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Abstract. We present a semantics for Probabilistic Description Log-
ics that is based on the distribution semantics for Probabilistic Logic
Programming. The semantics, called DISPONTE, allows to express asser-
tional probabilistic statements. We also present two systems for comput-
ing the probability of queries to probabilistic knowledge bases: BUNDLE
and TRILL. BUNDLE is based on the Pellet reasoner while TRILL
exploits the declarative Prolog language. Both algorithms compute a
propositional Boolean formula that represents the set of explanations to
the query. BUNDLE builds a formula in Disjunctive Normal Form in
which each disjunct corresponds to an explanation while TRILL com-
putes a general Boolean pinpointing formula using the techniques pro-
posed by Baader and Peñaloza. Both algorithms then build a Binary
Decision Diagram (BDD) representing the formula and compute the
probability from the BDD using a dynamic programming algorithm. We
also present experiments comparing the performance of BUNDLE and
TRILL.

1 Introduction

The main idea of the Semantic Web is making information available in a form
that is understandable and automatically manageable by machines [16]. In order
to realize this vision, the W3C has supported the development of a family
of knowledge representation formalisms of increasing complexity for defining
ontologies, called Web Ontology Language (OWL). In particular, OWL defines
the sublanguages OWL-Lite, OWL-DL (based on Description Logics) and OWL-
Full. Since the real world often contains uncertain information, it is fundamental
to be able to represent and reason with such information. This problem has been
investigated by various authors both in the general case of First Order Logic
(FOL) [5,14,27] and in the case of restricted logics, such as Description Logics
(DLs) and Logic Programming (LP).

In particular, in LP the distribution semantics [39] has emerged as one of
the most effective approaches for representing probabilistic information and it
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underlies many probabilistic LP languages such as Probabilistic Horn Abduc-
tion [30], PRISM [39,40], Independent Choice Logic [29], Logic Programs with
Annotated Disjunctions [47], ProbLog [9] and CP-logic [46].

In [7,34,36,37] we applied the distribution semantics to DLs obtaining DISP-
ONTE for “DIstribution Semantics for Probabilistic ONTologiEs” (Spanish for
“get ready”), in which we annotate axioms of a theory with a probability and
assume that each axiom is independent of the others. A DISPONTE knowledge
base (KB for short) defines a probability distribution over regular KBs (worlds)
and the probability of a query is obtained from the joint probability of the worlds
and the query.

In order to fully support the development of the Semantic Web, efficient DL
reasoners, such us Pellet [44], RacerPro [12] and HermiT [43], are used to extract
implicit information from the modeled ontologies, and probabilistic DL reason-
ers, such as PRONTO [21], are used to compute the probability of the inferred
information. Most DL reasoners implement a tableau algorithm in a procedural
language. However, some tableau expansion rules are non-deterministic, requir-
ing the developers to implement a search strategy in an or-branching search
space. Moreover, in some cases we want to compute all explanations for a query,
thus requiring the exploration of all the non-deterministic choices of the tableau
algorithm.

We present the algorithm BUNDLE for “Binary decision diagrams for Uncer-
tain reasoNing on Description Logic thEories”, that performs inference over
DISPONTE DLs. BUNDLE exploits an underlying reasoner such as Pellet [44]
that returns explanations for queries.

Moreover, we present the system TRILL for “Tableau Reasoner for descrIp-
tion Logics in proLog”, a tableau reasoner implemented in the declarative Prolog
language. Prolog’s search strategy is exploited for taking into account the non-
determinism of the tableau rules. TRILL uses the Thea2 library [45] for parsing
OWL in its various dialects. Thea2 translates OWL files into a Prolog repre-
sentation in which each axiom is mapped into a fact. TRILL can check the
consistency of a concept and the entailment of an axiom from an ontology, and
can return the “pinpointing formula” for queries.

Both BUNDLE and TRILL use the inference techniques developed for prob-
abilistic logic programs under the distribution semantics, in particular Binary
Decision Diagrams (BDDs), for computing the probability of queries from the
set of all explanations and the pinpointing formula respectively. They encode
the results of the inference process in a BDD from which the probability can be
computed in time linear in the size of the diagram.

In the following, Sect. 2 briefly introduces ALC and SHOIN (D) DLs.
Section 3 presents the DISPONTE semantics while Sect. 4 defines the problem
of answering queries to DLs. Sections 5 and 6 describe BUNDLE and TRILL
respectively. Section 7 illustrates related work. Section 8 shows experiments and
Sect. 9 concludes the paper.
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2 Description Logics

Description Logics (DLs) are knowledge representation formalisms that possess
nice computational properties such as decidability and/or low complexity, see
[1,2] for excellent introductions. DLs are particularly useful for representing
ontologies and have been adopted as the basis of the Semantic Web.

While DLs can be translated into FOL, they are usually represented using
a syntax based on concepts and roles. A concept corresponds to a set of indi-
viduals of the domain while a role corresponds to a set of pairs of individuals of
the domain. We first briefly describe ALC and then SHOIN (D), showing the
difference with ALC.

Let A, R and I be sets of atomic concepts, roles and individuals, respectively.
Concepts are defined by induction as follows. Each C ∈ A is a concept, ⊥ and �
are concepts. If C, C1 and C2 are concepts and R ∈ R, then (C1�C2), (C1�C2)
and ¬C are concepts, as well as ∃R.C and ∀R.C. A TBox T is a finite set of
concept inclusion axioms C 	 D, where C and D are concepts. We use C ≡ D
to abbreviate the conjunction of C 	 D and D 	 C. An ABox A is a finite set
of concept membership axioms a : C, role membership axioms (a, b) : R, equality
axioms a = b and inequality axioms a �= b, where C is a concept, R ∈ R and
a, b ∈ I. A knowledge base K = (T ,A) consists of a TBox T and an ABox A.
A knowledge base K is usually assigned a semantics in terms of interpretations
I = (ΔI , ·I), where ΔI is a non-empty domain and ·I is the interpretation
function that assigns an element in ΔI to each a ∈ I, a subset of ΔI to each
C ∈ A and a subset of ΔI × ΔI to each R ∈ R.

The mapping ·I is extended to all concepts (where RI(x) = {y|(x, y) ∈
RI}) as:

�I = ΔI

⊥I = ∅
(C1 � C2)I = CI

1 ∩ CI
2

(C1 � C2)I = CI
1 ∪ CI

2

(¬C)I = ΔI \ CI

(∀R.C)I = {x ∈ ΔI |RI(x) ⊆ CI}
(∃R.C)I = {x ∈ ΔI |RI(x) ∩ CI �= ∅}

The satisfaction of an axiom E in an interpretation I = (ΔI , ·I), denoted
by I |= E, is defined as follows: (1) I |= C 	 D iff CI ⊆ DI , (2) I |= a : C
iff aI ∈ CI , (3) I |= (a, b) : R iff (aI , bI) ∈ RI , (4) I |= a = b iff aI = bI ,
(5) I |= a �= b iff aI �= bI . I satisfies a set of axioms E , denoted by I |= E , iff
I |= E for all E ∈ E . An interpretation I satisfies a knowledge base K = (T ,A),
denoted I |= K, iff I satisfies T and A. In this case we say that I is a model
of K.

In following we describe SHOIN (D) showing what it adds to ALC. A role
is either an atomic role R ∈ R or the inverse R− of an atomic role R ∈ R. We
use R− to denote the set of all inverses of roles in R. An RBox R consists of
a finite set of transitivity axioms Trans(R), where R ∈ R, and role inclusion
axioms R 	 S, where R,S ∈ R ∪ R−.
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If a ∈ I, then {a} is a concept called nominal, and if C, C1 and C2 are
concepts and R ∈ R ∪ R−, then ≥ nR and ≤ nR for an integer n ≥ 0 are also
concepts. A SHOIN (D) KB K = (T ,R,A) consists of a TBox T , an RBox R
and an ABox A.

The mapping ·I is extended to all new concepts (where #X denotes the
cardinality of the set X) as:

(R−)I = {(y, x)|(x, y) ∈ RI}
{a}I = {aI}

(≥ nR)I = {x ∈ ΔI |#RI(x) ≥ n}
(≤ nR)I = {x ∈ ΔI |#RI(x) ≤ n}

SHOIN (D) allows the definition of datatype roles, i.e., roles that map an
individual to an element of a datatype such as integers, floats, etc. Then new
concept definitions involving datatype roles are added that mirror those involv-
ing roles introduced above. We also assume that we have predicates over the
datatypes.

The satisfaction of an axiom E in an interpretation I = (ΔI , ·I), denoted by
I |= E, is defined as for ALC, plus the following ones regarding RBox axioms:
(6) I |= Trans(R) iff RI is transitive, (7) I |= R 	 S iff RI ⊆ SI . An interpre-
tation I satisfies a knowledge base K = (T ,R,A), denoted I |= K, iff I satisfies
T , R and A. In this case we say that I is a model of K.

Each DL is decidable if the problem of checking the satisfiability of a KB
is decidable. In particular, SHOIN (D) is decidable iff there are no number
restrictions on non-simple roles. A role is non-simple iff it is transitive or it has
transitive subroles.

A query Q over a KB K is usually an axiom for which we want to test the
entailment from the KB, written K |= Q. The entailment test may be reduced
to checking the unsatisfiability of a concept in the knowledge base, i.e., the
emptiness of the concept. For example, the entailment of the axiom C 	 D may
be tested by checking the unsatisfiability of the concept C � ¬D.

Example 1. The following KB is inspired by the ontology people+pets [28]:

∃hasAnimal.Pet 	 NatureLover
fluffy : Cat
tom : Cat
Cat 	 Pet
(kevin,fluffy) : hasAnimal
(kevin, tom) : hasAnimal

It states that individuals that own an animal which is a pet are nature lovers and
that kevin owns the animals fluffy and tom. Moreover, fluffy and tom are cats
and cats are pets. The query Q = kevin : NatureLover is entailed by the KB.

3 The DISPONTE Semantics

DISPONTE [37] applies the distribution semantics [39] of probabilistic logic
programming to DLs. A program following this semantics defines a probability
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distribution over normal logic programs called worlds. Then the distribution is
extended to queries and the probability of a query is obtained by marginalizing
the joint distribution of the query and the programs.

In DISPONTE, a probabilistic knowledge base K contains a set of probabilistic
axioms which take the form

p :: E (1)

where p is a real number in [0, 1] and E is a DL axiom.
The idea of DISPONTE is to associate independent Boolean random vari-

ables to the probabilistic axioms. To obtain a world w we decide whether to
include each probabilistic axiom or not in w. A world therefore is a non proba-
bilistic KB that can be assigned a semantics in the usual way. A query is entailed
by a world if it is true in every model of the world.

The probability p can be interpreted as an epistemic probability, i.e., as the
degree of our belief in axiom E. For example, a probabilistic concept membership
axiom p :: a : C means that we have degree of belief p in C(a). A probabilistic
concept inclusion axiom of the form p :: C 	 D represents the fact that we
believe in the truth of C 	 D with probability p.

Formally, an atomic choice is a couple (Ei, k) where Ei is the ith proba-
bilistic axiom and k ∈ {0, 1}. k indicates whether Ei is chosen to be included
in a world (k = 1) or not (k = 0). A composite choice κ is a consistent
set of atomic choices, i.e., (Ei, k) ∈ κ, (Ei,m) ∈ κ implies k = m (only one
decision is taken for each axiom). The probability of a composite choice κ is
P (κ) =

∏
(Ei,1)∈κ pi

∏
(Ei,0)∈κ(1 − pi), where pi is the probability associated

with axiom Ei. A selection σ is a total composite choice, i.e., it contains an
atomic choice (Ei, k) for every axiom of the theory. A selection σ identifies a
theory wσ called a world in this way: wσ = {Ei|(Ei, 1) ∈ σ}. Let us indicate
with SK the set of all selections and with WK the set of all worlds. The proba-
bility of a world wσ is P (wσ) = P (σ) =

∏
(Ei,1)∈σ pi

∏
(Ei,0)∈σ(1 − pi). P (wσ) is

a probability distribution over worlds, i.e.,
∑

w∈WK P (w) = 1.
We can now assign probabilities to queries. Given a world w, the probability

of a query Q is defined as P (Q|w) = 1 if w |= Q and 0 otherwise. The probability
of a query can be defined by marginalizing the joint probability of the query and
the worlds:

P (Q) =
∑

w∈WK

P (Q,w) =
∑

w∈WK

P (Q|w)P (w) =
∑

w∈WK:w|=Q

P (w) (2)

4 Querying KBs

In order to answer queries to DL KBs, a tableau algorithm [42] can be used. Such
an algorithm decides whether an axiom is entailed or not by a KB by refutation:
axiom E is entailed if ¬E has no model in the KB. The algorithm works on
completion graphs also called tableaux : they are ABoxes that can also be seen
as graphs, where each node represents an individual a and is labeled with the
set of concepts L(a) it belongs to. Each edge 〈a, b〉 in the graph is labeled with
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the set of roles L(〈a, b〉) to which the couple (a, b) belongs. The algorithm starts
from a tableau that contains the ABox of the KB and the negation of the axiom
to be proved. For example, if the query is a membership one, C(a), it adds ¬C
to the label of a. If we query for the emptyness (unsatisfiability) of a concept
C, the algorithm adds a new anonymous node a to the tableau and adds C to
the label of a. The axiom C 	 D can be proved by showing that C � ¬D is
unsatisfiable. The algorithm repeatedly applies a set of consistency preserving
tableau expansion rules (see [35] for a list of expansion rules for SHOIN (D))
until a clash (i.e., a contradiction) is detected or a clash-free graph is found to
which no more rules are applicable.

Some of the rules used by the tableau algorithm are non-deterministic, i.e.,
they generate a finite set of tableaux. Thus the algorithm keeps a set of tableaux
T . If a non-deterministic rule is applied to a graph G in T , then G is replaced
by the resulting set of graphs.

An event during the execution of the algorithm can be [18]: (1) Add(C, a),
the addition of a concept C to L(a); (2) Add(R, 〈a, b〉), the addition of a role
R to L(〈a, b〉); (3) Merge(a, b), the merging of the nodes a, b; (4) �=(a, b), the
addition of the inequality a�=b to the relation �=; (5) Report(g), the detection of
a clash g. We use E to denote the set of events recorded during the execution of
the algorithm. A clash is either:

– a couple (C, a) where C and ¬C are present in the label of node a, i.e.
{C,¬C} ⊆ L(a);

– a couple (Merge(a, b), �=(a, b)), where the events Merge(a, b) and �=(a, b)
belong to E .

Each time a clash is detected in a completion graph G, the algorithm stops apply-
ing rules to G. Once every completion graph in T contains a clash or no more
expansion rules can be applied to it, the algorithm terminates. If all the comple-
tion graphs in the final set T contain a clash, the algorithm returns unsatisfiable
as no model can be found. Otherwise, any one clash-free completion graph in T
represents a possible model for C(a) and the algorithm returns satisfiable.

In order to perform probabilistic inference, we need not only to answer queries
but also to compute explanations for queries. In fact, computing the probability
of a query by generating the worlds of the KB would be impractical as there is
an exponential number of them. By computing explanations, we find compact
representations of the set of worlds where the query is true, as shown below.

4.1 Finding Explanations

The problem of finding explanations for a query has been investigated by various
authors [13,18–20,41]. It was called axiom pinpointing in [41] and considered as
a non-standard reasoning service useful for tracing derivations and debugging
ontologies. In particular, Schlobach and Cornet [41] define minimal axiom sets
or MinAs for short.
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Definition 1 (MinA). Let K be a knowledge base and Q an axiom that follows
from it, i.e., K |= Q. We call a set M ⊆ K a minimal axiom set or MinA for Q
in K if M |= Q and it is minimal w.r.t. set inclusion.

We also explanation a MinA. The problem of enumerating all MinAs is called
min-a-enum in [41]. All-MinAs(Q,K) is the set of all MinAs for query Q in
the knowledge base K.

We report here the techniques used by Pellet [44] to compute explanations
for queries. Pellet first finds a single MinA by using a modified version of the
tableau algorithm and then finds the others with a black box method: axioms
are iteratively removed from the KB and new MinAs are computed until all
possible MinAs have been found. The modified tableau algorithm is shown in
Algorithm 1.

Algorithm 1. Tableau algorithm.
1: function Tableau(C, K)
2: Input: C (the concept to be tested for unsatisfiability)
3: Input: K (the knowledge base)
4: Output: S (a set of axioms) or null
5: Let G0 be an initial completion graph from K containing an anonymous individual a and

C ∈ L(a)
6: T ← {G0}
7: repeat
8: Select a rule r applicable to a clash-free graph G from T
9: T ← T \ {G}
10: Let G = {G′

1, ..., G′
n} be the result of applying r to G

11: T ← T ∪ G
12: until All graphs in T have a clash or no rule is applicable
13: if All graphs in T have a clash then
14: S ← ∅
15: for all G ∈ T do
16: let sG the result of τ for the clash of G
17: S ← S ∪ sG

18: end for
19: S ← S \ {C(a)}
20: return S
21: else
22: return null
23: end if
24: end function

In this algorithm, each expansion rule updates as well a tracing function
τ , which associates sets of axioms with events in the derivation. For example,
τ(Add(C, a)) (τ(Add(R, 〈a, b〉))) is the set of axioms needed to explain the event
Add(C, a) (Add(R, 〈a, b〉)). For the sake of brevity, we define τ for couples (con-
cept, individual) and (role, couple of individuals) as τ(C, a) = τ(Add(C, a)) and
τ(R, 〈a, b〉) = τ(Add(R, 〈a, b〉)) respectively. The function τ is initialized as the
empty set for all the elements of its domain except for τ(C, a) and τ(R, 〈a, b〉)
to which the values {a : C} and {(a, b) : R} are assigned if a : C and (a, b) : R
are in the ABox respectively. The expansion rules add axioms to values of τ .

If g1, . . . , gn are the clashes, one for each tableau of the final set, the out-
put of the algorithm Tableau is S =

⋃
i∈{1,...,n} τ(gi) \ {C(a)} where a is the

anonymous individual initially assigned to C.
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Tableau returns a single MinA. To solve min-a-enum, Pellet uses the hitting
set algorithm [31]. The algorithm, described in detail in [18], starts from a MinA
S and initializes a labeled tree called Hitting Set Tree (HST) with S as the label
of its root v. Then it selects an arbitrary axiom E in S, it removes it from K,
generating a new knowledge base K′ = K − {E}, and tests the unsatisfiability
of C w.r.t. K′. If C is still unsatisfiable, we obtain a new explanation. The
algorithm adds a new node w and a new edge 〈v, w〉 to the tree, then it assigns
this new explanation to the label of w and the axiom E to the label of the
edge. The algorithm repeats this process until the unsatisfiability test returns
negative: in that case the algorithm labels the new node with OK, makes it a
leaf, backtracks to a previous node, selects a different axiom to be removed from
the KB and repeats these operations until the HST is fully built. The algorithm
also eliminates extraneous unsatisfiability tests based on previous results: once
a path leading to a node labeled OK is found, any superset of that path is
guaranteed to be a path leading to a node where C is satisfiable, and thus no
additional unsatisfiability test is needed for that path, as indicated by a X in
the node label. When the HST is fully built, all leaves of the tree are labeled
with OK or X. The distinct non leaf nodes of the tree collectively represent the
set All-MinAs(C,K).

In [3,4], Baader and Peñaloza presented the problem of finding a pinpoint-
ing formula instead of All-MinAs(Q,K) for queries. The pinpointing formula
is a monotone Boolean formula in which each Boolean variable corresponds to
an axiom of the KB. This formula is built using the variables and the conjunc-
tion and disjunction connectives. It compactly encodes the set of all MinAs. Let
assume that each axiom E of a KB K is associated with a propositional variable,
indicated with var(E). The set of all propositional variables is indicated with
var(K). A valuation ν of a monotone Boolean formula is the set of propositional
variables that are true. For a valuation ν ⊆ var(K), let Kν := {t ∈ K|var(t) ∈ ν}.

Definition 2 (Pinpointing formula). Given a query Q and a KB K, a
monotone Boolean formula φ over var(K) is called a pinpointing formula for
Q if for every valuation ν ⊆ var(K) it holds that Kν |= Q iff ν satisfies φ.

In Lemma 2.4 of [4], the authors proved that we can obtain all MinAs from a pin-
pointing formula by transforming the formula into DNF and removing disjuncts
implying other disjuncts. The example below illustrates axiom pinpointing and
the pinpointing formula.

Example 2 (Pinpointing formula). Consider the KB of Example 1. We associate
Boolean variableswith axioms as follows:F1 = ∃hasAnimal.Pet 	 NatureLover,
F2 = (kevin,fluffy) : hasAnimal, F3 = (kevin, tom) : hasAnimal, F4 = fluffy :
Cat, F5 = tom : Cat and F6 = Cat 	 Pet. Let Q = kevin : NatureLover be
the query, then All-MinAs(Q,K) = {{F2, F4, F6, F1}, {F3, F5, F6, F1}}, while
the pinpointing formula is ((F2 ∧ F4) ∨ (F3 ∧ F5)) ∧ F6 ∧ F1.

A tableau algorithm can be modified to find the pinpointing formula. See [4] for
the details.
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4.2 Probabilistic Inference

We do not have to generate all worlds where a query is true in order to compute
its probability, finding a pinpointing formula is enough.

From a pinpointing formula φ for Q we can compute the probability P (φ)
of φ being true from the probability of the Boolean variables that appear in φ
assuming all the variables are independent. P (φ) is the sum of the probabilities
of the valuations that make the formula true. The probability of a valuation is
given by

P (ν) =
∏

var(Ei)∈ν

pi

∏

var(Ei)∈var(K)\ν

(1 − pi)

where pi is the probability associated with axiom Ei. Computing P (φ) is equiv-
alent to performing weighted model counting [38]: each variable var(Ei) has a
weight pi when set to true and a weight 1 − pi when set to false, the weight of
a truth assignment is the product of the weights of its literals and the weighted
model count of a formula is the sum of the weights of its satisfying assignments.

Theorem 1. If φ is a pinpointing formula for the query Q from a KB K, then
P (Q) = P (φ).

Proof. Every valuation ν ⊆ var(K) that satisfies φ uniquely corresponds to a
world where Q is true. Thus the sum of the probability of the valuations that
satisfy φ is equal to the sum of the probabilities of the worlds where Q is true.

The pinpointing formula can be obtained directly from the inference algorithm
or can be built starting from the set of all explanations K = All-MinAs(Q,K)
in this way

φK =
∨

κ∈K

∧

(Ei,1)∈κ

var(Ei).

It is easy to see that every valuation that makes φK true uniquely corresponds
to a world where Q is true. φK is in Disjunctive Normal Form (DNF).

Weighted model counting is a #P-complete problem [11]. A practical app-
roach for solving it involves knowledge compilation [8]: we translate the formula
to a target language that allows weighted model counting in polynomial time.
In this case the complexity is confined in the compilation process.

5 BUNDLE

BUNDLE is based on Pellet [44] and extends it in order to allow the computa-
tion of the probability of queries from a probabilistic knowledge base that follows
the DISPONTE semantics. BUNDLE can answer concept and role membership
queries, subsumption queries, and can find explanations both for the unsatifi-
ability of one or all concepts contained in the KB and for the inconsistency of
a KB.
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Irrespective of which representation of the explanations we choose, a DNF or
a general pinpointing formula, we can apply knowledge compilation and trans-
form it into a Binary Decision Diagram (BDD), from which we can compute
the probability (perform weighted model counting) of the query with a dynamic
programming algorithm that is linear in the size of the BDD.

A BDD for a function of Boolean variables is a rooted graph that has one
level for each Boolean variable. A node n in a BDD has two children: one cor-
responding to the 1 value of the variable associated with the level of n, indi-
cated with child1(n), and one corresponding to the 0 value of the variable,
indicated with child0(n). When drawing BDDs, the 0-branch - the one going
to child0(n) - is distinguished from the 1-branch by drawing it with a dashed
line. The leaves store either 0 or 1. Figure 1 shows a BDD for the function
f(X) = (X1 ∧ X3) ∨ (X2 ∧ X3), where the variables X = {X1,X2,X3} are
independent Boolean random variables whose probability of being true is pi for
the variable Xi.

X1 n1

X2 n2

X3 n3

1 0

Fig. 1. BDD representing the function f(X) = (X1 ∧ X3) ∨ (X2 ∧ X3).

A BDD performs a Shannon expansion of the Boolean formula f(X), so
that, if X is the variable associated with the root level of a BDD, the formula
f(X) can be represented as f(X) = X ∧ fX(X) ∨ X ∧ fX(X) where fX(X)
(fX(X)) is the formula obtained by f(X) by setting X to 1 (0). Now the two
disjuncts are pairwise exclusive and the probability of f(X) can be computed as
P (f(X)) = P (X)P (fX(X))+(1−P (X))P (fX(X)). Algorithm 2 shows function
Prob that implements the dynamic programming algorithm for computing the
probability of a formula encoded as a BDD. The function should also store the
value of already visited nodes in a table so that, if a node is visited again,
its probability can be retrieved from the table. For the sake of simplicity the
algorithm does not show this optimization but it is fundamental to achieve linear
cost in the number of nodes, as without it the cost of function Prob would be
proportional to 2n where n is the number of Boolean variables.

The main BUNDLE function, shown in Algorithm 3, first builds a data struc-
ture PMap that associates each DL axiom Ei with its probability pi. In the
OWL files the probabilistic information is specified using the annotation system
allowed by the OWL language. Then BUNDLE uses Pellet’s ExpHST(C,K)
function that computes all the MinAs for the unsatisfiability of a concept C
using the Hitting Set Tree algorithm. BUNDLE exploits the version of this func-
tion in which we can specify the maximum number of explanations to be found.
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Algorithm 2. Computation of the probability of a formula encoded as a BDD.
1: function Prob(node)
2: Input: a BDD node
3: Output: the probability of the Boolean function associated with the node
4: if node is a terminal then
5: return value(node) � value(node) is 0 or 1
6: else
7: let X be v(node) � v(node) is the variable associated with node
8: P1 ←Prob(child1(node))
9: P0 ←Prob(child0(node))
10: return P (X) · P1 + (1 − P (X)) · P0
11: end if
12: end function

Algorithm 3. Function Bundle: computation of the probability of unsatisfia-
bility of C given K.
1: function Bundle(K, C, maxEx, maxTime)
2: Input: K (the knowledge base)
3: Input: C (the concept to be tested for unsatisfiability)
4: Input: maxEx (the maximum number of explanations to be found)
5: Input: maxTime (time limit for the search for explanations)
6: Output: the probability of the unsatisfiability of C w.r.t. K
7: Build Map PMap from DL axioms to sets of couples (axiom, probability)
8: MinAs ←ExpHST(C, K, maxEx) � Call to Pellet
9: Initialize V arAx to empty � V arAx is an array of couples (Axiom, Prob)
10: BDD ←BDDZero
11: for all MinA ∈ MinAs do
12: BDDE ←BDDOne
13: for all Ax ∈ MinA do
14: p ← PMap(Ax)
15: Scan V arAx looking for Ax
16: if !found then
17: Add to V arAx a new cell containing (Ax, p)
18: end if
19: Let i be the position of (Ax, p) in V arAx
20: BDDA ← BDDGetIthVar(i)
21: BDDE ←BDDAnd(BDDE,BDDA)
22: end for
23: BDD ←BDDOr(BDD,BDDE)
24: end for
25: return Prob(BDD) � V arAx is used to compute P (X) in Prob
26: end function

Two data structures are initialized: V arAx is an array that maintains the
association between Boolean random variables (whose index is the array index)
and couples (axiom, probability), and BDD stores a BDD. BDD is initialized
to the zero Boolean function.

Then BUNDLE performs two nested loops that build a BDD representing
the pinpointing formula in DNF. To manipulate BDDs we used JavaBDD1 that
is an interface to a number of underlying BDD manipulation packages. As the
underlying package we used CUDD.

In the outer loop, BUNDLE combines BDDs for different explanations. In
the inner loop, BUNDLE generates the BDD for a single explanation.

In the outer loop, BDDE is initialized to the “one” Boolean function. In
the inner loop, the axioms of each MinA are considered one by one. The value p

1 http://javabdd.sourceforge.net/

http://javabdd.sourceforge.net/
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associated with the axiom is extracted from PMap. The axiom is searched for
in V arAx to see if it was already assigned a random variable. If not, a cell is
added to V arAx to store the couple. At this point we know the couple position
i in V arAx and so the index of its Boolean variable Xi. We obtain a BDD
representing Xi = 1 with BDDGetIthVar and we conjoin it with BDDE.
After the two cycles, function Prob of Algorithm 2 is called over BDD and its
result is returned to the user.

6 TRILL

TRILL implements a tableau algorithm that computes the pinpointing formula
representing the set of MinAs. After generating the pinpointing formula, TRILL
converts it into a BDD and computes the probability of the query. TRILL can
answer concept and role membership queries, subsumption queries, and can find
explanations both for the unsatifiability of a concept contained in the KB and
for the inconsistency of the entire KB. TRILL was implemented in Prolog, so the
management of the non-determinism of the rules is delegated to this language.

We use the Thea2 library [45] for converting OWL DL KBS into Prolog.
Thea2 performs a direct translation of the OWL axioms into Prolog facts. For
example, a simple subclass axiom between two named classes Cat 	 Pet is
written using the subClassOf/2 predicate as subClassOf(‘Cat’,‘Pet’). For
more complex axioms, Thea2 exploits the list construct of Prolog, so the axiom
NatureLover ≡ PetOwner � GardenOwner becomes equivalentClasses(
[‘NatureLover’, unionOf([‘PetOwner’, ‘GardenOwner’])]). When a prob-
abilistic KB is given as input, for each probabilistic axiom of the form Prob ::
Axiom a fact p(Axiom,Prob) is asserted in the Prolog KB.

In order to represent the tableau, TRILL uses a couple Tableau = (A, T ),
where A is a list containing information about nominal individuals and class
assertions with the corresponding value of the pinpointing formula, while T is a
triple (G, RBN , RBR) in which G is a directed graph that contains the struc-
ture of the tableau, RBN is a red-black tree (a key-value dictionary) in which
a key is a couple of individuals and its value is the set of the labels of the edge
between the two individuals, and RBR is a red-black tree in which a key is
a role and its value is the set of couples of individuals that are linked by the
role. This representation allows to quickly find the information needed during
the execution of the tableau algorithm. For managing the blocking system we
use a predicate for each blocking state: nominal/2, blockable/2, blocked/2,
indirectly blocked/2 and safe/3. Each predicate takes as arguments the indi-
vidual Ind and the tableau (A, T ); safe/3 takes as input also the role R. For
each individual Ind in the ABox we add the atom nominal(Ind) to A, then
every time we have to check the blocking status of an individual we call the
corresponding predicate that returns the status by checking the tableau.

Deterministic and non-deterministic tableau expansion rules are treated dif-
ferently. Non-deterministic rules are implemented by a predicate rule name(Tab,
TabList) that, given the current tableau Tab, returns the list of tableaux TabList
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created by the application of the rule on Tab, while deterministic rules are imple-
mented by a predicate rule name(Tab, Tab1) that, given the current tableau
Tab, returns the tableau Tab1 obtained by the application of the rule on Tab.

Expansion rules are applied in order by apply all rules/2, first the non-
deterministic ones and then the deterministic ones. The predicate apply nondet
rules(RuleList,Tab,Tab1) takes as input the list of non-deterministic rules and
the current tableau and returns a tableau obtained by the application of one of
the rules. apply nondet rules/3 is called as apply nondet rules([or rule],
Tab,Tab1) and is shown in Fig. 2. If a non-deterministic rule is applicable, the
list of tableaux obtained by its application is returned by the predicate corre-
sponding to the applied rule, a cut is performed to avoid backtracking to other
rule choices and a tableau from the list is non-deterministically chosen with the
member/2 predicate.

apply_all_rules(Tab,Tab2):-

apply_nondet_rules([or_rule],Tab,Tab1),

(Tab=Tab1 -> Tab2=Tab1 ; apply_all_rules(Tab1,Tab2)).

apply_nondet_rules([],Tab,Tab1):-

apply_det_rules([and_rule,unfold_rule,add_exists_rule,

forall_rule,exists_rule],Tab,Tab1).

apply_nondet_rules([H|T],Tab,Tab1):-

C=..[H,Tab,L],

call(C),!

member(Tab1,L),

Tab \= Tab1.

apply_nondet_rules([_|T],Tab,Tab1):-

apply_nondet_rules(T,Tab,Tab1).

Fig. 2. Definition of the non-deterministic expansion rules by means of the predicates
apply all rules/2 and apply nondet rules/3.

If no non-deterministic rule is applicable, deterministic rules are tried sequen-
tially with the predicate apply det rules/3, shown in Fig. 3, that is called as
apply det rules(RuleList,Tab,Tab1). It takes as input the list of determin-
istic rules and the current tableau and returns a tableau obtained with the
application of one of the rules.

After the application of a deterministic rule, a cut avoids backtracking to
other possible choices for the deterministic rules. If no rule is applicable, the
input tableau is returned and rule application stops, otherwise a new round of
rule application is performed.

Once the pinpointing formula is built, TRILL builds the corresponding BDD
by using the build bdd/2 predicate, shown in Fig. 4, that takes as input a



92 R. Zese et al.

apply_det_rules([],Tab,Tab).

apply_det_rules([H|T],Tab,Tab1):-

C=..[H,Tab,Tab1],

call(C),!.

apply_det_rules([_|T],Tab,Tab1):-

apply_det_rules(T,Tab,Tab1).

Fig. 3. Definition of the deterministic expansion rules by means of the predicate
apply det rules/3.

build_bdd(and(A),B):-!,

one(B0),

bdd_and(A,B0,B).

build_bdd(or(A),B):-!,

zero(B0),

bdd_or(A,B0,B).

build_bdd(A,B):-

p(A,Prob),!,

ProbN is 1-Prob,

get_var_n([X],[],[Prob,ProbN],VX),

equality(VX,0,B).

build_bdd(A,B):-

one(B).

bdd_and([],B,B).

bdd_and([H|T],B0,B):-

build_bdd(H,B1),

and(B0,B1,B2),

bdd_and(T,B2,B).

bdd_or([],B,B).

bdd_or([H|T],B0,B):-

build_bdd(H,B1),

or(B0,B1,B2),

bdd_or(T,B2,B).

Fig. 4. Code of the predicates build bdd rules/2.

pinpointing formula and returns the correspondig BDD. It scans the pinpoint-
ing formula and, for each variable, it searches for the probabilistic axiom corre-
sponding to the variable with the query p(Axiom,Prob). If the query succeeds,
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it creates the corresponding BDD and combines it with the BDD representing
the pinpointing formula. Finally, it computes the probability of the query from
the BDD so built using the predicate compute prob/2. The predicates one/1
and zero/1 return BDDs representing the Boolean constants 1 and 0; and/3
and or/3 execute Boolean operations between BDDs. get var n/4 returns the
random variable associated with axiom X and list of probabilities [Prob,ProbN],
where ProbN = 1 − Prob. equality/3 returns the BDD B associated with the
expression VX=val where VX is a random variable and val is 0 or 1. The predi-
cate p/2 is used for specifying the association between axioms and probability,
i.e. p(subClassOf(’A’,’B’),0.9) asserts the axiom A 	 B is associated with a
probability of 0.9. The predicates compute prob/2, one/1, zero/1, and/3, or/3,
get var n/4 and equality/3 are imported from a Prolog library of the cplint
suite [33].

7 Related Work

While there are many works that propose approaches for combining probabil-
ity and DLs, there are relatively fewer inference algorithms. One of these is
PRONTO [21] that, similarly to BUNDLE, is based on Pellet. PRONTO per-
forms inference on P-SHIQ(D) [25] KBs instead of DISPONTE. In these KBs
the probabilistic part contains conditional constraints of the form (D|C)[l, u] that
informally mean “generally, if an object belongs to C, then it belongs to D with
a probability in the interval [l, u]”. P-SHIQ(D) uses probabilistic lexicographic
entailment from probabilistic default reasoning and allows both terminological
and assertional probabilistic knowledge about instances of concepts and roles. P-
SHIQ(D) is based on Nilsson’s probabilistic logic [27] that defines probabilistic
interpretations instead of a single probability distribution over theories.

Differently from BUNDLE and PRONTO, reasoners written in Prolog can
exploit Prolog’s backtracking facilities for performing the search. This has been
observed in various work. Beckert and Posegga [6] proposed a tableau reasoner
in Prolog for First Order Logic (FOL) based on free-variable semantic tableaux.
However, the reasoner is not tailored to DLs.

Hustadt, Motik and Sattler [17] presented the KAON2 algorithm that exploits
basic superposition, a refutational theorem proving method for FOL with equal-
ity, and a new inference rule, called decomposition, to reduce a SHIQ KB into
a disjunctive datalog program, while DLog [24] is an ABox reasoning algorithm
for the SHIQ language that allows to store the content of the ABox externally
in a database and to answer instance check and instance retrieval queries by
transforming the KB into a Prolog program.

Meissner [26] presented the implementation of a Prolog reasoner for the DL
ALCN . This work was the basis of the work of Herchenröder [15], that consid-
ered ALC and improved the work of Meissner by implementing heuristic search
techniques to reduce the running time. Faizi [10] added to [15] the possibility of
returning information about the steps executed during the inference process for
queries but still handled only ALC.
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A different approach is the one of Ricca et al. [32] that presented OntoDLV,
a system for reasoning on a logic-based ontology representation language called
OntoDLP. This is an extension of (disjunctive) ASP and can interoperate with
OWL. OntoDLV rewrites the OWL KB into the OntoDLP language, can retrieve
information directly from external OWL Ontologies and answers queries by using
ASP.

TRILL differs from the previous works for the target description logics (ALC)
and for the fact that those reasoners do not return explanations for the given
queries. Moreover, TRILL differs in particular from DLog for the possibility of
answering general queries instead of instance check and instance retrieval only.

8 Experiments

In this section, we evaluate the performance of TRILL and BUNDLE. We first
compare BUNDLE with the publicly available version of PRONTO on four prob-
abilistic ontologies. The experiments have been performed on Linux machines
with a 3.10 GHz Intel Xeon E5-2687W with 2 GB memory allotted to Java.

The first ontology is BRCA2 that models breast cancer risk assessment. It
contains a certain part and a probabilistic part. The tests were defined following
[22]: we randomly sampled axioms from the probabilistic part of this ontology
which are then added to the certain part. So each sample was a probabilistic KB
with the full certain part of the BRCA ontology and a subset of the probabilistic
constraints. We varied the number of these constraints from 9 to 15, and, for each
number, we generated 100 different consistent ontologies. In order to generate a
query, an individual a is added to the ontology. a is randomly assigned to each
class that appears in the sampled conditional constraints with probability 0.6.
If the class is composite, as for example PostmenopausalWomanTakingTestos-
terone, a is assigned to the component classes rather than to the composite one.
In the example above, a will be added to PostmenopausalWoman and Wom-
anTakingTestosterone. The ontologies are then translated into DISPONTE by
replacing the constraint (D|C)[l, u] with the axiom u :: C 	 D.

For each ontology we perform the query a : C where the class C is randomly
selected among those that represent women under increased and lifetime risk
such as WomanUnderLifetimeBRCRisk and WomanUnderStronglyIncreasedBR-
CRisk. We then applied both BUNDLE and PRONTO to each generated test
and we measured the execution time and the memory used. Figure 5(a) shows the
execution time averaged over the 100 KBs as a function of the number of prob-
abilistic axioms and, similarly, Fig. 5(b) shows the average amount of memory
used. As one can see, execution times are similar for small KBs, but the differ-
ence between the two reasoners rapidly increases for larger knowledge bases. The
memory usage for BUNDLE is always less than 53 % with respect of PRONTO.

The other three ontologies are an extract from the Cell3 ontology that repre-
sents cell types of the prokaryotic, fungal, and eukaryotic organisms, an extract
2 http://sites.google.com/a/unife.it/ml/bundle/brca
3 http://cellontology.org/

http://sites.google.com/a/unife.it/ml/bundle/brca
http://cellontology.org/


Semantics and Inference for Probabilistic Description Logics 95

(a) Average execution times (s). (b) Average memory used (Kb).

Fig. 5. Comparison between BUNDLE and PRONTO on the BRCA KB.

Table 1. Average execution time for the queries to the Cell, Teleost and NCI KBs.
The first column reports the size of the non-probabilistic TBox of each KB.

Dataset TBox axioms Probabilistic TBox Size

0 250 500 750 1000

Cell 1263 time(s) 0.76 2.84 3.88 3.94 4.53

Teleost 3406 time(s) 2.11 8.87 31.80 33.82 36.33

NCI 5423 time(s) 3.02 11.37 11.37 16.37 24.90

from the NCI Thesaurus4 that describes human anatomy and an extract from the
Teleost anatomy5 ontology (Teleost for short) that is a multi-species anatomy
ontology for teleost fishes. For each of these KBs we considered the versions
of increasing size used in [23]: the authors added 250, 500, 750 and 1000 new
probabilistic conditional constraints to the extract of the publicly available non-
probabilistic version of each ontology. We converted these KBs into DISPONTE
in the same way presented for the BRCA ontology and we created a set of 100 dif-
ferent random subclass queries for each KB, such as CL 0000802 	 CL 0000800
for the Cell KB, NCI C32042 	 NCI C32890 for the NCI Thesaurus and
TAO 0001102 	 TAO 0000139 for the Teleost KB. For generating the queries
we built the hierarchy of each KB and we randomly selected two classes con-
nected in the hierarchy for each query, so that it had at least one explanation.

In Table 1 we report, for each version of the datasets, the average execution
time for BUNDLE to perform inference. In addition, for each KB we report
its number of non-probabilistic TBox axioms. With these datasets, PRONTO
always terminated with out-of-memory error.
4 http://ncit.nci.nih.gov/
5 http://phenoscape.org/wiki/Teleost Anatomy Ontology

http://ncit.nci.nih.gov/
http://phenoscape.org/wiki/Teleost_Anatomy_Ontology
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Table 2. Results of the experiments on BRCA, DBPedia, Biopax and Vicodi KBs
in terms of average times for computing the probability of queries. The first column
reports the size of the non-probabilistic TBox of each KB.

Dataset TBox axioms TRILL BUNDLE

time(s) time(s)

BRCA 322 5.55 6.96

DBPedia 535 16.70 3.79

Biopax level 3 826 0.11 1.85

Vicodi 220 0.19 1.12

As can be seen, BUNDLE needs lower amount of memory and is faster than
the publicly available version of PRONTO. BUNDLE can answer most queries
in a few seconds and manage larger KBs with respect to PRONTO.

Finally, we tested TRILL performance when computing probability of queries
by comparing it to BUNDLE. The experiments have been performed on a Linux
machine with a 2.33 GHz Intel Dual Core E6550 with 2 GB memory allotted to
Java. We consider four different knowledge bases of various complexity: BRCA
already used for the comparison with PRONTO, an extract of the DBPedia6

ontology obtained from Wikipedia, Biopax level 37 that models metabolic path-
ways and Vicodi8 that contains information about European history. For the
tests, we used the DBPedia and the Biopax KBs without ABox while for BRCA
and Vicodi we used a small ABox containing 1 individual for the first one and 19
individuals for the second one. We added 50 probabilistic axioms to each KB. For
BRCA we used the probabilistic axioms already created for the previous test,
while for the other KBs we created the probabilistic axioms by randomly select-
ing certain axioms from them and associating a random probability. For each
dataset we randomly created 100 different queries. In particular, for the DBPedia
and Biopax we created 100 subclass-of queries while for the other KBs we created
80 subclass-of and 20 instance-of queries. Some examples of queries are V illage 	
PopulatedP lace for DBPedia, TransportWithBiochemicalReaction 	 Entity
for Biopax and Creator(Anthony-van-Dyck-is-Painter-in-Flanders) for Vicodi
KB. The queries generated for the BRCA KB are similar with those used in the
test of BUNDLE. For generating the subclass-of queries, we randomly selected
two classes that are connected in the class hierarchy, while for the instance-of
queries we randomly selected an individual a and a class to which a belongs
by following the class hierarchy, starting from the class to which a explicitly
belongs, so that each query had at least one explanation. Table 2 shows, for
each ontology, the number of non-probabilistic axioms and the average time in
seconds that TRILL and BUNDLE took for answering the queries.
6 http://dbpedia.org/
7 http://www.biopax.org/
8 http://www.vicodi.org/

http://dbpedia.org/
http://www.biopax.org/
http://www.vicodi.org/
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These preliminary tests show that TRILL is sometimes able to outperform
BUNDLE, thanks to the fact that the translation of the set of explanations into
a DNF formula is not required. However, on DBPedia, its longer running time
may be due to the lack of all the optimizations that BUNDLE inherits from
Pellet. This represents evidence that a Prolog implementation of a Semantic
Web tableau reasoner is feasible and that may lead to a practical system.

9 Conclusions

In this paper we presented the DISPONTE semantics for probabilistic DLs that
is inspired by the distribution semantics of probabilistic logic programming. We
also presented the systems BUNDLE and TRILL for reasoning on DISPONTE
KBs and their implementations. Both systems are tested on real world datasets.
The experiments show that BUNDLE uses less memory and is faster than the
publicly available version of the probabilistic reasoner PRONTO and is able to
manage larger KBs. Moreover, the results for TRILL show that Prolog is a viable
language for implementing DL reasoning algorithms and that its performance is
comparable with that of a state-of-the-art reasoner. Both TRILL and BUNDLE
are able to deal with ontologies of significant complexity.
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