
UMP-ST Plug-in: Documenting, Maintaining
and Evolving Probabilistic Ontologies

Using UnBBayes Framework

Rommel N. Carvalho1, Laécio L. dos Santos2(B), Marcelo Ladeira2,
Henrique A. da Rocha1, and Gilson L. Mendes1

1 Department of Research and Strategic Information (DIE),
Brazilian Office of the Comptroller General (CGU), SAS, Quadra 01, Bloco A,

Edif́ıcio Darcy Ribeiro, Braśılia, Distrito Federal, Brazil
{rommel.carvalho,henrique.rocha,liborio}@cgu.gov.br

http://www.cgu.gov.br
2 Department of Computer Science (CIC), University of Braśılia (UnB),
Campus Universitário Darcy Ribeiro, Braśılia, Distrito Federal, Brazil

laecio@gmail.com, mladeira@unb.br

http://www.cic.unb.br

Abstract. Several approaches have been proposed for dealing with
uncertainty in the Semantic Web (SW). Although probabilistic ontolo-
gies (PO) is one of the most promising approach to model uncertainty in
ontologies, no support has been offered to ontological engineers on how to
create this more complex type of ontologies. This task has proven to be
extremely difficult and hard, which motivated the creation of the Uncer-
tainty Modeling Process for Semantic Technologies (UMP-ST), a process
that guides users in modeling POs. This paper presents the UMP-ST
plug-in, a tool that implements this process and shows how the plug-in,
implemented in UnBBayes Framework, overcomes the main problems on
modeling probabilistic ontologies: the complexity in creating; the diffi-
culty in maintaining and evolving; and the lack of a centralized tool for
documenting these ontologies. The probabilistic ontology for Procure-
ment Fraud Detection and Prevention in Brazil is used to show how the
UMP-ST plug-in overcomes these problems. This probabilistic ontology
is a proof-of-concept use case created as part of a research project at the
Brazilian Office of the Comptroller General (CGU). (A short version of
this paper was presented on the URSW 2013 [3]).

Keywords: Uncertainty Modeling Process · Semantic Web · UMP-ST ·
POMC · Probabilistic ontology · Fraud detection · MEBN · UnBBayes

1 Introduction

In the last decade there has been a significant increase in formalisms that inte-
grate uncertainty representation into ontology languages. This was motivated
by the need for representation and inference in domains with uncertainty, since
c© Springer International Publishing Switzerland 2014
F. Bobillo et al. (Eds.): URSW 2011-2013, LNAI 8816, pp. 1–20, 2014.
DOI: 10.1007/978-3-319-13413-0 1



2 R.N. Carvalho et al.

OWL, the standard Web Ontology Language, supports only deterministic ontolo-
gies. This has given birth to several new languages like: PR-OWL [8–10], PR-
OWL 2 [4,5], OntoBayes [26], BayesOWL [11], and probabilistic extensions of
SHIF(D) and SHOIN(D) [20].

However, the increase of expressive power that these languages have provided
did not come without its drawbacks. In order to express more, the user is also
expected to deal with more complex representations. This increase in complexity
has been a major obstacle to making these languages more popular and used
more often in real world problems.

While there is a robust literature on ontology engineering [1,14] and knowl-
edge engineering for Bayesian networks [16,19], the literature contains little guid-
ance on how to model a probabilistic ontology.

To fill the gap, Carvalho [5] proposed the Uncertainty Modeling Process for
Semantic Technologies (UMP-ST), a methodology based on the Unified Process,
which describes the main tasks involved in creating probabilistic ontologies incre-
mentally and iteratively.

Nevertheless, the UMP-ST is only a guideline on things you should think
about and things you should do, but it does not provide a tool for doing so. In
this paper we present the UMP-ST plug-in for UnBBayes. This plug-in has the
objective of dealing with three main problems: the complexity in creating proba-
bilistic ontologies; the difficulty in maintaining and evolving existing probabilis-
tic ontologies; and the lack of a centralized tool for documenting probabilistic
ontologies.

This paper is organized as follows. Section 2 introduces the UMP-ST process
and the Probabilistic Ontology Modeling Cycle (POMC). Section 3 presents
the Probabilistic Web Ontology Language (PR-OWL) and the Multi-Entity
Bayesian Network (MEBN), semantic technologies that motivated the creation
of the UMP-ST. Section 4 presents UnBBayes and its plug-in framework. Then,
Sect. 5 describes UMP-ST plug-in, which is the main contribution of this paper.
Section 6 illustrates how this tool can be used to create a probabilistic ontology
for procurement fraud detection and prevention. Finally, Sect. 7 presents some
concluding remarks.

2 UMP-ST

The UMP-ST was proposed by Carvalho [5] as a methodology to build probabilis-
tic ontologies. The UMP-ST is based on the Unified Process (UP), a framework
that describes the activities that a team performs to transform a set of require-
ments into a software system [23]. Like the UP, the UMP-ST uses an iterative
and incremental approach, building the ontology through several deliveries, each
adding new requirements to the previous ones.

The UMP-ST divides the construction of a PO in four phases: Inception,
where goals are defined; Elaboration, where the ontology will be modeled; Con-
struction, where the ontology will be implemented; and Transition, where a new
version of the ontology will be available. Inside each phase, four major disciplines
guide the modeler: Requirements, Analysis & Design, Implementation and Test.



UMP-ST Plug-in 3

Figure 1 depicts the intensity of each discipline during the UMP-ST, which
is iterative and incremental. The basic idea behind iterative enhancement is to
model the domain incrementally, allowing the modeler to take advantage of what
is learned during earlier iterations of the model. Learning comes from discovering
new rules, entities, and relations that were not obvious previously. Some times
it is possible to test some of the rules defined during the Analysis & Design
stage even before having implemented the ontology. This is usually done by
creating simple probabilistic models to evaluate whether the model will behave
as expected before creating the more complex first-order probabilistic models.
That is why some testing occurs during the first iteration (I1) of the inception
phase, prior to the start of the implementation phase.

Fig. 1. Uncertainty Modeling Process for Semantic Technologies (UMP-ST).

Figure 2 presents the Probabilistic Ontology Modeling Cycle (POMC). This
cycle depicts the major outputs from each discipline and the natural order in
which the outputs are produced. Unlike the waterfall model [22], the POMC
cycles through the steps iteratively, using what is learned in one iteration to
improve the result of the next. The arrows reflect the typical progression, but
are not intended as hard constraints. Indeed, it is possible to have interactions
between any pair of disciplines. For instance, it is not uncommon to discover
a problem in the rules defined in the Analysis & Design discipline during the
activities in the Test discipline. As a result, the engineer might go directly from
Test to Analysis & Design in order to correct the problem.

The Requirements discipline defines the goals that should be achieved by
reasoning with the semantics provided by our model.

The Analysis & Design discipline describes classes of entities, their attrib-
utes, how they relate, and what rules apply to them in our domain. This definition
is independent of the language used to implement the model.



4 R.N. Carvalho et al.

Fig. 2. Probabilistic Ontology Modeling Cycle (POMC)

The Implementation discipline maps our design to a specific language that
allows uncertainty in semantic technologies (ST). In Fig. 2, the mapping is to PR-
OWL where the elements defined during Analysis & Design will be mapping to
constructions like entities, random variables, arcs and MFrags. In this discipline,
the Local Probability Distribution (LPD) will also be defined. When mapping
to other technologies (e.g., OntoBayes), it will be necessary to use different
constructions (e.g., L-Nodes and arcs).

Finally, the Test discipline is responsible for evaluating whether the model
developed during the Implementation discipline is behaving as expected from
the rules defined during Analysis & Design and whether they achieve the goals
elicited during the Requirements discipline. As noted previously, it is a good
idea to test some rules and assumptions even before the implementation. This
is a crucial step to mitigate risk by identifying problems before wasting time in
developing an inappropriate complex model.

An important aspect of the UMP-ST process is defining traceability of
requirements. Gotel and Finkelstein [15] define requirements traceability as:



UMP-ST Plug-in 5

Requirements traceability refers to the ability to describe and follow the
life of a requirement, in both forward and backward directions.

To provide traceability, requirements should be arranged in a specification
tree, so that each requirement is linked to its “parent” requirement, allowing a
fast visualization of the dependencies between the requirements. In the UMP-ST
model, each item of evidence is linked to a query it supports, which in turn is
linked to its higher level goal. This linkage supports requirements traceability.

In addition to the hierarchical decomposition of the specification tree, require-
ments should also be linked to work products of other disciplines, such as the
rules in the Analysis & Design discipline, probability distributions defined in
the Implementation discipline, and goals, queries, and evidence elicited in the
Requirements discipline. These links provide traceability that is essential to val-
idation and management of change.

This kind of link between work products of different disciplines is typically
done via a Requirements Traceability Matrix (RTM) [24,25]. Although useful
and very important to guarantee the goals are met, the RTM is extremely hard
to keep track without a proper tool. Therefore, this was a crucial feature that
we incorporated into the UMP-ST plug-in.

3 PR-OWL and MEBN

OWL, the standard language for creating ontologies in the Semantic Web, lacks
a proper support for uncertainty representation. The great quantity of domains
involving uncertainty has made urgent the creation of a language able to rep-
resent them. In this context, Paulo Costa, created the PR-OWL (Probabilistic
OWL) language in 2005, extending OWL with statements that allow the creation
of probabilistic ontologies [8].

PR-OWL uses the MEBN formalism to represent uncertainty in standard
OWL ontologies. This is done by modeling the domain into a MEBN Theory
(MTheory), a set of MEBN Fragments (MFrags) composed of nodes that repre-
sent the random variables of the model. MEBN provides a probabilistic inference
based on first-order logic and Bayesian networks1. Figure 3 shows the main ele-
ments of PR-OWL.

MEBN is a language for representing a probabilistic knowledge based on
Bayesian networks and First-Order Logic (FOL) [18]. MEBN increases the power
of Bayesian networks to add the expressive power of FOL. Moreover, it extends
FOL by adding a way to specify probabilistic distributions. MEBN solves the
main limitation of Bayesian networks: the inability to represent situations where
the number of random variables involved are unknown in advance. This limi-
tation makes it impossible to use Bayesian networks for domains that involve
recursion.

MEBN represents the domain knowledge with a MEBN Theory (MTheory).
A MTheory is composed by a set of MFrags, each of which representing prob-
ability information about a group of related random variables [18]. This set of
1 PR-OWL requires a MEBN inference engine to process the additional syntax.



6 R.N. Carvalho et al.

Fig. 3. PR-OWL main elements (reproduced with permission from Costa [8])

MFrags satisfies consistency constraints that guarantee the existence of a unique
joint distribution over its random variables.

An MFrag is composed of resident nodes, input nodes and context nodes.
Resident nodes and input nodes represent properties and relationships of entities,
and have arguments (ordinary variables) that will be filled with entities during
the instantiation of the model. A resident node has its LPD defined into the
MFrag, while an input node is a reference to a resident node in a different MFrag.
Oriented edges represent dependencies between the nodes. Context nodes define
the constraints that should be observed for the probabilistic relations defined in
its MFrag to be valid.

An MTheory works like a template, where MFrags will be instantiated from
entities, relationships and existing evidence (findings). This instantiation will
result in a Situation-Specific Bayesian Network (SSBN), where nodes of MFrags
become standard Bayesian network nodes. After instantiating the SSBN, a
Bayesian network inference algorithm can be used to calculate the distribution
of a node of interest.

In 2011, Carvalho proposed PR-OWL 2, extending PR-OWL to provide a
formal mapping between OWL concepts and PR-OWL random variables and
to make the types already present in OWL compatible with PR-OWL [5]. PR-
OWL 2 made it easier to construct hybrid ontologies containing probabilistic
and deterministic statements.

4 UnBBayes Plug-in Architecture

UnBBayes is an open-source JavaTM application developed by the Artificial
Intelligence Group from the Computer Science Department at the University of
Brasilia in Brazil that provides a framework for building probabilistic graphical
models and performing plausible reasoning. It features a graphical user interface
(GUI), an application programming interface (API), as well as plug-in support
for unforeseen extensions. It offers a comprehensive programming model that
supports the exploitation of probabilistic reasoning and provides a high degree
of scalability [17,21]. Figure 4 shows a screenshot of the tool with several plug-ins
opened as different internal windows.



UMP-ST Plug-in 7

Fig. 4. Screenshot of the framework UnBBayes with several plug-ins.

Unlike APIs, plug-ins offer a means to run new code inside the UnBBayes’
runtime environment. A plug-in is a program that interacts with a host appli-
cation (a core) to provide a given function (usually very specific) “on demand”.
The binding between a plug-in and a core application usually happens at loading
time (when the application starts up) or at runtime.

In UnBBayes, a plug-in is implemented as a folder, a ZIP or a JAR file
containing the following elements: (a) a plug-in descriptor file2 (a XML file
containing meta-data about the plug-in itself), (b) classes (the Java program
itself - it can be a set of “.class” files or a packaged JAR file), and (c) resources
(e.g. images, icons, message files, mark-up text).

UnBBayes currently relies on Java Plug-in Framework3 (JPF) version 1.5.1 to
provide a flexible plug-in environment. JPF is an open source plug-in infrastruc-
ture framework for building scalable Java projects, providing a runtime engine
that can dynamically discover and load plug-ins on-the-fly. The activation process
(i.e. the class loading process) is done in a lazy manner, so plug-in classes are
loaded into memory only when they are needed.

One specific type of plug-in that can be added to UnBBayes is the module
plug-in. Module plug-ins provide a means to create a relatively self-sufficient
feature in UnBBayes (e.g. new formalisms or completely new applications).
In UnBBayes vocabulary, modules are basically new internal frames that are
initialized when tool bars or menu buttons are activated. Those internal frames
do not need to be always visible, so one can create modules that add new func-
tionalities to the application without displaying any actual “internal” frame
2 A plug-in descriptor file is both the main and the minimal content of a UnBBayes

plug-in, thus one can create a plug-in composed only by a sole descriptor file.
3 http://jpf.sourceforge.net/

http://jpf.sourceforge.net/


8 R.N. Carvalho et al.

(wizards or pop-ups can be emulated this way). The UMP-ST tool presented in
this paper is a completely new application, since it was implemented as a module
plug-in.

Figure 5 illustrates the main classes of a module plug-in. UnBBayesModule
is the most important class of a module plug-in and it is an internal
frame (thus, it is a subclass of swing JInternalFrame). Classes implementing
IPersistenceAwareWindow are GUI classes containing a reference to an I/O
class, and because UnBBayesModule implements IPersistenceAwareWindow,
a module should be aware of what kind of files it can handle (so that
UnBBayes can consistently delegate I/O requests to the right modules).
NewModuleplug-in and NewModuleplug-inBuilder are just placeholders rep-
resenting classes that should be provided by plug-ins. The builder is necessary
only if NewModuleplug-in does not provide a default constructor with no para-
meters. For more information on UnBBayes plug-in framework see [21].

UnBBayes provides plug-ins for various formalisms based on Bayesian Net-
works, including Influence Diagram (ID), Multiply-Sectioned Bayesian Network
(MSBN), Hybrid Bayesian Network (HBN), Object-Oriented Bayesian Network
(OOBN), Probabilistic Relational Model (PRM), and Multi-Entity Bayesian
Network (MEBN).

UnBBayes was the first tool to implement MEBN. It has a GUI for creating
the model graphically, a knowledge base for representation and reasoning in
FOL, a language for specifying the LPD’s, and an algorithm for generating the
SSBN from a set of queries and findings [6]. In this first version, UnBBayes uses
PR-OWL format to persist the model, and PowerLoom [7] as the Knowledge
Base system. Recently, a plug-in for PR-OWL 2 was implemented, integrating
Protégé [13], a free, open-source ontology editor, to UnBBayes, allowing the user
to build both the deterministic and the probabilistic part of a ontology using
the UnBBayes.

5 UMP-ST Plug-in

The UMP-ST tool was implemented by the Artificial Intelligence Group of the
University of Brasilia as a plug-in for UnBBayes. As seen in Sect. 2, the UMP-
ST process consists of four major disciplines: Requirements, Analysis & Design,
Implementation, and Test. Nevertheless, the UMP-ST plug-in focuses only on
the Requirements and Analysis & Design disciplines, since they are the only
language independent disciplines. As seen in Sect. 4, UnBBayes has plug-ins for
building probabilistic ontologies in PR-OWL and PR-OWL 2, which can be used
in the Implementation and Test disciplines.

The objective of the UMP-ST plug-in is overcoming three main problems:

1. The complexity in creating probabilistic ontologies;
2. The difficulty in maintaining and evolving existing probabilistic ontologies; and
3. The lack of a centralized tool for documenting probabilistic ontologies.



UMP-ST Plug-in 9

Fig. 5. Class diagram of classes that must be extended to create a module plug-in.

The UMP-ST plug-in is almost like a wizard tool that guides the user in each
and every step of the Requirements and Analysis & Design disciplines. The user
begins defining the goals that should be achieved by the probabilistic ontology
(PO) as well as the queries that should be answered by the PO in order to achieve
that goal and the evidence needed in order to answer these queries. Then the
user is allowed to move to the next phase of the process which is defining the
entities, with their attributes and relationships. After this, he should define rules,
both probabilistic and deterministic. Finally he should define the groups related
to the defined goals, queries, and evidence (see Fig. 2).

Respecting this order of steps defined in the process allows the tool to incor-
porate an important aspect which is traceability. In every step of the way, the
user is required to associate which working product previously defined requires
the definition of this new element. For instance, when defining a new query, the
user has to say which goal that query helps achieve. We call this feature back-
tracking. This feature allows, for instance, the user to identify which goals are
being achieved by the implementation of a specific group. This feature provides
an easy and friendly way of maintaining the RTM matrix, defined previously.

The step by step guidance provided by the tool allows the user to overcome
the complexity in creating POs (first problem). Moreover, the plug-in also solves
the third problem, since all the documentation related to the PO being designed
is centralized in the tool and can be saved for future use. This documentation
is essential in every project, since it allows other users to quickly capture the
solution and the reasons that led it to be built that way. The plug-in allows the
user to enter comments for each editable element and storing information about
the author and creation date.



10 R.N. Carvalho et al.

Finally, the difficulty in maintaining and evolving existing POs (second prob-
lem) is addressed mainly by the traceability feature. When editing any element
(e.g., a goal, an entity, a rule, etc.), two panels are always present. On the
one hand, the backtracking panel shows every element from previous steps of
the process associated with the element being edited. On the other hand, the
forwardtracking panel shows every element created in the following steps of the
process associated with the element being edited. This provides a constant atten-
tion to where and what changes might impact, which facilitates maintainability
and evolution of existing POs.

The Fig. 6 shows the initial pane for editing entities in the plug-in. As shown,
the GUI opens inside the UnBBayes window as a new frame. There are four
tabs available: to edit the Requirements, the user utilizes the tab Goals; to edit
the Analysis & Design, the user utilizes the tabs Entities, Rules and Groups.
Selecting a tab initially opens a panel listing all elements of that type (in Fig. 6
all entities are listed, since the Entities tab was selected). The user can then
choose to edit or to delete an existing element, or to add new elements. In the
tab Entities there is also a button that opens the panel for editing relationships.

Figure 7 presents the panel for editing entities with some of the main fea-
tures of the UMP-ST plug-in. Note the backtracking panel that in this case
shows which goals and hypothesis originated the creation of the entity. The
fowardtracking panel lists all elements created from this entity (attributes, rela-
tionships, rules and groups).

The UMP-ST tool was implemented with the Java programming language,
using the Swing API for developing the user interface. The plug-in is distrib-
uted under GPL license, and it is available on sourceforge4. Since it is a module
plug-in in UnBBayes, the UmpstModule class extends the UnBBayesModule class.
The UMP-ST plug-in is mostly structured in a Model-View-Controller (MVC5)
design pattern6, which explicitly separates the program’s elements into three
distinct roles, in order to provide separation of concern (i.e. the software is
separated into three different set of classes with minimum overlap of functional-
ity). The View is implemented by the umpst.GUI package, the Controller by the
umpst.Controller package, and the Model by the umpst.IO and umpst.Model
packages. In this current beta version of the plug-in, the project is saved using
the serialization method, in which an image of Java objects is saved into a file,
allowing it to be reassembled during the load process.
4 http://sourceforge.net/projects/unbbayes/
5 An MVC design isolates logic and data from the user interface, by separating the

components into three independent categories: Model (data and operations), View
(user interface) and Controller (mostly, a mediator, scheduler, or moderator of other
classes) [2].

6 Design patterns are a set of generic approaches aiming to avoid known problems in
software engineering [12].

http://sourceforge.net/projects/unbbayes/


UMP-ST Plug-in 11

Fig. 6. Initial Panel of the Tab for editing Entities

Fig. 7. Panel for editing an entity with a few features highlighted.



12 R.N. Carvalho et al.

6 Use Case

The contract bidding process is one of the main process that can be used for
corruption actions in Brazil. Although there are laws that try to ensure compet-
itiveness and a fair process, perpetrators find ways to turn the process to their
advantage while appearing to be legitimate. The probabilistic ontology described
in this section was created by Carvalho [5] based on information about different
types of fraud encountered by the Brazilian Office of the Comptroller General
(CGU), didactically structured by experts. The purpose of this ontology is to
structure knowledge in a way that an automated system can reason in a similar
way as a specialist.

This section presents how the UMP-ST plug-in can be used to build the prob-
abilistic ontology for Procurement Fraud Detection and Prevention in Brazil,
an use case presented by Carvalho [5]. Although Carvalho [5] has followed the
UMP-ST process, there was no tool at the time to help create the corresponding
documentation. The focus of this section is to show how this modeling process
could benefit from the UMP-ST plug-in7.

As explained in Sect. 2, the objective of the Requirements discipline is to
define the objectives that should be achieved by representing and reasoning
with a computable representation of domain semantics. For this discipline, it
is important to define the questions that the model is expected to answer, i.e.,
the queries to be posed to the system being designed. For each question, a set
of information items that might help answer the question (evidence) should be
defined.

Public procurements are very complex and involve large sums of money.
Therefore, members forming the committee must not only be prepared, but
must also have a clean history, in order to maximize the morality, one of the
ethical principles that federal, state, municipal, and district governments must
adopt.

One of the principles established for the contract bidding is equality among
bidders. This principle prohibits the agent proxy to discriminate between poten-
tial suppliers. If an agent of the procurement has some form or relationship with
a bidder, he can provide information or set new requirements in order to favor
that bidder, and therefore he should not participate in this bid committee.

One of the goals of the use case is to identify whether it is needed to change
the committee of a procurement, because it has a member with a dirty history
or because it has a member related with any of the competitors.

One of the goals presented in [5] with its respective queries/evidences is:

1. Goal : Identify whether the committee of a given procurement should be
changed.
(a) Query : Is there any member of committee who does not have a clean

history?
7 Due to space limitation, only part of the whole documentation is going to be pre-

sented in this paper. The focus will be on presenting several features available in the
UMP-ST plug-in.



UMP-ST Plug-in 13

i. Evidence: Committee member has criminal history;
ii. Evidence: Committee member has been subject to administrative

investigation.
(b) Query : Is there any relation between members of the committee and the

enterprises that participated in previous procurements?
i. Evidence: Member and responsible person of an enterprise are rela-

tives (mother, father, brother, or sister);
ii. Evidence: Member and responsible person of an enterprise live at the

same address.

Figure 8 presents how this goal and its corresponding queries and evidence
would be displayed in the UMP-ST plug-in. Note that both query and evi-
dence are considered hypothesis in our tool. The idea is to generalize, since an
evidence for a query could be another query, and an evidence can be supported
by sub-evidences. Therefore, we decided to call them both hypothesis, which,
defined hierarchically will assemble an implicit specification tree.

Fig. 8. Panel for displaying the hypothesis (queries and evidence) for a goal.

Note that for the definition of the requirements, the user does not need have
knowledge about probabilistic ontologies, or even about semantic technologies.
Thus, these can be defined by the domain expert himself. In fact, the next
discipline, Analysis & Design can be done by someone with minimal knowledge
about ontologies, leaving only the implementation and testing disciplines for the
expert in the chosen technology.

The next step in the POMC model is to define the entities, attributes, and
relationships by looking on the set of goals/queries/evidence defined in the pre-
vious step. For instance, from the evidence that says “responsible person of an



14 R.N. Carvalho et al.

enterprise” we need to define the entities Person and Enterprise, besides the
relationship isResponsibleFor.

Figure 7 presents the entity Enterprise with its attributes, goals and hypothe-
sis defined as backtraking elements, as well as traceability panel with its forward-
tracking elements (attributes, rules, relationships, groups, etc.). Relationships are
edited under its own panel, where the user must name it and set which entities are
involved.

Once the entities, its attributes, and relationships are defined, we are able to
define the rules for our PO. The panel for editing rules are really similar to the
panel for editing entities. The difference is that we can define what type of rule it
is (deterministic or stochastic). Moreover, the backtraking panel allows the user to
add elements from the previous step in the POMC cycle, i.e., entities, attributes,
and relationships, as well as elements in the current step, i.e., other rules. Thus,
the forwardtracking panel only allows elements from the current and future steps
in the process, i.e., other rules and groups.

The rules presented in [5] for the goal previously described are:

1. If a member of the committee has a relative (mother, father, brother, or
sister) responsible for a bidder in the procurement, then it is more likely
that a relationship exists between the committee and the enterprises, which
inhibits competition.

2. If a member of the committee lives at the same address as a person responsible
for a bidder in the procurement, then it is more likely that a relationship exists
between the committee and the enterprises, which lowers competition.

3. If a member of the committee has been convicted of a crime or has been penal-
ized administratively, then he/she does not have a clean history. If he/she
was recently investigated, then it is likely that he/she does not have a clean
history.

4. If the relation defined in 1 and 2 is found in previous procurements, then it
is more likely that there will be a relation between this committee and future
bidders.

5. If 3 or 4, then it is more likely that the committee needs to be changed.

As it can be seen, rules 4 and 5 illustrate how a rule can be defined from
others rules. Thus, we would add rules 1 and 2 in tracking list of rule 4 and rules
3 and 4 in the tracking list of rule 5.

Figure 9 shows the panel for editing rule 2. The backtracking panel shows
that this rule involves the entities Person, Address, Enterprise and Procure-
ment, which in turn are used in the relationships livesAt, isResponsibleFor, and
hasPartipants. This information will be useful on the implementation of this
rule.

Finally, once the rules are defined, the user can go to the final step of the
Analysis & Design discipline, which is to define the groups, which will facilitate
the implementation of the PO. The panel for creating groups is similar to the
panel for editing rules. The difference is that the forwardtracking panel shows
only other groups. Figure 10 presents a list of groups created.



UMP-ST Plug-in 15

Fig. 9. Rules panel.

Fig. 10. Panel displaying some groups.



16 R.N. Carvalho et al.

Fig. 11. Implementation of the PO in UnBBayes-MEBN.



UMP-ST Plug-in 17

Fig. 12. LPD of the node isRelated.

Fig. 13. SSBN for the query IsSuspiciousProcurement(procurement1).

Figure 11 shows the MTheory created in the implementation of this ontol-
ogy in MEBN8, suggested in [5]. Note that there is pretty much a one-to-one
correspondence between the groups defined in UMP-ST and MFrags created in
8 Avaiable in https://sourceforge.net/projects/unbbayes/files/examples/.

https://sourceforge.net/projects/unbbayes/files/examples/


18 R.N. Carvalho et al.

MTheory. For instance, the Personal Information group is implemented as the
Personal Information MFrag, the Enterprise Information group is implemented
as the Enterprise Information MFrag, etc.

This one-to-one mapping and the traceability feature help users deal with
change and evolution of the PO. The traceability panel present when editing a
goal shows all elements associated with the realization of that goal. Therefore, if
a user needs to change a specific goal he/she knows where it is going to impact,
all the way to the implementation. Without the UMP-ST plug-in this would be
infeasible.

When implementing the model using PR-OWL, the entities defined dur-
ing Analysis & Design will be simply created as PR-OWL entities, while their
attributes and relationships will be mapped to random variables. The relation-
ship isResponsibleFor, for example, will become the isResponsibleFor(person,
enterprise) resident node into the MFrag Enterprise Information. The rules define
the dependencies between the nodes and also the context nodes that will set the
constraints that must be followed in order to be able to instantiate its corre-
sponding MFrag.

The LPDs are also defined in the Implementation discipline. Although LPDs
are not foreseen in the Analysis & Design discipline, it is recommended that
experts add comments to each rule in order to guide how these distributions
should be defined during the Implementation discipline.

Figure 12 shows the LPD for the resident node isSuspiciousProcurement
implemented using the LPD definition language sintax used in UnBBayes. The
probabilities are calculated based on the informations about the parent nodes.
The assign values of this LPD are notional only, since in this use case no
real data or statistics was used. When generating the SSBN, this LPD will be
instanciated based on the entities present in the model, and then will became
the CPT of the bayesian nodes. Figure 13 present part of a SSBN generated
to answer the query isSuspiciousProcurement(procurement1) in a situation
with three enterprises competing for the procurement1, with person1, person2,
and person3 responsibles for each one, and a comission formed by three mem-
bers. Person1 and person2 live at same address. The same occurs with member2
and person2. Member1 have administrative history. For this situation, the prob-
ability of the procurement be suspicious is high (60 %).

7 Conclusion

This paper presented the UMP-ST plug-in, a GUI tool for designing, maintain-
ing, and evolving POs. To the best of our knowledge, this is the first tool in the
world to support the design of POs.

The UMP-ST plug-in provides a step by step guidance in designing POs,
which allows the user to overcome the complexity in creating POs. Moreover,
the plug-in also provides a centralized tool for documenting POs, whereas before
the documentation was spread in different documents (word documents with
requirements, UML diagrams with entities, attributes, and relations, etc.).



UMP-ST Plug-in 19

Finally, the difficulty in maintaining and evolving existing POs is addressed
mainly by the traceability feature. The implementation of both forwardtracking
and backtracking provide a constant attention to where and what changes might
impact, which facilitates maintainability and evolution of existing POs. Although
this traceability can be achieved by a simple implementation of RTM in tools
like spreadsheets, as the PO becomes larger this manual traceability becomes
infeasible and error prone.

The UMP-ST plug-in is still in beta phase. Some of the features that should
be included in the future are: saving the project as an xml file; exporting all
documentation to a single PDF of HTML file; allowing the user to edit the rules
in a more visual way; and generating MTheories automatically based on the
entities, attributes, relationships and groups defined in the Analysis & Design
discipline, in order to facilitate the creation of a MEBN model (i.e., PR-OWL
PO) during the Implementation discipline.

Acknowledgments. The authors gratefully acknowledge full support from the Brazil-
ian Office of the Comptroller General (CGU) for the research reported in this paper.

References

1. Allemang, D., Hendler, J.A.: Semantic Web for the Working Ontologist. Morgan
Kaufmann, San Francisco (2008)

2. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-
Oriented Software Architecture. A System of Patterns, vol. 1. Wiley, Chichester
(1996)

3. Carvalho, R.N., Ladeira, M., de Souza, R.M., Matsumoto, S., Da Rocha, H.A.,
Mendes, G.L.: UMP-ST plug-in: a Tool for documenting, maintaining, and evolving
probabilistic ontologies. In: Bobillo, F., Carvalho, R.N., da Costa, P.C.G., d’Amato,
C., Fanizzi, N., Laskey, K.B., Laskey, K.J., Lukasiewicz, T., Martin, T., Nickles,
M., Pool, M. (eds.) Proceedings of the 9th International Workshop on Uncertainty
Reasoning for the Semantic Web (URSW 2013). CEUR Workshop Proceedings,
vol. 1073, pp. 15–26 (2013). CEUR-WS.org

4. Carvalho, R.N., Laskey, K.B., Costa, P.C.G.: PR-OWL 2.0 – bridging the gap to
OWL semantics. In: Bobillo, F., Costa, P.C.G., d’Amato, C., Fanizzi, N., Laskey,
K.B., Laskey, K.J., Lukasiewicz, T., Nickles, M., Pool, M. (eds.) URSW 2008-
2010/UniDL 2010. LNCS, vol. 7123, pp. 1–18. Springer, Heidelberg (2013)

5. Carvalho, R.N.: Probabilistic ontology: representation and modeling methodology.
Ph.D., George Mason University, Fairfax, VA, USA (2011)

6. Carvalho, R.N., Santos, L.L., Ladeira, M., Costa, P.C.G.: A GUI tool for plausi-
ble reasoning in the semantic web using MEBN. In: Proceedings of the Seventh
International Conference on Intelligent Systems Design and Applications, ISDA
’07, Los Alamitos, CA, USA, pp. 381–386. IEEE Computer Society, October 2007

7. Chalupsky, H., MacGregor, R.M., Russ, T.: Powerloom manual (2010)
8. Costa, P.C.G.: Bayesian semantics for the semantic Web. Ph.D., George Mason

University, Fairfax, VA, USA (2005)
9. Costa, P.C.G., Laskey, K.B., Laskey, K.J.: PR-OWL: a Bayesian framework for the

semantic Web. In: Proceedings of the First Workshop on Uncertainty Reasoning
for the Semantic Web (URSW 2005), Galway, Ireland, November 2005

http://CEUR-WS.org


20 R.N. Carvalho et al.

10. da Costa, P.C.G., Laskey, K.B., Laskey, K.J.: PR-OWL: a Bayesian ontology lan-
guage for the semantic Web. In: da Costa, P.C.G., d’Amato, C., Fanizzi, N., Laskey,
K.B., Laskey, K.J., Lukasiewicz, T., Nickles, M., Pool, M. (eds.) URSW 2005 - 2007.
LNCS (LNAI), vol. 5327, pp. 88–107. Springer, Heidelberg (2008)

11. Ding, Z., Peng, Y., Pan, R.: BayesOWL: uncertainty modeling in semantic web
ontologies. In: Ma, Z. (ed.) Soft Computing in Ontologies and Semantic Web.
Studies in Fuzziness and Soft Computing, vol. 204, pp. 3–29. Springer, Heidelberg
(2006). doi:10.1007/978-3-540-33473-6 1

12. Gamma, E., Helm, R., Johnson, R., Vlissides, J.M.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, New York (1994)

13. Gennari, J.H., Musen, M.A., Fergerson, R.W., Grosso, W.E., Crubzy, M., Eriksson,
H., Noy, N.F., Tu, S.W.: The evolution of protégé: an environment for knowledge-
based systems development. Int. J. Hum.-Comput. Stud. 58(1), 89–123 (2003)

14. Gomez-Perez, A., Corcho, O., Fernandez-Lopez, M.: Ontological Engineering: With
Examples from the Areas of Knowledge Management, e-Commerce and the Seman-
tic Web, 1st edn. Springer, Heidelberg (2004)

15. Gotel, O.C.Z., Finkelstein, C.W.: An analysis of the requirements traceability prob-
lem. In: 1994 Proceedings of the First International Conference on Requirements
Engineering, pp. 94–101 (1994)

16. Korb, K.B., Nicholson, A.E.: Bayesian Artificial Intelligence. Chapman &
Hall/CRC, Boca Raton (2003)

17. Ladeira, M., da Silva, D., Vieira, M., Onishi, M., Carvalho, R.N., da Silva, W.: Plat-
form independent and open tool for probabilistic networks. In: Proceedings of the
IV Artificial Intelligence National Meeting (ENIA 2003) on the XXIII Congress of
the Brazilian Computer Society (SBC 2003), Unicamp, Campinas, Brazil, August
2003

18. Laskey, K.B.: MEBN: a language for first-order Bayesian knowledge bases. Artif.
Intell. 172(2–3), 140–178 (2008)

19. Mahoney, M.: Network engineering for agile belief network models. IEEE Trans.
Knowl. Data Eng. 12(4), 487–498 (2000)

20. Lukasiewicz, T.: Expressive probabilistic description logics. Artif. Intell. 172(6–7),
852–883 (2008)

21. Matsumoto, S., Carvalho, R.N., Ladeira, M., da Costa, P.C.G., Santos, L.L., Silva,
D., Onishi, M., Machado, E.: UnBBayes: a java framework for probabilistic models
in AI. In: Cai, K. (ed.) Java in Academia and Research. iConcept Press, Annerley
(2011)

22. Royce, W.W.: Managing the development of large software systems: concepts and
techniques. In: Proceedings of IEEE WESTCON, pp. 1–9 (1970). Reprinted in
Proceedings of the Ninth International Conference on Software Engineering, pp.
328–338, March 1987

23. Scott, K.: The Unified Process Explained. Addison-Wesley Longman Publishing
Co Inc., Boston (2002)

24. Sommerville, I.: Software Engineering, 9th edn. Addison Wesley, Boston (2010)
25. Wiegers, K.E.: Software Requirements, 2nd edn. Microsoft Press, Redmond (2003)
26. Yang, Y., Calmet, J.: OntoBayes: an ontology-driven uncertainty model. In: Pro-

ceedings of the International Conference on Computational Intelligence for Mod-
elling, Control and Automation and International Conference on Intelligent Agents,
Web Technologies and Internet Commerce (CIMCA-IAWTIC’06), vol. 1, pp. 457–
463. IEEE Computer Society (2005)

http://dx.doi.org/10.1007/978-3-540-33473-6_1

	UMP-ST Plug-in: Documenting, Maintaining and Evolving Probabilistic Ontologies Using UnBBayes Framework
	1 Introduction
	2 UMP-ST
	3 PR-OWL and MEBN
	4 UnBBayes Plug-in Architecture
	5 UMP-ST Plug-in
	6 Use Case
	7 Conclusion
	References


