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Abstract. Credal ALC combines the constructs of the well-known ALC
logic with probabilistic assessments, so as to let terminologies convey
uncertainty about concepts and roles. We present a restricted version
of Credal ALC that can be viewed as a description language for a class
of relational Bayesian networks. The resulting “crALC networks” offer
a simplified and illuminating route both to Credal ALC and to rela-
tional Bayesian networks. We then describe the implementation, in freely
available packages, of approximate variational and lifted exact inference
algorithms.

1 Introduction

This paper focuses on a probabilistic description logic, called Credal ALC [7],
that adds probabilistic operators to the well-known description logic ALC [2].
Credal ALC lets terminologies convey uncertainty about concepts and roles. The
idea is to adopt all constructs of acyclic ALC terminologies, plus probabilistic
assessments such as P(C|D) ∈ [α, α], where C and D are concepts, and P(r) ∈
[β, β], where r is a role. These probabilities are supposed elicited from experts,
or learned from data.

The semantics of Credal ALC is based on probabilities over interpretations,
with implicit independence assumptions that are encoded through a Markov con-
dition. Given a domain, a Credal ALC terminology can be grounded into a set of
Bayesian networks. Instead of the usual satisfiability or subsumption problems
that are studied in description logics [2], here the focus is on probabilistic infer-
ence: given a domain and a set of assertions, compute the conditional probability
of some assertion.

While the syntax of Credal ALC is relatively simple to grasp, the semantics is
quite complex. The adopted Markov condition is far from obvious, and one needs
several assumptions to guarantee that any well-formed terminology specifies a
single probability measure over all interpretations.

In this paper we present a reformulation of Credal ALC, such that any well-
formed set of formulas can be directly translated into a relational Bayesian net-
work. The semantics is then inherited from the theory of relational Bayesian
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networks [28,29]. This reformulation simplifies the development of probabilistic
terminologies, and leads to insights concerning inference algorithms. Addition-
ally, the syntax offers a new way of specifying relational Bayesian networks.
Indeed, a profitable way to understand Credal ALC is to take it as a description
language for a restricted but useful class of relational Bayesian networks, a class
that can be valuable in specifying terminologies containing uncertainty.

We then move to inference algorithms; that is, algorithms that compute prob-
abilities given a set of sentences and assertions in the language. One advantage of
connecting Credal ALC with Bayesian networks is that algorithms for the latter
formalism can be applied to the former. We present an implementation of vari-
ational message-passing algorithms for inference, in particular algorithms that
exploit symmetries amongst individuals in a domain. Such symmetries allow us
to cluster variables together, and to approximate inferences solely by exchang-
ing messages between such clusters. We then present an implementation of exact
inference using lifted algorithms; that is, algorithms that again treat sets of vari-
ables together. We examine the use of aggregation parfactors in exact lifted
inference.

The paper is organized as follows. Basic definitions and notation, as well as
related literature, are reviewed in Sect. 2. Credal ALC is presented as a syntax
for relational Bayesian networks in Sect. 3. Sections 4 and 5 respectively describe
our implementation of variational and lifted algorithms.

2 ALC and (Relational) Bayesian Networks

In this section we review some necessary notions, mostly related to knowledge
representation formalisms. We are interested in description logics and in rela-
tional Bayesian networks, respectively as representation for deterministic and
probabilistic relationships between objects.

2.1 The Description Logic ALC
In the popular description logic ALC [66] we have individuals, concepts, and
roles, to be understood as constants, unary relations, and binary relations.
Throughout, a, b, a1, a2, . . . are individuals; C,D,C1, C2, . . . are concepts; and
r, r1, r2, . . . are roles. Concepts and roles can combined to form new concepts
using a set of constructors: intersection (C � D), union (C � D), complement
(¬C), existential restriction (∃r.C), and value restriction (∀r.C). Concept inclu-
sions/definitions are denoted respectively by C � D and C ≡ D, where C and D
are concepts. Concept C�¬C is denoted by 	, and concept C�¬C is denoted by
⊥. Restrictions ∃r.	 and ∀r.	 are abbreviated by ∃r and ∀r respectively. A set
of concept inclusions and definitions is a terminology. If an inclusion/definition
contains a concept C in its left hand side and a concept D in its right hand
side, C directly uses D. Indicate the transitive closure of directly uses by uses.
A terminology is acyclic if it is a set of concept inclusions/definitions such that
no concept in the terminology uses itself [2].
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A terminology may be associated with assertions about individuals or pairs
of individuals; for instance, Fruit(appleFromJohn) and buyFrom(houseBob, John).
Intuitively, an assertion is the grounding of a unary/binary relation. A set of
assertions is called an Abox.

The semantics of ALC is given by a nonempty set D, the domain, and a
mapping I, the interpretation. An interpretation I maps each individual to an
element of the domain, each concept name to a subset of the domain, each role
name to a binary relation on D × D. An interpretation is extended to other
concepts as follows: (¬C)I = D\(C)I , (C � D)I = (C)I ∩ (D)I , (C � D)I =
(C)I ∪ (D)I , (∃r.C)I = {x ∈ D|∃y ∈ D : (x, y) ∈ (r)I ∧ y ∈ (C)I}, (∀r.C)I =
{x ∈ D|∀y ∈ D : (x, y) ∈ (r)I → y ∈ (C)I}. We have C � D if and only if
(C)I ⊆ (D)I ; and C ≡ D if and only if (C)I = (D)I .

Most description logics have direct translations into multi-modal logics [65]
and fragments of first-order logic [4]. We often treat a concept C as a unary
predicate C(x), and a role r as a binary predicate r(x, y).

2.2 Bayesian Networks

Now consider Bayesian networks, a popular representation for probability dis-
tributions. A Bayesian network consists of a directed acyclic graph ̂G where
each node is a random variable Vi and where the following Markov condition
is assumed [53]: every random variable Vi is independent of its nondescendants
nonparents given its parents. For categorial variables V1, . . . , Vn, this Markov
condition implies the following factorization for joint probabilities:

P(V1 = v1, . . . , Vn = vn) =
n

∏

i=1

P(Vi = vi|pa(Vi) = πi) , (1)

where pa(Vi) denotes the parents of Vi in the graph, and πi denotes the configu-
ration of parents of random variable Vi. Note that if a random variable Vi has no
parents, then the unconditional probability P(Vi = xi) is used in Expression (1).
We say that P factorizes according to ̂G if P satisfies Expression (1).

2.3 Probabilistic Description Logics

There has been considerable interest in languages that mix probability assess-
ments and constructs employed in description logics [44,61]. Early proposals
by Heinsohn [24], Jaeger [27] and Sebastiani [67] adopt probabilistic inclusion
axioms with a domain-based semantics; that is, probabilities are assigned to sub-
sets of the domain. Proposals in the literature variously adopt a domain-based
semantics [13,14,20,35,37,42,76], or an interpretation-based semantics where
probabilities are assigned to sets of interpretations [6,21,43,45,67].

Several probabilistic description logics rely on graphs to encode stochas-
tic independence relations. The first language to resort to Bayesian networks,
P-CLASSIC, enlarges the logic CLASSIC with a set of Bayesian networks so as
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to specify a single probability measure over the domain [37]. A limitation is that
P-CLASSIC does not handle assertions. Other logics that combine terminolo-
gies with Bayesian networks are Yelland’s Tiny Description Logic [76], Ding and
Peng’s BayesOWL language [13], and Staker’s logic [69] (none can handle asser-
tions). Costa and Laskey’s PR-OWL language [6] adopts an interpretation-based
semantics inherited from multi-entity Bayesian networks (MEBNs) [5]. Another
path is to consider undirected models, for instance based on Markov logic [49].

For the purposes of this paper, a particularly interesting class of languages
has been produced by combining Poole’s choice variables [57] with description
logics [8,43,63].

Besides the literature just reviewed, there is a large body of work on knowl-
edge databases [26,59] and on fuzzy description logics [44]; also notable is
Nottelmann and Fuhr’s probabilistic version of the OWL language [51].

2.4 Relational Bayesian Networks

Combinations of logic, probabilities and independence assumptions are not lim-
ited to description logics. They range from simple template languages [46,71,74],
to rule-based languages akin to Prolog [48,56,64], and to more sophisticated
languages such as multi-entity Bayesian networks [39] and Markov logic [62].
Research on probabilistic logics sometimes emphasizes automated learning
[19,60]. The term Probabilistic Relational Model (PRM) is frequently associated
with languages that combine Bayesian networks with relational logic [16,18,38].
Overall, these languages move beyond older probabilistic logics [3,9,50] by explic-
itly considering Markov conditions. For our purposes, relational Bayesian net-
works [28–30] offer the most relevant language, which we now discuss.

A relational Bayesian network is a compact, graph-based representation for a
joint distribution over a set of random variables specified via relations and their
groundings over a domain [28,29]. We start with a vocabulary S containing
finitely many relations. We wish to specify a probability measure over the set of
interpretations for these relations. To do so, we specify a directed acyclic graph
G where each node is a relation in S. Each relation s is then associated with a
probability formula Fs. To understand these formulas, we must understand the
intended semantics.

To define the semantics, consider a domain D (a set with individuals). An
interpretation I is a function that takes each k-ary relation to a set of k-tuples of
elements of D. Now given a k-ary relation s ∈ S and a k-tuple a ∈ Dk, associate
with the grounding s(a) the indicator function

1s(a)(I) =
{

1 if a ∈ (s)I ,
0 otherwise.

Note: to emphasize the connection between interpretations in ALC and in rela-
tional Bayesian networks, we used the notation (s)I in this expression.

We extend this notation to any formula φ, indicating by 1φ(I) the function
that yields 1 if φ holds in I, and 0 otherwise. We wish to specify a probability
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Fig. 1. Relational Bayesian network in Example 1.

distribution over the set of all indicator variables 1φ. Probability formulas allow
us to do so: a probability formula Fs specifies how to compute the distribution
of 1s(a) for any appropriate tuple a of elements of D.

Now return to the syntax. Jaeger restricted probability formulas to four con-
structs, defined recursively as follows [28,29]. First, a real number in [0, 1] is a
probability formula. Second, a parameterized indicator function 1s(x), where x is
a tuple of logical variables, is a probability formula. Third, F1×F2+(1−F1)×F3,
where F1, F2, and F3 are probability formulas, is a probability formula.

Example 1. Consider the graph in Fig. 1. The assessment

∀(x, y) ∈ D × D : P
(

1connected(x,y) = 1
)

= 0.2

corresponds to the concise probability formula Fconnected(x, y) = 0.2. Consider
also the assessments: for η ∈ {0, 1},

∀x ∈ D : P
(

1Authority(x) = 1|1Hub(x) = η
)

= 0.9η + 0.2(1 − η).

These assessments correspond to the probability formula:

FAuthority(x) = 0.9 × 1Hub(x) + 0.2 × (1 − 1Hub(x)).

Finally, consider the assessments: for η ∈ {0, 1},

∀x ∈ D : P
(

1Hub(x) = 1|1φ = η
)

= 0.3η + 0.01(1 − η),

where φ is the first-order formula ∃y ∈ D : connected(x, y). To encode this into
a probability formula, we need to somehow quantify over y. To do so, Jaeger
introduced a fourth construct, as we now describe. �

A combination function is any function that takes a tuple of numbers in [0, 1]
and returns a number in [0, 1]. Examples are:

Noisy-OR(A) = 1 −
∏

p∈A

(1 − p), Mean(A) =
∑

p∈A

p/|A|.

Tuples are specified as follows. Denote by c(x,y) a set of equality constraints
containing logical variables in tuples x and y. Denote by 〈y : c(x,y)〉 the set of
all groundings of y that satisfy c(x,y) for fixed x. For each tuple x, generate
the set 〈y : c(x,y)〉; now for each tuple in this set, evaluate F1, . . . , Fk. So if
there are m tuples in 〈y : c(x,y)〉 for fixed x, then there are k×m elements in the
resulting tuple. Denote by {F1(x,y), . . . , Fk(x,y); 〈y : c(x,y)〉} the tuple; note
that not necessarily all variables in (x,y) appear in all probability formulas Fi.
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Fig. 2. Grounded graph ̂G for Example 1.

Returning to Example 1, we can write the last assessment as:

FHub(x) = Noisy-OR({connected(x, y); 〈y : y = y〉}).

Combination functions are quite powerful, but as a knowledge representation
tool they have somewhat difficult syntax, and may be hard to understand.

We can take the graph G and the associated probability formulas, and gen-
erate a grounded graph ̂G. The nodes of ̂G are indicator functions 1s(a) for
all s and all appropriate a. An edge is added to ̂G from node s1(a1) to node
s2(a2) if the probability formula for s2 mentions the relation s1. The Markov
condition for Bayesian networks is then assumed for ̂G, and hence we obtain a
factorization for the joint distribution of all indicator functions 1s(a).

Returning again to Example 1, Fig. 2 shows the grounded graph ̂G for domain
{a1, a2}. To simplify the figure, every indicator function 1s(a) is denoted simply
by s(a).

In this paper we do not consider recursive relational Bayesian networks,
defined by Jaeger to allow typed relations and temporal evolution [28,29].

3 Credal ALC
Credal ALC was proposed [7] as a syntactically simple probabilistic extension of
ALC. The syntax and associated semantics allows one to specify sets of proba-
bility measures over the set of interpretations for a given vocabulary.

In Sect. 3.1 we summarize the properties of the most flexible and general
version of the language. Then in Sect. 3.2 we reformulate Credal ALC as a spec-
ification language for (a class of) relational Bayesian networks.

3.1 Credal ALC as a Flexible Mix of ALC and Probabilities

The language consists of well-formed ALC sentences, plus assessments

P(C|D) ∈ [α, α], P(r) ∈ [β, β],

where C is a concept name, D is a concept, and r is a role name. If the concept
D is equal to 	 in the first assessment, we just write P(C) ∈ [α, α]. Hence
we have a subset of many existing probabilistic logics such as Lukasiewicz’s
conditional constraints [41]. The idea behind Credal ALC is to impose additional
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Fig. 3. The Kangaroo network. Note that, as a visual aid, existential restrictions are
explicitly shown as nodes in the graph, even though these nodes do not correspond
directly to concepts in the terminology.

assumptions so that each consistent set of sentences can be grounded into a set
of Bayesian networks, all sharing the same graph. Note that a set of probability
distributions is often called a credal set [1], hence the name Credal ALC.

We first need to have an appropriate concept of acyclicity. We adopt the
relations directly uses and uses from ALC, and extend them as follows. Given
the assessment P(C|D) ∈ [α, α], we say that C directly uses D. And uses is the
transitive closure of directly uses. Now for any concept C in the terminology,
denote by pa(C) the set of concepts directly used by C, and by nd(C) the set of
concepts that do not use C. Say that an assertion directly uses another one if the
corresponding concepts satisfy the directly uses relation. Again, a terminology is
acyclic if no concept in the terminology uses itself.

Given an acyclic terminology, we can draw a directed acyclic graph where
nodes are concept and role names, and arrows encode the directly uses relation.
For instance, Fig. 3 shows a probabilistic version of the Kangaroo ontology and
the associated graph.1

We assume that every terminology is acyclic. By adopting acyclicity, we can
define an appropriate Markov condition; to so, we need to examine the semantics.

First, all ALC constructs have the usual semantics, based on a domain and
interpretations. As in many probabilistic logics [22,23], we adopt an assumption
of rigidity: the interpretation of an individual does not change across interpreta-
tions. We also adopt throughout the unique name assumption: distinct individual
names refer to distinct elements of the domain. Thus we can equate individuals
with elements of the domain.

To define the semantics of probabilistic assessments, take a domain D. Then
define, for any individual a and concept C, a set of interpretations

〈〈C(a)〉〉 = {I : a ∈ (C)I}.

1 The Kangaroo ontology is distributed with the CEL System at the site http://lat.
inf.tu-dresden.de/systems/cel/.

http://lat.inf.tu-dresden.de/systems/cel/
http://lat.inf.tu-dresden.de/systems/cel/
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Here 〈〈C(a)〉〉 depends on D, but we leave this dependency implicit to avoid
burdening the notation (the domain of interest can be inferred from the context).
Similarly, define the set of interpretations 〈〈r(a, b)〉〉 = {I : (a, b) ∈ (r)I}, for any
pair of individuals (a, b) and any role r. The semantics of a set of assessments is
given by a probability measure P over the set of interpretations: each assessment
P(C|D) ∈ [α, α] means

∀x ∈ D : P(〈〈C(x)〉〉|〈〈D(x)〉〉) ∈ [α, α],

and each assessment P(r) ∈ [β, β] means

∀(x, y) ∈ D × D : P(〈〈r(x, y)〉〉) ∈ [β, β].

Note that we abuse notation by using the same symbol P in the syntax and the
semantics.

Given a terminology and a domain, we can always construct a directed acyclic
graph ̂G where nodes are all possible assertions, and where arrows encode the
directly uses relation. As in Fig. 3, we add a node to ̂G for each existential
(or universal) quantifier in the terminology. Thus ̂G is the grounding of the
terminology for the given domain.

For example, consider a terminology with the following axioms and assess-
ments (based on Ref. [7]): P(A) = 0.9, B � A, D ≡ ∀r.A, C ≡ B � ∃r.D,
P(r) = 0.3. The terminology can be drawn as a directed acyclic graph as in
Fig. 4. Now suppose we have a domain with just two individuals, a and b. The
grounded graph ̂G is also shown in Fig. 4.

With this, we can state a Markov condition:2 〈〈C(a)〉〉 is independent of all
〈〈ND〉〉 where ND is a nondescendant nonparent of C(a) in ̂G, given all 〈〈PA〉〉
where PA is a parent of C(a) in ̂G. That is, we just have the usual Markov
condition for the grounded directed acyclic graph.

In practice it may be useful to adopt a number of assumptions that imply
that a terminology can always be grounded into a single probability measure
over interpretations (for instance, each assessment collapses to a single number).
Indeed, Cozman and Polastro [7] have identified a number of assumptions that
together guarantee uniqueness; some of these assumptions are easy to grasp,
while others are quite convoluted.

We present in the next section a syntax, and a set of associated assumptions,
that guarantees that any set of well-formed sentences can be grounded into a
single Bayesian network given a finite domain. We do so by framing Credal ALC
as a language for specification of relational Bayesian networks.

2 We use the following concept of independence: an event E is independent of a set of
events {Fi}i given a set of events {Gj}j if P(E ∩ H ′|H ′′) = P(E|H ′′)P(H ′|H ′′) for
any H ′ = ∩i∈IFi and any nonempty H ′′ = (∩j∈JGj) ∩ (∩k∈KGc

k), for any subsets
of indexes I, J , K.
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Fig. 4. Left: directed acyclic graph representing terminology. Right: grounding of the
terminology for D = {a, b}.

3.2 Credal ALC as Specification Language
for Relational Bayesian Networks

As before, consider a vocabulary S containing individuals, concepts, and roles.
A crALC network consists of a directed acyclic graph G where each node is
either a concept name or a relation name, and where each node is associated
either with

– a direct assessment: P(C) = α if the node is a concept C, or P(r) = α if the
node is a role r, for α ∈ [0, 1]; or

– a definition C ≡ φ, if the node is a concept C, that must be a well-formed
definition in ALC whose right-hand side only refers to parents of C.

To establish semantics for crALC networks, we translate this syntax directly
into relational Bayesian networks. Consider a domain D. Concepts and roles are
viewed as unary and binary relations, and the semantics is given by a probability
measure over I, the set of interpretations of these relations. Additionally:

– A direct assessment P(C) = α, where C is a concept, is interpreted just as the
probability formula FC(x) = α; that is, as

∀x ∈ D : P
(

1C(x) = 1
)

= α.

– A direct assessment P(r) = α, where r is a role, is interpreted just as the
probability formula Fr(x, y) = α; that is, as

∀(x, y) ∈ D × D : P
(

1r(x,y) = 1
)

= α.

The semantics of a definition C ≡ φ is immediate: for all x ∈ D, every inter-
pretation satisfies C(x) ↔ φ(x), where φ(x) is the translation of φ to first-order
logic, mapping intersection to conjunction, complement to negation, and so on.
As a digression, note that such definitions can be expressed through probabil-
ity functions, as any first-order logic formula can be encoded through Jaeger’s
probability formulas [28, Lemma 2.4].
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Fig. 5. Simple crALC network.

Now consider the graph ̂G where each node is a grounded relation, exactly as
done previously for relational Bayesian networks. Attach to ̂G the usual Markov
condition for Bayesian networks. The semantics of a crALC network is given by
a probability measure that factorizes in accordance with this Markov condition.

Example 2. Fig. 5 shows a crALC network with seven variables, four of which
are auxiliary variables Auxi, where the same probabilities in Example (1) can be
obtained as follows:

P(connected) = 0.2,

Hub ≡ (Aux1 � ∃connected) � (Aux2 � ¬∃connected),

Authority ≡ (Aux3 � Hub) � (Aux4 � ¬Hub),

P(Aux1) = 0.3, P(Aux2) = 0.01, P(Aux3) = 0.9, P(Aux4) = 0.2.

The grounded graph in Fig. 2 is again obtained for domain {a1, a2}. �
This example shows that, if properly combined, direct assessments and defini-
tions can be used to build conditional probabilities. In fact, suppose we have a
crALC network where C and D are concepts, D is the only parent of C, and
we wish to express that, for all x ∈ D,

P
(

1C(x) = 1|1D(x) = 1
)

= α and P
(

1C(x) = 1|1D(x) = 0
)

= β.

Introduce two fresh concept names C1 and C2, add them as parents of C, but
leave them without parents; then specify:

C ≡ (C1 � D) � (C2 � ¬D), P(C1) = α, P(C2) = β. (2)

Note that, as desired, P
(

1C(x) = 1|1D(x) = 1
)

is equal to
∑

�C1(x),�C2(x)

P
(

1C(x) = 1|1C1(x),1C2(x),1D(x) = 1
)

P
(

1C1(x)

)

P
(

1C2(x)

)

=
∑

�C2(x)

P
(

1C1(x) = 1
)

P
(

1C2(x)

)

= α.

By similar reasoning, we see that P
(

1C(x) = 1|1D(x) = 0
)

= β. This sort of
device let us specify conditional probability tables for a concept conditional on
arbitrarily many concepts. In fact we can even introduce some syntactic sugar
by writing the set of constructs in Expression (2) directly as C ≡ αD � β(¬D).
Moreover, there is no need to draw auxiliary variables in our graphs, as the next
example shows.
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Fig. 6. Simple crALC network without auxiliary variables.

Example 3. Consider again the crALC network in Example 2. The graph can
be drawn as in Fig. 6, with additional concise assessments:

P(connected) = 0.2,
Hub≡ 0.3 (∃connected)�

0.01 (¬∃connected),
Authority≡ 0.9 (Hub)�

0.2 (¬Hub).

Again, for domain {a1, a2}, the grounded graph is depicted in Fig. 2. �

Another example is given by the Kangaroo network in Fig. 3. We can replace both
the assessment P(Kangaroo|Beast) = 0.4 and the inclusion Kangaroo � Beast by

Kangaroo ≡ 0.4Beast.

Note that auxiliary variables resemble choice construct in ICL [57], but the
semantics for the latter employs different assumptions regarding negation. Sim-
ilarly, auxiliary variables resemble switches in PRISM [64]; the latter are more
general and take parameters. Finally, auxiliary variables resemble the exogenous
variables used in structural equations [54]; of course the latter are couched in
terms of algebraic modeling.

We can even extend the previous constructs if we have three concepts C1, C2

and C3. We can then use the definition

C ≡ (C1 � C2) � ((¬C1) � C3),

similarly to Jaeger’s probability formula FC1FC2 + (1 − FC1)FC3 .
Now consider the final construct in Jaeger’s relational Bayesian networks;

that is, combination functions. We do not have them in full generality here. For
a fixed and finite domain, the node ∃r.C is in fact a Noisy-OR: the indicator
function 1(∃r.C)(x) is a disjunction of all conjunctions of nodes C(y) with inhibitor
nodes r(x, y), for all y ∈ D. Likewise a node ∀r.C can be written as a conjunction
of implications.

Hence, as far as finite fixed domains are concerned, the syntax for crALC
networks presented here can be viewed as syntactic sugar for relational Bayesian
networks that only contain unary and binary relations, where binary relations
have no parents, and where combination functions are restricted to Noisy-OR.
What reasons can we offer to study such a subset of relational Bayesian networks?
At the risk of repeating arguments already stated, we offer the following answers.
First, the syntax and semantics of crALC networks are much easier to grasp and
to use than general Credal ALC, and also easier to grasp than general relational
Bayesian networks — in our experience, the syntax and semantics of Jaeger’s
probability functions are somewhat difficult for the novice. Second, techniques
honed by current research for both description logics and relational Bayesian
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networks can be used. Third, theoretical results about description logics can
lead to novel interesting results about relational Bayesian networks and related
languages. We do not focus on the latter topic, as it has been examined before [7].

3.3 A Few Applications

We now briefly present examples of crALC networks that have been described
in previous publications.

First, Polastro and Correa [55] have examined the use of crALC networks in
robot navigation, a task where high level reasoning is important [17,25]. Deter-
ministic facts were encoded in sentences such as

Office ≡ Room � ∃contains.Desk � ∃contains.Cabinet � ∃contains.Monitor

together with probabilistic assessments obtained by experimental analysis. Dur-
ing operation, images were collected and inferences were run; for instance, an
image containing 3 chairs, 1 table, 1 monitor, 1 cabinet and 1 door was taken
and the inference P(Office|detected objects) = 0.4278 was computed. A simi-
lar application of crALC networks in spatial reasoning has been reported by
Fenelon et al. [15].

A second example is link prediction, where the goal is to predict whether
there is a link between two nodes in a social network [40]. Description logics are
particularly well suited to handle social networks, because they deal with con-
cepts (applied to single nodes) and roles (applied to pairs of nodes). Ochoa-Luna,
Revoredo and Cozman [52] employed a crALC network to predict links in
a social network consisting of researchers, where links indicate co-authorship.
Approximate variational inference was used to compute the probability of various
links between individuals. The combination of topological features and proba-
bilistic reasoning led to accuracy of 89.5% in link prediction, compared to 85.6%
accuracy with topological features only.

4 Approximate Variational Inference with CRALC
Networks

Given a crALC network, a finite domain D, and an Abox A, consider the query
Q = P(C(a)|A). We refer to the computation of Q as an inference. One obvious
idea is to ground the crALC network into a Bayesian network, and compute
Q there by any existing algorithm [16,74]. However, the size of the grounded
Bayesian network may become too large as the size of the domain grows. A solu-
tion is to approximate Q. One can ground the crALC network and run approx-
imate inference there. It is not even necessary to generate the whole grounded
Bayesian network, but only the groundings that are relevant to the query. How-
ever, for large domains it may be difficult to even generate the grounded network.
A promising alternative is to avoid grounding concepts and roles, by noting that
many of these grounding lead to identical computations.
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So, consider running belief propagation [36] in the ground network. As many
messages are actually identical, it makes sense to group them [32,68]. An addi-
tional step is to group nodes and run exact inference within each group, and to
treat each group as a single variable as far as messages are concerned. That is,
we have belief propagation among groups, and exact inference within groups;
the messages can be derived using a variational scheme [75].

The idea then is to take the crALC network and to divide the ground
Bayesian network in slices. Each slice congregates groundings with respect to
a single individual: assertion C(a) clearly belongs to the slice of a, and asser-
tion r(a, y) belongs to the slice of a for any y ∈ D. For instance, in Fig. 1 we
have two slices, one for individual a and another for individual b. We now con-
sider messages in a variational scheme where each slice is a group [75]; to do
so, we introduce a node for each function in the Bayesian network, and connect
this node to the variables that affect the function (that is, we create the fac-
tor graph). Now we have messages sent to and from these function-nodes; for
instance, suppose that node A(a) is to send a message to the function-node that
represents f(c) where c is some individual that appears in the evidence. This
message is

∏

g mg,A(a)(A(a)), where mg,A(a) are the messages sent to A(a) from
function-nodes g, as g sweeps through the set of function-nodes connected to
A(a) except f . Similar messages are then sent to A(a), and so on. Note that as
we are grouping variables in each slice, and assuming that exact inference is run
inside a slice, only messages between slices must be exchanged.

Now if all messages were exchanged amongst all possible slices until conver-
gence, we would have a variant of belief propagation run in the fully grounded
Bayesian network. But note that many slices are exchangeable. In particular,
every element of the domain for which there is no evidence leads to an identical
slice. Thus we can put together all such slices: everytime a message is to be sent
from this “combined” slice, we simple compute the message that would be sent
by a single slice, and raise it to the number of slices in the “combined” slice.

To summarize, approximate inferences are produced by generating a set of
grounded Bayesian networks, one for each slice mentioned in the query and in
the evidence, plus an additional Bayesian network for a “generic” individual; a
detailed description of this algorithm can be found in Ref. [7]. Exact Bayesian
network inference is performed in each one of these networks and messages are
exchanged between the networks. The whole scheme resembles the RCR frame-
work [73]. Experiments indicate that this approach leads to fast and accurate
approximations [7].

A package implementing this algorithm has been coded by the second author
using the Java language (version 6.0), and can work either from the command
prompt or through a graphical user interface.3 Once the package is downloaded
and uncompressed, it must be run together with the jar file JavaBayes.jar (in the
folder Proj01\libs). The distribution comes with the file CrALC.java; this file
must be compiled and run.
3 The package is freely available, in compressed form, at the site http://sites.poli.usp.

br/pmr/ltd/Software/CRALC/inf-cralc-v21may2012.zip.

http://sites.poli.usp.br/pmr/ltd/Software/CRALC/inf-cralc-v21may2012.zip
http://sites.poli.usp.br/pmr/ltd/Software/CRALC/inf-cralc-v21may2012.zip
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The package can be run from the command prompt with some additional
parameters:

– gui {on|off}: loads (or not) the graphical user interface (default is on);
– i input file N: loads terminology in input file and sets domain size to N;
– p output file: saves a ground Bayesian network into output file;
– e query file: loads query and evidence in query file;
– r name: saves inference in file name.txt, and each slice in auxiliary file.

To describe crALC networks as input, we have chosen to adapt the Knowl-
edge Representation System Specification (KRSS).4 We use the following con-
structs: (and C1...Cn) for conjunction; (or C1...Cn) for disjunction; (not C)
for complement; (all r C) to indicate the quantifier ∀r.C; (some r C) to indi-
cate the quantifier ∃r.C; (define-concept C D) for C ≡ D. The package also
allows (define-primitive-concept C D) for C � D, in case the user wishes
to use this construct (note that doing so is somewhat risky as it may generate
a terminology that cannot be grounded into a unique Bayesian network). Prob-
abilistic assessments are specified as (probability B α), denoting P (B) = α.
The package also allows (conditional-probability B A α) for P (A|B) = α,
even though such an assessment is not strictly necessary in crALC networks.

Fig. 7. Terminologies are written in the larger panel, while assertions are set in the
right panel; the lower panel reports on inferences.

4 The standard specification of KRSS can be found at http://dl.kr.org/krss-spec.ps.

http://dl.kr.org/krss-spec.ps
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An example of valid input file is:

;; This is a comment...
(probability A(x) 0.7)
(probability B(x) 0.4)
(define-concept C(x) (and A(x) (not B(x))))

Assertions can be inserted through simple files as well; for instance:

A(1) query
B(0) true
r(0,1) false

The graphical user interface depicted in Fig. 7 can be used to load/save files,
to specify the size of the domain and the assertions, to ask for inferences, and to
check results. The interface lets the user insert domain size and assertions. Each
assertion is inserted either as C(i), where C is a concept and i is an integer, or
as r(i, j), where r is a role and i and j are integers.

5 Exact Lifted Inference with CRALC Networks

Because any crALC network is a relational Bayesian network, we can use any
algorithm that runs lifted inference in relational Bayesian networks. Here lifted
means that inference is performed without completely grounding all concepts and
roles [58]. There has been significant effort in exact lifted inference
[10–12,31,47,70,72]. In our case we are interested in lifted inference in the pres-
ence of “aggregation parfactors” [33]; that is, in the presence of terms that
aggregate the effect of many random variables, such as quantifiers.

Kisynski and Poole’s AC-FOVE algorithm, an extension of first-order vari-
able elimination [33,34], is currently the state-of-art for lifted inference with
aggregation parfactors. We still focus on finite domains, and in this case each
construct in a crALC network can be translated either into parameterized func-
tions or into aggregation parfactors. For instance, an existential quantifier ∃r.C
can be encoded into an aggregation parfactor that yields 1 when the number
of instances of r(x, y) ∧ C(y) is larger than one, and 0 otherwise. AC-FOVE
then applies a set of rules to the functions and parfactors. Each rule transforms
a function or parfactor until only the query is present. The basic rule is lifted
elimination, where all instances of a relation (concept or role, in our setting)
are eliminated at once, without any actual grounding. For lifted elimination to
be applied, several conditions must be met. When these conditions do not hold,
AC-FOVE has several options: it can split groundings into groups, unify several
groundings, multiply functions after unification, or exponentiate probabilities so
as to account for exchangeable elements of the domain. Finally, AC-FOVE can
use counting formulas [47]; that is, it can use random variables whose values
indicate how many individuals satisfy a given condition (rather than dealing
with all individuals separately). AC-FOVE is a greedy algorithm that chooses,
at each step, one of these operations, resorting to grounding as a last resource.
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A package implementing the AC-FOVE algorithm has been coded by the
third author using the Java language (version 6.0). The package consists of an
API that must be called as needed. Not only the AC-FOVE algorithm is imple-
mented, but also the variable elimination and the C-FOVE algorithms.5

To illustrate, consider a few code fragments. First, the construction of a
domain:

// Creates a list of individuals
List<Constant> individuals = new ArrayList<Constant>();
individuals.add(Constant.getInstance("a1"));
individuals.add(Constant.getInstance("a2"));
individuals.add(Constant.getInstance("a3"));
// Creates a population based on the list
Population popul = Population.getInstance(individuals);
// Creates a logical variable bound to the population
LogicalVariable x = StdLogicalVariable.getInstance("x", popul);

An existential quantifier leads to an aggregation parfactor as follows:

Parfactor g = new AggParfactorBuilder(p, c, Or.OR).build();

Assertions can be inserted as evidence:

List<BigDecimal> fEvidence = TestUtils.toBigDecimalList(0.0, 1.0);

Parfactor evidence = new StdParfactorBuilder().variables(sprinkler).

values(fEvidence).build();

Finally, to run the algorithm:

ACFOVE acfove = new ACFOVE(input);
Parfactor result = acfove.run();

6 Conclusion

In this paper we have presented a syntax for crALC networks, with two goals
in mind. First, it simplifies knowledge representation when probabilistic assess-
ments must be coupled with the ALC logic. Second, it offers a description lan-
guage for a useful class of relational Bayesian networks. The resulting language
avoids many complexities of crALC and of general relational Bayesian networks
and can be easily grasped by a user.

We also described freely available packages that implement approximate and
exact inference for crALC networks. The software packages we have presented
still require substantial development, but they are steps in a direction we feel has
not received enough attention. As efficient inference is a key to combinations of
uncertainty and semantic information, we hope that these efforts may be useful
in future applications. Clearly there are many paths for future work; for instance,
the study of open-world reasoning, infinite domains, and interval probabilities.
5 The package is freely available at https://github.com/ftakiyama/AC-FOVE, where

source code and examples can be found.

https://github.com/ftakiyama/AC-FOVE
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abilistic description logic prob-EL. In: Burgard, W., Roth, D. (eds.) Conference on
Artificial Intelligence, pp. 197–202 (2011)

22. Halpern, J.Y.: An analysis of first-order logics of probability. Artif. Intell. 46, 311–
350 (1990)

23. Halpern, J.Y.: Reasoning about Uncertainty. MIT Press, Cambridge (2003)
24. Heinsohn, J.: Probabilistic description logics. In: Conference on Uncertainty in

Artificial Intelligence, pp. 311–318 (1994)
25. Hertzberg, J., Saffiotti, A.: Using semantic knowledge in robotics. Robot. Auton.

Syst. 56, 875–877 (2008)
26. Hung, E., Getoor, L., Subrahmanian, V.S.: Probabilistic interval XML. ACM

Trans. Comput. Logic 8(4), 1–38 (2007)
27. Jaeger, M.: Probabilistic reasoning in terminological logics. In: Principles of Knowl-

edge Representation, pp. 461–472 (1994)
28. Jaeger, M.: Relational Bayesian networks. In: Geiger, D., Shenoy, P.P. (eds.) Con-

ference on Uncertainty in Artificial Intelligence, pp. 266–273. Morgan Kaufmann
(1997)

29. Jaeger, M.: Complex probabilistic modeling with recursive relational Bayesian net-
works. Ann. Math. Artif. Intell. 32, 179–220 (2001)

30. Jaeger, M.: Relational Bayesian networks: a survey. Linkoping Electronic Articles
in Computer and Information Science, 6 (2002)

31. Kersting, K.: Lifted probabilistic inference. In: De Raedt, L., Bessiere, C., Dubois,
D., Doherty, P., Frasconi, P., Heintz, F., Lucas, P. (eds.) European Conference on
Artificial Intelligence. IOS Press (2012)

32. Kersting, K., Ahmadi, B., Natarajan, S.: Counting belief propagation. In: Confer-
ence on Uncertainty in Artificial Intelligence. AUAI Press (2009)

33. Kisynski, J.J., Poole, D.: Lifted aggregation in directed first-order probabilistic
models. In: International Joint Conference on Artificial Intelligence, pp. 1922–1929
(2009)

34. Kisynski, J.J.: Aggregation and constraint processing in lifted probabilistic infer-
ence. Ph.D. thesis, Computer Science, University of British Columbia (2010)

35. Klinov, P., Parsia, B.: A hybrid method for probabilistic satisfiability. In: Bjørner,
N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 354–368.
Springer, Heidelberg (2011)

36. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Tech-
niques. MIT Press, Cambridge (2009)

37. Koller, D., Pfeffer, A.: Object-oriented Bayesian networks. In: Conference on
Uncertainty in Artificial Intelligence, pp. 302–313 (1997)

38. Koller, D., Pfeffer, A.: Probabilistic frame-based systems. In: AAAI, pp. 580–587
(1998)

39. Laskey, K.B.: MEBN: a language for first-order Bayesian knowledge bases. Artif.
Intell. 172(2–3), 140–178 (2008)

40. Liben-Nowell, D., Kleinberg, J.: The link prediction problem for social networks.
J. Am. Soc. Inform. Sci. Technol. 7(58), 1019–1031 (2007)

41. Lukasiewicz, T.: Probabilistic description logic programs. Int. J. Approx. Reason.
45(2), 288–307 (2007)



Computing Inferences for Relational Bayesian Networks 39

42. Lukasiewicz, T.: Expressive probabilistic description logics. Artif. Intell. 172(6–7),
852–883 (2008)

43. Lukasiewicz, T., Predoiu, L., Stuckenschmidt, H.: Tightly integrated probabilistic
description logic programs for representing ontology mappings. Ann. Math. Artif.
Intell. 63(3/4), 385–425 (2011)

44. Lukasiewicz, T., Straccia, U.: Managing uncertainty and vagueness in description
logics for the semantic web. J. Web Semant. 6, 291–308 (2008)

45. Lutz, C., Schröder, L.: Probabilistic description logics for subjective uncertainty.
In: Principles of Knowledge Representation and Reasoning, pp. 393–403. AAAI
Press (2010)

46. Mahoney, S., Laskey, K.B.: Network engineering for complex belief networks. In:
Conference on Uncertainty in Artificial Intelligence (1996)

47. Milch, B., Zettlemoyer, L.S., Kersting, K., Haimes, M., Kaelbling, L.P.: Lifted
probabilistic inference with counting formulas. In: AAAI, pp. 1062–1068 (2008)

48. Ngo, L., Haddawy, P.: Answering queries from context-sensitive probabilistic
knowledge bases. Theor. Comput. Sci. 171(1–2), 147–177 (1997)

49. Niepert, M., Noessner, J., Stuckenschmidt, H.: Log-linear description logics. In:
International Joint Conference on Artificial Intelligence (2011)

50. Nilsson, N.J.: Probabilistic logic. Artif. Intell. 28, 71–87 (1986)
51. Nottelmann, H., Fuhr, N.: Adding probabilities and rules to OWL lite subsets

based on probabilistic datalog. Int. J. Uncertain. Fuzziness Knowl. Based Syst.
14(1), 17–42 (2006)

52. Ochoa-Luna, J.E., Revoredo, K.C., Cozman, F.G.: An experimental evaluation of
a scalable probabilistic description logics approach for semantic link prediction. In:
International Workshop on Uncertainty Reasoning for the Semantic Web, Shangai,
China, pp. 63–74 (2012). http://ceur-ws.org

53. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Mateo (1988)

54. Pearl, J.: Causality: Models, Reasoning, and Inference. Cambridge University
Press, New York (2000)
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