the first parameter denotes the number of the runs of Scenario 1 where
the used memory was lower than the corresponding run of Scenario 2, the second
parameter denotes the total number of runs and 0.5 denotes the true probability
for a run of Scenario 1 to use less memory than a run of Scenario 2. Regarding
the CPU time, we run:

prop.test(36, 40, 0.5, alternative="greater")

because in 36 of the cases the CPU time of the program from Scenario 1 is
lower than the CPU time of the program from Scenario 2. Since in both of the
cases p-value is lower than 0.05 (9.055e-08 and respectively 4.755e-07) we can
conclude that running Scenario 1 tends to use less resources than Scenario 2.

Since we decided to instantiate a very large number of objects, at first sight it
may seem that the situation described with this first experiment setup is rather
rare. In this context we want to emphasize that the investigated situation may
occur quite frequently in the case of an application which was deployed in the
cloud, as the number of objects gets multiplied once the application is scaling
up due to a larger number of users that simultaneously access it. For example,
instead of instantiating for each user the first version of the Employee class, we
allow the instantiation of the second version of the Employee class (i.e., the one
exhibiting the Data Class design flaw) as well as the EmployeeUser class, then
this situation will by multiplied by the number of the users that simultaneously
access the application.

3.2 The JHotDraw Case Study

In the first experiment we used a rather naive example merely to investigate the
impact of having a large number of instances of classes where data and func-
tionality are separated, versus the more desirable case of working with instances
of a single class that encapsulates data and provides a service based on those
data. However, we are aware that an increase of the needed resources may also
be encountered in the case of other design flaws. Therefore, we designed and exe-
cuted a second experiment in order to investigate the relation between entities
affected by design flaws and resource usages against a real application.

For this second experiment we used JHotDraw 5.4 as a subject system. JHot-
Draw is a Java GUI framework for technical and structured graphics. Our choice
for this system was based on the fact that it is the subject of various empirical
analyses like the one found in [1].
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The Experiment. In order to setup the experiment, we needed a system with
a reasonable history in order to increase the chances to spot design flaws, as it
is known that the number of the design flaws is growing together as the system
gets older [21]. Additionally, we decided to chose a version that is the last before
a major change as this increases the chances of working on a stable release.

The experiment was performed as follows:

1. We executed all the available tests for the JHotDraw system, while measuring
memory consumption and CPU time using the Hyperic Sigar tool;

2. We used inFusion 1.6 to detect design problems in JHotDraw ;
3. Based on inFusion’s findings we performed an extensive manual refactoring

process, with the goal of removing all design flaw instances detected by inFu-
sion;

4. After all the modifications targeting the removal of a particular type of flaw
were performed upon the source code we run the available tests and performed
a new set of measurements.

513

523

533

543

553

563

573

O
ri
gi

na
l

D
at

a
C
lu

m
ps

G
od

C
la

ss
D
at

a
C
la

ss
C
yc

lic
D
ep

en
de

nc
ie
s

In
te

ns
iv

e
C
ou

pl
in

g
B
lo

b
O

p
er

at
io

n
F
ea

tu
re

E
nv

y
Sc

hi
zo

ph
re

ni
c

C
la

ss

M
or

e
C
yc

lic
D
ep

en
de

nc
ie
s

13

19.5

26

32.5

39

M
B

y
te

s

se
co

n
d
s

Used memory
CPU time

Fig. 3. Resource usage for JHotDraw.



188 C. Marinescu et al.

The initial version of the system as well as all the performed refactorings
are freely available for download5. Figure 3 summarizes the results of our mea-
surements, by depicting the maximum values for the two measured variables
(memory usage and CPU time) after each refactoring step, which involved the
removal of design flaw instances of a given type.

The Findings. Next we describe the findings of this incremental refactoring
process. The performed measurements from Fig. 3 show that:

– removing design flaws from a system has an impact towards the used compu-
tational resources.

– the necessarily amount of memory in all of the refactored versions is less when
compared to the initial version of the system.

– the CPU time for running the tests is sometimes smaller when compared to
the initial version of the system.

Next, based on the obtained data, we will answer the following research
question: Do the runs of the refactored source code tend to use fewer resources
than the run of the initial version of the source code?

According to the data from Fig. 3, for 9 out of the 9 runs of the refactored
source code the used memory is less than the used memory of the initial version
of the system. We run the next statistical test:

prop.test(9, 9, 0.5, alternative="greater")

and since p-value is less than 0.05 (0.00383) we can conclude that the runs of the
refactored source code where some design flaws have been removed tend to use
less memory than the initial version of the system. Regarding the CPU Time,
only 3 out of the 9 runs reveal lowered values; since the p-value of the statistical
test

prop.test(3, 9, 0.5, alternative="greater")

is greater than 0.05 (0.7475) we cannot conclude that the refactored version tend
to complete in less time than the initial version of the source code.

The Flaws. According to inFusion, the most frequent design flaw is Data
Clumps [6]. This flaw consists of having the same sequence of parameters passed
to different methods for many times. inFusion detected 38 methods with Data
Clumps, but at a closer inspection we noticed that there are only three sequences
of different parameter “clumps”. Consequently, the removal consisted of creat-
ing three new classes and passing as parameter instances of those classes when
appropriate.

The second refactoring addressed the removal of the single God Class detected
in JHotDraw. God Classes tend to group unrelated pieces of functionality and to
access directly non-encapsulated data members from other classes [23]. In order

5 http://cs.upt.ro/∼cristina/jhotdraw-refactorings.zip

http://cs.upt.ro/~cristina/jhotdraw-refactorings.zip
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to remove design flaw we split the Geom class into two classes, having in each
class only cohesive functionality.

The next refactoring targeted the removal of Data Classes. In the refactoring
process we increased the data-behavior locality and reduced the visibility of
some public data members. However, due to the excessive complexity of the
refactoring, we kept one Data Class as we found it very difficult to solve its
dependencies to the many external classes that access it.

Next, the Cyclic Dependencies [18] were removed by relocating some classes
among packages. We also addressed the single Intensive Coupling [23] case,
exhibited by the method getCursor() from the LocatorHandle class. This method
contained a large number of methods calls from the RelativeLocator class, as
part of a complex branching structure. We refactored the method by extracting
the method fragment with the many external method calls, and moving it to the
class named RelativeLocator.

The system does also exhibit two Blob Operations (i.e., large and complex
methods [6]). We refactored the first case (TextAreaFigure.drawText()) by split-
ting the method into some smaller methods inside the same class. In the second
case (ShortestDistanceConnector.findPoint()) we decreased the number of the
calls performed inside the refactored method by storing the values returned by
the called methods into a local array whose values are interrogated.

We did also correct the Feature Envy flaws, which refer to methods that use
heavily data from other classes instead of the data members from their definition
classes [23]. The refactoring involved moving some functionalities in the classes
that provide the data these functionalities rely on. Eventually, we refactored
the Schizophrenic Classes (i.e., classes capturing more than an abstraction [23])
mainly by splitting the classes. Last, but not least, we had to remove some
additional Cyclic Dependencies which were involuntarily added while performing
the Feature Envy refactoring.

4 Threats to Validity

In this section we present the threats to validity associated to our empirical
study, following the guidelines from [26].

4.1 Construct Validity

This type of threats are connected to the extent the operational measures for
the concepts being studies were established correctly [26]. Within the case study
presented in this paper these threats are mainly related to the errors performed
during data extraction. The possible errors are due to the extraction of (i) design
entities from the source code, and (ii) measures regarding the resource usages.
We consider that these threats are mitigated to a large extent as we employed a
set of well-known and reliable tools.
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4.2 Internal Validity

This aspect of validity is related to the causal relations that are inferred. During
our study we did not modify the functionalities of the analyzed systems and
this is reflected either by presenting the altered source code (for the first case
study) or by passing the available suite of tests, in the case of JHotDraw. Since
knowing that the functional behaviour of the system was not altered strongly
depends on the quality of the existing tests, our confidence is based on the good
test coverage of JHotDraw.

4.3 External Validity

This threat concerns the possibility to generalise the provided results. The
reported results are obtained by analyzing mainly a single software system. We
do not suggest generalizing our research results to other systems unless further
case studies are performed. We intend to replicate this study against other sys-
tems in order to see if the results obtained in this study can be generalized.

4.4 Reliability Validity

This aspect concerns the fact that a later investigator that conducts the same
case study like the one presented here should obtain the same results and, conse-
quently, reach the same conclusions. We have provided all the needed information
about the conducted study, and therefore we consider that the study is perfectly
replicable. The source code of JHotDraw is freely available, as well as the refac-
torings we performed for removing design flaws. Also, the software tools used
for extracted the presented data are properly introduced in this paper.

5 Conclusions and Future Work

In this paper we present an empirical study performed upon two case studies (a
simple one, as well as a well-known software system) providing evidence about
the impact of various design flaws on the used resources of the investigated
systems. We showed that design flaws increase the used amount of memory and
influence the CPU time.

Our approach involved an important number of design flaws – as defined in
[6,18,23] – including Cyclic Dependencies [18], Data Clumps, Blob Operations
[6], Data Classes, God Class, Intensive Coupling, Feature Envy, Schizophrenic
Classes, and Cyclic Dependencies [23] in the two case studies considered.

We consider our approach as being dependent on the available tests and,
consequently, a further step should be the inspection of an application actively
accessing a cloud environment. In order to achieve this step, we intend to deploy
an application in a real cloud environment and monitor its performance in terms
of the same computing resources as considered in this work. This task could be
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accomplished, for example, by freely deploying the application in CloudBees6

and perform the measurements using NewRelic7. Additional measurements will
be performed by deploying the applications in the experimental cloud setup at
the HPC center from West University of Timişoara8.
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Abstract. Cloud computing services are becoming increasingly more
widespread, mainly because they offer a convenient way of using remote
computational resources at any time. Constantly satisfying client needs
is a difficult task due to the limited nature of the physical resources.
Careful handling of computing capabilities is critical. Cloud systems
offer resource elasticity, which is essential for respecting Service Level
Agreements (SLAs) or other types of contracts. This paper proposes a
novel solution which offers an efficient resource management mechanism
for Clouds. The solution is based on monitoring hosts belonging to the
Cloud in order to obtain load data. A policy-based system uses the mon-
itoring information to make decisions about deployment of new virtual
machines and migration of already running machines from overloaded
hosts. The policy-based solution is enhanced by prediction algorithms to
optimize the resource usage and to make sure that the available hosts are
capable of handling the increased load before it happens. This leads to
more efficient resource usage and can help fulfill the SLA requirements
even under heavy loads.

Keywords: Cloud computing · Resource management · Policy manage-
ment · SLA · Prediction

1 Introduction

Cloud computing is an emerging paradigm that provides remote access to com-
putational resources and storage to end-users. In the last few years, Cloud sys-
tems have become increasingly popular. The expansion of Cloud technologies
is caused both by small to medium businesses that prefer renting computing
capabilities over buying them, and by end-users accessing services located in
Clouds. The current trend for companies is to shift their service systems into
the Cloud, unburdening themselves from the cost of purchasing and maintaining
equipment. Also, third party service providers prefer offering their services using
Cloud systems, accessible over the Internet, through desktop or mobile apps.

Computing resources offered by a Cloud can range from application software
or services to virtual machines, servers, data storage or even entire networks.
c© Springer International Publishing Switzerland 2014
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The usual approach in Cloud systems is to divide the provision of services into
three layers of abstraction: Infrastructure as a Service (IaaS), Platform as a
Service (PaaS) and Software as a Service (SaaS). In the IaaS model, Clouds
provide direct access to physical resources, usually through virtual machines [1].
As opposed to this, the PaaS and SaaS models only allow access through certain
APIs or applications.

Cloud systems can be divided into two categories: public and private. In pub-
lic Clouds, resources are made available in a pay-per-use manner. The consumer
and the Cloud service provider must agree upon the terms on which the quality
and reliability of the services must be assured. After a negotiation process, a
contract called Service Level Agreement (SLA) [6] is usually signed. The SLA
contains different quality of service attributes such as average/maximum appli-
cation response time or hourly cost that must be enforced in order to fulfill
the contract. Private Clouds usually refer to organization data-centers, where
resources are not made available to the public, but are destined rather to inter-
nal usage. There are also hybrid Clouds which may have components of a public
Cloud, as well as private data-centers.

Resource management is a very important and complex process for both
business oriented and technical fields. In order to achieve responsiveness, a Cloud
system must be provided with an efficient resource management mechanism. If
we refer to the IaaS level of abstraction, virtual machines must be deployed on
the right hosts, at the right moment of time.

A fundamental approach in Cloud systems is reusability. Cloud consumers rent
computing capabilities that must always be delivered. Not all rented resources
are used at all time. Unused resources must not go to waste, hence an adequate
resource manager must figure out what are the unused resources, and reuse them
in order to fulfill every SLA at any given time. OpenNebula [2] is an open source
cloud computing framework that aims to easily build and manage private cloud
infrastructures. It offers multiple layered APIs allowing the user or developer to
choose the degree of complexity of the cloud functions he/she wishes to use.

This paper presents an efficient, adaptable and easily extensible mechanism
for managing virtual machines in an OpenNebula environment. The framework
uses a policy-based system to make decisions regarding deployment of new
virtual machines or migration of already running VMs. The policies refer to
different parameters of the hosts that describe the amount of resource utiliza-
tion, enhanced using prediction algorithms. This way, uniform utilization of the
resources in the Cloud is guaranteed and frequent overloading of the hosts is
prevented.

The rest of this paper is organized as follows. Section 2 describes other
research related to the subject of this paper. In Sect. 3 we present the cloud
monitoring and policy enforcement mechanisms and also contains details about
the resource usage prediction which enhances the policy-based Cloud manage-
ment solution. In Sect. 4 we describe our testbed and show various experiment
which validate the proposed solutions. Finally, Sect. 5 draws conclusions and
proposes directions for research beyond the contents of this paper.
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2 Related Work

Efficient management of computational resources is a subject which has been
the focus of many research projects in the past [7,8].

Many projects tackle the problem of dynamically overlaying virtual resources
on top of physical resources by using virtualization technologies, and do so with
different resource models. The most widespread Cloud infrastructure is the Ama-
zon Elastic Compute Cloud (EC2) [11], which is a central part of Amazon’s cloud
computing platform. EC2 allows users to rent virtual computers on which to run
their own computer applications. EC2 allows scalable deployment of applications
by providing a web service through which a user can boot an Amazon Machine
Image to create a virtual machine, containing any software desired. A user can
create, launch, and terminate server instances as needed, paying by the hour for
active servers, hence the term “elastic”.

The purpose of Cloud resource managers is to obtain the maximum of per-
formance with existing resources. The resource scheduler needs to maintain an
optimum balance and make sure that there are no overloaded resources or that
systems are kept idle, which would lead to a waste of energy. To maintain this
balance, the resource manager needs to have access to real time monitoring
data, as well as an estimation of future requirements, in order to take the best
decisions. Other projects use prediction algorithms to further optimize resource
allocation. The Network Weather Service [9] is such a solution which monitors
and predicts the performance of computational resources and computer net-
works. The predictions are based on collected monitoring data. It is a modular
system containing a name server, sensors, predictors and persistent memory, all
communicating with each other through TCP sockets.

Another approach related to this paper is the Network Bandwidth Predictor
[10]. It estimates the bandwidth of a path between two nodes in a network
by sending a small packet and measuring the round trip time. This data is then
collected and used to train a neural network-based prediction module. The neural
network is a simple backpropagation model and is able to accurately predict the
available network bandwidth for certain network paths.

3 Cloud Resource Management Architecture

The purpose of the proposed solution is to deliver an efficient, adaptable and eas-
ily extensible framework for managing virtual machines in an OpenNebula envi-
ronment. The framework uses a policy-based system to make decisions regarding
deployment of new virtual machines or migration of already running VMs. The
policies refer to different parameters of the hosts that describe their usage in the
last period of time. This way, uniform utilization of the resources in the Cloud
is guaranteed and frequent overloading of the hosts is prevented.

The proposed architecture is shown in Fig. 1. The framework itself con-
sists of three interlinked modules. The Cloud is an inherently dynamic environ-
ment, so careful and continuous monitoring of host load parameters is a must.
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Fig. 1. Resource management architecture

The Monitoring module covers this aspect. Secondly, a policy-based system must
be provided to help cloud administrators enforce different host loads require-
ments. The system periodically checks if any general or host-specific policies
become active. It also makes decisions in two types of situations: when a request
for deployment is made, it chooses the right physical machine that should host
the new VM. If one or more policies are triggered (i.e. a host is overloaded),
it picks a virtual machine running on that host and an available destination
host for it. This job is done by the Policy module. Finally, the Resource Manage-
ment module interacts with the OpenNebula daemon, implementing the decisions
made by the Policy module.

In addition, the data extracted from the Monitoring module is fed to a Pre-
diction module, that guesses future loads of the machines. The purpose of this
component is to make the system react to possible host overloads immediately,
or even before they actually happen. The framework is built on top of the Java
OpenNebula Cloud API (OCA) [14], which is used to access the needed Open-
Nebula core functions. OCA is merely a convenient wrapper for the XML-RPC
methods exposed by OpenNebula.

3.1 Performance Monitoring

The Monitoring module gathers information about hosts and virtual machines.
The monitored parameters are cpu/memory/disk usage and network traffic. We
obtain this information through the Java OCA API, by polling the OpenNeb-
ula daemon, at a certain time interval. By configuring OpenNebula to get the
information from the hypervisors at a similar interval, we can obtain relevant
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data useful to the Policy module and to the prediction algorithms. OpenNeb-
ula deploys a number of scripts to the physical machines, used to obtain load
data, which are remotely executed at each monitoring interval. In our testbed,
we installed the KVM virtual machine monitor [4] on all hosts.

At this point, the OpenNebula core contains the desired monitoring informa-
tion. We can extract this data programmatically by interrogating the ON daemon
via the OpenNebula Cloud API. Extracted data must be stored in order to main-
tain a complete history of the loads. This is necessary in the interest of having
a well functioning Policy module. Moreover, the Prediction module relies on an
extensive history of host and virtual machine loads. Monitored data is stored in
a PostgreSQL [5] database. We created tables for hosts, virtual machines and
templates which contain mainly static information, inserted only once per mon-
itoring session. Additionally, Host Monitor and VM Monitor tables contain the
actual monitoring information, inserted each time the OpenNebula daemon is
polled.

3.2 Policy-Based Resource Management

Cloud administrators can supply policies in order to specify the systems behavior
in certain situations. Policies can be applied in two cases: when a virtual machine
deployment request is issued, the suitable host on which the VM will run is
chosen in respect of the defined policies; these are the deployment policies. For
example, when a host becomes increasingly overloaded, one or more guest VMs
are migrated to other hosts. The overload threshold is defined by the migration
policies. The Policy module periodically checks if any general or host-specific
migration policies are triggered.

Policy Structure. A policy is composed of three parts: the target, the policy
type and the condition. The target specifies the name of the host that the policy
applies to. The name must be the unique OpenNebula identifiable host alias,
that can be obtained using the onehost list command. If we wish to apply the
policy to all the hosts in the Cloud, we can specify the all keyword as a target.

The policy type can be one of the two keywords deploy and migrate. If we
specify both a general (i.e. using the all keyword) and a host-specific policy (i.e.
using the hosts name) for the same type of policy, only the host-specific one is
considered for that host. A condition must specify a parameter, an operator and
a value. Parameters may be any of the monitored parameters described in the
previous section: used cpu, used memory, used disk space or network traffic. The
keywords are: cpu, mem, disk and net. Operators may be any type of comparison
operators and they work as expected. The value acts like a threshold for the
corresponding parameter and must be given as a percentage for the first three
parameter types and as an absolute value for the network traffic parameter (bits
per second). Conditions may be chained using the OR operator (‖), the AND
operator (&&) and round parentheses.

It is necessary to have separate types of policies for deployment and migra-
tion actions. If we were to consider only deployment policies, we could not avoid
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unpredicted host overloads. For example, if guest virtual machines would become
cpu-intensive, there would be no way of unburdening the host and responsiveness
would suffer. On the other hand, if only migration policies were to be consid-
ered, new virtual machines could be deployed on already overloaded hosts. The
VM would then be migrated because a migration policy would activate, but
an unnecessary transfer would have been made. In addition, there would be no
guarantee that the new host would be suitable for the VM.

As mentioned before, conditions can be chained into more elaborate policies.
For example, a complex migration policy can take the following form: (cpu >
80&&mem > 70)‖net >= 10000000. Here, a virtual machine should be migrated
if both its host cpu and memory become highly loaded or if the host generates
constant high network traffic (more than 10 MB/s).

The policies are specified in a configuration file and can be reloaded at
any time when the Policy module is running. A complete configuration file is
described below:

1 a l l deploy mem < 60
2 a l l migrate cpu >= 80
3 on2 deploy cpu < 80 && mem < 60
4 on3 migrate cpu >= 90
5 on3 deploy mem < 90

The first line specifies a deployment policy for all hosts in the Cloud. New
virtual machines should be deployed on hosts having less than 60 % of their
available memory used. All hosts must comply to this policy, except on2 and on3.
on2 defines an even stricter deployment policy, requiring also at least 20 % of free
cpu to accept other virtual machines. On the other hand, on3 relaxes the global
policy. This could happen in the case of hosts having more physical memory
than the others. The global migration policy (defined on line 2) specifies that
virtual machines should be migrated if the cpu load exceeds the 80 % threshold.
The on2 host keeps this policy, as there is no specific migration policy defined
for it. on3 relaxes the global policy. This indicates that on3 may have a better
processor or hyperthreading enabled.

Policy Matching. The Policy module maintains a list of deployment and
migration policies for each available host. When a new virtual machine request
is issued, we must identify the hosts that support the deployment of that VM.
In other words, we must call an evaluate() method for the hosts deployment pol-
icy. The values of the parameters that must be passed to the evaluate() method
should be the sum between the hosts monitored parameters and the virtual
machines statically determined parameters. The cpu, mem and disk values for a
host are computed as the mean of the database entries of the last period of time.
Experimentally, we decided that this period should be the last 2 min. In order to
compute the net value, we need to find all the differences between two consec-
utive entries, divide each of them by the monitoring interval and then compute
the mean of these values. Because the virtual machine is uninstantiated, we have
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no information about its cpu usage and network traffic. The mem and the disk
parameters are static. Memory for a virtual machine is allocated at instantiation
time, based on the description of the VM template. Disk usage is the amount
of space the virtual machine image takes from the hosts total disk capability.
The policy condition values are given in percentages, but the database entries
store absolute values, so the cpu, mem and disk parameters must be expressed
as ratios of the hosts maximum available cpu, memory and disk. The full algo-
rithm for computing the values and checking if a host can sustain a new virtual
machine deployment is shown below.

1 f o r a l l param in hostParameters :
2 data := obta in param va lues from DB
3 mean := 0
4 i f param == ‘ ‘ net ’ ’ then
5 f o r i := 1 to data . s i z e s tep 1 do
6 mean := mean+(data [ i ]−data [ i −1])
7 mean := mean/ mon i to r In t e rva l
8 mean := mean / ( data . s i z e − 1)
9 e l s e i f param == ‘ ‘ disk ’ ’ then
10 mean = data [ 0 ] ∗ 100 / hostMaxDisk
11 e l s e
12 f o r i := 0 to data . s i z e s tep 1 do
13 mean := mean + data [ i ]
14 mean := mean / data . s i z e
15 i f param == ‘ ‘ cpu ’ ’ then
16 mean := mean∗100/hostMaxCPU
17 e l s e
18 mean := mean∗100/hostMaxMemory
19 means [ param ] := mean
20 vmMemory := obta in from db (vm template )
21 vmDisk := obta in from db
22 vmMemory := vmMemory ∗ 100 / hostMaxMemory
23 vmDisk := vmDisk ∗ 100 / hostMaxDisk
24 means [ ‘ ‘mem’ ’ ] := mean [ ‘ ‘mem’ ’ ] + vmMemory
25 means [ ‘ ‘ d isk ’ ’ ] := mean [ ‘ ‘ d isk ’ ’ ] + vmDisk
26 re turn dep loyPo l i cy . eva luate (means )

At each step the Policy module checks if migration policies for each host
match. Computing the host parameter means is done in the same way. The
only difference from the supportsVM() algorithm is that there is no new virtual
machine involved. After line 19, a migratePolicy.evaluate(means) call can be
issued and the resulting boolean can be returned. If a policy matches for a host,
we need to migrate a guest virtual machine in order to unload the system.

Policy Enforcement. When a new virtual machine needs to be deployed, we
check which hosts comply to their deployment policies. If more than one host
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is available, the host with fewer running guest virtual machines is preferred.
After deciding which host is suitable for running the new VM, the Resource
Management module comes into action. Using the Java OCA, it creates a new
virtual machine and it deploys it on the designated host.

Once we decide that a migration policy was activated, we must decide which
guest virtual machine should be migrated from the host and which is the des-
tination host for the migrated VM. First, we create a list of virtual machine
candidates that are suitable for migration. To do this, we subtract the VM loads
from the total host loads and check if the migration policy still applies. If the
resulting loads are beneath the thresholds imposed by the policy, the VM is a
valid candidate. Then, we must choose one virtual machine from the resulting
list. Virtual machines that were never migrated are preferred. If all VMs were
previously migrated, the preferred VM is the one migrated first. Also, a virtual
machine migrated less than an hour ago, will not be migrated. This is required
so that virtual machines will not be continuously transferred from host to host
in a short period of time. If none of the VMs were previously migrated, the
VM having the highest number of load parameters greater than the others is
preferred.

If the VM candidates list is empty (i.e. no virtual machine, if migrated, will
reduce the hosts load to a point where the migration policy will not activate
anymore), then the same sorting described in the previous paragraph is applied
to the whole list of guest virtual machines. This means that we do not resolve
the overloading problem in one iteration, but we rather wait for the migration
process to finish, and then choose another virtual machine to migrate, sometime
in the near future.

4 Resource Usage Prediction

The monitoring data collected using the modules we described in the previ-
ous sections are stored as time series. For a series of values for a parameter
x1, x2, x3, . . . , xN we can use prediction algorithms [12] to estimate the values of
xN + 1, xN + 2, . . . , xN + h, where h is the prediction horizon.

For the implementation we chose the Burg algorithm [13]. The algorithm has
the goal of minimizing the sum of the square of the errors between the measured
data and the forward linear prediction Ep, as well as the sum of the error between
the measured data and the previous linear prediction, which is named Hp. Those
two sums can be expressed as:

Ep =
N∑

n=p

(

xn −
(

−
p∑

i=1

aixn−i

))2

Hp =
N−p∑

n=0

(

xn −
(

−
p∑

i=1

aixn+i

))2
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The sum of Ep+1 and Hp+1 needs to be as small as possible, therefore:

∂(Ep+1 + Hp+1)
∂k

= 0

From this, the rest of the model and algorithm can be found in [13].

5 Experimental Results

We installed an OpenNebula Cloud infrastructure on four physical machines.
One of them (on1) acts like the head node and the other three (on2, on3 and
on4) are available hosts that can support virtual machine deployment.

In order to test the resource management system we need an automated
mechanism to generate host loads. Loads should consist of CPU, memory and
disk usage as well as network traffic. WikiBench is a web hosting benchmark that
can be used to stress-test systems [3]. It uses the MediaWiki web application to
expose a Wikipedia database. Any host that has MediaWiki and a Wikipedia
database dump installed acts like a Wikipedia server. We also need a Wikipedia
request trace (i.e. a history of web requested Wikipedia resources). Given all
these elements we can use the Wikibench application to replay the workload
onto the Wikipedia installation.

In Fig. 2 we show how the system reacts to a virtual machine deployment
request. The policy configuration file for this scenario is the following:

all deploy mem < 55
on4 deploy mem < 90

Fig. 2. Deployment of new VMs (Color figure online)

When the simulation started, one WikiBench virtual machine was running on
the on3 host. Because 1 GB of RAM from the host’s total 4 GB was reserved for
the VM, the host’s total memory usage was somewhere around 30 %. On the on2
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host, two virtual machines were running: one WikiBench and one ttylinux. This
is why on2’s memory usage was a little higher. The on4 host was severely loaded
because it was running multiple WikiBench machines. When about 10 min passed
from the simulation start point, we issued a WikiBench virtual machine deploy-
ment request (first yellow bullet). In this situation, the system could clearly not
pick on4 to be the destination of the new VM, as hosting another WikiBench
would send its memory usage well beyond the threshold. The system picked on3
because at that point it hosted fewer virtual machines than on2. After deploy-
ment, on3’s memory usage slowly grows as the new virtual machine becomes
increasingly utilized. When a second WikiBench request was issued (second yel-
low bullet), on3’s memory usage was somewhere around 45 %. on3 is not a valid
host candidate anymore, because another virtual machine (+25 %) would make
its memory load cross the policy imposed threshold. The new VM is correctly
deployed to on2.

Fig. 3. Migration of a VM when reaching a threshold (Color figure online)

In Fig. 3 we show that the system reacts correctly when a migration policy
becomes active. The only policy used in this scenario was on3 migrate cpu >= 75.
The simulation starts with three running virtual machines on the on3 host:
two ttylinux instantiated images and one WikiBench machine. We can see that
because the WikiBench simulation was running, the host’s cpu load resembles
real-life usage. When the cpu usage crosses for the first time the 75 % threshold
(around 1800 s), no action is taken because the mean cpu usage of the last
2 min is considered when checking the policy. This shows that the system is not
fooled by load spikes. When the cpu usage starts to constantly exceed the policy
imposed limit, the system reacts and migrates a virtual machine. The end of the
migration (i.e. the moment when the migrated virtual machine is available on
another host) is marked with a yellow bullet. We define the response time (tr)
as the time passed from the moment when a parameter load starts to constantly
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Fig. 4. Prediction of CPU load for 5 min in the future

exceed the threshold to the moment when the load is brought back under the
threshold. In this case, because migration happens in just a few seconds, tr is
approximately 2 min.

In Fig. 4 we used the values predicted by the Burg algorithm for the CPU
load of a host for a moment in time 5 min in the future from the measured values.
The input values are obtained through the monitoring of a host on which we
launched 4 virtual machines. Each load value is collected using intervals of 5 s.
For each monitoring data we received, we used the Burg prediction algorithm to
determine the CPU load value 5 min in the future, based on the data collected
for the last 10 min. The data obtained in this experiment is close to the actual
measured information, with an average error of 18.23 %.

6 Conclusions and Future Work

Efficient resource management is critical in Cloud systems. Our solution offers
an efficient way to minimize resource usage. The pool of physical capabilities is
limited, therefore we take advantage of reserved resources that are not used at
their full capacity.

The resource management mechanism described in this paper can be inte-
grated into an OpenNebula infrastructure. The OpenNebula scheduler offers a
minimalistic policy instrument that is used to choose the appropriate host on
which a new virtual machine should run. However, it lacks the possibility of auto
migrating VMs off overloaded hosts. We solve this problem. The implementation
is based on monitoring load data on the hosts in the Cloud and on the virtual
machines deployed on them. Current host states help us decide where to send new
virtual machine requests or when and what virtual machines to migrate from
overloaded hosts. Both actions are taken using a policy-based system. Cloud
administrators can supply deployment and migration policies in order to fulfill
custom host and virtual machine load requirements.
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We tested the solution with the help of the WikiBench application which
provides real load for the virtual machines using Wikipedia logs. The proposed
scenarios show that the framework reacts as expected when choosing a proper
host for satisfying deployment requests and when making migration decisions.
The results show that the use of deployment and migration policies improves
resource distribution and usage in the Cloud.

This solution can be extended in two ways. Different types of policies can
easily be added to reflect application response times. This parameter can be
measured in the same way as the currently monitored host parameters, but its
semantics is application-dependent. When policies become active, decisions can
be made regarding not only migration, but deployment of new client virtual
machines that could help decrease response times. Secondly, these policies can
be used to enforce actual contracts in the case of a commercial-like Cloud. The
framework can be perceived as a low-level tool that can help the administration
of SLAs.

Acknowledgements. The work has been funded by the “Sectoral Operational Pro-
gramme Human Resources Development 2007–2013 of the Ministry of European Funds”
through the Financial Agreement POSDRU/159/1.5/S/ 134398.

This research is also supported by the following projects: “SideSTEP - Schedul-
ing Methods for Dynamic Distributed Systems: a self-* approach”, (PN-II-CT-RO-FR-
2012-1-0084); “CyberWater” grant of the Romanian National Authority for Scientific
Research, CNDI-UEFISCDI, project number 47/2012.

References

1. Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G., Patterson, D.,
Rabkin, A., Stoica, I.: Above the clouds: a Berkeley view of cloud computing.
Report UCB/EECS 28:13 Department of Electrical Engineering and Computer
Sciences, University of California, Berkeley (2009)

2. Sotomayor, B., Montero, R.S., Llorente, I.M., Foster, I.: Capacity leasing in cloud
systems using the opennebula engine. In: Workshop on Cloud Computing and its
Applications, vol. 3 (2008)

3. van Baaren, E.-J.: Wikibench: a distributed, wikipedia based web application
benchmark. Master’s thesis, VU University Amsterdam (2009)

4. Kivity, A., Kamay, Y., Laor, D., Lublin, U., Liguori, A.: kvm: the Linux virtual
machine monitor. In: Proceedings of the Linux Symposium, vol. 1, pp. 225–230
(2007)

5. Momjian, B.: PostgreSQL: Introduction and Concepts, vol. 192. Addison-Wesley,
New York (2001)

6. Dillon, T., Wu, C., Chang, E.: Cloud computing: issues and challenges. In: 2010
24th IEEE International Conference on Advanced Information Networking and
Applications (AINA), pp. 27–33. IEEE (2010)

7. Buyya, R., Abramson, D., Giddy, J., Stockinger, H.: Economic models for resource
management and scheduling in grid computing. Concurrency Comput. Pract.
Experience 14(1315), 1507–1542 (2002)



Policy-Based Cloud Management Through Resource Usage Prediction 205

8. Schwanengel, A., Kaefer, G., Linnhoff-Popien, C.: Proactive Automated depend-
able resource management in cloud environments. In: ADVCOMP 2013, The
Seventh International Conference on Advanced Engineering Computing and Appli-
cations in Sciences, pp. 67–72 (2013)

9. Wolski, R., Spring, N.T., Hayes, J.: The network weather service: a distributed
resource performance forecasting service for metacomputing. Future Gener. Com-
put. Syst. 15(5), 757–768 (1999)

10. Eswaradass, A., Sun, X.-H., Wu, M.: Network bandwidth predictor (nbp): a system
for online network performance forecasting. In: Sixth IEEE International Sympo-
sium on Cluster Computing and the Grid, 2006, CCGRID 06, vol. 1, p. 4. IEEE
(2006)

11. Ou, Z., Zhuang, H., Nurminen, J.K., Ylä-Jääski, A., Hui, P.: Exploiting hardware
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Abstract. In latest years, the concept of interconnecting clouds to allow
common service coordination has gained significant attention mainly because of
the increasing utilization of cloud resources from Internet users. An efficient
common management between different clouds is essential benefit, like
boundless elasticity and scalability. Yet, issues related with different standards
led to interoperability problems. For this reason, the definition of the open
cloud-computing interface defines a set of open community-lead specifications
along with a flexible API to build cloud systems. Today, there are cloud systems
like OpenStack, OpenNebula, Amazon Web Services and VMWare VCloud that
expose APIs for inter-cloud communication. In this work we aim to explore an
inter-cloud model by creating a new cloud platform service to act as a mediator
among OpenStack, FI-WARE datacenter resource management and Amazon
Web Service cloud architectures, therefore to orchestrate communication of
various cloud environments. The model is based on the FI-WARE and will be
offered as a reusable enabler with an open specification to allow interoperable
service coordination.

Keywords: Cloud � Inter-cloud � Future internet cloud infrastructures �
OpenStack � Cloud interoperability

1 Introduction

Cloud systems expose interfaces to communicate with other clouds or services by
forming an inter-cloud. In this setting, users describe their requirements in service level
agreements (SLA) that are usually related with infrastructure resources as well as with
the relevant services (software) offered from providers. Inter-clouds involve public
clouds forming a collaborative environment for distribution and common management
of cloud services. This represents the communication glue between the different pro-
viders and the different provision layers including Infrastructure, Platform, Network
and Software as Services (IaaS, PaaS, NaaS and SaaS). This work vision is on con-
nectivity between resource providers that develop clouds exposing interfaces e.g.
following the Open Cloud Computing Interface (OCCI) standard [4].

Today, the area of inter-clouds has gained particularly interest in academia and
industry. Various works like [11] demonstrate solutions and mechanisms to achieve
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inter-cloud service distribution by exploring various components. In our case the focus
is on inter-clouds that emerge from the innovative area of Future Internet (FI) appli-
cation development of FI-WARE [2] that offers services, called Generic Enablers
(GEs). GEs provide essential functionalities, interfaces and APIs for various kinds of
functionalities (e.g. authentication, Internet of Things device management, storage,
cloud resource management, monitoring etc.). FI-WARE offers a cloud datacentre
resource management service (DCRM) in order to control and manage IaaS cloud
resources that is based on OpenStack. The inter-cloud service approach will serve as a
GE that links various clouds that share characteristics derived from OpenStack API [3],
FI-WARE Datacenter Resource Management GE (DCRM GE) Amazon Web Services
(AWS) [16], OpenNebula [18] and VM Ware cloud (VCloud) [17]. The service will be
designed as easily deployable and configurable to serve as a service for Future Internet
(FI) application development based on modular cloud services [7].

OpenStack is a platform architecture that provides a framework and APIs for cloud
systems. It is an open source solution that is based on open standards of OCCI. Lately,
it is used widely (e.g. by FI-WARE, IBM etc.) to allow development of private or
public clouds; it is simple to integrate and can be upgraded easily by providing an IaaS
for managing datacentre resources [1]. The architecture defines an Inter-cloud as a
Service (IC Service) that facilitates development of new IaaS based on the APIs of
OpenStack, DCRM GE, AWS, OpenNebula and VCloud. This includes creation of an
authentication mechanism to act as intermediate for all clouds. Based on this discus-
sion, Sect. 2 presents the related works and motivation of this study. The rest of the
paper is organized as following, in Sect. 3 we present the proposed model by defining a
range of services and the projected operations, in Sect. 4 we present the experimental
prototype infrastructure that demonstrates the draft inter-cloud collaboration for clouds
based on OpenStack, FI-WARE DCRM GE and AWS. Finally, Sect. 5 concludes with
the future research steps.

2 Motivation and Related Work

Inter-cloud has been characterized as the logical evolution of the Internet in terms of
advanced service provision [6]. Today, various cloud vendors aimed to an interoperable
cloud effort by jointly establishing federations of clouds. However, these vendor-
oriented solutions do not base on future standards and open interfaces but in specific
cloud architecture as in [12]. In [11] a discussion is presented to demonstrate a broker
that acts as an SLA resource allocator by combining components to achieve the agreed
benchmark among users and providers. This is a generic view of brokers that generate
challenges on how to manage the most effective resource allocation and scheduling.
In previous studies [19], we focused on clouds from the perspective of scheduling, and
the issues arising from inter-cloud communication. Especially, when the number of
clouds increases, it becomes more complex to control the various cloud resources in an
inter-cloud system. In this study we aim to overcome the problem of vendor specific
inter-clouds by focusing on the OCCI standard [4]. This means that cloud systems
developers using such standard (FI-WARE, OpenStack, OpenNebula etc. [4]) will be
able to utilize their interfaces to develop an inter-cloud service.
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Lately, various FI-PPP programmes [13] (up to 16 EU funded projects) have been
promoted to accelerate the development and adoption of Future Internet technologies in
Europe, advance the European market for smart infrastructures, and increase the
effectiveness of business processes through the Internet. All, base their developments in
the FI-WARE cloud platform. Based on this, we have develop an inter-cloud service
that is deployed in the intellicloud [14] infrastructure of the Technical University of
Crete (TUC) and could be offered as a GE service. Intellicloud is an experimental cloud
infrastructure for designing cloud-based Internet applications.

3 The Inter-Cloud Model

This section demonstrates the model to connect inter-cloud IaaS environments that are
geographically dispersed based on the OpenStack architecture of Sect. 3. By using a
common agreed standard in communication it solves issues regarding interoperability
among such systems. Figure 1 shows the inter-cloud services along with their key
operations.

The inter-cloud registry keeps a list of OpenStack architecture URLs that are used
by the inter-cloud services. Also, OpenStack RESTFul APIs and schemes along with
the advanced messaging queuing models (AMQ [15]) define explicitly a modular set of

Fig. 1. The inter-cloud service and available sub-services with key operations that follow the
OpenStack architecture
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components and standard rules for connecting OpenStack infrastructure. The REST
architecture allows seamless interactions among distributed cloud services [9]. This
happens in a highly secure environment where access and resource utilization is
controlled in many levels (users, roles, and projects) [5].

The model of the aforementioned topology provides services to facilitate inter-
cloud communication in a common platform. The inter-cloud service could list all
available services, instances, offer network capabilities, security and deployment of
IaaS services. The model includes the following key operations. Firstly, the inter-cloud
performs authentication for the specific tenant that uses it (at this stage the users require
to have credentials to all clouds of the collaboration), this is the source of certification
and serves as a RESTFul deployed service. Secondly, the model proposes a new
platform service as a RESTFul Inter-Cloud as a Service (ICaaS) to interfacing to other
clouds. The initial plan is to integrate OpenStack, DCRM GE and AWS clouds, yet the
model will be expandable to OpenNebula and VClouds. The proposed ICaaS is a
platform service that offers the following capabilities:

(i) Offers a registry that contains the configuration (e.g. URL addresses of other
OpenStack, AWS and FI-WARE DCRM infrastructures and ports).

(ii) The proposed ICaaS offers a SaaS that uses the OpenStack API [3] and AWS
API [16] to offer the next operations:
(a) ICaaS identity service: It is responsible to Authenticate, Generate, and

Validate. OpenStack tenants use it to revoke a token for access.
(b) ICaaS image service: To get, create, update, delete, and upload an image

of a cloud. The service returns a list of instances, while the post action
allows information from the inter-cloud to be forwarded to each respec-
tively (e.g. in case that a user wants to update an image description).

(c) ICaaS database service: Offers an administrator service to Create a user
(with credentials defined in the ICaaS) as well as to create flavors (vari-
ation of possible SLAs) to other clouds. This will be the mean to achieve
new user creation in all clouds from the inter-cloud platform.

(d) ICaaS network service: Offers the option to get, create networks and
routers. Usually, in case of a new user generation in the inter-cloud
platform the administrators generate the networks, yet this could happen
by them using the inter-cloud platform service.

(e) ICaaS security service: To get, create security groups, rules, ports, release
floating IPs, associate floating IPs to linkes clouds. These are essential in
order to offer the IaaS with all available options.

(f) ICaaS object service: To get, create, update, show, and delete account
metadata and objects using the OpenStack service.

(g) ICaaS orchestration service: Offer a template-driven engine that allows
application developers to describe and automate the deployment of
infrastructure.

(h) ICaaS compute service: To get, create, update, show, and delete services
(offered as IaaS VMs) in other clouds, this includes three kinds of
services:
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• The IaaS VM provisioning that relates with IaaS services. E.g. the
ICaaS platform creates a VM instance in an inter-cloud using the
available data (flavours, security, networks etc.).

• The PaaS provisioning that relates with PaaS services hosted in a cloud
and listed in the inter-cloud. E.g. the platform create a VM instance
(blueprint or snapshot of already deployed operational environment)
ready to be utilized by other. In this case developers could configure a
platform (e.g. Eclipse) to work directly on the platform.

• The SaaS provisioning that relates with already deployed instances that
are listed in the platform,. These are deployed locally and are available
to the platform users as VM instances e.g. accessible by their IPs.

(i) ICaaS messaging service: Operates with AMQP servers [15] of clouds in
order to manage and optimize messaging queues. We use RabbitMQ that
is a robust messaging mechanism for OpenStack services that is offered as
open source. For inter-clouds will enable connectivity (asynchronous and
decoupled) as it offers a common platform to send and receive messages.

(j) ICaaS telemetery service: Offers capabilities to list, create, gets details for,
update, and delete alarms and meters.

(iii) The ICaaS integrates a messaging model to optimize the interactions of the
RESTFul components and their calls. This is a usually problem when scaling
OpenStack with many servers, the systems tend to decrease performance as
many calls are forwarded to the database from many callers thus leading to
bottleneck.

(iv) The ICaaS integrates a performance metering service, the service collects
internal cloud performance measures and allows inter-cloud platform admin-
istrators to define thresholds and performance parameters for monitoring
purposes.

(v) ICaaS graphical user interface service: Offers the user friendly environment that
combines aforementioned services in a web based interface to manage access
and provision of services. The inter-cloud will use the horizon service will
provide a portal for the inter-cloud in order to allow management of the VMs,
floating IPs, security groups and public keys.

The modularity of the system is high, this means that the ICaaS services will be
developed based on OpenStack API, will be hosted and deployed separately and will be
available as open source instances of the intellicloud infrastructure of TUC [14].
Eventually, the services will be integrated into a platform that will offer the user-
friendly interfaces.

4 Experimental Prototype of Inter-Cloud

The experimental prototype is integrated using RESTFul API and implements the
“Identity Service” of the Inter-Cloud Services. It uses cURL [10] and OpenStack API
[8] and allows the inter-cloud to transmit and receive HTTP requests and responses.
The prototype offers a direct interaction with the various components provided by the
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OpenStack API, DCRM GE API and AWS API. The experiment is based on a single
type of request (Identity Service of Sect. 4), that is executed on real-time, the so-called
“authentication, to get token from each cloud” to be used for further authentication of
services among the following clouds.

– Intellicloud, architecture (OpenStack) of TUC (Crete, Greece).
– FI-LAB, architecture DCRM GE of FI-WARE (Sevilla, Spain).
– CloudLab: Experimental Cloud OpenStack of TUC (Crete, Greece).
– Amazon AWS Cloud (Oregon US).
– VMWare VCloud (UK).

Figure 2 demonstrates the prototype inter-cloud as a Service solution and the
associated cloud environments. It should be mentioned that due to size limits the
VCloud is not included in the analysis.

The ICaaS exposes interfaces to internal procedures for further communication.
It uses real time metrics to provide results. Especially, the “real” metric is the wall
clock time (the time needed from start to finish of the call), the “user” is the amount of
CPU time spent in user-mode code (outside the kernel) within the process, the “sys” is
the amount of CPU time spent (inside the kernel within the process) and the “factor” is
the actual performance of the metric to the compared value (division of worst by best
performance value). To demonstrate effectiveness we present the next 4 experimental
studies (where for each we execute 10 requests namely as Req1 to Req10) as follows:

– Demonstrates metric values of the ICaaS when is executed within the cloud (the
benchmark).

– Demonstrates metric values of the ICaaS when is executed for two cloud systems.
– Demonstrates metric values of the ICaaS when is executed for three cloud systems.
– Demonstrates metric values of the ICaaS when is executed for four cloud systems.

Fig. 2. The OpenStack model of an inter-cloud with available services and their key operations

An Inter-Cloud Architecture for Future Internet Infrastructures 211



4.1 1st Experiment: Internal Calls

This demonstrates calls made from the ICaaS to the CloudLab system and FI-LAB
infrastructures to collect measures of real, user and sys metrics that could be used as
benchmarks. The results are provided in order to characterize: (a) the real-time responses
of a cloud for calls that made internally (within the system, the calls are made from and
to the CloudLab services) and (b) the real-time responses of a cloud for calls that made
externally (outside the system). The calls are made from CloudLab to the FI-LAB
DCRM GE. Based on the comparison we extrapolate a factor as generalized metrics.
The factor for calls made within and outside is 54 % (int/ext%). This means that case
(b) achieves 54 % performance of the case (a). The results demonstrate realistic high
performance (average 0.39 s with highest 0.435) with regards to the real-time calls.

4.2 2nd Experiment: External Call to CloudLab and FI-LAB Cloud

This demonstrates the ICaaS calls that made from the service to CloudLab and FI-LAB
infrastructures (the point of calls) for authentication at both endpoints. In this case, we
compare the responses for the case of FI-LAB authentication (the benchmark of 1st
experiment) in contradiction of the ICaaS. The new factor is 42 %, yet the actual perfor-
mance remains at realistic high levels as most of the calls (9 out of 10) have been completed
in less than 1 s. This could be considered as a fast response by taking into consideration the
physical locations of datacenters (Greece and Spain) and the real-time execution of the
requests. Figure 3 demonstrates the trendlines where ICaaS shows a decreasing tendency
for the real time metric as more requests for authentication are executed.

4.3 3rd Experiment: External Call to FI-LAB to CloudLab,
FI-LAB and Intellicloud

We present an inter-cloud mechanism to compare performance of the same calls
between:

– CloudLab and FI-LAB (as executed in Experiment 2) and
– CloudLab, FI-LAB and Intellicloud (three clouds request).

Fig. 3. Comparison of calls among IC and FI-LAB external
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Figure 4 shows that the fluctuation of the ICaaS for 2 and 3 clouds is at a value of
0.256 s. Also the real time increases slightly over the 1.2 s. Similarly to previous
experiments, the point of the calls is the FI-LAB.

In this case the real time increases slightly, over the 1 s. Similarly to previous
experiment, this could be considered as acceptable performance measure for real-time
responses. Compared to experiment 2, the factors in such case are in very high levels,
as it achieves the 89 % of the performance of the real time metric.

4.4 4th Experiment: External Call to CloudLab, FI-LAB,
Intellicloud and AWS

The final experiment demonstrates an ICaaS for connection with four clouds. The inter-
cloud sequence of calls include authentication in Intellicloud, CloudLab, FI-LAB, and
Amazon AWS, for datacenters located in Greece, Spain and US. The factors for
comparison of the four clouds are demonstrated bellow. The calls are made form an
ICaaS service executed in FI-LAB. In particular, when comparing the factors we
conclude to the following:

(a) Factors of four (CloudLab, FI-LAB, AWS and Intellicloud), to three clouds
(CloudLab, FI-LAB, Intellicloud) are 53 % for real metric and 83 % for user. This
affection in performance mainly related to the distance of the remote AWS
datacenter.

(b) Factors of four (CloudLab, FI-LAB, AWS and Intellicloud), to two clouds
(CloudLab, FI-LAB) are 47 % for real metric and 75 % for user. This compared to
the previous case shows a slightly increase of 6 %.

Fig. 4. Fluctuation of the IC service for 2 and 3 clouds
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(c) Factors of four (CloudLab, FI-LAB, AWS and Intellicloud), to one cloud
(CloudLab as benchmark) are 20 % for real metric and 57 % for user. This means
that the four clouds performance achieve 20 % of the benchmark performance
(same requests executed within the cloud). Yet, realistically, ICaaS is executed in
less than 2 s, a result that is considered as acceptable.

In experiment 4, calls take less than 2 s to be completed, this means that we have an
increase of averagely 0.8 s compared to experiment 3. This is due to the communi-
cation time between the ICaaS and the different regions of datacenters around the
world. Figure 5 shows that the real time has been almost doubled; yet this remains
slightly averagely under the 2 s. To our view this is a highly acceptable value by
considering that the numbers of interactions have been increased.

5 Conclusions and Further Work

This work presented inter-cloud service architecture by utilizing OpenStack, FI-WARE
DCRM GE and AWS APIs. The current version is a work on progress and supports
basic functionalities in order to integrate an inter-cloud GE that is deployed into a
cloud. The proposed model integrates services to facilitate inter-cloud communication
in a common platform in order to list all available services, instances, offer network
capabilities, security and deployment of IaaS services. The experimental prototype
demonstrates the basic configurations in order to develop an inter-cloud service. The
analysis shows that the ICaaS performs efficient and real times remaining in highly
acceptable levels by being executed in less than 2 s for four clouds interconnections.

In future, we focus on the development of the proposed model in order to include
all services and components, and to develop a graphical user interface to provide a
common management platform that will be offered as a service instance. In addition,
extra effort will be made to the characterization of performance metrics (e.g. by col-
lecting the performance metrics of the servers) in order to provide optimization algo-
rithms. This includes RESTFul APIs and schemes along with messaging algorithms for

Fig. 5. Real times for combination of clouds (1–4 clouds)
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optimizing message exchanging among the inter-cloud services as in [20]. Finally, we
will explore OpenNebula, AWS and VCloud along with CloudStack RESTFul inter-
faces and APIs in order to expand the inter-cloud services.

Acknowledgement. This work is part of the Future Internet – Social Technological Alignment
Research (FI-STAR) project, which is a Future Internet Private Public Partnership (FI-PPP) run
by the European Commission. FI- STAR will conduct early clinical and non-clinical digital-
health use-case trials in European countries.

References

1. OpenStack Cloud Software. http://docs.openstack.org/api/openstack-image-service/2.0/
content/upload-binary-image-data.html

2. FI-WARE. http://www.fi-ware.org
3. OpenStack API. http://docs.openstack.org/api/openstack-image-service/2.0/content/image-

api-v2.0.html
4. Open Cloud Computing Interface. http://occi-wg.org
5. Jackson, K., Cody Bunch, C.: Openstack Cloud Computing Cookbook, 2nd edn. Packt

Publishing, Birmingham (2013)
6. Sotiriadis, S., Bessis, N. Kuonen, P., Antonopoulos, N.: The Inter-cloud meta-scheduling

(ICMS) framework. In: Proceedings of the 2013 IEEE 27th International Conference on
Advanced Information Networking and Applications (AINA ’13), pp. 64–73. IEEE
Computer Society, Washington, DC (2013)

7. Sotiriadis, S., Petrakis, G.M.E., Covaci, S., Zampognaro, P., Georga, E., Thuemmler, C.:
An architecture for designing future internet (FI) applications in sensitive domains:
expressing the software to data paradigm by utilizing hybrid cloud technology. In: 13th
IEEE International Conference on BioInformatics and BioEngineering (BIBE 2013),
Chania, Greece, 10–13 Nov 2013

8. Service API Examples Using Curl. http://docs.openstack.org/developer/keystone/api_curl_
examples.html

9. Richardson, L., Ruby, S.: Restful Web Services, 1st edn. O’Reilly, Sebastopol (2007)
10. Ward, S., Hostetter, M.: Curl: a language for web content. Int. J. Web Eng. Technol. 1(1),

41–62 (2003)
11. Petcu, D.: Multi-cloud: expectations and current approaches. In: Proceedings of the 2013

International Workshop on Multi-cloud Applications and Federated Clouds (MultiCloud
’13), pp. 1–6. ACM, New York (2013)

12. Buyya, R., Ranjan, R., Calheiros, R.N.: InterCloud: utility-oriented federation of cloud
computing environments for scaling of application services. In: Hsu, C.-H., Yang, L.T.,
Park, J.H., Yeo, S.-S. (eds.) ICA3PP 2010, Part I. LNCS, vol. 6081, pp. 13–31. Springer,
Heidelberg (2010)

13. Future Internet Public-Private Partnership (FI-PPP). https://www.fi-ppp.eu
14. Intellicloud. Intelligence Systems Laboratory, Technical University of Crete, Greece. http://

www.intelligence.tuc.gr
15. Advanced Message Queuing Protocol. http://www.amqp.org
16. Amazon Web Services (AWS) API. http://aws.amazon.com/documentation/
17. VMWare VCloud API. http://pubs.vmware.com
18. OpenNebula API. http://docs.opennebula.org/4.6/

An Inter-Cloud Architecture for Future Internet Infrastructures 215

http://docs.openstack.org/api/openstack-image-service/2.0/content/upload-binary-image-data.html
http://docs.openstack.org/api/openstack-image-service/2.0/content/upload-binary-image-data.html
http://www.fi-ware.org
http://docs.openstack.org/api/openstack-image-service/2.0/content/image-api-v2.0.html
http://docs.openstack.org/api/openstack-image-service/2.0/content/image-api-v2.0.html
http://occi-wg.org
http://docs.openstack.org/developer/keystone/api_curl_examples.html
http://docs.openstack.org/developer/keystone/api_curl_examples.html
https://www.fi-ppp.eu
http://www.intelligence.tuc.gr
http://www.intelligence.tuc.gr
http://www.amqp.org
http://aws.amazon.com/documentation/
http://pubs.vmware.com
http://docs.opennebula.org/4.6/


19. Sotiriadis, S.: The inter-cloud meta-scheduling. Ph.D. thesis, University of Derby (2013).
http://hdl.handle.net/10545/299501

20. Bessis, N., Sotiriadis, S., Pop, F., Cristea, V.: Using a novel Message-Exchanging
Optimization (MEO) model to reduce energy consumption in distributed systems. Simul.
Model. Pract. Theory 39, 104–120 (2013). ISSN: 1569-190X, Elsevier

216 S. Sotiriadis et al.

http://hdl.handle.net/10545/299501


Author Index

Abdelwahed, Sherif 52
Abella, Francesc 26
Antonescu, Alexandru-Florian 91
Antoniu, Gabriel 147
Apostol, Elena 113
Arjona Aroca, Jordi 71
Azadbakht, Keyvan 103

Băluţă, Iulia 113
Banerjee, Ansuman 36
Banicescu, Ioana 52
Bessis, Nik 206
Bougé, Luc 147
Braun, Torsten 91

Carpen-Amarie, Alexandra 147
Chihoub, Houssem-Eddine 147
Costa, Fabio 128
Cristea, Valentin 113, 193

Datta, Pubali 36
de Boer, Frank 103
Dey, Swarnava 36

Endo, Patricia 165

Fernandez Anta, Antonio 71
Fortiş, Teodor-Florin 180

Gomes, Raphael 128
Gonçalves, Glauco 165
Gorgoi, Alexandru 113
Grandinetti, Lucio 9
Grigore, Silviu 193
Guerriero, Francesca 9

Ibrahim, Shadi 147

Kelner, Judith 165
Kielmann, Thilo 3

Leordeanu, Cătălin 193

Marinescu, Cristina 180
Mateo, Jordi 26
Mehrotra, Rajat 52
Moise, Diana 147
Moraru, Octavian 193
Morozan, Ion 3
Mosteiro, Miguel A. 71
Mukherjee, Arijit 36

Nagarajagowda, Chetan 103
Nobakht, Behrooz 103

Paul, Himadri Sekhar 36
Petrakis, Euripides G.M. 206

Rius, Josep 26
Rocha, Ricardo 128
Rodrigues, Moisés 165

Sadok, Djamel F.H. 165
Sandu, Andreea 3
Santos, Marcelo 165
Sefidcon, Azimeh 165
Serbanescu, Vlad 103
Sheikhalishahi, Mehdi 9
Solsona, Francesc 26
Sotiriadis, Stelios 206
Srivastava, Srishti 52
Stoenescu, Şerban 180

Teixidó, Ivan 26
Thraves, Christopher 71

Uta, Alexandru 3

Vazquez-Poletti, Jose Luis 9
Vilaplana, Jordi 26
Vitalino, Jônatas 165

Wallace, Richard M. 9
Wang, Lin 71


	Preface
	Organization
	Contents
	Invited Paper
	In-Memory Runtime File Systems for Many-Task Computing
	1 Introduction
	2 MemFS
	3 Conclusions
	References


	Scheduling Methods and Algorithms
	A Multi-capacity Queuing Mechanism in Multi-dimensional Resource Scheduling
	1 Introduction
	2 Related Work
	3 Multi-resource Scheduling
	3.1 The Multi-capacity Bin-Packing Problem
	3.2 A Heuristic to the Multi-capacity Bin-Packing Problem
	3.3 Multi-capacity Queuing Mechanism

	4 Experiments
	4.1 Resource Model and Workload Characteristics
	4.2 Workload Traces
	4.3 Configurations
	4.4 Results

	5 Conclusions and Future Work
	References

	A Green Scheduling Policy for Cloud Computing
	1 Introduction
	2 Green Preserving SLA Schedulers
	2.1 GPSLA. One Node
	2.2 GPSLA. One Node Load-Aware
	2.3 GPSLA. One Node Load-Aware and Heterogeneous Tasks

	3 Results
	3.1 GPSLA. One Node
	3.2 GPSLA. One Node Load-Aware
	3.3 GPSLA. One Node Load-Aware and Heterogeneous Tasks

	4 Conclusions
	References

	A Framework for Speculative Scheduling and Device Selection for Task Execution on a Mobile Cloud
	1 Introduction
	2 Motivation for This Work
	3 Proposed Methodology
	3.1 Usage Model of Device
	3.2 Detailed Methodology

	4 Experiments and Results
	4.1 Model Generation
	4.2 Simulation of Offloading System
	4.3 Working with Real Devices

	5 Related Work
	6 Conclusion and Future Work
	References

	An Interaction Balance Based Approach for Autonomic Performance Management in a Cloud Computing Environment
	1 Introduction
	2 Related Work
	2.1 Resource Allocation in Cloud Computing Environment
	2.2 Significance of Cloud Brokers
	2.3 Large Scale Control-Based Performance Management Approaches

	3 A Distributed Control-Based Performance Management Approach Using the Interaction Balance Principle
	3.1 Problem Decomposition
	3.2 Service Provider Level Control
	3.3 Cloud Broker Level Control
	3.4 Forecasting the Environmental Inputs at Each Service Provider:

	4 Performance Management of Service Providers in a Cloud Computing Environment
	4.1 Service Provider Level Control Setup
	4.2 Simulation Setup
	4.3 Simulation Results

	5 Benefits of the Proposed Approach
	6 Conclusion and Future Work
	References

	Power-Efficient Assignment of Virtual Machines to Physical Machines
	1 Introduction
	1.1 Problem Definition
	1.2 Related Work
	1.3 Our Results

	2 Preliminaries
	3 Offline Analysis
	3.1 NP-Hardness
	3.2 The (,m)-VMA and (,)-VMA Problems have PTAS
	3.3 Bounds on the Approximability of the (C,)-VMA Problem

	4 Online Analysis
	4.1 Lower Bounds
	4.2 Upper Bounds

	5 Discussion
	References


	Services and Applications
	SLA-Driven Simulation of Multi-Tenant Scalable Cloud-Distributed Enterprise Information Systems
	1 Introduction
	2 Related Work
	2.1 CloudSim Cloud Simulator
	2.2 Distributed Enterprise Information System Architecture

	3 SLA-Driven Distributed Systems Scaling
	3.1 Parallel CloudSim Cloudlet Scheduler
	3.2 SLA-Based Scaling Manager

	4 Evaluation Results
	4.1 Simulation 1
	4.2 Simulation 2
	4.3 Simulation 3

	5 Conclusions
	References

	Towards Type-Based Optimizations in Distributed Applications Using ABS and JAVA 8
	1 Introduction
	2 The ABS Language
	3 The ABS-API Library
	4 Case Study
	4.1 Type-Based Optimization

	5 Experimental Methodologies and Results
	6 Related Work
	7 Conclusions
	References

	A Parallel Genetic Algorithm Framework for Cloud Computing Applications
	1 Introduction
	2 Related Work
	3 The Proposed GA Framework Architecture
	4 Framework Functionality
	4.1 The Improved Island Model Coarse-Grained Implementation
	4.2 An Efficient Distributed Fitness Evaluation
	4.3 Working with Subpopulations

	5 Experiments
	5.1 Test Problems
	5.2 Conducted Experiments

	6 Conclusions
	References

	Analysing Scalability Strategies for Service Choreographies on Cloud Environments
	1 Introduction
	2 Motivating Example
	3 Scalability Strategies in Cloud Platforms
	4 Evaluating Scalability Strategies to Service Choreographies
	4.1 Simulator
	4.2 Simulation of Resource Allocation Policies Applied to a Service Choreography

	5 Related Work
	6 Final Remarks
	References


	Foundational Models for ResourceManagement in Cloud
	Towards Efficient Power Management in MapReduce: Investigation of CPU-Frequencies Scaling on Power Efficiency in Hadoop 
	1 Introduction
	2 Background and Related Work
	2.1 Hadoop
	2.2 Power Management at CPU Level
	2.3 Related Work

	3 Methodology Overview
	3.1 Platform
	3.2 Benchmarks
	3.3 Hadoop Deployment
	3.4 Dynamic Voltage Frequencies Settings

	4 Macroscopic Analysis
	4.1 Performance Analysis
	4.2 Energy Consumption

	5 Microscopic Analysis
	5.1 Dynamic Frequency Scaling
	5.2 Statically-Configured Frequencies

	6 Summary and Future Work
	References

	Self-management of Live Streaming Application in Distributed Cloud Infrastructure
	Abstract
	1 Introduction
	2 Distributed Cloud
	3 Role-Based Self-appointment for Live Streaming (RBSA4LS)
	4 Evaluation and Results
	4.1 Configuration Scenario
	4.2 Cogent Topology

	5 Discussion
	6 Related Work
	7 Final Considerations and Future Work
	References

	Towards the Impact of Design Flaws on the Resources Used by an Application
	1 Introduction
	2 Related Work
	2.1 Energy Optimization
	2.2 Design Flaws
	2.3 Cloud Computing Energy Efficiency

	3 Case-Study Setup
	3.1 A Small Case Study: The Data Class Design Flaw
	3.2 The JHotDraw Case Study

	4 Threats to Validity
	4.1 Construct Validity
	4.2 Internal Validity
	4.3 External Validity
	4.4 Reliability Validity

	5 Conclusions and Future Work
	References

	Policy-Based Cloud Management Through Resource Usage Prediction
	1 Introduction
	2 Related Work
	3 Cloud Resource Management Architecture
	3.1 Performance Monitoring
	3.2 Policy-Based Resource Management

	4 Resource Usage Prediction
	5 Experimental Results
	6 Conclusions and Future Work
	References

	An Inter-Cloud Architecture for Future Internet Infrastructures
	Abstract
	1 Introduction
	2 Motivation and Related Work
	3 The Inter-Cloud Model
	4 Experimental Prototype of Inter-Cloud
	4.1 1st Experiment: Internal Calls
	4.2 2nd Experiment: External Call to CloudLab and FI-LAB Cloud
	4.3 3rd Experiment: External Call to FI-LAB to CloudLab, FI-LAB and Intellicloud
	4.4 4th Experiment: External Call to CloudLab, FI-LAB, Intellicloud and AWS

	5 Conclusions and Further Work
	Acknowledgement
	References


	Author Index



