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Abstract. Web data often manifest high levels of uncertainty. We focus
on categorical Web data and we represent these uncertainty levels as
first- or second-order uncertainty. By means of concrete examples, we
show how to quantify and handle these uncertainties using the Beta-
Binomial and the Dirichlet-Multinomial models, as well as how take into
account possibly unseen categories in our samples by using the Dirichlet
process. We conclude by exemplifying how these higher-order models
can be used as a basis for analyzing datasets, once at least part of their
uncertainty has been taken into account. We demonstrate how to use
the Battacharyya stastistical distance to quantify the similarity between
Dirichlet distributions, and use such results to analyze a Web dataset of
piracy attacks both visually and automatically.
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1 Introduction

The World Wide Web and the Semantic Web offer access to an enormous amount
of data and this is one of their major strengths. However, the uncertainty about
these data is quite high, due to the multi-authoring nature of the Web itself and
to its time variability: some data are accurate, some others are incomplete or
inaccurate, and generally, such a reliability level is not explicitly provided.

We focus on the real distribution of these Web data, in particular of categor-
ical Web data, regardless of whether they are provided by documents, RDF [33]
statements or other means. Categorical data are among the most important
types of Web data, because they include also URIs. We assume that any kind
of reasoning that might produce new statements (e.g. subsumption) has already
taken place. Hence, unlike for instance Fukuoe et al. [16], that apply proba-
bilistic reasoning in parallel to OWL [32] reasoning, we propose some models to
address uncertainty issues on top of that kind of reasoning layers. These mod-
els, namely the parametric Beta-Binomial and Dirichlet-Multinomial, and the
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non-parametric Dirichlet process, use first- and second-order probabilities and
the generation of new classes of observations, to derive safe conclusions on the
overall populations of our data, given that we are deriving those from possibly
biased samples. These models are chosen exactly because they allow modeling
categorical datasets, while taking into account the uncertainty related to the fact
that we observe these datasets through samples that are possibly misleading or
only partially representative.

Our goal is twofold. On the one hand, we want to show that higher-order
probability distributions are useful to model categorical Web datasets while
coping with their uncertainty. Hence we compare them with first-order prob-
ability distributions and show that taking uncertainty into account is preferable,
for instance, when such distributions are used as a basis for prediction. On the
other hand, we also show that it is possible to use higher-order probability dis-
tributions as basis for data analyses, rather than necessarily focusing on the raw
data.

This chapter revises and extends the paper “Estimating Uncertainty of Cat-
egorical Web Data” [6], presented at the 7th International Workshop on Uncer-
tainty Reasoning for the Semantic Web at the 10th International Semantic Web
Conference 2011. The extension regards mainly the demonstration of use of
higher-order probability distributions as a basis for categorical Web data analy-
sis. In particular, we show how to use statistical distances (specifically, the
Bhattacharyya statistical distance) to identify patterns and relevant changes
in our data.

The chapter continues as follows. First we describe the scope of these models
(Sect. 2), second we introduce the concept of conjugate prior (Sect. 3), and then
two classes of models: parametric and non-parametric (Sect. 4). We show how it
is possible to utilize such models to analyze dataset from the Web (Sect. 5) and,
finally, we discuss the results and conclude (Sect. 6).

2 Scope of This Work

We define here the scope of the work presented in this chapter.

2.1 Empirical Evidence from the Web

Uncertainty is often an issue in case of empirical data. This is especially the case
with empirical Web data, because the nature of the Web increases the relevance
of this problem but also offers means to address it, as we see in this section. The
relevance of the problem is related to the utilization of the mass of data that
any user can find over the Web: can one safely make use of these data? Lots of
data are provided on the Web by entities the reputation of which is not surely
known. In addition to that, the fact that we access the Web by crawling, means
that we should reduce our uncertainty progressively, as long as we increment our
knowledge. Moreover, when handling our sample it is often hard to determine
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how representative such a sample is of the entire population, since often we do
not own enough sure information about it.

On the other hand, the huge amount of Web data gives also a solution for
managing this reliability issue, since it can provide the evidence necessary to
limit the risk when using a certain data set.

Of course, even within the Web it can be hard to find multiple sources assert-
ing about a given fact of interest. However, the growing dimension of the Web
makes it reasonable to believe in the possibility to find more than one data set
about the given focus, at least by means of implicit and indirect evidence.

This work aims to show how it is possible to address the described issues by
handling such empirical data, categorical empirical data in particular, by means
of the Beta-Binomial, Dirichlet-Multinomial and Dirichlet process models.

2.2 Requirements

Our approach needs to be quite elastic in order to cover several issues, as
described below. The non-triviality of the problem comes in a large part from
the impossibility to directly handle the sampling process from which we derive
our conclusions. The requirements that we need to meet are:

Ability to handle incremental data acquisition. The model should be
incremental, in order to reflect the process of data acquisition: as long as
we collect more data (even by crawling), our knowledge should reflect that
increase.

Prudence. It should derive prudent conclusions given all the available informa-
tion. In case not enough information is available, the wide range of possi-
ble conclusions derivable should clearly make it harder to set up a decision
strategy.

Cope with biased sampling. The model should deal with the fact that we are
not managing a supervised experiment, that is, we are not randomly sam-
pling from the population. We are using an available data set to derive safe
consequences, but these data could, in principle, be incomplete, inaccurate
or biased, and we must take this into account.

Ability to handle samples from mixtures of probability distributions.
The data we have at our disposal may have been drawn from diverse distri-
butions, so we cannot use the central limit theorem, because it relies on the
fact that the sequence of variables is identically distributed. This implies
the impossibility to make use of estimators that approximate by means of
the Normal distribution.

Ability to handle temporal variability of parameters. Data distributions
can change over time, and this variability has to be properly accounted.

Complementarity with higher-order layers. The aim of the approach is
to quantify the intrinsic uncertainty in the data provided by the reasoning
layer, and, in turn, to provide to higher-order layers (time series analysis,
decision strategy, trust, etc.), reliable data and/or metadata.
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2.3 Related Work

The models adopted here are applied in a variety of fields. For the parametric
models, examples of applications are: topic identification and document cluster-
ing [12,24], quantum physics [20], and combat modeling in the naval domain [23].
What these heterogeneous fields have in common is the presence of multiple lev-
els of uncertainty (for more details about this, see Sect. 4.1).

Also non-parametric models are applied in a wide variety of fields. Examples
of these applications include document classification [9] and haplotype infer-
ence [36]. These heterogeneous fields have in common with the applications
mentioned above the presence of several layers of uncertainty, but they also
show a lack of prior information about the number of parameters. These con-
cepts are treated in Sect. 4.2 where the Wilcoxon sign-ranked test [35], used for
validation purposes, falls into the non-parametric models class.

Our focus is on the statistical modeling of categorical Web data. The analysis
of categorical data is a widespread and well consolidated topic (see, for instance,
the work of Davis and Koch [7] or Agresti [1]). About the statistical analysis
of Web datasets, Auer et al. [3] present a statement-stream-based approach for
gathering comprehensive statistics about RDF datasets that differs from our
approach as we do not focus on streams. To our best knowledge, the chosen
models have not been applied to categorical Web data yet. We propose to adopt
them, because, as the following sections show, they fit the requirements previ-
ously listed. Moreover, we see models such as SCOVO [18], RDF Data Cube [8]
and VoID [2] as complementary to our work, since these would allow modeling
and publishing the results of our analyses.

3 Prelude: Conjugate Priors

To tackle the requirements described in the previous section, we adopt some
Bayesian parametric and non-parametric models in order to be able to answer
questions about Web data.

Conjugate priors [17] are the “leit motiv”, common to all the models adopted
here. The basic idea starts from the Bayes theorem (1): given a prior knowledge
and our data, we update the knowledge into a posterior probability.

P (A|B) =
P (B|A) ∗ P (A)

P (B)
(1)

This theorem describes how it is possible to compute the posterior probability,
P (A|B), given the prior probability of our data, P (A), the likelihood of the
model, given the data, P (B|A), and the probability of the model itself, P (B).

When dealing with continuous probability distributions, the computation
of the posterior distribution by means of Bayes theorem can be problematic,
due to the need to possibly compute complicated integrals. Conjugate priors
allow us to overcome this issue: when prior and posterior probability distributions
belong to the same exponential family, the posterior probability can be obtained
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by updating the prior parameters with values depending on the observed sample
[15]. Exponential families are classes of probability distributions with a density
function of the form f(x) = ea(q)b(x)+c(q)+d(x), with q a known parameter and
a, b, c, d known functions. Exponential families include many important probabil-
ity distributions, like the Normal, Binomial, Beta, etc., [11]. So, if X is a random
variable that distributes as defined by the function P (p) (for some parameter or
vector of parameters p) and, in turn, p distributes as Q(α) for some parameter
(or vector of parameters α called “hyperparameter”), and P belongs to the same
exponential family as Q,

p ∼ Q(α), X ∼ P (p)

then, after having observed obs,

p ∼ Q(α′)

where α′ = f(α, obs), for some function f . For example, the Beta distribution is
the conjugate of the Binomial distribution. This means that the Beta, shaped by
the prior information and by the observations, defines the range within which the
parameter p of the Binomial is probably situated, instead of directly assigning to
it the most likely value. Other examples of conjugate priors are: Dirichlet, which
is conjugate to the Multinomial, and Gaussian, which is conjugate to itself.

Conjugacy guarantees ease of computation, which is a desirable characteristic
when dealing with very big data sets as Web data sets often are. Moreover, the
model is incremental, and this makes it fit the crawling process with which
Web data are obtained, because crawling, in turn, is an incremental process.
Both the heterogeneity of the Web and the crawling process itself increase the
uncertainty of Web data. The probabilistic determination of the parameters of
the distributions adds a smoothing factor that helps to handle this uncertainty.

4 Higher-Order Probability Distributions for Modeling
Categorical Web Data

This section presents three higher-order probability distributions that are useful
to model uncertain categorical Web data. We present them in order of growing
complexity, and then we outline a procedure for employing these models.

4.1 Parametric Bayesian Models for Categorical Web Data

Here we handle situations where the number of categories is known a priori, by
using the Dirichlet-Multinomial model and its special case with two categories,
i.e. the Beta-Binomial model [15]. Since we handle categorical data, the Binomial
and the Multinomial distributions could be the natural choice to model them,
depending on whether these data are divided into two or more categories. The
Binomial and the Multinomial distributions allow modeling n draws from these
datasets. These presume that the frequency of the categories is known, but this
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is not possible in our case, because we have at our disposal only a data sample
which representativity is unknown. So we still model the data distributions by
means of Binomial or Multinomial distributions (depending on the number of
categories that we have), but we also model the parameters of these distributions
by means of Beta or Dirichlet distributions respectively, since these are conju-
gated with the Binomial and with the Multinomial distributions. The shape of
the Beta and of the Dirichlet distribution is determined by both the size and the
distribution of the sample observed. The resulting models (Beta-binomial and
Dirichlet-Multinomial) allow us to model the data distribution even though we
base our modeling on samples that are uncertain and limited in size.

These models are parametric, since the number and type of parameters is
given a priori, and they can also be classified as “empirical Bayesian models”.
This further classification means that they can be seen as an approximation of
a full hierarchical Bayesian model, where the prior hyperparameters are set to
their maximum likelihood values according to the analyzed sample.

Case Study 1 - Ratio Estimation. Suppose that a museum has to annotate
a particular item I of its collection. Suppose further, that the museum does not
have expertise in the house about that particular subject and, for this reason, in
order to correctly classify the item, it seeks judgments from outside people, in
particular from Web users that provide evidence of owning the desired expertise.

After having collected judgments, the museum faces two possible classifica-
tions for the item, C1 and C2. C1 is supported by four experts, while C2 by only
one expert. We can use these numbers to estimate a probability distribution that
resembles the correct distribution of C1 and C2 among all possible annotations.

A basic decision strategy that could make use of this probability distrib-
ution, could accept a certain classification only if its probability is greater or
equal to a given threshold (e.g. 0.75). If so, the Binomial distribution repre-
senting the sample would be treated as representative of the population, and
the sample proportions would be used as parameters of a Bernoulli distribution
about the possible classifications for the analyzed item: P (class(I) = C1) =
4/5 = 0.8, P (class(I) = C2) = 1/5 = 0.2. (A Bernoulli distribution describes
the possibility that one of two alternative events happens. One of these events
happens with probability p, the other one with probability 1 − p. A Binomial
distribution with parameters n, p represents the outcome of a sequence of n
Bernoulli trials having all the same parameter p.)

However, this solution shows a manifest leak. It provides to the decision
strategy layer the probabilities for each of the possible outcomes, but these
probabilities are based on the current available sample, with the assumption
that it correctly represents the complete population of all existing annotations.
This assumption is too ambitious. (Flipping a coin twice, obtaining a heads and
a tails, does not guarantee that the coin is fair, yet.)

In order to overcome this limitation, we should try to quantify how much we
can rely on the computed probability. In other words, if the previously computed
probability can be referred to as a “first-order” probability, what we need to
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compute now is a “second-order” probability [20]. Given that the conjugate prior
for the Binomial distribution representing our data is the Beta distribution, the
model becomes:

p ∼ Beta(α, β), X ∼ Bin(p, n) (2)

where α = #evidenceC1 + 1 and β = #evidenceC2 + 1.
By analyzing the shape of the conjugate prior Beta(5,2), we can be certain

enough about the probability of C1 being safely above our acceptance threshold.
In principle, our sample could be drawn by a population distributed with a 40 %–
60 % proportion. If so, given the threshold of acceptance of 0.75, we would not
be able to take a decision based on the evidence. However, the quantification of
that proportion would only be possible if we know the population. Given that we
do not have such information, we need to estimate it, by computing (3), where
we can see how the probability of the parameter p being above the threshold is
less than 0.5. This manifests the need for more evidence: our sample suggests to
accept the most popular value, but the sample itself does not guarantee to be
representative enough of the population.

P (p ≥ 0.75) = 0.4660645, p ∼ Beta(5, 2) (3)

Table 1 shows how the confidence in the value p being above the threshold grows
as long as we increase the size of the sample, when the proportion is kept. By
applying the previous strategy (0.75 threshold) also to the second-order proba-
bility, we still choose C1, but only if supported by a sample of size at least equal
to 15. Finally, these considerations could also be based on the Beta-Binomial
distribution, which is a probability distribution representing a Binomial which
parameter p is randomly drawn from a Beta distribution. The Beta-Binomial
summarizes model (2) in one single function (4). We can see from Table 2 that
the expected proportion of the probability distribution approaches the ratio of
the sample (0.8), as the sample size grows. If so, the sample is regarded as a
better representative of the entire population and the Beta-Binomial, as sample
size grows, converges to the Binomial representing the sample (see Fig. 1).

X ∼ BetaBin(n, α, β) = p ∼ Beta(α, β),X ∼ Bin(n, p) (4)

Table 1. The proportion within the sample is kept, so the most likely value for p is
always exactly that ratio. However, given our 0.75 threshold, we are sure enough only
if the sample size is 15 or higher.

#C1 #C2 P (p ≥ 0.75)p ∼ Beta(#C1 + 1,#C2 + 1)

4 1 0.47

8 2 0.54

12 3 0.88
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Fig. 1. Comparison between Binomial and Beta-Binomial with increasing sample size.
As the sample size grows, Beta-Binomial approaches Binomial.

Case Study 2 - Confidence Intervals Estimation. The Linked Open Piracy
(LOP)1 is a repository of piracy attacks that happened around the world in the
period 2005–2011, derived from reports retrieved from the ICC-CCS website.2

Attack descriptions are provided, in particular covering their type (boarding,
hijacking, etc.), place, time, as well as ship type.

Data about attacks is provided in RDF format, and a SPARQL [34] endpoint
permits to query the repository. Such a database is very useful, for instance, for
insurance companies to properly insure ships. The premium should be related to

Table 2. The sample proportion is kept, but the “expected proportion” p of Beta-
Binomial passes the threshold only with a large enough sample. E(X) is the expected
value.

X E(X) p = E(X)/n

BetaBin(5,5,2) 3.57 0.71

BetaBin(5,9,3) 3.75 0.75

BetaBin(5,13,4) 3.86 0.77

1 http://semanticweb.cs.vu.nl/lop
2 http://www.icc-ccs.org/

http://semanticweb.cs.vu.nl/lop
http://www.icc-ccs.org/
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both ship conditions and their usual route. The Linked Open Piracy repository
allows an insurance company to estimate the probability of a ship to be victim of
a particular type of attack, given the programmed route. Different attack types
imply different risk levels.
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Fig. 2. Attack type proportion and confidence intervals.

However, directly estimating the probability of a new attack given the dataset,
would not be correct, because, although derived from data published from an
official entity like the Chamber of Commerce, the reports are known to be incom-
plete. This fact clearly affects the computed proportions, especially because it
is likely that this incompleteness is not fully random. There are particular rea-
sons why particular attack types or attacks happening in particular zones are
not reported. Therefore, beyond the uncertainty about the type of next attack
happening (first-order uncertainty), there is an additional uncertainty order due
to the uncertainty in the proportions themselves. This can be handled by a
parametric model that allows estimating the parameters of a Multinomial dis-
tribution. The model that we adopt is the multivariate version of the model
described in Subsect. 4.1, i.e., the Dirichlet-Multinomial model [12,23,24]:

Attacks ∼ Multinom(params), params ∼ Dirichlet(−→α ) (5)
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where −→α is the vector of observations per attack type (incremented by one unit
each, as the α and β parameters of Beta probability distribution). By adopting
this model, we are able to properly handle the uncertainty carried by our sample,
due to either time variability (over the years, attack type proportions could
have changed) or biased samples. Drawing the parameters of our Multinomial
distribution from a Dirichlet distribution instead of directly estimating them,
allows us to compensate for this fact, by smoothing our attacks distribution. As
a result of the application of this model, we can obtain an estimate of confidence
intervals for the proportions of the attack types (with 95 % of significance level,
see Eq. (6)). These confidence intervals depend both on the sample distribution
and on its dimension (Fig. 2).

∀p ∈ param,CIp = (p − θ1, p + θ2), P (p − θ1 ≤ p ≤ p + θ2) = 0.95 (6)

4.2 Non-parametric Bayesian Models

In some situations, the previously described parametric models do not fit our
needs, because they set a priori the number of categories, but this is not always
possible. In the previous example, we considered and handled uncertainty due to
the possible bias of our sample. The proportions shown by our sample could be
barely representative of the entire population because of a non-random bias, and
therefore we were prudent in estimating densities, even not discarding entirely
those proportions. However, such an approach lacks in considering another type
of uncertainty: we could not have seen all the possible categories and we are not
allowed to know all of them a priori. Our approach was to look for the prior
probability to our data in the n-dimensional simplex, where n is the number
of categories, that is, possible attack types. Now such an approach is no more
sufficient to address our problem. What we should do is to add yet another
hierarchical level and look for the right prior Dirichlet distribution in the space
of the probability distributions over probability distributions (or space of sim-
plexes). Non-parametric models differ from parametric models in that the model
structure is not specified a priori but is instead determined from data. The term
non-parametric is not meant to imply that such models completely lack para-
meters, but that the number and nature of the parameters are flexible and not
set in advance. Hence, these models are also called “distribution free”.

Dirichlet Process. Dirichlet processes [14] are a generalization of Dirichlet dis-
tributions, since they correspond to probability distributions of Dirichlet proba-
bility distributions. They are stochastic processes, that is, sequences of random
variables (distributed as Dirichlet distributions) which value depends on the
previously seen ones. Using the so-called “Chinese Restaurant Process” repre-
sentation [26], it can be described as follows:

Xn =

{
X∗

k with probability numn−1(X
∗
k)

n−1+α

new draw from H with probability α
n−1+α

(7)
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where H is the continuous probability measure (“base distribution”) from which
new values are drawn, representing our prior best guess. Each draw from H
returns a different value with probability 1. α is an aggregation parameter,
inverse to the variance: the higher α, the smaller the variance, which can be
interpreted as the confidence value in the base distribution H: the higher the
α value is, the more the Dirichlet process resembles H. The lower the α is, the
more the value of the Dirichlet process tends to the value of the empirical dis-
tribution observed. Each realization of the process is discrete and is equivalent
to a draw from a Dirichlet distribution, because, if

G ∼ DP (α,H) (8)

is a Dirichlet process, and {B}n
i=1 are partitions of the domain of H, S, we have

that
(G(B1)...G(Bn)) ∼ Dirichlet(αH(B1)...αH(Bn)) (9)

If our prior Dirichlet process is (8), given (9) and the conjugacy between
Dirichlet and Multinomial distribution, our posterior Dirichlet process (after
having observed n values θi) can assume one of the following representations:

(G(B1)...G(Bn))|θ1...θn ∼ Dirichlet(αH(B1) + nθ1 ...αH(Bn) + nθn
). (10)

G | θ1...θn ∼ DP

(
α + n,

α

α + n
H +

n

α + n

Σn
i=1δθi

n

)
(11)

where δθi
is the Dirac delta function [10], i.e., the function having density only in

θi. The new base function is therefore a merge of the prior H and the empirical
distribution, represented by means of a sum of Dirac delta’s. The initial status
of a Dirichlet process posterior to n observations, is equivalent to the nth status
of the initial Dirichlet process that produced those observations (using the De
Finetti theorem [19]).

The Dirichlet process, starting from a (possibly non-informative) “best guess”,
as long as we collect more data, approximates the real probability distribution.
Hence, it correctly represents the population in a prudent (smoothed) way, exploit-
ing conjugacy like the Dirichlet-Multinomial model, that approximates well the
real Multinomial distribution only with a large enough data set (see Subsect. 4.1).
The improvement of the posterior base distribution is testified by the increase of
the α parameter, proportional to the number of observations.

Case Study 3: Unseen Categories Generation. We aim at predicting the
type distributions of incoming attack events. In order to build an “infinite cat-
egory” model, we need to allow for event types to be randomly drawn from
an infinite domain. Hence, we map already observed attack types with random
numbers in [0..1] and, since all events are a priori equally likely, then new events
are drawn from the Uniform distribution, U(0, 1), that is our base distribution
(and is a measure over [0..1]). The model is:
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– type1 ∼ DP (α,U(0, 1)): the prior over the first attack type in region R;
– attack1 ∼ Categorical(type1): type of the first attack in R during yeary.

After having observed attack1...n during yeary, our posterior process becomes:

typen+1 | attack1...n ∼ DP

(
α + n,

α

α + n
U(0, 1) +

n

α + n

Σn
i=1δattacki

n

)

where α is a low value, given the low confidence in U(0, 1), and typen+1 is the
prior of attackn+1, that happens during yeary+1. A Categorical distribution is a
Bernoulli distribution with more than two possible outcomes (see Subsect. 4.1).

Results. Focusing on each region at time, we simulate all the attacks that hap-
pened there in yeary+1. Names of new types generated by simulation are matched
to the actual yeary+1 names, that do not occur in yeary, in order of decreasing
probability. The simulation is compared with a projection of the proportions of
yearn over the actual categories of yearn+1. The comparison is made by mea-
suring the distance of our simulation and of the projection from the real attack
types proportions of yeary+1 using the Manhattan distance [22]. This metric
simply sums, for each attack type, the difference between the real yeary+1 prob-
ability and the one we forecast. Hence, it can be regarded as an error measure.
Table 3 summarizes the results over the entire dataset.3 Our simulation reduces
the distance (i.e. the error) with respect to the projection, as confirmed by a
Wilcoxon signed-rank test [35] at 95 % significance level. (This non-parametric
statistical hypothesis test is used to determine whether one of the means of the
population of two samples is smaller/greater than the other.) The simulation
improves when a large amount of data is available and the category cardinality
varies, as in case of Region India, which results are reported in Figs. 3 and 4a.

Table 3. Averages and variances of the prediction errors. The simulation gets a better
performance.

Simulation Projection

Average distance 0.29 0.35

Variance 0.09 0.21

4.3 Model Selection and Utilization

Here we provide generic indication about the choice and use of the models
described before.

3 The code is available at http://trustingwebdata.org/books/URSW III/DP.zip.

http://trustingwebdata.org/books/URSW_III/DP.zip
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Fig. 3. Comparison between the projection forecast and the simulation forecast with
the real-life year 2006 data of region India.

Model Selection. The models presented above are closely related each other,
since each of them represents a generalization of the preceding model. Algo-
rithm1 is the algorithm that we propose for choosing the right model to apply
when handling categorical Web data. It is rather simple and, under the assump-
tion that we are handling categorical data, determines the choice of the model
to use based on the number of categories that are known to be present in the
data.

Model Building. Once the model has been selected, we build it based on the
observations at our disposal as follows:

Beta-Binomial. The Beta-binomial model has three parameters: n, i.e. the
number of draws performed and α and β, that are the frequencies of the two
categories. In case no prior knowledge is available, we add the uninformative
prior 1 to each frequency parameter. Otherwise, we add the prior frequency
to each parameter.
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Fig. 4. Error distance from real distribution of the region India (Fig. 4a) and differ-
ences of the error of forecast based on simulation and on projection (Fig. 4b). Positive
difference means that the projection predicts better than our simulation.
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if the number of categories is known then
if the number of categories is two then

return Beta-Binomial
else

return Dirichlet-Multinomial
end

else
return Dirichlet Process

end
Algorithm 1. Model Selection Algorithm.

Dirichlet-Multinomial. This model has a vector −→α of frequency parameters,
plus the same n parameter indicating the number of draws to perform, as
above. The frequency parameters need to be populated with the absolute
frequencies observed. In case no prior knowledge is available, we add the
uninformative prior 1 to each frequency parameter. Otherwise, we add the
prior frequency to each parameter.

Dirichlet Process. The Dirichlet Process is determined by two parameters: the
concentration parameter α and the base distribution H. If no prior informa-
tion is available, we set α = 1 and H = U(0, 1), where U stands for the
Uniform probability distribution. Then, after n categorical observations, we
obtain the process described in Eq. 11.

Model Utilization. In the examples above, we used the process for predic-
tion. In the following analyses we use them for comparison. To compare models,
we compute similarity measures between probability distributions and analyze
them. We present a detailed description of this utilization of the models in the
following section. To perform predictions, i.e., to draw from the probability dis-
tributions, we proceed as follows:

Beta-binomial (and Dirichlet-multinomial). Randomly draw a parameter
p (or a vector of parameters −→p in the case of the Dirichlet-multinomial) from
a Beta (Dirichlet) distribution shaped by the frequency parameters α and
β (−→α ) described above. Then, randomly draw from a Binomial (Dirichlet)
distribution shaped by the parameter p (−→p ).

Dirichlet Process. Draw from the Dirichlet distribution described above and
in Eq. 11. If the drawn value has not been observed yet, then draw again
from the base distribution H. Then update the process in order to obtain a
new Dirichlet distribution representing its updated state.

5 Analyzing Datasets Using Higher-Order Probability
Distributions

In the previous sections we have shown that higher-order probability distribu-
tions are useful to model Web data and account for their uncertainty. Here we
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want to show that higher-order probability distributions, despite the fact that
they introduce a computational layer in the data management process, are eas-
ily utilizable as a basis for data analyses. The analyses presented here aim at
showcasing how a data analyst could use the models presented before to derive
insights from the data, for summarizing them and for extracting potentially
useful information from large datasets. Besides the uncertainty management
advantage, these models provide a means to abstract the data we analyze, thus
allowing us to identify interesting patterns and regularities that would be hidden
otherwise.

We apply our analyses on the LOP dataset introduced before. In the previous
section, and in particular in Case Study 3 (Subsect. 4.2), we represent piracy
attacks spread over the world by means of Dirichlet processes that “generate” the
attacks over time. Each step of the Dirichlet process is represented by a Dirichlet
distribution. We analyze the type distribution of the attacks with respect to time
and regions. So, we use the data at our disposal to build one Dirichlet distribution
per region per year, to represent the attack types distributions while taking into
account the uncertainty in the data. Then, we use a statistical similarity to
measure the likeness of distributions over time and regions. Clearly, we could
have used different methods (e.g., mixture models), but we prefer this approach
for its flexibility and simplicity (Fig. 5).

Data

Uncertainty
Management

Analyses

Fig. 5. Data abstraction and analysis overview.

5.1 Bhattacharyya Distance

We adopt the Bhattacharyya distance [4] to quantify the similarity between
attack types distributions. The Bhattacharyya distance is a measure of diver-
gence between probability distributions, that allows measuring the dissimilarity
between two continuous or discrete probability distributions. As such, it goes
from zero (when the compared distributions are identical) to infinite (when there
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is no overlap between the compared distributions). For continuous probability
distributions, it is defined as follows:

DB(dista, distb) = − ln
(∫ √

dista(x)distb(x)dx

)

When applied to the Dirichlet Distributions (Rauber et al. [28]), the
Bhattacharyya distance becomes:

DB(Dira(x1, . . . , xn),Dirb(y1, . . . , yn)) =
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An advantage of the adopted approach is that the computation of the
Bhattacharyya distance is particularly convenient. The only change we apply
to the distance is to apply the logarithm base 2 to the result of the measure
when the value is different from zero. This allows us to handle large numbers
without any problem. Thus, the formula becomes:

sim(Dira,Dirb) =

{
0, if DB(Dira,Dirb) = 0
log2(DB(Dira,Dirb)), otherwise

5.2 Analysis of the Distribution of Piracy Attacks

We measure the Bhattacharyya distance for all the possible combinations of
regions and years in the LOP dataset at our disposal. Since the set obtained
by computing such similarities is rather big, we split it in two manners: first we
look at the similarity of the attack type distributions of different regions, year by
year, and second, we analyze the temporal evolution of such similarities, region
by region. In this manner, we aim at identifying: (1) similarities in the type
distribution across different regions and, (2) patterns related to the temporal
distribution of attack types across different regions.

Attack Type Distribution Analysis per Year. We start by grouping our
distances per year, and by analyzing their distribution across different regions
of the world. In this manner, we aim at identifying similarities between regional
attack distributions, while taking into account the temporal evolution of the
attacks. Figure 6 shows six heatmaps representing the similarity between all pos-
sible combinations of regions for the years considered. Here, we can identify a
few peculiar facts. For instance, Indonesia happens to be a region particularly
different from the others (due to the presence of a high number of “boarded”
and “attempted” attacks in that region), although this difference reduces in the
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last years of the period considered. With respect to previous analyses based
on the actual piracy attacks counts [31], this difference is higher. From a man-
ual investigation, we note that, besides a difference in the data distribution,
Indonesia presents a difference in the total number of attacks registered. The
higher-order models that we propose allow taking into account both aspects at
the same time. Also, we note that the region that comprises India and Bengal
differentiates from the rest in the first three years considered, while an important
change in the similarity trend happens in Gulf of Aden in 2008 and continues
afterwards.

Attack Type Distribution Analysis per Region. Figures 7 and 8 show a
series of heatmaps representing the yearly distribution of piracy attacks, grouped
by region. Here we can see, for instance, that North America (and, in part, also
Europe) is characterized by being quite uniform in its distributions (thanks also
to the fact that piracy attacks are quite rare in this region). Also, 2009 and 2010
are two years representing a changing point in several regions (e.g., Gulf of Aden,
South America). Given the extension of such changes, we suppose this might be
due to one or more events causing the global distribution of piracy attacks to
change, although we are not aware of any.

5.3 Automating Piracy Attacks Analysis

The previous section proposes a combination of automatic and visual analysis
of the data. Here we finally propose a procedure for automating the process of
identifying potential interesting pieces of data in our datasets.

compute distance matrix. This procedure computes a similarity matrix that
contains a distance between higher-order probabilistic models (e.g., the
Bhattacharyya distance defined above in our case).

aggregate data. This procedure aggregates the data with respect to a feature
of interest. For instance, we can aggregate the data by time or region of the
world, to see variation of attack types over either time or space.

changepoint. This procedure relies on the R package “ChangePoint” [21] and
identifies points in the aggregated series of piracy attacks distributions that
significantly differ from the rest. In particular, we make use of the cpt.meanvar
function of the package, that determines the change point on the basis of a
change in the mean and variance with respect to the rest of the series.

Results. We run the above procedure on the LOP dataset, and we obtained:

Regional Aggregation. India and Bengal (in 2005), Indonesia (in 2006), West
Africa (in 2007, 2008 and 2010) are the regions identified as change points;

Yearly Aggregation. 2005 (in East Africa, North America and West Africa),
2006 (in Europe and Gulf of Aden), 2007 (in East Asia), 2008 (in Caribbean,
India and Bengala, Indonesia, Middle East, South-East Asia and South
America) are the years indicated as change point.
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Fig. 6. Heatmaps of the similarity of attack type distributions of different regions of
the world, divided by years.
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Fig. 7. Attack type distributions of different regions of the world.
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Fig. 8. Attack type distributions of different regions of the world.
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Data: A dataset (dataset) of piracy attacks
Result: A set of change points in the piracy attacks dataset
Data Analysis dataset

dm ← compute distance matrix (dataset);
agg data ← aggregate data (dm);
res ← changepoint (agg data);
return res;

Algorithm 2. Data Analysis Algorithm.

The results of the visual and of the automated analyses present an overlap.
The differences are possibly due to the change point detection algorithm chosen.
The use of other algorithms will be investigated in the future.

6 Conclusions and Future Work

We propose a series of higher-order probabilistic models to manage Web data and
we show that these models allow us to take into account the inner uncertainty
of these data, while providing a probabilistic model that allows reasoning about
the data. We demonstrate that these models are useful to handle the uncertainty
present in categorical Web data by showing that predictions based on them are
more accurate than predictions based on first-order models. Higher-order models
allow us to compensate the fact that they are based on limited or possibly
biased samples. Moreover, we show how these models can be adopted as a basis
for analyzing the datasets that they model. In particular, we show through a
case study, how to exploit statistical distances of probability distributions to
analyze the data distribution to identify interesting points within the dataset.
This kind of analysis can be used by data analysts to have an insight about the
dataset, possibly to be combined with domain knowledge. We propose two kinds
of analyses, one based on visual interpretation of heatmaps, the other one based
on automatic determination of change points by means of a procedure that we
introduce. The results obtained with these two analyses are partially overlapping.
Differences are possibly due to the choice of the change point detection algorithm.

In the future, we aim at expanding this work in two directions. Firstly, we
plan to extend the set of models adopted, to deal with concrete domain data
(e.g. time intervals, by means of the Poisson process [15]), and more sophisti-
cated to improve the uncertainty management part (e.g., Mixture Models [27],
Nested [29] and Hierarchical Dirichlet processes [30] and Markov Chain Monte
Carlo algorithms [13,25]). Secondly, we will work on the generalization of the
data analysis procedures, by combining this work with a previous work on the
analysis of the reliability of open data [5] and extending both of them.
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