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Abstract. Subjective logic is a powerful probabilistic logic which is
useful to handle data in case of uncertainty. Subjective logic and the
Semantic Web can mutually benefit from each other, since subjective
logic is useful to handle the inner noisiness of the Semantic Web data,
while the Semantic Web offers a means to obtain evidence useful for per-
forming evidential reasoning based on subjective logic. In this chapter
we describe three extensions and applications of subjective logic in the
Semantic Web, namely: the use of deterministic and probabilistic seman-
tic similarity measures for weighing subjective opinions, a way for account-
ing for partial observations, and “open world opinion”, i.e. subjective
opinions based on Dirichlet processes, which extend multinomial opin-
ions. For each of these extensions, we provide examples and applications
to prove their validity.
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1 Introduction

Subjective logic [12] is a probabilistic logic widely adopted in the trust man-
agement domain, based on evidential reasoning and statistical principles. This
logic focuses on the representation and the reasoning on assertions of which the
truth value is not fully determined, but estimated on the basis of the observed
evidence. The logic comes with a variety of operators that allow to combine such
assertions and to derive the truth values of the consequences.

Subjective logic is well-suited for the management of uncertainty within the
Semantic Web. For instance, the incremental access to these data (as a con-
sequence of crawling) can give rise to uncertainty issues which can be dealt
with using this logic. Furthermore, the fact that the fulcrum of this logic is the
concept of “subjective opinion” (which represents a logic proposition, its cor-
responding belief and the source of this evidence), allows correctly representing
how the estimated truth value of an assertion is bound to the source of the corre-
sponding evidence and allows to easily keep lightweight provenance information.
Finally, evidential reasoning allows to limit the typical noisiness of Semantic
Web data. On the other hand, we also believe that the Semantic Web can be
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beneficial to this logic, as an immeasurably important source of information:
since the truth value of assertions is based on availability of observations, the
more data is available (hopefully of high enough quality), the closer we can get
to the correct truth value for our assertions. We believe that this mutual rela-
tionship can be improved. This chapter proposes extensions and applications of
subjective logic that aim at the Semantic Web, namely: the use of deterministic
and probabilistic semantic similarity measures for weighing subjective opinions,
a method for accounting for partial observations, and “open world opinions”,
that are subjective opinions based on Dirichlet processes. Open world opinions
allow modeling categorical data for which categories are partially known. Only
the latter is a proper extension of the logic, while the first two items are rep-
resentations within the logic of external elements, with proper mappings and,
when necessary, specific representations.

This chapter revises and extends the paper “Subjective Logic Extensions for
the Semantic Web” [5], presented at the 8th International Workshop on Uncer-
tainty Reasoning for the Semantic Web, at the 11th International Semantic Web
Conference 2012. Here, we add to that paper two methods to map probabilistic
semantic similarity measures and subjective opinions.

The rest of the chapter is organized as follows. Section 2 gives an overview of
subjective logic. Sections 3 and 4 show how to combine subjective logic with deter-
ministic and probabilistic semantic similarity measures respectively. Section 5
introduces a method for dealing with partial observations of evidence, Sect. 6
describes the concept of “open world opinion”. Section 7 describes related work,
and Sect. 8 provides a final conclusion about the work presented.

2 Subjective Logic

In subjective logic, so-called “subjective opinions” express the belief that source
x owns with respect to the value of proposition y. The values of y are chosen
among the elements of the set Θ (“frame of discernment”). For instance, if y is
a binomial proposition, then Θ = {true, false}. A subjective opinion describes
the belief in the elements of the power set of Θ (2Θ). In symbols, an opinion is
represented as

ωx
y (b, d, u, a)

when |Θ| = 2 (binomial opinion) or as

ωx
y (

−→
B, u,

−→
A )

when |Θ| > 2 (multinomial opinion). Throughout the paper we refer to vectors
with the following notation:

−→
B . Its elements are represented as bx. In the bino-

mial opinion, b represents the belief in y being true and d the belief in y being
false, i.e., the disbelief. The uncertainty u represents a part of probability mass
that we are unable to assign to either true or false and it therefore corresponds
to the belief in Θ. In the case of the multinomial opinion there is no disbelief
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because there is no specific false value, since y can assume multiple ones. a rep-
resent the prior probability that y has to be true, while A represents the vector
of prior probabilities for each of the possible truth values of y. The values b, d, u
are determined by observing pieces of evidence. a is given a priori. The posi-
tive and negative evidence is represented as p and n respectively. The belief (b),
disbelief (d), uncertainty (u), and a priori values (a) for binomial opinions are
computed as:

b =
p

p + n + 2
d =

n

p + n + 2
u =

2
p + n + 2

a =
1
2
. (1)

The value 2 indicates the cardinality of Θ, i.e., the number of values that y
can take. A subjective opinion is equivalent to a Beta probability distribution
(binomial opinion) or to a Dirichlet distribution (multinomial opinion). This
probability distribution describes the most likely probability values that y can
take. If y has Pr probability to be true, since we determine Pr starting from a
limited set of evidence, we estimate the most likely value of Pr by means of a
Beta (or Dirichlet) probability distribution.

Opinions can be contextualized. For example, source x provides an observa-
tion about assertion y in context c (e.g. about an agent’s expertise). The most
likely value for y in context c, represented as t(x, y : c), is the expected value of
the Beta distribution corresponding to the opinion and computed as:

E = t(x, y : c) = b + a · u. (2)

The reason why we rely on this logic is the fact that it makes use of a double
probabilistic layer. The probability of each proposition can be represented by
means of a Binomial distribution (or by means of a Multinomial distribution
if the proposition is multivalued). However, we base our truth estimations on
samples of Web data so the parameter p of the Binomial distribution (or the
vector of parameters

−→
P of the Multinomial) is rather uncertain. In fact, the Web

data sample is possibly unreliable, uncertain and partially representative of the
entire Web data population. Subjective logic uses a second-order distribution
based on the distribution and size of the sample at our disposal to estimate the
most likely value that the p (or

−→
P ) value can take. This is the primary reason

why we adopt this logic. Also, on the Web, data are exposed by different sources
presenting different reliability levels. The ability to keep track of the source
that exposes a given piece of data or a subjective opinion is crucial to be able
to assess the trust in that piece of data or subjective opinion. Subjective logic
allows keeping track of such provenance information and reasoning on subjective
opinions weighing them on the reputation of their source. Lastly, subjective logic
offers a variety of operators that allow combining subjective opinions in several
manners. For instance, operators allow “discounting” an opinion based on the
reputation of the source that exposes it, or computing the truth value (expressed
as a subjective opinion) of the logical disjunction or conjunction of two opinions
held by the same source. This makes the logic a useful tool to reason upon data
extracted from the Web. One important remark is that this logic allows reasoning
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on binomial or multinomial data, that include, for instance URIs. The Beta and
the Dirichlet distributions are used because they are “conjugated” [11] with the
Binomial and Multinomial distributions respectively, i.e., their computation is
particularly manageable. Other kind of data and other probability distributions
are outside the scope of this logic.

2.1 Base Rate Discounting Operator in Subjective Logic

An important class of operators of subjective logic is the so-called “discounting”
operator. In fact, a subjective opinion allows keeping track of the source of
the opinion itself. This permits the reuse of the opinion by third parties, because
these third parties, knowing where the opinion comes from, can decide to use it.
However, before using it, these third parties may require to “smoothen” the
opinion to take into account the limited reliability of the source or its possible
maliciousness. Therefore, in subjective logic there exists a variety of discounting
operators: for instance, one favors disbelief (to be used if the source is known
to be malicious), and one that favors uncertainty (to be used when no specific
intention of the source is known). We can also make use of the base-rate sensitive
discounting operator in the case we just have a probability (i.e., the expected
value of an opinion), instead of having at our disposal a complete subjective
opinion for a source. The base-rate sensitive discounting of opinion of source B
on y by opinion of source A on B ωA

B ,

ωB
y = (bB

y , dB
y , uB

y , aB
y )

by opinion
ωA

B = (bA
B , dA

B , uA
B , aA

B)

of source A produces transitive belief

ωA:B
y = (bA:B

y , dA:B
y , uA:B

y , aA:B
y )

where
bA:B
y = E(ωA

B)bB
y

dA:B
y = E(ωA

B)dB
y

uA:B
y = 1 − E(ωA

B)(bB
y + dB

y )

aA:B
y = aB

y .

(3)

3 Combining Subjective Logic with Deterministic
Semantic Similarity Measures

We saw in the previous section that opinions can be contextualized. Setting
the context is important, because it allows delimiting the validity of an opinion
and increasing the precision of the corresponding evaluation. For instance, if we
gather evidence about the expertise of a user in a given topic, let us say, flowers,
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then it is important to delimit the validity of the corresponding opinion to the
topic “flowers”. However, contexts may also impede the use of evidence about
a given subject, if the context differs from the context where the evidence was
collected. Therefore, we propose to “bridge” contexts by using semantic similar-
ity measures to import evidence from a context to another, after having weighed
them on the similarity of the two contexts. Many semantic similarity measures
have been developed (see the work of Budanitsky and Hirst [2]). These basically
split into two main classes: deterministic and probabilistic semantic similarity
measures. The deterministic ones are based on deterministic computations made,
for example, on word graphs (e.g. WordNet [19]). The probabilistic ones apply
probabilistic reasoning to derive semantic relatedness between words based, for
instance, on the occurrence and co-occurrence of these two words in large docu-
ment corpora. We extend the logic to incorporate these measures by representing
semantic similarity measures by means of subjective opinions (discounting), or
by using the similarity measures to weigh items of evidence before using them to
build subjective opinions (weighing). The first extension of subjective logic that
we propose regards the use of deterministic semantic similarity measures and is
described as follows.

3.1 Wu and Palmer Semantic Similarity Measure

Among all deterministic semantic similarity measures, our attention focuses on
those computed from WordNet. WordNet groups words into sets of synonyms
called synsets that describe semantic relationships between them. It is a directed
and acyclic graph in which each vertex v, is an integer that represents a synset,
and each directed edge from v to w represents that w is a hypernym of v. In
particular, we use the Wu and Palmer similarity measure [28], which calculates
semantic relatedness in a deterministic way by considering the depths between
two synsets in the WordNet taxonomies, along with the depth of the Least
Common Subsumer (lcs) as follows:

score(s1, s2) =
2 · depth(lcs(s1, s2))

depth(s1) + depth(s2)
. (4)

This means that score ∈ [0, 1]. For deriving the opinions about a concept where
no evidence is available, we incorporate score, which represents the semantic sim-
ilarity (sim(c, c′)) in our trust assessment, where c and c′ are concepts belonging
to synset s1 and s2 respectively which represent two contexts.

3.2 Using Semantic Similarity Measures Within Subjective Logic

We propose two means to import deterministic semantic similarity measures into
subjective logic, by mapping them with subjective opinions.

Deriving an Opinion About a New or Unknown Context. Since we
compute opinions based on contexts, it is possible that evidence required to
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compute the opinion for a particular context is unavailable. For example, suppose
that source x owns observations about a proposition in a certain context (e.g. the
expertise of an agent about tulips), but needs to evaluate them in a new context
(e.g. the agent’s expertise about sunflowers), of which it owns no observations.
The semantic similarity measure between two contexts, sim(c, c′), can be used for
obtaining the opinion about an agent y on an unknown or new context through
two different methods. We can weigh the evidence at our disposal, and for every
piece of evidence, use only the part that corresponds to the semantic similarity
between the two contexts. If I have one observation in the known context c′ and
the similarity between the two contexts is 0.5, then I can use that observation
in the new context c as 0.5 piece of evidence. Otherwise, I could compute a
subjective opinion in the known context c′ and then use it in the unknown
context c after having “discounted” it (using the subjective logic discounting
operator). The discounting factor would be a subjective opinion that represents
the semantic similarity between the two contexts. The reason why we have these
two different approaches is that weighing operates directly on the evidence, while
discounting applies on the subjective opinion. In the latter case uncertainty has
already been quantified (and therefore some probability mass has been assigned
to it), while in the first case not. Hence, the choice between the two alternative
depends on the strategy chosen (it could be that operating on the opinion is more
computationally efficient, and hence discounting is preferable), or on case study
constraints (e.g., if the evidence from a given context are already expressed as
a subjective opinion, then it is simpler to use it than to revert it to the pieces
of evidence on which it is computed). Below we provide more details about the
two methods.

Evidence weighing. We weigh the positive and negative evidence belonging to
a certain context (e.g. Tulips) on the corresponding semantic similarity to
the new context (e.g. Sunflowers), sim(Tulips, Sunflowers). We then perform
this for all the contexts for which source x has already provided an opinion,
∀c′ ∈ C, by weighing all the positive (p) and negative (n) evidence of c′ with
the similarity measure sim(c, c′) to obtain an opinion about y in c (see the
work of Ceolin et al. [4]).

Opinion discounting. In the second approach, every opinion source x has
about other related contexts c′, where c′ ∈ C, is discounted with the corre-
sponding semantic similarity measure sim(c, c′) using the Discounting oper-
ator in subjective logic. The discounted opinions are then aggregated to form
the final opinion of x about y in the new context c.

Discounting Operators and Semantic Similarity. Subjective logic offers
a variety of operators for “discounting”, i.e. for smoothing opinions given by
third parties, provided that we have at our disposal an opinion about the source
itself. “Smoothing” is meant as reducing the belief provided by the third party,
depending on the opinion on the source (the worse the opinion, the higher the
reduction). Moreover, since the components of the opinion always sum to one,
reducing the belief implies an increase of (one of) the other components: hence
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there exists a discounting operator favoring uncertainty and one favoring disbe-
lief. Finally, there exists a discounting operator that makes use of the expected
value E of the opinion. Following this line of thought, we can use the semantic
similarity as a discount factor for opinions imported from contexts related to the
one of interest, in case of a lack of opinions in it, to handle possible variations
in the validity of the statements due to the change of context.

So, we need to choose the appropriate discounting operator that allows us to
use the semantic similarity value as a discounting factor for opinions. The disbe-
lief favoring discounting is an operator that is employed whenever one believes
that the source considered might be malicious. This is not our case, since the
discounting is used to import opinions own by ourselves but computed in differ-
ent contexts than the one of interest. Hence we do not make use of the disbelief
favoring operator.

In principle, we would have no specific reason to choose one between the
uncertainty favoring discounting and the base rate discounting. Basically, having
that only rarely the belief (and hence the expected value) is equal to 1, the
two discounting operators decrease the belief of the provided opinion, one by
multiplying it by the belief in the source, the other one by the expected value of
the opinion about the source. In practice, we will see that, thanks to Theorem 1
these two operators are almost equivalent in this context.

Theorem 1 (Semantic relatedness measure is a dogmatic opinion). Let
sim(c, c′) be the semantic similarity between two contexts c and c′ obtained by
computing the semantic relatedness between the contexts in a graph through deter-
ministic measurements (e.g. [28]). Then, ∀ sim(c, c′) ∈ [0,1],

ωmeasure
c=c′ = (bmeasure

c=c′ , dmeasure
c=c′ , umeasure

c=c′ , ameasure
c=c′ )

is equivalent to a dogmatic opinion in subjective logic, i.e., a subjective opinion
with uncertainty equal to zero.

Proof. A binomial opinion is a dogmatic opinion if the value of uncertainty
is 0. The semantic similarity measure can be represented as an opinion about
the similarity of two contexts c and c′. However, since we restrict our focus on
WordNet-based measures, the similarity is inferred by graph measurements, and
not by probabilistic means. This means that, according to the source, this is
a “dogmatic” opinion, since it does not provide any indication of uncertainty:
umeasure

c=c′ = 0. The opinion is not based on evidence observation, rather on actual
deterministic measurements.

E(ωmeasure
c=c′ ) = bmeasure

c=c′ + umeasure
c=c′ · a = sim(c, c′), (5)

where measure indicates the procedure used to obtain the semantic relatedness,
e.g. Wu and Palmer Measure. The values of belief and disbelief are obtained as:

bmeasure
c=c′ = sim(c, c′) dmeasure

c=c′ = 1 − bmeasure
c=c′ . �� (6)
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Corollary 1 (Discounting an opinion with a dogmatic opinion). Let A be
a source who has an opinion about y in context c′ expressed as

ωA
y:c′ = (bA

y:c′ , dA
y:c′ , uA

y:c′ , aA
y:c′)

and let the semantic similarity between the contexts c and c’ be represented as a
dogmatic opinion

ωmeasure
c=c′ = (bmeasure

c=c′ , dmeasure
c=c′ , 0, ac′

c=c′).

Since the source A does not have any prior opinion about the context c, we derive
the opinion of A about c represented as

ωA:c′
c = (bA:c′

c , dA:c′
c , uA:c′

c , aA:c′
c )

using the base rate discounting operator on the dogmatic opinion.

aA:B
y = aB

y bA:B
y = sim(c, c′) · bB

y

uA:B
y = 1 − sim(c, c′) · (bB

y + dB
y ) dA:B

y = sim(c, c′) · dB
y .

(7)

Definition 1 (Weighing operator). Let C be the set of contexts c′ of which
a source A has an opinion derived from the positive and negative evidence in
the past. Let c be a new context for which A has no opinion yet. We can derive the
opinion of A about facts in c, by weighing the relevant evidences in set C with
the semantic similarity measure sim(c, c′) ∀c′ ∈ C. The belief, disbelief, uncer-
tainty and a priori obtained through the weighing operation are expressed below.

bA
c = sim(c,c′)·pA

c′
sim(c,c′)(pA

c′+nA
c′ )+2

dA
c = sim(c,c′)·nA

c′
sim(c,c′)(pA

c′+nA
c′ )+2

uA
c = 1 − sim(c,c′)·(pA

c′+nA
c′ )

sim(c,c′)(pA
c′+nA

c′ )+2
aA

c = aA
c′ .

(8)

Theorem 2 (Approximation of the weighing and discounting opera-
tors). Let

ωA:c′
y:c = (bA:c′

y:c , dA:c′
y:c , uA:c′

y:c , aA:c′
y:c )

be a discounted opinion which source A has about y in a new or unknown context
c, derived by discounting A’s opinion on known contexts c’ ∈ C represented as
ωA

c′ = (bA
c′ , dA

c′ , uA
c′ , aA

c′) with the corresponding dogmatic opinions (e.g. sim(c,c’)).
Let source A also obtain an opinion about the unknown context c based on the
evidence available from the earlier contexts c’, by weighing the evidence (positive
and negative) with semantic similarity between c and c’, sim(c,c’) ∀c′ ∈ C.
Then the difference between the results from the weighing and from the discount
operator in subjective logic are statistically insignificant.

Proof. We substitute the values of belief, disbelief, uncertainty values in Eq. (9)
for Base Rate Discounting with the values from Eq. (1) and expectation value
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from Eq. (5). We obtain the new value of the discounted base rate opinion as
follows:

bA:c′
c = sim(c,c′)·pA

c′
(pA

c′+nA
c′+2)

dA:c′
c = sim(c,c′)·nA

c′
(pA

c′+nA
c′+2)

uA:c′
c = 1 − sim(c,c′)·(pA

c′+nA
c′ )

(pA
c′+nA

c′+2)
aA:c′

c = aA
c′ .

(9)

Equations (9) and (8) are pretty similar, except for the sim(c, c′).(pA
c′ + nA

c′)
factor in the weighing operator. In the following section we use a 95 % t-student
and Wilcoxon signed-rank statistical test to prove that the difference due to that
factor is not statistically significant for large values of sim(c, c′) (at least 0.5).

3.3 Evaluations

We show empirically the similarity between the weighing and the discounting.1

First Experiment: Discounting and Weighing in a Real-Life Case. We
propose here a first validation of the similarity between weighing and discounting
by using both of them in the process of estimation of the trustworthiness of a
series of tags derived from a cultural heritage crowdsourcing project.

Steve social tagging project dataset. For the purpose of our evaluations,
we use the “Steve Social Tagging Project” [25] data (in particular, the
“Researching social tagging and folksonomy in the ArtMuseum”), which
is a collaboration of museum professionals and others aimed at enhancing
social tagging. In our experiments, we used a sample of tags which the users
of the system provided for the 1784 images of the museum available online.
Most of the tags were evaluated by the museum professionals to assess their
trustworthiness. The tags can be single words or a string of words provided
by the user regarding any objective aspect of the image displayed to them
for the tagging. We used only the evaluated tags for our experiments.

Gathering evidence for evaluation. We select a very small set of semanti-
cally related tags, by using a Web-based WordNet interface [23]. We then
gather the list of users who provided the tags regarding the chosen words
and count the number of positive and the negative evidence. The chosen
tags are only three (Asian, Chinese and Buddhist), and they correspond to
206 entries in total (i.e., they are associated 206 times to one or more pic-
tures by one or more users). This represents a small sample compared to
the total number of tag entries (0.5 %). However, this experiment is meant
only to exemplify the use of the semantic similarity measure when one needs
to compute an opinion about a new context (e.g., “Chinese”), given two
existing ones (e.g., “Asian” and “Buddhist”). Therefore, we consider the
Chinese-Asian pair (semantic similarity 0.933) and the Chinese-Buddhist
pair (semantic similarity 0.6667). We refer to the second experiment for a

1 Complete results are available at http://trustingwebdata.org/books/URSW III/
slsw.zip.

http://trustingwebdata.org/books/URSW_III/slsw.zip
http://trustingwebdata.org/books/URSW_III/slsw.zip
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more indicative evaluation. The opinions are calculated using two differ-
ent methods. First by weighing the evidence with the semantic relatedness
using Eq. (8) and the second method is by discounting the evidence with the
semantic relatedness using Eq. (9).

Results. We employ the Student’s t-test and the Wilcoxon signed-rank test to
assess the statistical significance of the difference between two sample means.
At 95 % confidence level, both tests show a statistically significant difference
between the two means. This difference, for the Chinese-Asian pair is 0.025,
while for the Chinese-Buddhist pair is 0.11, thanks also to the high similarity
(higher than 0.5) between the considered topics. Having removed the average
difference from the results obtained from discounting (which, on average, are
higher than those from weighing), both the tests assure that the results of
the two methods distribute equally.

Second Experiment: Discounting and Weighing on a Large Simulated
Dataset. In the Steve.Museum dataset, the average number of annotations
provided by a given user is limited (about 20). To check if the two methods for
building subjective opinions using semantic similarity measures are significantly
different, we built a large dataset consisting of 1000 sample tags and we treated
the tags as if they were contributed by the same user. In this manner, we could
check if the two methods present relevant differences both when the evidence
amount is small or large. We perform the Student’s t-test and the Wilcoxon
signed-rank test to evaluate the hypothesis that the two methods are not statis-
tically significantly different. For semantic relatedness values sim(c, c′) > 0.7, the
mean difference between the belief values obtained by weighing and discount-
ing is 0.092. Thus with 95 % confidence interval, both tests assure that both
the weighing operator and the discounting operator produce similar results. The
semantic similarity threshold sim(c, c′) > 0.7 is relevant and reasonable, because
it becomes more meaningful to compute opinions for a new context based on the
opinions provided earlier for the most semantically related contexts, while also
in case of lack of evidence for a given context, evidence about a very diverse
context can not be very significant.

4 Combining Probabilistic Semantic Similarity Measures
Within Subjective Logic

The second extension that we propose regards the use of probabilistic semantic
similarity measures within subjective logic.

Wikipedia Relatedness Measure. The Wu and Palmer measure introduced
above is a deterministic semantic similarity measure, because it is deterministi-
cally computed based on the position of the two examined words in WordNet.
We want to exemplify the adoption in subjective logic of semantic similarity
measures belonging to another class, that is the probabilistic class of measures.
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These measures determine the semantic similarity between two words in a sta-
tistical manner, by checking the occurrence and co-occurrence of the two words
within a large corpora of documents. A famous example of this kind of similarity
measures is the Normalized Google Distance [9], which uses Google as a corpus
of documents.

We use the Wikipedia [27] relatedness measure, as defined by Milne et al.
[20,21] because of its easiness of use. This distance adapts the Normalized
Google Distance to use Wikipedia as a corpus of reference for computation.
The Wikipedia similarity distance is defined as follows:

sim(c, c′) =
log(max(|A|, |B|) − log(|AB|)
log(|W |) − log(min(|A|, |B|) (10)

where |A| and |B| are the cardinalities of the set of documents containing s1 and
s2 respectively, and |W | is the size of Wikipedia.

Moreover, Milne et al. provide a disambiguation confidence score for the
measure, that ranges between zero and one.

4.1 Wikipedia Relatedness Measure as a Subjective Opinion

As in the previous section, given two synsets (s1 and s2), we name c and c′ the
respective context identified by them. To differentiate from the previous section,
we use measure′ as a placeholder for probabilistic similarity measures.

The elements at our disposal from the Wikipedia distance are:

– sim(c, c′) ∈ [0, 1] is the semantic relatedness between two synsets a and b;
– conf (c, c′) ∈ [0, 1] is the confidence in the semantic relatedness between a

and b.

To represent the Wikipedia distance in subjective logic, we need to map all its
elements to specific elements (or combinations of elements) of subjective logic,
while taking into account the logic’s constraints and mechanisms (e.g., the fact
that b + d + u = 1). We provide a mapping for each of the elements above, and
we provide a motivation for them as follows.

1. conf (s1, s2) = 1 − umeasure′
c=c′ because the confidence value determines exactly

the portion of probability mass that is certain. Therefore, the remaining part
of the probability mass is assigned to the uncertainty element of subjective
opinions.

2. Emeasure′
c=c′ = sim(c, c′). That is, the expected value of the subjective opinion

should coincide with the similarity between the two synsets considered.
3. bmeasure′

c=c′ = conf (c, c′) · sim(c, c′) because the certain part of an opinion
(1 − u) is assigned b + d. Thus, we assign this mass proportionally to the
value of the similarity measure, to represent our belief in the two synsets
being semantically related.
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However, given the constraints of subjective logic, by virtue of Eq. (2) that
we report as follows,

Emeasure′
c=c′ = bmeasure′

c=c′ + ameasure′
c=c′ · umeasure′

c=c′

we obtain
sim(c, c′) = ameasure′

c=c′

which is, of course, wrong. The similarity value might depend on the subjective
opinion’s prior, but if the equation above holds, then we do not even need to
compute the opinion, since the a priori value would already give the similarity
value.

We propose, then, two mappings between subjective opinions and proba-
bilistic semantic similarity measures, each of them satisfying two of the three
requirements above. Of the three requirements, only the first one is considered as
unavoidable, because of the definition of the uncertainty of subjective opinions.

Definition 2 (Wikipedia relatedness measure of two synsets as a sub-
jective opinion (expected value as semantic similarity)). We define a
subjective opinion capturing the similarity between synseta and synsetb using
the Wikipedia distance as follows:

sim(c, c′) ≡ ωmesaure′
c=c′ (bmeasure′

c=c′ , dmeasure′
c=c′ , umeasure′

c=c′ ) (11)

where

bmeasure′
c=c′ = sim(c, c′) − ameasure′

c=c′ + ameasure′
c=c′ · conf (c, c′)

dmeasure′
c=c′ = sim(c, c′) + ameasure′

c=c′ − ameasure′
c=c′ · conf (c, c′) + conf (c, c′)

umeasure′
c=c′ = 1 − conf (c, c′),

(12)

hence
Emesaure′

c=c′ ≡ sim(c, c′). (13)

We provide here motivation for the mapping that we propose. We treat the
confidence value conf (c, c′) as the inverse of the uncertainty of a subjective
opinion. In fact, we interpret the confidence as the percentage of probability
mass confidently assigned by the semantic relatedness: the semantic relatedness
ranges between zero and one, but we are confident on only conf (c, c′)% of that
mass. The rest of the probability mass (1 − conf (c, c′)) is, indeed, uncertain.

We also set the expected value of the opinion to coincide with the similarity
value, that is:

Emeasure′
c=c′ = sim(c, c′)

From this, given Eq. (2), and having set umeasure′
c=c′ = 1 − conf (c, c′), follows

that:
bmeasure′
c=c′ = Emeasure′

c=c′ − ameasure′
c=c′ · (1 − conf (c, c′)) =

= sim(c, c′) − ameasure′
c=c′ · (1 − conf (c, c′)) =

= sim(c, c′) − ameasure′
c=c′ + ameasure′

c=c′ · conf (c, c′)
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and

dmeasure′
c=c′ = 1 − bmeasure′

c=c′ − umeasure′
c=c′ =

= 1 − (sim(c, c′) − ameasure′
c=c′ + ameasure′

c=c′ · conf (c, c′)) − (1 − conf (c, c′)),

so

dmeasure′
c=c′ = sim(c, c′) + ameasure′

c=c′ − ameasure′
c=c′ · conf (c, c′) + conf (c, c′).

In this manner we define an opinion that reflects our constraints, that is:
(1) uncertainty as inverse of the confidence of the semantic similarity value and
(2) semantic similarity value as expected value of the subjective opinion. How-
ever, this mapping has the undesirable consequence that the belief bmeasure′

c=c′ and
the disbelief dmeasure′

c=c′ depend on the a priori value ameasure′
c=c′ . So, we propose an

alternative mapping.

Definition 3 (Wikipedia relatedness measure of two synsets as a sub-
jective opinion (belief as semantic similarity times confidence)). We
propose here an alternative mapping that allows a subjective opinion to capture
the similarity between synset a and b using the Wikipedia distance. The mapping
is defined as follows:

sim(c, c′) ≡ ωmeasure′
c=c′ (bmeasure′

c=c′ , dmeasure′
c=c′ , umeasure′

c=c′ ), (14)

where
bmeasure′
c=c′ = conf (c, c′) · sim(c, c′)

dmeasure′
c=c′ = conf (c, c′) · (1 − sim(c, c′))

umeasure′
c=c′ = 1 − conf (c, c′).

(15)

Again, we set the constraint umeasure′
c=c′ = 1 − conf (c, c′), however we do not

bind the expected value of the opinion to be equal to sim(c, c′).

4.2 Using Wikipedia Relatedness Measure as a Subjective Opinion

We have shown in the previous subsection that we can represent Wikipedia
relatedness measures between two synsets or two words by means of subjective
opinion. As with many other subjective logic operators [17], we propose two pos-
sible mappings for the probabilistic semantic similarity measure. In particular,
the second mapping that we propose does not present the undesirable charac-
teristic shown by the first one, that is a dependency between a priori value and
belief in the mapped opinion. Of course, these two mappings are different, so we
do not check their equivalence, like we did in the previous section for the mapping
between subjective logic and probabilistic semantic similarity measures.

Our goal is to show how to represent semantic similarity measures in sub-
jective logic, to import externally defined elements in the logic and increase its
capabilities. The choice of the mapping is dependent on the specific constraints
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given by a domain or an application where the logic is used in combination with
the similarity measure, although our preference goes for the second mapping,
because the first one presents an already mentioned undesirable dependency
between belief and a priori value. The same reasoning applies to the choice of
the semantic similarity measure to adopt. Each semantic similarity measure has
specific limitations, like the requirement that words are present in a given graph
or corpus of documents. The choice of a specific semantic similarity measure is
beyond our focus, because it is a very domain- and application-dependent choice.

5 Partial Evidence Observation

The Web and the Semantic Web are pervaded of data that can be used as
evidence for a given purpose, but that constitute partially positive/negative
evidence for others. Think about the Waisda? tagging game [22]. Here, users
challenge each other about video tagging. The more users insert the same tag
about the same video within the same time frame, the more the tag is believed
to be correct. Matching tags can be seen as positive observations for a specific
tag to be correct. However, consider the orthogonal issue of the user reputation.
User reputation is based on past behavior, hence on the trustworthiness of the
tags previously inserted by him/her. Now, the trustworthiness of each tag is
not deterministically computed, since it is roughly estimated from the number
of matching tags for each tag inserted by the user. The expected value of each
tag, which is less than one, can be considered as a partial observation of the
trustworthiness of the tag itself. Vice-versa, the remainder can be seen as a
negative partial observation. After having considered tag trustworthiness, one
can use each evaluation as partial evidence with respect to the user reliability:
no tag (or other kind of observation) is used as a fully positive or fully negative
evidence, unless its correctness has been proven by an authority or by another
source of validation. However, since only rarely the belief (and therefore, the
expected value) is equal to one, these observations almost never count as a fully
positive or fully negative evidence. We propose an operator for building opinions
based on indirect observations, i.e., on observations used to build these opinions,
each of which counts as an evidence.

Theorem 3 (Partial evidence-based opinions). Let
−→
P be a vector of pos-

itive observations (e.g. a list of “hits” or “match” counts) about distinct facts
related to a given subject s. Let l be the length of

−→
P . Let each opinion based on

each entry of
−→
P have an a priori value of 1

2 . Then we can derive an opinion
about the reliability of the subject in one of the following two manners.

– By cumulating the expected values (counted as partial positive evidence) of
each opinion based on each element of p:

bs =
1

l + 2
Σl

i=1

pi + 1
pi + 2

ds =
1

l + 2
Σl

i=1

1
pi + 2

us =
2

l + 2
. (16)
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– By averaging the expected values of the opinions computed on each of the
elements of p:

bs =
1
3l

Σl
i=1

pi + 1
pi + 2

ds =
1
3

− 1
3l

Σl
i=1

1
pi + 2

us =
2
3
. (17)

Proof. For each “fact” about s we have at our disposal a count of positive pieces
of evidence. We treat each fact as an observation about the trustworthiness
of s. Examples of these observations are tags inserted by s in a crowdsourcing
platform, and the items of evidence are the approvals or matches that these tags
obtain. We do not set an upper limit to the amount of positive evidence. Rather,
we convert it into a subjective opinion and we compute its expected value as
follows (remember that no negative evidence is registered):

Ei = bi + ai · u =
pi

pi + 2
+

1
2

· 2
pi + 2

=
pi + 1
pi + 2

. (18)

E is considered as partial positive evidence. If p is an extremely high number,
then E is approximated to 1. Otherwise, 1 − E is considered as partial negative
evidence. Given that we have l pieces of partial evidence (because we have l

distinct elements in
−→
P ), we compute the opinion about s following Eq. (1). Here

we have two possibilities. If l contains evidence about distinct and independent
facts, then we can cumulate all the pieces of evidence (represented as Ei, 1−Ei)
and by setting:

ps = Σl
i=1

pi + 1
pi + 2

ns = Σl
i=1

1
pi + 2

,

we obtain Eq. (16). In fact, we consider each item of
−→
P as providing an obser-

vation about s.
If, instead,

−→
P contains dependent observations, then it makes sense to average

them in order to uniformly represent the evidence about s. In this case, we set:

ps =
1
l
Σl

i=1

pi + 1
pi + 2

ns =
1
l
Σl

i=1

1
pi + 2

.

Following again Eq. (1), we obtain Eq. (17). Note that, in this case, we use
only the average of the observation as item of evidence. Therefore, we have only
one item of evidence. This justifies the fact that in Eq. 17 we always have 3 as
denominator: following Eq. (1), p + n + 2 = 1 + 2 = 3. ��
More often, we use Eq. 16, because we consider the cases where evidence from
different and independent facts about the same individual are provided.

For instance, consider the Waisda? tagging game [22]. Here, users challenge
each other in tagging videos. Whenever two tag entries for the same video from
two different users match, the users get a score. Indeed a matched tag has a
higher probability to be correct, and the goal of the game is to collect reliable
tags by incentivizing the users. How can we estimate a user reliability? Suppose
that a user user added two different tags about two different videos. One of them
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got five matches, the other got two. We can compute a subjective opinion about
user that represents his reputation using Eq. (16) and we obtain:

ωuser

(
1

l + 2
Σl

i=1

pi + 1
pi + 2

,
1

l + 2
Σl

i=1

1
pi + 2

, us =
2

l + 2

)
=

ωuser

(
1
4

(
6
7

+
3
4

)
,
1
4

(
1
7

+
1
4

)
,
1
4

(
2
4

))
=

ωuser

(
55
112

,
11
112

,
1
2

)
.

If, instead, the two tags got the same scores as before, but they were inserted
for the same video in different matches, we can average their contribution, since
they provide indications about the user reliability in the same situation. What
we obtain using Eq. (17) is:

ωuser

(
1
3l

Σl
i=1

pi + 1
pi + 2

,
1
3

− 1
3l

Σl
i=1

1
pi + 2

,
2
3

)
=

ωuser

(
1
6

(
6
7

+
3
4

)
,
1
3

− 1
6

(
6
7

+
3
4

)
,
2
3

)
=

ωuser

(
55
168

,
1

168
,
2
3

)
.

This method, and in particular Eq. (16), has been adopted and implemented
in a work of ours [3].

6 Dirichlet Process-Based Opinions: Open World
Opinions

We present here an extension of subjective logic that allows using Dirichlet
processes called “open world opinions”. We start from introducing Dirichlet
processes, and then describe the extension.

6.1 Preliminaries: Dirichlet Process

The Dirichlet process [10] is a stochastic process representing a probability dis-
tribution whose domain is a random probability distribution. As we previously
saw, the binomial and multinomial opinions are equivalent to Beta and Dirichlet
probability distributions. The Dirichlet distribution represents an extension of
the Beta distribution from a two-category situation to a situation where one
among n possible categories has to be chosen. A Dirichlet process over a set
S is a stochastic process whose sample path (i.e. an infinite-dimensional set of
random variables drawn from the process) is a probability distribution on S.
The finite dimensional distributions are from the Dirichlet distribution: if H is
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a finite measure on S, α is a positive real number and X is a sample path drawn
from a Dirichlet process, written as

X ∼ DP (α,H), (19)

then for any partition of S of cardinality m, say {Bi}m
i=1

(X(B1), . . . , X(Bm)) ∼ Dirichlet(αH(B1), . . . , αH(Bm)). (20)

Moreover, given n draws from X, we can predict the next observation as:

obsn+1 =

{
x∗

i (i ∈ [1 . . . k]) with probability n(x∗
i )

n+α

H with probability α
n+α

(21)

where x∗
i is one of the k unique values among the observations gathered.

6.2 Open World Opinions

Having to deal with real data coming from the Web, which are accessed incre-
mentally, the possibility to update the relative probabilities of possible outcomes
might not be enough to deal with them. We may need to handle unknown cate-
gories of data which should be accounted and manageable anyway. Ceolin et al.
[8] show how it is important to account for unseen categories, when dealing
with Web data. Here, we propose a particular subjective opinion called “open
world opinion” which accounts for partial knowledge about the possible out-
comes. A subjective opinion resembles personal opinion provided by sources with
respect to facts. Open world opinions represent the case when something about a
given fact has been observed, but the evidence allows also for some other (not yet
observed) outcome to be considered as plausible. With this extension we allow
the frame of discernment to have infinite cardinality. In practice, open world
opinions allow to represent situations when the unknown outcome of an event
can be equal to one among a list of already observed values (proportionally to
the amount of observations for each of them), but it is also possible that (and so
some probability mass is reserved for cases where) the outcome is different from
what has been observed so far, and is drawn from an infinitely large domain.

Definition 4 (Open world opinion). Let: X be a frame of infinite cardinality,
α ∈ R

+, k be the number of categories observed,
−→
P be the array of evidence per

category,
−→
B be a belief function over X, and H be a continuous function repre-

senting the prior probabilities for all the categories considered. New observations
will belong to the previously observed categories with probability determined by
the previous observations and to a new category with a probability determined by
the parameter α (that determines the uncertainty u). New categories are drawn
from H. We define the open world opinion ωx as:

ωx(
−→
B, u,H)

bxi
=

pxi

α + Σk
i=1pxi

u =
α

α + Σk
i=1pxi

1 = u + Σxi
bxi

.
(22)
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Definition 5 (Expected value of open world opinion). The expected value
of a category xi given an open world opinion is computed as follows:

E(xi, ωx(
−→
B, u,H))) = bxi

+ H(xi) · u =
pxi

+ α · H(xi)
α + Σpxt

=
pxi

α + Σpxt

, (23)

where
−→
P is the array of evidence observed, α is the concentration parameter, that

determines how frequently observations belonging to new categories are likely to
appear (we often set this parameter to 1 as default value; higher values imply that
observations belonging to new categories are drawn with high probability), and H
is the base distribution of the Dirichlet process, that is the probability distribution
from which new categories are drawn with probability α

α+Σpxt
. Given that H is a

continuous probability distribution (and hence with an infinite number of values),
the probability of xi determined by H is zero.

Theorem 4 (Equivalence between the subjective and Dirichlet process
notation). Let ωbn

X = (
−→
B,U,H) be an open world opinion expressed in belief

notation, and ωpn
X = (

−→
P , α,H) be an opinion expressed in probabilistic notation

(i.e., using the notation from a Dirichlet process;
−→
P is an array of evidence),

both over the same frame X. ωbn
X and ωpn

X are equivalent when the following
mappings holds:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

bxi
=

pxi

α + Σk
i=1pxi

⇔
u =

α

α + Σk
i=1pxi

⎧⎪⎨
⎪⎩

pxi
=

αbxi

U

1 = u + Σbxi
.

(24)

Proof. Each step of the Dirichlet process can be seen as a Dirichlet distribution.
Hence the mapping between Dirichlet distributions and multinomial opinions [14]
holds also here. ��
Theorem 5 (Mapping between open world opinion and multinomial
opinion). Let ω1x

y(
−→
B, u,H) be an open world opinion and let ω2x

y(
−→
B, u,−→a ) be

a multinomial opinion. Let X2 and Θ2 be the frame and the frame of discernment
of ω2x

y . Let {bi}k
i=1 be the result of the partition of dom(H) such that:

1. |Θ2| = |{bi}|;
2.

⋃{bi}k
i=1 = dom(H);

3. ∀{xi}[({xi} ∈ X2 ∧ |{xi}| = 1 ∧ xi ∈ bj) ⇒ �xk �=j ∈ bi].
4. W = k, where W is the non-informative constant of multinomial opinions

Then there exists a function D : Dom(H) → {bi} such that D(ω1x
y) = ω2x

y .

Proof. The equivalence between the discretized open world opinion and the
multinomial opinion is proven by showing that:
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– given Eq. (20), since the partition {bi}k
i=1 covers the entire dom(H), then the

partition distributes like the corresponding Dirichlet distribution;
– to each category of ω2x

y corresponds one and only one partition of {bi} as per
item 2 of Theorem 5. ��

In other words, open world opinions extend multinomial opinions by allowing
the frame of discernment Θ to be infinite. However, by properly discretizing an
open world opinion, what we obtain is an equivalent multinomial opinion.

6.3 Example: Using Open World Opinions

Here we illustrate an example of the use of open world opinions. Piracy at sea
is a well-known problem. Every year, several ships are attacked, hijacked, etc.
by pirates. The International Chamber of Commerce has created a repository
of reports about ship attacks.2 van Hage et al. [26] have created an enriched
Semantic Web version of such a repository, the Linked Open Piracy (LOP).3 On
the basis of LOP, one might think to be able to predict the frequency of attacks
from one year based on the previously available data. However, a problem arises
in this situation, since new attack types appear every year and this makes that
frequencies vary. Ceolin et al. [8] have shown how the Dirichlet process can
be employed to model such situations. Having the possibility to represent this
information by means of an open world opinion adds the power of subjective
logic to the Dirichlet process based representation. We can merge contributions
from different sources, taking into account their reliability. Moreover, we can
combine these facts with others in a logical way and then estimate the opinion
(and the corresponding probability to be true) of the consequent facts. By using
open world opinions, we can easily apply usual subjective logic operators to
these data and easily represent them in a way that takes into account basic
provenance information (e.g. data source) when applying fusing or discounting
operators. For instance, if according to LOP, in Asia in 2010 we had ten hijacking
events and ten attempted boardings, then we would represent this as:

ωLOP
Attacks in Asia in 2010([0.48, 0.48], 0.04, U(0, 1)).

If our opinion about LOP is that is a reliable but not fully accountable source
(e.g. ωus

LOP (0.8, 0.1, 0.1)), then we can take this information into account by
weighing the opinion given by LOP as follows:

ωus
LOP (0.8, 0.1, 0.1) ⊗ ωLOP

Attacks in Asia in 2010([0.48, 0.48], 0.04, U(0, 1)) =

= ωus:LOP
Attacks in Asia in 2010([0.384, 0.384], 0.232, U(0, 1)).

The resulting weighted opinion is more uncertain than the initial one, because,
even though the two observed types are more likely to happen, the small uncer-
tainty about the source reliability makes the other probabilities to rise.
2 http://www.icc-ccs.org
3 http://semanticweb.cs.vu.nl/lop

http://www.icc-ccs.org
http://semanticweb.cs.vu.nl/lop
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Having represented this information in subjective logic allows us to reason
on the data that we gathered. For instance, we could estimate the cost of the
insurance premium for a ship that goes along Asian routes, given that insur-
ance companies relate their premiums to the attack predicted to happen. By
means of Dirichlet processes these attacks are quite precisely predictable. The
determination of the cost of the premium given the happening of some attacks
is representable by means of logical statements. In the future, we will develop
subjective logic operators that allow to combine logically open world opinions.
However, representing these opinions is the first step towards the possibility to
permit this kind of reasoning.

Another useful consequence of this representation is the fact that, as we saw
in the example above, we take into account the reputation of the source when
modeling the opinion. We could also merge contributions from different sources,
once we have developed extensions of the fusion operators tailored for open world
opinions.

So, in the future we plan to develop subjective operators that extend those
currently existing in order to handle open world opinions. The logical operators
will allow combining propositions in logical manners (conjunction, disjunction,
etc.) and will probably allow ontological reasoning, although this needs to be
investigated further, for instance, with respect to the feasibility of subsumption
computation et simila. The fusion and discounting operators will allow handling
opinions from different sources and accounting for their reliability.

7 Related Work

The core element of subjective logic is the concept of “opinion” that is, the rep-
resentation that a given source holds with respect to the truth value of a given
proposition. Subjective logic’s operators allow combining opinions in different
manners, and their development has been widely investigated. Remarkably, the
averaging and cumulative fusion [13,14] (i.e., operators that allow averaging
or cumulating opinions about the same proposition from different sources) and
the discounting [16] (i.e., the operator that allows weighing a source’s opinion
based on the source’s reputation) operators are among the most generic and
useful operators for this logic. These operators provide the foundations for the
work proposed in this chapter. The connections between subjective logic and
the (Semantic) Web are increasing. Ceolin et al. [7] adopt this logic for comput-
ing trust values of annotations provided by experts, using DBpedia and other
Web sources as evidence. Unlike this work, they do not use semantic similar-
ity measures. Ceolin et al. [4,6] and Bellenger et al. [1] provide applications of
the combination of evidential reasoning with semantic similarity measures and
Semantic Web technologies. In this chapter we provide the theoretical founda-
tions for these approaches, and we generalize them. Sensoy et al. [24] use seman-
tic similarity in combination with subjective logic to import knowledge from one
context to another. They use the semantic similarity measure to compute a prior
value for the imported data, while we use it to weigh all the available evidence.
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Kaplan et al. [18] focus on the exploration of uncertain partial observations used
for building subjective opinions. Unlike their work, we restrict our focus on par-
tial observations of Web-like data and evaluations, which comprise the number
of “likes”, links and other similar indicators related to a given Web item. The
weighing and discounting based on semantic similarity measures can resemble the
work of Jøsang et al. [13], although the additional information that we include
in our reasoning (that is, semantic similarity) is related only to the frame of
discernment in subjective logic, and not to the belief assignment function.

8 Conclusion

We show the potential for employing subjective logic as a basis for reasoning on
Web and Semantic Web data. We show that it can be really powerful for handling
uncertainty and how little extensions can help in improving the mutual benefit
that Semantic Web and subjective logic obtain from cooperating together. We
propose the use of semantic similarity measures, both deterministic (in particu-
lar, the Wu and Palmer similarity measure) and probabilistic ones (in particular,
the Wikipedia semantic relatedness), within subjective logic. Part of this work
is based on previously mentioned practical applications that show the usefulness
of it, and here we provide theoretical foundations for it.

Second, we propose a means to represent subjective opinions on the basis of
partial evidence, which is a common phenomenon on the Web (e.g. number of
hits or number of tweets). This operator has been employed in a few empirical
works already, but here we provide a formal definition for it.

Lastly, we extend subjective opinions to model Dirichlet processes. These
have shown to be particularly useful to represent at least some Web datasets.
We introduce open world opinions to incorporate Dirichlet processes in subjective
logic.

We plan to investigate further the integration of semantic similarity measures
in subjective logic, to make it more uniform, and possibly provide best practices
that help choosing the right measure and mapping for a given set of requirements.
Also, we will provide additional operators for managing open world opinions. We
foresee that other extensions will be possible as well like, for instance, the usage
of hyperopinions [15] to handle subsumption reasoning about uncertain data.
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