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Abstract. Representing and reasoning about preferences is a key issue
in many real-world scenarios in which personalized access to information
is required. Many approaches have been proposed and studied in the
literature that allow a system to work with qualitative or quantitative
preferences; among the qualitative models, one of the most prominent are
CP-nets. Their clear graphical structure unifies an easy representation
of user preferences with good computational properties when computing
the best outcome. In this paper, we show how to reason with CP-nets
when the attributes modeling the knowledge domain are structured via
an underlying domain ontology. We show how the computation of all
undominated feasible outcomes of an ontological CP-net can be reduced
to the solution of a constraint satisfaction problem, and study the com-
putational complexity of the basic reasoning problems in ontological
CP-nets.

1 Introduction

During the recent years, several revolutionary changes have been taking place in
the classical Web. First, the so-called Web of Data is increasingly being realized
as a special case of the Semantic Web. Second, as part of the Social Web, users
are acting more and more as first-class citizens in the creation and delivery of
contents on the Web. The combination of these two technological waves is called
the Social Semantic Web (or also Web 3.0), where the classical Web of interlinked
documents is gradually turning into (i) semantic data and tags constrained by
ontologies, and (ii) social data, such as connections, interactions, reviews, and
tags. The Web is thus shifting away from data on linked Web pages and towards
more semantic and social data. This requires new technologies for search and
query answering, where the ranking of search results is no longer solely based on
the link structure between Web pages, but rather on the information available in
the Social Semantic Web—in particular, the underlying ontological knowledge
and the preferences of the users. Given a query, the latter play a fundamental
role when a crisp yes/no answer is not enough to satisfy a user’s needs, as there
might be a certain degree of uncertainty in the possible answers [14].
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There exist two main ways of modeling preferences: (a) quantitative
preferences are associated with a number (or a quantity) representing their worth
(e.g., “my preference for wi-fi connection is 0.8” and “my preference for cable
connection is 0.4”), while (b) qualitative preferences are related to each other
via pairwise comparisons (e.g., “I prefer wi-fi over cable connection”). The two
approaches can also be combined (see, e.g., [24]). In many applications in prac-
tice, it is more natural to use a qualitative approach, as humans are not always
comfortable or capable of expressing their preferences via a meaningful numer-
ical value. To have a quantitative representation of her preferences, the user
needs to explicitly determine a value for a large number of alternatives, usually
described by more than one attribute. It is generally much easier to provide
information about preferences as pairwise qualitative comparisons [14]. One of
the most powerful qualitative preference formalisms are perhaps CP-nets [5],
which are described in a graphical way and unifies an easy representation of user
desires with nice computational properties when computing the best outcome.

Previous work on CP-nets, and more generally on preference representa-
tion approaches, mainly deals with a propositional representation of preferences.
In this paper, we propose an enhancement of CP-nets by adding ontological
information associated with preferences. We especially aim at using the resulting
ontology-based partial strict orders in personalized semantic search on the Social
Web. This is a first step towards a new type of ranking technologies, which are
based on ontological and personalized information, and which go beyond PageR-
ank and similar rankings. They will exploit ontological background knowledge as
well as social information (e.g., from social networks and other platforms) and
model them as semantic-enabled user preferences.

The main contributions of this paper can be briefly summarized as follows.

– We introduce ontological CP-nets, which combine CP-nets with description
logics (DLs) so that variable values (which can be non-Boolean) correspond
to DL concepts relative to an underlying domain TBox. We define the notions
of feasible outcomes, dominance between such outcomes, and consistency in
this context.

– We define the semantics of ontological CP-nets by a reduction to the notion of
constrained CP-nets, which allows the problem of finding optimal outcomes
in ontological CP-nets to be reduced to a constraint satisfaction problem.

– We study the complexity of the main reasoning problems for ontological
CP-nets, namely consistency checking, whether a given outcome is undom-
inated, and dominance testing, in relation to both the complexity of checking
satisfiability of the underlying ontological language and the structure of the
CP-net:
• For tractable ontology languages, we show that the complexity is deter-

mined by that of CP-nets; i.e., the problems are complete for PSPACE.
• For EXP- (resp., NEXP-) complete ontology languages, the complexity of

these problems is dominated by the complexity of the ontology language.
• Finally, if the CP-net is a polytree, and the ontology language is tractable,

we show that dominance can be decided in polynomial time.



Ontological CP-Nets 291

The rest of this paper is organized as follows. In Sect. 2, we briefly recall the
background on description logics (DLs) and on CP-nets. Section 3 introduces
ontological CP-nets, i.e., CP-nets enriched with ontological descriptions, while
Sect. 4 describes how to compute optimal outcomes of ontological CP-nets. In
Sects. 5 and 6, we provide complexity results and discuss related work, respec-
tively. Finally, we give a summary of the results presented in this paper and an
outlook on future work.

2 Preliminaries

In this section, we briefly recall from the literature the basics of description logics
(DLs) and of CP-nets (a graphical representation for conditional preferences),
which both form the main components of the formalism that we present in this
paper.

2.1 Description Logics

Intuitively, description logics (DLs) [1] model a domain of interest in terms of
concepts and roles, which represent classes of individuals and binary relations on
classes of individuals, respectively. A DL knowledge base (or ontology) encodes
in particular (i) subsumption relationships between concepts, (ii) subsumption
relationships between roles, (iii) instance relationships between individuals and
concepts, and (iv) instance relationships between pairs of individuals and roles,
which represent (i) subset relationships between classes of individuals, (ii) subset
relationships between binary relations on classes of individuals, (iii) the mem-
bership of individuals to classes, and (iv) the membership of pairs of individuals
to binary relations on classes, respectively. There are many different DLs of
different expressiveness [1]. In this section, we recall the DLs SHIF(D) and
SHOIN (D), which stand behind the web ontology languages OWL Lite and
OWL DL [18], respectively. Note, however, that the approach in this paper does
not depend on a specific DL and may, e.g., also be applied to the very expressive
SROIQ(D), which is the logic language behind OWL 2 [30].

Syntax. We now recall the syntax of SHIF(D) and SHOIN (D). We first
describe the syntax of the latter, which has the following datatypes and elemen-
tary components. We assume a set of elementary datatypes and a set of data
values. A datatype is an elementary datatype or a set of data values (called
datatype oneOf ). A datatype theory D= (ΔD, ·D) consists of a datatype domain
ΔD and a mapping ·D that assigns to each elementary datatype a subset of
ΔD and to each data value an element of ΔD. We extend·D to all datatypes by
{v1, . . .}D = {vD

1 , . . .}. Let A, RA, RD, and I be pairwise disjoint sets of atomic
concepts, abstract roles, datatype roles, and individuals, respectively. We denote
by R−

A the set of inverses R− of all R ∈RA.
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Roles and concepts are defined as follows. A role is any element of RA ∪R−
A

∪RD. Concepts are inductively defined as follows. Each φ ∈A is a concept, and
if o1, . . . , on ∈ I, then {o1, . . . , on} is a concept (called oneOf). If φ, φ1, and φ2

are concepts and if R ∈RA ∪R−
A, then also ¬φ, (φ1 � φ2), and (φ1 � φ2) are

concepts (called negation, conjunction, and disjunction, respectively), as well
as ∃R.φ, ∀R.φ, �nR, and �nR (called existential, value, atleast, and atmost
restriction, respectively) for an integer n� 0. Note that for decidability reasons,
number restrictions will be restricted to simple abstract roles (see below). If D is
a datatype and U ∈RD, then ∃U.D, ∀U.D, �nU , and �nU are concepts (called
datatype existential, value, atleast, and atmost restriction, respectively) for an
integer n� 0. We use � (resp., ⊥) to abbreviate the top (resp., bottom) concept
φ�¬φ (resp., φ�¬φ). Furthermore, we write ∃R to abbreviate ∃R.�, and we
eliminate parentheses as usual.

We next define axioms and knowledge bases. An axiom is an expression of
one of the following forms: (1) φ 
ψ (called concept inclusion axiom), where
φ and ψ are concepts; (2) R 
S (called role inclusion axiom), where either
R,S ∈RA ∪R−

A or R,S ∈RD; (3) Trans(R) (called transitivity axiom), where
R ∈RA; (4) φ(a) (called concept membership axiom), where φ is a concept and
a∈ I; (5) R(a, b) (resp., U(a, v)) (called role membership axiom), where R ∈RA

(resp., U ∈RD) and a, b∈ I (resp., a∈ I and v is a data value); and (6) a= b
(resp., a �= b) (equality (resp., inequality) axiom), where a, b∈ I. Two axioms φ 
ψ
and ψ 
φ of the form (1) are also abbreviated as φ ≡ ψ (called definition
axiom). Note that such axioms can be used to define a new atomic concept φ
used as synonym of a concept ψ. A TBox T is a finite set of axioms of the
form (1), (2), (3), and (6), while an ABox A is a finite set of axioms of the
form (4) and (5). A knowledge base (or ontology) KB is a finite set of axioms
(1)–(6).

We next define simple abstract roles. For abstract roles R ∈RA, we define
Inv(R) = R− and Inv(R−)= R. Let 
�

KB denote the reflexive and transitive
closure of 
 on

⋃
{{R 
 S, Inv(R)
 Inv(S)} | R 
S ∈KB , R, S ∈RA ∪R−

A}. An
abstract role S is simple relative to KB iff for each abstract role R such that
R 
�

KB S, it holds that (i) Trans(R) �∈KB and (ii) Trans(Inv(R)) �∈KB . Infor-
mally, an abstract role S is simple iff it is neither transitive nor has transitive
subroles. For decidability, number restrictions in KB are restricted to simple
abstract roles [19].

In SHOIN (D), concept and role membership axioms can also be expressed
in terms of concept inclusion axioms, since φ(a) can be expressed by {a}
 φ,
while R(a, b) (resp., U(a, v)) can be expressed by {a} 
 ∃R.{b} (resp., {a} 
 ∃
U.{v}).

The syntax of SHIF(D) is as the above syntax of SHOIN (D), but without
the oneOf constructor and with the atleast and atmost constructors limited to
0 and 1.

Example 1 (Conference Organization). A simple TBox Tconf may describe a
conference organization website and consist of the following axioms:
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Hotel � ∃hasRoom; ∃hasRoom− � Room;
Hotel � ∃hasBuilding; ∃hasBuilding− � Building;
Room � ∃hasFeature; ∃hasFeature− � Feature;
Room � ∃hasRoomPack; ∃hasRoomPack− � Package;

Old � Building; Small � ¬Medium;

New � Building; Small � ¬Large;
Old � ¬New; Medium � ¬Large;
Wifi � Feature; LuxuryPackage � Package;

VideoConference � Feature; StandardPackage � Package;
∃hasFeature.Wifi � ∃hasFeature.VideoConference; StandardPackage � ¬LuxuryPackage;

∃hasRoomPack.StandardPackage � ¬∃hasRoomPack.LuxuryPackage.

Roughly speaking, the above axioms describe that hotels have either new
or old buildings, and they have either small, medium, or large rooms. In turn,
rooms have associated features such as wi-fi, video conference, etc.; if a room has
wi-fi, then one can use the wi-fi connection for video conferences. Finally, rooms
have associated stay packages; there are two types of packages; luxury packages
in general (though not always) provide features that standard packages do not,
for instance wi-fi connection. �

Semantics.We now define the semantics of SHIF(D) and SHOIN (D) in terms
of general first-order interpretations, as usual. An interpretation I = (ΔI , · I) rel-
ative to a datatype theoryD= (ΔD, ·D) consists of a nonempty (abstract) domain
ΔI disjoint from ΔD, and a mapping · I that assigns to each atomic concept
φ ∈A a subset of ΔI , to each individual o ∈ I an element of ΔI , to each abstract
role R ∈RA a subset of ΔI × ΔI , and to each datatype role U ∈RD a subset of
ΔI × ΔD. We extend · I to all roles and concepts as usual (where #S denotes the
cardinality of a set S):

– (R−)I = {(y, x) | (x, y)∈ RI};

– {o1, . . . , on}I = {oI
1 , . . . , oI

n}; (¬φ)I = ΔI\φI ;

– (φ1 � φ2)I = φI
1 ∩ φI

2 ; (φ1 � φ2)I = φI
1 ∪ φI

2 ;

– (∃R.φ)I = {x∈ ΔI | ∃y : (x, y)∈ RI ∧ y ∈ φI};

– (∀R.φ)I = {x∈ ΔI | ∀y : (x, y)∈ RI → y ∈ φI};

– (�nR)I = {x∈ ΔI | #({y | (x, y)∈ RI}) � n};

– (�nR)I = {x∈ ΔI | #({y | (x, y)∈ RI}) � n};

– (∃U.D)I = {x∈ ΔI | ∃y : (x, y)∈ UI ∧ y ∈DD};

– (∀U.D)I = {x∈ ΔI | ∀y : (x, y)∈ UI → y ∈DD};

– (�nU)I = {x∈ ΔI | #({y | (x, y)∈ UI}) � n};

– (�nU)I = {x∈ ΔI | #({y | (x, y)∈ UI}) � n}.

The satisfaction of an axiom F in an interpretation I = (ΔI , · I) relative to a
datatype theory D= (ΔD, ·D), denoted I |=F , is defined as follows: (1) I |=φ 
 ψ
iff φI ⊆ ψI ; (2) I |=R 
S iff RI ⊆ SI ; (3) I |= Trans(R) iff RI is transitive;
(4) I |= φ(a) iff aI ∈φI ; (5) I |= R(a, b) iff (aI , bI) ∈ RI ; (6) I |= U(a, v) iff
(aI , vD) ∈ UI ; (7) I |= a= b iff aI = bI ; and (8) I |= a �= b iff aI �= bI .
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The interpretation I satisfies the axiom F , or I is a model of F , iff I |=F .
We say that I satisfies a knowledge base KB , or I is a model of KB , denoted
I |=KB , iff I |= F for all F ∈KB . We say that KB is satisfiable (resp., unsatisfi-
able) iff KB has a (resp., no) model. An axiom F is a logical consequence of KB ,
denoted KB |=F , iff each model of KB satisfies F . We say that φ is subsumed
(resp., not subsumed) by ψ relative to KB , denoted φ 
KB ψ (resp., φ �
KB ψ),
iff KB |= φ 
 ψ (resp., KB �|= φ 
 ψ). We say that φ is unsatisfiable (resp.,
satisfiable) relative to KB , denoted φ 
KB ⊥ (resp., φ �
KB ⊥), iff KB |= φ 
 ⊥
(resp., KB �|= φ 
 ⊥).

2.2 CP-Nets

CP-nets [5] are a widespread formalism to represent and reason with qualita-
tive preferences. More specifically, they are a graphical representation for condi-
tional ceteris paribus (all else being equal) preference statements, which allows
the specification of preferences based on the notion of conditional preferential
independence (CPI) [20].

We assume a finite set of variables V, where each variable Xi ∈V has a
finite domain of values, denoted Dom(Xi). A value for a set of variables X =
{X1, . . . , Xn} ⊆ V is a mapping x : X →

⋃n
i=1 Dom(Xi) such that x(Xi) ∈

Dom(Xi) for all i ∈ {1, . . . , n}; the domain of X, denoted Dom(X), is the set of
all values for X. If x and y are values for disjoints sets of variable X,Y ⊆ V,
then xy denotes the combination of x and y. A preference relation � is a strict
partial order (an irreflexive and transitive binary relation). We write o1 � o2 iff
either o1 � o2 or o1 = o2. We say that o1 is strictly preferred (resp., strictly or
equally preferred) to o2 iff o1 � o2 (resp., o1 � o2). We say that o2 is dominated
by o1 iff o1 � o2, and that o2 is directly dominated by o1, denoted o1 �d o2 iff
(i) o2 is dominated by o1, and (ii) no o exists such that o1 � o and o � o2. We
say that o1 is undominated iff no o exists with o � o1.

A CP-net N over V consists of a directed graph G= (V, E), where the
nodes are variables in V and if there is a directed edge (Xj ,Xi) ∈ E, this shows
that the preferences over values of Xi is influenced by the values of Xj . Each
node Xi ∈ V has an annotated conditional preference table (CPT), denoted
CPT (Xi), which associates a total (or partial) order �i

u over the values of Xi

with each value u of Xi’s parents in G, denoted Pa(Xi). Intuitively, given a
particular value assignment to Pa(Xi), one is able to determine a preference
order for the values of Xi, all other things being equal.

An outcome of N is a value o ∈ Dom(V). A preference relation � on the set
of all outcomes of N is defined via the notion of worsening flip, which informally
combines the preference relations on the values of the variables of N (as encoded
by their CPTs) to a preference relation on the outcomes of N . More specifically,
given two outcomes o and o′ of N , it holds o �wf o′ in N iff (i) there exist
a variable Xi ∈V, values x, x′ ∈ Dom(Xi), and a value u∈ Dom(Pa(Xi)) such
that (i) o(Xi)= x, (ii) o′(Xi)= x′, (iii) o(Xj)=o′(Xj) for all Xj ∈V\{Xi},
(iv) o(Pa(Xi)) = u, and (v) x �i

u x′; here, the single change from x to x′,
moving from o to o′, is called a worsening flip. The preference relation � is
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then defined as the transitive closure of �wf . Intuitively, o � o′ iff there exists
a sequence of worsening flips from o to o′.

CP-net actually assumes that its directed graph encodes conditional prefer-
ential independences (CPIs). In detail, let X, Y, and Z partition V, and let � be
a preference relation over Dom(V). Then, X is conditionally preferentially inde-
pendent of Y given Z iff for all x,x′ ∈ Dom(X), y,y′ ∈ Dom(Y), z∈ Dom(Z), we
have that xyz � x′yz iff xy′z � x′y′z. Hence, every variable in a CP-net, given
its parents, is conditionally preferentially independent of all the other variables
in the CP-net.

Example 2. A CP-net with five variables R, W , B, C, and P that expresses the
preferences over different features of hotels is shown in Fig. 1. The variables have
the domains {rs, rm, rl}, {wy, wn}, {bo, bn}, {cy, cn}, and {ps, pl}, respectively.
This CP-net tells us that large rooms (rl) are preferred to medium rooms (rm),
which in turn are preferred to small rooms (rs). If only small rooms are available
then a hotel in an old building is preferred to one in a new building (perhaps
for historical reasons). A hotel that has a wi-fi connection (wy) is preferred to
one that does not (wn). Furthermore, a hotel that facilitates video conferences
(cy) is preferred to one that does not (cn). If the hotel is a new building, and
the rooms facilitate video conferences, then the luxury package (pl) is preferred
to the standard package, otherwise the standard package is preferred (ps). Here,
we have a worsening flip moving from o1 = rl wy bn cy pl to o2 = rl wy bo cy pl,
since bn is preferred to bo, given rl. Similarly, we have a worsening flip from o2

to o3 = rl wn bo cy pl. Hence, o1 � o2, o2 � o3, and o1 � o3. Given the
room size, the building type is conditionally preferentially independent of all the
other variables. �

The following are the two main computational tasks for CP-nets:

Fig. 1. CP-net for Example 2
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– Dominance query: given a CP-net N and two outcomes o1 and o2 of N , decide
whether o1 � o2 holds in N .

– Outcome optimization: given a CP-net N , compute an undominated outcome
of N .

Acyclic CP-nets (i.e., the associated directed graph does not have any directed
cycles) with total orders in their conditional preference tables have only one
undominated outcome, which can be computed in linear time [4]. The algorithm
just follows the order among the variables that is represented by the directed
graph and assigns values to the variables Ai from top to bottom, satisfying the
preference relations in the CPTs corresponding to the variables. For arbitrary
CP-nets, deciding dominance queries are PSPACE-complete [16], and computing
an optimal outcome is NP-hard [12].

2.3 Constrained CP-Nets

In constrained CP-nets [6,26], constraints among variables are added to the basic
formalism of CP-nets, which may reduce the set of possible outcomes. The app-
roach in [26] to finding all optimal outcomes of a CP-net (if some exist) relies
on a reduction of the preferences represented in the CP-net to a set of hard con-
straints taking into account the variables occurring in the preferences. Given a
CP-net N and a set of constraints C, an outcome o is feasible iff it satisfies all the
constraints in C. A feasible outcome is Pareto-optimal iff it is undominated [6].
In [13], the authors present an approach to finding the Pareto-optimal outcomes
by solving a constraint satisfaction problem in the presence of soft and hard con-
straints. Here, we focus only on the latter. For every variable A and every instan-
tiation γ of its parents in N , the conditional preferences for Dom(A) encoded
in N yield an optimality constraint. The undominated outcomes of (N , C) are
then exactly the solutions of the conjunction of all optimality constraints. For
example, consider a variable A in N with domain Dom(A) = {a1, . . . , am} and
an instantiation γ of its parents in N . If the conditional preferences encoded
in N are a total order over the values in Dom(A), i.e., a1 � a2 � · · · � am,
which means that a1 is undominated relative to all other ai, then the optimality
constraint is given by γ → a1. In the most general case, where we have more
than one undominated value, the optimality constraint is given by:

γ →
∨

ai∈undom(A|γ)
ai, (1)

where undom(A|γ) denotes the set of all undominated values of A under γ.
In the following, we consider only the case with one undominated value, i.e.,
|undom(A|γ)| = 1. The approach can be extended to the general case in a
straightforward way.

3 Ontological CP-Nets

We now introduce an approach to ontological CP-net-based preference represen-
tation, which combines CP-nets and DLs, harnessing the technologies described
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in the previous section. Intuitively, the main idea behind this approach is to use
certain satisfiable concepts relative to an underlying TBox as values of the vari-
ables of a CP-net. More precisely, the values are taken from a finite nonempty
set C of basic classification concepts (or basic c-concepts for short), which are
(not necessarily atomic) concepts C in SHIF(D) (resp., SHOIN (D)) that are
free of individuals from I.

Definition 1 (ontological CP-net). Let V be a finite set of variables. An
ontological CP-net (N , T ) over V consists of a CP-net N over V and a TBox
T such that the domain of each variable A ∈ V is of the form Dom(A) =
{α1, . . . , αm}, where:

1. every αi, i∈ {1, . . . , m}, is a concept from C that is satisfiable relative to T ,
2. T |= αi � αj 
 ⊥ for all i, j ∈ {1, . . . , m} with i < j, and
3. T |= � 
 αi � · · · � αm.

The following example illustrates the above notion of ontological CP-net.

Example 3 (Conference Organization cont’d). An ontological CP-net (N , T ) over
V is given by the TBox T from Example 1 and the CP-net N over V from
Example 2, where the values of the variables are now defined as the following
DL concepts:

rs = ∃hasRoom.Small; rm = ∃hasRoom.Medium;
rl = ∃hasRoom.Large;

wy = ∃hasRoom.(∃hasFeature.Wifi);wn = ¬wy;
bo = ∃hasBuilding.Old; bn = ∃hasBuilding.New;
cy = ∃hasRoom.(∃hasFeature.VideoConference); cn = ¬cy;
pl = ∃hasRoom.(∃hasRoomPack.LuxuryPackage);
ps = ∃hasRoom.(∃hasRoomPack.StandardPackage). �

Observe here that even if we do not have any explicit hard constraint expressed
among the values of the variables of the CP-net, due to their logical structure and
the underlying TBox, we have a set of implicit constraints among these values.
We will show in Sect. 4.2 below how to explicitly encode these constraints. Hence,
due to these constraints among the values of the variables of the CP-net, some
outcomes are infeasible, where outcomes are values o of the set V of all variables
of the CP-net. The following definition formally introduces feasible outcomes and
undominated feasible outcomes (which are not dominated by any other feasible
outcome) as well as the consistency of CP-nets as the existence of at least one
undominated feasible outcome.

Definition 2 (feasible outcome, dominance, and consistency). Given an
ontological CP-net (N, T ) over V, an outcome o ∈Dom(V) is feasible iff

�
o(V)

(=
�

A∈V o(A)) is satisfiable relative to T . A feasible outcome o is undominated
iff no feasible outcome o′ exists such that o′ � o. We say that (N , T ) is consistent
iff it has a feasible outcome.
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The following example briefly illustrates the above notions of feasible outcomes,
undominated feasible outcomes, and consistent CP-nets.

Example 4 (Conference Organization cont’d). Reconsider the ontological CP-net
of the running example. The outcome rl bn wy cy pl is feasible and undominated,
while rl bn wy cn ps is not feasible (as the availability of wi-fi implies the availabil-
ity of video conferences). Thus, the ontological CP-net of the running example
is consistent. �

4 Computing Optimal Outcomes

The main computational task around ontological CP-nets that we want to solve
in this paper is how to determine all undominated feasible outcomes of a consis-
tent ontological CP-net. In this section, we show how to compute them, given an
ontological CP-net. The approach mainly relies on the Hard-Pareto algorithm
of [26] (see Algorithm 1).

Generalizing the results of Sect. 2.3 to ontologies, we express the undominated
feasible outcomes of an ontological CP-net (N , T ), if some exist, in an ontological
way as follows. For every variable A and every value γ of its parents in (N , T ),
the conditional preferences for Dom(A) encoded in (N , T ) yield the optimality
constraint �

γ(Pa(A)) 

⊔

undom(A|γ).

Let DL-opt(N ) denote the set of all these optimality constraints. The undom-
inated feasible outcomes of (N , T ) are then exactly the set of all outcomes
o ∈Dom(V) such that

�
o(V) is satisfiable relative to T ∪ DL-opt(N ).

4.1 Propositional Compilation of DL Formulas

A TBox can be seen as a set of logical constraints that reduces the set of models
for a formula. Given a set of concepts F , we now show how to compute a compact
representation of a TBox T as a set of clauses whose variables have a one-to-one
mapping to the concepts in F . Hereafter, we write φ̃ to denote φ̃ ∈ {φ,¬φ}.

Definition 3 (ontological constraint). Given a TBox T and a set of satisfi-
able concepts F = {φi | i ∈ {1, . . . , n}} relative to T , we say that F is minimally
constrained relative to T iff

1. there exists a concept φ̃1 � · · · � φ̃n such that T |= � 
 φ̃1 � · · · � φ̃n, and
2. there is no proper subset E ⊂ F such that the previous condition holds.

The ontological axiom � 
 φ̃1 � · · · � φ̃n is an ontological constraint.

An ontological constraint is an explicit representation of the constraints
existing among a set of concepts, due to the information encoded in the
TBox T .
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Definition 4 (ontological closure). Given a TBox T and a set of satisfiable
concepts F = {φ1, . . . , φn} relative to T , the ontological closure of F and T ,
denoted OLC(F , T ), is the set of all ontological constraints, if any, for each
subset of F .

The ontological closure of F and T is an explicit representation of all the
logical constraints among a set of concepts F , considering also an underlying
TBox T .

Proposition 1. Given a TBox T and a set of satisfiable concepts F =
{φ1, . . . , φn} relative to T , if T |=

�n
i=1 φ̃i 
 ⊥, then OCL(F , T ) |=

�n
i=1 φ̃i 
⊥.

Proof. Since T |=
�n

i=1 φ̃i 
 ⊥, this means that we have the corresponding
clause ψ =

⊔n
i=1 ¬φ̃i such that T |= � 
 ψ. If F = {φ1, . . . , φn} is minimally

constrained, then ψ ∈ OCL(F , T ), otherwise, by definition of OCL(F , T ), there
will be a clause ψ′ ∈ OCL(F , T ) such that ψ′ ⊂ ψ. �

Hence, if we are interested only in the relationships between predefined
concepts (due to their logical structure and T ), then the corresponding onto-
logical closure is a compact and complete representation. Note that we are
only looking for minimal clauses, as we are interested in computing the actual
constraints between the formulas representing the domain of a variable in the
CP-net. Hence, to compute the final outcomes, it is preferable to deal with a
compact representation of all possible constraints.

Example 5 (Conference Organization cont’d). Given the set of concepts
F = {wy, cy, pl, ps}, due to the axioms in the TBox, we have the minimally
constrained sets F ′ = {wy, cy} and F ′′ = {pl, ps} and the two corresponding
ontological constraints � 
 ¬wy � cy (indeed wy 
T cy) and � 
 ¬pl � ¬ps

(as pl � ps 
T ⊥). The corresponding ontological closure is then OCL(F , T ) =
{� 
 ¬wy � cy,� 
 ¬pl � ¬ps}. �

The set F̃ = {φ̃1, . . . , φ̃n} is a feasible assignment for F and T iff

OCL(F , T ) �|=
�n

i=1 φ̃i 
 ⊥.

We are interested in feasible assignments, since (as we will show in the
following), they represent feasible outcomes for an ontological CP-net. Note that
by Proposition 1, if F̃ = {φ̃1, . . . , φ̃n} is a feasible assignment for F and T , then
T �|=

�n
i=1 φ̃i 
 ⊥, i.e.,

�n
i=1 φ̃i is satisfiable relative to T . The next proposition

shows that there always exist feasible assignments for sets of satisfiable concepts
relative to an underlying TBox.

Proposition 2. Let T be a TBox, and F = {φ1, . . . , φn} be a set of satisfiable
concepts relative to T . Then, there always exists a feasible assignment for F
and T .
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Proof. If OCL(F , T )= ∅, then every F̃ = {φ̃1, . . . , φ̃n} is a feasible
assignment for F and T . Otherwise, since T |= OCL(F , T ), every interpre-
tation I that satisfies T also satisfies OCL(F , T ). That is, I satisfies every
� 
 φ̃i1 � · · · � φ̃im ∈ OCL(F , T ), which means that (φ̃ij )

I �= ∅ for some
j ∈ {1, . . . , m} (as every interpretation I has a nonempty domain ΔI). Thus,
there exists a feasible assignment for F and T . �

4.2 Computing Optimal Outcomes

If we have an ontological CP-net (N , T ), the variable values (concepts) in a
set F may constrain each other, and the corresponding constraints are encoded
in OCL(F , T ). The ontological closure of a set of concepts explicitly represents
all the logical constraints among them with respect to an underlying ontology.
The computation of all undominated feasible outcomes for an ontological CP-net
goes through the Boolean encoding of both the ontology T and of the clauses
corresponding to the preferences represented in the CPTs of N for each variable
A ∈ V. To use Hard-Pareto, we need a few pre-processing steps. Given the
ontological CP-net (N , T ):

1. for every Ai ∈V and every αi
j ∈ Dom(Ai)= {αi

1, . . . , α
i
mi

}, choose a fresh
atomic concept V i

j ;
2. define the ontology T ′ = T ∪ {V i

j ≡ αi
j | Ai ∈ V, j ∈ {1, . . . , mi}};

3. define the ontological CP-net (N ′, T ′), where N ′ is obtained from N by iso-
morphically replacing every αi

j by V i
j , for all Ai ∈ V and j ∈ {1, . . . , mi};

4. define F = {V i
j | Ai ∈ V, j ∈ {1, . . . , mi}};

5. compute OCL(F , T ′);
6. introduce a Boolean variable vi

j for each V i
j ∈ F ;

7. transform OCL(F , T ′) into the corresponding set of Boolean clauses C by
replacing V i

j by the corresponding binary variable vi
j (and the ontological

constant “�” and the ontological connectives “�” and “
” by the Boolean
constant “true” and the Boolean connectives “∨” and “→”, respectively);

8. transform DL-opt(N ′) into the set of Boolean clauses opt(N ′) by replacing
every V i

j by the corresponding variable vi
j (and the ontological connectives

“�”, “�”, and “
” by the Boolean connectives “∧”, “∨”, and “→”, respec-
tively).

Note that T is logically equivalent to T ′, as we only use equivalence axioms to
define new concepts V i

j as synonyms of complex concepts αi
j . The same holds

for (N , T ) and (N ′, T ′), as we just replace concepts in Dom(Ai) by equivalent
concepts.

Once we have C and opt(N ′), we can compute the optimal outcome of
(N , T ) by using the slightly modified version of Hard-Pareto, shown in Algo-
rithm 1. The function sol(·) used in Algorithm 1 computes all the solutions
for the Boolean constraint satisfaction problem represented by C, opt(N ′) and
C ∪ opt(N ′). Differently from the original Hard-Pareto, by Proposition 2, we
know that C is always consistent, and so we do not need to check its consistency
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at the beginning of the algorithm. Moreover, note that the algorithm works with
propositional variables although we are computing undominated feasible solu-
tions for an ontological CP-net. That is, the dominance test in line 11 can be
computed using well-known techniques for Boolean problems.

Input: opt(N ′) and C
1 Sopt ← sol(C ∪ opt(N ′));
2 if Sopt = sol(C) then
3 return Sopt;
4 end
5 if sol(opt(N ′)) �= ∅ and Sopt = sol(opt(N ′)) then
6 return Sopt;
7 end
8 S ← sol(C) − Sopt;
9 repeat

10 choose o ∈ S;
11 if ∀o′ ∈ sol(C) − o, o′ �� o then
12 Sopt ← Sopt ∪ {o};
13 end
14 S ← S − {o};

15 until S = ∅;
16 return Sopt.

Algorithm 1. Algorithm Hard-Pareto adapted to ontological CP-nets

The outcomes returned by Algorithm 1 in Sopt are true/false assignments
to the Boolean variables vi

j . To compute undominated outcomes for the original
ontological CP-net (N , T ), we need to revert to a DL setting. Hence, we build the
set DL-Sopt, where for each outcome o ∈ Sopt, we add to DL-Sopt the following
value o′:

o′(Ai) = V i
j iff o(vi

j) = true, for all Ai ∈ V and j ∈ {1, . . . , mi}.

The following example shows a trace of Algorithm 1 for our running example.

Example 6 (Conference Organization cont’d). For the CP-net in Fig. 1, we
obtain:

– T ′ = T ∪ {V 1
1 ≡ ∃hasRoom.Small, V 1

2 ≡ ∃hasRoom.Medium,
V 1
3 ≡ ∃hasRoom.Large, V 2

1 ≡ ∃hasRoom.(∃hasFeature.Wifi),
V 2
2 ≡ ¬∃hasRoom.(∃hasFeature.Wifi),

V 3
1 ≡ ∃hasBuilding.Old, V 3

2 ≡ ∃hasBuilding.New,
V 4
1 ≡ ∃hasRoom.(∃hasFeature.VideoConference),

V 4
2 ≡ ¬∃hasRoom.(∃hasFeature.VideoConference),

V 5
1 ≡ ∃hasRoom.(∃hasRoomPack.LuxuryPackage),

V 5
2 ≡ ∃hasRoom.(∃hasRoomPack.StandardPackage)};
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– F = {V 1
1 , V 1

2 , V 1
3 , V 2

1 , V 2
2 , V 3

1 , V 3
2 , V 4

1 , V 4
2 , V 5

1 , V 5
2 };

– OCL(F , T ′) = {� 
 ¬V 2
1 � V 4

1 , � 
 ¬V 1
1 � ¬V 1

2 , � 
 ¬V 1
2 � ¬V 1

3 ,
� 
 ¬V 1

1 � ¬V 1
3 , � 
 V 1

1 � V 1
2 � V 1

3 , � 
 ¬V 2
1 � ¬V 2

2 ,
� 
 V 2

1 � V 2
2 , � 
 ¬V 3

1 � ¬V 3
2 ,� 
 V 3

1 � V 3
2 ,

� 
 ¬V 4
1 � ¬V 4

2 , � 
 V 4
1 � V 4

2 , � 
 ¬V 5
1 � ¬V 5

2 ,
� 
 V 5

1 � V 5
2 };

– C = {¬v2
1 ∨ v4

1 , ¬v1
1 ∨ ¬v1

2 , ¬v1
2 ∨ ¬v1

3 , ¬v1
1 ∨ ¬v1

3 , v1
1 ∨ v1

2 ∨ v1
3 , ¬v2

1 ∨ ¬v2
2 ,

v2
1 ∨ v2

2 , ¬v3
1 ∨ ¬v3

2 , v3
1 ∨ v3

2 , ¬v4
1 ∨ ¬v4

2 , v4
1 ∨ v4

2 , ¬v5
1 ∨ ¬v5

2 , v5
1 ∨ v5

2};

– DL-opt(N ′) = {V 1
3 , V 2

1 , V 1
1 
 V 3

1 , V 1
2 
 V 3

2 , V 4
1 , V 1

3 
 V 3
2 , V 3

2 � V 4
1 
 V 5

1 ,
V 3
1 � V 4

1 
 V 5
2 , V 3

2 � V 4
2 
 V 5

2 , V 3
1 � V 4

2 
 V 5
2 };

– opt(N ′) = {v1
3 , v2

1 , v1
1 → v3

1 , v1
2 → v3

2 , v4
1 , v1

3 → v3
2 , v3

2 ∧ v4
1 → v5

1 ,
v3
1 ∧ v4

1 → v5
2 , v3

2 ∧ v4
2 → v5

2 , v3
1 ∧ v4

2 → v5
2}.

Then, Sopt = {v1
3 v2

1 v3
2 v4

1 v5
1}, and rl wy bn cy pl is the only optimal

outcome. �

The following theorem shows the correctness of the algorithm.

Theorem 1. Given an ontological CP-net (N , T ) over V, the values o′ ∈ DL-
Sopt are all the undominated feasible outcomes for (N , T ).

Proof. We start by showing that o′ is a feasible outcome. If we consider the final
assignment o =

∧|V|
i=1

∧mi

j=1 ṽi
j , the corresponding formula o′ =

�|V|
i=1

�mi

j=1 Ṽ i
j is

a feasible assignment. In fact, if we had OCL(F , T ′) |=
�|V|

i=1

�mi

j=1 Ṽ i
j 
 ⊥, then

we should have the corresponding constraint (or one that implies)
∨|V|

i=1

∨mi

j=1 ¬ṽi
j

in C, thus not allowing o to be a solution. By Definition 1, for each variable Ai,
both T |= ai

j � ai
j′ 
 ⊥, for all j, j′ ∈ {1, . . . , mi} with j < j′, and T |= � 


ai
1�· · ·�ai

mi
. These axioms are encoded in the corresponding binary constraints

¬vi
j ∨ ¬vi

j′ and vi
1 ∨ · · · ∨ vi

mi
saying that, given Ai, in o, we have all vi

j negated
but one. As a consequence, in o′, we have only one V i

j for each Ai, i.e., o′ is an
outcome. Overall, o′ is a feasible outcome. Finally, as o satisfies all the optimality
constraints, o′ is an undominated outcome. �

5 Computational Complexity

We now explore the complexity of the main computational problems in onto-
logical CP-nets for underlying ontological languages with typical complexity of
deciding knowledge base satisfiability, namely, tractability and completeness for
EXP and NEXP. We also provide some special tractable cases of dominance
testing in ontological CP-nets.

5.1 General Results

For tractable ontology languages (i.e., those for which deciding knowledge base
satisfiability is tractable), the complexity of ontological CP-nets is dominated



Ontological CP-Nets 303

by the complexity of CP-nets. That is, deciding (a) consistency, (b) whether
a given outcome is undominated, and (c) dominance of two given outcomes
are all PSPACE-complete. Note also that the same complexity results hold for
ontology languages with PSPACE-complete knowledge base satisfiability checks
and that even computing the set of all undominated outcomes (generalizing (b))
is PSPACE-complete under the condition that there are only polynomially many
of them.

Theorem 2. Given an ontological CP-net (N , T ) over a tractable ontology
language,

(a) deciding whether (N , T ) is consistent,
(b) deciding whether a given outcome o is undominated,
(c) deciding whether o � o′ for two given outcomes o and o′

are all PSPACE-complete.

Proof (sketch). The lower bounds follow immediately from the fact that onto-
logical CP-nets generalize CP-nets, for which these problems are all PSPACE-
complete [16].

As for the upper bounds, compared to standard CP-nets, these problems addi-
tionally involve knowledge base satisfiability checks, which can all be done in
polynomial time and thus also in polynomial space. Note that in (a) (resp., (b)),
one has to go through all outcomes o′ and check that it is not the case that
o � o′ (resp., o′ � o), which can each and thus overall be done in polynomial
space. �

In particular, if the ontological CP-net is defined over a DL of the DL-Lite
family [9] (which all allow for deciding knowledge base satisfiability in polynomial
time, such as DL-LiteR, which stands behind the important OWL 2 QL profile
[31]), deciding (a) consistency, (b) whether a given outcome is undominated, and
(c) dominance of two given outcomes are all PSPACE-complete.

Corollary 1. Given an ontological CP-net (N , T ) over a DL from the DL-Lite
family,

(a) deciding whether (N , T ) is consistent,
(b) deciding whether a given outcome o is undominated,
(c) deciding whether o � o′ for two given outcomes o and o′

are all PSPACE-complete.

For EXP (resp., NEXP) complete ontology languages (i.e., those for which knowl-
edge base satisfiability is complete for EXP (resp., NEXP)), the complexity of
ontological CP-nets is dominated by the complexity of the ontology languages.
That is, deciding (a) inconsistency, (b) whether a given outcome is dominated,
and (c) dominance of two given outcomes are all complete for EXP (resp.,
NEXP). Note that computing the set of all undominated outcomes (general-
izing (b)) is also EXP-complete for EXP-complete ontology languages.
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Theorem 3. Given an ontological CP-net (N , T ) over an EXP (resp., NEXP)
complete ontology language,

(a) deciding whether (N , T ) is inconsistent,
(b) deciding whether a given outcome o is dominated,
(c) deciding whether o � o′ for two given outcomes o and o′

are all complete for EXP (resp., NEXP).

Proof (sketch). The lower bounds follow from the fact that all three problems
in ontological CP-nets can be used to decide knowledge base satisfiability in the
underlying ontology language.

As for the upper bounds, in (a) and (b), we have to go through all outcomes,
which is in EXP (resp., NEXP). Then, we have to perform knowledge base
satisfiability checks, which are also in EXP (resp., NEXP), and dominance checks
in standard CP-nets, which are in PSPACE, and thus also in EXP (resp., NEXP).
Overall, (a) to (c) are thus in EXP (resp., NEXP). �

In particular, if the ontological CP-net is defined over the expressive DL SHIF(D)
(resp., SHOIN (D)) [18] (which stands behind OWL Lite (resp., OWL DL)
[30,32], and allows for deciding knowledge base satisfiability in EXP [18,29]
(resp., NEXP, for both unary and binary number encoding; see [25,29] and the
NEXP-hardness proof for ALCQIO in [29], which implies the NEXP-hardness
of SHOIN (D))), deciding (a) inconsistency, (b) whether a given outcome is
dominated, and (c) dominance of two given outcomes are all complete for EXP
(resp., NEXP).

Corollary 2. Given an ontological CP-net (N , T ) over the DL SHIF(D)
(resp., SHOIN (D)),

(a) deciding whether (N , T ) is inconsistent,
(b) deciding whether a given outcome o is dominated,
(c) deciding whether o � o′ for two given outcomes o and o′

are all complete for EXP (resp., NEXP).

5.2 Tractability Results

If the ontological CP-net is a polytree (i.e., the underlying undirected graph has
no cycles) and defined over a tractable ontology language, deciding dominance
of two outcomes can be done in polynomial time. Note that polytree ontological
CP-nets are always consistent.

Theorem 4. Given an ontological CP-net (N , T ) over a tractable ontology lan-
guage, where N is a polytree, deciding whether o � o′ for two given outcomes o
and o′ can be done in polynomial time.
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Proof (sketch). We have to decide whether (i) o � o′ holds in N and (ii) o and
o′ are feasible outcomes of (N , T ). The former can be done in polynomial time,
as for standard polytree CP-nets, dominance can be decided in polynomial time
[5], while the latter can also be done in polynomial time in tractable ontology
languages. �

In particular, if the ontological CP-net is a polytree and defined over a DL of the
DL-Lite family, deciding dominance of two outcomes can be done in polynomial
time.

Corollary 3. Given an ontological CP-net (N , T ) over a DL from the DL-Lite
family, where N is a polytree, deciding whether o � o′ for two given outcomes o
and o′ can be done in polynomial time.

6 Related Work

Modeling and dealing with preferences has traditionally been studied in several
areas within computer science. In the databases community, the work of [21]
stands out as the seminal work in the area; see [28] for a survey of notable
works in this line. Much work has also been carried out in the intersection of
databases and knowledge representation and reasoning, such as in preference
logic programs [17], incorporation of preferences into formalisms such as answer
set programs [8], and answering k-rank queries in ontological languages [22].

On the other hand, in the philosophical tradition, preferences are usually
expressed over mutually exclusive “worlds”, such as truth assignments to for-
mulas. The work of [2] is framed in this interpretation of preferences, aiming
at bridging the gap between several formalisms from the AI community such as
CP-nets and those studied traditionally in philosophy. In this regard, CP-nets [5]
is one of the most widely known formalisms. More recently, the work of Wang
et al. [33] proposes an efficient algorithm and indexing scheme for top-k retrieval
in CP-nets.

Constrained CP-nets were originally proposed in [6], along with algorithm
Search-CP, which uses branch and bound to compute undominated outcomes.
The algorithm has an anytime behavior: it can be stopped at any time, and the
set of computed solutions are a subset of the set containing all the undominated
outcomes. This means that in case one is interested in any undominated outcome,
one can use the first one returned by Search-CP. In [26], Hard-Pareto is
presented; the most notable difference is that Hard-Pareto does not rely on
topological information like Search-CP, but it exploits only the CP-statements,
thus allowing to work also with cyclic CP-nets. Differently from the previous
two papers, in our work, we allow the variable domains to contain DL formulas
constrained via ontological axioms.

Recently, there has been some interest regarding the combination of
Semantic Web technologies with preference representation and reasoning.
A combination of conditional preferences (very different from CP-nets) with
DL reasoning for ranking objects is introduced in [24]. A ranking function is
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described that exploits conditional preferences to perform a semantic person-
alized search and ranking over a set of resources annotated via an ontological
description. In [22], Datalog+/– is extended with preference management for-
malisms closely related to those previously studied for relational databases; the
authors further extend this formalism to the case where ontological inferences
involve probabilistic uncertainty [23]. Another interesting approach to mixing
qualitative preferences with Semantic Web technology is presented in [27], where
an extension of SPARQL that can encode user preferences in the query is pro-
posed.

There is, however, very little work on the particular combination of Semantic
Web technologies and CP-nets. To our knowledge, the most notable work is that
of [3], developed within an information retrieval context; in this work, Wordnet
is used to add semantics to CP-net variables.

7 Summary and Outlook

In classical decision theory and analysis, the preferences of decision makers are
modeled by utility functions. Unfortunately, the effort needed to obtain a good
utility function requires a significant involvement of the user [15]. This is one
of the main reasons behind the success obtained by CP-nets since they were
originally proposed [4]: they are compact, easily understandable, and well-suited
for combinatorial domains, such as multi-attribute ones. In this paper, we have
described how to reason with CP-nets that are augmented by assigning descrip-
tion logic axioms to its variable values—such axioms refer to a common underly-
ing ontology and constrain the possible outcomes in the CP-net. Furthermore, we
studied the complexity of the problems of consistency checking, whether a given
outcome is undominated, and dominance testing for ontological CP-nets, show-
ing how the complexity of checking satisfiability of the underlying ontological
language and the structure of the CP-net affects the complexity of solving these
problems. The proposed framework is very useful in many semantic retrieval
scenarios, among which we distinguish semantic search.

Other formalisms related to the original CP-nets have been subsequently
proposed in the literature, such as TCP-nets (Trade-off CP-nets) [7] or CP-
theories [34]. TCP-nets extend CP-nets by allowing to express also statements
of relative importance between variables. With TCP-nets, the user is allowed to
express her preferences over compromises that sometimes may be required. CP-
theories generalize (T)CP-nets allowing conditional preference statements on the
values of a variable, along with a set of variables that are allowed to vary when
interpreting the preference statement. In future work, we plan to enrich these
frameworks by introducing ontological descriptions and reasoning, thus allowing
the development of more powerful semantic-enabled preference-based retrieval
systems.
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