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Abstract. Smart phone technology and mobile applications have become an in-
dispensable part of our daily life. The primary use however, is targeted towards 
social media and photography. While some camera-based approaches provided 
partial solutions for the visually impaired, they still constitute a cumbersome 
process for the user. iSee is an Android based application that benefits from the 
commercially available technology to help the visually impaired people im-
prove their day-to-day activities. A single screen tap in iSee is able to serve as a 
virtual eye by providing a sense of seeing to the blind person by audibly com-
municating the object(s) names and description. iSee employs efficient object 
recognition algorithms based on FAST and BRIEF. Implementation results are 
promising and allow iSee to constitute a basis for more advanced applications.  

1 Introduction 

Smart phones technology has spread in the international market faster than any other 
technology in human history. Worldwide Smartphone vendors shipped 237.9 million 
units in 2013 compared to the 156.2 million units shipped in 2012 which represent 
52.3% year-over-year-growth [1]. Android Operating System is one of the smart 
phones operating systems that have been on the top list of best-selling where 80% of 
the smart phones shipped ran android operating systems, while Apple’s iOS and  
Microsoft Windows 8 Mobile take up the remaining 20%. 

Any user can benefit from the wide range of mobile applications that help in  
organizing our daily life, connecting with people through social networks, help in 
education, etc.  Only few of these mobile apps have surpassed the purpose of being an 
added value to our daily life, to becoming a crucial tool. Applications crafted for peo-
ple with disabilities have emerged lately to help them achieve more what they could 
do before the Smartphone era. Visually impaired and blind people find it difficult to 
face their day-to-day problems because of their impairment. The World Health Or-
ganization (WHO) estimated that in 2002, 2.6% of the world’s total population was 
visually imapried. In spite of the advancement in technology, there is no complete 
cure for such problems and they need some assistance to complete their daily tasks. 
Reading glasses, walking sticks, and Braille tools are few devices which could help 
them to complete their daily life. However, they don’t provide a sense of “seeing” for 
the blind person. This paper discusses the development of “iSee”, an Android based  
application that aims at serving as a virtual eye. iSee provides the sense of sight by 
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letting the user hold the phone and point anywhere he/she desired and tap on the 
screen. The application’s algorithm runs in the background and then communicates 
audibly, via a voice message, the object type, name and description. This helps the 
blind person recognize what’s surrounding him/her, or in some cases, find an object 
he/she is searching for. 

The remaining part of this manuscript is organized as follows: section 2 provides a 
survey over some existing apps in the Google play market and the AppStore. In sec-
tion 3, we present the main algorithm and implementation details. Section 4 summa-
rized the results and the possible enhancements, while section 5 concludes the paper. 

2 Related Work 

Several mobile applications on multiple platforms such as iOS, Android and windows 
were developed with the visually impaired in mind. These applications can be divided 
among three different categories: currency recognition oriented apps, object detection 
oriented apps and phone assistant oriented apps.  

“eyeNote” [2] and “LookTel” [3] applications belong to the first category. The 
former recognizes currency bills (US dollars only) and communicates with the user 
via a voice message, while the latter does the same job but supports more currencies.  

The “Blind sighted” fits in the second category. Its functionality is limited to buzz-
ing whenever the user is in 2-3 cm vicinity of an object. 

 “Siri” [4] and “S voice” [5], iOS’s and Samsung’s famous voice assistant software 
belong to the third category. Users can communicate with them via voice messages to 
inquire about weather, stocks, messages, as well as perform a phone call or a Google 
search. Few independent applications, like “Blind Navigator” [6] and “Georgie” [7] 
were also developed with the same goal in mind. The former provides the user with 
several functions like the phone, calculator, alarm, color identifier and GPS, while the 
latter adds a TextToSpeech functionality to the above. 

Despite the usefulness and effectiveness of the several of the aforementioned ap-
plications, the blind people still lack the ability to identify the objects that surround 
them. Getting to know the type and description of the objects near you not only pro-
vides you with information about that specific object but also provides a sense of 
seeing and overall scene re-construction. 

One of the non-mobile approaches is proposed in [8]. A multi-camera network is 
built by placing a camera at important locations around the user. The developed algo-
rithm can effectively distinguish different classes of objects from test images of the 
same objects in a cluttered environment. 

3 Main Methodology 

This manuscript introduces “iSee”, an Android powered application for the visually 
impaired. iSee aims at helping the blind people recognize objects surround them using 
a voice message. The overall architecture of iSee is illustrated in Fig. 1.  
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3.2 Implementation Details 

The development of iSee involved several implementation tools and libraries. An-
droid 4.3 SDK (Software developer kit) is chosen as the underlying platform. The 
interface of the app as well as the camera functions (initialization of the lens, screen 
tap, internal storage management and text to speech) are all performed using the Java 
libraries provided by the SDK, and developed using Eclipse IDE. On the other hand, 
all image processing functionalities were implemented using OpenCV 2.4.6 SDK for 
Android. OpenCV (Open Source Computer Vision [23]) is a library of programming 
functions mainly aimed at real-time computer vision, developed by Intel. Two imple-
mentation options were available for openCV: JavaCV or the native C++ alternative. 
Both options can be compiled and used with the Android SDK. Our choice however 
was set to using the native C++ due to its faster performance and wider library func-
tions. This performance improvement came at the expense of additional implementa-
tion complexities. First, Android NDK (Native Development Kit) had to be installed 
and linked with Eclipse. The NDK is a toolset that allows parts of an app to be im-
plemented using native-code languages such as C and C++. This capability helps in 
reusing existing code libraries written in these languages. The NDK is suitable for 
CPU-intensive workloads such as game engines, signal processing, physics simula-
tion, and so on. Second, some of the libraries that are already available in openCV 
(e.g. SURF) are not available for its Android counterpart. To solve this problem, the 
libraries were compiled and added manually to the openCV SDK for Android. 

The code of iSee proceeds into three main phases: (1) the welcome activity and the 
camera initialization, (2) the processing part in C++, and (3) the results announced to 
the user. During the first phase, the openCV libraries are loaded using the sys-
tem.loadLibrary functions. The camera is then initialized and a listener is set up 
to watch for screen taps. Once a tap is detected on the screen, the scene image is cap-
tured and converted into a matrix, S. ‘S’ becomes the input for phase 2. In the second 
phase, matrix S and objects from the training set (Oi, i=1,…,n) undergo the process 
depicted in Fig.4 using the following functions: OrbFeatureDetector(), 
OrbDescriptorExtractor() and  KnnMatcher(). Once this process is 
terminated, the results are passed back to Java in phase 3. During the last phase, the 
name of the object is converted to a voice message using the textToSpeech() 
utility. Note that all the objects in the training set are labeled with a corresponding 
name/description. 

4 Results and Future Enhancements 

Prior to the Android implementation, thorough experimentation was performed to 
verify the correctness as well as the accuracy of the algorithm. The algorithm was 
implemented in Xcode on a MacBook Pro running Intel’s core i5 processor. A set of 
24 objects constituted the test set, each having 3 different postures, resulting in a total 
of 72 images. Images were chosen to be daily use objects and categorized in 3 groups: 
coffee mugs, sunglasses and laptops. The algorithm’s performance is depicted in Ta-
ble 1. The average accuracy of all the categories was found to be 91.33%. 
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