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Preface

This is the third volume on Uncertainty Reasoning for the Semantic Web, containing
revised and significantly extended versions of selected workshop papers presented at
three workshops on Uncertainty Reasoning for the Semantic Web (URSW), collocated
with the International Semantic Web Conferences (ISWC) in 2011, 2012, and 2013.
The first volume contained the proceedings of the first three workshops on URSW at
ISWC in 2005, 2006, and 2007, while the second volume included revised versions of
papers presented at the 2008, 2009, and 2010 editions of URSW or at the First
International Workshop on Uncertainty in Description Logics (UniDL), held in 2010.

These three volumes together represent a comprehensive compilation of state-of-the-
art research approaches to uncertainty reasoning in the context of the Semantic Web,
capturing different models of uncertainty and approaches to deductive as well as
inductive reasoning with uncertain formal knowledge.

The World Wide Web community envisions effortless interaction between humans
and computers, seamless interoperability and information exchange among Web
applications, and rapid and accurate identification and invocation of appropriate Web
services. As work with semantics and services grows more ambitious, there is increasing
appreciation of the need for principled approaches to the formal representation of
and reasoning under uncertainty. The term uncertainty is intended here to encompass a
variety of forms of incomplete knowledge, including incompleteness, inconclusiveness,
vagueness, ambiguity, and others. The term uncertainty reasoning is meant to denote
the full range of methods designed for representing and reasoning with knowledge when
Boolean truth values are unknown, unknowable, or inapplicable. Commonly applied
approaches to uncertainty reasoning include probability theory, Dempster-Shafer the-
ory, fuzzy logic and possibility theory, and numerous other methodologies.

A few Web-relevant challenges that are addressed by reasoning under uncertainty
include:

Uncertainty of available information: Much information on the World Wide Web is
uncertain. Examples include weather forecasts or gambling odds. Canonical methods
for representing and integrating such information are necessary for communicating it in
a seamless fashion.

Information incompleteness: Information extracted from large information networks
such as the World Wide Web is typically incomplete. The ability to exploit partial
information is very useful for identifying sources of service or information. For
example, that an online service deals with greeting cards may be evidence that it also
sells stationery. It is clear that search effectiveness could be improved by appropriate
use of technologies for handling uncertainty.

Information incorrectness: Web information is also often incorrect or only partially
correct, raising issues related to trust or credibility. Uncertainty representation and
reasoning helps to resolve tension among information sources having different



confidence and trust levels, and can facilitate the merging of controversial information
obtained from multiple sources.

Uncertain ontology mappings: The Semantic Web vision implies that numerous
distinct but conceptually overlapping ontologies will coexist and interoperate. It is
likely that in such scenarios, ontology mapping will benefit from the ability to represent
degrees of membership and/or likelihoods of membership in categories of a target
ontology, given information about class membership in the source ontologies.

Indefinite information about Web services: Dynamic composability of Web services
will require runtime identification of processing and data resources and resolution of
policy objectives. Uncertainty reasoning techniques may be necessary to resolve sit-
uations in which existing information is not definitive.

Uncertainty is thus an intrinsic feature of many important tasks on the Web and the
Semantic Web, and a full realization of the World Wide Web as a source of processable
data and services demands formalisms capable of representing and reasoning under
uncertainty. Unfortunately, none of these needs can be addressed in a principled way by
current Web standards. Although it is to some degree possible to use semantic markup
languages such as OWL or RDF(S) to represent qualitative and quantitative information
about uncertainty, there is no established foundation for doing so, and feasible
approaches are severely limited. Furthermore, there are ancillary issues such as how to
balance representational power versus simplicity of uncertainty representations, which
uncertainty representation techniques address uses such as the examples listed above,
how to ensure the consistency of representational formalisms and ontologies, etc.

In response to these pressing demands, in recent years, several promising approa-
ches to uncertainty reasoning on the Semantic Web have been proposed. The present
volume covers a representative cross section of these approaches, from extensions to
existing Web-related logics for the representation of uncertainty to approaches to
inductive reasoning under uncertainty on the Web.

In order to reflect the diversity of the presented approaches and to relate them to their
underlying models of uncertainty, the contributions to this volume are grouped as follows:

Probabilistic and Dempster-Shafer Models

Probability theory provides a mathematically sound representation language and formal
calculus for rational degrees of belief, which gives different agents the freedom to have
different beliefs about a given hypothesis. As this provides a compelling framework for
representing uncertain, imperfect knowledge that can come from diverse agents, there
are many distinct approaches using probability in the context of the Semantic Web.
Classes of probabilistic models covered with the present volume are Bayesian net-
works, probabilistic extensions to description and first-order logics, and models based
on the Dempster-Shafer theory (a generalization of the classical Bayesian approach).

VI Preface



Fuzzy and Possibilistic Models

Fuzzy formalisms allow for representing and processing degrees of truth about vague
(or imprecise) pieces of information. In fuzzy description logics and ontology lan-
guages, concept assertions, role assertions, concept inclusions, and role inclusions have
a degree of truth rather than a binary truth value. The present volume presents various
approaches that exploit fuzzy logic and possibility theory in the context of the Semantic
Web.

Inductive Reasoning and Machine Learning

Machine learning is supposed to play an increasingly important role in the context
of the Semantic Web by providing various tasks, such as the learning of ontologies
from incomplete data or the (semi-)automatic annotation of data on the Web. Results
obtained by machine learning approaches are typically uncertain. As a logic-based
approach to machine learning, inductive reasoning provides means for inducing general
propositions from observations (example facts). Papers in this volume exploit the
power of inductive reasoning for the purpose of ontology learning, and project future
directions for the use of machine learning on the Semantic Web.

Hybrid Approaches

This volume segment contains papers that either combine approaches from two or more
of the previous segments, or that do not rely on any specific classical approach to
uncertainty reasoning.

Acknowledgments. We would like to express our gratitude to the authors of this
volume for their contributions and to the workshop participants for inspiring discus-
sions, as well as to the members of the workshop Program Committees and the
additional reviewers for their reviews and for their overall support.
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Abstract. Several approaches have been proposed for dealing with
uncertainty in the Semantic Web (SW). Although probabilistic ontolo-
gies (PO) is one of the most promising approach to model uncertainty in
ontologies, no support has been offered to ontological engineers on how to
create this more complex type of ontologies. This task has proven to be
extremely difficult and hard, which motivated the creation of the Uncer-
tainty Modeling Process for Semantic Technologies (UMP-ST), a process
that guides users in modeling POs. This paper presents the UMP-ST
plug-in, a tool that implements this process and shows how the plug-in,
implemented in UnBBayes Framework, overcomes the main problems on
modeling probabilistic ontologies: the complexity in creating; the diffi-
culty in maintaining and evolving; and the lack of a centralized tool for
documenting these ontologies. The probabilistic ontology for Procure-
ment Fraud Detection and Prevention in Brazil is used to show how the
UMP-ST plug-in overcomes these problems. This probabilistic ontology
is a proof-of-concept use case created as part of a research project at the
Brazilian Office of the Comptroller General (CGU). (A short version of
this paper was presented on the URSW 2013 [3]).

Keywords: Uncertainty Modeling Process · Semantic Web · UMP-ST ·
POMC · Probabilistic ontology · Fraud detection · MEBN · UnBBayes

1 Introduction

In the last decade there has been a significant increase in formalisms that inte-
grate uncertainty representation into ontology languages. This was motivated
by the need for representation and inference in domains with uncertainty, since
c© Springer International Publishing Switzerland 2014
F. Bobillo et al. (Eds.): URSW 2011-2013, LNAI 8816, pp. 1–20, 2014.
DOI: 10.1007/978-3-319-13413-0 1



2 R.N. Carvalho et al.

OWL, the standard Web Ontology Language, supports only deterministic ontolo-
gies. This has given birth to several new languages like: PR-OWL [8–10], PR-
OWL 2 [4,5], OntoBayes [26], BayesOWL [11], and probabilistic extensions of
SHIF(D) and SHOIN(D) [20].

However, the increase of expressive power that these languages have provided
did not come without its drawbacks. In order to express more, the user is also
expected to deal with more complex representations. This increase in complexity
has been a major obstacle to making these languages more popular and used
more often in real world problems.

While there is a robust literature on ontology engineering [1,14] and knowl-
edge engineering for Bayesian networks [16,19], the literature contains little guid-
ance on how to model a probabilistic ontology.

To fill the gap, Carvalho [5] proposed the Uncertainty Modeling Process for
Semantic Technologies (UMP-ST), a methodology based on the Unified Process,
which describes the main tasks involved in creating probabilistic ontologies incre-
mentally and iteratively.

Nevertheless, the UMP-ST is only a guideline on things you should think
about and things you should do, but it does not provide a tool for doing so. In
this paper we present the UMP-ST plug-in for UnBBayes. This plug-in has the
objective of dealing with three main problems: the complexity in creating proba-
bilistic ontologies; the difficulty in maintaining and evolving existing probabilis-
tic ontologies; and the lack of a centralized tool for documenting probabilistic
ontologies.

This paper is organized as follows. Section 2 introduces the UMP-ST process
and the Probabilistic Ontology Modeling Cycle (POMC). Section 3 presents
the Probabilistic Web Ontology Language (PR-OWL) and the Multi-Entity
Bayesian Network (MEBN), semantic technologies that motivated the creation
of the UMP-ST. Section 4 presents UnBBayes and its plug-in framework. Then,
Sect. 5 describes UMP-ST plug-in, which is the main contribution of this paper.
Section 6 illustrates how this tool can be used to create a probabilistic ontology
for procurement fraud detection and prevention. Finally, Sect. 7 presents some
concluding remarks.

2 UMP-ST

The UMP-ST was proposed by Carvalho [5] as a methodology to build probabilis-
tic ontologies. The UMP-ST is based on the Unified Process (UP), a framework
that describes the activities that a team performs to transform a set of require-
ments into a software system [23]. Like the UP, the UMP-ST uses an iterative
and incremental approach, building the ontology through several deliveries, each
adding new requirements to the previous ones.

The UMP-ST divides the construction of a PO in four phases: Inception,
where goals are defined; Elaboration, where the ontology will be modeled; Con-
struction, where the ontology will be implemented; and Transition, where a new
version of the ontology will be available. Inside each phase, four major disciplines
guide the modeler: Requirements, Analysis & Design, Implementation and Test.
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Figure 1 depicts the intensity of each discipline during the UMP-ST, which
is iterative and incremental. The basic idea behind iterative enhancement is to
model the domain incrementally, allowing the modeler to take advantage of what
is learned during earlier iterations of the model. Learning comes from discovering
new rules, entities, and relations that were not obvious previously. Some times
it is possible to test some of the rules defined during the Analysis & Design
stage even before having implemented the ontology. This is usually done by
creating simple probabilistic models to evaluate whether the model will behave
as expected before creating the more complex first-order probabilistic models.
That is why some testing occurs during the first iteration (I1) of the inception
phase, prior to the start of the implementation phase.

Fig. 1. Uncertainty Modeling Process for Semantic Technologies (UMP-ST).

Figure 2 presents the Probabilistic Ontology Modeling Cycle (POMC). This
cycle depicts the major outputs from each discipline and the natural order in
which the outputs are produced. Unlike the waterfall model [22], the POMC
cycles through the steps iteratively, using what is learned in one iteration to
improve the result of the next. The arrows reflect the typical progression, but
are not intended as hard constraints. Indeed, it is possible to have interactions
between any pair of disciplines. For instance, it is not uncommon to discover
a problem in the rules defined in the Analysis & Design discipline during the
activities in the Test discipline. As a result, the engineer might go directly from
Test to Analysis & Design in order to correct the problem.

The Requirements discipline defines the goals that should be achieved by
reasoning with the semantics provided by our model.

The Analysis & Design discipline describes classes of entities, their attrib-
utes, how they relate, and what rules apply to them in our domain. This definition
is independent of the language used to implement the model.
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Fig. 2. Probabilistic Ontology Modeling Cycle (POMC)

The Implementation discipline maps our design to a specific language that
allows uncertainty in semantic technologies (ST). In Fig. 2, the mapping is to PR-
OWL where the elements defined during Analysis & Design will be mapping to
constructions like entities, random variables, arcs and MFrags. In this discipline,
the Local Probability Distribution (LPD) will also be defined. When mapping
to other technologies (e.g., OntoBayes), it will be necessary to use different
constructions (e.g., L-Nodes and arcs).

Finally, the Test discipline is responsible for evaluating whether the model
developed during the Implementation discipline is behaving as expected from
the rules defined during Analysis & Design and whether they achieve the goals
elicited during the Requirements discipline. As noted previously, it is a good
idea to test some rules and assumptions even before the implementation. This
is a crucial step to mitigate risk by identifying problems before wasting time in
developing an inappropriate complex model.

An important aspect of the UMP-ST process is defining traceability of
requirements. Gotel and Finkelstein [15] define requirements traceability as:
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Requirements traceability refers to the ability to describe and follow the
life of a requirement, in both forward and backward directions.

To provide traceability, requirements should be arranged in a specification
tree, so that each requirement is linked to its “parent” requirement, allowing a
fast visualization of the dependencies between the requirements. In the UMP-ST
model, each item of evidence is linked to a query it supports, which in turn is
linked to its higher level goal. This linkage supports requirements traceability.

In addition to the hierarchical decomposition of the specification tree, require-
ments should also be linked to work products of other disciplines, such as the
rules in the Analysis & Design discipline, probability distributions defined in
the Implementation discipline, and goals, queries, and evidence elicited in the
Requirements discipline. These links provide traceability that is essential to val-
idation and management of change.

This kind of link between work products of different disciplines is typically
done via a Requirements Traceability Matrix (RTM) [24,25]. Although useful
and very important to guarantee the goals are met, the RTM is extremely hard
to keep track without a proper tool. Therefore, this was a crucial feature that
we incorporated into the UMP-ST plug-in.

3 PR-OWL and MEBN

OWL, the standard language for creating ontologies in the Semantic Web, lacks
a proper support for uncertainty representation. The great quantity of domains
involving uncertainty has made urgent the creation of a language able to rep-
resent them. In this context, Paulo Costa, created the PR-OWL (Probabilistic
OWL) language in 2005, extending OWL with statements that allow the creation
of probabilistic ontologies [8].

PR-OWL uses the MEBN formalism to represent uncertainty in standard
OWL ontologies. This is done by modeling the domain into a MEBN Theory
(MTheory), a set of MEBN Fragments (MFrags) composed of nodes that repre-
sent the random variables of the model. MEBN provides a probabilistic inference
based on first-order logic and Bayesian networks1. Figure 3 shows the main ele-
ments of PR-OWL.

MEBN is a language for representing a probabilistic knowledge based on
Bayesian networks and First-Order Logic (FOL) [18]. MEBN increases the power
of Bayesian networks to add the expressive power of FOL. Moreover, it extends
FOL by adding a way to specify probabilistic distributions. MEBN solves the
main limitation of Bayesian networks: the inability to represent situations where
the number of random variables involved are unknown in advance. This limi-
tation makes it impossible to use Bayesian networks for domains that involve
recursion.

MEBN represents the domain knowledge with a MEBN Theory (MTheory).
A MTheory is composed by a set of MFrags, each of which representing prob-
ability information about a group of related random variables [18]. This set of
1 PR-OWL requires a MEBN inference engine to process the additional syntax.
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Fig. 3. PR-OWL main elements (reproduced with permission from Costa [8])

MFrags satisfies consistency constraints that guarantee the existence of a unique
joint distribution over its random variables.

An MFrag is composed of resident nodes, input nodes and context nodes.
Resident nodes and input nodes represent properties and relationships of entities,
and have arguments (ordinary variables) that will be filled with entities during
the instantiation of the model. A resident node has its LPD defined into the
MFrag, while an input node is a reference to a resident node in a different MFrag.
Oriented edges represent dependencies between the nodes. Context nodes define
the constraints that should be observed for the probabilistic relations defined in
its MFrag to be valid.

An MTheory works like a template, where MFrags will be instantiated from
entities, relationships and existing evidence (findings). This instantiation will
result in a Situation-Specific Bayesian Network (SSBN), where nodes of MFrags
become standard Bayesian network nodes. After instantiating the SSBN, a
Bayesian network inference algorithm can be used to calculate the distribution
of a node of interest.

In 2011, Carvalho proposed PR-OWL 2, extending PR-OWL to provide a
formal mapping between OWL concepts and PR-OWL random variables and
to make the types already present in OWL compatible with PR-OWL [5]. PR-
OWL 2 made it easier to construct hybrid ontologies containing probabilistic
and deterministic statements.

4 UnBBayes Plug-in Architecture

UnBBayes is an open-source JavaTM application developed by the Artificial
Intelligence Group from the Computer Science Department at the University of
Brasilia in Brazil that provides a framework for building probabilistic graphical
models and performing plausible reasoning. It features a graphical user interface
(GUI), an application programming interface (API), as well as plug-in support
for unforeseen extensions. It offers a comprehensive programming model that
supports the exploitation of probabilistic reasoning and provides a high degree
of scalability [17,21]. Figure 4 shows a screenshot of the tool with several plug-ins
opened as different internal windows.
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Fig. 4. Screenshot of the framework UnBBayes with several plug-ins.

Unlike APIs, plug-ins offer a means to run new code inside the UnBBayes’
runtime environment. A plug-in is a program that interacts with a host appli-
cation (a core) to provide a given function (usually very specific) “on demand”.
The binding between a plug-in and a core application usually happens at loading
time (when the application starts up) or at runtime.

In UnBBayes, a plug-in is implemented as a folder, a ZIP or a JAR file
containing the following elements: (a) a plug-in descriptor file2 (a XML file
containing meta-data about the plug-in itself), (b) classes (the Java program
itself - it can be a set of “.class” files or a packaged JAR file), and (c) resources
(e.g. images, icons, message files, mark-up text).

UnBBayes currently relies on Java Plug-in Framework3 (JPF) version 1.5.1 to
provide a flexible plug-in environment. JPF is an open source plug-in infrastruc-
ture framework for building scalable Java projects, providing a runtime engine
that can dynamically discover and load plug-ins on-the-fly. The activation process
(i.e. the class loading process) is done in a lazy manner, so plug-in classes are
loaded into memory only when they are needed.

One specific type of plug-in that can be added to UnBBayes is the module
plug-in. Module plug-ins provide a means to create a relatively self-sufficient
feature in UnBBayes (e.g. new formalisms or completely new applications).
In UnBBayes vocabulary, modules are basically new internal frames that are
initialized when tool bars or menu buttons are activated. Those internal frames
do not need to be always visible, so one can create modules that add new func-
tionalities to the application without displaying any actual “internal” frame
2 A plug-in descriptor file is both the main and the minimal content of a UnBBayes

plug-in, thus one can create a plug-in composed only by a sole descriptor file.
3 http://jpf.sourceforge.net/

http://jpf.sourceforge.net/
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(wizards or pop-ups can be emulated this way). The UMP-ST tool presented in
this paper is a completely new application, since it was implemented as a module
plug-in.

Figure 5 illustrates the main classes of a module plug-in. UnBBayesModule
is the most important class of a module plug-in and it is an internal
frame (thus, it is a subclass of swing JInternalFrame). Classes implementing
IPersistenceAwareWindow are GUI classes containing a reference to an I/O
class, and because UnBBayesModule implements IPersistenceAwareWindow,
a module should be aware of what kind of files it can handle (so that
UnBBayes can consistently delegate I/O requests to the right modules).
NewModuleplug-in and NewModuleplug-inBuilder are just placeholders rep-
resenting classes that should be provided by plug-ins. The builder is necessary
only if NewModuleplug-in does not provide a default constructor with no para-
meters. For more information on UnBBayes plug-in framework see [21].

UnBBayes provides plug-ins for various formalisms based on Bayesian Net-
works, including Influence Diagram (ID), Multiply-Sectioned Bayesian Network
(MSBN), Hybrid Bayesian Network (HBN), Object-Oriented Bayesian Network
(OOBN), Probabilistic Relational Model (PRM), and Multi-Entity Bayesian
Network (MEBN).

UnBBayes was the first tool to implement MEBN. It has a GUI for creating
the model graphically, a knowledge base for representation and reasoning in
FOL, a language for specifying the LPD’s, and an algorithm for generating the
SSBN from a set of queries and findings [6]. In this first version, UnBBayes uses
PR-OWL format to persist the model, and PowerLoom [7] as the Knowledge
Base system. Recently, a plug-in for PR-OWL 2 was implemented, integrating
Protégé [13], a free, open-source ontology editor, to UnBBayes, allowing the user
to build both the deterministic and the probabilistic part of a ontology using
the UnBBayes.

5 UMP-ST Plug-in

The UMP-ST tool was implemented by the Artificial Intelligence Group of the
University of Brasilia as a plug-in for UnBBayes. As seen in Sect. 2, the UMP-
ST process consists of four major disciplines: Requirements, Analysis & Design,
Implementation, and Test. Nevertheless, the UMP-ST plug-in focuses only on
the Requirements and Analysis & Design disciplines, since they are the only
language independent disciplines. As seen in Sect. 4, UnBBayes has plug-ins for
building probabilistic ontologies in PR-OWL and PR-OWL 2, which can be used
in the Implementation and Test disciplines.

The objective of the UMP-ST plug-in is overcoming three main problems:

1. The complexity in creating probabilistic ontologies;
2. The difficulty in maintaining and evolving existing probabilistic ontologies; and
3. The lack of a centralized tool for documenting probabilistic ontologies.
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Fig. 5. Class diagram of classes that must be extended to create a module plug-in.

The UMP-ST plug-in is almost like a wizard tool that guides the user in each
and every step of the Requirements and Analysis & Design disciplines. The user
begins defining the goals that should be achieved by the probabilistic ontology
(PO) as well as the queries that should be answered by the PO in order to achieve
that goal and the evidence needed in order to answer these queries. Then the
user is allowed to move to the next phase of the process which is defining the
entities, with their attributes and relationships. After this, he should define rules,
both probabilistic and deterministic. Finally he should define the groups related
to the defined goals, queries, and evidence (see Fig. 2).

Respecting this order of steps defined in the process allows the tool to incor-
porate an important aspect which is traceability. In every step of the way, the
user is required to associate which working product previously defined requires
the definition of this new element. For instance, when defining a new query, the
user has to say which goal that query helps achieve. We call this feature back-
tracking. This feature allows, for instance, the user to identify which goals are
being achieved by the implementation of a specific group. This feature provides
an easy and friendly way of maintaining the RTM matrix, defined previously.

The step by step guidance provided by the tool allows the user to overcome
the complexity in creating POs (first problem). Moreover, the plug-in also solves
the third problem, since all the documentation related to the PO being designed
is centralized in the tool and can be saved for future use. This documentation
is essential in every project, since it allows other users to quickly capture the
solution and the reasons that led it to be built that way. The plug-in allows the
user to enter comments for each editable element and storing information about
the author and creation date.
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Finally, the difficulty in maintaining and evolving existing POs (second prob-
lem) is addressed mainly by the traceability feature. When editing any element
(e.g., a goal, an entity, a rule, etc.), two panels are always present. On the
one hand, the backtracking panel shows every element from previous steps of
the process associated with the element being edited. On the other hand, the
forwardtracking panel shows every element created in the following steps of the
process associated with the element being edited. This provides a constant atten-
tion to where and what changes might impact, which facilitates maintainability
and evolution of existing POs.

The Fig. 6 shows the initial pane for editing entities in the plug-in. As shown,
the GUI opens inside the UnBBayes window as a new frame. There are four
tabs available: to edit the Requirements, the user utilizes the tab Goals; to edit
the Analysis & Design, the user utilizes the tabs Entities, Rules and Groups.
Selecting a tab initially opens a panel listing all elements of that type (in Fig. 6
all entities are listed, since the Entities tab was selected). The user can then
choose to edit or to delete an existing element, or to add new elements. In the
tab Entities there is also a button that opens the panel for editing relationships.

Figure 7 presents the panel for editing entities with some of the main fea-
tures of the UMP-ST plug-in. Note the backtracking panel that in this case
shows which goals and hypothesis originated the creation of the entity. The
fowardtracking panel lists all elements created from this entity (attributes, rela-
tionships, rules and groups).

The UMP-ST tool was implemented with the Java programming language,
using the Swing API for developing the user interface. The plug-in is distrib-
uted under GPL license, and it is available on sourceforge4. Since it is a module
plug-in in UnBBayes, the UmpstModule class extends the UnBBayesModule class.
The UMP-ST plug-in is mostly structured in a Model-View-Controller (MVC5)
design pattern6, which explicitly separates the program’s elements into three
distinct roles, in order to provide separation of concern (i.e. the software is
separated into three different set of classes with minimum overlap of functional-
ity). The View is implemented by the umpst.GUI package, the Controller by the
umpst.Controller package, and the Model by the umpst.IO and umpst.Model
packages. In this current beta version of the plug-in, the project is saved using
the serialization method, in which an image of Java objects is saved into a file,
allowing it to be reassembled during the load process.
4 http://sourceforge.net/projects/unbbayes/
5 An MVC design isolates logic and data from the user interface, by separating the

components into three independent categories: Model (data and operations), View
(user interface) and Controller (mostly, a mediator, scheduler, or moderator of other
classes) [2].

6 Design patterns are a set of generic approaches aiming to avoid known problems in
software engineering [12].

http://sourceforge.net/projects/unbbayes/
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Fig. 6. Initial Panel of the Tab for editing Entities

Fig. 7. Panel for editing an entity with a few features highlighted.
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6 Use Case

The contract bidding process is one of the main process that can be used for
corruption actions in Brazil. Although there are laws that try to ensure compet-
itiveness and a fair process, perpetrators find ways to turn the process to their
advantage while appearing to be legitimate. The probabilistic ontology described
in this section was created by Carvalho [5] based on information about different
types of fraud encountered by the Brazilian Office of the Comptroller General
(CGU), didactically structured by experts. The purpose of this ontology is to
structure knowledge in a way that an automated system can reason in a similar
way as a specialist.

This section presents how the UMP-ST plug-in can be used to build the prob-
abilistic ontology for Procurement Fraud Detection and Prevention in Brazil,
an use case presented by Carvalho [5]. Although Carvalho [5] has followed the
UMP-ST process, there was no tool at the time to help create the corresponding
documentation. The focus of this section is to show how this modeling process
could benefit from the UMP-ST plug-in7.

As explained in Sect. 2, the objective of the Requirements discipline is to
define the objectives that should be achieved by representing and reasoning
with a computable representation of domain semantics. For this discipline, it
is important to define the questions that the model is expected to answer, i.e.,
the queries to be posed to the system being designed. For each question, a set
of information items that might help answer the question (evidence) should be
defined.

Public procurements are very complex and involve large sums of money.
Therefore, members forming the committee must not only be prepared, but
must also have a clean history, in order to maximize the morality, one of the
ethical principles that federal, state, municipal, and district governments must
adopt.

One of the principles established for the contract bidding is equality among
bidders. This principle prohibits the agent proxy to discriminate between poten-
tial suppliers. If an agent of the procurement has some form or relationship with
a bidder, he can provide information or set new requirements in order to favor
that bidder, and therefore he should not participate in this bid committee.

One of the goals of the use case is to identify whether it is needed to change
the committee of a procurement, because it has a member with a dirty history
or because it has a member related with any of the competitors.

One of the goals presented in [5] with its respective queries/evidences is:

1. Goal : Identify whether the committee of a given procurement should be
changed.
(a) Query : Is there any member of committee who does not have a clean

history?
7 Due to space limitation, only part of the whole documentation is going to be pre-

sented in this paper. The focus will be on presenting several features available in the
UMP-ST plug-in.
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i. Evidence: Committee member has criminal history;
ii. Evidence: Committee member has been subject to administrative

investigation.
(b) Query : Is there any relation between members of the committee and the

enterprises that participated in previous procurements?
i. Evidence: Member and responsible person of an enterprise are rela-

tives (mother, father, brother, or sister);
ii. Evidence: Member and responsible person of an enterprise live at the

same address.

Figure 8 presents how this goal and its corresponding queries and evidence
would be displayed in the UMP-ST plug-in. Note that both query and evi-
dence are considered hypothesis in our tool. The idea is to generalize, since an
evidence for a query could be another query, and an evidence can be supported
by sub-evidences. Therefore, we decided to call them both hypothesis, which,
defined hierarchically will assemble an implicit specification tree.

Fig. 8. Panel for displaying the hypothesis (queries and evidence) for a goal.

Note that for the definition of the requirements, the user does not need have
knowledge about probabilistic ontologies, or even about semantic technologies.
Thus, these can be defined by the domain expert himself. In fact, the next
discipline, Analysis & Design can be done by someone with minimal knowledge
about ontologies, leaving only the implementation and testing disciplines for the
expert in the chosen technology.

The next step in the POMC model is to define the entities, attributes, and
relationships by looking on the set of goals/queries/evidence defined in the pre-
vious step. For instance, from the evidence that says “responsible person of an
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enterprise” we need to define the entities Person and Enterprise, besides the
relationship isResponsibleFor.

Figure 7 presents the entity Enterprise with its attributes, goals and hypothe-
sis defined as backtraking elements, as well as traceability panel with its forward-
tracking elements (attributes, rules, relationships, groups, etc.). Relationships are
edited under its own panel, where the user must name it and set which entities are
involved.

Once the entities, its attributes, and relationships are defined, we are able to
define the rules for our PO. The panel for editing rules are really similar to the
panel for editing entities. The difference is that we can define what type of rule it
is (deterministic or stochastic). Moreover, the backtraking panel allows the user to
add elements from the previous step in the POMC cycle, i.e., entities, attributes,
and relationships, as well as elements in the current step, i.e., other rules. Thus,
the forwardtracking panel only allows elements from the current and future steps
in the process, i.e., other rules and groups.

The rules presented in [5] for the goal previously described are:

1. If a member of the committee has a relative (mother, father, brother, or
sister) responsible for a bidder in the procurement, then it is more likely
that a relationship exists between the committee and the enterprises, which
inhibits competition.

2. If a member of the committee lives at the same address as a person responsible
for a bidder in the procurement, then it is more likely that a relationship exists
between the committee and the enterprises, which lowers competition.

3. If a member of the committee has been convicted of a crime or has been penal-
ized administratively, then he/she does not have a clean history. If he/she
was recently investigated, then it is likely that he/she does not have a clean
history.

4. If the relation defined in 1 and 2 is found in previous procurements, then it
is more likely that there will be a relation between this committee and future
bidders.

5. If 3 or 4, then it is more likely that the committee needs to be changed.

As it can be seen, rules 4 and 5 illustrate how a rule can be defined from
others rules. Thus, we would add rules 1 and 2 in tracking list of rule 4 and rules
3 and 4 in the tracking list of rule 5.

Figure 9 shows the panel for editing rule 2. The backtracking panel shows
that this rule involves the entities Person, Address, Enterprise and Procure-
ment, which in turn are used in the relationships livesAt, isResponsibleFor, and
hasPartipants. This information will be useful on the implementation of this
rule.

Finally, once the rules are defined, the user can go to the final step of the
Analysis & Design discipline, which is to define the groups, which will facilitate
the implementation of the PO. The panel for creating groups is similar to the
panel for editing rules. The difference is that the forwardtracking panel shows
only other groups. Figure 10 presents a list of groups created.
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Fig. 9. Rules panel.

Fig. 10. Panel displaying some groups.
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Fig. 11. Implementation of the PO in UnBBayes-MEBN.
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Fig. 12. LPD of the node isRelated.

Fig. 13. SSBN for the query IsSuspiciousProcurement(procurement1).

Figure 11 shows the MTheory created in the implementation of this ontol-
ogy in MEBN8, suggested in [5]. Note that there is pretty much a one-to-one
correspondence between the groups defined in UMP-ST and MFrags created in
8 Avaiable in https://sourceforge.net/projects/unbbayes/files/examples/.

https://sourceforge.net/projects/unbbayes/files/examples/
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MTheory. For instance, the Personal Information group is implemented as the
Personal Information MFrag, the Enterprise Information group is implemented
as the Enterprise Information MFrag, etc.

This one-to-one mapping and the traceability feature help users deal with
change and evolution of the PO. The traceability panel present when editing a
goal shows all elements associated with the realization of that goal. Therefore, if
a user needs to change a specific goal he/she knows where it is going to impact,
all the way to the implementation. Without the UMP-ST plug-in this would be
infeasible.

When implementing the model using PR-OWL, the entities defined dur-
ing Analysis & Design will be simply created as PR-OWL entities, while their
attributes and relationships will be mapped to random variables. The relation-
ship isResponsibleFor, for example, will become the isResponsibleFor(person,
enterprise) resident node into the MFrag Enterprise Information. The rules define
the dependencies between the nodes and also the context nodes that will set the
constraints that must be followed in order to be able to instantiate its corre-
sponding MFrag.

The LPDs are also defined in the Implementation discipline. Although LPDs
are not foreseen in the Analysis & Design discipline, it is recommended that
experts add comments to each rule in order to guide how these distributions
should be defined during the Implementation discipline.

Figure 12 shows the LPD for the resident node isSuspiciousProcurement
implemented using the LPD definition language sintax used in UnBBayes. The
probabilities are calculated based on the informations about the parent nodes.
The assign values of this LPD are notional only, since in this use case no
real data or statistics was used. When generating the SSBN, this LPD will be
instanciated based on the entities present in the model, and then will became
the CPT of the bayesian nodes. Figure 13 present part of a SSBN generated
to answer the query isSuspiciousProcurement(procurement1) in a situation
with three enterprises competing for the procurement1, with person1, person2,
and person3 responsibles for each one, and a comission formed by three mem-
bers. Person1 and person2 live at same address. The same occurs with member2
and person2. Member1 have administrative history. For this situation, the prob-
ability of the procurement be suspicious is high (60 %).

7 Conclusion

This paper presented the UMP-ST plug-in, a GUI tool for designing, maintain-
ing, and evolving POs. To the best of our knowledge, this is the first tool in the
world to support the design of POs.

The UMP-ST plug-in provides a step by step guidance in designing POs,
which allows the user to overcome the complexity in creating POs. Moreover,
the plug-in also provides a centralized tool for documenting POs, whereas before
the documentation was spread in different documents (word documents with
requirements, UML diagrams with entities, attributes, and relations, etc.).
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Finally, the difficulty in maintaining and evolving existing POs is addressed
mainly by the traceability feature. The implementation of both forwardtracking
and backtracking provide a constant attention to where and what changes might
impact, which facilitates maintainability and evolution of existing POs. Although
this traceability can be achieved by a simple implementation of RTM in tools
like spreadsheets, as the PO becomes larger this manual traceability becomes
infeasible and error prone.

The UMP-ST plug-in is still in beta phase. Some of the features that should
be included in the future are: saving the project as an xml file; exporting all
documentation to a single PDF of HTML file; allowing the user to edit the rules
in a more visual way; and generating MTheories automatically based on the
entities, attributes, relationships and groups defined in the Analysis & Design
discipline, in order to facilitate the creation of a MEBN model (i.e., PR-OWL
PO) during the Implementation discipline.
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Abstract. Credal ALC combines the constructs of the well-known ALC
logic with probabilistic assessments, so as to let terminologies convey
uncertainty about concepts and roles. We present a restricted version
of Credal ALC that can be viewed as a description language for a class
of relational Bayesian networks. The resulting “crALC networks” offer
a simplified and illuminating route both to Credal ALC and to rela-
tional Bayesian networks. We then describe the implementation, in freely
available packages, of approximate variational and lifted exact inference
algorithms.

1 Introduction

This paper focuses on a probabilistic description logic, called Credal ALC [7],
that adds probabilistic operators to the well-known description logic ALC [2].
Credal ALC lets terminologies convey uncertainty about concepts and roles. The
idea is to adopt all constructs of acyclic ALC terminologies, plus probabilistic
assessments such as P(C|D) ∈ [α, α], where C and D are concepts, and P(r) ∈
[β, β], where r is a role. These probabilities are supposed elicited from experts,
or learned from data.

The semantics of Credal ALC is based on probabilities over interpretations,
with implicit independence assumptions that are encoded through a Markov con-
dition. Given a domain, a Credal ALC terminology can be grounded into a set of
Bayesian networks. Instead of the usual satisfiability or subsumption problems
that are studied in description logics [2], here the focus is on probabilistic infer-
ence: given a domain and a set of assertions, compute the conditional probability
of some assertion.

While the syntax of Credal ALC is relatively simple to grasp, the semantics is
quite complex. The adopted Markov condition is far from obvious, and one needs
several assumptions to guarantee that any well-formed terminology specifies a
single probability measure over all interpretations.

In this paper we present a reformulation of Credal ALC, such that any well-
formed set of formulas can be directly translated into a relational Bayesian net-
work. The semantics is then inherited from the theory of relational Bayesian
c© Springer International Publishing Switzerland 2014
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networks [28,29]. This reformulation simplifies the development of probabilistic
terminologies, and leads to insights concerning inference algorithms. Addition-
ally, the syntax offers a new way of specifying relational Bayesian networks.
Indeed, a profitable way to understand Credal ALC is to take it as a description
language for a restricted but useful class of relational Bayesian networks, a class
that can be valuable in specifying terminologies containing uncertainty.

We then move to inference algorithms; that is, algorithms that compute prob-
abilities given a set of sentences and assertions in the language. One advantage of
connecting Credal ALC with Bayesian networks is that algorithms for the latter
formalism can be applied to the former. We present an implementation of vari-
ational message-passing algorithms for inference, in particular algorithms that
exploit symmetries amongst individuals in a domain. Such symmetries allow us
to cluster variables together, and to approximate inferences solely by exchang-
ing messages between such clusters. We then present an implementation of exact
inference using lifted algorithms; that is, algorithms that again treat sets of vari-
ables together. We examine the use of aggregation parfactors in exact lifted
inference.

The paper is organized as follows. Basic definitions and notation, as well as
related literature, are reviewed in Sect. 2. Credal ALC is presented as a syntax
for relational Bayesian networks in Sect. 3. Sections 4 and 5 respectively describe
our implementation of variational and lifted algorithms.

2 ALC and (Relational) Bayesian Networks

In this section we review some necessary notions, mostly related to knowledge
representation formalisms. We are interested in description logics and in rela-
tional Bayesian networks, respectively as representation for deterministic and
probabilistic relationships between objects.

2.1 The Description Logic ALC
In the popular description logic ALC [66] we have individuals, concepts, and
roles, to be understood as constants, unary relations, and binary relations.
Throughout, a, b, a1, a2, . . . are individuals; C,D,C1, C2, . . . are concepts; and
r, r1, r2, . . . are roles. Concepts and roles can combined to form new concepts
using a set of constructors: intersection (C � D), union (C � D), complement
(¬C), existential restriction (∃r.C), and value restriction (∀r.C). Concept inclu-
sions/definitions are denoted respectively by C � D and C ≡ D, where C and D
are concepts. Concept C�¬C is denoted by 	, and concept C�¬C is denoted by
⊥. Restrictions ∃r.	 and ∀r.	 are abbreviated by ∃r and ∀r respectively. A set
of concept inclusions and definitions is a terminology. If an inclusion/definition
contains a concept C in its left hand side and a concept D in its right hand
side, C directly uses D. Indicate the transitive closure of directly uses by uses.
A terminology is acyclic if it is a set of concept inclusions/definitions such that
no concept in the terminology uses itself [2].
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A terminology may be associated with assertions about individuals or pairs
of individuals; for instance, Fruit(appleFromJohn) and buyFrom(houseBob, John).
Intuitively, an assertion is the grounding of a unary/binary relation. A set of
assertions is called an Abox.

The semantics of ALC is given by a nonempty set D, the domain, and a
mapping I, the interpretation. An interpretation I maps each individual to an
element of the domain, each concept name to a subset of the domain, each role
name to a binary relation on D × D. An interpretation is extended to other
concepts as follows: (¬C)I = D\(C)I , (C � D)I = (C)I ∩ (D)I , (C � D)I =
(C)I ∪ (D)I , (∃r.C)I = {x ∈ D|∃y ∈ D : (x, y) ∈ (r)I ∧ y ∈ (C)I}, (∀r.C)I =
{x ∈ D|∀y ∈ D : (x, y) ∈ (r)I → y ∈ (C)I}. We have C � D if and only if
(C)I ⊆ (D)I ; and C ≡ D if and only if (C)I = (D)I .

Most description logics have direct translations into multi-modal logics [65]
and fragments of first-order logic [4]. We often treat a concept C as a unary
predicate C(x), and a role r as a binary predicate r(x, y).

2.2 Bayesian Networks

Now consider Bayesian networks, a popular representation for probability dis-
tributions. A Bayesian network consists of a directed acyclic graph ̂G where
each node is a random variable Vi and where the following Markov condition
is assumed [53]: every random variable Vi is independent of its nondescendants
nonparents given its parents. For categorial variables V1, . . . , Vn, this Markov
condition implies the following factorization for joint probabilities:

P(V1 = v1, . . . , Vn = vn) =
n

∏

i=1

P(Vi = vi|pa(Vi) = πi) , (1)

where pa(Vi) denotes the parents of Vi in the graph, and πi denotes the configu-
ration of parents of random variable Vi. Note that if a random variable Vi has no
parents, then the unconditional probability P(Vi = xi) is used in Expression (1).
We say that P factorizes according to ̂G if P satisfies Expression (1).

2.3 Probabilistic Description Logics

There has been considerable interest in languages that mix probability assess-
ments and constructs employed in description logics [44,61]. Early proposals
by Heinsohn [24], Jaeger [27] and Sebastiani [67] adopt probabilistic inclusion
axioms with a domain-based semantics; that is, probabilities are assigned to sub-
sets of the domain. Proposals in the literature variously adopt a domain-based
semantics [13,14,20,35,37,42,76], or an interpretation-based semantics where
probabilities are assigned to sets of interpretations [6,21,43,45,67].

Several probabilistic description logics rely on graphs to encode stochas-
tic independence relations. The first language to resort to Bayesian networks,
P-CLASSIC, enlarges the logic CLASSIC with a set of Bayesian networks so as
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to specify a single probability measure over the domain [37]. A limitation is that
P-CLASSIC does not handle assertions. Other logics that combine terminolo-
gies with Bayesian networks are Yelland’s Tiny Description Logic [76], Ding and
Peng’s BayesOWL language [13], and Staker’s logic [69] (none can handle asser-
tions). Costa and Laskey’s PR-OWL language [6] adopts an interpretation-based
semantics inherited from multi-entity Bayesian networks (MEBNs) [5]. Another
path is to consider undirected models, for instance based on Markov logic [49].

For the purposes of this paper, a particularly interesting class of languages
has been produced by combining Poole’s choice variables [57] with description
logics [8,43,63].

Besides the literature just reviewed, there is a large body of work on knowl-
edge databases [26,59] and on fuzzy description logics [44]; also notable is
Nottelmann and Fuhr’s probabilistic version of the OWL language [51].

2.4 Relational Bayesian Networks

Combinations of logic, probabilities and independence assumptions are not lim-
ited to description logics. They range from simple template languages [46,71,74],
to rule-based languages akin to Prolog [48,56,64], and to more sophisticated
languages such as multi-entity Bayesian networks [39] and Markov logic [62].
Research on probabilistic logics sometimes emphasizes automated learning
[19,60]. The term Probabilistic Relational Model (PRM) is frequently associated
with languages that combine Bayesian networks with relational logic [16,18,38].
Overall, these languages move beyond older probabilistic logics [3,9,50] by explic-
itly considering Markov conditions. For our purposes, relational Bayesian net-
works [28–30] offer the most relevant language, which we now discuss.

A relational Bayesian network is a compact, graph-based representation for a
joint distribution over a set of random variables specified via relations and their
groundings over a domain [28,29]. We start with a vocabulary S containing
finitely many relations. We wish to specify a probability measure over the set of
interpretations for these relations. To do so, we specify a directed acyclic graph
G where each node is a relation in S. Each relation s is then associated with a
probability formula Fs. To understand these formulas, we must understand the
intended semantics.

To define the semantics, consider a domain D (a set with individuals). An
interpretation I is a function that takes each k-ary relation to a set of k-tuples of
elements of D. Now given a k-ary relation s ∈ S and a k-tuple a ∈ Dk, associate
with the grounding s(a) the indicator function

1s(a)(I) =
{

1 if a ∈ (s)I ,
0 otherwise.

Note: to emphasize the connection between interpretations in ALC and in rela-
tional Bayesian networks, we used the notation (s)I in this expression.

We extend this notation to any formula φ, indicating by 1φ(I) the function
that yields 1 if φ holds in I, and 0 otherwise. We wish to specify a probability
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Fig. 1. Relational Bayesian network in Example 1.

distribution over the set of all indicator variables 1φ. Probability formulas allow
us to do so: a probability formula Fs specifies how to compute the distribution
of 1s(a) for any appropriate tuple a of elements of D.

Now return to the syntax. Jaeger restricted probability formulas to four con-
structs, defined recursively as follows [28,29]. First, a real number in [0, 1] is a
probability formula. Second, a parameterized indicator function 1s(x), where x is
a tuple of logical variables, is a probability formula. Third, F1×F2+(1−F1)×F3,
where F1, F2, and F3 are probability formulas, is a probability formula.

Example 1. Consider the graph in Fig. 1. The assessment

∀(x, y) ∈ D × D : P
(

1connected(x,y) = 1
)

= 0.2

corresponds to the concise probability formula Fconnected(x, y) = 0.2. Consider
also the assessments: for η ∈ {0, 1},

∀x ∈ D : P
(

1Authority(x) = 1|1Hub(x) = η
)

= 0.9η + 0.2(1 − η).

These assessments correspond to the probability formula:

FAuthority(x) = 0.9 × 1Hub(x) + 0.2 × (1 − 1Hub(x)).

Finally, consider the assessments: for η ∈ {0, 1},

∀x ∈ D : P
(

1Hub(x) = 1|1φ = η
)

= 0.3η + 0.01(1 − η),

where φ is the first-order formula ∃y ∈ D : connected(x, y). To encode this into
a probability formula, we need to somehow quantify over y. To do so, Jaeger
introduced a fourth construct, as we now describe. �

A combination function is any function that takes a tuple of numbers in [0, 1]
and returns a number in [0, 1]. Examples are:

Noisy-OR(A) = 1 −
∏

p∈A

(1 − p), Mean(A) =
∑

p∈A

p/|A|.

Tuples are specified as follows. Denote by c(x,y) a set of equality constraints
containing logical variables in tuples x and y. Denote by 〈y : c(x,y)〉 the set of
all groundings of y that satisfy c(x,y) for fixed x. For each tuple x, generate
the set 〈y : c(x,y)〉; now for each tuple in this set, evaluate F1, . . . , Fk. So if
there are m tuples in 〈y : c(x,y)〉 for fixed x, then there are k×m elements in the
resulting tuple. Denote by {F1(x,y), . . . , Fk(x,y); 〈y : c(x,y)〉} the tuple; note
that not necessarily all variables in (x,y) appear in all probability formulas Fi.
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Fig. 2. Grounded graph ̂G for Example 1.

Returning to Example 1, we can write the last assessment as:

FHub(x) = Noisy-OR({connected(x, y); 〈y : y = y〉}).

Combination functions are quite powerful, but as a knowledge representation
tool they have somewhat difficult syntax, and may be hard to understand.

We can take the graph G and the associated probability formulas, and gen-
erate a grounded graph ̂G. The nodes of ̂G are indicator functions 1s(a) for
all s and all appropriate a. An edge is added to ̂G from node s1(a1) to node
s2(a2) if the probability formula for s2 mentions the relation s1. The Markov
condition for Bayesian networks is then assumed for ̂G, and hence we obtain a
factorization for the joint distribution of all indicator functions 1s(a).

Returning again to Example 1, Fig. 2 shows the grounded graph ̂G for domain
{a1, a2}. To simplify the figure, every indicator function 1s(a) is denoted simply
by s(a).

In this paper we do not consider recursive relational Bayesian networks,
defined by Jaeger to allow typed relations and temporal evolution [28,29].

3 Credal ALC
Credal ALC was proposed [7] as a syntactically simple probabilistic extension of
ALC. The syntax and associated semantics allows one to specify sets of proba-
bility measures over the set of interpretations for a given vocabulary.

In Sect. 3.1 we summarize the properties of the most flexible and general
version of the language. Then in Sect. 3.2 we reformulate Credal ALC as a spec-
ification language for (a class of) relational Bayesian networks.

3.1 Credal ALC as a Flexible Mix of ALC and Probabilities

The language consists of well-formed ALC sentences, plus assessments

P(C|D) ∈ [α, α], P(r) ∈ [β, β],

where C is a concept name, D is a concept, and r is a role name. If the concept
D is equal to 	 in the first assessment, we just write P(C) ∈ [α, α]. Hence
we have a subset of many existing probabilistic logics such as Lukasiewicz’s
conditional constraints [41]. The idea behind Credal ALC is to impose additional
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Fig. 3. The Kangaroo network. Note that, as a visual aid, existential restrictions are
explicitly shown as nodes in the graph, even though these nodes do not correspond
directly to concepts in the terminology.

assumptions so that each consistent set of sentences can be grounded into a set
of Bayesian networks, all sharing the same graph. Note that a set of probability
distributions is often called a credal set [1], hence the name Credal ALC.

We first need to have an appropriate concept of acyclicity. We adopt the
relations directly uses and uses from ALC, and extend them as follows. Given
the assessment P(C|D) ∈ [α, α], we say that C directly uses D. And uses is the
transitive closure of directly uses. Now for any concept C in the terminology,
denote by pa(C) the set of concepts directly used by C, and by nd(C) the set of
concepts that do not use C. Say that an assertion directly uses another one if the
corresponding concepts satisfy the directly uses relation. Again, a terminology is
acyclic if no concept in the terminology uses itself.

Given an acyclic terminology, we can draw a directed acyclic graph where
nodes are concept and role names, and arrows encode the directly uses relation.
For instance, Fig. 3 shows a probabilistic version of the Kangaroo ontology and
the associated graph.1

We assume that every terminology is acyclic. By adopting acyclicity, we can
define an appropriate Markov condition; to so, we need to examine the semantics.

First, all ALC constructs have the usual semantics, based on a domain and
interpretations. As in many probabilistic logics [22,23], we adopt an assumption
of rigidity: the interpretation of an individual does not change across interpreta-
tions. We also adopt throughout the unique name assumption: distinct individual
names refer to distinct elements of the domain. Thus we can equate individuals
with elements of the domain.

To define the semantics of probabilistic assessments, take a domain D. Then
define, for any individual a and concept C, a set of interpretations

〈〈C(a)〉〉 = {I : a ∈ (C)I}.

1 The Kangaroo ontology is distributed with the CEL System at the site http://lat.
inf.tu-dresden.de/systems/cel/.

http://lat.inf.tu-dresden.de/systems/cel/
http://lat.inf.tu-dresden.de/systems/cel/
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Here 〈〈C(a)〉〉 depends on D, but we leave this dependency implicit to avoid
burdening the notation (the domain of interest can be inferred from the context).
Similarly, define the set of interpretations 〈〈r(a, b)〉〉 = {I : (a, b) ∈ (r)I}, for any
pair of individuals (a, b) and any role r. The semantics of a set of assessments is
given by a probability measure P over the set of interpretations: each assessment
P(C|D) ∈ [α, α] means

∀x ∈ D : P(〈〈C(x)〉〉|〈〈D(x)〉〉) ∈ [α, α],

and each assessment P(r) ∈ [β, β] means

∀(x, y) ∈ D × D : P(〈〈r(x, y)〉〉) ∈ [β, β].

Note that we abuse notation by using the same symbol P in the syntax and the
semantics.

Given a terminology and a domain, we can always construct a directed acyclic
graph ̂G where nodes are all possible assertions, and where arrows encode the
directly uses relation. As in Fig. 3, we add a node to ̂G for each existential
(or universal) quantifier in the terminology. Thus ̂G is the grounding of the
terminology for the given domain.

For example, consider a terminology with the following axioms and assess-
ments (based on Ref. [7]): P(A) = 0.9, B � A, D ≡ ∀r.A, C ≡ B � ∃r.D,
P(r) = 0.3. The terminology can be drawn as a directed acyclic graph as in
Fig. 4. Now suppose we have a domain with just two individuals, a and b. The
grounded graph ̂G is also shown in Fig. 4.

With this, we can state a Markov condition:2 〈〈C(a)〉〉 is independent of all
〈〈ND〉〉 where ND is a nondescendant nonparent of C(a) in ̂G, given all 〈〈PA〉〉
where PA is a parent of C(a) in ̂G. That is, we just have the usual Markov
condition for the grounded directed acyclic graph.

In practice it may be useful to adopt a number of assumptions that imply
that a terminology can always be grounded into a single probability measure
over interpretations (for instance, each assessment collapses to a single number).
Indeed, Cozman and Polastro [7] have identified a number of assumptions that
together guarantee uniqueness; some of these assumptions are easy to grasp,
while others are quite convoluted.

We present in the next section a syntax, and a set of associated assumptions,
that guarantees that any set of well-formed sentences can be grounded into a
single Bayesian network given a finite domain. We do so by framing Credal ALC
as a language for specification of relational Bayesian networks.

2 We use the following concept of independence: an event E is independent of a set of
events {Fi}i given a set of events {Gj}j if P(E ∩ H ′|H ′′) = P(E|H ′′)P(H ′|H ′′) for
any H ′ = ∩i∈IFi and any nonempty H ′′ = (∩j∈JGj) ∩ (∩k∈KGc

k), for any subsets
of indexes I, J , K.



Computing Inferences for Relational Bayesian Networks 29

Fig. 4. Left: directed acyclic graph representing terminology. Right: grounding of the
terminology for D = {a, b}.

3.2 Credal ALC as Specification Language
for Relational Bayesian Networks

As before, consider a vocabulary S containing individuals, concepts, and roles.
A crALC network consists of a directed acyclic graph G where each node is
either a concept name or a relation name, and where each node is associated
either with

– a direct assessment: P(C) = α if the node is a concept C, or P(r) = α if the
node is a role r, for α ∈ [0, 1]; or

– a definition C ≡ φ, if the node is a concept C, that must be a well-formed
definition in ALC whose right-hand side only refers to parents of C.

To establish semantics for crALC networks, we translate this syntax directly
into relational Bayesian networks. Consider a domain D. Concepts and roles are
viewed as unary and binary relations, and the semantics is given by a probability
measure over I, the set of interpretations of these relations. Additionally:

– A direct assessment P(C) = α, where C is a concept, is interpreted just as the
probability formula FC(x) = α; that is, as

∀x ∈ D : P
(

1C(x) = 1
)

= α.

– A direct assessment P(r) = α, where r is a role, is interpreted just as the
probability formula Fr(x, y) = α; that is, as

∀(x, y) ∈ D × D : P
(

1r(x,y) = 1
)

= α.

The semantics of a definition C ≡ φ is immediate: for all x ∈ D, every inter-
pretation satisfies C(x) ↔ φ(x), where φ(x) is the translation of φ to first-order
logic, mapping intersection to conjunction, complement to negation, and so on.
As a digression, note that such definitions can be expressed through probabil-
ity functions, as any first-order logic formula can be encoded through Jaeger’s
probability formulas [28, Lemma 2.4].
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Fig. 5. Simple crALC network.

Now consider the graph ̂G where each node is a grounded relation, exactly as
done previously for relational Bayesian networks. Attach to ̂G the usual Markov
condition for Bayesian networks. The semantics of a crALC network is given by
a probability measure that factorizes in accordance with this Markov condition.

Example 2. Fig. 5 shows a crALC network with seven variables, four of which
are auxiliary variables Auxi, where the same probabilities in Example (1) can be
obtained as follows:

P(connected) = 0.2,

Hub ≡ (Aux1 � ∃connected) � (Aux2 � ¬∃connected),

Authority ≡ (Aux3 � Hub) � (Aux4 � ¬Hub),

P(Aux1) = 0.3, P(Aux2) = 0.01, P(Aux3) = 0.9, P(Aux4) = 0.2.

The grounded graph in Fig. 2 is again obtained for domain {a1, a2}. �
This example shows that, if properly combined, direct assessments and defini-
tions can be used to build conditional probabilities. In fact, suppose we have a
crALC network where C and D are concepts, D is the only parent of C, and
we wish to express that, for all x ∈ D,

P
(

1C(x) = 1|1D(x) = 1
)

= α and P
(

1C(x) = 1|1D(x) = 0
)

= β.

Introduce two fresh concept names C1 and C2, add them as parents of C, but
leave them without parents; then specify:

C ≡ (C1 � D) � (C2 � ¬D), P(C1) = α, P(C2) = β. (2)

Note that, as desired, P
(

1C(x) = 1|1D(x) = 1
)

is equal to
∑

�C1(x),�C2(x)

P
(

1C(x) = 1|1C1(x),1C2(x),1D(x) = 1
)

P
(

1C1(x)

)

P
(

1C2(x)

)

=
∑

�C2(x)

P
(

1C1(x) = 1
)

P
(

1C2(x)

)

= α.

By similar reasoning, we see that P
(

1C(x) = 1|1D(x) = 0
)

= β. This sort of
device let us specify conditional probability tables for a concept conditional on
arbitrarily many concepts. In fact we can even introduce some syntactic sugar
by writing the set of constructs in Expression (2) directly as C ≡ αD � β(¬D).
Moreover, there is no need to draw auxiliary variables in our graphs, as the next
example shows.
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Fig. 6. Simple crALC network without auxiliary variables.

Example 3. Consider again the crALC network in Example 2. The graph can
be drawn as in Fig. 6, with additional concise assessments:

P(connected) = 0.2,
Hub≡ 0.3 (∃connected)�

0.01 (¬∃connected),
Authority≡ 0.9 (Hub)�

0.2 (¬Hub).

Again, for domain {a1, a2}, the grounded graph is depicted in Fig. 2. �

Another example is given by the Kangaroo network in Fig. 3. We can replace both
the assessment P(Kangaroo|Beast) = 0.4 and the inclusion Kangaroo � Beast by

Kangaroo ≡ 0.4Beast.

Note that auxiliary variables resemble choice construct in ICL [57], but the
semantics for the latter employs different assumptions regarding negation. Sim-
ilarly, auxiliary variables resemble switches in PRISM [64]; the latter are more
general and take parameters. Finally, auxiliary variables resemble the exogenous
variables used in structural equations [54]; of course the latter are couched in
terms of algebraic modeling.

We can even extend the previous constructs if we have three concepts C1, C2

and C3. We can then use the definition

C ≡ (C1 � C2) � ((¬C1) � C3),

similarly to Jaeger’s probability formula FC1FC2 + (1 − FC1)FC3 .
Now consider the final construct in Jaeger’s relational Bayesian networks;

that is, combination functions. We do not have them in full generality here. For
a fixed and finite domain, the node ∃r.C is in fact a Noisy-OR: the indicator
function 1(∃r.C)(x) is a disjunction of all conjunctions of nodes C(y) with inhibitor
nodes r(x, y), for all y ∈ D. Likewise a node ∀r.C can be written as a conjunction
of implications.

Hence, as far as finite fixed domains are concerned, the syntax for crALC
networks presented here can be viewed as syntactic sugar for relational Bayesian
networks that only contain unary and binary relations, where binary relations
have no parents, and where combination functions are restricted to Noisy-OR.
What reasons can we offer to study such a subset of relational Bayesian networks?
At the risk of repeating arguments already stated, we offer the following answers.
First, the syntax and semantics of crALC networks are much easier to grasp and
to use than general Credal ALC, and also easier to grasp than general relational
Bayesian networks — in our experience, the syntax and semantics of Jaeger’s
probability functions are somewhat difficult for the novice. Second, techniques
honed by current research for both description logics and relational Bayesian
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networks can be used. Third, theoretical results about description logics can
lead to novel interesting results about relational Bayesian networks and related
languages. We do not focus on the latter topic, as it has been examined before [7].

3.3 A Few Applications

We now briefly present examples of crALC networks that have been described
in previous publications.

First, Polastro and Correa [55] have examined the use of crALC networks in
robot navigation, a task where high level reasoning is important [17,25]. Deter-
ministic facts were encoded in sentences such as

Office ≡ Room � ∃contains.Desk � ∃contains.Cabinet � ∃contains.Monitor

together with probabilistic assessments obtained by experimental analysis. Dur-
ing operation, images were collected and inferences were run; for instance, an
image containing 3 chairs, 1 table, 1 monitor, 1 cabinet and 1 door was taken
and the inference P(Office|detected objects) = 0.4278 was computed. A simi-
lar application of crALC networks in spatial reasoning has been reported by
Fenelon et al. [15].

A second example is link prediction, where the goal is to predict whether
there is a link between two nodes in a social network [40]. Description logics are
particularly well suited to handle social networks, because they deal with con-
cepts (applied to single nodes) and roles (applied to pairs of nodes). Ochoa-Luna,
Revoredo and Cozman [52] employed a crALC network to predict links in
a social network consisting of researchers, where links indicate co-authorship.
Approximate variational inference was used to compute the probability of various
links between individuals. The combination of topological features and proba-
bilistic reasoning led to accuracy of 89.5% in link prediction, compared to 85.6%
accuracy with topological features only.

4 Approximate Variational Inference with CRALC
Networks

Given a crALC network, a finite domain D, and an Abox A, consider the query
Q = P(C(a)|A). We refer to the computation of Q as an inference. One obvious
idea is to ground the crALC network into a Bayesian network, and compute
Q there by any existing algorithm [16,74]. However, the size of the grounded
Bayesian network may become too large as the size of the domain grows. A solu-
tion is to approximate Q. One can ground the crALC network and run approx-
imate inference there. It is not even necessary to generate the whole grounded
Bayesian network, but only the groundings that are relevant to the query. How-
ever, for large domains it may be difficult to even generate the grounded network.
A promising alternative is to avoid grounding concepts and roles, by noting that
many of these grounding lead to identical computations.



Computing Inferences for Relational Bayesian Networks 33

So, consider running belief propagation [36] in the ground network. As many
messages are actually identical, it makes sense to group them [32,68]. An addi-
tional step is to group nodes and run exact inference within each group, and to
treat each group as a single variable as far as messages are concerned. That is,
we have belief propagation among groups, and exact inference within groups;
the messages can be derived using a variational scheme [75].

The idea then is to take the crALC network and to divide the ground
Bayesian network in slices. Each slice congregates groundings with respect to
a single individual: assertion C(a) clearly belongs to the slice of a, and asser-
tion r(a, y) belongs to the slice of a for any y ∈ D. For instance, in Fig. 1 we
have two slices, one for individual a and another for individual b. We now con-
sider messages in a variational scheme where each slice is a group [75]; to do
so, we introduce a node for each function in the Bayesian network, and connect
this node to the variables that affect the function (that is, we create the fac-
tor graph). Now we have messages sent to and from these function-nodes; for
instance, suppose that node A(a) is to send a message to the function-node that
represents f(c) where c is some individual that appears in the evidence. This
message is

∏

g mg,A(a)(A(a)), where mg,A(a) are the messages sent to A(a) from
function-nodes g, as g sweeps through the set of function-nodes connected to
A(a) except f . Similar messages are then sent to A(a), and so on. Note that as
we are grouping variables in each slice, and assuming that exact inference is run
inside a slice, only messages between slices must be exchanged.

Now if all messages were exchanged amongst all possible slices until conver-
gence, we would have a variant of belief propagation run in the fully grounded
Bayesian network. But note that many slices are exchangeable. In particular,
every element of the domain for which there is no evidence leads to an identical
slice. Thus we can put together all such slices: everytime a message is to be sent
from this “combined” slice, we simple compute the message that would be sent
by a single slice, and raise it to the number of slices in the “combined” slice.

To summarize, approximate inferences are produced by generating a set of
grounded Bayesian networks, one for each slice mentioned in the query and in
the evidence, plus an additional Bayesian network for a “generic” individual; a
detailed description of this algorithm can be found in Ref. [7]. Exact Bayesian
network inference is performed in each one of these networks and messages are
exchanged between the networks. The whole scheme resembles the RCR frame-
work [73]. Experiments indicate that this approach leads to fast and accurate
approximations [7].

A package implementing this algorithm has been coded by the second author
using the Java language (version 6.0), and can work either from the command
prompt or through a graphical user interface.3 Once the package is downloaded
and uncompressed, it must be run together with the jar file JavaBayes.jar (in the
folder Proj01\libs). The distribution comes with the file CrALC.java; this file
must be compiled and run.
3 The package is freely available, in compressed form, at the site http://sites.poli.usp.

br/pmr/ltd/Software/CRALC/inf-cralc-v21may2012.zip.

http://sites.poli.usp.br/pmr/ltd/Software/CRALC/inf-cralc-v21may2012.zip
http://sites.poli.usp.br/pmr/ltd/Software/CRALC/inf-cralc-v21may2012.zip
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The package can be run from the command prompt with some additional
parameters:

– gui {on|off}: loads (or not) the graphical user interface (default is on);
– i input file N: loads terminology in input file and sets domain size to N;
– p output file: saves a ground Bayesian network into output file;
– e query file: loads query and evidence in query file;
– r name: saves inference in file name.txt, and each slice in auxiliary file.

To describe crALC networks as input, we have chosen to adapt the Knowl-
edge Representation System Specification (KRSS).4 We use the following con-
structs: (and C1...Cn) for conjunction; (or C1...Cn) for disjunction; (not C)
for complement; (all r C) to indicate the quantifier ∀r.C; (some r C) to indi-
cate the quantifier ∃r.C; (define-concept C D) for C ≡ D. The package also
allows (define-primitive-concept C D) for C � D, in case the user wishes
to use this construct (note that doing so is somewhat risky as it may generate
a terminology that cannot be grounded into a unique Bayesian network). Prob-
abilistic assessments are specified as (probability B α), denoting P (B) = α.
The package also allows (conditional-probability B A α) for P (A|B) = α,
even though such an assessment is not strictly necessary in crALC networks.

Fig. 7. Terminologies are written in the larger panel, while assertions are set in the
right panel; the lower panel reports on inferences.

4 The standard specification of KRSS can be found at http://dl.kr.org/krss-spec.ps.

http://dl.kr.org/krss-spec.ps
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An example of valid input file is:

;; This is a comment...
(probability A(x) 0.7)
(probability B(x) 0.4)
(define-concept C(x) (and A(x) (not B(x))))

Assertions can be inserted through simple files as well; for instance:

A(1) query
B(0) true
r(0,1) false

The graphical user interface depicted in Fig. 7 can be used to load/save files,
to specify the size of the domain and the assertions, to ask for inferences, and to
check results. The interface lets the user insert domain size and assertions. Each
assertion is inserted either as C(i), where C is a concept and i is an integer, or
as r(i, j), where r is a role and i and j are integers.

5 Exact Lifted Inference with CRALC Networks

Because any crALC network is a relational Bayesian network, we can use any
algorithm that runs lifted inference in relational Bayesian networks. Here lifted
means that inference is performed without completely grounding all concepts and
roles [58]. There has been significant effort in exact lifted inference
[10–12,31,47,70,72]. In our case we are interested in lifted inference in the pres-
ence of “aggregation parfactors” [33]; that is, in the presence of terms that
aggregate the effect of many random variables, such as quantifiers.

Kisynski and Poole’s AC-FOVE algorithm, an extension of first-order vari-
able elimination [33,34], is currently the state-of-art for lifted inference with
aggregation parfactors. We still focus on finite domains, and in this case each
construct in a crALC network can be translated either into parameterized func-
tions or into aggregation parfactors. For instance, an existential quantifier ∃r.C
can be encoded into an aggregation parfactor that yields 1 when the number
of instances of r(x, y) ∧ C(y) is larger than one, and 0 otherwise. AC-FOVE
then applies a set of rules to the functions and parfactors. Each rule transforms
a function or parfactor until only the query is present. The basic rule is lifted
elimination, where all instances of a relation (concept or role, in our setting)
are eliminated at once, without any actual grounding. For lifted elimination to
be applied, several conditions must be met. When these conditions do not hold,
AC-FOVE has several options: it can split groundings into groups, unify several
groundings, multiply functions after unification, or exponentiate probabilities so
as to account for exchangeable elements of the domain. Finally, AC-FOVE can
use counting formulas [47]; that is, it can use random variables whose values
indicate how many individuals satisfy a given condition (rather than dealing
with all individuals separately). AC-FOVE is a greedy algorithm that chooses,
at each step, one of these operations, resorting to grounding as a last resource.
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A package implementing the AC-FOVE algorithm has been coded by the
third author using the Java language (version 6.0). The package consists of an
API that must be called as needed. Not only the AC-FOVE algorithm is imple-
mented, but also the variable elimination and the C-FOVE algorithms.5

To illustrate, consider a few code fragments. First, the construction of a
domain:

// Creates a list of individuals
List<Constant> individuals = new ArrayList<Constant>();
individuals.add(Constant.getInstance("a1"));
individuals.add(Constant.getInstance("a2"));
individuals.add(Constant.getInstance("a3"));
// Creates a population based on the list
Population popul = Population.getInstance(individuals);
// Creates a logical variable bound to the population
LogicalVariable x = StdLogicalVariable.getInstance("x", popul);

An existential quantifier leads to an aggregation parfactor as follows:

Parfactor g = new AggParfactorBuilder(p, c, Or.OR).build();

Assertions can be inserted as evidence:

List<BigDecimal> fEvidence = TestUtils.toBigDecimalList(0.0, 1.0);

Parfactor evidence = new StdParfactorBuilder().variables(sprinkler).

values(fEvidence).build();

Finally, to run the algorithm:

ACFOVE acfove = new ACFOVE(input);
Parfactor result = acfove.run();

6 Conclusion

In this paper we have presented a syntax for crALC networks, with two goals
in mind. First, it simplifies knowledge representation when probabilistic assess-
ments must be coupled with the ALC logic. Second, it offers a description lan-
guage for a useful class of relational Bayesian networks. The resulting language
avoids many complexities of crALC and of general relational Bayesian networks
and can be easily grasped by a user.

We also described freely available packages that implement approximate and
exact inference for crALC networks. The software packages we have presented
still require substantial development, but they are steps in a direction we feel has
not received enough attention. As efficient inference is a key to combinations of
uncertainty and semantic information, we hope that these efforts may be useful
in future applications. Clearly there are many paths for future work; for instance,
the study of open-world reasoning, infinite domains, and interval probabilities.
5 The package is freely available at https://github.com/ftakiyama/AC-FOVE, where

source code and examples can be found.

https://github.com/ftakiyama/AC-FOVE
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Abstract. In this paper, we explore the use of guarded Datalog+/–
for information integration based on probabilistic data exchange. The
recently introduced Datalog+/– family of tractable ontology languages
is suitable for representing and reasoning over lightweight ontologies,
such as EL and the DL-Lite family of description logics. We study how
Datalog+/– can be used as a mapping language in the context of infor-
mation integration. We also provide a complexity analysis for deciding
the existence of (deterministic and probabilistic (universal)) solutions
in the context of data exchange. In particular, we show that tractabil-
ity is preserved for simple probabilistic representations, such as tuple-
independent ones.

1 Introduction

Information integration is widely considered a key (and costly) challenge of our
knowledge society [2,21]. The challenge is complex and includes many interre-
lated sub-challenges, like identifying which data sources to use when answering
a query, creating a common representation for the heterogeneous data sources
identified as relevant, extracting data from the sources, cleaning the extracted
data, eliminating duplicates by identifying the same objects in different data
sources, and transforming the extracted and cleaned data into a unified format.

In the simpler setting of relational information integration, the sources are
databases where information is structured with (different) relational database
schemas; the sources correspond to so-called source or local schemas. The uni-
fied format is the target or global schema. Heterogeneity is less challenging, as
it is restricted to different kinds of schemas. Unrestricted heterogeneity involves
databases hidden behind applications, document repositories, and other kinds of
unstructured information. In the Semantic Web, with description logics (DLs)
being the underlying knowledge representation formalism, information is struc-
tured via ontological schemas. Hence, ontologies replace databases – source
databases are replaced by source (or local) ontologies, and the target database
is replaced by a target (or global) ontology. In the following, we use guarded
c© Springer International Publishing Switzerland 2014
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DOI: 10.1007/978-3-319-13413-0 3



42 T. Lukasiewicz et al.

Datalog+/– as the language for representing the sources, the target, and the
mappings – one of the advantages of this language is that it is capable of rep-
resenting ontological knowledge, but it keeps the notation used in databases for
greater readability.

Information integration is usually achieved via mappings between logical for-
malizations of data sources (cf. [15,24,33] for an overview). There are mainly
three ways in which information from different sources can be integrated:

– Data exchange: Data structured under a source schema S (or different source
schemas S1, . . . , Sk) is transformed into data structured under a different tar-
get schema T , and materialized (merged and acquired) there through the
mapping.

– Data integration: Heterogeneous data in different sources S1, . . . , Sk is
queried via a virtual global schema T , i.e., no actual exchange of data is
needed.

– Peer-to-peer data integration: There is no global schema given. All peers
S1, . . . , Sk are autonomous and independent from each other, and each peer
can hold data and be queried. The peers can be viewed as nodes in a net-
work that are linked to other nodes by means of so-called peer-to-peer (P2P)
mappings. That is, each source can also be a target for another source.

In this paper, we investigate probabilistic data exchange, which has been
proposed for integrating probabilistic databases with either deterministic or
probabilistic mappings [13,14]. We use guarded Datalog+/– [6] as the under-
lying relational information integration language, which is an ontology language
extending plain Datalog by negative constraints and the possibility of rules with
existential quantification and equality in rule heads, while restricting the rule
syntax by so-called guards in rule bodies to gain decidability and tractability.
Essentially, it extends Datalog to negative constraints, tuple-generating depen-
dencies (TGDs), and equality-generating dependencies (EGDs), but suitably
restricted to gain decidability and data tractability. In this way, it is possible
to capture the DL-Lite family of DLs and also the DL EL. As such, guarded
Datalog+/– is a very expressive and convenient language for ontology-based
database access, which makes it particularly attractive for data exchange on
the Semantic Web. For simplicity, from now on, we often refer to “guarded
Datalog+/–” simply as “Datalog+/–”. Though general data exchange and prob-
abilistic data exchange frameworks often use standard or weakly acyclic sets of
TGDs and EGDs for the target, in this work, we adopt linear and guarded TGDs
and non-conflicting keys, as proposed in Datalog+/–.

We also sketch how provenance information can be added to Datalog+/– as
a mapping language, to be able to track the origin of a mapping for trust assess-
ment and debugging. Capturing the provenance of mappings allows to resolve
inconsistencies of mappings by considering the history of their creation. It also
helps to detect whether and how to perform mapping updates if the information
sources have changed or evolved. Finally, it allows to capture mapping cycles,
debug mappings, and to perform meta-reasoning with mappings and the knowl-
edge bases themselves.
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This paper extends [27], where we proposed the use of probabilistic
Datalog+/– as a language for information integration. Here, we study a theoreti-
cal framework for probabilistic data exchange based on Datalog+/– and provide
complexity results for deciding the existence of a solution in linear and guarded
Datalog+/– for both the deterministic variant and its probabilistic extension.
Another difference to [27] is that here, we study data exchange in the presence
of a probabilistic source and consider a very general probabilistic model involv-
ing unrestricted probability distributions (in [27], we considered a probabilistic
extension of Datalog+/– with Markov logic networks).

The rest of this paper is organized as follows. In Sect. 2, we recall the basics of
guarded Datalog+/–. Sections 3 and 4 define our approach to deterministic data
exchange on top of Datalog+/– and illustrate the type of ontology mappings
that can be expressed in this framework, respectively. In Sects. 5 and 6, we
generalize to probabilistic data exchange on top of Datalog+/– and the types
of probabilistic ontology mappings that it can express, respectively. Section 7
provides complexity results, and Sect. 8 deals with provenance in our approach.
In Sects. 9 and 10, we discuss related work, summarize the main results, and give
an outlook on future research.

2 Guarded Datalog+/–

We now describe guarded Datalog+/– [6], which here includes negative con-
straints and (separable) equality-generating dependencies (EGDs). We first
describe some preliminaries on databases and queries, and then tuple-generating
dependencies (TGDs) and the concept of chase. We finally recall negative con-
straints and (separable) EGDs, which are other important ingredients of guarded
Datalog+/– ontologies.

Databases and Queries. The elementary ingredients are constants, nulls, and
variables, which serve as arguments in atomic formulas in databases, queries, and
dependencies: (i) a fixed countably infinite universe of (data) constants Δ (which
constitute the “normal” domain of a database), (ii) a fixed countably infinite set
of (labeled) nulls ΔN (used as “fresh” Skolem terms, which are placeholders for
unknown values, and can thus be seen as variables), and (iii) a fixed countably
infinite set of variables V (used in queries and dependencies). Different constants
represent different values (unique name assumption), while different nulls may
represent the same value. We assume a lexicographic order on Δ ∪ ΔN , with
every symbol in ΔN following all symbols in Δ. We denote by X sequences of
variables X1, . . . , Xk with k ≥ 0.

We next define atomic formulas, which occur in databases, queries, and
dependencies, and which are constructed from relation names and terms, as
usual. We assume a relational schema R, which is a finite set of relation names
(or predicate symbols, or simply predicates). A position P [i] identifies the i-th
argument of a predicate P . A term t is a data constant, null, or variable. An
atomic formula (or atom) a has the form P (t1, . . . , tn), where P is an n-ary
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predicate, and t1, . . . , tn are terms. We denote by pred(a) and dom(a) its pred-
icate and the set of all its arguments, respectively. The latter two notations are
naturally extended to sets of atoms and conjunctions of atoms. A conjunction
of atoms is often identified with the set of all its atoms.

We are now ready to define the notion of a database relative to a relational
schema, as well as conjunctive and Boolean conjunctive queries to databases.
A database (instance) D for a relational schema R is a (possibly infinite) set
of atoms with predicates from R and arguments from Δ. Such D is ground iff
it contains only atoms with arguments from Δ. A conjunctive query (CQ) over
R has the form Q(X) = ∃Y Φ(X,Y,C), where Φ(X,Y,C) is a conjunction of
atoms with the variables X and Y, and possibly constants C, but without nulls.
Note that Φ(X,Y) may also contain equalities but no inequalities. A Boolean
CQ (BCQ) over R is a CQ of the form Q(). We often write a BCQ as the set
of all its atoms, having constants and variables as arguments, and omitting the
quantifiers. Answers to CQs and BCQs are defined via homomorphisms, which
are mappings μ : Δ ∪ ΔN ∪ V → Δ ∪ ΔN ∪ V such that (i) c ∈ Δ implies μ(c) =
c, (ii) c ∈ ΔN implies μ(c) ∈ Δ ∪ ΔN , and (iii) μ is naturally extended to
atoms, sets of atoms, and conjunctions of atoms. The set of all answers to a CQ
Q(X)= ∃Y Φ(X,Y) over a database D, denoted Q(D), is the set of all tuples t
over Δ for which there exists a homomorphism μ : X∪Y → Δ ∪ ΔN such that
μ(Φ(X,Y))⊆ D and μ(X)= t. The answer to a BCQ Q() over a database D
is Yes, denoted D |=Q, iff Q(D) �= ∅.

Tuple-GeneratingDependencies (TGDs). Tuple-generatingdependencies (TGDs)
describe constraints ondatabases in the formof generalizedDatalog ruleswith exis-
tentially quantified conjunctions of atoms in rule heads; their syntax and semantics
are as follows.Givena relational schemaR, a tuple-generatingdependency (TGD) σ
is a first-order formula of the form ∀X∀Y Φ(X, Y) → ∃ZΨ(X,Z), where Φ(X,Y)
and Ψ(X, Z) are conjunctions of atoms over R called the body and the head of σ,
denoted body(σ) andhead(σ), respectively.ATGDis guarded iff it contains anatom
in its body that involves all variables appearing in the body.The leftmost such atom
is the guard atom (or guard) of σ. The non-guard atoms in the body of σ are the side
atoms of σ. We usually omit the universal quantifiers in TGDs. Such σ is satisfied
in a database D for R iff, whenever there exists a homomorphism h that maps the
atoms of Φ(X,Y) to atoms of D, there exists an extension h′ of h that maps the
atoms of Ψ(X,Z) to atoms of D. All sets of TGDs are finite here.

Query answering under TGDs, i.e., the evaluation of CQs and BCQs on data-
bases under a set of TGDs is defined as follows. For a database D for R, and a set
of TGDs Σ on R, the set of models of D and Σ, denoted mods(D,Σ), is the set of
all (possibly infinite) databases B such that (i) D ⊆B (ii) every σ ∈ Σ is satisfied
in B. The set of answers for a CQ Q to D and Σ, denoted ans(Q,D,Σ), is the
set of all tuples a such that a ∈ Q(B) for all B ∈mods(D,Σ). The answer for a
BCQ Q to D and Σ is Yes, denoted D ∪ Σ |=Q, iff ans(Q,D,Σ) �= ∅. We recall
that query answering under TGDs is equivalent to query answering under TGDs
with only single atoms in their heads. We thus often assume w.l.o.g. that every
TGD has a single atom in its head.
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The Chase. The chase was introduced to enable checking implication of depen-
dencies [29] and later also for checking query containment [22]. It is a procedure
for repairing a database relative to a set of dependencies, so that the result of
the chase satisfies the dependencies. By “chase”, we refer both to the chase pro-
cedure and to its output. The TGD chase works on a database through so-called
TGD chase rules (an extended chase with also equality-generating dependen-
cies is discussed below). The TGD chase rule comes in two flavors: restricted
and oblivious, where the restricted one applies TGDs only when they are not
satisfied (to repair them), while the oblivious one always applies TGDs (if they
produce a new result). We focus on the oblivious one here; the (oblivious) TGD
chase rule defined below is the building block of the chase.

TGD Chase Rule. Consider a database D for a relational schema R, and a
TGD σ on R of the form Φ(X,Y) → ∃ZΨ(X, Z). Then, σ is applicable to D if
there exists a homomorphism h that maps the atoms of Φ(X,Y) to atoms of D.
Let σ be applicable to D, and h1 be a homomorphism that extends h as follows:
for each Xi ∈ X, h1(Xi) = h(Xi); for each Zj ∈ Z, h1(Zj) = zj , where zj is
a “fresh” null, i.e., zj ∈ ΔN , zj does not occur in D, and zj lexicographically
follows all other nulls already introduced. The application of σ on D adds to D
the atom h1(Ψ(X,Z)) if not already in D.

The chase algorithm for a database D and a set of TGDs Σ consists of
an exhaustive application of the TGD chase rule in a breadth-first (level-sat-
urating) fashion, which leads as result to a (possibly infinite) chase for D and Σ.
Formally, the chase of level up to 0 of D relative to Σ, denoted chase0(D,Σ),
is defined as D, assigning to every atom in D the (derivation) level 0. For every
k ≥ 1, the chase of level up to k of D relative to Σ, denoted chasek(D,Σ), is
constructed as follows: let I1, . . . , In be all possible images of bodies of TGDs
in Σ relative to some homomorphism such that (i) I1, . . . , In ⊆ chasek−1(D,Σ)
and (ii) the highest level of an atom in every Ii is k − 1; then, perform every
corresponding TGD application on chasek−1(D,Σ), choosing the applied TGDs
and homomorphisms in a (fixed) linear and lexicographic order, respectively, and
assigning to every new atom the (derivation) level k. The chase of D relative to
Σ, denoted chase(D,Σ), is then defined as the limit of chasek(D,Σ) for k → ∞.

The (possibly infinite) chase relative to TGDs is a universal model, i.e., there
exists a homomorphism from chase(D,Σ) onto every B ∈mods(D,Σ) [5,10].
This result implies that BCQs Q over D and Σ can be evaluated on the chase
for D and Σ, i.e., D ∪Σ |= Q is equivalent to chase(D,Σ) |= Q. In the case
of guarded TGDs Σ, such BCQs Q can be evaluated on an initial fragment of
chase(D,Σ) |= Q of constant depth k · |Q|, and thus be done in polynomial time
in the data complexity.

Note that sets of guarded TGDs (with single-atom heads) are theories in the
guarded fragment of first-order logic [1]. Note also that guardedness is a truly
fundamental class ensuring decidability as adding a single unguarded Datalog
rule to a guarded Datalog+/– program may destroy decidability as shown in [5].
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Negative Constraints. Another crucial ingredient of Datalog+/– for ontologi-
cal modeling are negative constraints (NCs, or simply constraints), which are
first-order formulas of the form ∀X Φ(X) → ⊥, where Φ(X) is a conjunction of
atoms (not necessarily guarded). We usually omit the universal quantifiers, and
we implicitly assume that all sets of constraints are finite here. Adding negative
constraints to answering BCQs Q over databases and guarded TGDs is compu-
tationally easy, as for each constraint ∀XΦ(X) → ⊥, we only have to check that
the BCQ Φ(X) evaluates to false; if one of these checks fails, then the answer
to the original BCQ Q is true, otherwise the negative constraints can be simply
ignored when answering the original BCQ Q.

Equality-Generating Dependencies (EGDs). A further important ingredient of
Datalog+/– for modeling ontologies are equality-generating dependencies (or
EGDs) σ, which are first-order formulas ∀XΦ(X) → Xi = Xj , where Φ(X),
called the body of σ, denoted body(σ), is a (not necessarily guarded) conjunc-
tion of atoms, and Xi and Xj are variables from X. We call Xi = Xj the head
of σ, denoted head(σ). Such σ is satisfied in a database D for R iff, when-
ever there exists a homomorphism h such that h(Φ(X,Y)) ⊆ D, it holds that
h(Xi)= h(Xj). We usually omit the universal quantifiers in EGDs, and all sets
of EGDs are finite here.

An EGD σ on R of the form Φ(X)→ Xi =Xj is applicable to a database
D for R iff there exists a homomorphism η : Φ(X)→ D such that η(Xi) and
η(Xj) are different and not both constants. If η(Xi) and η(Xj) are different
constants in Δ, then there is a hard violation of σ (and, as we will see below, the
chase fails). Otherwise, the result of the application of σ to D is the database
h(D) obtained from D by replacing every occurrence of a non-constant element
e∈ {η(Xi), η(Xj)} in D by the other element e′ (if e and e′ are both nulls,
then e precedes e′ in the lexicographic order). The chase of a database D, in
the presence of two sets ΣT and ΣE of TGDs and EGDs, respectively, denoted
chase(D,ΣT ∪ ΣE), is computed by iteratively applying (1) a single TGD once,
according to the standard order and (2) the EGDs, as long as they are applicable
(i.e., until a fixpoint is reached). To assure that adding EGDs to answering
BCQs Q over databases and guarded TGDs along with negative constraints
does not increase the complexity of query answering, all EGDs are assumed to
be separable [6] (one such class of separable EGDs are non-conflicting keys [6]).
Intuitively, separability holds whenever: (i) if there is a hard violation of an EGD
in the chase, then there is also one on the database w.r.t. the set of EGDs alone
(i.e., without considering the TGDs); and (ii) if there is no chase failure, then
the answers to a BCQ w.r.t. the entire set of dependencies equals those w.r.t.
the TGDs alone (i.e., without the EGDs).

Guarded Datalog+/– Ontologies. We define (guarded) Datalog+/– ontologies as
follows. A (guarded) Datalog+/– ontology consists of a database D, a (finite) set
of guarded TGDs ΣT , a (finite) set of negative constraints ΣC , and a (finite) set
of EGDs ΣE that are separable from ΣT .
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3 Deterministic Data Exchange

In this section, we recall the classical logical framework of data exchange and
data integration [14,15] in the context of both deterministic and probabilistic
databases, and tailor the framework to suit data exchange and data integration
between Datalog+/– ontologies. The syntax of a schema mapping in Datalog+/–
is defined as follows.

Definition 1 (Schema Mapping). A schema mapping M = (S,T, Σ) con-
sists of a source schema S= {S1, . . . , Sn}, a target schema T= {T1, . . . , Tm}
disjoint from S, and a set Σ =Σst ∪Σt of TGDs, negative constraints, and non-
conflicting keys, where Σst are source-to-target TGDs, negative constraints, and
non-conflicting keys over S∪T, and Σt are target TGDs, negative constraints,
and non-conflicting keys over T.

The semantics of schema mappings is defined by relating source and target data-
bases in a semantically meaningful and consistent way. More specifically, in the
case of data exchange between deterministic databases, a target database J
over Δ is considered to be a solution of the source database I over Δ for the
data exchange problem specified via the schema mapping M = (S, T, Σ) iff
I ∪J |= Σ.

Definition 2 (Solution). A target database J over Δ is a solution for a source
database I over Δ relative to a schema mapping M= (S,T, Σ) iff I ∪ J |= Σ.
We denote by SolM the set of all pairs (I, J) of source databases I and target
databases J with I ∪J |= Σ.

There are many possible solutions J to a source database I relative to M in
SolM. Among all such solutions, the preferred solutions are the ones that carry
only the necessary information for data exchange; i.e., all the constants of the
source database that can be transferred via the mapping are included in the
target database. Such solutions are called universal solutions. Similar to universal
models in the context of the chase derivation of Datalog+/– (see Sect. 2), a
universal solution can be homomorphically mapped to all other solutions leaving
the constants unchanged.

Definition 3 (Universal Solution). A target database J over Δ is a universal
solution for a source database I over Δ relative to a schema mapping M= (S,
T, Σ) iff (i) J is a solution, and (ii) for each solution J ′ for I relative to M,
there is a homomorphism h : J → J ′. We denote by USolM (⊆SolM) the set
of all pairs (I, J) of source databases I and target databases J such that J is a
universal solution for I relative to M.

For defining the data exchange problem over probabilistic databases, we first
need to define probabilistic databases, as they serve as source and target data-
bases in the probabilistic data exchange setting.
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Definition 4 (Probabilistic Database). A probabilistic database over R is a
probability space Pr = (I, μ) such that I is the set of all (possibly infinitely
many) standard databases over R, and μ : I → [0, 1] is a function that satisfies
∑

I∈I μ(I) = 1.

In this paper, we adopt a compact encoding of probabilistic databases by anno-
tating database atoms with Boolean combinations of elementary events, where
every annotation describes when the atom is true and is associated with a prob-
ability. We first define annotations and annotated atoms.

Definition 5 (Annotations and Annotated Atoms). Let e1, . . . , en be n≥ 1
elementary events. A world w is a conjunction �1 ∧ · · · ∧ �n, where each �i,
i∈ {1, . . . , n}, is either the elementary event ei or its negation ¬ei. An annotation
λ is any Boolean combination of elementary events (i.e., all elementary events are
annotations, and if λ1 and λ2 are annotations, then also ¬λ1 and λ1∧λ2); as usual,
λ1 ∨ λ2 abbreviates ¬(¬λ1 ∧ ¬λ2). An annotated atom has the form a : λ, where
a is an atom, and λ is an annotation.

Based on this definition, we can now define the compact encoding of probabilistic
databases that we will be using.

Definition 6 (Compact Encoding of Probabilistic Databases). A set D
of annotated atoms over Δ along with a probability μ(w)∈ [0, 1] for every world
w compactly encodes a probabilistic database by defining:

1. the probability of every annotation λ as the sum of the probabilities of all
worlds in which λ is true, and

2. the probability of every database {a1, . . . , am} such that {a1 : λ1, . . . , am : λm}
⊆D for some annotations λ1, . . . , λm as the probability of λ1 ∧ · · · ∧ λm (and
the probability of every other database as 0).

While the syntax of a deterministic schema mapping over probabilistic databases
does not change, its semantics needs to be adapted. Exchanging data between
probabilistic databases means that a properly defined joint probability space
Pr over the solution relation SolM and the universal solution relation USolM
must exist. Note that SolM and USolM exist in probabilistic data exchange as
well, because joint events (I, J) that can be constructed for pairs of probabilistic
source instances Prs = (I, μs) and probabilistic target instances Prt = (J , μt)
need also to satisfy the condition I ∪ J |= Σ to be considered as semantic com-
ponents of probabilistic solutions.

As stated more formally below, a properly defined joint probability distribu-
tion Pr over the solution relation SolM or the universal solution relation USolM
requires to match each of the given marginal distributions Prs and Prt. These
constraints over the marginal distributions of Pr are called SolM-match and
USolM-match [14], as they are defined over SolM and USolM, respectively.

Definition 7 (Probabilistic (Universal) Solution).A probabilistic target
database Prt = (J , μt) is a probabilistic solution (resp., probabilistic univer-
sal solution) for a probabilistic source database Prs = (I, μs) relative to a schema
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mapping M = (S, T, Σ) iff there exists a probabilistic space Pr = (I ×J , μ) that
satisfies the following two conditions:

1. The left and right marginals of Pr are Prs and Prt, respectively. That is,
(a)

∑

J∈J (μ(I, J)) = μs(I) for all I ∈ I and
(b)

∑

I∈I(μ(I, J)) = μt(J) for all J ∈ J ;
2. μ(I, J) = 0 for all (I, J) �∈ SolM (resp., (I, J) �∈ USolM).

For mapping M= (S, T, Σ) and query Q(X)= ∃Y Φ(X,Y,C) (as introduced in
Sect. 2), query answering within the data exchange setting of a source database I
is defined as deriving the certain answers, i.e., the tuples consisting of constants
that belong to Q(J) for all solutions J for I relative to M. In the probabilis-
tic generalization, each probabilistic target database defines a probability with
which a tuple of constants belongs to Q(J) (which is the sum of the probabilities
of all standard target databases in which the query evaluates to true), and the
probability that this tuple belong to the answer of the query is the infimum of
all such probabilities. In the following definition, we also generalize queries to
unions of conjunctive queries (UCQs).

Definition 8 (UCQs). A union of conjunctive queries (or UCQ) has the form
Q(X) =

∨k
i=1 ∃Yi Φi(X,Yi,Ci), where each ∃Yi Φi(X,Yi,Ci) with i∈ {1, . . . , k}

is a CQ with exactly the variables X and Yi, and the constants Ci. Given a schema
mapping M= (S, T, Σ), a probabilistic source database Prs = (I, μs), a UCQ
Q(X) =

∨k
i=1 ∃Yi Φi(X,Yi,Ci), and a tuple A (being a ground instance of X

in Q) over Δ, the confidence of A relative to Q, denoted conf Q(A), in Prs rela-
tive to M is the infimum of Prt(Q(A)) subject to all probabilistic solutions Prt

for Prs relative to M. Here, Prt(Q(A)) for Prt = (J , μt) is the sum of all μt(J)
such that Q(A) evaluates to true in the database J ∈ J (i.e., some BCQ ∃Yi

Φi(A,Yi,Ci) with i∈ {1, . . . , k} evaluates to true in J).

The following are the main computational tasks that we consider in this paper.

Existence of a solution (resp., universal solution): Given a schema map-
ping M and a probabilistic source database Prs, decide whether there exists
a probabilistic (resp., probabilistic universal) solution for Prs relative to M.

Materialization of a solution (resp., universal solution): Given a schema
mapping M and a probabilistic source database Prs, compute a probabilistic
solution (resp., probabilistic universal) solution for Prs relative to M, if it
exists.

Answering UCQs: Given a schema mapping M, a probabilistic source data-
base Prs, a UCQ Q(X), and a tuple A over Δ, compute conf Q(A) in Prs

relative to M.

4 Ontology Mappings with Datalog+/–

Mapping languages are formal knowledge representation languages that are cho-
sen according to specific criteria. The two most important criteria are the expres-
sive power needed for specifying desired data interoperability tasks on the one
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hand and the tractability of dealing with that language, i.e., query answering,
checking for solutions, materializing solutions, etc., on the other. It is well known
that there is a tradeoff between expressivity and tractability [25] – the latter is
often attained via algorithmic properties that imply certain structural proper-
ties, such as the existence of universal solutions after performing a bounded
number of computations.

In the following, we examine Datalog+/– as a mapping language. As a lan-
guage lying in the intersection of the DL and the logic programming para-
digms, Datalog+/– allows to integrate the information available in ontologies
and, hence, nicely ties together the results on data exchange and integration in
databases and the work on ontology mediation in the Semantic Web.

When integrating ontologies with Datalog+/– via source-to-target TGDs (for
short, we often refer to them as s-t TGDs), such TGDs correspond to GLAV
(global-local-as-view) dependencies and are used as mappings. In their most gen-
eral form, TGDs are (as mentioned above) first-order formulas ∀Xφ(X) →
∃Yψ(X, Y) with X and Y being tuples of variables, φ(X) and ψ(X, Y) being
a conjunction of atomic formulas.

The following two types of dependencies are important special cases of source-
to-target TGDs: LAV (local as view) and GAV (global as view):

– A LAV (local as view) dependency is a source-to-target TGD with a single
atom in the body, i.e., of the form ∀X AS(X) → ∃Yψ(X, Y), where AS is an
atom over the source schema, and ψ(X, Y) is a conjunction of atoms over the
target schema.

– A GAV (global as view) dependency is a source-to-target TGD with a
single atom in the head, i.e., of the form ∀X φ(X) → AT (X′), where φ(X) is
a conjunction of atoms over the source schema, and AT (X′) is an atom over
the target schema with X′ ⊆X.

The following mappings that are mentioned in [34] as “essential” can also be
represented in Datalog+/– (all examples below stem from a consideration of the
OAEI benchmark set; more specifically, ontologies 101 and 301–303):

– Copy (Nicknaming): Copy a source relation (or concept or role) (of arbi-
trary arity n) into a target relation (or concept or role) (of the same arity n
like the source relation (or concept or role)) and rename it. Note that this kind
of mapping is a LAV and a GAV mapping at the same time. For example:

∀x, y S : location(x, y) → T : address(x, y).

– Projection (Column Deletion): Create a target relation (or concept or
role) by deleting one or more columns of a source relation (or concept or role)
(of arbitrary arity n ≥ 2). Note that this kind of mapping is a LAV and GAV
mapping at the same time. For instance:

∀x, y S : author(x, y) → T : person(x).
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– Augmentation (Column Addition): Create a target relation (or concept
or role) (of arbitrary arity n ≥ 2) by adding one or more columns to the source
relation (or concept or role). Note that this is a LAV dependency. A simple
example follows:

∀x S : editor(x) → ∃z T : hasEditor(z, x).

– Decomposition: Decompose a source relation (or concept or role) (of arbi-
trary arity n) into two or more target relations (or concepts or roles). Note
that this is a LAV dependency. For instance, we can have:

∀x, y S : publisher(x, y) → T : organization(x), T : proceedings(y).

Only one mapping construct mentioned in [34] as essential – the join – cannot
be represented by guarded Datalog+/–. As each TGD has to be guarded, there
must be an atom in the body that contains all non-existentially quantified vari-
ables and, hence, a join like ∀x, y S : book(y), S : person(x) → T : author(x, y)
cannot be represented in guarded Datalog+/–. This, however, can also be con-
sidered as a benefit, as joins usually need more computing resources, because
they require a large number of operations. Note that the join is introduced for
query answering by means of conjunctive queries that we are using to query the
target database. This is equivalent to the join in databases.

In ontology mediation, a mapping or alignment is based on correspondences
between so-called matchable entities of two ontologies. The following definition
is based on [12]; let S and T be two ontologies (the source and the target) that
are to be mapped onto each other, and let q be a function that defines the sets
of matchable entities q(S) and q(T ). Then, a correspondence between S and T
is a triple 〈e1, e2, r〉 with e1 ∈ q(S), e2 ∈ q(T ), and r being an alignment relation
between the two matchable elements (note that equivalence and implication are
examples of such an alignment relations if the chosen mapping language supports
them). A mapping or alignment between S and T is then a set of correspondences
C = ∪i,j,k{〈ei, ej , rk〉} between S and T . This is a very general definition, which
allows to describe many types of mappings.

Definition 9 (Ontology Mapping [12]). Let S be a source ontology, and T
be a target ontology. Let q be a function that defines the sets of matchable
entities q(S) and q(T ). Then, a correspondence between S and T is a triple
〈e1, e2, r〉, where e1 ∈ q(S), e2 ∈ q(T ), and r is an alignment relation between the
two matchable elements e1 and e2. An ontology mapping between S and T is a
set of correspondences C = ∪i,j,k{〈ei, ej , rk〉} between S and T .

Semantic Web and ontology mapping languages usually contain a subset of the
aforementioned mapping expressions, plus additional mapping expressions in the
form of constraints, which usually are used to specify class disjointness (see, e.g.,
[31,33]). However, note that both the data exchange and the ontology media-
tion communities have also proposed mapping languages that are more expres-
sive than source-to-target TGDs, consisting of full general Datalog expressions
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and also containing existentially quantified variables in the head – e.g., second-
order mappings as described in the requirements of [32] or second-order TGDs
[16]. Of course, such mapping languages have less desirable tractability prop-
erties. In [31], a probabilistic mapping language is presented that is based on
Markov logic networks, built by mappings of basic DL axioms onto predicates
with the desired semantics. A closer look reveals that the deterministic mapping
constructs that are used are renaming, decomposition, and class disjointness
constraints, as well as their combinations. Such disjointness constraints can be
modeled with Datalog+/–, using negative constraints (NCs), such as:

– Disjointness of ontology entities with the same arity: A source relation
(or concept or role) with arity n is disjoint to another relation (or concept or
role) with the same arity n. The NC below corresponds to class disjointness
that specifies that persons cannot be addresses:

∀x S : Person(x), T : Address(x) → ⊥.

– Disjointness of ontology entities with different arity: A source relation
(or concept or role) with arity n ≥ 2 is disjoint with another relation (or con-
cept or role) with the arity n > m ≥ 1. The example below specifies that
persons cannot be bought and, hence, do not have prices.

∀x, y S : Person(x), T : hasPrice(x, y) → ⊥.

EGDs are also part of some mapping languages, especially in the database
area, and can be represented by Datalog+/– as long as they are separable from
the TGDs. Such kinds of dependencies allow to create mappings like the following
one specifying that publishers of the same book or journal in both, the source
and target schema (or ontology), have to be the same:

∀x, y, z S : publisher(x, y), T : publishes(y, z) → x = z.

5 Probabilistic Data Exchange

Probabilistic data exchange extends classical data exchange by the demand of
two database instances I and J not only meeting the deterministic constraints
of solutions, but also the probabilities specified by a probability distribution
over a set of deterministic schema mappings, which is expressed in the following
definition of probabilistic schema mappings.

Definition 10 (Probabilistic Schema Mapping). A probabilistic schema
mapping is a tuple of the form M = (S,T, Σ, μ), consisting of a source schema
S = {S1, . . . , Sn}, a target schema T = {T1, . . . , Tm} disjoint from S, a set
Σ =Σst ∪Σt of TGDs, negative constraints, and non-conflicting keys, where Σst

are source-to-target TGDs, negative constraints, and non-conflicting keys over
S∪T, and Σt are target TGDs, negative constraints, and non-conflicting keys
over T, and a function μ : 2Σ → [0, 1] such that

∑

Σ′⊆Σ μ(Σ′) = 1.
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Probabilistic schema mappings are compactly encoded in the same way as proba-
bilistic databases by annotating TGDs, negative constraints, and non-conflicting
keys with Boolean combinations of elementary events. If such mappings are given
along with probabilistic databases, then both are compactly encoded via two (not
necessarily disjoint) sets of elementary events, assuming that the probabilities of
common elementary events are the same in both compact encodings. Note that
in probabilistic Datalog+/– [18], which we used for the probabilistic mappings
in [27], both sets of elementary events coincide, the annotations are conjunctions
of elementary events, and the probability of every world is defined via a Markov
logic network.

The next definition lifts the notion of probabilistic (universal) solution from
probabilistic source databases under deterministic schema mappings to proba-
bilistic source databases under probabilistic schema mappings.

Definition 11 (Probabilistic (Universal) Solution). A probabilistic target
database Prt = (J , μt) is a probabilistic solution (resp., probabilistic universal
solution) for a probabilistic source database Prs = (I, μs) relative to a proba-
bilistic schema mapping M = (S,T, Σ, μm) iff there exists a probabilistic space
Pr = (I × J × 2Σ , μ) that satisfies the following two conditions:

1. The three marginals of μ are μs, μt, and μm, such that:
(a)

∑

J∈J , Σ′⊆Σ μ(I, J,Σ′) = μs(I) for all I ∈ I,
(b)

∑

I∈I, Σ′⊆Σ μ(I, J,Σ′) = μt(J) for all J ∈ J , and
(c)

∑

I∈I, J∈J μ(I, J,Σ′) = μm(Σ′) for all Σ′ ⊆Σ;
2. μ(I, J,Σ′) = 0 for all (I, J) �∈ Sol (S,T,Σ′) (resp., (I, J) �∈ USol (S,T,Σ′)).

Using the above probabilistic and probabilistic universal solutions for proba-
bilistic source databases under probabilistic schema mappings, the semantics of
UCQs can easily be lifted from deterministic to probabilistic schema mappings
as follows.

Definition 12 (UCQs). A union of conjunctive queries (or UCQ) has the
form Q(X) =

∨k
i=1 ∃Yi Φi(X,Yi,Ci), where each ∃Yi Φi(X,Yi,Ci) with i∈

{1, . . . , k} is a CQ with exactly the variables X and Yi, and the constants
Ci. Given a probabilistic schema mapping M= (S, T, Σ,μm), a probabilistic
source database Prs = (I, μs), a UCQ Q(X) =

∨k
i=1 ∃Yi Φi(X,Yi,Ci), and a

tuple A over Δ, the confidence of A relative to Q, denoted conf Q(A), in Prs

relative to M is the infimum of Prt(Q(A)) subject to all probabilistic solutions
Prt for Prs relative to M. Here, Prt(Q(A)) for Prt = (J , μt) is the sum of all
μt(J) such that Q(A) evaluates to true in the database J ∈ J (i.e., some BCQ
∃Yi Φi(A,Yi,Ci) with i∈ {1, . . . , k} evaluates to true in J).

Similarly, the main computational tasks of this paper can easily be generalized
from deterministic to probabilistic schema mappings as follows.

Existence of a solution (resp., universal solution): Given a probabilistic
schema mapping M and a probabilistic source database Prs, decide whether
there exists a probabilistic (resp., probabilistic universal) solution for Prs

relative to M.
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Materialization of a solution (resp., universal solution): Given a proba-
bilistic schema mapping M and a probabilistic source database Prs, compute
a probabilistic solution (resp., probabilistic universal) solution for Prs rela-
tive to M, if it exists.

Answering UCQs: Given a probabilistic schema mapping M, a probabilistic
source database Prs, a UCQ Q(X), and a tuple A over Δ, compute confQ(A)
in Prs relative to M.

6 Ontology Mappings with Probabilistic Datalog+/–

In general, probabilistic mappings M= (S,T, Σ, μ) in probabilistic Datalog+/–
have a similar expressivity as deterministic mappings M= (S,T, Σ) in
Datalog+/–; that is, they can encode LAV and GAV mappings and also the
mappings mentioned in Sect. 4 as being essential like Copy (Nicknaming), Pro-
jection (Column Deletion), Augmentation (Column Addition), Decomposition,
and Disjointness constraints of entities with same or different arity (see Sect. 4
for details).

In addition, in probabilistic Datalog+/–, the above-mentioned kinds of deter-
ministic mappings M= (S,T, Σ) are extended with uncertainty by defining a
probability space Ω(2Σ , μm) over the dependencies Σ in Datalog+/– such that
each mapping mi holds with a probability μm(mi). The mappings together with
the probability space defined over them is represented by the compact encoding
defined in Sect. 3 for probabilistic databases and used in Sect. 5 for probabilistic
mappings as well. This compact encoding of probabilistic databases and map-
pings considers conditions or events under which the mappings are true or not.
These events are not part of the databases, but can represent databases or other
relevant events. As such, the two tasks of database and mapping dependencies
modeling are separated from the task of modeling the uncertainty around the
axioms of the ontology. Note that the set of events used to encode the probabilis-
tic mappings can overlap with the set of events used to encode the probabilistic
databases, and their probability can depend completely or in part on the same
events.

As an example, consider a tuple-independent (see Sect. 7) database and a
mapping consisting of a single rule. Without loss of generality, let Σst con-
sist of only one mapping dependency – e.g., the first one mentioned in Sect. 4
(Copy/Nicknaming):

∀x, y S : location(x, y) → T : address(x, y).

The probabilistic version of this mapping for a probabilistic source database with
only two possible probabilistic tuples (location(CS Department, Wolfson Build-
ing Oxford), 0.8), (location(Maths Department, Andrew Wiles Building Oxford),
0.9), which are independent, has probability 0.98 of being true. In this case,
clearly, the probability of the mapping is dependent on the probabilistic source
database.
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Another, more expressive, possibility to encode the probabilistic events under
which the mappings hold is to use Markov logic networks (MLNs) as done
in [18] – in [27], we suggested the use of the probabilistic extension of Datalog+/–
presented in [18] for mappings. With annotations referring to MLNs, a proba-
bilistic mapping has the form M = (S,T, Σ,M), where M is the MLN encoding
the probabilistic worlds in which the dependencies can either hold or not hold.

As described in [18], the TGDs, negative constraints, and non-conflicting keys
are annotated with probabilistic scenarios λ that correspond to the worlds that
they are valid in. The complex probabilistic dependencies that the annotations
are involved in are represented by the MLN. In the probabilistic extension of
Datalog+/– in [18], annotations cannot refer to elements of the databases or
the mappings; hence, again, there is a modeling advantage in separating the
two tasks of database and mapping dependencies modeling when modeling the
uncertainty around the databases and dependencies.

Note that due to the disconnected representation between the probabilistic
dependencies and the ontology, we can encode a part of mapping formulas as
predicates encoding a specific semantics like disjointness, renaming, or decom-
position, in a similar way as in [31]. With these predicates, an MLN can be
created, and the actual mappings can be enriched by ground predicates that
add the probabilistic interpretation. However, another more interesting encod-
ing involves using a second ontology describing additional features of the genera-
tion of the mappings, and in this way eventually even meta reasoning about the
mapping generation is possible. A rather general example of such an additional
MLN describing the generation of a mapping is shown in Fig. 1. Here, the MLN
describes the generation of a mapping via the matcher that it generates and a set
of (possibly dependent) applicability conditions, as well as additional conditions
that influence the probability of the mapping besides the result of the matcher.

With such kind of an MLN describing the dependency of different kinds of
conditions (also dependencies between matchers are conceivable to combine the
results of several different matchers), probabilistic reasoning over data integration

Fig. 1. Example of a Markov logic network describing the generation of mappings
by means of applicability conditions and an additional condition that influences the
probability of the mapping besides the result of the matcher.
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settings can be done in much more precise settings. Hence, such an annotation is
clearly much more expressive than the one corresponding to the two cases consid-
ered in Sect. 7.

7 Computational Complexity

In this section, we explore the computational complexity of deciding the existence
of (universal) solutions for deterministic and probabilistic data exchange prob-
lems in our framework with mappings encoded in different variants of Datalog+/–.
Due to space limitations, we only sketch the proofs – full proofs are given in the
extended paper.

We assume that all annotations are in disjunctive normal form (DNF), i.e.,
disjunctions of conjunctions of literals, and we consider the following two cases:
(i) that elementary events and their negations are pairwise probabilistically inde-
pendent (i.e., the probability of worlds �1∧· · ·∧�n of elementary events (�i = ei)
and their negations (�i = ¬ei) is defined as Πn

i=1ν(�i), where ν(�i) = μ(ei)
and ν(�i) = 1 − μ(ei), respectively), called elementary-event-independence; and
(ii) that all annotations are also elementary and that all worlds have a positive
probability, called tuple-independence.

7.1 Complexity of Deterministic Data Exchange

The following result shows that deciding the existence of probabilistic (or prob-
abilistic universal) solutions for deterministic data exchange problems relative
to probabilistic source databases is co-NP-complete (resp., in PTIME) in the
elementary-event-independent (resp., tuple-independent) case in the data com-
plexity. The upper bound for the elementary-event-independent case follows from
the fact that, relative to a probabilistic source database, a probabilistic universal
solution exists iff a probabilistic solution exists, which is in turn equivalent to
the existence of a deterministic solution relative to the deterministic database
for every world. To decide the contrary, we thus only have to guess a world and
check that there is no solution relative to its database, which is in co-NP. In the
tuple-independent case, the tractability follows from the fact that a probabilistic
solution exists relative to a probabilistic source database iff a deterministic solu-
tion exists relative to the maximal possible deterministic source database, which
can be decided in polynomial time. The lower bound for the elementary-event-
independent case follows from a polynomial reduction from the co-NP-complete
problem of deciding whether a CNF formula φ = c1 ∧· · ·∧cn, where every ci is a
disjunction of literals over m propositional variables x1, . . . , xm, is unsatisfiable.
In this reduction, the source database consists of the atoms ES(i − 1, i) for
all i∈ {1, . . . , n}, annotated with ci, and the atom LS(0), annotated with the
true event �, while the probabilities of the variables xi are defined as 0.5.
The deterministic mapping in Datalog+/– is defined as ES(X,Y ) → ET (X,Y ),
LS(X) → LT (X), LT (n) → ⊥, and LT (X) ∧ ET (X,Y ) → LT (Y ). Then, the
above probabilistic database and deterministic mapping have a probabilistic
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solution iff φ is unsatisfiable. Observe that by this construction, hardness for
co-NP also holds for the special case where the constructed mapping is formu-
lated without existentially quantified variables.

Theorem 1. Given a schema mapping M= (S, T, Σst ∪ Σt), where Σst and
Σt are guarded TGDs, negative constraints, and non-conflicting keys over S∪T
and T, respectively, and a probabilistic source database Prs, deciding whether
there exists a probabilistic (or probabilistic universal) solution for Prs relative to
M is co-NP-complete (resp., in PTIME) in the elementary-event-independent
(resp., tuple-independent) case in the data complexity.

The next result shows that deciding the existence of probabilistic (or probabilistic
universal) solutions for deterministic data exchange problems relative to proba-
bilistic source databases is also in PTIME in the elementary-event-independent
case in the data complexity, if we restrict the TGDs in the mapping to linear
rather than guarded TGDs. The main idea behind this result is that, in the linear
case, all the target inconsistencies can be traced back to a polynomial number
of potential source inconsistencies, which must be associated with annotations
that are either inconsistent or have probability zero, which can be checked in
polynomial time in the data complexity.

Theorem 2. Given a schema mapping M = (S, T, Σst ∪ Σt), where Σst and
Σt are linear TGDs, negative constraints, and non-conflicting keys over S∪T
and T, respectively, and a probabilistic source database Prs, deciding whether
there exists a probabilistic (or probabilistic universal) solution for Prs rela-
tive to M is in PTIME in the elementary-event-independent case in the data
complexity.

7.2 Complexity of Probabilistic Data Exchange

The next result shows that deciding the existence of probabilistic (or probabilistic
universal) solutions for probabilistic data exchange problems with probabilistic
source databases is also co-NP-complete (resp., in PTIME) in the elementary-
event-independent (resp., tuple-independent) case in the data complexity. The
upper bound for the elementary-event-independent case follows from the fact
that relative to a probabilistic source database, a probabilistic universal solution
exists iff a probabilistic solution exists, which is in turn equivalent to the exis-
tence of a deterministic solution relative to the deterministic database and deter-
ministic mapping for every world. In the tuple-independent case, the tractability
follows from the fact that a probabilistic solution exists relative to a probabilis-
tic source database iff a deterministic solution exists relative to the maximal
possible deterministic source database and mapping, which can be decided in
polynomial time. The co-NP-hardness in the probabilistic case follows from the
co-NP-hardness in the less general deterministic case.

Theorem 3. Given a probabilistic schema mapping M = (S, T, Σst ∪Σt, μ),
where Σst and Σt are guarded TGDs, negative constraints, and non-conflicting
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keys over S∪T and T, respectively, and a probabilistic source database Prs,
deciding whether there exists a probabilistic (or probabilistic universal) solution
for Prs relative to M is co-NP-complete (resp., in PTIME) in the elementary-
event-independent (resp., tuple-independent) case in the data complexity.

Like in the deterministic case, deciding the existence of probabilistic (or prob-
abilistic universal) solutions for probabilistic data exchange problems relative
to probabilistic source databases is also in PTIME in the elementary-event-
independent case in the data complexity, if we restrict the TGDs in the mapping
to linear rather than guarded TGDs. This is because we essentially have to con-
sider one deterministic data exchange problem for every subset of the mapping,
which is fixed in the data complexity case.

Theorem 4. Given a probabilistic schema mapping M = (S, T, Σst ∪Σt, μ),
where Σst and Σt are linear TGDs, negative constraints, and non-conflicting
keys over S∪T and T, respectively, and a probabilistic source database Prs,
deciding whether there exists a probabilistic (or probabilistic universal) solution
for Prs relative to M is in PTIME in the elementary-event-independent case in
the data complexity.

8 Provenance

With the compact encoding of probabilistic databases via annotated atoms with
events representing the worlds in which they are valid, we are essentially using
a data provenance formalism for tracing the probabilistic worlds that an atom
belongs to.

Provenance information adds value to data by explaining how it was obtained,
thus allowing to validate its correctness, truthfulness, trustworthiness, and com-
pliance. In information integration, when pieces of data from distributed data-
bases or ontologies are integrated, provenance information allows to check the
trustworthiness and correctness of the results of queries and debug them as
well as trace the errors back to where they were created. Hence, an informa-
tion integration framework should be equipped with some form of provenance
information.

Provenance research distinguishes between workflow and data provenance.
The former is about capturing the processes (i.e., flows and transformations)
that a piece of data has gone through before arriving at its current desti-
nation or its current version [4]. Some of these processes cannot be accessed
and remain a black box in workflow provenance. Contrary to workflow prove-
nance, data provenance is much more fine-grained and focuses on the lineage of
data for a query – i.e., the whereabouts of its derivation in a database itself.
While we are mainly interested in data provenance, workflow provenance cer-
tainly is also of much relevance for data exchange. Hence, the recent W3C
recommendation PROV [30], which is a language for specifying workflow prove-
nance in the Web, is relevant to our work as well. However, as we have a fine-
grained logical formalization of the data exchange process, we focus on data
provenance.
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In data provenance, there is a principal distinction made among where-, why-
and how-provenance [8]. How-provenance [19] is the most expressive one and the
most appropriate for annotating mappings and tracing back the origin of query
results. How-provenance can be modeled via an algebraic structure, called a
semiring, and it is possible to construct different kinds of semirings, depend-
ing on what kind of information is to be captured, and which operations on
that information are to be allowed. Besides formalizing different kinds of prove-
nance annotations with certain kinds of semirings (called K-relations) based on
the positive relational algebra, [19] provides a formalization of plain Datalog
without negation with K-relations, used within the collaborative data sharing
system ORCHESTRA [20] also for modeling TGDs without existential quanti-
fiers. To capture applications of mappings in ORCHESTRA, [23] proposes to
use a so-called M-semiring, which allows to annotate the mappings with names
m1, . . . ,mk (unary functions), one for each mapping. This can be combined with
the formalization of negation-free Datalog (with a procedural semantics based
on the least fixpoint operator to construct the model) with positive K-relations
as presented in [19].

Clearly, such a formalization for the probabilistic Datalog+/– information
integration framework in this paper allows to capture provenance and annotate
the mappings with an id such that the integration paths can be traced back to
their origin. In this way, routes that can be used to debug mappings like in [9]
can be captured. In addition, as shown in [19], when the mappings are the only
probabilistic or uncertain elements, the probabilities can also be computed more
efficiently, as the captured provenance also carries the information where the
probabilities are propagated from. In addition, cycles can be detected, and the
trustworthiness of query results can also be estimated, as it can be detected
where the data that is involved in the query result has been integrated from.
For this purpose, the trustworthiness of data sets and possibly also peers who
provide access to data sets need to be assessed beforehand.

A similar approach to the aforementioned ORCHESTRA system for the
application of the chase within probabilistic Datalog+/– with a semiring for-
malization can be constructed and is currently under development. In proba-
bilistic data integration with Datalog+/–, lineage is restricted by the guards,
which help to direct the chase towards the answer of a query through the anno-
tated guarded chase forest. In [18,26], a similar kind of tuple annotation as
proposed here was used in combination with the chase to speed up the reasoning
process.

9 Related Work

Probabilistic data exchange with different combinations of source-to-target TGDs
with and without existential quantified variables in the head, target equality con-
straints, and weakly-acyclic target TGDs with and without existential quantified
variables in the head have been studied in [14]. In contrast, Datalog+/– allows to
deal with ontologies on the Semantic Web and as such allows to integrate informa-
tion residing in ontologies. One work on integrating information in ontologies is [3],
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which tackles the problem of knowledge base data exchange; however, they assume
that ontologies in DL-Lite are used to exchange data – guarded Datalog+/–
strictly subsumes DL-Lite and goes well beyond its expressive power.

Other articles that are closely related to our work and that of [14] are
[11,17]. There, the source data is deterministic and the mappings are probabilis-
tic. By-table and by-tuple solutions are defined; while the former correspond
to a restriction of general probabilistic mappings, by-tuple solutions correspond
to mappings that translate only single facts and hence correspond to inclusion
dependencies.

In the Semantic Web, the integration of information in ontologies has also
been addressed in [31]. There, predicates are defined encoding specific seman-
tics like disjointness, renaming, or decomposition, and an MLN is built from
them. Very much related is also our prior work in [7,28]. There, ontologies are
mapped with Bayesian description logic programs, which correspond to a sub-
set of probabilistic Datalog+/– and tightly coupled description logics programs
with negation under different semantics like the answer set semantics and the
well-founded semantics.

Provenance for information integration is used in ORCHESTRA [20] for inte-
grating XML data. In contrast, we exchange data between databases, and we
also deal with uncertain and incomplete databases.

10 Summary and Outlook

In this paper, we have studied probabilistic data exchange via probabilistic
Datalog+/– and used annotations encoding probabilistic data provenance of
atoms. We have also considered using provenance for tracking the origin of inte-
grated information and using provenance for tracking the origin of mappings
themselves, including the conditions for their applicability for trust assessment
and debugging.

By means of Datalog+/– [6], which can represent DL-Lite and EL, we use a
tractable language with dependencies that allows to nicely tie together the theo-
retical results on information integration in databases and the work on ontology
mediation in the Semantic Web. The separation between the ontology and the
probabilistic dependencies allows us to either model the mappings with specific
newly-invented predicates like disjointness, renaming, or decomposition, etc. or –
more interestingly – with a probabilistic meta ontology describing the matching
process.

Our work shows how classical and probabilistic (guarded and linear)
Datalog+/– can be used to model information integration settings, and sketches
a deterministic mapping language based on Datalog+/– and a probabilistic
generalization based on the rather loosely coupled probabilistic extension of
Datalog+/– with worlds represented by propositional events. We also justify
why data provenance needs to be captured and represented within such a prob-
abilistic information integration framework, and propose to use an adaptation
of K-relations as proposed by [19]. Such an extension with provenance allows to
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track how results of queries to the framework have been created, and also debug
mappings, since errors can be traced back to their origin.

An interesting topic for future research is to develop the proposed framework
for provenance capture and, among others, investigate how to use the chase for
reasoning with probabilistic Datalog+/– within a semiring-framework.
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Abstract. We consider the problem of learning both the structure and
the parameters of Probabilistic Description Logics under the DISPONTE
semantics. DISPONTE is based on the distribution semantics for Prob-
abilistic Logic Programming and assigns a probability to assertional and
terminological axioms. The system EDGE, given a DISPONTE knowl-
edge base (KB) and sets of positive and negative examples in the form
of concept assertions, returns the value of the probabilities associated
with axioms. We present the system LEAP that learns both the struc-
ture and the parameters of DISPONTE KBs explotiting EDGE. LEAP
is based on the system CELOE for ontology engineering and exploits its
search strategy in the space of possible axioms. LEAP uses the axioms
returned by CELOE to build a KB so that the likelihood of the examples
is maximized. We present experiments showing the potential of EDGE
and LEAP.

1 Introduction

Recently, the problem of representing uncertainty in Description Logics (DLs)
has received an increasing attention due to the ubiquity of uncertain information
in real world domains. Various authors have studied the use of probabilistic
DLs and many proposals have been presented for allowing DLs to represent
uncertainty [10,13,16,17,28].

In addition, some works have started to appear about learning the probabil-
ities or the whole structure of probabilistic ontologies. These arise, on one hand,
from the fact that specifying the values of the probabilities is a difficult task for
humans and data is usually available that could be leveraged for tuning them,
and, on the other hand, from the fact that in some domains there exist poor-
structured knowledge bases which could be improved [13,14]. A knowledge base
with a refined structure and instance data coherent with it allows more powerful
reasoning, better consistency checking and improved querying possibilities.

In [2,18,19,23] we proposed an approach for the integration of probabilistic
information in DLs called DISPONTE for “DIstribution Semantics for
c© Springer International Publishing Switzerland 2014
F. Bobillo et al. (Eds.): URSW 2011-2013, LNAI 8816, pp. 63–78, 2014.
DOI: 10.1007/978-3-319-13413-0 4
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Probabilistic ONTologiEs”. DISPONTE applies the distribution semantics for
probabilistic logic programming [25] to DLs.

In this paper we present an approach for learning the structure of proba-
bilistic DLs following the DISPONTE semantics. The approach is based on the
algorithm EDGE for “Em over bDds for description loGics paramEter learning”
[21,22] that starts from examples of instances and non-instances of concepts and
learns the parameters of a probabilistic theory. EDGE builds Binary Decision
Diagrams (BDDs) for representing the explanations of the examples from the
theory. The parameters are then tuned using an EM algorithm [8] in which the
required expectations are computed directly on the BDDs in an efficient way.

The algorithm for learning the structure is called LEAP for “LEArning
Probabilistic description logics” and combines the learning system CELOE with
EDGE. The former provides a method to build new (equivalence and subsump-
tion) axioms that can be added to the KB, the latter is used to learn the para-
meters of these probabilistic axioms.

We provide a performance evaluation of both EDGE and LEAP. For EDGE,
we extend the evaluation of [21] with a new dataset and that of [22] by including
a cross-validation result. For LEAP, we present a comparison between a theory
before and after applying LEAP. The experiments with EDGE show that it
achieves statistically significant greater areas under the Precision Recall and
the Receiver Operating Characteristics curves (AUCPR and AUCROC) with
respect to a theory where the probabilities are obtained from an Association
Rule learner. The experiments with LEAP show that it improves the AUCPR
and AUCROC of the theory with the difference being statistically significant for
AUCROC.

The paper is organized as follows. Section 2 introduces Description Logics
and the DISPONTE semantics. Section 3 describes EDGE. In Sect. 4 we intro-
duce LEAP. Section 5 discusses related works and Sect. 6 shows the results of
experiments for both systems. Section 7 concludes the paper.

2 Description Logics and the DISPONTE Semantics

Description Logics (DLs) are knowledge representation formalisms that are par-
ticularly useful for representing ontologies. Their syntax is usually based on
concepts and roles. A concept corresponds to a set of individuals of the domain
while a role corresponds to a set of couples of individuals of the domain. In the
following we consider and describe ALC [26].

Let A, R and I be sets of atomic concepts, roles and individuals, respectively.
Concepts are defined by induction as follows. Each A ∈ A is a concept and ⊥
and � are concepts. If C, C1 and C2 are concepts and R ∈ R, then (C1 � C2),
(C1 �C2) and ¬C are concepts, as well as ∃R.C and ∀R.C. A TBox T is a finite
set of concept inclusion axioms C 	 D, where C and D are concepts; we use
C ≡ D to abbreviate C 	 D and D 	 C. An ABox A is a finite set of concept
membership axioms a : C, role membership axioms (a, b) : R, equality axioms
a = b and inequality axioms a �= b. A knowledge base (KB) K = (T ,A) consists
of a TBox T and an ABox A.
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A knowledge base K is usually assigned a semantics in terms of set-theoretic
interpretations and models of the form I = (ΔI , ·I), where ΔI is a non-empty
domain and ·I is the interpretation function that assigns an element in ΔI to
each a ∈ I, a subset of ΔI to each C ∈ A and a subset of ΔI ×ΔI to each R ∈ R.
The mapping ·I is extended to all concepts (where RI(x) = {y|(x, y) ∈ RI}) as:

�I = ΔI

(¬C)I = ΔI \ CI

(C1 � C2)I = CI
1 ∪ CI

2

(∃R.C)I = {x ∈ ΔI |RI(x) ∩ CI �= ∅}

⊥I = ∅
(C1 � C2)I = CI

1 ∩ CI
2

(∀R.C)I = {x ∈ ΔI |RI(x) ⊆ CI}

A query over a knowledge base is an axiom for which we want to test the entail-
ment from the knowledge base. The entailment test may be reduced to checking
the unsatisfiability of a concept in the knowledge base, i.e., the emptiness of the
concept.

DISPONTE applies the distribution semantics [25] to probabilistic ontolo-
gies. In DISPONTE a probabilistic knowledge base K is a set of certain and
probabilistic axioms: certain axioms take the form of regular DL axioms, proba-
bilistic axioms take the form p :: E, where p is a real number in [0, 1] and E is a
DL axiom. The probability p can be interpreted as an epistemic probability, i.e.,
as the degree of our belief in axiom E. A DISPONTE KB defines a distribution
over DL KBs called worlds. Each world w is obtained by including every certain
axiom. For each probabilistic axiom, we decide whether or not to include it in
w. A world therefore is a non probabilistic KB that can be assigned a semantics
in the usual way. By multiplying the probability of the choices made to obtain
a world we can assign a probability to it. The probability of a query is then the
sum of the probabilities of the worlds where the query holds true.

The system BUNDLE [18–20,23,24] computes the probability of a query
w.r.t. ontologies that follow the DISPONTE semantics by first computing all the
explanations for the query and then building a Binary Decision Diagram (BDD)
that represents them. A set of explanations for a query Q is a set of sets of pairs
(Ei, k) where Ei is the ith probabilistic axiom and k ∈ {0, 1} indicates whether
Ei is chosen to be included in a world (k = 1) or not (k = 0). Given the set of
explanations K for a query Q, we can define the Disjunctive Normal Form (DNF)
Boolean formula fK as fK(X) =

∨

κ∈K

∧

(Ei,1)
Xi

∧

(Ei,0)
Xi. The variables X =

{Xi|(Ei, k) ∈ κ, κ ∈ K} are independent Boolean random variables and the
probability that fK(X) takes on value 1 is equal to the probability of Q. A BDD
for a function of Boolean variables is a rooted graph that has one level for each
Boolean variable. A node n has two children: one corresponding to the 1 value
of the variable associated with the level of n, indicated with child1(n), and one
corresponding to the 0 value of the variable, indicated with child0(n). When
drawing BDDs, the 0-branch - the one going to child0(n) - is distinguished from
the 1-branch by drawing it with a dashed line. The leaves store either 0 or 1.

Explanations are found by using the Pellet reasoner [27] and are then trans-
lated into a BDD that allows to compute the probability of Q with a dynamic
programming algorithm in polynomial time in the size of the diagram [7].



66 F. Riguzzi et al.

X1 n1

X2 n2

X3 n3

1 0

Fig. 1. BDD for Example 1.

The system TRILL [29] implements the BUNDLE’s inference algorithm in
Prolog and compute the probability of a query w.r.t. KBs that follow the
DISPONTE semantics.

Example 1. Let us consider the following knowledge base, inspired by the ontol-
ogy people+pets proposed in [15]:

∃hasAnimal.Pet 	 NatureLover

(kevin,fluffy) : hasAnimal

(kevin, tom) : hasAnimal

(E1) 0.4 ::fluffy : Cat

(E2) 0.3 :: tom : Cat

(E3) 0.6 :: Cat 	 Pet

Individuals that own an animal which is a pet are nature lovers and kevin
owns the animals fluffy and tom. We believe in the fact that fluffy and tom
are cats and that cats are pets with the specified probability. This KB has
eight worlds and the query axiom Q = kevin : NatureLover is true in three
of them, corresponding to the following choices: {(E1, 1), (E2, 0), (E3, 1)},
{(E1, 0), (E2, 1), (E3, 1)}, {(E1, 1), (E2, 1), (E3, 1)}. The probability is therefore
P (Q) = 0.4 · 0.7 · 0.6 + 0.6 · 0.3 · 0.6 + 0.4 · 0.3 · 0.6 = 0.348. If we associate
the random variables X1 to the axiom E1, X2 to E2 and X3 to E3, the BDD
representing the set of explanations is shown in Fig. 1.

3 Parameter Learning of Probabilistic DLs

EDGE [21,22] performs parameter learning of probabilistic ontologies under the
DISPONTE semantics and is inspired by the algorithm EMBLEM [3,4], which
was developed for learning the parameters of probabilistic logic programs under
the distribution semantics. The parameters correspond to the epistemic proba-
bilities previously introduced and are tuned using an Expectation Maximization
(EM) algorithm [8], an iterative method to estimate some unknown parameters
Θ of a model: in particular, it finds maximum likelihood or maximum a posteriori
(MAP) estimates of Θ. EM alternates between performing an Expectation (E)
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step, where the missing data are estimated given the observed data and current
estimate of the model parameters, and a Maximization (M) step, which com-
putes the parameters maximizing the likelihood of the data given the sufficient
statistics on the data computed in the E step.

EDGE takes as input a DL KB and a number of examples that represent the
queries. Tipically, the queries are concept assertions and are divided into positive
examples (set E+) - representing true information, for which we would like to
get high probability - and negative examples (set E−) - representing false infor-
mation, for which we would like to get low probability. EDGE first computes, for
each query Q, the BDD encoding its explanations using the reasoner BUNDLE.
A limit on the maximum number of explanations to be found (NumE) or a time
limit for the search for explanations (TLE) can be possibly set for BUNDLE.
For negative examples, EDGE computes the explanations of the query, builds
the BDD and then negates it. For example, if the negative example is a : C,
EDGE executes the query a : C, finds the BDD and then negates it. Given the
knowledge base of Example 1 and the positive example kevin : NatureLover,
we obtain the BDD in Fig. 1.

EDGE main procedure consists of the EM cycle in which the steps of Expecta-
tion and Maximization are repeated until the log-likelihood (LL) of the examples
reaches a local maximum, as shown in Algorithm 1. At each iteration the LL
of the example increases, i.e., the probability of positive examples increases and
that of negative examples decreases. The EM algorithm is guaranteed to find
a local maximum, which however may not be the global maximum. Procedure
Expectation returns the LL of the data that is used in the stopping criterion:
EDGE stops when the difference between the LL of the current iteration and
the one of the previous iteration (LL0) drops below a threshold ε or when this
difference is below a fraction δ of the LL.

Algorithm 1. Function EDGE.
1: function EDGE(K, E+, E−, ε, δ, NumE, TLE)
2: Build BDDs � BUNDLE builds all the BDDs according to the limits NumE and TLE
3: LL = −inf
4: repeat
5: LL0 = LL
6: LL = Expectation(BDDs)
7: Maximization
8: until LL − LL0 < ε ∨ LL − LL0 < −LL · δ
9: return (LL, K)
10: end function

Procedure Expectation (shown in Algorithm 2) takes as input a list of
BDDs, one for each example Q, and computes the expectations E[ci0|Q] and
E[ci1|Q] for all axioms Ei directly over the BDDs. Let cix be the number of
times a Boolean random variable Xi takes on value x for x ∈ {0, 1}:

E[cix|Q] = P (Xi = x|Q).
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Then it sums up the contributions of all examples: E[cix] =
∑

Q E[cix|Q].

Finally, P (Xi = x|Q) is given by P (Xi=x,Q)
P (Q) . In this procedure we use ηx(i)

Algorithm 2. Function Expectation.
1: function Expectation(BDDs)
2: LL = 0
3: for all i ∈ Axioms do
4: E[ci0] = 0; E[ci1] = 0
5: end for
6: for all BDD ∈ BDDs do
7: for all i ∈ Axioms do
8: η0(i) = 0; η1(i) = 0
9: end for
10: for all variables X do
11: ς(X) = 0
12: end for
13: GetForward(root(BDD))
14: Prob=GetBackward(root(BDD))
15: T = 0
16: for l = 1 to levels(BDD) do
17: Let Xi be the variable associated with level l
18: T = T + ς(Xi)
19: η0(i) = η0(i) + T × (1 − pi)
20: η1(i) = η1(i) + T × pi

21: end for
22: for all i ∈ Axioms do
23: E[ci0] = E[ci0] + η0(i)/Prob
24: E[ci1] = E[ci1] + η1(i)/Prob
25: end for
26: LL = LL + log(Prob)
27: end for
28: return LL
29: end function

to indicate P (Xi = x,Q). Expectation first calls procedures GetForward
and GetBackward that compute the forward and the backward probability of
nodes and ηx(i) for non-deleted paths only. These are the paths that have not
been deleted when building the BDDs. Forward and backward probabilities in
each node represent the probability mass of paths from the root to the node and
that of the paths from the node to the leaves respectively. The expression

P (Xi = x,Q) =
∑

n∈N(Q),v(n)=Xi

F (n)B(childx(n))πix,

with N(Q) the set of BDD nodes for query Q, v(n) the variable associated with
node n, πi1 = pi, πi0 = 1 − pi, F (n) the forward probability of n, B(n) the
backward probability of n, represents the probability mass of each path passing
through each node associated with Xi and going down its x-branch. We use the
notation ex(n) to indicate the expression inside the sum. Computing the two
types of probability in the nodes requires two traversals of the graph, so its cost
is linear in the number of nodes.

Procedure GetForward computes the value of the forward probabilities
for every node. It traverses the diagram one level at a time starting from the
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root level, where F (root) = 1, and for each node n computes its contribution
to the forward probabilities of its children. Then the forward probabilities of
both children are updated. Function GetBackward computes the backward
probability of nodes by traversing recursively the tree from the leaves to the root.
It returns the backward probability of the root corresponding to the probability
of the query P (Q), indicated as Prob at line 14 of Algorithm 2.

When the calls of GetBackward for both children of a node n return, we
compute the ex(n) and ηx(i) values for non-deleted paths. An array ς is used to
store the contributions of the deleted paths by starting from the root level and
accumulating ς(l) for the various levels l. See [22] for more details.

Expectations are updated for all axioms (lines 23–24) and finally the log-
likelihood of the current example is added to the overall log likelihood.

Procedure Maximization computes the parameters values for the next EM
iteration by relative frequency for all axioms Ei:

pi =
E[ci1]

E[ci0] + E[ci1]
.

4 Structure Learning of Probabilistic DLs

LEAP performs structure and parameter learning of probabilistic ontologies
under the DISPONTE semantics by exploiting: (1) CELOE [11] for the struc-
ture, and (2) EDGE (Sect. 3) for the parameters. We first introduce CELOE
before describing LEAP.

4.1 CELOE

CELOE [11] stands for “Class Expression Learning for Ontology Engineering” and
is available in the Java open-source framework DL-Learner1 for OWL and DLs.

Let us consider a knowledge base K and a class Target whose formal descrip-
tion we want to learn. Target has (inferred or asserted) instances in K. CELOE
can take as input a target class, a set of positive and negative examples (i.e.
individuals) or a set of positive only examples.

If Target is already described by a class expression C through axioms such
as Target 	 C or Target ≡ C, it is possible to learn a description for Target
by refining C or by relearning from scratch, as stated in Definition 1.

Definition 1 (Class Learning Problem). Let an existing named class
Target be in a knowledge base K. Let RK(C) be a retrieval reasoner opera-
tion that returns the set of all instances of C. The class learning problem is to
find an expression C such that RK(Target) = RK(C).

CELOE finds a set of n class expressions Ci (1 ≤ i ≤ n) sorted according
to a heuristic. Such expressions are candidates for adding axioms of the form
Target ≡ Ci or Target 	 Ci.
1 http://dl-learner.org/Projects/DLLearner

http://dl-learner.org/Projects/DLLearner
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On the other hand, if a set of positive and negative examples or a set of only
positive examples is given, CELOE can be seen as a learning algorithm that
solves a problem of learning from examples, as described in Definition 2.

Definition 2 (Learning from Examples Problem).
Given:

– a concept name Target;
– a knowledge base K not containing Target;
– a space of possible concepts C;
– a set of positive examples E+ with elements of the form a : Target (a ∈ I);
– a set of negative examples E− with elements of the form a : Target (a ∈ I);

Find a concept expression C ∈ C such that:

– Target does not occur in C (acyclic definition);
– ∀e+ ∈ E+,K ∪ {Target ≡ C} |= e+;
– ∀e− ∈ E−,K ∪ {Target ≡ C} �|= e−.

If K′ = K∪{Target ≡ C} we say that a concept C covers an example e ∈ E+∪E−

if K′ |= e. We distinguish the two cases in which both sets E+ and E− of indi-
viduals are given or only the set E+ is given as Positive and Negative Examples
Learning Problem (LP )andPositiveExamplesLearning Problem respectively.

CELOE is a top-down algorithm that starts from the � concept and uses
the ALCQ refinement operator defined in [12]. Each generated class expression
is evaluated using one of five available heuristics, whose resulting value is used
to guide the search in the learning process. All these heuristics need a set of
examples in order to be computed; in the case the algorithm took as input only
the target class to be described, we can consider as positive examples the existing
instances (inferred or asserted) of the target class and the remaining instances
in the KB as negative examples.

4.2 LEAP

In order to learn an ontology, LEAP first finds good candidate axioms (sub-
sumption axioms) by means of CELOE, then it performs a greedy search in the
space of theories.

LEAP main procedure is shown in Algorithm 3: it takes as input the knowl-
edge base K and the type of learning problem LPtype; the maximum number
of class expressions NumC and the time limit TLC for CELOE; the values
of ε and δ, the maximum number of explanations NumE and the time limit
TLE for the computation of the BDDs for each example for EDGE. Note
that CELOE’s default is NumC = 10 and TLC = 10 s and EDGE’s default
is NumE = TLE = ∞.

In the first phase, a set of class expressions is generated by using CELOE
(line 2), then the sets of positive (PI) and negative (NI) individuals are extracted
according to the following rules:
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– if a set of positive and negative individuals has been given as input to CELOE
(LPtype = Positive and Negative Examples Learning Problem), then no
extraction is necessary;

– if a set of positive only individuals has been given (LPtype = Positive Exam-
ples Learning Problem), then the set of negative examples will be composed
of all the individuals of K except the positive ones;

– if a target class has been given (LPtype = Class Learning Problem, cf.
Definition 1), then we consider the existing instances (inferred or asserted)
of the target class as positive individuals and the remaining instances as neg-
ative individuals.

After the extraction, the assertional axioms, which represent the examples (i.e.
queries) for EDGE, are created (see lines 4–9). Then EDGE is applied to the
KB to compute the initial value of the parameters and of the LL.

In the second phase, LEAP performs a greedy search in the space of the-
ories, described in lines 11–19. For each element of the class expressions set,
one probabilistic subsumption axiom at a time of the form p ::CE 	 Target is
added to the ontology K; p is either a random probabilistic value or the accu-
racy returned by CELOE. After each addition, EDGE is run on the extended
theory to compute the log-likelihood of the data LL and the updated parame-
ters (line 14). If LL is better than the current best LL0, the new axiom is kept
in the knowledge base, otherwise the new axiom is discarded (lines 15–18). The
final theory, obtained from the union of the initial ontology and the probabilistic
subsumption axioms learned, is returned to the user.

LEAP is a client-server Java RMI application. The server side contains a
class called EDGERemote, which performs the EDGE algorithm. The client side,
instead, runs a modified version of CELOE called ProbCELOE and a class called
EDGE that invokes the remote methods of EDGERemote in order to compute
the log-likelihood and the parameters. Figure 2 illustrates the communication
between the LEAP client and the server.

5 Related Work

GoldMiner [10,28] is an algorithm that exploits Association Rules (ARs) for build-
ing ontologies. GoldMiner extracts information about individuals, named classes
and roles using SPARQL queries. From these data, it builds two transaction tables:
one that stores the classes to which each individual belongs and one that stores
the roles to which each couple of individuals belongs. Finally, the APRIORI algo-
rithm [1] is applied to each table in order to find ARs. Implications of the form
A ⇒ B can be converted to subclass axioms of the form A 	 B. Moreover, the
confidence p of an AR can be interpreted as the probability of the axiom p :: A 	 B.
So GoldMiner can be used to obtain a probabilistic knowledge base.

The structure learner LEAP is inspired to SLIPCOVER, an algorithm pro-
posed for learning probabilistic logic programs based on distribution semantics
[5]. LEAP shares with it the search strategy and the use of the log-likelihood
of the data as the score of the learnt theories. Like SLIPCOVER, it divides the
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Algorithm 3. Function LEAP.
1: function LEAP(K, LPtype, NumC, TLC, ε, δ, NumE, TLE)
2: ClassExpressions = up to NumC or until TLC is reached � generated by CELOE
3: (PI , NI) = ExtractIndividuals(LPtype)
4: for all ind ∈ PI do � PI : set of positive individuals
5: Add ind : Target to PE � PE : set of positive examples
6: end for
7: for all ind ∈ NI do � NI : set of negative individuals
8: Add ind : Target to NE � NE : set of negative examples
9: end for
10: (LL0, K) = EDGE(K, PE , NE , ε, δ, NumE, TLE)
11: for all CE ∈ ClassExpressions do
12: Axiom = p::CE � Target
13: K′ = K ∪ {Axiom}
14: (LL, K′) = EDGE(K′, PE , NE , ε, δ, NumE, TLE)
15: if LL > LL0 then
16: K = K′

17: LL0 = LL
18: end if
19: end for
20: return K
21: end function

Fig. 2. LEAP as a client-server Java RMI application.

search between learning promising axioms and building in a greedy way a theory
whose parameters are optimized by relying on a parameter learning algorithm.

A work that integrates parameter and structure learning for a probabilistic
extension of ALC, named crALC, is [13]. crALC allows statistical axioms of
the form P (C|D) = α, meaning that for any element x in D, the probability
that it is in C given that is in D is α, and of the form P (R) = β, meaning that
for each couple of elements x and y in D, the probability that x is linked to y
by the role R is β. crALC does not allow to express a degree of belief in axioms
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as DISPONTE. An algorithm is presented in [13] that learns parameters and
structure of crALC KBs. It starts from positive and negative examples for a
single concept and from the general concept � in the root of a search tree to be
refined. For a set of candidate concept definitions, their probabilistic parameters
are learned using an EM algorithm and a score is assigned to the corresponding
node. If the best score in the tree is above a threshold, a deterministic concept
definition is returned, otherwise a probabilistic inclusion Ci is searched on a
weighted spanning tree, where the target concept is added as a parent of each
vertex and probabilities are learned as P (Ci|Parents(Ci)). We share the top-
down procedure for building axioms (CELOE) but we exploit the BDD structures
instead of resorting to inference in a graphical model to compute the expected
counts for EM.

The paper [14] presents a Statistical Relational Learning system for learning
terminological näıve Bayesian classifiers, which estimate the probability that an
individual a belongs to a certain target concept given its membership to a set
of induced DL (feature) concepts. The classifier consists of a Bayesian Network
(BN) modelling the dependency relations between the feature concepts and the
target one. The learning process handles three different assumptions that can be
made about the lack of knowledge (under OWA) regarding concept-membership,
reflecting in the adoption of different scoring functions and search strategies
of the optimal network and parameters. Under one of the assumptions - the
probability of concept-membership of a depends on the knowledge on a available
in K - the EM method is proposed to train the BN parameters. The classifier
can be seen as a learner of probabilistic assertional axioms, while LEAP learns
probabilistic terminological axioms. We exploit BDDs instead of BNs, while we
share with them the use of EM.

6 Experiments

In order to test the performances of EDGE and of LEAP we performed several
experiments. First we have executed two tests on EDGE which are inspired
by the ones presented in [21,22]. Then, once shown that EDGE achieves good
results, we have done a preliminary test for comparing LEAP with it.

6.1 Parameter Learning

EDGE has been compared with Association Rules (ARs) [21,22] over two real
world datasets from the Linked Open Data cloud: education.data.gov.uk2 and
an extract of DBPedia3. We extend the experiments from [21] by including the
DBPedia dataset and those of [22] by presenting the results of a cross-validation
rather than of a single training-test split.

In the experiments, we wanted to simulate the situation in which an expert
provides the structure of the ontology together with information on a set of
2 http://education.data.gov.uk/
3 http://dbpedia.org/About

http://education.data.gov.uk
http://education.data.gov.uk/
http://dbpedia.org/About
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individuals. The ontologies were obtained with GoldMiner: we extracted 10,000
individuals and 5,545 axioms for education.data.gov.uk and 7,200 individuals
and 6,228 axioms for DBPedia and we learned ARs from the resulting transaction
tables. The ARs were then converted into subclass axioms.

In order to generate a set of examples (queries) for EDGE, for each extracted
individual a we sampled three named classes: A and B were sampled from the
named classes to which a explicitly belonged, while C was sampled from the
named classes to which a did not explicitly belong but that exhibited at least
one explanation for the query a : C. The axiom a : A is added to the KB, while
a : B is considered as a positive example and a : C as a negative example. We
used a 5-fold cross validation to test the system. In the training phase, we ran
EDGE on the ontology obtained by GoldMiner where we consider all the axioms
as probabilistic. We randomly set the initial values of the parameters. EDGE,
for handling 5,000 examples, took about 15,000 s in average for DBPedia, about
3 s per example, and about 173,000 s in average for education.data.gov.uk, about
43 s per example. Most of the runtime was spent finding the explanations and
building the BDDs, while the execution of the EM iterations took only about 6 s
for DBPedia and about 2 s for education.data.gov.uk. In the testing phase, we
computed the probability of the queries using BUNDLE. For a negative example
of the form a : C we compute the probability p of a : C and we assign probability
1 − p to the example.

We compare the parameters learned by EDGE with ARs’ confidence. For
each AR corresponding to the subclass axiom A 	 B, we computed the confi-
dence by running two SPARQL queries over the training KBs, one for finding
all the individuals that belong to A�B and one for those that belong to A. The
confidence is then given by the ratio of the number of individuals in A � B over
those in A. We created 330 different SPARQL queries for education.data.gov.uk
and 2,243 for DBPedia.

In the testing phase, we computed the probability of the examples in the test
set using BUNDLE, according to the theory learned by EDGE and to the theory
composed of the ARs with the confidence as probability. We drew the Precision-
Recall (PR) and the Receiver Operating Characteristics (ROC) curves and com-
puted the Area Under the Curve (AUCPR and AUCROC) following the methods
of [6,9]. Table 1 shows the AUCPR, the AUCROC, the execution times averaged
over the five folds and the p-value of a paired two-tailed t-test at the 5 % signifi-
cance level of the difference in AUCROC and AUCPR. The times are referred to
the learning time for EDGE and to the SPARQL queries execution time for ARs.
Note that the elapsed time for EDGE depends on the number of executed queries
and the number of different explanations involved in each query, while the elapsed
time for ARs depends on the number of classes in the KB. EDGE achieves greater
areas in a time that is of the same or lower order of magnitude with respect to
ARs. For both areas and KBs, the differences are statistically significant at the
5 % level.

http://education.data.gov.uk
http://education.data.gov.uk
http://education.data.gov.uk
http://education.data.gov.uk
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Table 1. Areas under the ROC and PR curves with standard deviation, execution
times and p-value of a paired two-tailed t-test at the 5% significance level for EDGE
and Association Rules.

Datasets EDGE ARs p-value

education.data.gov.uk PR 0.9702 ± 0.0289 0.8804 ± 0.0165 0.0051

ROC 0.9796 ± 0.0166 0.9158 ± 0.0171 0.0093

Time (s) 173,528 10,490

DBPedia PR 0.9784 ± 0.0483 0.5916 ± 0.0999 0.0013

ROC 0.9902 ± 0.0219 0.4346 ± 0.1319 0.0007

Time (s) 14,883 578,420

6.2 Structure Learning

LEAP has been evaluated on the Carcinogenesis4 KB which contains 22,372
individuals and 74,405 axioms.

We randomly selected 180 individuals, 103 of which representing positive
examples for the class Compound (PE), i.e. individuals that belong to the class
Compound, and 77 representing negative examples (NE), i.e. individuals that do
not belong to the class Compound. We assigned a random probability to every
axiom of the KB and we applied a 5-fold cross validation.

In the training phase, we first ran EDGE on the original KB for learning
the parameters associated with the probabilistic axioms, with NumE = 3 and
TLE = ∞ for the call to BUNDLE (cf. Algorithm 1) in order to limit the run-
time. Then, we separately ran LEAP on the original KB for learning probabilis-
tic subsumption axioms for the class Compound and the associated parameters,
with LPtype = Positive and Negative Examples Learning Problem. LEAP
learned 1 probabilistic subsumption axiom. For CELOE, we set NumC = 3
and a timeout TLC for its execution of 120 s: when the timeout expires or 3
class expressions are found, the current set of them is returned to the caller. For
EDGE, we set NumE and TLE as before.

In the testing phase, we computed the probability of the examples (queries) in
the test set according to the KB learnt by LEAP and the original one, by applying
BUNDLE. We drew the PR and ROC curves and computed the AUCPR and
AUCROC. Table 2 shows the AUCPR and the AUCROC averaged over the
folds together with the standard deviation. Table 3 reports the learning time
in seconds, most of which was spent by EDGE for computing the explanations
of the examples and building the corresponding BDDs.

The p-value of a paired two-tailed t-test of the difference in AUCPR and
AUCROC between the LEAP ontology and the initial one is 0.0603 for AUCPR
and 0.0360 for AUCROC, thus showing that LEAP can achieve better areas
under both the PR and ROC curves, with the difference in AUCROC being
statistically significant at the 5 % significance level.
4 http://dl-learner.org/wiki/Carcinogenesis

http://education.data.gov.uk
http://dl-learner.org/wiki/Carcinogenesis
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Table 2. Results of the experiments in terms of AUCPR and AUCROC averaged over
the folds. Standard deviations are also shown.

Original KB LEAP

AUCPR AUCROC AUCPR AUCROC

0.534 ± 0.1082 0.4452 ± 0.0510 0.8006 ± 0.2399 0.798 ± 0.2463

Table 3. Learning time in seconds for LEAP, divided into stages. ‘Other’ refers to
the initialization of the systems and the time spent for sending information between
ProbCELOE and EDGE.

Time (s)

ProbCELOE 139

EDGE 1,765

Other 0.206

Total 1,905

7 Conclusions

We have discussed two algorithms for learning the parameters and the struc-
ture of probabilistic DLs following the DISPONTE semantics. EDGE applies an
EM algorithm for learning the parameters. It exploits the BDDs that are built
during inference to efficiently compute the expectations for hidden variables.
The experiments over two real world datasets show that EDGE achieves larger
areas both under the PR and the ROC curve with respect to an algorithm based
on Association Rules in a comparable or smaller time, thus demonstrating that
EDGE is a viable alternative to ARs.

LEAP learns the structure by first performing a search in the space of promis-
ing axioms, by exploiting CELOE to learn class expressions of target concepts,
and then a greedy search in the space of the ontologies. In this second phase the
probabilities of the new axioms are computed by EDGE. The experiments over
a real world dataset show that LEAP, by learning the target class expressions,
achieves larger areas under both the PR and the ROC curve than a single execu-
tion of EDGE. Both EDGE and LEAP are available for download from http://
sites.unife.it/ml/.
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Abstract. We present a semantics for Probabilistic Description Log-
ics that is based on the distribution semantics for Probabilistic Logic
Programming. The semantics, called DISPONTE, allows to express asser-
tional probabilistic statements. We also present two systems for comput-
ing the probability of queries to probabilistic knowledge bases: BUNDLE
and TRILL. BUNDLE is based on the Pellet reasoner while TRILL
exploits the declarative Prolog language. Both algorithms compute a
propositional Boolean formula that represents the set of explanations to
the query. BUNDLE builds a formula in Disjunctive Normal Form in
which each disjunct corresponds to an explanation while TRILL com-
putes a general Boolean pinpointing formula using the techniques pro-
posed by Baader and Peñaloza. Both algorithms then build a Binary
Decision Diagram (BDD) representing the formula and compute the
probability from the BDD using a dynamic programming algorithm. We
also present experiments comparing the performance of BUNDLE and
TRILL.

1 Introduction

The main idea of the Semantic Web is making information available in a form
that is understandable and automatically manageable by machines [16]. In order
to realize this vision, the W3C has supported the development of a family
of knowledge representation formalisms of increasing complexity for defining
ontologies, called Web Ontology Language (OWL). In particular, OWL defines
the sublanguages OWL-Lite, OWL-DL (based on Description Logics) and OWL-
Full. Since the real world often contains uncertain information, it is fundamental
to be able to represent and reason with such information. This problem has been
investigated by various authors both in the general case of First Order Logic
(FOL) [5,14,27] and in the case of restricted logics, such as Description Logics
(DLs) and Logic Programming (LP).

In particular, in LP the distribution semantics [39] has emerged as one of
the most effective approaches for representing probabilistic information and it
c© Springer International Publishing Switzerland 2014
F. Bobillo et al. (Eds.): URSW 2011-2013, LNAI 8816, pp. 79–99, 2014.
DOI: 10.1007/978-3-319-13413-0 5
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underlies many probabilistic LP languages such as Probabilistic Horn Abduc-
tion [30], PRISM [39,40], Independent Choice Logic [29], Logic Programs with
Annotated Disjunctions [47], ProbLog [9] and CP-logic [46].

In [7,34,36,37] we applied the distribution semantics to DLs obtaining DISP-
ONTE for “DIstribution Semantics for Probabilistic ONTologiEs” (Spanish for
“get ready”), in which we annotate axioms of a theory with a probability and
assume that each axiom is independent of the others. A DISPONTE knowledge
base (KB for short) defines a probability distribution over regular KBs (worlds)
and the probability of a query is obtained from the joint probability of the worlds
and the query.

In order to fully support the development of the Semantic Web, efficient DL
reasoners, such us Pellet [44], RacerPro [12] and HermiT [43], are used to extract
implicit information from the modeled ontologies, and probabilistic DL reason-
ers, such as PRONTO [21], are used to compute the probability of the inferred
information. Most DL reasoners implement a tableau algorithm in a procedural
language. However, some tableau expansion rules are non-deterministic, requir-
ing the developers to implement a search strategy in an or-branching search
space. Moreover, in some cases we want to compute all explanations for a query,
thus requiring the exploration of all the non-deterministic choices of the tableau
algorithm.

We present the algorithm BUNDLE for “Binary decision diagrams for Uncer-
tain reasoNing on Description Logic thEories”, that performs inference over
DISPONTE DLs. BUNDLE exploits an underlying reasoner such as Pellet [44]
that returns explanations for queries.

Moreover, we present the system TRILL for “Tableau Reasoner for descrIp-
tion Logics in proLog”, a tableau reasoner implemented in the declarative Prolog
language. Prolog’s search strategy is exploited for taking into account the non-
determinism of the tableau rules. TRILL uses the Thea2 library [45] for parsing
OWL in its various dialects. Thea2 translates OWL files into a Prolog repre-
sentation in which each axiom is mapped into a fact. TRILL can check the
consistency of a concept and the entailment of an axiom from an ontology, and
can return the “pinpointing formula” for queries.

Both BUNDLE and TRILL use the inference techniques developed for prob-
abilistic logic programs under the distribution semantics, in particular Binary
Decision Diagrams (BDDs), for computing the probability of queries from the
set of all explanations and the pinpointing formula respectively. They encode
the results of the inference process in a BDD from which the probability can be
computed in time linear in the size of the diagram.

In the following, Sect. 2 briefly introduces ALC and SHOIN (D) DLs.
Section 3 presents the DISPONTE semantics while Sect. 4 defines the problem
of answering queries to DLs. Sections 5 and 6 describe BUNDLE and TRILL
respectively. Section 7 illustrates related work. Section 8 shows experiments and
Sect. 9 concludes the paper.
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2 Description Logics

Description Logics (DLs) are knowledge representation formalisms that possess
nice computational properties such as decidability and/or low complexity, see
[1,2] for excellent introductions. DLs are particularly useful for representing
ontologies and have been adopted as the basis of the Semantic Web.

While DLs can be translated into FOL, they are usually represented using
a syntax based on concepts and roles. A concept corresponds to a set of indi-
viduals of the domain while a role corresponds to a set of pairs of individuals of
the domain. We first briefly describe ALC and then SHOIN (D), showing the
difference with ALC.

Let A, R and I be sets of atomic concepts, roles and individuals, respectively.
Concepts are defined by induction as follows. Each C ∈ A is a concept, ⊥ and �
are concepts. If C, C1 and C2 are concepts and R ∈ R, then (C1�C2), (C1�C2)
and ¬C are concepts, as well as ∃R.C and ∀R.C. A TBox T is a finite set of
concept inclusion axioms C 	 D, where C and D are concepts. We use C ≡ D
to abbreviate the conjunction of C 	 D and D 	 C. An ABox A is a finite set
of concept membership axioms a : C, role membership axioms (a, b) : R, equality
axioms a = b and inequality axioms a �= b, where C is a concept, R ∈ R and
a, b ∈ I. A knowledge base K = (T ,A) consists of a TBox T and an ABox A.
A knowledge base K is usually assigned a semantics in terms of interpretations
I = (ΔI , ·I), where ΔI is a non-empty domain and ·I is the interpretation
function that assigns an element in ΔI to each a ∈ I, a subset of ΔI to each
C ∈ A and a subset of ΔI × ΔI to each R ∈ R.

The mapping ·I is extended to all concepts (where RI(x) = {y|(x, y) ∈
RI}) as:

�I = ΔI

⊥I = ∅
(C1 � C2)I = CI

1 ∩ CI
2

(C1 � C2)I = CI
1 ∪ CI

2

(¬C)I = ΔI \ CI

(∀R.C)I = {x ∈ ΔI |RI(x) ⊆ CI}
(∃R.C)I = {x ∈ ΔI |RI(x) ∩ CI �= ∅}

The satisfaction of an axiom E in an interpretation I = (ΔI , ·I), denoted
by I |= E, is defined as follows: (1) I |= C 	 D iff CI ⊆ DI , (2) I |= a : C
iff aI ∈ CI , (3) I |= (a, b) : R iff (aI , bI) ∈ RI , (4) I |= a = b iff aI = bI ,
(5) I |= a �= b iff aI �= bI . I satisfies a set of axioms E , denoted by I |= E , iff
I |= E for all E ∈ E . An interpretation I satisfies a knowledge base K = (T ,A),
denoted I |= K, iff I satisfies T and A. In this case we say that I is a model
of K.

In following we describe SHOIN (D) showing what it adds to ALC. A role
is either an atomic role R ∈ R or the inverse R− of an atomic role R ∈ R. We
use R− to denote the set of all inverses of roles in R. An RBox R consists of
a finite set of transitivity axioms Trans(R), where R ∈ R, and role inclusion
axioms R 	 S, where R,S ∈ R ∪ R−.
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If a ∈ I, then {a} is a concept called nominal, and if C, C1 and C2 are
concepts and R ∈ R ∪ R−, then ≥ nR and ≤ nR for an integer n ≥ 0 are also
concepts. A SHOIN (D) KB K = (T ,R,A) consists of a TBox T , an RBox R
and an ABox A.

The mapping ·I is extended to all new concepts (where #X denotes the
cardinality of the set X) as:

(R−)I = {(y, x)|(x, y) ∈ RI}
{a}I = {aI}

(≥ nR)I = {x ∈ ΔI |#RI(x) ≥ n}
(≤ nR)I = {x ∈ ΔI |#RI(x) ≤ n}

SHOIN (D) allows the definition of datatype roles, i.e., roles that map an
individual to an element of a datatype such as integers, floats, etc. Then new
concept definitions involving datatype roles are added that mirror those involv-
ing roles introduced above. We also assume that we have predicates over the
datatypes.

The satisfaction of an axiom E in an interpretation I = (ΔI , ·I), denoted by
I |= E, is defined as for ALC, plus the following ones regarding RBox axioms:
(6) I |= Trans(R) iff RI is transitive, (7) I |= R 	 S iff RI ⊆ SI . An interpre-
tation I satisfies a knowledge base K = (T ,R,A), denoted I |= K, iff I satisfies
T , R and A. In this case we say that I is a model of K.

Each DL is decidable if the problem of checking the satisfiability of a KB
is decidable. In particular, SHOIN (D) is decidable iff there are no number
restrictions on non-simple roles. A role is non-simple iff it is transitive or it has
transitive subroles.

A query Q over a KB K is usually an axiom for which we want to test the
entailment from the KB, written K |= Q. The entailment test may be reduced
to checking the unsatisfiability of a concept in the knowledge base, i.e., the
emptiness of the concept. For example, the entailment of the axiom C 	 D may
be tested by checking the unsatisfiability of the concept C � ¬D.

Example 1. The following KB is inspired by the ontology people+pets [28]:

∃hasAnimal.Pet 	 NatureLover
fluffy : Cat
tom : Cat
Cat 	 Pet
(kevin,fluffy) : hasAnimal
(kevin, tom) : hasAnimal

It states that individuals that own an animal which is a pet are nature lovers and
that kevin owns the animals fluffy and tom. Moreover, fluffy and tom are cats
and cats are pets. The query Q = kevin : NatureLover is entailed by the KB.

3 The DISPONTE Semantics

DISPONTE [37] applies the distribution semantics [39] of probabilistic logic
programming to DLs. A program following this semantics defines a probability
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distribution over normal logic programs called worlds. Then the distribution is
extended to queries and the probability of a query is obtained by marginalizing
the joint distribution of the query and the programs.

In DISPONTE, a probabilistic knowledge base K contains a set of probabilistic
axioms which take the form

p :: E (1)

where p is a real number in [0, 1] and E is a DL axiom.
The idea of DISPONTE is to associate independent Boolean random vari-

ables to the probabilistic axioms. To obtain a world w we decide whether to
include each probabilistic axiom or not in w. A world therefore is a non proba-
bilistic KB that can be assigned a semantics in the usual way. A query is entailed
by a world if it is true in every model of the world.

The probability p can be interpreted as an epistemic probability, i.e., as the
degree of our belief in axiom E. For example, a probabilistic concept membership
axiom p :: a : C means that we have degree of belief p in C(a). A probabilistic
concept inclusion axiom of the form p :: C 	 D represents the fact that we
believe in the truth of C 	 D with probability p.

Formally, an atomic choice is a couple (Ei, k) where Ei is the ith proba-
bilistic axiom and k ∈ {0, 1}. k indicates whether Ei is chosen to be included
in a world (k = 1) or not (k = 0). A composite choice κ is a consistent
set of atomic choices, i.e., (Ei, k) ∈ κ, (Ei,m) ∈ κ implies k = m (only one
decision is taken for each axiom). The probability of a composite choice κ is
P (κ) =

∏

(Ei,1)∈κ pi

∏

(Ei,0)∈κ(1 − pi), where pi is the probability associated
with axiom Ei. A selection σ is a total composite choice, i.e., it contains an
atomic choice (Ei, k) for every axiom of the theory. A selection σ identifies a
theory wσ called a world in this way: wσ = {Ei|(Ei, 1) ∈ σ}. Let us indicate
with SK the set of all selections and with WK the set of all worlds. The proba-
bility of a world wσ is P (wσ) = P (σ) =

∏

(Ei,1)∈σ pi

∏

(Ei,0)∈σ(1 − pi). P (wσ) is
a probability distribution over worlds, i.e.,

∑

w∈WK P (w) = 1.
We can now assign probabilities to queries. Given a world w, the probability

of a query Q is defined as P (Q|w) = 1 if w |= Q and 0 otherwise. The probability
of a query can be defined by marginalizing the joint probability of the query and
the worlds:

P (Q) =
∑

w∈WK

P (Q,w) =
∑

w∈WK

P (Q|w)P (w) =
∑

w∈WK:w|=Q

P (w) (2)

4 Querying KBs

In order to answer queries to DL KBs, a tableau algorithm [42] can be used. Such
an algorithm decides whether an axiom is entailed or not by a KB by refutation:
axiom E is entailed if ¬E has no model in the KB. The algorithm works on
completion graphs also called tableaux : they are ABoxes that can also be seen
as graphs, where each node represents an individual a and is labeled with the
set of concepts L(a) it belongs to. Each edge 〈a, b〉 in the graph is labeled with
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the set of roles L(〈a, b〉) to which the couple (a, b) belongs. The algorithm starts
from a tableau that contains the ABox of the KB and the negation of the axiom
to be proved. For example, if the query is a membership one, C(a), it adds ¬C
to the label of a. If we query for the emptyness (unsatisfiability) of a concept
C, the algorithm adds a new anonymous node a to the tableau and adds C to
the label of a. The axiom C 	 D can be proved by showing that C � ¬D is
unsatisfiable. The algorithm repeatedly applies a set of consistency preserving
tableau expansion rules (see [35] for a list of expansion rules for SHOIN (D))
until a clash (i.e., a contradiction) is detected or a clash-free graph is found to
which no more rules are applicable.

Some of the rules used by the tableau algorithm are non-deterministic, i.e.,
they generate a finite set of tableaux. Thus the algorithm keeps a set of tableaux
T . If a non-deterministic rule is applied to a graph G in T , then G is replaced
by the resulting set of graphs.

An event during the execution of the algorithm can be [18]: (1) Add(C, a),
the addition of a concept C to L(a); (2) Add(R, 〈a, b〉), the addition of a role
R to L(〈a, b〉); (3) Merge(a, b), the merging of the nodes a, b; (4) �=(a, b), the
addition of the inequality a�=b to the relation �=; (5) Report(g), the detection of
a clash g. We use E to denote the set of events recorded during the execution of
the algorithm. A clash is either:

– a couple (C, a) where C and ¬C are present in the label of node a, i.e.
{C,¬C} ⊆ L(a);

– a couple (Merge(a, b), �=(a, b)), where the events Merge(a, b) and �=(a, b)
belong to E .

Each time a clash is detected in a completion graph G, the algorithm stops apply-
ing rules to G. Once every completion graph in T contains a clash or no more
expansion rules can be applied to it, the algorithm terminates. If all the comple-
tion graphs in the final set T contain a clash, the algorithm returns unsatisfiable
as no model can be found. Otherwise, any one clash-free completion graph in T
represents a possible model for C(a) and the algorithm returns satisfiable.

In order to perform probabilistic inference, we need not only to answer queries
but also to compute explanations for queries. In fact, computing the probability
of a query by generating the worlds of the KB would be impractical as there is
an exponential number of them. By computing explanations, we find compact
representations of the set of worlds where the query is true, as shown below.

4.1 Finding Explanations

The problem of finding explanations for a query has been investigated by various
authors [13,18–20,41]. It was called axiom pinpointing in [41] and considered as
a non-standard reasoning service useful for tracing derivations and debugging
ontologies. In particular, Schlobach and Cornet [41] define minimal axiom sets
or MinAs for short.
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Definition 1 (MinA). Let K be a knowledge base and Q an axiom that follows
from it, i.e., K |= Q. We call a set M ⊆ K a minimal axiom set or MinA for Q
in K if M |= Q and it is minimal w.r.t. set inclusion.

We also explanation a MinA. The problem of enumerating all MinAs is called
min-a-enum in [41]. All-MinAs(Q,K) is the set of all MinAs for query Q in
the knowledge base K.

We report here the techniques used by Pellet [44] to compute explanations
for queries. Pellet first finds a single MinA by using a modified version of the
tableau algorithm and then finds the others with a black box method: axioms
are iteratively removed from the KB and new MinAs are computed until all
possible MinAs have been found. The modified tableau algorithm is shown in
Algorithm 1.

Algorithm 1. Tableau algorithm.
1: function Tableau(C, K)
2: Input: C (the concept to be tested for unsatisfiability)
3: Input: K (the knowledge base)
4: Output: S (a set of axioms) or null
5: Let G0 be an initial completion graph from K containing an anonymous individual a and

C ∈ L(a)
6: T ← {G0}
7: repeat
8: Select a rule r applicable to a clash-free graph G from T
9: T ← T \ {G}
10: Let G = {G′

1, ..., G′
n} be the result of applying r to G

11: T ← T ∪ G
12: until All graphs in T have a clash or no rule is applicable
13: if All graphs in T have a clash then
14: S ← ∅
15: for all G ∈ T do
16: let sG the result of τ for the clash of G
17: S ← S ∪ sG

18: end for
19: S ← S \ {C(a)}
20: return S
21: else
22: return null
23: end if
24: end function

In this algorithm, each expansion rule updates as well a tracing function
τ , which associates sets of axioms with events in the derivation. For example,
τ(Add(C, a)) (τ(Add(R, 〈a, b〉))) is the set of axioms needed to explain the event
Add(C, a) (Add(R, 〈a, b〉)). For the sake of brevity, we define τ for couples (con-
cept, individual) and (role, couple of individuals) as τ(C, a) = τ(Add(C, a)) and
τ(R, 〈a, b〉) = τ(Add(R, 〈a, b〉)) respectively. The function τ is initialized as the
empty set for all the elements of its domain except for τ(C, a) and τ(R, 〈a, b〉)
to which the values {a : C} and {(a, b) : R} are assigned if a : C and (a, b) : R
are in the ABox respectively. The expansion rules add axioms to values of τ .

If g1, . . . , gn are the clashes, one for each tableau of the final set, the out-
put of the algorithm Tableau is S =

⋃

i∈{1,...,n} τ(gi) \ {C(a)} where a is the
anonymous individual initially assigned to C.
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Tableau returns a single MinA. To solve min-a-enum, Pellet uses the hitting
set algorithm [31]. The algorithm, described in detail in [18], starts from a MinA
S and initializes a labeled tree called Hitting Set Tree (HST) with S as the label
of its root v. Then it selects an arbitrary axiom E in S, it removes it from K,
generating a new knowledge base K′ = K − {E}, and tests the unsatisfiability
of C w.r.t. K′. If C is still unsatisfiable, we obtain a new explanation. The
algorithm adds a new node w and a new edge 〈v, w〉 to the tree, then it assigns
this new explanation to the label of w and the axiom E to the label of the
edge. The algorithm repeats this process until the unsatisfiability test returns
negative: in that case the algorithm labels the new node with OK, makes it a
leaf, backtracks to a previous node, selects a different axiom to be removed from
the KB and repeats these operations until the HST is fully built. The algorithm
also eliminates extraneous unsatisfiability tests based on previous results: once
a path leading to a node labeled OK is found, any superset of that path is
guaranteed to be a path leading to a node where C is satisfiable, and thus no
additional unsatisfiability test is needed for that path, as indicated by a X in
the node label. When the HST is fully built, all leaves of the tree are labeled
with OK or X. The distinct non leaf nodes of the tree collectively represent the
set All-MinAs(C,K).

In [3,4], Baader and Peñaloza presented the problem of finding a pinpoint-
ing formula instead of All-MinAs(Q,K) for queries. The pinpointing formula
is a monotone Boolean formula in which each Boolean variable corresponds to
an axiom of the KB. This formula is built using the variables and the conjunc-
tion and disjunction connectives. It compactly encodes the set of all MinAs. Let
assume that each axiom E of a KB K is associated with a propositional variable,
indicated with var(E). The set of all propositional variables is indicated with
var(K). A valuation ν of a monotone Boolean formula is the set of propositional
variables that are true. For a valuation ν ⊆ var(K), let Kν := {t ∈ K|var(t) ∈ ν}.

Definition 2 (Pinpointing formula). Given a query Q and a KB K, a
monotone Boolean formula φ over var(K) is called a pinpointing formula for
Q if for every valuation ν ⊆ var(K) it holds that Kν |= Q iff ν satisfies φ.

In Lemma 2.4 of [4], the authors proved that we can obtain all MinAs from a pin-
pointing formula by transforming the formula into DNF and removing disjuncts
implying other disjuncts. The example below illustrates axiom pinpointing and
the pinpointing formula.

Example 2 (Pinpointing formula). Consider the KB of Example 1. We associate
Boolean variableswith axioms as follows:F1 = ∃hasAnimal.Pet 	 NatureLover,
F2 = (kevin,fluffy) : hasAnimal, F3 = (kevin, tom) : hasAnimal, F4 = fluffy :
Cat, F5 = tom : Cat and F6 = Cat 	 Pet. Let Q = kevin : NatureLover be
the query, then All-MinAs(Q,K) = {{F2, F4, F6, F1}, {F3, F5, F6, F1}}, while
the pinpointing formula is ((F2 ∧ F4) ∨ (F3 ∧ F5)) ∧ F6 ∧ F1.

A tableau algorithm can be modified to find the pinpointing formula. See [4] for
the details.
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4.2 Probabilistic Inference

We do not have to generate all worlds where a query is true in order to compute
its probability, finding a pinpointing formula is enough.

From a pinpointing formula φ for Q we can compute the probability P (φ)
of φ being true from the probability of the Boolean variables that appear in φ
assuming all the variables are independent. P (φ) is the sum of the probabilities
of the valuations that make the formula true. The probability of a valuation is
given by

P (ν) =
∏

var(Ei)∈ν

pi

∏

var(Ei)∈var(K)\ν

(1 − pi)

where pi is the probability associated with axiom Ei. Computing P (φ) is equiv-
alent to performing weighted model counting [38]: each variable var(Ei) has a
weight pi when set to true and a weight 1 − pi when set to false, the weight of
a truth assignment is the product of the weights of its literals and the weighted
model count of a formula is the sum of the weights of its satisfying assignments.

Theorem 1. If φ is a pinpointing formula for the query Q from a KB K, then
P (Q) = P (φ).

Proof. Every valuation ν ⊆ var(K) that satisfies φ uniquely corresponds to a
world where Q is true. Thus the sum of the probability of the valuations that
satisfy φ is equal to the sum of the probabilities of the worlds where Q is true.

The pinpointing formula can be obtained directly from the inference algorithm
or can be built starting from the set of all explanations K = All-MinAs(Q,K)
in this way

φK =
∨

κ∈K

∧

(Ei,1)∈κ

var(Ei).

It is easy to see that every valuation that makes φK true uniquely corresponds
to a world where Q is true. φK is in Disjunctive Normal Form (DNF).

Weighted model counting is a #P-complete problem [11]. A practical app-
roach for solving it involves knowledge compilation [8]: we translate the formula
to a target language that allows weighted model counting in polynomial time.
In this case the complexity is confined in the compilation process.

5 BUNDLE

BUNDLE is based on Pellet [44] and extends it in order to allow the computa-
tion of the probability of queries from a probabilistic knowledge base that follows
the DISPONTE semantics. BUNDLE can answer concept and role membership
queries, subsumption queries, and can find explanations both for the unsatifi-
ability of one or all concepts contained in the KB and for the inconsistency of
a KB.
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Irrespective of which representation of the explanations we choose, a DNF or
a general pinpointing formula, we can apply knowledge compilation and trans-
form it into a Binary Decision Diagram (BDD), from which we can compute
the probability (perform weighted model counting) of the query with a dynamic
programming algorithm that is linear in the size of the BDD.

A BDD for a function of Boolean variables is a rooted graph that has one
level for each Boolean variable. A node n in a BDD has two children: one cor-
responding to the 1 value of the variable associated with the level of n, indi-
cated with child1(n), and one corresponding to the 0 value of the variable,
indicated with child0(n). When drawing BDDs, the 0-branch - the one going
to child0(n) - is distinguished from the 1-branch by drawing it with a dashed
line. The leaves store either 0 or 1. Figure 1 shows a BDD for the function
f(X) = (X1 ∧ X3) ∨ (X2 ∧ X3), where the variables X = {X1,X2,X3} are
independent Boolean random variables whose probability of being true is pi for
the variable Xi.

X1 n1

X2 n2

X3 n3

1 0

Fig. 1. BDD representing the function f(X) = (X1 ∧ X3) ∨ (X2 ∧ X3).

A BDD performs a Shannon expansion of the Boolean formula f(X), so
that, if X is the variable associated with the root level of a BDD, the formula
f(X) can be represented as f(X) = X ∧ fX(X) ∨ X ∧ fX(X) where fX(X)
(fX(X)) is the formula obtained by f(X) by setting X to 1 (0). Now the two
disjuncts are pairwise exclusive and the probability of f(X) can be computed as
P (f(X)) = P (X)P (fX(X))+(1−P (X))P (fX(X)). Algorithm 2 shows function
Prob that implements the dynamic programming algorithm for computing the
probability of a formula encoded as a BDD. The function should also store the
value of already visited nodes in a table so that, if a node is visited again,
its probability can be retrieved from the table. For the sake of simplicity the
algorithm does not show this optimization but it is fundamental to achieve linear
cost in the number of nodes, as without it the cost of function Prob would be
proportional to 2n where n is the number of Boolean variables.

The main BUNDLE function, shown in Algorithm 3, first builds a data struc-
ture PMap that associates each DL axiom Ei with its probability pi. In the
OWL files the probabilistic information is specified using the annotation system
allowed by the OWL language. Then BUNDLE uses Pellet’s ExpHST(C,K)
function that computes all the MinAs for the unsatisfiability of a concept C
using the Hitting Set Tree algorithm. BUNDLE exploits the version of this func-
tion in which we can specify the maximum number of explanations to be found.
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Algorithm 2. Computation of the probability of a formula encoded as a BDD.
1: function Prob(node)
2: Input: a BDD node
3: Output: the probability of the Boolean function associated with the node
4: if node is a terminal then
5: return value(node) � value(node) is 0 or 1
6: else
7: let X be v(node) � v(node) is the variable associated with node
8: P1 ←Prob(child1(node))
9: P0 ←Prob(child0(node))
10: return P (X) · P1 + (1 − P (X)) · P0
11: end if
12: end function

Algorithm 3. Function Bundle: computation of the probability of unsatisfia-
bility of C given K.
1: function Bundle(K, C, maxEx, maxTime)
2: Input: K (the knowledge base)
3: Input: C (the concept to be tested for unsatisfiability)
4: Input: maxEx (the maximum number of explanations to be found)
5: Input: maxTime (time limit for the search for explanations)
6: Output: the probability of the unsatisfiability of C w.r.t. K
7: Build Map PMap from DL axioms to sets of couples (axiom, probability)
8: MinAs ←ExpHST(C, K, maxEx) � Call to Pellet
9: Initialize V arAx to empty � V arAx is an array of couples (Axiom, Prob)
10: BDD ←BDDZero
11: for all MinA ∈ MinAs do
12: BDDE ←BDDOne
13: for all Ax ∈ MinA do
14: p ← PMap(Ax)
15: Scan V arAx looking for Ax
16: if !found then
17: Add to V arAx a new cell containing (Ax, p)
18: end if
19: Let i be the position of (Ax, p) in V arAx
20: BDDA ← BDDGetIthVar(i)
21: BDDE ←BDDAnd(BDDE,BDDA)
22: end for
23: BDD ←BDDOr(BDD,BDDE)
24: end for
25: return Prob(BDD) � V arAx is used to compute P (X) in Prob
26: end function

Two data structures are initialized: V arAx is an array that maintains the
association between Boolean random variables (whose index is the array index)
and couples (axiom, probability), and BDD stores a BDD. BDD is initialized
to the zero Boolean function.

Then BUNDLE performs two nested loops that build a BDD representing
the pinpointing formula in DNF. To manipulate BDDs we used JavaBDD1 that
is an interface to a number of underlying BDD manipulation packages. As the
underlying package we used CUDD.

In the outer loop, BUNDLE combines BDDs for different explanations. In
the inner loop, BUNDLE generates the BDD for a single explanation.

In the outer loop, BDDE is initialized to the “one” Boolean function. In
the inner loop, the axioms of each MinA are considered one by one. The value p

1 http://javabdd.sourceforge.net/

http://javabdd.sourceforge.net/
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associated with the axiom is extracted from PMap. The axiom is searched for
in V arAx to see if it was already assigned a random variable. If not, a cell is
added to V arAx to store the couple. At this point we know the couple position
i in V arAx and so the index of its Boolean variable Xi. We obtain a BDD
representing Xi = 1 with BDDGetIthVar and we conjoin it with BDDE.
After the two cycles, function Prob of Algorithm 2 is called over BDD and its
result is returned to the user.

6 TRILL

TRILL implements a tableau algorithm that computes the pinpointing formula
representing the set of MinAs. After generating the pinpointing formula, TRILL
converts it into a BDD and computes the probability of the query. TRILL can
answer concept and role membership queries, subsumption queries, and can find
explanations both for the unsatifiability of a concept contained in the KB and
for the inconsistency of the entire KB. TRILL was implemented in Prolog, so the
management of the non-determinism of the rules is delegated to this language.

We use the Thea2 library [45] for converting OWL DL KBS into Prolog.
Thea2 performs a direct translation of the OWL axioms into Prolog facts. For
example, a simple subclass axiom between two named classes Cat 	 Pet is
written using the subClassOf/2 predicate as subClassOf(‘Cat’,‘Pet’). For
more complex axioms, Thea2 exploits the list construct of Prolog, so the axiom
NatureLover ≡ PetOwner � GardenOwner becomes equivalentClasses(
[‘NatureLover’, unionOf([‘PetOwner’, ‘GardenOwner’])]). When a prob-
abilistic KB is given as input, for each probabilistic axiom of the form Prob ::
Axiom a fact p(Axiom,Prob) is asserted in the Prolog KB.

In order to represent the tableau, TRILL uses a couple Tableau = (A, T ),
where A is a list containing information about nominal individuals and class
assertions with the corresponding value of the pinpointing formula, while T is a
triple (G, RBN , RBR) in which G is a directed graph that contains the struc-
ture of the tableau, RBN is a red-black tree (a key-value dictionary) in which
a key is a couple of individuals and its value is the set of the labels of the edge
between the two individuals, and RBR is a red-black tree in which a key is
a role and its value is the set of couples of individuals that are linked by the
role. This representation allows to quickly find the information needed during
the execution of the tableau algorithm. For managing the blocking system we
use a predicate for each blocking state: nominal/2, blockable/2, blocked/2,
indirectly blocked/2 and safe/3. Each predicate takes as arguments the indi-
vidual Ind and the tableau (A, T ); safe/3 takes as input also the role R. For
each individual Ind in the ABox we add the atom nominal(Ind) to A, then
every time we have to check the blocking status of an individual we call the
corresponding predicate that returns the status by checking the tableau.

Deterministic and non-deterministic tableau expansion rules are treated dif-
ferently. Non-deterministic rules are implemented by a predicate rule name(Tab,
TabList) that, given the current tableau Tab, returns the list of tableaux TabList
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created by the application of the rule on Tab, while deterministic rules are imple-
mented by a predicate rule name(Tab, Tab1) that, given the current tableau
Tab, returns the tableau Tab1 obtained by the application of the rule on Tab.

Expansion rules are applied in order by apply all rules/2, first the non-
deterministic ones and then the deterministic ones. The predicate apply nondet
rules(RuleList,Tab,Tab1) takes as input the list of non-deterministic rules and
the current tableau and returns a tableau obtained by the application of one of
the rules. apply nondet rules/3 is called as apply nondet rules([or rule],
Tab,Tab1) and is shown in Fig. 2. If a non-deterministic rule is applicable, the
list of tableaux obtained by its application is returned by the predicate corre-
sponding to the applied rule, a cut is performed to avoid backtracking to other
rule choices and a tableau from the list is non-deterministically chosen with the
member/2 predicate.

apply_all_rules(Tab,Tab2):-

apply_nondet_rules([or_rule],Tab,Tab1),

(Tab=Tab1 -> Tab2=Tab1 ; apply_all_rules(Tab1,Tab2)).

apply_nondet_rules([],Tab,Tab1):-

apply_det_rules([and_rule,unfold_rule,add_exists_rule,

forall_rule,exists_rule],Tab,Tab1).

apply_nondet_rules([H|T],Tab,Tab1):-

C=..[H,Tab,L],

call(C),!

member(Tab1,L),

Tab \= Tab1.

apply_nondet_rules([_|T],Tab,Tab1):-

apply_nondet_rules(T,Tab,Tab1).

Fig. 2. Definition of the non-deterministic expansion rules by means of the predicates
apply all rules/2 and apply nondet rules/3.

If no non-deterministic rule is applicable, deterministic rules are tried sequen-
tially with the predicate apply det rules/3, shown in Fig. 3, that is called as
apply det rules(RuleList,Tab,Tab1). It takes as input the list of determin-
istic rules and the current tableau and returns a tableau obtained with the
application of one of the rules.

After the application of a deterministic rule, a cut avoids backtracking to
other possible choices for the deterministic rules. If no rule is applicable, the
input tableau is returned and rule application stops, otherwise a new round of
rule application is performed.

Once the pinpointing formula is built, TRILL builds the corresponding BDD
by using the build bdd/2 predicate, shown in Fig. 4, that takes as input a
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apply_det_rules([],Tab,Tab).

apply_det_rules([H|T],Tab,Tab1):-

C=..[H,Tab,Tab1],

call(C),!.

apply_det_rules([_|T],Tab,Tab1):-

apply_det_rules(T,Tab,Tab1).

Fig. 3. Definition of the deterministic expansion rules by means of the predicate
apply det rules/3.

build_bdd(and(A),B):-!,

one(B0),

bdd_and(A,B0,B).

build_bdd(or(A),B):-!,

zero(B0),

bdd_or(A,B0,B).

build_bdd(A,B):-

p(A,Prob),!,

ProbN is 1-Prob,

get_var_n([X],[],[Prob,ProbN],VX),

equality(VX,0,B).

build_bdd(A,B):-

one(B).

bdd_and([],B,B).

bdd_and([H|T],B0,B):-

build_bdd(H,B1),

and(B0,B1,B2),

bdd_and(T,B2,B).

bdd_or([],B,B).

bdd_or([H|T],B0,B):-

build_bdd(H,B1),

or(B0,B1,B2),

bdd_or(T,B2,B).

Fig. 4. Code of the predicates build bdd rules/2.

pinpointing formula and returns the correspondig BDD. It scans the pinpoint-
ing formula and, for each variable, it searches for the probabilistic axiom corre-
sponding to the variable with the query p(Axiom,Prob). If the query succeeds,



Semantics and Inference for Probabilistic Description Logics 93

it creates the corresponding BDD and combines it with the BDD representing
the pinpointing formula. Finally, it computes the probability of the query from
the BDD so built using the predicate compute prob/2. The predicates one/1
and zero/1 return BDDs representing the Boolean constants 1 and 0; and/3
and or/3 execute Boolean operations between BDDs. get var n/4 returns the
random variable associated with axiom X and list of probabilities [Prob,ProbN],
where ProbN = 1 − Prob. equality/3 returns the BDD B associated with the
expression VX=val where VX is a random variable and val is 0 or 1. The predi-
cate p/2 is used for specifying the association between axioms and probability,
i.e. p(subClassOf(’A’,’B’),0.9) asserts the axiom A 	 B is associated with a
probability of 0.9. The predicates compute prob/2, one/1, zero/1, and/3, or/3,
get var n/4 and equality/3 are imported from a Prolog library of the cplint
suite [33].

7 Related Work

While there are many works that propose approaches for combining probabil-
ity and DLs, there are relatively fewer inference algorithms. One of these is
PRONTO [21] that, similarly to BUNDLE, is based on Pellet. PRONTO per-
forms inference on P-SHIQ(D) [25] KBs instead of DISPONTE. In these KBs
the probabilistic part contains conditional constraints of the form (D|C)[l, u] that
informally mean “generally, if an object belongs to C, then it belongs to D with
a probability in the interval [l, u]”. P-SHIQ(D) uses probabilistic lexicographic
entailment from probabilistic default reasoning and allows both terminological
and assertional probabilistic knowledge about instances of concepts and roles. P-
SHIQ(D) is based on Nilsson’s probabilistic logic [27] that defines probabilistic
interpretations instead of a single probability distribution over theories.

Differently from BUNDLE and PRONTO, reasoners written in Prolog can
exploit Prolog’s backtracking facilities for performing the search. This has been
observed in various work. Beckert and Posegga [6] proposed a tableau reasoner
in Prolog for First Order Logic (FOL) based on free-variable semantic tableaux.
However, the reasoner is not tailored to DLs.

Hustadt, Motik and Sattler [17] presented the KAON2 algorithm that exploits
basic superposition, a refutational theorem proving method for FOL with equal-
ity, and a new inference rule, called decomposition, to reduce a SHIQ KB into
a disjunctive datalog program, while DLog [24] is an ABox reasoning algorithm
for the SHIQ language that allows to store the content of the ABox externally
in a database and to answer instance check and instance retrieval queries by
transforming the KB into a Prolog program.

Meissner [26] presented the implementation of a Prolog reasoner for the DL
ALCN . This work was the basis of the work of Herchenröder [15], that consid-
ered ALC and improved the work of Meissner by implementing heuristic search
techniques to reduce the running time. Faizi [10] added to [15] the possibility of
returning information about the steps executed during the inference process for
queries but still handled only ALC.
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A different approach is the one of Ricca et al. [32] that presented OntoDLV,
a system for reasoning on a logic-based ontology representation language called
OntoDLP. This is an extension of (disjunctive) ASP and can interoperate with
OWL. OntoDLV rewrites the OWL KB into the OntoDLP language, can retrieve
information directly from external OWL Ontologies and answers queries by using
ASP.

TRILL differs from the previous works for the target description logics (ALC)
and for the fact that those reasoners do not return explanations for the given
queries. Moreover, TRILL differs in particular from DLog for the possibility of
answering general queries instead of instance check and instance retrieval only.

8 Experiments

In this section, we evaluate the performance of TRILL and BUNDLE. We first
compare BUNDLE with the publicly available version of PRONTO on four prob-
abilistic ontologies. The experiments have been performed on Linux machines
with a 3.10 GHz Intel Xeon E5-2687W with 2 GB memory allotted to Java.

The first ontology is BRCA2 that models breast cancer risk assessment. It
contains a certain part and a probabilistic part. The tests were defined following
[22]: we randomly sampled axioms from the probabilistic part of this ontology
which are then added to the certain part. So each sample was a probabilistic KB
with the full certain part of the BRCA ontology and a subset of the probabilistic
constraints. We varied the number of these constraints from 9 to 15, and, for each
number, we generated 100 different consistent ontologies. In order to generate a
query, an individual a is added to the ontology. a is randomly assigned to each
class that appears in the sampled conditional constraints with probability 0.6.
If the class is composite, as for example PostmenopausalWomanTakingTestos-
terone, a is assigned to the component classes rather than to the composite one.
In the example above, a will be added to PostmenopausalWoman and Wom-
anTakingTestosterone. The ontologies are then translated into DISPONTE by
replacing the constraint (D|C)[l, u] with the axiom u :: C 	 D.

For each ontology we perform the query a : C where the class C is randomly
selected among those that represent women under increased and lifetime risk
such as WomanUnderLifetimeBRCRisk and WomanUnderStronglyIncreasedBR-
CRisk. We then applied both BUNDLE and PRONTO to each generated test
and we measured the execution time and the memory used. Figure 5(a) shows the
execution time averaged over the 100 KBs as a function of the number of prob-
abilistic axioms and, similarly, Fig. 5(b) shows the average amount of memory
used. As one can see, execution times are similar for small KBs, but the differ-
ence between the two reasoners rapidly increases for larger knowledge bases. The
memory usage for BUNDLE is always less than 53 % with respect of PRONTO.

The other three ontologies are an extract from the Cell3 ontology that repre-
sents cell types of the prokaryotic, fungal, and eukaryotic organisms, an extract
2 http://sites.google.com/a/unife.it/ml/bundle/brca
3 http://cellontology.org/

http://sites.google.com/a/unife.it/ml/bundle/brca
http://cellontology.org/
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(a) Average execution times (s). (b) Average memory used (Kb).

Fig. 5. Comparison between BUNDLE and PRONTO on the BRCA KB.

Table 1. Average execution time for the queries to the Cell, Teleost and NCI KBs.
The first column reports the size of the non-probabilistic TBox of each KB.

Dataset TBox axioms Probabilistic TBox Size

0 250 500 750 1000

Cell 1263 time(s) 0.76 2.84 3.88 3.94 4.53

Teleost 3406 time(s) 2.11 8.87 31.80 33.82 36.33

NCI 5423 time(s) 3.02 11.37 11.37 16.37 24.90

from the NCI Thesaurus4 that describes human anatomy and an extract from the
Teleost anatomy5 ontology (Teleost for short) that is a multi-species anatomy
ontology for teleost fishes. For each of these KBs we considered the versions
of increasing size used in [23]: the authors added 250, 500, 750 and 1000 new
probabilistic conditional constraints to the extract of the publicly available non-
probabilistic version of each ontology. We converted these KBs into DISPONTE
in the same way presented for the BRCA ontology and we created a set of 100 dif-
ferent random subclass queries for each KB, such as CL 0000802 	 CL 0000800
for the Cell KB, NCI C32042 	 NCI C32890 for the NCI Thesaurus and
TAO 0001102 	 TAO 0000139 for the Teleost KB. For generating the queries
we built the hierarchy of each KB and we randomly selected two classes con-
nected in the hierarchy for each query, so that it had at least one explanation.

In Table 1 we report, for each version of the datasets, the average execution
time for BUNDLE to perform inference. In addition, for each KB we report
its number of non-probabilistic TBox axioms. With these datasets, PRONTO
always terminated with out-of-memory error.
4 http://ncit.nci.nih.gov/
5 http://phenoscape.org/wiki/Teleost Anatomy Ontology

http://ncit.nci.nih.gov/
http://phenoscape.org/wiki/Teleost_Anatomy_Ontology
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Table 2. Results of the experiments on BRCA, DBPedia, Biopax and Vicodi KBs
in terms of average times for computing the probability of queries. The first column
reports the size of the non-probabilistic TBox of each KB.

Dataset TBox axioms TRILL BUNDLE

time(s) time(s)

BRCA 322 5.55 6.96

DBPedia 535 16.70 3.79

Biopax level 3 826 0.11 1.85

Vicodi 220 0.19 1.12

As can be seen, BUNDLE needs lower amount of memory and is faster than
the publicly available version of PRONTO. BUNDLE can answer most queries
in a few seconds and manage larger KBs with respect to PRONTO.

Finally, we tested TRILL performance when computing probability of queries
by comparing it to BUNDLE. The experiments have been performed on a Linux
machine with a 2.33 GHz Intel Dual Core E6550 with 2 GB memory allotted to
Java. We consider four different knowledge bases of various complexity: BRCA
already used for the comparison with PRONTO, an extract of the DBPedia6

ontology obtained from Wikipedia, Biopax level 37 that models metabolic path-
ways and Vicodi8 that contains information about European history. For the
tests, we used the DBPedia and the Biopax KBs without ABox while for BRCA
and Vicodi we used a small ABox containing 1 individual for the first one and 19
individuals for the second one. We added 50 probabilistic axioms to each KB. For
BRCA we used the probabilistic axioms already created for the previous test,
while for the other KBs we created the probabilistic axioms by randomly select-
ing certain axioms from them and associating a random probability. For each
dataset we randomly created 100 different queries. In particular, for the DBPedia
and Biopax we created 100 subclass-of queries while for the other KBs we created
80 subclass-of and 20 instance-of queries. Some examples of queries are V illage 	
PopulatedP lace for DBPedia, TransportWithBiochemicalReaction 	 Entity
for Biopax and Creator(Anthony-van-Dyck-is-Painter-in-Flanders) for Vicodi
KB. The queries generated for the BRCA KB are similar with those used in the
test of BUNDLE. For generating the subclass-of queries, we randomly selected
two classes that are connected in the class hierarchy, while for the instance-of
queries we randomly selected an individual a and a class to which a belongs
by following the class hierarchy, starting from the class to which a explicitly
belongs, so that each query had at least one explanation. Table 2 shows, for
each ontology, the number of non-probabilistic axioms and the average time in
seconds that TRILL and BUNDLE took for answering the queries.
6 http://dbpedia.org/
7 http://www.biopax.org/
8 http://www.vicodi.org/

http://dbpedia.org/
http://www.biopax.org/
http://www.vicodi.org/
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These preliminary tests show that TRILL is sometimes able to outperform
BUNDLE, thanks to the fact that the translation of the set of explanations into
a DNF formula is not required. However, on DBPedia, its longer running time
may be due to the lack of all the optimizations that BUNDLE inherits from
Pellet. This represents evidence that a Prolog implementation of a Semantic
Web tableau reasoner is feasible and that may lead to a practical system.

9 Conclusions

In this paper we presented the DISPONTE semantics for probabilistic DLs that
is inspired by the distribution semantics of probabilistic logic programming. We
also presented the systems BUNDLE and TRILL for reasoning on DISPONTE
KBs and their implementations. Both systems are tested on real world datasets.
The experiments show that BUNDLE uses less memory and is faster than the
publicly available version of the probabilistic reasoner PRONTO and is able to
manage larger KBs. Moreover, the results for TRILL show that Prolog is a viable
language for implementing DL reasoning algorithms and that its performance is
comparable with that of a state-of-the-art reasoner. Both TRILL and BUNDLE
are able to deal with ontologies of significant complexity.

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press, Cambridge (2003)

2. Baader, F., Horrocks, I., Sattler, U.: Description logics. In: Handbook of Knowledge
Representation, chap. 3, pp. 135–179. Elsevier, Amsterdam (2008)
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Abstract. The emergence in the last years of initiatives like the Linked
Open Data (LOD) has led to a significant increase in the amount of struc-
tured semantic data on the Web. Central role to this development has
been played by ontologies, as these enable the representation of real world
domains in an explicit and formal way and, thus, the production of com-
monly understood and shareable semantic data. Nevertheless, the share-
ability and wider reuse of such data can be hampered by the existence
of vagueness within it, as this makes the data’s meaning less explicit.
With that in mind, in this paper we present and evaluate the Vagueness
Ontology, a metaontology that enables the explicit identification and
description of vague entities and their vagueness-related characteristics
in ontologies. The rationale is that such descriptions, when accompany-
ing vague ontologies, may narrow the possible interpretations that the
latter’s vague elements may assume by its users.

1 Introduction

Ontologies are formal shareable conceptualisations of domains, describing the
meaning of domain aspects in a common, machine-processable form by means
of concepts and their interrelations [10]. As such, their role in the Semantic
Web is very important as they enable the production and sharing of structured
data that can be commonly understood among human and software agents. To
achieve this common understanding, one needs to ensure that the meaning of
ontology elements is explicit and shareable. In other words, all their users have
a clear, unambiguous and consensual understanding of what each ontological
element actually represents. That’s in fact the reason why, towards this goal,
a number of relevant techniques and best practices have been proposed by the
literature, such as for example the use of argumentation processes [18,34] for
consensus building on the structure and the content of an ontology. Despite
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these practices, however, a phenomenon that still affects, in a negative way,
shareability and reusability of ontologies and semantic data is vagueness.

Vagueness is a common human knowledge and language phenomenon, typi-
cally manifested by terms and concepts like High, Expert, Bad, Near etc., and
related to our inability to precisely determine the extensions of such concepts
in certain domains and contexts. That is because vague concepts have typically
blurred boundaries which do not allow for a sharp distinction between the enti-
ties that fall within their extension and those that do not [16,30]. For example,
some people are borderline tall: not clearly “tall” and not clearly “not tall”.

The potential and actual existence of vague terminology in ontologies and
semantic datasets has already been identified by the community [2,6,21,33,35].
A characteristic group of such elements are categorisation relations where entities
are assigned to categories with no clear applicability criteria. An example is the
relation “hasFilmGenre”, found in LinkedMDB1 and DBpedia2, that relates
films with the genres they belong to. As most genres have no clear applicability
criteria there will be films for which it is difficult to decide whether or not
they belong to a given genre. A similar argument can be made for the DBpedia
relations “dbpedia-owl:ideology” and “dbpedia-owl:movement”. Another group
of vague elements comprises specialisations of concepts according to some vague
property of them. Examples include “Famous Person” and “Big Building”, in
the Cyc Ontology3, and “Competitor”, found in the Business Role Ontology4.

The important thing to notice in these examples is the lack of any further
definitions that may clarify the intended meaning of the vague entities. For
example, the definition of the concept “Famous Person” does not include the
dimensions of fame according to which someone is judged as famous or not. This
may lead to problematic situations.

More specifically, vague ontological definitions can cause disagreements
among the people who develop, maintain or use it. Such a situation arose in
a real life scenario where we faced significant difficulties in defining concepts
like “Critical System Process” or “Strategic Market Participant” while trying
to develop an electricity market ontology. When we asked our domain experts
to provide exemplary instances of critical processes, there was dispute among
them about whether certain processes qualified. Not only did different domain
experts have different criteria of process criticality, but neither could anyone
really decide which of those criteria were sufficient for the classification. In other
words, the problem was the vagueness of the predicate “critical”.

While disagreements may be overcome by consensus, they are inevitable as
more users alter, extend, or use ontologies. Imagine an enterprise ontology where
the concept “Strategic Client” was initially created and populated by the com-
pany’s executive board, their implicit membership criterion being the amount of
revenue the clients generate for the company. Imagine also the new R&D Direc-
1 Available at http://linkedmdb.org.
2 Available at http://dbpedia.org.
3 Available at http://www.cyc.com/platform/opencyc.
4 Available at http://www.ip-super.org.

http://linkedmdb.org
http://dbpedia.org
http://www.cyc.com/platform/opencyc
http://www.ip-super.org
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tor querying the instances of this concept while crafting an R&D strategy. If
their own applicability criteria for the term “Strategic” do not coincide with the
board’s, using the returned list of clients might lead to poor decisions. Gener-
alising these examples, some typical use-case scenarios where vagueness may be
cause problems include:

1. Structuring Data with a Vague Ontology: When domain experts are
asked to define instances of vague concepts and relations, then disagreements
may occur on whether particular entities constitute instances of them.

2. Utilising Vague Facts in Ontology-Based Systems: When knowledge-
based systems reason with vague facts, their output might not be optimal for
those users who disagree with these facts.

3. Integrating Vague Semantic Information: When semantic data from
several sources need to be merged then the merging of particular vague ele-
ments can lead to data that will not be valid for all its users.

4. Evaluating Vague Semantic Datasets for Reuse: When data practi-
tioners need to decide whether a particular dataset is suitable for their needs,
the existence of vague elements can make this decision harder. It can be quite
difficult for them to assess a priori whether the data related to these elements
are valid for their application context.

To reduce the negative effects of vagueness, we have put forward the notion of
vagueness-aware ontologies [2], informally defined as “ontologies whose vague
elements are accompanied by comprehensive metainformation that describes the
nature and characteristics of their vagueness”. A simple example of such metain-
formation is whether an ontology entity (e.g., a class) is vague or not; this is
important as many ontology users may not immediately realise this. A more
sophisticated example, as we will explain in subsequent sections, is the particu-
lar type of the entity’s vagueness or the applicability context of its definition. In
all cases, our premise is that having such metainformation, explicitly represented
and published along with (vague) ontologies, can improve the latter?s compre-
hensibility and shareability, by narrowing the possible interpretations that its
vague elements may assume by human and software agents.

The focus of this paper is how vagueness-related metainformation may best
be represented and applied to actual ontologies. For that, we describe here the
Vagueness Ontology (VO), an OWL metaontology that defines the neces-
sary concepts, relations and attributes for creating explicit descriptions of vague
ontology entities and (certain of) their characteristics. VO is meant to be used
by both producers and consumers of ontologies; the former will utilise it to
annotate the vague part of their produced ontologies with relevant vagueness
metainformation while the latter will query this metainformation and use it to
make a better use of the vague ontologies.

The motivation behind the development of VO is that, in our view, the
vagueness-related metainformation should not be merely part of the ontology’s
informal documentation, neither its representation can be facilitated by simply
using OWL’s standard annotation properties such as rdfs:comment. The latter
is because, as we will show in subsequent sections, one or more rdfs:comment
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values in an ontology entity cannot capture the more complex relations that
exist between certain vagueness aspects.

The structure of the rest of the paper is as follows. In the next section we
present related work while in Sect. 3 we provide a detailed description of the
Vagueness Ontology, including the requirements it is designed to cover, the con-
ceptual elements (classes, relations etc.) it comprises and usage examples. In
Sect. 4 we present the results of a user-driven evaluation of the Vagueness Ontol-
ogy, focusing on comprehensibility and usability aspects. Finally, in Sect. 5 we
cover some important discussion points regarding the benefits and current limi-
tations of our approach, while in Sect. 6 we summarise our work and outline its
future directions.

2 Related Work

The practice of using ontologies for annotating various types of resources with
metainformation has been exemplified by many works, including the NLP Inter-
change Format (NIF) [14], the Extremely Annotational RDF Markup (EAR-
MARK) [4], and Annotea [17] for textual resources, as well as the more generic
Open Annotation Data Model (OADM) [28] and Provenance Ontology (PROV-
O) [19]. There are also several existing efforts for annotating ontologies. For gen-
eral purpose ontology metadata we have Ontology Metadata Vocabulary (OMV)
[13], Vocabulary of a Friend (VOAF)5. For metadata regarding ontology design
and evolution there are the OWL 2 change ontology [24] and the Change and
Annotations Ontology (CHAO) [23] as well as the C-ODO OWL metamodel for
collaborative ontology design [12]. Finally, LexOMV [22] and Lemon [8] define
metadata about multilinguality.

While the above vocabularies cover a large range of possible metainformation
for ontologies, there is not yet, to the best of our knowledge, any specialised
vocabulary for vagueness. The latter has so far been treated in the Semantic
Web community mainly via fuzzy description logics, fuzzy ontologies and fuzzy
query services [6,25,31], whose focus, however, is on enabling the definition and
automated processing of fuzzy degrees of vague ontology entities and not so much
on clarifying their intended interpretation (e.g. the concept membership criteria
of a given vague concept). Thus, for example, a fuzzy ontology may contain
the statement “John is expert at ontologies to a degree of 0.8” but there is no
information on how the notion of expertise should be interpreted in the given
domain or context. Therefore, as it will become clear in the rest of the paper,
our approach is complementary to fuzzy ontology related works and it may be
used to enhance the comprehensibility of fuzzy degrees.

3 The Vagueness Ontology

The Vagueness Ontology6 has been developed following the SAMOD7 (Simpli-
fied Agile Methodology for Ontology Development) methodology and its relevant
5 Available at http://lov.okfn.org/vocab/voaf/v2.1/index.html.
6 Available at http://www.essepuntato.it/2013/10/vagueness.
7 Available at http://www.essepuntato.it/samod.

http://lov.okfn.org/vocab/voaf/v2.1/index.html
http://www.essepuntato.it/2013/10/vagueness
http://www.essepuntato.it/samod
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documentation is available online8. In this section, we focus on describing the
requirements the ontology has been designed to satisfy and the main elements
it consists of.

3.1 Vagueness Ontology Requirements

In an ontology, vagueness may primarily appear in the definitions of classes,
object and datatype properties, and datatypes. A class is vague if, in the given
domain, context or application scenario, it admits borderline cases, namely if
there are (or could be) individuals for which it is indeterminate whether they
instantiate the class. Typical vague classes are attributions, namely classes that
reflect qualitative states of entities (e.g., “TallPerson”, “ExperiencedResearcher”,
etc.). Similarly, an object property (relation) is vague if there are (or could
be) pairs of individuals for which it is indeterminate whether they stand in
the relation (e.g., “hasGenre”, “hasIdeology”, etc.). The same applies for data-
type properties and pairs of individuals and literal values. Finally, a vague
datatype consists of a set of vague terms. An example is the datatype “Restau-
rantPriceRange” when this comprises the terms “cheap”, “moderate” and
“expensive”.

The Vagueness Ontology should enable the annotation of an ontological entity
(class, relation or datatype) with a description of the nature and characteristic
of its vagueness. In particular, the first thing such a description should explicitly
state is whether the entity is actually vague or not. For example, the ontol-
ogy class “StrategicClient” defined as “A client that has a high value for the
company” is (and should be annotated as) vague while the definition of “Ameri-
canCompany” as “A company that has legal status in the Unites States” is not.
Moreover, it can often be the case that a seemingly vague element can have a
non-vague definition (e.g. “TallPerson” when defined as “A person whose height
is at least 180 cm”). Then this element is not vague in the given ontology and
that is something that needs to be explicitly stated.

The second important vagueness characteristic to be explicitly represented
is its type. Vagueness can be described according to at least two complemen-
tary types: quantitative (or degree) vagueness and qualitative (or combinatory)
vagueness [16]. A predicate has degree-vagueness if the existence of borderline
cases stems from the lack of precise boundaries for the predicate along one or
more dimensions (e.g. “bald” lacks sharp boundaries along the dimension of hair
quantity while “red” can be vague for both brightness and saturation). A pred-
icate has combinatory vagueness if there are a variety of conditions pertaining
to the predicate, but it is not possible to make any crisp identification of those
combinations which are sufficient for application. A classical example of this type
is “religion” as there are certain features that all religions share (e.g. beliefs in
supernatural beings, ritual acts) yet it is not clear which are able to classify
something as a religion. Based on this typology, we suggest that for a given
vague entity it is important to represent and share the following explicitly:
8 Available at http://www.essepuntato.it/2013/10/vagueness/documentation.

http://www.essepuntato.it/2013/10/vagueness/documentation
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– The type of the entity’s vagueness: Knowing whether an entity has quan-
titative or qualitative vagueness is important as elements with an intended
(but not explicitly stated) quantitative vagueness can be considered by oth-
ers as having qualitative vagueness and vice versa. Assume, for example, that
a company’s CEO does not make explicit that for a client to be classified
as strategic, the amount of its R&D budget should be the only factor to be
considered. Then, even though according to the CEO the vague class “Strate-
gicClient” has quantitative vagueness in the dimension of the R&D budget
amount, it will be hard for other company members to share the same view
as this term has typically qualitative vagueness.

– The dimensions of the term’s quantitative vagueness: When the entity
has quantitative vagueness it is important to state explicitly its intended
dimensions. E.g., if a CEO does not make explicit that for a client to be
classified as strategic, its R&D budget should be the only pertinent factor,
it will be rare for other company members to share the same view as the
vagueness of the term “strategic” is multi-dimensional.

Furthermore, vagueness is subjective and context dependent. The first
has to do with the same vague entity being interpreted differently by different
users. For example, two company executives might have different criteria for the
entity “StrategicClient”, the one the amount of revenue this client has generated
and the other the market in which it operates. Similarly, context dependence
has to do with the same vague entity being interpreted or applied differently
in different contexts even by the same user; hiring a researcher in industry is
different to hiring one in academia when it comes to judging his/her expertise
and experience.

Therefore we additionally suggest that one should explicitly represent the
creator of a vagueness annotation of a certain entity as well as the applicability
context for which the entity is defined or in which it is used in a vague way.
In particular, context-dependent can be (i) the description of vagueness of an
entity (i.e. the same entity can be vague in one context and non-vague in another)
and (ii) the dimensions related to a description of vagueness having quantitative
type (i.e. the same entity can be vague in dimension A in one context and in
dimension B in another). Please note that here we adopt the context-as-a-box
metaphor [5] according to which a context is a “box” that contains knowledge
in form of logical statements and whose boundaries are determined by specific
contextual attributes (e.g. location, time, purpose etc.). When a vague term is
related to a particular context, then this context has the jurisdiction to interpret
the term’s meaning and assess its validity in given statements [3].

Summarising the above, the Vagueness Ontology should enable users to ask
the following competency questions about the entities of an ontology:

– What entities have been explicitly defined either as vague or non-vague?
– What entities that have been defined both as vague and non-vague at the same
time and why?

– What entities of a specific type (e.g., classes) have been defined either as vague
or non-vague?
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– What entities are characterised by a specific vagueness type?
– What entities have been recognised as vague, by whom and according to which
vagueness type (if any)?

– What entities have quantitative vagueness and in what dimensions?
– What entities have quantitative vagueness, in what dimensions and what is
the context of their dimensions (if any)?

– What entities are vague, in what contexts and according to whom?

3.2 Ontology Anatomy

An overall view of the Vagueness Ontology (VO) is depicted in Fig. 1 via a
Graffoo diagram [11] that describes its main classes and properties. VO uses
several entities defined in external ontologies, i.e., the PROV-O [19] (prefix
prov), OADM [28] (prefix oa), and the Situation ontology design pattern9 (pre-
fix sit). To show how to use the various entities of the ontology to describe
vagueness/non-vagueness annotations, we introduce the following natural lan-
guage scenario:

Fig. 1. The Graffoo diagram of the overall structure of the Vagueness Ontology.

The object property ex:isExpertInResearchArea is considered vague by
John Doe in the context of researcher hiring. Moreover, he describes it as
quantitatively vague since, for him, expertise is relevant to the number
of her publications and projects; two different dimensions that he thinks
relates to the contexts of Academia (i.e., number of relevant publications)
and Industry (i.e., number of relevant projects).

9 Available at http://www.ontologydesignpatterns.org/cp/owl/situation.owl.

http://www.ontologydesignpatterns.org/cp/owl/situation.owl
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The main class of the ontology is VaguenessAnnotation, which describes any
annotation (i.e., oa:Annotation) of an ontological entity with information about
its vagueness. A vagueness annotation is a particular act done by someone (i.e.,
an agent, identified by an individual of the class prov:Agent) who associates a
description of vagueness/non-vagueness (called the body of the annotation, and
defined through the property oa:hasBody) to the entity in consideration (called
the target of the annotation, and defined through the property oa:hasTarget).
This is formalised as follows10:
Class: VaguenessAnnotation

SubClassOf: prov:Entity that prov:wasAttributedTo some prov:Agent ,
oa:Annotation that (oa:hasTarget exactly 1) and

(oa:hasBody min 1
(DescriptionOfNonVagueness or DescriptionOfVagueness))

Considering the aforementioned example, the annotation made by John Doe
can be expressed as follows:
@prefix : <http ://www.essepuntato.it /2013/10/ vagueness/> .
@prefix ex: <http ://www.essepuntato.it/resource/> .
ex:annotation a :VaguenessAnnotation ; prov:wasAttributedTo ex:john -doe ;

oa:hasBody ex:description -of-vagueness ;
oa:hasTarget ex:isExpertInResearchArea .

ex:isExpertInResearchArea a owl:ObjectProperty .
ex:john -doe a prov:Agent .

A vagueness annotation must specify a description of vagueness or non-
vagueness for the annotated entity, in the form of an instance of the class
DescriptionOfVagueness or DescriptionOfNonVagueness respectively. Vagueness
descriptions must specify a vagueness type (one of the individuals of the class
VaguenessType, i.e., quantitative-vagueness and qualitative-vagueness), and must
provide at least one justification (i.e., an individual of the class Justification)
for considering the target ontological entity vague. The individuals of the class
DescriptionOfNonVagueness, instead, require only the specification of at least
one justification. This class is meant to be used for entities that would typically
be considered vague but which, for some reason, in the particular ontology are
not (e.g. the “TallPerson” example in Sect. 3.1). Formalisation here is as follows:
Class: DescriptionOfNonVagueness SubClassOf: hasJustification min 1
Class: DescriptionOfVagueness

SubClassOf: hasJustification min 1 , hasVaguenessType exactly 1
ObjectProperty: hasJustification

Domain: DescriptionOfNonVagueness or DescriptionOfVagueness
Range: Justification

ObjectProperty: hasVaguenessType
Domain: DescriptionOfVagueness Range: VaguenessType

Considering again the previous example, the John Doe’s description of vague-
ness can be defined as follows:
ex:description -of-vagueness a :DescriptionOfVagueness ;

:hasJustification ex:justification ;
:hasVaguenessType :quantitative -vagueness .

10 All the entities of the Vagueness Ontology are introduced in Manchester Syntax [15],
while the examples of use of the ontology are presented in Turtle [27].
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The justifications of descriptions of vagueness/non-vagueness (i.e., individ-
uals of the class Justification) aim at explaining the possible reasons behind
such descriptions. Vagueness dimensions, in turn, (i.e., individuals of the class
Dimension referred by the object property hasDimension and being always part
of a justification) always refer to descriptions of quantitative vagueness and indi-
cate some measurable characteristic of the annotated entity in which it is vague.
Both justifications and dimensions can be defined as natural language text (i.e.,
the data property hasNaturalLanguageText), an entity (i.e. the object property
hasEntity), a more complex logic formula (i.e., the object property hasLogicFor-
mula) or any combination of them. The relevant formalisation is as follows:
Class: Justification

SubClassOf: hasNaturalLanguageText some rdfs:Literal or
hasEntity some owl:Thing or hasLogicFormula some owl:Thing

ObjectProperty: hasDimension
Domain: Justification that inverse hasJustification only

(DescriptionOfVagueness that
(hasVaguenessType value quantitative -vagueness))

Range: Dimension
Class: Dimension

SubClassOf: hasNaturalLanguageText some rdfs:Literal or
hasEntity some owl:Thing or hasLogicFormula some owl:Thing

Please note that while the properties hasEntity and hasLogicFormula share
the same range class, i.e., owl:Thing, their intended meaning is different. The
former property can be used to specify a certain resource (e.g., dbpedia:H-
index) as (part of) a justification of a certain description. The latter prop-
erty, instead, is used to link to a resource, which provides a justification, that
actually “puns” a particular restriction or constraint on certain entities, e.g.,
ex:hasNumberOfPublication some integer[>0].

Continuing the previous example, the justification and the related dimensions
can be described as follows:
ex:justification a :Justification ;

:hasNaturalLanguageText"It is not possible to define the exact minimum
number of relevant publications and projects that make a a researcher
expert in a given area." ;

:hasDimension ex:dimension -publications , ex:dimension -projects .
ex:dimension -publications a :Dimension ;

:hasNaturalLanguageText "The number of relevant publications ." .
ex:dimension -projects a :Dimension ;

:hasNaturalLanguageText "The number of relevant projects ." .

As introduced before, descriptions of vagueness/non-vagueness and related
dimensions can be characterised by particular contexts of application (i.e., indi-
viduals of the class ApplicabilityContext), which means that they can be applied
within the boundaries of such particular contexts (i.e., the same entity can be
vague in one context and non-vague in another). The contextualisation of descrip-
tions is facilitated by an assertion between the description in consideration and
the related context through the object property hasApplicabilityContext. In the
case of dimensions, on the other hand, the context-dependent object is the rela-
tion between justifications and dimensions. Thus, to represent this, we reify the
relation linking a justification to a dimension using an instance of the class
DimensionInContext, that allows one to specify and the applicability context of
such relation. VO formalises this as follows:
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ObjectProperty: hasApplicabilityContext
Domain: DescriptionOfNonVagueness or DescriptionOfVagueness or

DimensionInContext
Range: ApplicabilityContext

ObjectProperty: hasDimensionInContext
Domain: Justification that inverse hasJustification only

(DescriptionOfVagueness that
(hasVaguenessType value quantitative -vagueness))

Range: DimensionInContext
Class: DimensionInContext

SubClassOf: sit:Situation , withDimension exactly 1 ,
hasApplicabilityContext exactly 1

ObjectProperty: withDimension
Characteristics: Functional SubPropertyOf: sit:isSettingFor
Domain: DimensionInContext Range: Dimension

According to the above definitions, it is possible to complete the description
of the aforementioned example as follows:
ex:description -of-vagueness

:hasApplicabilityContext ex:researcher -hiring -context .
ex:researcher -hiring -context a :ApplicabilityContext .
ex:justification :hasDimensionInContext

ex:dimension -publications -in-context , ex:dimension -projects -in-context .
ex:dimension -publications -in-context a :DimensionInContext ;

:withDimension ex:dimension -publications ;
:hasApplicabilityContext ex:academia -context .

ex:dimension -projects -in-context a :DimensionInContext ;
:withDimension ex:dimension -projects ;
:hasApplicabilityContext ex:industry -context .

ex:academia -context a :ApplicabilityContext .
ex:industry -context a :ApplicabilityContext .

This approach allows the reuse of the same dimension in different contexts
and reasoners to infer automatically all the hasDimension assertions starting
from the individuals of the class DimensionInContext by means of the sub-
property chain hasDimensionInContext o withDimension defined in the object
property hasDimension.

4 Vagueness Ontology Evaluation

As an initial assessment of VO’s correctness, we used the online tool OOPS!11 [26]
to detect potential modelling errors; results indicated no critical errors. Beyond
that, we asked from a group of people with a working knowledge of ontologies to
use VO to query ontologies that were already annotated with vagueness descrip-
tions. Our goal was to evaluate the comprehensibility and usability of the current
version of the ontology and get feedback.

The term “usability” here denotes the easiness by which a user of an ontology
that has already been annotated with VO, can access (via SPARQL) and under-
stand this vagueness-related metainformation. To assess this kind of usability,
we asked subjects to study VO starting from its sources, documentation and
additional material we provided, as well as to use a SPARQL endpoint in order
to answer specific competency questions regarding the vagueness of a concrete
VO-annotated ontology. The usability of VO in terms of the easiness by which
11 Available at http://oeg-lia3.dia.fi.upm.es/oops/index-content.jsp.

http://oeg-lia3.dia.fi.upm.es/oops/index-content.jsp
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an ontology engineer can annotate vague ontologies is going to be evaluated in
future work.

4.1 Experimental Setting

We asked 22 subjects to perform three unsupervised tasks involving querying a
SPARQL endpoint containing vagueness information about four entities, three
classes and one object property. There were no “administrators” observing the
subjects while they were undertaking these tasks, and we made sure that none
of the subjects was previously aware of VO. In the end, 10 of these subjects com-
pleted the tasks. However, only 6 of which had enough experience in performing
proper SPARQL queries, which is a mandatory requirement that subjects had to
demonstrate in order to use quantitative data for assessing users’ performance in
addressing the tasks. Therefore, we used all the 10 subjects’ data for analysing
the usability of VO as gathered through the questionnaires introduced below,
while we considered only the results related to the SPARQL-aware users for
evaluating quantitative outcomes.

More specifically, the assessment of the actual subject’s experience concerning
the ability to provide appropriate SPARQL queries was derived from the answers
the subject provided in a preliminary questionnaire, composed by self-assessment
questions about subject’s preliminary knowledge. In addition, we also analysed
the actual SPARQL queries made by the subject during the test, in order to
understand if (s)he was able to use basic SPARQL constructs such as UNION and
OPTIONAL, that were necessary for addressing the tasks we proposed properly.
In case these requirements were not satisfied, we did not consider the subject’s
SPARQL queries in the quantitative analysis of such data, in order not to bias
the results. Therefore, we used only the queries provided by 6 out of 10 subjects
for our quantitative analysis.

On the other hand, we thought that the understandability/learnability of the
ontology could be assessed considering all the 10 subjects, since these aspects
refer to the subjective perception of people when understanding the ontology
and querying ontological data. During the test, we did not tell subjects whether
their SPARQL queries were right or not and, thus, the actual correctness of such
queries did not bias the subjects’ personal perception of the ontology.

In all cases, the ontology we used contained nine annotations, seven of which
pointed to descriptions of vagueness (one of those had an applicability context
specified), while the remaining two referred to descriptions of non-vagueness
(one of those had an applicability context specified). Some of these descriptions
referred to seven justifications, while two of these justifications were linked to
two dimensions each (in two cases, the justification-dimension relation presented
a particular applicability context). The tasks given to the subjects involved the
latter translating a natural language query into SPARQL. These queries were
designed to ensure that subjects had to use all the entities of VO so as to reach
a solution. Both the dataset and the tasks were based on the examples and the
informal competency questions we had produced during the development of VO.
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Table 1. The three natural language questions of each task (T1, T2 and T3) to trans-
late in SPARQL.

T1 What are all the entities that have been defined either as vague or non-vague
and why?

T2 What are all the entities, their related vagueness type, and their related OWL
type that have been defined vague by someone?

T3 What entities have quantitative vagueness, in what dimensions and what is the
context of their dimensions?

The evaluation session was structured as follows. We first asked subjects to
complete a short multiple-choice questionnaire about their background knowl-
edge and skills in OWL, ontology engineering, SPARQL, PROV-O and OADM
(max. 2 min). Then, we asked subjects to study VO (max. 25 min), providing
them the ontology source in RDF/XML, the complete online documentation
with the diagram of Fig. 1, and usage examples. Then, we asked them to com-
plete the three tasks listed in Table 1 (max. 15 min), allowing them to test the
SPARQL translations on the dataset, available as SPARQL endpoint. During
that, no access to the any exemplar SPARQL queries was given. Finally, we
asked subjects to fill in two short questionnaires, one multiple choice and the
other textual, to report their experience of using VO (and its related material) to
complete these tasks (max. 5 min). All the questionnaires12 and all the outcomes
of the experiments13 are available online.

4.2 Evaluation

Out of the 30 tasks in total (3 tasks given to each of 10 subjects), 9 were com-
pleted successfully (i.e., the right SPARQL queries were given), while 9 had
incorrect answers or were not completed at all, giving an overall success rate of
50 %. The remaining 12 ones were not considered in this quantitative analysis
since the related 4 users had proved to have not enough experience in perform-
ing SPARQL queries. The 9 successes were distributed as follows: 2 (out of 6) in
Task 1, 6 in Task 2, and 1 in Task 3. A similar analysis can be done for the actual
rows of the 6 users’ outcomes matching with the expected results. In this case,
we compared the each row returned by executing each user’s SPARQL query
with the expected rows, listing all the true positives (tp), false positives (fp),
and false negatives (fn). We calculated the overall average precision (P) (i.e.,
tp/(tp+fp)) and average recall (R) (i.e., tp/(tp+fn)), calculated by consider-
ing those obtained by each subject, and we obtained P = 0.61 and R = 0.75.
The average precision and recall for each task were P = 0.49 and R = 0.44 in
Task 1, P = 1 and R = 1 in Task 2, and P = 0.66 and R = 0.83 in Task 3.

As shown by these quantitative results, the second task was always answered
correctly, while issues arose when trying to answer to tasks 1 and 3. On the one
12 Available at http://esurv.org?u=vagueness-ontology.
13 Available at http://www.essepuntato.it/2013/10/vagueness/evaluation.

http://esurv.org?u=vagueness-ontology
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hand, in Task 1 we think two users (out of three who provided wrong answers) sim-
ply made syntactic mistakes (i.e., one returns the annotation individuals instead
of the kinds of descriptions linked by such annotations, while the other named
two SPARQL variables in the same way), which could be due to a rushed read-
ing of the task or a distraction when writing the SPARQL query. On the other
hand, in Task 3 it seems that subjects’ mistakes related to a partial understand-
ing of the ontology, since five of them provided imprecise solutions to the task.
This seemed to depend on the possibility of describing dimensions involved in
descriptions of quantitative vagueness as contextual objects or not, as introduced
in Sect. 3.2. Although we were aware of possible misinterpretation of such part
of the ontology, we decided to define dimensions by using the same pattern pro-
posed in PROV-O, where certain relations, for instance between an entity and an
agent (e.g., prov:wasAttributedTo), can be qualified, if needed, by reifying them as
proper classes (e.g., prov:Attribution) linking to the entity and the agent in con-
sideration. Of course, in all the above, one needs to consider the constrained time
that participants had to study the ontology and perform the tasks.

The usability score for VO (considered together with its documentation and
examples) was computed using the System Usability Scale (SUS) [7], by using
the answers provided by all the 10 users. SUS is a well-known questionnaire used
for the perception of the usability of a system, and it has been already used in
the past for assessing the usability of ontologies (cf. [9]). SUS has the advantage
of being technology independent (it has been tested on hardware, software, Web
sites, etc.) and it is reliable even with a very small sample size [29]14. In addition
to the main SUS scale, we also were interested in examining the sub-scales of
pure Usability and pure Learnability of VO, as proposed recently by Lewis and
Sauro [20]. The mean SUS score for VO was 67.3 (in a 0–100 range), approaching
the target score of 68 to demonstrate a good level of usability [29]. The mean
values for the SUS sub-scales Usability and Learnability were 68.8 and 73.4
respectively.

In addition, two sub-scores were calculated for each subject by considering
the values of the answers given in the background questionnaire (according to
a 0–4 value range for each question). The first sub-score – composed of five
questions and, thus, ranging from 0 to 20 – concerned the subject’s experience
with (the development of) ontologies. The other sub-score – composed of three
questions and, thus, ranging from 0 to 12 – concerned the subject’s personal
14 Even if confidence intervals of the SUS scores will be rather wide (e.g., in our exper-

iment we obtained [56.06, 78.45]), the average SUS score will be surprisingly stable
even with a small sample. As stated in [29] and summarised in his blog (see http://
www.measuringusability.com/blog/10-things-SUS.php for more details), Sauro “did
several computer simulations and showed that [...] the mean from a sample size of
just 5 repeated 1000 times [...] was within 6 points of the true SUS score” in the
50 % of the 1000 samples used – note that the true SUS score was calculated using
the original big sample Sauro had available. This means that “you get within the
ballpark of the actual SUS score in more than half of the cases with very small
sample sizes” – e.g., “if the actual SUS score was a 74, average SUS scores from five
users will fall between 68 and 80 half of the time”.

http://www.measuringusability.com/blog/10-things-SUS.php
http://www.measuringusability.com/blog/10-things-SUS.php
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knowledge about SPARQL, PROV-O and OADM. As shown in Fig. 2, we have
plotted these subject’s sub-scores (x-axis) with the subject’s SUS value and the
other sub-scales (y-axis) – and we have also included red dashed lines referring
to the related Least Squares Regression Lines. Even if we cannot have any sta-
tistical significance of such comparisons because of the small size of our sample,
it seems that the plots suggest some sort of positive correlation between the
experience sub-scores and the SUS values – i.e., the more a subject knew about
ontologies in general, the more VO is perceived as usable. The plots referring to
the other aspect, namely the relation between the knowledge sub-scores and the
SUS values, does not seem to provide enough evidence to speculate on any sort
of correlation.

Fig. 2. Six plots showing the relation between subjects’ experience and knowledge scores
and the related subjects’ SUS values and the other sub-scales. The red dashed lines
were calculated by using the Least Squares Regression method.

Axial coding of the personal comments expressed in the final questionnaires
[32] revealed a small number of perceived issues. Only 8 of all the subjects tested
provided meaningful comments that were used for the study, and, of the 7 terms
that were identified as significant in the comments, only 5 (4 positive and 1
negative) were mentioned by more than two individuals (albeit sometimes with
different words), as shown in Table 2. The only negative issue mentioned by more
than two subjects, i.e., the ambiguities in some ontological terms, was mainly
highlighted by the subjects whom answers to tasks were not considered in the
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quantitative evaluation due to their inexperience in SPARQL. This seems to
suggest some sort of (cor)relation between the understandability of VO and the
experience users had in using SPARQL.

Table 2. Terms – four positive (+) and one negative (−) – mentioned by more than
two individuals in the final questionnaire responses.

Term Description Frequency

HTML documentation (+) The documentation of VO was suggested as
one of the success features to help users
understanding the ontology and, thus, to
consult for writing the SPARQL queries

4 out of 8

ABox examples (+) Similarly to the documentation, the
snippets provided to show how to use VO
for describing vagueness entities were a
crucial aspect for writing SPARQL
queries, since they were used to
understand the intended usage of VO
entities

3 out of 8

SPARQL endpoint (+) Although it was not one of the targets of
the evaluation, the SPARQL endpoint we
provided to test the SPARQL queries
was considered useful to assess their
correctness and to browse the dataset

3 out of 8

Graffoo diagram (+) The diagram in Fig. 1, which is part of the
ontology documentation, received explicit
mention in comments as an effective way
to quickly understand the relation among
classes

3 out of 8

Entity ambiguities (−) Users found some ontological entities, e.g.,
context and dimension, quite ambiguous
since they could be interpreted in
different ways. In addition, the possibility
of providing different descriptions of
vagueness for a certain concept had been
perceived as a drawback, as well as the
fact that one needs to deal with several
levels of indirection in order to express
precisely the vagueness of concepts

3 out of 8

5 Discussion Points

5.1 Benefits of Consuming Vagueness-Aware Ontologies

The Vagueness Ontology is to be used by producers and consumers of ontolo-
gies and semantic datasets, so as to create and consume vagueness ontology
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descriptions respectively. Regarding the consumption of a vagueness-aware ontol-
ogy, a first benefit of a vagueness-aware ontology for potential users is that it
makes them aware of the existence of vagueness by explicitly stating the vague
elements. This is important as vagueness is not always obvious to people (and
certainly never to systems), meaning that it can be easily overlooked and lead
to the negative effects described in previous sections. A second benefit is that it
enables users to query each of the vague element’s metainformation (vagueness
dimensions, applicability context etc.) and use it in order to reduce these effects.

To show how this may be done let’s revisit the four scenarios of Sect. 1.
In the first scenario, involving the structuring of data with an existing vague
ontology, the problem is that disagreements may occur on whether particular
objects are actually instances or not of vague concepts or relations. If, however,
information like the dimensions and applicability conditions and contexts of
these elements are made known to the people who perform this task, then the
possible interpretation space of them will be reduced. For example, if it is known
that in order to classify a given company as a competitor, one needs to consider
only the number of common business areas target markets, then other possible
dimensions (e.g. the geographical proximity) will be excluded. This exclusion
should reduce the number of potential disagreements.

In the second scenario, where vague ontological elements are utilised within
some end-user application, the availability of vagueness metainformation can
help the system’s developers in two ways. First, it will make them aware of the
fact that the ontology contains vague information and thus some of the system’s
output might not be considered accurate by the end-users. Second, they may use
the vagueness metainformation to try to deal with that fact. For example, in a
recommendation scenario, the applicability context of a vague axiom can be used
as part of an explanation to the user of why a particular item was recommended.
That might not change the user’s opinion on whether this recommendation is
accurate, but the potential user’s feedback could help pin down the particular
element’s vagueness as the cause of this inaccuracy and take appropriate action.

In the third scenario, when two or more ontologies need to be integrated,
the vagueness metamodel can be used to compare the “compatibility” of these
ontologies in terms of vagueness. For example, if the same two vague classes have
different vagueness dimensions (e.g. the vague class “Strategic Client”), then
the one class’s set of instance membership axioms might not be appropriate for
the second one’s as it might have been defined under a different interpretation
of the class’s vagueness. A simple query to the two ontologies’ vagueness meta-
model could reveal this issue. Similarly, in the case of evaluating given ontologies
and semantic datasets for reuse purposes, the metamodel can be used to com-
pare the vagueness compatibility of the dataset with the intended domain and
application scenario. Table 3 summarises the above use case scenarios and the
way the metamodel may be used and benefit each of them.

From the above, it is evident that if the vagueness characteristics that VO
specifies (dimensions, context, etc.) were merely part of its documentation and
not explicitly represented as metadata, this kind of querying would not be
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Table 3. Vagueness metamodel usage and benefits in different scenarios.

Use case scenario Metamodel usage Expected benefits

Structuring data with a
vague ontology

Communicate the meaning
of the vague elements
to the domain experts

Make the job of the
experts easier and
faster and reduce
disagreements among
them

Use the metamodel to
characterise the created
data’s vagueness

Enhance the future
usability and
shareability of the data.

Utilising vague semantic
data in an
ontology-based system

Check which data is vague Know a priori which data
may affect the system’s
effectiveness

Use the properties of the
vague elements to
provide
vagueness-related
explanations to the
users

Integrating vague
semantic datasets

Compare same-name
vague elements across
datasets according to
their vagueness type
and dimensions

Avoid integrating
incompatible elements

Evaluating a vague
semantic dataset for
reuse

Query the metamodel to
check the vagueness
compatibility of the
dataset with the
intended domain and
application scenario

Avoid re-using (parts of)
datasets that are not
compatible to own
interpretation of
vagueness

possible. Moreover, as the VO captures formally the relations that exist between
these characteristics (e.g., the relation between a dimension and a context), the
same kind of querying would not be possible if these relations were defined using
merely the rdfs:comment annotation property of OWL. In such a case, if the
ontology user would like, for example, to measure the number of different dimen-
sions and contexts a particular entity is vague in, he/she would have to parse,
via some NLP method, the entity’s rdfs:comment value; a process obviously not
very effective or easy to perform. On the other hand, with VO as a basis one
can access an ontology’s vagueness-related metainformation via SPARQL and,
potentially, via more high-level services that are suitable not only to ontology
engineers but also to domain experts, application developers and data analysts.
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5.2 Creating Vagueness-Aware Ontologies

Annotating ontologies with VO is currently a manual task, with knowledge engi-
neers and domain experts having to detect the vague elements, determine the
relevant characteristics (type, dimensions, etc.) and instantiate VO. How this
may be best facilitated is out of this paper’s scope but it is an important aspect
of our ongoing and future work. An example of this work is a system we’ve
developed that is able to automatically detect ontology elements that are poten-
tially vague [1]. The system uses a binary classifier that may distinguish between
vague and non-vague term word senses and, consequently, between vague and
non-vague linguistic definitions of ontology entities. Thus, for example, the def-
inition of the ontology class “StrategicClient” as “A client that has a high value
for the company” would be classified as vague while the definition of “Ameri-
canCompany” as “A company that has legal status in the Unites States” would
not. Our goal is to incorporate this classification functionality into an ontology
authoring tool that will take as input an ontology, detect automatically its vague
entities, guide the user into annotating them with the Vagueness Ontology in a
Q&A manner and give as output a vagueness annotation for the given ontology.

5.3 Reasoning with Vagueness-Aware Ontologies

The current version of VO has not been developed with automated reasoning
in mind, primarily because we have not yet analysed vagueness in adequate
depth so as to define more complex axioms that may facilitate some kind of
reasoning. Moreover, some of VO’s information, such as dimensions or contexts,
is currently described in a textual (and thus imprecise) way, thus making it
harder to perform very detailed reasoning. Both these limitations have been
purposefully not tackled in this first version of VO, in order to avoid an increased
complexity that could discourage people from adopting it and start using it to
annotate their ontologies.

In principle, reasoning with VO can be made possible by defining constraints
and inference rules that determine how vagueness and its characteristics pro-
liferate when defining more complex OWL axioms, such as complex classes or
subsumption relations. A simple example is to say that “The conjunction of
a set of classes is quantitatively vague if all (vague) classes are quantitatively
vague whereas it is qualitatively vague if at least one (vague) class is qualita-
tively vague”. Then, a vagueness (meta-)reasoner could infer a conjunctive class’s
vagueness type by considering the types of its constituent classes. Similarly, one
could say that “The inverse of a vague property has the same vagueness char-
acteristics (type, dimensions, contexts, etc.) as the original property”. On the
other hand, it is a matter of further analysis whether and in what way a class’s
vagueness’s characteristics are “transferred” to its subclasses. Such an analysis,
that will try to identify and implement a comprehensive set of valid reasoning
rules for VO, is left as future work.

As far as the imprecise nature of VO’s textual content is concerned, its poten-
tially inhibitive role in reasoning depends on the particular reasoning rule at hand.
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For example, the rule in the above paragraph regarding the vagueness type of a con-
junctive class is not really affected by imprecision. On the other hand, the imple-
mentation of a rule such as “The conjunction of a set of quantitatively vague classes
is quantitatively vague in the superset of all these classes’ dimensions” would require
the comparison of vagueness dimensions (and probably contexts) which, when rep-
resented as simple strings, can be imprecise. For such cases, a more formal repre-
sentation of dimensions and contexts (with, e.g., taxonomical relations between
contexts) would be probably necessary; nevertheless, such a representation needs
to be contemplated along with the specification of VO’s reasoning behaviour and,
for that, is left as future work.

6 Conclusions and Future Work

In this paper we presented and evaluated the Vagueness Ontology (VO), a
metaontology for annotating vague ontological entities with descriptions that
describe the nature and characteristics of their vagueness in an explicit way. The
metaontology is meant to be used by both producers and consumers of ontologies
and semantic datasets, with the former utilising it to annotate the vague part of
their produced ontologies and the latter querying this metainformation in order
to make a better use of them.

VO’s high-level goal is to raise the awareness of human producers and
consumers of ontologies and semantic data about vagueness and the potential
problems it may cause, and provide them with the means to produce/consume
ontologies with a clearer meaning. At the moment, there are neither established
practices nor tools in the Semantic Web community for working with vagueness,
the result being that vague ontologies and semantic data are created and used
without realising the meaning explicitness issues that may arise. Moreover, it
should be made clear that our work does not aim to “get rid” of vagueness; on
the contrary, we want to highlight it as a central issue in the development of the
Semantic Web and, for the scenarios we have identified in this paper, make it
more manageable and less problematic by making it explicit, not eliminating it.

Regarding VO’s evaluation, our goal was to evaluate how (ontology-savvy)
users understood VO. For that, we performed a time-constrained, user-based
evaluation of VO showed a satisfying level of clarity and usability. Future exper-
iments will involve domain experts and ontology engineers using VO to annotate
ontologies; these experiments, however, will be performed when we have devel-
oped appropriate tooling for using VO.

This development will form part of our future work, aiming towards facilitat-
ing the easier and seamless usage of VO for the production of vagueness-aware
ontologies, not only by ontology engineers but also by domain experts, appli-
cation developers and data analysts. For that, we are currently developing a
semi-automatic framework for generating vagueness descriptions with VO with-
out having to know its implementation details. In another direction, we plan
to evolve VO by looking at its potential links with fuzzy ontologies, identifying
more sophisticated vagueness distinctions and phenomena and enabling a higher
level of automated reasoning.
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Abstract. We consider the fuzzy description logic ALCOI with seman-
tics based on a finite residuated De Morgan lattice. We show that rea-
soning in this logic is ExpTime-complete w.r.t. general TBoxes. In the
sublogics ALCI and ALCO, it is PSpace-complete w.r.t. acyclic TBoxes.
This matches the known complexity bounds for reasoning in classical
description logics between ALC and ALCOI.

1 Introduction

OWL 2, the current standard ontology language for the semantic web, is a syn-
tactic variant of the crisp description logic (DL) SROIQ(D). The knowledge of
an application domain can be formalized in such an ontology, and then reasoning
problems such as ontology consistency, concept satisfiability, and concept sub-
sumption can be used to infer new knowledge. As all crisp logics, this language
is not well suited for expressing vague or imprecise notions that can be found
in numerous domains. For instance, in the biomedical areas it is common to
encounter concepts, such as HighTemperature or Large, that cannot be precisely
represented using a classical logic.

Fuzzy extensions of DLs have been studied for the last two decades, and the
literature on the topic is very extensive (see the surveys [27,34]). Most of those
approaches are based on the very simple Zadeh semantics, where the conjunction
of two statements is interpreted as the minimum of their truth values; these
values range over the interval [0, 1] of rational numbers. The last decade has
seen a shift towards more general semantics for treating vagueness, motivated
by the development of mathematical fuzzy logic [23]. On the one hand, the use of
continuous t-norms as the underlying interpretation function for conjunction was
proposed in [24]. On the other hand, [33] considers incomparable truth degrees,
which are structured into a lattice. However, this latter work still restricts to
Zadeh-like semantics.

Most of the work on fuzzy DLs since then has focused on t-norm-based
semantics over the unit interval; yet, even in those cases, ontologies are usu-
ally restricted to be unfoldable or acyclic [7–9]. Indeed, it has been shown that
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general concept inclusion axioms (GCIs) can cause undecidability even in fuzzy
extensions of the basic DL ALC [4,5,15,16,20]. In order to allow the expressivity
of GCIs within the knowledge base, while retaining decidability, it is necessary
to restrict the expressivity of the logic in other ways. This has motivated the
study of fuzzy DLs over finitely-valued semantics [19]. The notion of t-norm
can be rephrased in terms of finite lattices to preserve the relationship with
mathematical fuzzy logic.

If one considers the �Lukasiewicz t-norm over finitely many values, then rea-
soning is decidable even for very expressive DLs, as shown in [10] through a
reduction to crisp reasoning. When restricted to ALC without terminological
axioms, concept satisfiability is PSpace-complete as in the crisp case [18].1 In the
presence of general TBoxes, this problem becomes ExpTime-complete [13,14],
again matching the complexity of the crisp case, even if arbitrary (finite) lattices
and t-norms are allowed. However, the complexity of subsumption of concepts
was left as an open problem, as the standard reduction used in crisp DLs does
not work with general t-norm semantics.

In [11,12,17], matching complexity bounds were shown for other reasoning
tasks and for logics up to SHI, which extends ALC with transitive and inverse
roles, and allows for role inclusion axioms. More precisely, it was shown that all
standard reasoning tasks are ExpTime-complete in lattice-valued SHI w.r.t.
general TBoxes. If restricted to acyclic TBoxes, then the complexity reduces to
PSpace in ALCHI; the same holds for SI under a restriction on the interpre-
tation of the roles. For SH, reasoning is ExpTime-complete, even if the TBox
is empty.

In this paper we complement those complexity results by showing that finite
lattices do not affect the complexity of reasoning even if nominals are allowed,
and provide tight complexity bounds for the fuzzy logic L-ALCOI over a finite
lattice L. More precisely, we show that in this logic concept satisfiability is
ExpTime-complete w.r.t. general TBoxes and acyclic TBoxes. It was shown
in [11,17] that the restriction to acyclic TBoxes and the sublogic L-ALCI leads
to a PSpace-complete satisfiability problem. We show here that this is also the
case in L-ALCO. Moreover, the same complexity bounds hold for deciding sub-
sumption between concepts. These results are in accordance with the complexity
of reasoning in the classical DLs underlying these logics.

2 Preliminaries

We first recall some results about automata on infinite trees from [2] that will
allow us to obtain tight upper bounds for our reasoning problems. Afterwards,
we briefly introduce residuated lattices, which will be used for the semantics of
our logic. For a more comprehensive view on residuated lattices, in particular in
connection with mathematical fuzzy logic, we refer the reader to [21–23].

1 The paper [18] considers the fuzzy modal logic K, which can be seen as a syntactic
variant of fuzzy ALC with only one role.
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2.1 Looping Automata on Infinite Trees

To obtain upper bounds for the complexity of reasoning in L-ALCOI, we describe
in Sect. 4 a reduction to the emptiness problem of looping automata on infinite
trees. Such automata receive as input the unlabeled infinite k-ary tree for a
fixed k ∈ N. The nodes of this tree are represented by words in K∗, where
K := {1, . . . , k}: the empty word ε represents the root node, and ui represents
the i-th successor of the node u. An ancestor of a node u ∈ K∗ is a node
u′ ∈ K∗ for which there exists a u′′ ∈ K∗ such that u = u′u′′. A path is a
sequence v1, . . . , vm of nodes such that v1 = ε and each vi+1 is a successor of vi

for every i, 1 ≤ i < m.

Definition 1 (looping automaton). A looping (tree) automaton is a tuple
A = (Q, I,Δ) where Q is a finite set of states, I ⊆ Q is a set of initial states,
and Δ ⊆ Qk+1 is the transition relation. A run of A is a mapping r : K∗ → Q
assigning states to each node of K∗ such that r(ε) ∈ I and for every u ∈ K∗,
(r(u), r(u1), . . . , r(uk)) ∈ Δ. The emptiness problem for looping automata is to
decide whether a given looping automaton has a run.

The emptiness of looping automata can be decided in polynomial time using a
bottom-up approach that finds all states that can appear in a run [37]. Alterna-
tively, one can use a top-down approach, which relies on the fact that if there
is a run, then there is also a periodic run. To speed up this search, the period
should be as short as possible. This motivates the notion of blocking automata.

Definition 2 (m-blocking). Let A = (Q, I,Δ) be a looping automaton. We
say that A is m-blocking for m ∈ N if every path v1, . . . , vm of length m in a run
r of A contains two nodes vi and vj (i < j) such that r(vi) = r(vj).

Clearly, every looping automaton is m-blocking for all m > |Q|. However, the
main interest in blocking automata arises when one can find a smaller bound
on m. One way to reduce this is through a so-called faithful family of functions.

Definition 3 (faithful). Let A = (Q, I,Δ) be a looping automaton. The family
of functions fq : Q → Q, q ∈ Q, is faithful w.r.t. A if for all q, q0, q1, . . . , qk ∈ Q,

– if (q, q1, . . . , qk) ∈ Δ, then (q, fq(q1), . . . , fq(qk)) ∈ Δ; and
– if (q0, q1, . . . , qk) ∈ Δ, then (fq(q0), fq(q1), . . . , fq(qk)) ∈ Δ.

The subautomaton AS = (Q, I,ΔS) of A induced by this family has the transition
relation ΔS = {(q, fq(q1), . . . , fq(qk)) | (q, q1, . . . , qk) ∈ Δ}.
Lemma 4 [2]. Let A be a looping automaton and AS its subautomaton induced
by a faithful family of functions. Then A has a run iff AS has a run.

The construction in Sect. 4 produces automata that are exponential in the size
of the input. For such cases, it has been shown that if the automata are
m-blocking for some m bounded polynomially in the size of the input (that is,
logarithmically in the size of the automaton), then the emptiness test requires
only polynomial space.
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Definition 5 (PSPACE on-the-fly construction). Consider a set I of inputs
and a construction that yields, for every i ∈ I, an mi-blocking looping automa-
ton Ai = (Qi, Ii,Δi) on ki-ary trees. This construction is a PSpace on-the-fly
construction if there is a polynomial P such that, for every input i of size n,

(i) mi ≤ P (n) and ki ≤ P (n),
(ii) every element of Qi has size bounded by P (n), and
(iii) one can nondeterministically guess in time bounded by P (n) an element

of Ii, and, for a state q ∈ Qi, a transition from Δi with first component q.

As hinted at by the name, these conditions guarantee the following complexity
result for checking emptiness of the constructed automata.

Theorem 6 [2]. If the looping automata Ai are obtained from the inputs i ∈ I
by a PSpace on-the-fly construction, then the emptiness of Ai can be checked
in space polynomial in the size of i.

In Sect. 5, we will use this theorem to give PSpace upper bounds on the com-
plexity of reasoning in sublogics of L-ALCOI.

2.2 Residuated Lattices

A lattice is an algebraic structure (L,∨,∧) over a carrier set L with two idem-
potent, associative, and commutative binary operations join ∨ and meet ∧ that
satisfy the absorption laws �1 ∨ (�1 ∧ �2) = �1 = �1 ∧ (�1 ∨ �2) for all �1, �2 ∈ L.
The order ≤ on L is uniquely defined by �1 ≤ �2 iff �1 ∧ �2 = �1 for all �1, �2 ∈ L.
A lattice L is distributive if ∨ and ∧ distribute over each other, finite if L is finite,
and bounded if it has a minimum and a maximum element, denoted as 0 and 1,
respectively. It is complete if joins and meets of arbitrary subsets T ⊆ L, denoted
by

∨

t∈T t and
∧

t∈T t respectively, exist. Every finite lattice is also bounded and
complete. Whenever it is clear from the context, we simply use the carrier set L
to represent the lattice (L,∨,∧).

A De Morgan lattice is a distributive lattice with an involutive and anti-
monotonic unary operator ∼, called (De Morgan) negation, satisfying the De
Morgan laws ∼(�1 ∨�2) = ∼�1 ∧∼�2 and ∼(�1 ∧�2) = ∼�1 ∨∼�2 for all �1, �2 ∈ L.
For example, for every n ∈ N, let Ln = {k/n | 0 ≤ k ≤ n}. Then (Ln,max,min)
is a distributive lattice which, together with the negation ∼� = 1 − �, forms a
De Morgan lattice.

An important notion in mathematical fuzzy logic is that of a triangular norm,
or t-norm for short. We define this for arbitrary (bounded) lattices, although in
the literature the term is usually only used in the context of the real interval [0, 1]
or finite chains [22,23,26].

Definition 7 (t-norm, residuum). Given a bounded lattice L, a (generalized)
t-norm is an associative and commutative binary operator on L that is monotone
w.r.t. the lattice order and has unit 1. A residuated lattice is a bounded lat-
tice L extended with a t-norm ⊗ and a binary operator ⇒ (called (generalized)
residuum) such that, for all �1, �2, �3 ∈ L, we have �1 ⊗ �2 ≤ �3 iff �2 ≤ �1 ⇒ �3.
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Notice that what we call a residuated lattice corresponds to a commutative,
distributive, integral, zero-bounded FL-algebra from [22]. We chose to call it a
residuated lattice to keep the relation with mathematical fuzzy logic explicit.
A simple consequence of Definition 7 is that, for every �1, �2 ∈ L,

– 1 ⇒ �1 = �1, and
– �1 ≤ �2 iff �1 ⇒ �2 = 1.

For a t-norm ⊗ over a complete lattice L, there is a binary operator ⇒ that
satisfies the residuation property w.r.t. ⊗ iff the t-norm is join-preserving [22],
i.e. for all � ∈ L and T ⊆ L we have

� ⊗
(

∨

�′∈T

�′
)

=
∨

�′∈T

(� ⊗ �′).

If ⊗ also preserves arbitrary meets in the dual way, then ⇒ is uniquely deter-
mined as the function that satisfies, for all �1, �2 ∈ L,

�1 ⇒ �2 =
∨

{x | �1 ⊗ x ≤ �2}.

Using this result, we often characterize a complete residuated lattice through its
(join- and meet-preserving) t-norm, without explicitly mentioning its residuum.
The t-norm and the De Morgan negation also uniquely determine the t-conorm
�1 ⊕ �2 := ∼(∼�1 ⊗ ∼�2) and the residual negation �� := � ⇒ 0.

For the rest of this paper, we fix a complete residuated De Morgan lattice L
with De Morgan negation ∼ and a join- and meet-preserving t-norm ⊗. The
operators ⇒,⊕, and � are then given by the above equations.

3 L-ALCOI
We now describe the fuzzy description logic L-ALCOI, whose semantics is based
on the operators of L. It generalizes the classical DL ALCOI by using the
elements of L as truth values, instead of just the Boolean true and false. The
syntax of L-ALCOI is very similar to that of ALCOI. It is based on non-empty
and pairwise disjoint sets NC, NR, and NI of concept names, role names, and
individual names, respectively.

Definition 8 (syntax). A (complex) role is of the form r or r− for r ∈ NR.
(Complex) concepts are constructed from concept names using the constructors
 (top), {a} (nominal for a ∈ NI), ¬C (negation), C �D (conjunction), C → D
(implication), ∃s.C (existential restriction for a complex role s), and ∀s.C (value
restriction).

For a complex role s, the inverse of s (denoted by s) is s− if s ∈ NR and r if
s = r−. The main difference to the syntax of classical ALCOI is the explicit
presence of the implication constructor.

The semantics of this logic is based on interpretation functions that map
every concept C to a fuzzy set over the truth degrees from L, i.e. a function
specifying the membership degree of every domain element to C.
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Definition 9 (semantics). An interpretation is a pair I = (ΔI , ·I), where
ΔI is a non-empty set, called the domain of I, and ·I is an interpretation
function that maps every concept name A to a function AI : ΔI → L, every role
name r to a function rI : ΔI × ΔI → L, and every individual name a to an
element aI ∈ ΔI . This function is extended to complex roles and concepts for
all x, y ∈ ΔI as follows:

– (r−)I(x, y) := rI(y, x),
– I(x) := 1,
– {a}I(x) := 1 if x = aI , and {a}I(x) := 0 otherwise,
– (¬C)I(x) := ∼CI(x),
– (C � D)I(x) := CI(x) ⊗ DI(x),
– (C → D)I(x) := CI(x) ⇒ DI(x),
– (∃s.C)I(x) :=

∨

z∈ΔI sI(x, z) ⊗ CI(z),
– (∀s.C)I(x) :=

∧

z∈ΔI sI(x, z) ⇒ CI(z).

Note that we did not include the disjunction constructor, usually interpreted by
the t-conorm, as it can be expressed using conjunction and negation. Likewise,
the residual negation can be simulated by the implication, negation, and top.
However, unlike in classical DLs, existential and universal quantifiers are not dual
to each other, i.e. in general it does not hold that (¬∃s.C)I(x) = (∀s.¬C)I(x).

The axioms of this logic also have an associated lattice value, which expresses
the degree to which the restriction must be satisfied.

Definition 10 (axioms). An axiom is an assertion 〈a:C �� �〉, a concept def-
inition 〈A .= C ≥ �〉, or a general concept inclusion (GCI) 〈C � D ≥ �〉, where
A ∈ NC, a ∈ NI, � ∈ L, C,D are concepts, and �� ∈ {<,≤,=,≥, >}. An ABox
is a finite set of assertions. A general TBox is a finite set of GCIs. An acyclic
TBox is a finite set of concept definitions such that every concept name occurs at
most once on the left-hand side of an axiom, and there is no cyclic dependency
between definitions. A TBox is either a general TBox or an acyclic TBox.2 An
ontology is a pair O = (A, T ) where A is an ABox and T is a TBox.

The interpretation I satisfies (or is a model of)

– an assertion 〈a:C �� �〉 if CI(aI) �� �;
– a concept definition 〈A .= C ≥ �〉 if for every element x ∈ ΔI it holds that

(

AI(x) ⇒ CI(x)
) ⊗ (

CI(x) ⇒AI(x)
) ≥ �;

– a GCI 〈C � D ≥ �〉 if for every x ∈ ΔI we have CI(x) ⇒DI(x) ≥ �;
– an ABox, TBox, or ontology if it satisfies all axioms in it.

If T is an acyclic TBox, then all concept names occurring on the left-hand side
of some definition in T are called defined, all others are called primitive. If T is
a general TBox, then all concept names appearing in it are primitive.
2 We do not consider mixed TBoxes. We could allow axioms of the form 〈A � C ≥ �〉

in acyclic TBoxes, as long as they do not introduce cyclic dependencies. To avoid
overloading the notation, we exclude this case.
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Usually, ABoxes also contain role assertions of the form 〈(a, b):r �� �〉, express-
ing that rI(aI , bI) �� � should hold. We do not consider such axioms here, since
they can be simulated by the concept assertion 〈a:∃r.{b}���〉 (or 〈b:∃r−.{a} �� �〉).

We emphasize that ALCOI is a special case of L-ALCOI, where the under-
lying lattice contains only the elements 0 and 1, which may be interpreted as
false and true, respectively, and the t-norm is simply the classical conjunction.
Accordingly, one can generalize the reasoning problems for ALCOI to lattices.

Definition 11 (reasoning). Let C,D be concepts, O an ontology, and � ∈ L.

– O is consistent if it has a model.
– C is �-satisfiable w.r.t. O if there is a model I of O and an element x ∈ ΔI

such that CI(x) ≥ �.
– C is �-subsumed by D w.r.t. O if every model of O is also a model of 〈C � D ≥ �〉.
– The best satisfiability degree for C w.r.t. O is the supremum of all �′ ∈ L

such that C is �′-satisfiable w.r.t. O.
– The best subsumption degree of C and D w.r.t. O is the supremum of all

�′ ∈ L such that C is �′-subsumed by D w.r.t. O.

Unfortunately, consistency and satisfiability even in the smaller logic L-ALC are
undecidable in general [1,4,5,15,16,20]. Here we analyze the complexity of these
problems under the assumption that L is finite and given as a list of its elements,
and all lattice operations are computable in polynomial time in the size of their
operands.

Observe that C is �-satisfiable w.r.t. (A, T ) iff (A ∪ {〈a:C ≥ �〉}, T ) is con-
sistent, where a is a fresh individual name. Likewise, C is not �-subsumed by
D w.r.t. (A, T ) iff (A ∪ {〈a:C → D < �〉}, T ) is consistent. To obtain the best
degrees to which these inferences hold, one has to solve at most polynomially
many consistency problems. For more details on these reductions, see e.g. [12].
We can thus focus on deciding consistency of ontologies to solve all other rea-
soning problems.

We show in Sect. 4 that the complexity of this problem is the same as
for classical ALCOI: it is ExpTime-complete w.r.t. both general and acyclic
TBoxes [29,30,35,36]. However, in the sublogics ALCO (without inverse roles)
and ALCI (without nominals), consistency w.r.t. acyclic TBoxes is decidable in
PSpace [2,3], and PSpace-hard already in ALC [31]. We show in Sect. 5 that
these bounds also apply to L-ALCO for arbitrary finite lattices L. The same
holds for L-ALCI [11,17].

4 Consistency

We now show that consistency of L-ALCOI ontologies is in ExpTime. To
achieve this, we adapt the approach from [2], where reasoning in classical DLs
is reduced to the emptiness of an exponentially large looping automaton. To
handle nominals and inverse roles correctly, we adapt ideas from [3,25].

Recall that the semantics of the quantifiers requires the computation of a
supremum or infimum of the membership degrees of a possibly infinite set of
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elements of the domain. To obtain an effective decision procedure, reasoning is
usually restricted to witnessed models [24].

Definition 12 (n-witnessed). An interpretation I is n-witnessed, n ∈ N, if
for every x ∈ ΔI and every concept of the form ∃s.C there exist n elements
x1, . . . , xn ∈ ΔI such that

(∃s.C)I(x) =
n
∨

i=1

sI(x, xi) ⊗ CI(xi),

and analogously for all value restrictions ∀s.C.

In particular, if n = 1, then the suprema and infima from the semantics of ∃r.C
and ∀r.C become maxima and minima, respectively. In this case, we simply say
that I is witnessed.

It was shown in [17] that every interpretation over the finite lattice L is
n-witnessed for some n bounded by the cardinality of L. To simplify the descrip-
tion of the algorithm, in the following we consider only the case of n = 1. All
constructions can easily be adapted for any other n ∈ N.

Our algorithm for deciding consistency exploits the fact that an ontology
O has a model iff it has a well-structured forest model, consisting of intercon-
nected tree-like structures rooted in the named individuals. We model them
using so-called Hintikka trees that abstract from the complexity of a full model
by only expressing the membership degrees for all relevant concepts. We con-
struct automata that have exactly these Hintikka trees as their runs, and use
the initial states to verify the restrictions imposed by the ABox. Reasoning is
hence reduced to a polynomial guessing step and polynomially many emptiness
tests for these automata.

In the following, we consider an ontology O = (A, T ) for which we want
to decide consistency. We denote by sub(O) the set of all subconcepts occurring
in O, and by Ind(O) the set of all individual names occurring in O. Similarly, the
set Rol(O) contains all role names used in O, and Rol−(O) contains all complex
roles occurring in O. The nodes of the Hintikka trees are labeled with so-called
Hintikka functions over the domain sub(O) ∪ {ρ}, where ρ is an arbitrary new
element that will be used to express the degree with which the role relation to
the parent node holds.

Definition 13 (Hintikka function). A Hintikka function for O is a partial
function H : sub(O) ∪ {ρ} → L satisfying the following conditions:

(i) H(ρ) is defined;
(ii) if H() is defined, then H() = 1;
(iii) if H({a}) is defined, then H({a}) ∈ {0,1};
(iv) if H(¬D) is defined, then H(D) is defined and H(¬D) = ∼H(D);
(v) if H(C � D) is defined, then H(C) and H(D) are also defined and it holds

that H(C � D) = H(C) ⊗ H(D); and
(vi) if H(C → D) is defined, then H(C) and H(D) are also defined and it holds

that H(C → D) = H(C) ⇒ H(D).
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This function is compatible with

– an assertion 〈a:C �� �〉 if H(C) is defined and H(C) �� �;
– a concept definition 〈A .= C ≥ �〉 if, whenever H(A) is defined, then H(C) is

defined and (H(A) ⇒ H(C)) ⊗ (H(C) ⇒ H(A)) ≥ �;3

– a GCI 〈C � D ≥ �〉 if H(C) and H(D) are defined and H(C) ⇒ H(D) ≥ �;
– an ABox/TBox if it is compatible with all axioms in it.

The support of H is the set supp(H) of all C ∈ sub(O) for which H is defined,
and Ind(H) is the set of all a ∈ Ind(O) for which {a} ∈ supp(H) and H({a}) = 1.

We denote by H|sub(O) the restriction of a Hintikka function H to sub(O).
The first step of our decision procedure is to guess Hintikka functions for

all named individuals. Since a domain element can have several names, we first
need a partition P of Ind(O) that groups together all names referring to the same
element. Given P, we denote by [a]P the class of P that contains a ∈ Ind(O).
Then, we guess, for each X ∈ P, one Hintikka function describing the behavior of
the individual designated by the names in X. This is similar to the approach used
in [3] to decide concept satisfiability in classical ALCOQ with acyclic TBoxes. We
additionally guess the values of the role connections between all named elements
using fuzzy binary relations rP on P for every role name r ∈ Rol(O).

Definition 14 (pre-completion). A pre-completion for the ontology O is a
triple (P,HP ,RP), where P is a partition of Ind(O), HP = (HX)X∈P is a
family of Hintikka functions for O, and RP = (rP)r∈Rol(O) is a family of fuzzy
binary relations rP : P × P → L such that, for all X ∈ P,

– Ind(HX) = X;
– HX is compatible with T ; and
– HX is compatible with AX := {〈a:C �� �〉 ∈ A | a ∈ X}.
A Hintikka function H for O is compatible with this pre-completion if for all
a ∈ Ind(H), we have H|sub(O) = H[a]P |sub(O).

Each HX is compatible with the pre-completion (P,HP ,RP) since, for every
a ∈ Ind(HX) = X we have [a]P = X. We extend the family RP to complex roles
by setting r−

P (X,Y ) := rP(Y,X) for all X,Y ∈ P.
Hintikka trees are k-ary trees labelled with Hintikka functions, where k is the

number of existential and value restrictions in sub(O). Intuitively, each successor
acts as the witness for one of these restrictions. As in Sect. 2.1, we define K :=
{1, . . . , k}. Since we need to know which successor in the tree corresponds to
which restriction, we fix an arbitrary bijection

ϕ : {C | C ∈ sub(O) is of the form ∃s.D or ∀s.D} → K,

and denote by ϕs(O) for a role s the set of all indices i ∈ K such that i = ϕ(C)
for a C ∈ sub(O) of the form ∃s.D or ∀s.D.

3 This method, called lazy unfolding, is only correct for acyclic TBoxes.
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Definition 15 (Hintikka condition). The tuple (H0,H1, . . . , Hk) of Hintikka
functions for O satisfies the Hintikka condition if the following hold:

(i) For every existential restriction ∃s.C ∈ sub(O):
– If ∃s.C ∈ supp(H0) and i = ϕ(∃s.C), then we have C ∈ supp(Hi) and

H0(∃s.C) = Hi(ρ) ⊗ Hi(C).
– If ∃s.C ∈ supp(H0), then for all i ∈ ϕs(O) we have C ∈ supp(Hi) and

H0(∃s.C) ≥ Hi(ρ) ⊗ Hi(C).
– For all i ∈ ϕs(O) with ∃s.C ∈ supp(Hi), we have C ∈ supp(H0) and

Hi(∃s.C) ≥ Hi(ρ) ⊗ H0(C).
(ii) For every universal restriction ∀s.C ∈ sub(O):

– If ∀s.C ∈ supp(H0) and i = ϕ(∀s.C), then we have C ∈ supp(Hi) and
H0(∀s.C) = Hi(ρ) ⇒ Hi(C).

– If ∀s.C ∈ supp(H0), then for all i ∈ ϕs(O) we have C ∈ supp(Hi) and
H0(∀s.C) ≤ Hi(ρ) ⇒ Hi(C).

– For all i ∈ ϕs(O) with ∀s.C ∈ supp(Hi), we have C ∈ supp(H0) and
Hi(∀s.C) ≥ Hi(ρ) ⇒ H0(C).

(iii) For all s ∈ Rol−(O), i, j ∈ ϕs(O), a ∈ Ind(Hi), and b ∈ Ind(Hj) with
[a]P = [b]P , we have Hi(ρ) = Hj(ρ).

(iv) For all a ∈ Ind(H0), s ∈ Rol−(O), i ∈ ϕs(O), and b ∈ Ind(Hi), we have
Hi(ρ) = sP([a]P , [b]P).

Condition (i) makes sure that an existential restriction ∃s.C is witnessed by its
designated successor ϕ(∃s.C) and all other s-successors do not contradict the
witness; this in particular includes possible s-predecessors.4 Condition (ii) treats
the universal restrictions analogously. Condition (iii) ensures that the value of
a role connection to a named individual remains the same regardless of which
index i is used to express it, and by Condition (iv) we enforce the previously
guessed role connections between named elements.

Definition 16 (Hintikka tree). Let (P,HP ,RP) be a pre-completion for O
and X ∈ P. A Hintikka tree for O starting with HX is a mapping T that
assigns to each node u ∈ K∗ a Hintikka function for O such that

(i) T(ε) = HX ;
(ii) for every u ∈ K∗, T(u) is compatible with T and the pre-completion; and
(iii) for every u ∈ K∗, (T(u),T(u1), . . . ,T(uk)) satisfies the Hintikka condition.

The definition of compatibility ensures that all axioms of T are satisfied at every
node of the Hintikka tree, while the Hintikka condition makes sure that the tree
satisfies the witnessing conditions for all relevant quantified concepts.

The proof of the following theorem uses arguments similar to those in [2,17].
The main difference to the classical case is the presence of successors witness-
ing the universal restrictions. We additionally have to deal here with the side
condition of compatibility with the pre-completion.
4 There is at most one such predecessor, namely the parent node.
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Lemma 17. O is consistent iff there are a pre-completion (P,HP ,RP) for O
and, for each X ∈ P, a Hintikka tree for O starting with HX .

Proof. Assume that a pre-completion and the required Hintikka trees TX for O
starting with HX exist. We first remove irrelevant nodes in these Hintikka trees.
A node u ∈ K∗ is relevant in TX if Ind(TX(u′)) = ∅ for all (non-empty) ancestors
u′ ∈ K+ of u. The idea is that if a ∈ Ind(TX(u′)), then by the compatibility
with the pre-completion TX(u′) agrees with H[a]P = T[a]P (ε) on the values of
all concepts in sub(O), and thus TX(u′) can be replaced with T[a]P (ε). The
root nodes are always relevant since they are needed to represent the named
individuals. We now define the interpretation I with domain

ΔI := {(X,u) ∈ P × K∗ | u is relevant in TX}.

We set aI := ([a]P , ε) for all a ∈ Ind(O). For r ∈ NR and (X,u), (Y, v) ∈ ΔI ,

– rI((X,u), (Y, v)) := TX(ui)(ρ) if there is an index i ∈ ϕr(O) such that either
(i) (Y, v) = (X,ui) or (ii) v = ε and Ind(TX(ui)) ∩ Y �= ∅;

– rI((X,u), (Y, v)) := TY (vi)(ρ) if there is an index i ∈ ϕr−(O) such that either
(i) (X,u) = (Y, vi) or (ii) u = ε and Ind(TY (vi)) ∩ X �= ∅; and

– rI((X,u), (Y, v)) := 0 otherwise.

To see that this is well-defined, consider the following three cases.

– If there are i, j ∈ ϕr(O) such that v = ε and both Ind(TX(ui)) ∩ Y and
Ind(TX(uj)) ∩ Y are non-empty, then from Condition (iii) of Definition 15 we
obtain TX(ui)(ρ) = TX(uj)(ρ).

– For the dual case of i, j ∈ ϕr−(O) with u = ε, Ind(TY (vi)) ∩ X �= ∅, and
Ind(TY (vj))∩X �= ∅, we have TY (vi)(ρ) = TY (vj)(ρ) by the same condition.

– If u = v = ε and there are i ∈ ϕr(O), j ∈ ϕr−(O), a ∈ Ind(TX(i)) ∩ Y , and
b ∈ Ind(TY (j))∩X, then we have Y = [a]P and X = [b]P . By Condition (iv) of
Definition 15, this implies TX(i)(ρ) = rP(X,Y ) = r−

P (Y,X) = TY (j)(ρ).

We now define the interpretation of concept names. For a primitive concept
name A, we simply set AI(X,u) := TX(u)(A) for all (X,u) ∈ ΔI . I is extended
to the defined concept names while showing the following claim:

for all (X,u) ∈ ΔI and all C ∈ sub(O) for which TX(u)(C) is defined,
we have CI(X,u) = TX(u)(C).

(1)

We prove this by induction on the (non-negative) weight o(C), which is defined
inductively as follows:

– o(A) := o() := o({a}) := 0 for every primitive concept name A and every
a ∈ NI;

– o(A) := o(C) + 1 for every definition 〈A .= C ≥ �〉 ∈ T ;
– o(¬C) := o(C) + 1;
– o(C � D) := o(C → D) := max{o(C), o(D)} + 1; and
– o(∃s.C) := o(∀s.C) := o(C) + 1.
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This weight is well-defined for general and acyclic TBoxes.
For C = , Claim (1) follows immediately from Definition 13. For a primitive

concept name A, it holds by the definition of AI above.
If TX(u)({a}) is defined for some a ∈ Ind(O), then by Definition 13 this value

is either 0 or 1. If it is 0, then we cannot have TX(u) = H[a]P by Definition 14.
Thus, aI = ([a]P , ε) �= (X,u), and hence {a}I(X,u) = 0 = TX(u)({a}). Other-
wise, we have TX(u)({a}) = 1, i.e. a ∈ Ind(TX(u)). Since u is relevant in TX ,
we infer that u = ε. By Definition 14, we get a ∈ Ind(TX(u)) = Ind(HX) = X,
and thus aI = ([a]P , ε) = (X,u). We conclude {a}I(X,u) = 1 = TX(u)({a}).

Consider now a defined concept name A with the definition 〈A .= C ≥ �〉 ∈ T .
If TX(u)(A) is defined, then by the compatibility with T the value TX(u)(C)
is also defined and

(

TX(u)(A) ⇒ TX(u)(C)
) ⊗ (

TX(u)(C) ⇒ TX(u)(A)
) ≥ �.

Since o(C) < o(A), we get CI(X,u) = TX(u)(C) by induction. Thus, we can
define AI(X,u) := TX(u)(A) to ensure that I satisfies 〈A .= C ≥ �〉 at (X,u).
Whenever TX(u)(A) is undefined, we can set AI(X,u) := CI(X,u) to satisfy
this concept definition without violating the claim.

If TX(u)(¬C) is defined, then TX(u)(C) is also defined. By induction, we
obtain (¬C)I(X,u) = ∼CI(X,u) = ∼TX(u)(C) = TX(u)(¬C). Similar argu-
ments show Claim (1) for conjunctions and implications.

Assume now that � := TX(u)(∃s.C) is defined for a complex role s and a con-
cept C, and let i := ϕ(∃s.C). We first prove the existence of a witness (Y, v) ∈ ΔI

such that sI((X,u), (Y, v)) ⊗ CI(Y, v) = �. By the Hintikka condition, we know
that TX(ui)(C) is defined and � = TX(ui)(ρ) ⊗ TX(ui)(C). Since u is relevant
inTX , ui can only be irrelevant inTX if Ind(TX(ui)) �= ∅. We make a case distinc-
tion on whether ui is relevant or not. (1) If there exists an a ∈ Ind(TX(ui)), then
the compatibility of TX(ui) with the pre-completion implies that T[a]P (ε)(C) =
H[a]P (C) = TX(ui)(C) is defined. Since the root node ε is relevant in T[a]P ,
by induction we get CI([a]P , ε) = T[a]P (ε)(C). Furthermore, by the definition
of sI we know that sI((X,u), ([a]P , ε)) = TX(ui)(ρ), and thus we can choose the
witness (Y, v) := ([a]P , ε). (2) Otherwise, Ind(TX(ui)) = ∅ and (X,ui) ∈ ΔI .
By induction, we have CI(X,ui) = TX(ui)(C), and from the definition of sI

we obtain sI((X,u), (X,ui)) = TX(ui)(ρ), which allows us to choose (Y, v) :=
(X,ui). It remains to show that sI((X,u), (Z,w))⊗ CI(Z,w) ≤ � holds for all
other (Z,w) ∈ ΔI , which implies that (∃s.C)I(X,u) = �, as desired. In the case
that sI((X,u), (Z,w)) = 0, the claim is trivial. Otherwise, one of the following
two alternatives must hold:

– There is an index i ∈ ϕs(O) with sI((X,u), (Z,w)) = TX(ui)(ρ) and
(i) (Z,w) = (X,ui) or (ii) w = ε and Ind(TX(ui)) ∩ Z �= ∅. From the
Hintikka condition we know that the value TX(ui)(C) is defined and sat-
isfies � = TX(u)(∃s.C) ≥ TX(ui)(ρ) ⊗ TX(ui)(C). It thus suffices to show
that CI(Z,w) = TX(ui)(C). In the first case, TZ(w)(C) = TX(ui)(C) is
defined, and thus induction yields that CI(Z,w) = TZ(w)(C) = TX(ui)(C).
In Case (ii), we know that TZ(ε)(C) = HZ(C) = TX(ui)(C) by the com-
patibility of TX(ui) with the pre-completion. By induction we thus obtain
CI(Z,w) = CI(Z, ε) = TZ(ε)(C) = TX(ui)(C).
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– There is an index i ∈ ϕs(O) with sI((X,u), (Z,w)) = TZ(wi)(ρ) and
(i’) (X,u) = (Z,wi) or (ii’) u = ε and Ind(TZ(wi)) ∩ X �= ∅. In Case (i’),
we immediately get � = TX(u)(∃s.C) = TZ(wi)(∃s.C). In the latter case,
from the compatibility of TZ(wi) with the pre-completion we also get that
� = TX(u)(∃s.C) = TX(ε)(∃s.C) = HX(∃s.C) = TZ(wi)(∃s.C). Thus, in
both cases the Hintikka condition yields that TZ(w)(C) is defined and we
have � = TZ(wi)(∃s.C) ≥ TZ(wi)(ρ) ⊗ TZ(w)(C). By induction, we obtain
TZ(w)(C) = CI(Z,w), which proves the claim.

Claim (1) can be shown for value restrictions using similar arguments.
We have thus defined an interpretation I that satisfies all concept definitions

in T . In the case that T is a general TBox, consider any GCI 〈C � D ≥ �〉 ∈ T
and (X,u) ∈ ΔI . By the compatibility of TX(u) with T , we know that TX(u)(C)
and TX(u)(D) are defined and TX(u)(C) ⇒ TX(u)(D) ≥ �. By Claim (1), we
thus have CI(X,u) ⇒ DI(X,u) ≥ �, which shows that I satisfies the GCI.
Finally, consider an assertion 〈a:C �� �〉 ∈ A. By the compatibility of H[a]P with
A[a]P (see Definition 14), we know that H[a]P (C) is defined and H[a]P (C) �� �.
By Claim (1), we conclude CI(aI) = CI([a]P , ε) = T[a]P (ε)(C) = H[a]P (C) �� �;
that is, I satisfies the assertion.

Conversely, assume that there is a model I of O. We define a pre-completion
(P,HP ,RP) for O based on the partition P := {{b ∈ Ind | aI = bI} | a ∈
Ind}. For every r ∈ Rol(O) and X,Y ∈ P, we set rP(X,Y ) := rI(aI , bI),
where (a, b) is an arbitrary element of X × Y . Similarly, we set HX(ρ) := 0 and
HX(C) := CI(aI) for every C ∈ sub(O) to define the family HP = (HX)X∈P .
Since I satisfies T , this obviously defines Hintikka functions that are compatible
with T , and we also have Ind(HX) = X for every X ∈ P. Furthermore, for every
〈a:C �� �〉 ∈ A, we have CI(aI) �� �, and thus H[a]P (C) �� �, which shows that
what we have defined above is indeed a pre-completion for O.

For a given X ∈ P, we now define the Hintikka tree TX starting with HX by
inductively constructing a mapping gX : K∗ → ΔI that specifies which elements
of ΔI represent the nodes of TX and satisfies the following property:

For all u ∈ K∗, C ∈ sub(O), s ∈ Rol−(O), and i ∈ ϕs(O), we have
TX(u)(C) = CI(gX(u)) and TX(ui)(ρ) = sI(gX(u), gX(ui)).

(2)

This in particular ensures that all constructed Hintikka functions are compatible
with T and with the pre-completion.

We start the construction by setting TX(ε) := HX and gX(ε) := aI , where
a is an arbitrary element of X. Thus, TX starts with HX and Claim (2) is sat-
isfied at ε. Let now u ∈ K∗ be any node for which TX and gX have already
been defined while satisfying Claim (2), and consider any existential restric-
tion ∃s.C ∈ sub(O) and i := ϕ(∃s.C). Since I is witnessed, there must be
a y ∈ ΔI such that (∃s.C)I(gX(u)) = sI(gX(u), y) ⊗ CI(y). We now set
gX(ui) := y, TX(ui)(ρ) := sI(gX(u), y), and TX(ui)(C) := CI(y) for all
C ∈ sub(O) to satisfy Claim (2) at ui. Likewise, for any ∀s.C ∈ sub(O) there
must be a y ∈ ΔI with (∀s.C)I(gX(u)) = sI(gX(u), y) ⇒ CI(y), and we proceed
as above to define TX and gX at ui for i := ϕ(∀s.C).
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We now show that every tuple (TX(u),TX(u1), . . . ,TX(uk)) with u ∈ K∗

satisfies the Hintikka condition. The first point of Condition (i) from Definition 15
is obviously satisfied by the above construction. Consider now any ∃s.C ∈ sub(O)
and i ∈ ϕs(O). By Claim (2) and the semantics of existential restrictions, we
obtain

TX(u)(∃s.C) = (∃s.C)I(gX(u))

≥ sI(gX(u), gX(ui)) ⊗ CI(gX(ui))
= TX(ui)(ρ) ⊗ TX(ui)(C).

Similarly, for all i ∈ ϕs(O), we have

TX(ui)(∃s.C) = (∃s.C)I(gX(ui))

≥ sI(gX(ui), gX(u)) ⊗ CI(gX(u))
= TX(ui)(ρ) ⊗ TX(u)(C).

Condition (ii) can be shown by analogous arguments. For Condition (iii), let
u ∈ K∗, s ∈ Rol−(O), i, j ∈ ϕs(O), a ∈ Ind(TX(ui)), and b ∈ Ind(TX(uj))
with [a]P = [b]P . Then Claim (2) yields gX(ui) = aI = bI = gX(uj), and thus
TX(ui)(ρ) = sI(gX(u), aI) = TX(uj)(ρ).

For Condition (iv) consider u ∈ K∗, a ∈ Ind(TX(u)), s ∈ Rol−(O), i ∈ ϕs(O),
and b ∈ Ind(TX(ui)). By Claim (2), we get gX(u) = aI , gX(ui) = bI , and
TX(ui)(ρ) = sI(gX(u), gX(ui)) = sI(aI , bI) = sP([a]P , [b]P). ��
From this lemma it follows that consistency in L-ALCOI can be reduced to
deciding the existence of suitable family of Hintikka trees. By building looping
automata whose runs correspond exactly to those Hintikka trees, we further
reduce it to the emptiness problem for this class of automata.

Definition 18 (Hintikka automaton). Let (P,HP ,RP) be a pre-completion
for O and X ∈ P. The Hintikka automaton for O and HX is the looping automa-
ton AO,HX

= (QO, IO,HX
,ΔO), where

– QO is the set of all Hintikka functions for O that are compatible with T and
the pre-completion,

– IO,HX
:= {HX}, and

– ΔO is the set of all elements of Qk+1
O that satisfy the Hintikka condition.

The runs of AO,HX
are exactly the Hintikka trees for O starting with HX . Thus,

O is consistent iff there is a pre-completion (P,HP ,RP) for O such that AO,HX

is not empty for all X ∈ P.
Note that the number of partitions of Ind(O) is bounded by 2|Ind(O)|2 , the

number of Hintikka functions for O is bounded by (|L|+1)|sub(O)|+1, and the num-
ber of fuzzy binary relations on a partition of Ind(O) is bounded by |L||Ind(O)|2 .
Thus, the number of pre-completions for O is bounded exponentially in the
size of O and polynomially in the size of L. However, each pre-completion is
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only of size polynomial in the size of the input. We can thus enumerate all pre-
completions in exponential time and for each of them check emptiness of polyno-
mially many looping automata. Since the size of these automata is exponential
in the size of O and emptiness of looping automata is decidable in polynomial
time in the size of the automaton [37], the overall runtime of this algorithm is
bounded exponentially in the size of O.

This gives a tight upper bound for the complexity of consistency in L-ALCOI
since this problem is already ExpTime-hard for classical ALCOI, even for empty
TBoxes [30,35].

Theorem 19. In all fuzzy DLs between L-ALC and L-ALCOI, deciding con-
sistency w.r.t. general TBoxes is ExpTime-complete.

When restricting to acyclic TBoxes, reasoning in classical ALCO is PSpace-
complete [3,31]. We show in the following section that this remains true under
finite lattice semantics. A similar approach was used in [17] to prove the same
for L-ALCI, even in the presence of a role hierarchy or (crisp) transitive roles.

5 Consistency w.r.t. Acyclic TBoxes

Consider now an ontology O = (A, T ) from L-ALCO, i.e. that does not use
inverse roles, where T is an acyclic TBox. Notice that we can guess a partition P
of Ind(O) and families (HX)X∈P and (rP)r∈Rol(O) and verify the conditions of
Definition 14 in (non-deterministic) polynomial space. Thus, if we can show that
emptiness of the polynomially many Hintikka automata AO,HX

can be decided
in polynomial space, then we would obtain a PSpace upper bound for deciding
consistency in this logic. The idea is to modify the construction of these automata
into a PSpace on-the-fly construction. It is easy to see that the automata AO,HX

already satisfy all but one of the conditions from Definition 5:

(i) the arity k of the automata is given by the number of existential and value
restrictions in sub(O);

(ii) every Hintikka function (i.e. every state of the automaton) has size bounded
by |L|(|sub(O)| + 1) since it consists of |sub(O)| + 1 lattice values;

(iii) building a state or a transition of the automaton requires only to guess
|sub(O)|+1 or k(|sub(O)|+1) lattice values, respectively, and then verifying
that this is indeed a valid state or transition of the automaton, which can
be done in time polynomial in the size of L and O.

However, it is possible to build runs of AO,HX
where blocking occurs only after

exponentially many transitions, violating the first condition of PSpace on-the-
fly constructions. We will use a faithful family of functions to obtain reduced
automata that guarantee blocking after at most polynomially many transitions,
thus obtaining the PSpace upper bound.

For our construction to work, we need to make a small change to the definition
of compatibility of a Hintikka function H with the pre-completion (P,HP ,RP)
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that we have guessed: for every a ∈ Ind(H), we only require the following weaker
condition: For all C ∈ sub(O) for which H(C) is defined, H[a]P (C) is also defined
and we have H(C) = H[a]P (C).

It can be seen that this condition would yield an incorrect construction in the
presence of inverse roles. However, if inverse roles are disallowed, then all results
obtained so far remain true under this modification. More precisely, the only
changes in the proof of Lemma 17 are in two places that refer to the compatibility
with the pre-completion (without using inverse roles). These are part of the proof
of Claim (1) for existential and value restrictions. In both places, it is enough to
be able to infer from the fact that a Hintikka function H is compatible with the
pre-completion, a ∈ Ind(H), and C ∈ supp(H) that we have C ∈ supp(H[a]P )
and H[a]P (C) = H(C). This is precisely the new condition that we are now
considering.

We now describe a faithful family of functions for AO,HX
that allows us to

obtain a PSpace-on-the-fly construction. The idea is that it suffices to consider
transitions that reduce the maximal role depth (w.r.t. T ) in the support of the
states. The role depth w.r.t. T (rdT ) of concepts is recursively defined as follows:

– rdT (A) := rdT () := rdT ({a}) := 0 for every primitive concept name A and
every a ∈ NI;

– rdT (A) := rdT (C) for every definition 〈A .= C ≥ �〉 ∈ T ;
– rdT (¬C) := rdT (C);
– rdT (C � D) := rdT (C → D) := max{rdT (C), rdT (D)}; and
– rdT (∃r.C) := rdT (∀r.C) := rdT (C) + 1.

This is well-defined since T is an acyclic TBox.
Given a Hintikka function H for O, we define rdT (H) as the maximal role

depth rdT (C) of a concept C ∈ supp(H). For n ≥ 0, we further denote by
sub≤n(O) the set of all concepts C ∈ sub(O) with rdT (C) ≤ n.

Definition 20 (functions fH). Let H and H ′ be two states of AO,HX
and

n := rdT (H). We define the function fH(H ′) as follows for every C ∈ sub(O):

fH(H ′)(C) :=

{

H ′(C) if C ∈ sub≤n−1(O),
undefined otherwise,

fH(H ′)(ρ) :=

{

0 if supp(H) = ∅,

H ′(ρ) otherwise.

Since T is acyclic, the function fH(H ′) defined above is still a Hintikka function
for O compatible with all axioms of T . It also remains compatible with the
pre-completion (according to the modified definition of this notion) since it only
discards some values from H ′. Thus, it is again an element of QO.

Lemma 21. In L-ALCO, the family of functions fH is faithful w.r.t. AO,HX
.

Proof. Consider H,H0,H1, . . . , Hk ∈ QO and let n := rdT (H) and H ′
i := fH(Hi)

for all i, 0 ≤ i ≤ k. We first verify that if (H,H1, . . . , Hk) satisfies the Hintikka
condition, then (H,H ′

1, . . . , H
′
k) also satisfies it.
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If ∃s.C ∈ supp(H), then C ∈ supp(Hi) and H(∃s.C) = Hi(ρ) ⊗ Hi(C), where
i := ϕ(∃s.C). Since we have rdT (C) < rdT (∃s.G) ≤ rdT (H) = n, this implies
that C ∈ supp(H ′

i) and H ′
i(C) = Hi(C). Moreover, we know that supp(H) �= ∅,

and thus H ′
i(ρ) = Hi(ρ). This shows that the required equality H(∃s.C) =

Hi(ρ) ⊗ Hi(C) = H ′
i(ρ) ⊗ H ′

i(C) remains satisfied.
Let now ∃s.C ∈ supp(H) and i ∈ ϕs(O). By the same arguments as above,

H ′
i(C) and H ′

i(ρ) are defined and equal to Hi(C) and Hi(ρ), respectively. Thus,
the required inequality is still satisfied after applying fH . Since in L-ALCO there
are no inverse roles, the rest of Condition (i) of Definition 15 is trivially satisfied.
Condition (ii) follows by similar arguments.

For Condition (iii), consider any role name r ∈ Rol(O) and i, j ∈ ϕs(O). If
there are a ∈ Ind(H ′

i) and b ∈ Ind(H ′
j) with [a]P = [b]P , then this must already

have been the case for Hi and Hj . Since then supp(H) cannot be empty, we
still have H ′

i(ρ) = Hi(ρ) = Hj(ρ) = H ′
j(ρ). A similar argument shows that

Condition (iv) remains satisfied.
For the second condition of Definition 3, we assume that (H0,H1, . . . , Hk)

satisfies the Hintikka condition and verify it for (H ′
0,H

′
1, . . . , H

′
k).

Consider any ∃s.C ∈ supp(H ′
0) and i := ϕ(∃s.C). By the definition of fH , we

get H0(∃s.C) = H ′
0(∃s.C) and rdT (C) < rdT (∃s.C) < rdT (H). Thus, Hi(C) is

defined and equal to H ′
i(C). Moreover, supp(H) �= ∅, which implies that H ′

i(ρ) =
Hi(ρ). Thus, H ′

0(∃s.C) = H0(∃s.C) = Hi(ρ) ⊗ Hi(C) = H ′
i(ρ) ⊗ H ′

i(C).
Again, the remaining part of Condition (i) can be shown by similar argu-

ments, replacing ϕ(∃s.C) by an element of ϕs(O) and the equality condition by
an inequality. The remaining conditions are similarly easy to verify. ��
By Lemma 4, AO,HX

is empty iff the induced subautomaton AS
O,HX

is empty. It
remains to show that the latter problem can be decided in PSpace.

Theorem 22. The construction of AS
O,HX

from L, O, and HX is a PSpace
on-the-fly construction.

Proof. We show that the automata AS
O,HX

are m-blocking for

m := max{rdT (C) | C ∈ sub(O)} + 3.

The other conditions of Definition 5 have already been shown above.
By the definition of AS

O,HX
, every transition decreases the maximal role depth

of the support of the state. Hence, after at most max{rdT (C) | C ∈ sub(O)} + 1
transitions, we must reach a state H that is undefined for all C ∈ sub(O), and
hence supp(H) = ∅. From the next transition on, all states additionally assign 0
to ρ. Hence, after at most m transitions, we find two states that are equal. Since
m is bounded by a polynomial in the size of O, the automata AS

O,HX
satisfy

Definition 5. ��
Theorem 6 yields the desired PSpace upper bound for consistency in L-ALCO.
PSpace-hardness follows from PSpace-hardness of consistency w.r.t. the empty
TBox in classical ALC [31].
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Theorem 23. In L-ALCO, the problem of deciding consistency w.r.t. acyclic
TBoxes is PSpace-complete.

Using a different faithful family of functions, it was shown in [11] that consistency
of L-ALCI ontologies with acyclic TBoxes is also PSpace-complete. As for
ALCO, this matches the complexity of reasoning in classical DLs.

Notice that the notions of Hintikka functions and Hintikka trees are indepen-
dent of the operators used. One could use the residual negation �� := � ⇒ 0 to
interpret the constructor ¬, or the Kleene-Dienes implication �1 ⇒ �2 := ∼�1∨�2
instead of the residuum. The only restrictions are that the semantics must be
truth functional, i.e. the value of a formula must depend only on the values of its
direct subformulae, and the underlying operators must be computable in polyno-
mial time from the lattice values. We could also use a slightly different semantics
for concept definitions in which ⊗ is replaced by the simple meet t-norm ∧.

The algorithm can be modified for reasoning w.r.t. n-witnessed models for
n > 1. One needs only extend the arity of the Hintikka trees to account for n
witnesses for each quantified concept in sub(O); the arity of AO,HX

then grows
polynomially in n. This does not affect the obtained complexity upper bounds,
and hence Theorems 19 and 23 still hold.

6 Conclusions

We have shown that reasoning in L-ALCOI is not harder than in the underlying
crisp DL ALCOI, if L is a finite De Morgan lattice. More precisely, all the
standard reasoning problems in this logic are ExpTime-complete, even if the
TBox is assumed to be empty. If we disallow either nominals or inverse roles,
obtaining the logics L-ALCI and L-ALCO, respectively, then reasoning w.r.t.
acyclic TBoxes is PSpace-complete.

These complexity bounds extend previously known results for lattice-based
fuzzy DLs [11,13,14,18] and complements the work in [17], in which L-ALCI is
extended to allow transitivity and role inclusion axioms. Thus, tight complexity
bounds are also obtained for logics up to L-SHI, under some restrictions in the
interpretation of roles. Our methods demonstrate, once again, that automata
can show PSpace results for (fuzzy) DLs [2].

It is reasonable to expect that the construction from [17] for L-SHI can
be combined with the ideas from this paper for handling nominals, to obtain
an automata-based algorithm for reasoning in L-SHOI. A missing step is to
further generalize these methods, or develop new ones, to prove tight complex-
ity bounds for fuzzy variants of the current standard ontology languages, like
SROIQ(D). We also need to understand the effect of removing the restrictions
on roles from [17] to the complexity of reasoning.

Although their run-time behavior is optimal w.r.t. the complexity of the
problem, automata-based methods are typically not used in practice since their
best-case behavior is as bad as in the worst-case. It would thus be desirable to
produce reasoning algorithms that preserve the properties of the algorithms used
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by current classical reasoners [6,28,32]. First steps in this direction have been
made in [12,15], where tableau-based algorithms with better run-time behavior
are proposed. Those algorithms, however, require a high-level of non-determinism
and are thus inappropriate for efficient implementation. Ideas for improvements
will be studied.
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19. Cerami, M., Garćıa-Cerdaña, À., Esteva, F.: On finitely-valued fuzzy description
logics. Int. J. Approximate Reasoning 55(9), 1890–1916 (2014)

20. Cerami, M., Straccia, U.: On the (un)decidability of fuzzy description logics under
�Lukasiewicz t-norm. Inf. Sci. 227, 1–21 (2013)

21. De Cooman, G., Kerre, E.E.: Order norms on bounded partially ordered sets. J.
Fuzzy Math. 2, 281–310 (1993)

22. Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic
Glimpse at Substructural Logics. Studies in Logic and the Foundations of Mathe-
matics, vol. 151. Elsevier, Amsterdam (2007)
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Abstract. The paper proposes an ontology alignment framework with
two core features: the use of background knowledge and the ability
to handle imprecision in the matching process and the resulting con-
cept alignments. The procedure is based on the use of a generic ref-
erence vocabulary, which is used to define an explicit semantic space
for the ontologies to be matched. General-purpose background knowl-
edge sources based on Wikipedia, such as Yago, appear to be appropri-
ate choices of reference vocabularies. The outcome of the procedure is
a combined fuzzy knowledge body which captures what is common in
two source ontologies. The proposed approach allows to discover cross-
concept relations of the kind many-to-many. An important application
of the method is found in the field of cross-lingual ontology matching.

1 Introduction

Ontologies are used for semantic annotation of resources on the World Wide Web,
allowing for integration and interoperability of information systems and are thus
integral part of the semantic web and the web of data. However, the creation and
choice of different ontologies in an independent manner for describing similar or
identical resources has lead to the problem of ontology heterogeneity. This is
understood as any difference in syntax, spelling, meaning, intention or extension
in the definitions of two cross-ontology entities which refer to the same or highly
similar real world objects.

The field of ontology matching (OM) has taken the challenge of propos-
ing solutions to the heterogeneity problem. As a result of more than 15 years of
research and practice, the field has reached a significant level of maturity building
on grounds form diverse areas, such as computational linguistics, graph theory,
machine learning, information theory, relational algebra and other. Many sys-
tems have been proposed capable of aligning ontologies with a very high degree
of heterogeneity in an efficient manner. The Ontology Alignment Evaluation Ini-
tiative1 provides an evaluation platform for these systems in annual campaigns.

In spite of the considerable advance, many questions remain open, such
as large-scale evaluation, matcher selection, tuning and combination, or user
1 http://oaei.ontologymatching.org
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involvement [31]. This works contributes particularly to the challenges of using
background knowledge (BK) and taking into account imprecision in the match-
ing process. An additional feature of the proposed approach is its capability to
align cross-lingual ontologies, which is also a current problem in the field.

Using reference background knowledge is helpful in order to recreate the
missing semantic context in the matching process. The proposed approach relies
on Wikipedia or, alternatively, Yago as BK sources. The advantage of using
Wikipedia is that it is available, general-purpose, large, and multilingual. We
consider two ontologies as an input, referred to as source ontologies. In step one
of our approach, every concept of each source ontology will be represented as
a fuzzy set of the concepts of the background ontology - the process of concept
fuzzification. We arrive at this fuzzy set representation by measuring the similar-
ity of every concept of the source ontologies to every concept of the background
ontology by using a concept similarity measure. In step two, with the fuzzy
set representations at hand, we proceed to interlink the concepts of the input
ontologies. We take their union and construct a novel ontology, which contains
all fuzzified concepts of the input ontologies. The inherent semantic relations are
translated into the novel ontology, as well.

Using a fuzzy set theoretical framework enables us to capture the vagueness
in the definitions of concepts, relations and instances. It allows to take into
account different aspects of the similarity of concepts by using their fuzzy set
definitions. And eventually, this enables the computation of fuzzy relations (such
as subsumption and equivalence) between cross-ontology concepts together with
the degrees to which they hold. Within this framework, we are able to handle
one-to-many or many-to-many mappings, where crisp methods usually fail. This
is especially useful on a large scale where the likelihood that a 1:1 mapping
is “the best possible” is very low, notably in the case of matching a relatively
small-size ontology to a large ontology. Finally, we show an application of the
approach to the task of matching cross-lingual ontologies. Indeed, the problem of
using different natural languages in the concepts and relations labeling process
is yet another source of ontology heterogeneity. Our framework relies on the
possibility of using multilingual background knowledge in order to efficiently
align cross-lingual ontologies without the use of machine translation tools.

The rest of the paper is organized as follows. Related work on ontology
matching with accents on the use of BK, fuzziness, and multilingualism is pre-
sented in Sect. 2. Section 3 introduces definitions and notations from fuzzy set
theory and logics. We describe our concept fuzzification algorithm in Sect. 4.
A procedure for construction of a combined knowledge body is presented in
Sect. 5. Several applications of this procedure are discussed. Experimental results
and conclusions are presented in Sects. 6 and 7, respectively.

2 Related Work

Ontology matching is understood as the process of establishing relations between
the elements of two or more ontologies [16]. This section discusses related work
from three sub-fields of OM strongly related to the contribution of this paper.
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2.1 Ontology Matching with Background Knowledge
from the Web

Certain approaches include the use of background knowledge in the matching
pipeline. Shvaiko et al. [31] outline several groups of relevant techniques.

Sabou et al. [29] provide a good motivation for the use of BK: the fact that
two ontologies are always inherently different in terms of intention. Background
knowledge comes to bridge the inherent semantic gap between them. The orig-
inality of the proposal is the use of the web in order to discover (by crawling)
automatically appropriate BK sources (instead of using a single fixed source).
Thus, the question of the availability and the coverage of the BK is addressed.

Jain et al. [19] propose a framework designed particularly with the task
of mapping concepts that describe linked open data on the LOD cloud. The
approach is based on the use of Wikipedia as a background mediator. For a
given concept, a graph is constructed by using the connectivity properties of all
Wikipedia pages that contain the words in the concept name. The mapping of
two concepts from two different datasources is given as an equivalence or sub-
sumption relation computed on the basis of the structural similarity of their
respective Wikipedia graphs. An enhanced version of this method is provided
in [20]. The main improvements include the use of a more elaborate measure of
concept relatedness and the use of contextual information.

Zhang et al. [40] and Aleksovski et al. [2] propose straightforward anchor-
ing procedures in which two input domain ontologies are aligned directly to a
background ontology. On the basis of the produced direct alignments, an indirect
alignment is inferred between the input ontologies. Aleksovski et al. situate their
study in the medical field by using FMA as reference ontology.

Discussion. Similarly to [20], we point at the use of Wikipedia (or a knowl-
edge base built upon it) as a motivating feature of our approach. In contrast,
our approach does not require structured BK and can potentially work with just
a flat vocabulary. Note that in [29], the authors do not consider nor do they
compare their approach to the use of already available encyclopedic knowledge
sources such as Wikipedia. One is lead to think that this missing knowledge that
they are looking for can be also found in such a resource instead of crawling the
web for upper ontologies. Contrarily to the propositions in [2,20,40], we do not
compute a matching between the domain ontologies and the reference ontology,
but simply a similarity matrix (i.e., this procedure is potentially less complex
than a full body matching algorithm).

2.2 Fuzzy Ontology Matching

The theory of fuzzy sets and logics provides a suitable framework for handling
imprecision in ontologies. A general definition of a fuzzy ontology is given as
one which uses fuzzy logics to provide a natural representation of imprecise and
vague knowledge, and eases reasoning over it [4,6,7,30]. An ontology concept
is defined as a fuzzy set on the domain of instances and relations on concepts
are defined as fuzzy mappings. Particularly, subsumption is handled by a fuzzy
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taxonomic relation that expresses the fact that a concept is a specification of
another concept up to a certain degree between 0 and 1. In the definition of a
fuzzy ontology, which is given later on, we will follow a similar approach.

Work on fuzzy ontology alignment can be classified into two families:
(1) approaches extending crisp alignment to deal with fuzzy ontologies and
(2) approaches addressing imprecision of the matching of (crisp or fuzzy) concepts.

Based on the work on approximate concept mapping by Stuckenschmidt [35]
and Akahani et al. [1], Xu et al. [38] suggested a framework for the mapping
of fuzzy concepts between fuzzy ontologies. Their approach is based on finding
the best approximations in an ontology for all the concepts in another ontology.
The approximations (least upper approximation and greatest lower approxima-
tion) are defined by using fuzzy concept subsumption and an iterative algorithm
is proposed to find a simplified least upper bound. With a similar objective,
Bahri et al. [3] proposed a framework to define relations among fuzzy ontology
components based on their intentional definitions (i.e. a set of description logics
formulas that represent the meaning of a component).

The second family of approaches is characterized by the representation of
imprecision of the alignment itself, even with crisp ontologies. For instance,
Ferrara et al. [13] propose a fuzzy approach which handles mapping impreci-
sion and provides criteria for its validation. The principle is to interpret and
translate each crisp matching result as a set of fuzzy assertions and perform
fuzzy reasoning over this set. An ontology matching approach based on fuzzy
conceptual graphs and rules is proposed by Buche et al. [5].

Discussion. The alignment framework that we propose does not directly
fall into either of the two families outlined above. To our knowledge, none of the
existing works on fuzzy alignment is based on the use of background knowledge,
which is among the principal motivations of our approach. Of course, in many
cases two ontologies can be aligned directly, without taking into consideration
any external information. The advantage of using a reference vocabulary is that
it allows for taking into account different aspects of the semantics of a concept. In
contrast to many other approaches, we are able to make use of this background
information, when it is given. This is the case in many situations (we have used
Wikipedia) and being able to exploit it in an efficient manner is advantageous.
Among the original contributions of this method is the fact that we are able to
apply a fuzzy framework to the specific case of instance-populated ontologies.

2.3 Cross-Lingual Ontology Matching

Gracia et al. [17] present a global vision of a multilingual semantic web and
present several challenges to the multilingual semantic community. According to
the authors, multilingualism has to be seen as an extension of the semantic web –
a group of techniques which will be added to the existing semantic technologies
in order to resolve linguistic heterogeneity where it appears. The semantic web
is seen as language-independent, because semantic information is given in formal
languages. The main gap is, therefore, between language specific needs of users
and the language-independent semantic content. The authors prognosticate that
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monolingual non-English linked data will increase in years creating “islands” of
unconnected monolingual linked data. The challenge is to connect these islands
by interconnecting the language-specific information. The authors outline the
development of systems for establishing relations between ontology terms or
semantic data with labels and instances in different languages as a main direction
of future research – a topic which forms the core of our proposal. We proceed to
discuss methods that address specific problems related to the multi- and cross-
lingual matching task.

The majority of approaches rely on machine translation (MT) techniques.
Fu et al. [14] follow a standard paradigm of using monolingual matching tech-
niques enhanced with an MT module. As a result of an analysis of the effect
of the quality of the MT, the authors propose a noise-minimization method to
reduce the flaw in the performance introduced by the translation. Trojahn et al.
[9] have implemented an API for multilingual OM applying two strategies: a
direct matching by a direct translation of one ontology to the other prior to the
matching process and indirect matching, based on a composition of alignments.
The latter approach is originally proposed by Jung et al. [21] and it is based
on first establishing manual alignment between cross-lingual ontologies and then
using these alignments in order to infer new ones. Paulheim et al. [26] apply
web-search-based techniques for computing concept similarities by using MT for
cross-lingual ontologies.

Spohr et al. [33] rely on a machine learning approach. They use a small
amount of manually produced cross-lingual alignments in order to learn a match-
ing function for two cross-lingual ontologies. The paper introduces a clear dis-
tinction between a multilingual ontology (that which contains annotations given
in different languages) and cross-lingual ontologies (two or more monolingual
ontologies given in different natural languages).

On the edge of the OM approaches that use background knowledge, Rinser
et al. [27] propose a method for entity matching by using the info-boxes of
Wikipedia. Entities given in different languages are aligned by the help of the
explicit relations between Wikipedia pages in different languages. The matching
relies mainly on the values of each property, since the actual labels are in different
languages (e.g., “population” and “Einwohner” have approximately the same
values (3,4M) in the info-boxes of the English and the German Wikipedia pages
of Berlin). A very important and useful contribution of this paper is an analysis
of the structure of the Wikipedia interlanguage links.

Outside of the context of ontology matching, in the field of natural lan-
guage processing, research has been carried on the topic of measuring seman-
tic distance between cross-lingual terms or concept labels. Mohammad et al. [25]
and Eger et al. [11] propose measures of semantic distance between cross-lingual
concept labels based on the use of bilingual lexicons. Explicit Semantic Analysis
(ESA) applied with Wikipedia has been proposed as a framework for measuring
cross-lingual semantic relatedness of terms, first in a paper by Gabrilovich et al.
[15] and then in an extended proposal by Hassan et al. [18]. It is suggested to
rely on the multiple language versions of Wikipedia in order to measure semantic
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relatedness between terms. The authors use an ESA framework in order to model
a concept as a vector in a space defined by a set of “encyclopedic concepts” in
which the concept appears.

Discussion. The methods that have been proposed to deal with multilingualism
in ontology matching, with few exceptions, rely on automatic translation of labels
to a single target language. However, MT tolerates low precision levels and often
external sources are needed in order to achieve good performance. Applying
machine learning techniques requires learning corpora that are rarely available
in an ontology matching scenario. An inherent problem of translation as such
is that there is often a lack of exact one-to-one correspondance between the
terms across natural languages. A fuzzy matching approach is able to model
this imprecision in a natural way avoiding the use of machine translation. Our
approach shares conceptual grounds with the ESA family of approaches, which
to the best of our knowledge has not been applied in the ontology matching field.

3 Background

The current section introduces notation and definitions from the field of fuzzy
set theory and logics.

3.1 Fuzzy Sets and Logics

Fuzzy set theory emerged as a generalization of classical set theory [39]. A fuzzy
set A is defined on a given domain of objects X by the function

μA : X −→ [0, 1]

which expresses the degree of membership of every element of X to A by assigning
to each x ∈ X a value from the interval [0, 1]. Analogously, fuzzy logics extends
two-valued logics by assigning to a proposition a truth value in this interval.

All crisp set and logical operations can be extended to fuzzy sets and logics.
Intersection and union are defined, respectively, based on a so-called t-norm
function and a t-conorm function. Crisp logical implication is extended to fuzzy
logics by the help of a fuzzy implication function. We give definitions by providing
examples in terms of Gödel, �Lukasiewicz and product semantics, following the
introductions found in [10,34]. For the sake of representation within this section,
we will denote a = μA(x) and b = μB(x). The intersection of two fuzzy sets A
and B is given by a function T (a, b), referred to as a t-norm. The Gödel t-
norm is defined by TG(a, b) = min(a, b), the �Lukasiewicz t-norm is given as
TL(a, b) = max(a + b − 1, 0) and the product t-norm – by TP (a, b) = a × b.

The union of two fuzzy sets A and B is given by S(a, b), where S is a t-
conorm. The Gödel definition is given by SG(a, b) = max(a, b), the �Lukasiewicz
definition is given by SL(a, b) = min(a+b, 1) and the product t-conorm is defined
by SP (a, b) = a + b − a × b.

Fuzzy implication A → B is defined by μA→B(x) = i(μA(x), μB(x)) where i is
a function that determines the properties of the implication. Two types of fuzzy
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implications are commonly used: S-implications which extend the proposition
a → b = ¬a∨ b to fuzzy logics and R-implications (residuum-based implications)
defined as ∀a, b ∈ [0, 1], i(a, b) = sup {c ∈ [0, 1] : T (a, c) ≤ b}. In terms of the
three considered semantics i(a, b) = 1 if a ≤ b. Depending on the particular
t-norm definition, the case a > b is defined as follows: iG(a, b) = b (Gödel),
iL(a, b) = 1 − a + b (�Lukasiewicz) and iP (a, b) = b

a (product).
In this study, we have considered the Gödel definitions of intersection, union

and implication. As we shall see, this choice is justified by the properties of
the Gödel implication which are used to define a fuzzy degree of subsumption
preserving the crisp one. This implication is defined for two fuzzy membership
functions as

μA→B(x) =

{

1, if μA(x) ≤ μB(x),
μB(x), otherwise.

(1)

Taking the infimum infx∈X μA→B(x) over all x ∈ X in Eq. (1) gives rise to
the definition of a fuzzy subsumption between A and B. This is used to define a
fuzzy version of the ontological is a relation in Sect. 5.

The fuzzy power set of X, denoted by F(X, [0, 1]), is the set of all membership
functions defined on X.

3.2 Measures of Fuzzy Set Relatedness

Let A and B be two fuzzy sets with respective membership functions μA and
μB. We consider the following measures of fuzzy set relatedness, well-known from
the fuzzy ontology literature [8]. These measures are relevant to our approach
and will be applied as explained later on in Sects. 5 and 6 for measuring the
similarity between fuzzified concepts.

– Base measure:

ρbase(μA, μB) = 1 − max
x∈X

|μA(x) − μB(x)| . (2)

– Euclidean distance–based fuzzy similarity (‖x‖2 =
(∑

x∈X |x|2)1/2 is the �2-
norm):

ρdiff (μA, μB) = 1 − 1
|X| ‖μA − μB‖2 . (3)

– 1-Norm (‖x‖1 =
∑

x∈X |x| is the �1-norm):

ρsum(μA, μB) = 1 − 1
|X| ‖μA − μB‖1 . (4)

– Zadeh’s partial matching index:

ρsup−min(μA, μB) = sup
x∈X

T (μA(x), μB(x)). (5)

In our experiments, we used a more robust variant of ρsup−min that applies
the average of the k largest values of T (μA(x), μB(x)). This measure will be
called ρsup−min(k).
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– Jaccard coefficient:

ρjacc(μA, μB) =
∑

x T (μA(x), μB(x))
∑

x S(μA(x), μB(x))
. (6)

4 A Hierarchical Algorithm for Concept Fuzzification

An ontology consists of a set of semantically related concepts which provides in
an explicit and formal manner knowledge about a given domain of interest [12].
We are particularly interested in ontologies, whose concepts come equipped with
a set of associated instances, defined as it follows.

Definition 1 (Crisp Ontology). Let C be a finite set of concepts, is a ⊆ C×C
a partial order on concepts, R a set of relations on C, I a set of instances,
g : C → 2I a function that assigns subsets of instances from I to each concept
in C. For each considered language L, we assume a function lL : C → 2Σ∗

L that
assigns to each concept a set of labels from a set of labels Σ∗

L coming from some
language-specific alphabet ΣL. With these definitions, the quintuple

O = (C, is a, R, I, g, l)

forms a crisp ontology.

4.1 Crisp Concept Similarities

Consider the ontologies O = (C, is a, R, I, g, l) and Oref = (X, is aref , Rref , Iref ,
gref , lref ). Determining the similarity σ(A, x) of two concepts A ∈ C and x ∈ X
can be done by comparing their label sets lL(A) and lref ,L(x) (terminological sim-
ilarity), by using the structure of the ontologies, or by comparing their instance
sets g(A) and gref (x). Given that we have a similarity measure for each of the
three comparisons, we can define a generic measure for concept similarity as

σ(A, x) = ασterm + βσstruct + γσinst, (7)

where σterm, σstruct and σinst are, respectively, terminological, structural and
instance-based similarities, and α, β, γ ∈ [0, 1] are coefficients that assign weights
to each of the similarity types. We require that σ takes values in the [0,1].

An example of a terminological measure is the well-known normalized
Levenshtein similarity. As a structural measure one can use any semantic similar-
ity based on graph path-length (e.g., Wu-Palmer). For computing instance-based
concept similarity, we need a similarity measure for instances iA and ix, where
iA ∈ g1(A) and ix ∈ gref (x). We have used the scalar product and the cosine
s(iA, ix) = 〈iA,ix〉

‖iA‖‖ix‖ . Based on this similarity measure for elements, the similarity
measure for the sets can be defined by computing the similarity of the mean
vectors corresponding to class prototypes [22]:

σinst(proto)(A, x) = s
( 1

|g(A)|
|g(A)|
∑

j=1

iAj ,
1

|gref (x)|
|gref (x)|

∑

k=1

ixk
)

. (8)
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Note that other approaches of concept similarity can be employed as well,
for instance the variable selection based approach in [37]. As a matter of fact,
one can use any similarity measure. In our study, we chose one that worked well
in the experiments and had the lowest computational complexity.

4.2 Concept Fuzzification

Let O and Oref be two ontologies as defined in Definition 1. We will call Oref a
reference ontology whose concepts will be called reference concepts, whereas O
will be called source ontology and its concepts - source concepts.

The fuzzification procedure that we propose relies on the idea of modeling
every source concept as a function of its similarities to the reference concepts,
using the measure (7). Any source concept A is represented by a function of
the kind

μA(x) = σ(A, x),∀x ∈ X, (9)

where σ(A, x) is the similarity between the concept A and a given reference
concept x. Since σ takes values between 0 and 1, (9) defines a fuzzy set. We
will refer to such a fuzzy set as the fuzzified concept A denoted by A. Note that
the μA(x) notation is used with slightly different meaning in fuzzy description
logics, incorporating the well accepted understanding of a fuzzy set.

In order to fuzzify the concepts of a source ontology O, we propose the follow-
ing hierarchical algorithm. First, we assign degree-of-membership (dom) vectors,
i.e., fuzzy membership functions to all leaf-node concepts of O by applying (9).
Every non-leaf node, if it does not contain instances of its own, is assigned a
dom vector as the maximum of the doms of its children for every x ∈ X.

If a non-leaf node has directly assigned instances (not inherited from its
children), the node is first assigned doms on the basis of these instances with
respect to the reference ontology (following Eq. (9)), and then as the maximum
of its children and itself. We redefine (9) for any (leaf or non-leaf) source concept
in the following way.

μA(x) = max{maxA′∈D(A)μA′(x), σ(A, x)},∀x ∈ X, (10)

where D(A) is the set of children of A. This reflects the idea that the instances
of the descendants of A are also indirect instances of A.

The algorithm is given in Algorithm1. Note that assigning the max of all
children to the parent for every x leads to potentially higher values of the mem-
bership functions for nodes higher up in the hierarchy. Naturally, the functions
of the higher level concepts are expected to be less “specific” than those of the
lower level concepts. A concept in a hierarchical structure can be seen as the
union of its descendants, which corresponds to taking the max (an approach
underlying the single link strategy used in clustering).

The hierarchical computation of the similarity vectors has the advantage that
it holds that μA′→A(x) = 1 for all x and all children A′ of A. From computa-
tional viewpoint, the procedure has the advantage of scoring only certain nodes.
All other information from the source concepts, i.e. their label sets and their
relations, are just transferred to their fuzzifzied counterparts without change.
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Procedure hierachicalFuzzification(O, Oref , σ)
begin

1. Let C be the list of concepts in O.
2. Let L be a list of nodes, initially empty
3. // compute an ordering L of the ontology concepts from bottom to top:

Do until C is empty:
(a) Let L′ be the list of nodes in C that have only children in L
(b) L = append(L, L′)
(c) C = C − L′

4. // compute fuzzified vector from bottom to top:
Iterate over L (first to last), with A being the current element:

(a) Let D = children(A)
(b) If D = ∅ (i.e., leaf concepts)

i. For all x ∈ X:
Define μA(x) = σ(A, x)

Else If g∗(A) �= ∅ (there are children and direct concept instances):
i. For all x ∈ X:

Define μA(x) = max{maxA′∈DμA′(x), σ(A, x)}
Else (i.e., children and no direct concept instances)

i. For all x ∈ X:
Define μA(x) = maxA′∈D μA′(x)

return fuzzified concepts defined

Algorithm 1. An algorithm for fuzzification of the source concepts.

5 Heterogeneous Knowledge and Data Integration

The current section describes several applications of the hierarchical fuzzification
algorithm presented above. We focus on finding fuzzy relations between cross-
ontology concepts in a classical ontology alignment framework, as well as on
the discovery of alignments of type many-to-many. We pay some attention to
a promising application of the approach for matching cross-lingual ontologies
(ontologies, defined each in a different natural language).

An Alignment as a Fuzzy Union of Two Ontologies. The implication
A′ → A holds for any A′ and A such that is a(A′, A). We provide a definition
for a fuzzy subsumption of two fuzzified concepts A′ and A based on the fuzzy
implication (1).

Definition 2 (Fuzzy Subsumption). The subsumption A′ is a A is defined
and denoted in the following manner:

is a(A′,A) = inf
x∈X

μA′→A(x) (11)

Equation (11) defines the fuzzy subsumption as a degree between 0 and 1 to
which one concept is the subsumer of another. It can be shown that is a, similarly
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to its crisp version, is reflexive and transitive (i.e. a quasi-order). In addition,
the hierarchical procedure for concept fuzzification introduced in the previous
section assures that is a(A′, A) = 1.0 holds for every child-parent concept pair,
i.e., the crisp subsumption relation is preserved by the fuzzification process.

We provide a definition of a fuzzy ontology which follows directly from the
fuzzification of the source concepts and their is a relations introduced above.

Definition 3 (Fuzzy Ontology). Let C be a set of (fuzzy) concepts, is a :
C × C → [0, 1] a fuzzy is a-relationship (a fuzzy quasi-order), R a set of fuzzy
relations on C, i.e., R contains relations r : Cn → [0, 1], where n is the arity of
the relation (for the sake of presentation, we only consider binary relations), X
a set of objects, and φ : C → F(X , [0, 1]) a function that assigns a membership
function to every fuzzy concept in C. For each considered language L, we assume
a function λL : C → 2Σ∗

L that assigns to each concept a set of labels from a set
of labels Σ∗

L from some alphabet ΣL. With these definitions, the quintuple

O = (C, is a,R,X , φ, λ)

forms a fuzzy ontology.

Above, the set X is defined as a set of abstract objects. In our setting, these are
the concepts of the reference ontology, i.e. X = X. The set C is any subset of
CΩ. In case C = C1, where C1 is the set of fuzzified concepts of the ontology O1,
O defines a fuzzy version of the crisp source ontology O1.

Now let us be given two source ontologies, O1 and O2 with their respective
sets of fuzzified concepts C1 and C2. Looking again at Definition 3, in case C =
C1 ∪ C2, O defines a common knowledge body for the two source ontologies. The
degree of similarity between any two concepts taken from the union C1 ∪ C2 can
be computed inexpensively by applying any of the fuzzy set relatedness measures
given in Sect. 3.2.

Quantifying Commonality and Specificity. The union of two fuzzy con-
cepts can be decomposed into three components, each quantifying, respectively,
the commonality of both concepts, the specificity of the first compared to the
second and the specificity of the second compared to the first expressed in the
following manner

S(A,B) = (AB) + (A − B) + (B − A). (12)

Each of these components is defined as follows and, respectively, accounts for:

AB = T (A,B) // what is common to both concepts; (13)
A − B = T (A,¬B) // what is characteristic for A; (14)
B − A = T (B,¬A) // what is characteristic for B. (15)

An example is given in Fig. 1. Several heuristics about the concepts of interest
can be provided to a potential user with respect to the values of these compo-
nents. For example, in case (13) is significantly larger than each of (14) and (15)
for certain values of x ∈ X, the two concepts can be merged.
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Fig. 1. An example of the quantities in Eqs. (13)–(15) for two source concepts A and
B, fuzzified by the help of 5 reference concepts.

Mappings of Type Many-to-Many and N-Way Matching. Based on the
subsumption relation defined above, we define θ-equivalence of two concepts in
the following manner.

Definition 4 (Fuzzy θ-Equivalence). Fuzzy θ-equivalence between a concept
A and a concept B, denoted by A �θ B holds if and only if is a(A,B) > θ and
is a(B,A) > θ, where θ ∈ [0, 1].

It is easy to show that the θ-equivalence is an equivalence relation (i.e., reflexive,
symmetric and transitive) on a set of concepts. This relation allows us to define
classes of equivalence on the set of the union of the concept sets of two (or
more) ontologies in the following way. Let C1 and C2 be the sets of concepts of
ontologies O1 and O2, respectively. The equivalence class of a concept A ∈ C1,

[A] = {B ∈ C1 ∪ C2 : A �θ B}, (16)

defines a set of mappings from A to all members of its equivalence class [A].
Taking the subset of [A] that contains only concepts from C2 defines a set of
matches of type one-to-many for A to concepts in the ontology O2.

Generalizing on that, if we have as an input N (N > 2) source ontologies,
we construct equivalence classes on the set of the union of their concept sets
resulting into alignments of multiple ontologies, or N-way matching.

Cross-Lingual Ontology Matching. An ontology is called multilingual if
several natural languages are used to label its concepts and properties; it is
called monolingual otherwise. Two monolingual ontologies are referred to as
cross-lingual if their respective labels are given in two different natural lan-
guages [33]. For simplicity, in what follows we will describe the bi-lingual case
(the generalization to the multilingual case follows directly). As shown in the
previous section, the fuzzification of a source ontology with respect to a given



154 K. Todorov et al.

reference vocabulary is often language dependent, due to the fact that the simi-
larity measure σ used to fuzzify the concepts of the source ontologies often relies
on language specific information (considering a terminological or an instance-
based measure). In order to extend the alignment procedure proposed above
to cross-lingual ontologies, we make the assumption that there exists a multi-
lingual reference vocabulary, in which each concept is assigned a label in each
of the languages of the sources ontologies. This assumption is in line with the
observation that an ontology is not language specific, but labels of concepts and
relations can be given in different languages [9]. One example of such a multilin-
gual vocabulary is the multilingual Yago that we have used in our experiments
(Sect. 6).

Let O1 and O2 be two cross-lingual source ontologies given in languages 1
and 2, respectively, and let Oref = (X, is aref , Rref , Iref , gref , lref ) be a bi-lingual
ontology, i.e., there exist two sets of concept labels Σ∗

1 and Σ∗
2 and lref comprises

two labeling functions lref ,1 : X → 2Σ∗
1 and lref ,2 : X → 2Σ∗

2 that assign to each
concept x ∈ X a label set from each of the two respective label sets. That means
that for a given concept x ∈ X, lref ,1 and lref ,2 will return its versions in the
languages 1 and 2. In the fuzzification process, the labels in Σ∗

1 will be used to
fuzzify the concepts of O1 and the labels in Σ∗

2 those of O2.
The rest of the fuzzy alignment procedure remains unchanged. The resulting

fuzzy functions for the two sets of source concepts can be compared as described
in Sect. 3.2 and submitted to the procedures given in Sects. 4.2 and 5. This enables
the construction of a common fuzzy ontology for cross-lingual source ontologies,
which reflects the relations and various aspects of the similarities between the con-
cepts of these ontologies, as well as the degrees to which they hold.

6 Experiments and Examples

We describe experiments in matching domain specific ontologies from the mul-
timedia field in the following subsection. An evaluation of the approach is given
later on in a multilingual ontology matching scenario produced on the basis of
the Multifarm OAEI benchmark.

6.1 Application of the Fuzzy Alignment Procedure

We situate this experiment in the multimedia domain, opposing two complemen-
tary heterogeneous ontologies containing annotated pictures. For the alignment
task, we have taken an instance-based approach. We chose, on one hand, LSCOM
[32] initially built in the framework of TRECVID2 and populated with the
development set of TRECVID 2005. Since this set contains images from broad-
cast news videos, LSCOM is particularly adapted to annotate this kind of con-
tent, thus contains abstract and specific concepts (e.g. Science Technology,

2 http://www-nlpir.nist.gov/projects/tv2005/

http://www-nlpir.nist.gov/projects/tv2005/
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Interview On Location). On the other hand, we used WordNet [24] popu-
lated with the LabelMe dataset [28], referred to as the LabelMe ontology. Con-
trarily to LSCOM, this ontology is very general, populated with photographs
from daily life and contains concepts such as car, computer, person, etc.

A text document has been generated for every image of the two ontologies,
by taking the names of all concepts that an image contains in its annotation,
as well as the (textual) definitions of these concepts (the LSCOM definitions
for TRECVID images or the WordNet glosses for LabelMe images). Several
problems related to this representation are worth noting. The LSCOM keyword
descriptions sometimes depend on negation and exclusion which are difficult
to handle in a simple bag-of-words approach. Taking the WordNet glosses of
the terms in LabelMe introduces problems related to polysemy and synonymy.
Additionally, a scene often consists of several objects, which are frequently not
related to the object that determines the class of the image. In such cases, the
other objects in the image act as noise. A common problem related to polysemy
is avoided when applying an instance-based approach because polysemous con-
cepts result in different instance sets, whereas synonymous concepts have similar
instance sets.

Table 1. Examples of pairs of matched intra-ontology concepts (above) and cross-
ontology concepts (below), column-wise.

In order to fuzzify the source concepts, we applied the hierarchical algo-
rithm from Sect. 4 independently for each of the source ontologies. As a ref-
erence ontology, we have used an extended version of the Wikipedia’s so-called
main topic classifications, containing more than 30 categories. For each category,
we included a set of corresponding documents from the Inex2007 corpus.
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Fig. 2. A fragment of the common fuzzy ontology of LSCOM (LS) and LabelMe (LM).

The new combined knowledge body has been constructed by first taking
the union of all fuzzified source concepts. For every pair of concepts, we have
computed their Gödel subsumptional relations, as well as the degree of their sim-
ilarities (applying the measures from Sect. 3 and the standard cosine measure).
Apart from the classical Gödel subsumption defined in (11), we consider a ver-
sion of it which takes the average over all x instead of the smallest value, given as
is amean(A′,A) = avgx∈XμA′→A(x). The results for several intra-ontology con-
cepts and several cross-ontology concepts are given in Table 1. Figure 2 shows
a fragment of the common fuzzy ontology built for LSCOM and LabelMe. The
labels of the edges of the graph correspond to the values of the fuzzy subsump-
tions between concepts. We see that the two “Conveyance” concepts from the two
ontologies have similar degrees of their fuzzy subsumption relations. The hier-
archical structure of the concepts is preserved within each ontology (a “Boat”
is a “Conveyance” rather than the other way round), and it is also reflected on
cross-ontology concepts (a “Gondola” (from LM) is a “Boat” (from LS)).

6.2 Aligning Cross-Lingual Ontologies

To be able to align source ontologies from different languages, we need a mul-
tilingual reference ontology, which either contains concept instances from the
languages of the source ontologies, or alternatively ontology labels from differ-
ent languages. In the following, we will use an approach that relies on concept
labels and ontology structure.

We assume that the concepts of the source ontologies are labeled with expres-
sions in different languages. Further, often a concept has several alternative labels
in a single language. Let us assume that

tL(A) = {t1, . . . , tm}

denotes the set of m labels ti ∈ Σ∗
L of a concept A in a language L (e.g., a set

of synonyms, abbreviations or syntactic variants). ΣL is the alphabet of L and
Σ∗

L - the set of words on this alphabet.
To solve the matching problem, we assume that there exists a reference ontol-

ogy whose concepts have labels from the languages that are also used in the
source ontologies to be matched. The similarity, σ, of a source and a reference
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concept is then determined by computing label similarities taking into account
the language of the source ontology.

Since each concept can have multiple labels from a specific language, we use
the maximum similarity of two cross-ontology concept label pairs to determine
the similarity of the concepts in the respective language:

σL(A, x) = max
t′∈tL(A),t′′∈tL(x)

τL(t′, t′′) .

Following our convention, A and x represent a source and a reference concept,
respectively. Note that A might only have labels in one language, whereas x is
assumed to have labels for all languages. The reference ontology is not assumed
to have labels in all languages for each of its concepts. τL is the similarity mea-
sure used for the respective strings. It may be language dependent, for instance,
when a language specific processing of t′ and t′′ is used for determining their
similarity. This typically includes steps like tokenization, spell correction, mor-
phological analysis including lemmatization or stemming, among other things.
In the experiment described later in this section, however, we used string-based
similarity measures which are defined in a language independent-manner.

To demonstrate the suitability of our approach for multilingual ontology
matching, we experimented with the Multifarm benchmark described in [23].
The Multifarm data is obtainable from the multifarm homepage http://web.
informatik.uni-mannheim.de/multifarm/. The benchmark comprises 5
conference-related source ontologies named CMT (88), CONFERENCE (123),
CONFOF (74), IASTED (181), SIGKDD (77). The numbers given in parenthe-
ses denote the number of concepts for each ontology. Each ontology has labels
in English, Spanish, German, French, Russian, Portuguese, Czech, Dutch, and
Chinese (Mandarin).

The concepts in the ontologies include object classes like “Author” and prop-
erties such as “hasAuthor”. Object classes range from fairly simple classes like
“Author”, “Paper”, and “Title” to semantically relatively complex ones such as
“Registration fee for authors who receive the proceedings volume on CD” and
“mark conflict of interest”.

When looking at the German translations of the ontologies, we found that
in some cases the translation is not correct. For instance, the English word
“abstract” is translated as “Abstrakt”, which, as a noun, is not a word in
German. A possible correct translation would be “Zusammenfassung” - many
authors would also use the English word. “Submission of abstracts” was trans-
lated to “abstrakte Einreichung” which re-translates to “a submission, which
is abstract”. The French translations also exhibit some flaws. Although these
problems do not affect the majority of all translations, it makes the matching
task potentially more difficult.

In the experiments, we only considered the so-called type (ii) Multifarm
ontology matching task, which consists in the re-identification of concepts for
each of the 5 source ontologies. Note that we did not consider the English concept
names, which would have made the reidentification of concepts a trivial task since
the concept names are the same for all language versions of a source ontology.

http://web.informatik.uni-mannheim.de/multifarm/
http://web.informatik.uni-mannheim.de/multifarm/
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We also did not consider structural properties of the concepts (i.e., sub- and
superclasses, relations, etc.), but only the concept labels. The only exception is
that we mapped classes to each other only, and properties – only to properties.

As reference ontologies, we used parts of Yago2 [36]. In particular, we consid-
ered the Wordnet multilingual subontology where the numbers of concepts per
language are as follows: 36378 (en), 27933 (de), 20280 (fr), 23620 (cz), 16476 (nl),
14393 (pt), 19372 (es). Obviously the number of reference concepts varies con-
siderably between languages. Russian and Chinese had been excluded from the
benchmark because of potential coding problems. However, in our experiments,
we did not experience coding problems. The results obtained when including
also Russian and Chinese are very similar to the ones reported below.

For matching labels, we considered the following string similarity measures:
Levenshtein (LSH): This similarity measure is based on the Levenshtein

distance, which counts the number of operations (replace, insert, delete), which
are necessary for transforming one string into another. In order to obtain a
similarity measure, we divided the distance by the length of the longer string
and subtracted it from 1.0.

Longest Common Substring (LCS): This similarity measure is not based
on operations but simply counts the characters in the longest common substring.
Note that gaps are allowed.

Longest Continuous Common Substring (LCCS): here, we only con-
sider sequences which do not have gaps in the original strings. This appears
more suitable for natural language, although it is not robust to spelling errors
and variations.

Since frequently concept labels consist of multiple words, we split these words
into tokens and matched these tokens separately, allowing only 1:1 matches
between tokens. The optimal match is found using a greedy search strategy
recursively starting with the best matching token pair. This two-level approach
allows more freedom with respect to word order. However, it is not able to deal
properly with compound nouns that occur frequently in German. In order to
deal with compound nouns, one has to employ linguistic methods like the mor-
phological analysis of words which allows identifying the semantic “roots” of an
expression. However, if the reference ontology is rich enough in concepts, this task
might also be solved by the matching process. For instance, a German word like
“Konferenzbeitrag” could be similar to two reference concepts, e.g., “Konferenz”
and “Beitrag”, instead of requiring a directly equivalent reference concept.

For the evaluation, we computed matchings for 5 ontologies in 7 languages,
and we considered 7 crisp and 7 fuzzy matchings. All software was programmed
in JAVA. On an Intel i7-3770K processor (3.5 GHz), the overall evaluation took
4 h and 20 min. This means that a single match took approximately 1.51 s on
average.

The matching results are described in Table 2. According to the definition
of the benchmark, we averaged over all ontologies and all language pairs. The
best result found in Table 2 corresponds to using LCCS2L together with the Sup-
Min(4) similarity measure and a decision threshold of 0.35. LSH2L also performs
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well. For all crisp similarity measures, matching was improved by using the
2-level approach (marked with the suffix 2L) compared to using the simple
version.

Table 2. Results: F-measure averaged over all source ontologies and language pairs.
The number in parentheses gives the decision threshold θ1∗ for the optimal F-measure

SupMin SupMin(4) Jaccard Base Cosine Euclidean 1-Norm

LSH 0.43 (0.5) 0.42 (0.45) 0.23 (0.65) 0.14 (0.25) 0.22 (0.9) 0.17 (0.5) 0.19 (0.5)

LSH2L 0.45 (0.8) 0.49 (0.65) 0.26 (0.5) 0.17 (0.5) 0.21 (0.5) 0.25 (0.5) 0.27 (0.5)

LCS 0.42 (0.5) 0.42 (0.5) 0.25 (0.6) 0.12 (0.35) 0.27 (0.5) 0.21 (0.5) 0.24 (0.5)

LCS2L 0.43 (0.5) 0.43 (0.45) 0.3 (0.5) 0.16 (0.25) 0.31 (0.5) 0.26 (0.5) 0.27 (0.5)

LCCS 0.44 (0.4) 0.46 (0.3) 0.29 (0.5) 0.18 (0.5) 0.33 (0.5) 0.27 (0.5) 0.27 (0.5)

LCCS2L 0.47 (0.4) 0.5 (0.35) 0.34 (0.5) 0.23 (0.3) 0.35 (0.85) 0.28 (0.5) 0.29 (0.5)

On the Multifarm homepage, the performances of different systems are
reported as YAM++ (0.63), AUTOMSv2 (0.27), WeSeE (0.49), CIDER (0.12),
MapSSS (0.67), LogMap (0.04), CODI (0.63), MaasMtch (0.23), LogMapLt
(0.05), MapPSO (0.05), CSA (0.42), MapEVO (0.02). This means that our app-
roach with an f-measure of 0.5 is among the top 3, which is not bad given that
the matching approach relies on labels only and does not use natural language
processing. However, we cannot draw strong conclusions from this result since
we had the advantage of optimizing the performance with respect to different
combinations of crisp and fuzzy similarity measures and decision thresholds.

Other results of the experiments are that the SupMin/SupMin(k) measures
appear to perform best, compared to the Jaccard, base, cosine, Euclidean, and
1-norm measure. We assume that the Jaccard, base, cosine, Euclidean, and 1-
norm measure perform worse because the final value of the similarity is based
on numerical contributions from all reference concepts including irrelevant ones,
which leads to high noise. In the case of the base measure, the final results
depends on the reference concept with the “worst” combination of concept
labels in the two languages. The probability of such bad reference concepts also
increases with the number of concepts.

We also considered all language pairs separately. The best-matching language-
pairs are English/German (0.75), English/Dutch (0.75), and English/
Spanish (0.74). The worst matching results were obtained for Czech/Polish
(0.55). The results neither seem to correlate with language families, nor do they
correlate only with the number of reference concepts, since there are not that
many reference concepts for Dutch either. English/Czech, however, only has an
F-Measure of 0.65. We therefore assume that the differences depend on partic-
ular properties of the translation of the source ontologies, and on properties of
the reference ontology used, which are not yet completely transparent to us.
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7 Conclusion and Future Work

The use of background knowledge has shown to be a prominent direction to
follow in order to improve and build on top of the current state-of-the-art in the
field of ontology matching. In the presented work, we have considered enhancing
ontology matching by the use of a generic reference vocabulary from the web of
data (the Yago ontology). This setting gives rise to a fuzzy set representation of
concepts and concept relations (within and across ontologies), embodying impre-
cision in the concept definitions and the produced alignments. Our evaluation
results showed that the approach is promising for computing alignments between
ontologies with cross-lingual entity labels.

In future, we plan to complete the evaluation of the multilingual matching
approach by testing it on both tasks of the Multifarm benchmark. In addition, we
will explore the application of reasoning techniques to perform fuzzy inference
on the matched concepts. Other applications of the proposed method will be
considered as well, such as the alignment of ontologies of large scale or of different
degrees of expressivity.
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Abstract. Available domain ontologies are increasing over the time.
However there is still a huge amount of data stored and managed with
RDBMS. This complementarity could be exploited both for discovering
knowledge patterns that are not formalized within the ontology but that
are learnable from the data, and for enhancing reasoning on ontologies
by relying on the combination of formal domain models and the evidence
coming from data. We propose a method for learning association rules
from both ontologies and RDBMS in an integrated way. The extracted
patterns can be used for enriching the available knowledge (in both for-
mat) and for refining existing ontologies. We also propose a method for
automated reasoning on grounded knowledge bases (i.e. knowledge bases
linked to RDBMS data) based on the standard Tableaux algorithm which
combines logical reasoning and statistical inference thus making sense of
the heterogeneous data sources.

1 Introduction

From the introduction of the Semantic Web view [3], many domain ontologies
have been developed and stored in open access repositories. However, still huge
amounts of data are stored in relational databases (DBs) and managed by rela-
tional database management systems (RDBMS or simply DBMS). The seam-
less integration of these two knowledge representation paradigms is becoming
a crucial research challenge. Most of the work in this area concerns to what
is addressed as ontology based data access (OBDA) [4]. In OBDA the ontology
“replicates”, at a higher conceptual level, the physical schema of the DBMS and
provides a “lens” under which the data can be viewed, and possibly adds addi-
tional semantic knowledge on the data. The connection between the ontology
and the data is represented as conjunctive queries. Roughly speaking, every con-
cept/relation of the ontology is associated to a conjunctive query which retrieves
from the DB all and only the instances of such a concept/relation.

c© Springer International Publishing Switzerland 2014
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Another common situation is when existing ontologies describe domain aspects
that (partially) complement the data in a database. In this case the concepts
of the ontologies are linkable to views of the DB and the data within the DB
can be exploited for enriching/populating existing domain ontologies. Due to the
heterogeneity of the information, a crisp representation of the correspondence
between the DB (data) and the classes and relations of the ontologies (such as
the one adopted in OBDA) is not possible. A more flexible connection between
the two sources of knowledge should be adopted. Additionally, this complemen-
tarity could be exploited for (semi-)automatizing the ontology refinement and
completion tasks as well as for performing data analysis.

We present a framework for extracting hidden knowledge patterns across
ontologies and relational DBMS by building an integrated view of the two and
by using some statistical evidence of the correlation of (a subset of) the data
stored in the two sources. We exploit then the discovered hidden knowledge
patterns for semi-automatizing the ontology population task and for performing
an informative form of deductive reasoning.

For giving the intuition of the envisioned idea, let us consider the following
scenario.

Example 1. Let us assume that an ontology describing people gender, family
status and their interrelations with Italian urban areas1 is available as well as a
demographic DB describing Italian occupations, average salaries, etc. is available.
Given a way for analyzing jointly the two sources with the purpose of highlighting
some statistical correlation evidence, a pattern like the following one could be
discovered, with a certain degree of reliability:

“clerks between 35 and 45 years old living in a big city are male and
earn between 40 and 50 e” with a confidence value of 0.75. (1)

The bold face terms correspond to classes and relations in the ontology, the non
bold face terms correspond to attributes/data in the DB.

We call a pattern like this a hybrid pattern2. The confidence value can be inter-
preted as the reliability or probability that the pattern occurs.

In [7], we introduced an inductive approach for discovering new knowledge, in
the form of association rules [1], from heterogeneous data sources that is, domain
ontologies and relational data bases. We named the discovered hybrid patterns
semantically enriched association rules. Association rule mining methods are
well know in Data Mining [18]. They are generally applied to propositional data
representations with the goal of discovering patterns in the data, whilst, to the
best of our knowledge, there are very few works concerning the extraction of
association rules from hybrid data sources.
1 The concepts “male”, “parent”, “big city”, “medium-sized town”, and the relations
“lives in” are used in the ontology.

2 We call patterns like that in (1) a hybrid pattern since it is composed by ele-
ments (that is concept names, role names and attributes) coming from different
data sources.
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In this chapter, we present extensively the revision of the approach intro-
duced in [7] and formalized in [6]. This revision takes into account the Open
World Assumption adopted in description logics (DLs), while in [7] association
rules are discovered by adopting an implicit Closed Word Assumption which is
not fully compliant with the theory of ontological representation. Additionally,
this revision makes a further step towards the framework for knowledge repre-
sentation and reasoning by allowing knowledge as represented by a mix of logical
formulas and sets of data, linked together. The notions of grounded knowledge
base and mixed model are introduced. The latter stands for the integration of
the logical knowledge expressed in terms of a DL language, and a data mining
model that expresses the statistical regularities of the properties associated to a
set of individuals. We also present an approach for (semi-)automatically enrich-
ing the existing domain ontology with (some of the) data stored in the DB. The
problem is cast as a classification problem that is solved by exploiting the dis-
covered semantically enriched association rules and algorithms at the state of
the art. Furthermore we argue extensively on a method for automated reasoning
on grounded knowledge bases that we proposed in [6]. This method represents
the result of combining logical reasoning and statistical inductive inference. It is
formulated as an extension of the standard Tableaux algorithm. The extension
is grounded on the adoption of an heuristic, exploiting the evidence coming from
the data, to be used when random choices3 have to be made. For getting the
intuition of this method the following example is briefly illustrated.

Example 2. Assume that for a given individual x, which is known to be a Person,
a high school student, and has the property of being 15 years old, we need to
decide whether x is instance of the concept Parent or not, and there are no
statements in the knowledge base from which it is possible to infer neither x is
a Parent nor x is ¬Parent. If the following semantically enriched association
rule is discovered (with high degree of confidence)

IF Age = [0, 16] THEN ¬Parent 0.99

it can be exploited to conclude that, with high probability, x is not a Parent.

The rest of the paper is structured as follows. In Sect. 2, the basics are presented.
In Sect. 3, the framework for learning semantically enriched association rules is
summarized and extended. In Sect. 4 the data-driven Tableaux reasoning algo-
rithm is formalized. In Sect. 5 the approach for enriching a domain ontology with
the data coming from a related DB is shown. A discussion on how to evaluate
the effectiveness of the proposed framework is illustrated in Sect. 6. In Sect. 7
related approaches are discussed while conclusions are drawn in Sect. 8.
3 An example of random choice within Tableaux algorithm occurs when processing

a concepts disjunction, i.e. C � D, that is when it has to be decided whether an
individual x belongs to concept the C or D.
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2 Basics

Let D be a non empty set of objects and f1, . . . , fn be n feature functions defined
on every element d of D, with fi : D → Di. D is called the set of observed objects
and fi(d) is the value of the i-th feature observed on d. Notationally we use:

– d1, . . . ,dn to denote the values of f1(d), . . . , fn(d),
– A1, . . . , An to denote the labels (also called attribute names) of f1(d), . . . ,

fn(d).

Let Σ be a DL alphabet composed of three disjoint sets of symbols: ΣC , ΣR

and ΣI , respectively standing for: the set of concepts symbols, the set of role
symbols and the set of individual symbols. A knowledge base K on Σ, is formally
defined as a couple K = 〈T ,A〉 where T contains axioms of the form X � Y
(inclusion axioms), where X and Y are (complex) concepts, and A contains
assertional axioms, namely axioms of the form X(a) where X is a (complex)
concept and a is an individual symbol, or R(a, b), and a = b, where R is a role
symbol and a and b are individual symbols.

An interpretation of a DL alphabet Σ is a pair I = 〈ΔI , ·I〉 such that ΔI is a
non empty set, and ·I is a function that assigns to each concept name a subset of
ΔI , to each role name a binary relation on ΔI , and to each individual an element
of ΔI . The interpretation function can be extended to complex concepts in the
usual way [2]. Satisfiability |= of statements is also defined as usual [2]. An
interpretation I satisfies a knowledge base K, (in symbols I |= K) if I |= α for
every axiom α of K.

The “glue” between a dataset D and a knowledge base K is the so called
grounding, which is a relation that connects (some of) the individuals of the
knowledge base with (some of) the objects of the database. More formally: a
grounding g of Σ on D is a total4 function g : D → ΣI . This implies that
for every d ∈ D there is at least an element a ∈ ΣI such that g(d) = a.
Intuitively g(d) = a represents the fact that the data d are about/correspond to
the individual a of the knowledge base. The grounding g refers to objects that
are explicitly mentioned in D and K respectively. In our framework (see Sect. 3)
we assume that the grounding between D and K is already given.

3 Semantically Enriched Association Rules

Association rules (ARs) [1] make it possible to represent in a rule-based form
some statistical regularities of the tuples in a relational DB. Roughly speak-
ing, ARs allow one to state conditional probabilities among the values of the
attributes (also called features) of the tuples of a DB. In this section we recall
the basics for ARs (see Sect. 3.1) and how ARs can be extended to include
information coming from an ontological knowledge base (see Sect. 3.2). These
rules are called semantically enriched ARs [6,7]. Hence we recall the learning
algorithm for discovering semantically enriched ARs (see Sect. 3.3).
4 The restriction of g to the subsets of D and ΣI can be considered if a mapping for

all objects does not exist.
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3.1 Association Rules: An Overview

Association rules [1] provide a form of rule patterns for data mining. Associa-
tion rule mining methods are well know in Data Mining [18]. They are generally
applied to propositional data representations with the goal of discovering pat-
terns in the data.

Let D be a dataset described by a set of attributes {A1, . . . , An} with domains
Di for i ∈ {1, . . . , n}. The basic components of an AR forD are called itemsets. An
itemset φ is a finite set of assignments of the form Ai = a with a ∈ Di. An itemset
{Ai1 = a1, . . . , Aim = am} can be also written as: Ai1 = a1 ∧ · · · ∧ Aim = am

An AR has the general form
θ ⇒ ϕ (2)

where θ and ϕ are itemsets. The frequency of an itemset θ, denoted by freq(θ),
is the number of cases in D that match θ, i.e.

freq(θ) = |{d ∈ D | ∀(A = a) ∈ θ : fA(d) = a}|
where fA is the feature function for d with respect to the attribute A (see
beginning of Sect. 2).

The support of a rule θ ⇒ ϕ is computed as freq(θ ∧ ϕ). The confidence of a
rule θ ⇒ ϕ is the fraction of items in D that match ϕ among those matching θ:

conf (θ ⇒ ϕ) =
freq(θ ∧ ϕ)
freq(θ)

A frequent itemset expresses the attributes and the corresponding values that
occur reasonably often together. In terms of conditional probability, the confi-
dence of a rule θ ⇒ ϕ, can be seen as the maximum likelihood (frequency-based)
estimate of the conditional probability that ϕ is true given that θ is true [12].

3.2 Semantically Enriched Association Rules

Given K a knowledge base on Σ, D a dataset and g a grounding of Σ on D,
we call a semantically enriched itemset a set of statements of the form: Ai = a
and/or C = tv and/or R = tv where, Ai is an attribute of D, a is a value in the
domain Di of Ai, C is a concept name of ΣC , R is a role name of ΣR and tv is
a truth value in {true, false, unknown}.

The elements of the semantically enriched itemset that are of the form Ai = a
are called data items whilst the elements of the form C = tv and R = tv are
called knowledge items.

A semantically enriched AR is an association rules made by semantically
enriched itemsets.

Given the grounding g of Σ on D, the frequency of a semantically enriched
itemset θ = θd ∧ θk, where θd stands for the set of data items and θk stands for
the set of knowledge items, is defined as:

freq(θd ∧ θk) = |F |
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where F is the following set:

F =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

d ∈ D

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∀(Ai = a) ∈ θd, fi(d) = a
∀(C = true) ∈ θk, K |= C(g(d))
∀(C = false) ∈ θk, K |= ¬C(g(d))
∀(C = unknown) ∈ θk, K 
|= C(g(d)) & K 
|= ¬C(g(d))
∀(R = true) ∈ θk, K |= ∃R.�(g(d))
∀(R = false) ∈ θk, K |= ¬∃R.�(g(d))
∀(R = unknown) ∈ θk, K 
|= ∃R.�(g(d)) & K 
|= ¬∃R.�(g(d))

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

Support and confidence of a semantically enriched AR are defined accord-
ingly. Please note that the notion of frequency of a semantically enriched itemset
and the notions of confidence and support of a semantically enriched AR are
compliant with the Open World Semantics adopted in DL.

3.3 Learning Semantically Enriched Association Rules

The approach for learning semantically enriched ARs is grounded on the assump-
tion that a dataset D and an ontological knowledge base K share (a subset of)
common individuals, and a grounding g of Σ on D is available (see the end of
Sect. 2 for details on the grounding function). This assumption is reasonable in
practice since, in the real world, there are several cases in which different infor-
mation aspects concerning the same entities come from different data sources
not always sharing the same conceptual model. An example is given by the
public administration, where different administrative organizations have infor-
mation about the same persons but concerning complementary aspects such as:
personal data, income data, ownership data. Another example is given by the
biological domain where research organizations have their own databases that
could be complemented with existing domain ontologies which also allow per-
forming standard deductive inferences on them [2].

In order to learn semantically enriched ARs from a dataset D and an ontolog-
ical knowledge base K grounded by g to D, a unique view of the two information
sources is necessary. It is obtained by performing a propositionalization step as
formalized in the following:

1. choose the primary entity of interest in D or K for extracting association
rules and set this entity as the first attribute A1 in the table T to be built;
A1 will be the primary key of the table; its values will be its corresponding
values in D or K

2. choose (a subset of) the attributes in D that are of interest for A1 and set them
as additional attributes in T; the corresponding values are obtained as the
result of a SQL query involving the selected attributes and the corresponding
A1 values

3. choose (a subset of) concept names {C1, . . . , Cm} in K that are of interest for
A1 and set their names as additional attribute names in T
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4. for each Ck ∈ {C1, . . . , Cm} and for each value ai of A1, if K |= Ck(ai) then
set to true the corresponding value of Ck in T, else if K |= ¬Ck(ai) then set
the value to false, otherwise set to unknown the corresponding value of Ck

in T
5. choose (a subset of) role names {R1, . . . , Rt} in K that are of interest for A1

and set their names as additional attribute names in T
6. for each Rl ∈ {R1, . . . , Rt} and for each value ai of A1, if ∃y ∈ K s.t. K |=

Rl(ai, y) then set to true the value of Rl in T, else if ∀y ∈ K : K |= ¬Rl(ai, y)
then set the value of Rl in T to false, otherwise set the value of Rl in T to
unknown

7. choose (a subset of) datatype property names {T1, . . . , Tv} in K that are of
interest for A1 and set their names as additional attribute names in T

8. for each Tj ∈ {T1, . . . , Tv} and for each value ai of A1, if K |= Tj(ai, dataValuej)
then set to dataValuej the corresponding value of Tj in T, set unknown
otherwise.

Clearly, for all but the datatype properties, the Open World assumption is
in effect during the propositionalization step. After propositionalization, a post-
processing step could be performed for the case of numerical attributes, in order
to proceed, as usual in data mining, with data discretization [18] which consists
in transforming single numerical values in corresponding ranges of values that
could be then treated as categorical data.

An example of a unique tabular representation for the demographic domain
depicted in Sect. 1 is reported in Table 1 where Person, Parent, Male and
Female are concepts of an ontological knowledge base K, and Job and Age
are attributes of a relational dataset D. The numeric attribute Age has been
discretized.

Table 1. Demographic example: the unified view in the table T

Object Job Age Person Parent Male Female

x1 Engineer [36, 45] true true true false

x2 Policeman [26, 35] true false true unknown

x3 Student [16, 25] true false true false

x4 Student [16, 25] true false false true

x5 Housewife [26, 35] true true false true

x6 Clerk [26, 35] true false unknown unknown

x7 Primary school teacher [46, 55] true unknown unknown unknown

x8 Policeman [16, 25] true true unknown unknown

x9 Student [16, 25] true unknown unknown unknown

. . . . . . . . . . . . . . . . . . . . .

The propositionalization step is exploited for building a uniform view (in the
form of a single table) of the two different sources of information. Additionally,
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since a unique table is obtained, state of the art algorithms could be directly
applied for learning semantically enriched ARs. Thus, the process for learning
semantically enriched ARs, similarly to the one for learning ARs can be basically
articulated in two phases. In the first phase, frequent itemsets are discovered.
In the second phase, association rules are built from the discovered frequent
itemsets.

For the first phase, the well known Apriori algorithm [1] is exploited. It
is grounded on the assumption that a set X of variables can be frequent only
if all subsets of X are frequent. The algorithm is recalled in Algorithm 1. The
first step consists in discovering all frequent sets L1 (with respect to a support
threshold) consisting of one item. Hence, the candidate sets of two items are built
by joining L1 with itself and by depurating them of the sets having a frequency
that is lower than the fixed threshold, thus obtaining the sets L2 of frequent
itemsets of length 2. The process is iterated, incrementing the length of the
itemsets at each step, until the set of candidate itemsets is empty. Once the set L
of all frequent itemsets is determined, the second phase is performed by building
the ARs as shown in Algorithm 2, given a certain confidence threshold which
ensures that only significant ARs are considered while the others are discarded.
The confidence value of the learnt semantically enriched ARs is interpreted as the
conditional probability on the values of the items in the consequence of the rule
given that the left hand side of the rule is satisfied in (a model of) the available
knowledge. Examples of semantically enriched ARs that could be learned, given
Table 1, are shown in Table 2.

4 Data-Driven Inference

Semantically enriched ARs (see Sect. 3.3) can be exploited when performing
deductive reasoning given DL (namely ontological) representations. Since almost
all DL inferences can be reduced to concept satisfiability [2], we focus on this
inference procedure. For most expressive DL (such as ALC) the Tableaux algo-
rithm is employed. Its goal is to built a possible model, namely an interpretation,
for the concept whose satisfiability has to be shown. If building such a model,
all clashes (namely contradictions) are found, the model does not exist and the
concept is declared to be unsatisfiable.

Algorithm 1. Sketch of Apriori algorithm.
Input: T :data table, sp-tr : support threshold;
Output: L frequent itemsets

L = ∅
L1 = {frequent itemsets of length 1}
for all (k = 1; Lk �= ∅; k++) do

Ck+1 = candidates generated by joining Lk with itself
Lk+1 = candidates in Ck+1 with frequency equal or greater than sp-tr
L = L ∪ Lk+1

return L
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Table 2. Demographic example: association rules

# RULE Confidence

1 (Age = [16, 25]) ∧ (Job = Student) ⇒ (Parent = false) 0.98

2 (Job = Policeman) ⇒ (Male = true) 0.75

3 (Age = [16, 25]) ∧ (Parent = true) ⇒ (Female = true) 0.75

4 (Job = Primary school teacher) ⇒ (Female = true) 0.78

5 (Job = Housewife) ∧ (Age = [26, 35]) ⇒ (Parent =
true) ∧ (Female = true)

0.85

In this section we set up a modified version of the Tableaux algorithm,
representing the result of combining logical reasoning and statistical inductive
inference. It is grounded on the adoption of an heuristic exploiting the evidence
coming from the data in the form of semantically enriched ARs. The output
of such an algorithm, if any, is the most plausible model, namely the model
that best fits the available data. This means to set up a data driven heuristic
that should allow to reduce the computational effort in finding a model for a
given concept and should be also able to supply the model that is most coher-
ent with/match the available knowledge. In this way also the variance due to
intended diversity and the variance due to incomplete knowledge, that is the
number of possible models that could be built (see [11] for formal definitions),
is reduced.

The inference problem we want to solve is formally defined as follows:

Definition 1 (Inference Problem).

Given: the following
– D, K, the set R of semantically enriched ARs,
– a (possibly complex) concept E of K,
– the individuals x1, . . . , xk ∈ K that are instances of E,
– the grounding g of Σ on D

Determine: the model Ir for E representing the most plausible model given
the K, D, g and R.

Algorithm 2. Building Association Rules given the discovered frequent item-
sets.
Input: L: frequent itemsets, min-conf : minimum confidence threshold
Output: R learnt association rules

R = ∅
for all (I ∈ L) do

for all ((S ⊂ I) AND (S �= ∅)) do
r := S ⇒ (I − S) {//build the rule}
if (( fr(I)

fr(S)
≥ min-conf) then

R := R ∪ r
return R
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Intuitively, the most plausible model Ir for E is the one on top of the ranking
of the possible models Ii for E. Such a ranking is built according to the degree
up to which the models are compliant with the set R of ARs and K. The detailed
procedure for building the most plausible model is illustrated in the following.

Here we first briefly recall the standard Tableaux algorithm. In order to find
(or not) a model, the standard Tableaux algorithm exploits a set of transfor-
mation rules that are applied to the considered concept. Specifically, a trans-
formation rule for each constructor of the considered language exists. In the
following, the transformation rules for ALC logic are briefly recalled (see [2] for
more details).

-rule: IF the ABox A contains (C1  C2)(x), but it does not contain both
C1(x) and C2(x) THEN A = A ∪ {C1(x), C2(x)}

�-rule: IF A contains (C1 � C2)(x), but it does not contain neither C1(x) nor
C2(x) THEN A1 = A ∪ {C1(x)}, A2 = A ∪ {C2(x)}

∃-rule: IF A contains (∃R.C)(x), but there is no individual name z s.t. C(z) and
R(x, z) are in A THEN A = A ∪ {C(y), R(x, y)} where y is an individual
name not occurring in A.

∀-rule: IF A contains (∀R.C)(x) and R(x, y), but it does not contain C(y)
THEN A = A ∪ {C(y)}

To test the satisfiability of a concept E, the algorithm starts with considering
the ABox A = {E(x0)} (with x0 being a new individual) and applies to the
ABox the consistency preserving transformation rules reported above until no
more rules apply. The result could be all clashes, which means the concept is
unsatisfiable, or an ABox containing a model for the concept E that means the
concept is satisfiable.

The transformation rule for the disjunction (�-rule) is non-deterministic.
Specifically, if a disjunctive concept has to be processed, two (or more depending
on the number of disjuncts) different ABoxes have to be considered, each one
containing the assertion concerning one of the two disjoint concepts. The original
ABox is consistent if and only if one of the new ABoxes is consistent. The
choice on one of the two (or more) ABoxes to be processed is absolutely non-
deterministic. In order to save the computational complexity, the ideal solution
(for the case of a consistent concept) should be to choose directly the ABox
containing a model.

Moving from this observation, we propose an alternative version of the
Tableaux algorithm. The main differences with respect to the standard Tableaux
algorithm are:

1. the starting model for the inference process is given by the set of all attributes
(and corresponding values) of the unified tabular representation (see Sect. 3.3)
that are related to the individuals x1, . . . , xk that are instances of E, differ-
ently from the standard Tableaux algorithm where the initial model is simply
given by the assertion concerning the concept of which the satisfiability (or
unsatisfiability) has to be shown;
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2. a heuristic is adopted for performing the �-rule, differently from the stan-
dard case where no heuristic is used and the choice on the new ABox to be
considered is arbitrary;

3. the most plausible model for the concept E and the individuals x1, . . . , xk

is built with respect to the available knowledge K, D and R. The obtained
model is a mixed model, namely a model containing both information from
R and K. Differently, in the standard Tableaux algorithm the model that
is built refers only to K and does not take into account the (assertional)
available knowledge.

In the following these three characteristics are analyzed and the way to
accomplish each of them is illustrated.

Firstly, the process for building the starting model Ir is illustrated. For each
individual xi ∈ {x1, . . . , xk} that is instance of E, all attribute names Ai in the
unified tabular representation T (see Sect. 3.3) that related to xi are selected
jointly with the corresponding values ai. The assertions Ai(ai) are added to Ir.
For simplicity and without loss of generality, a single individual x will be con-
sidered in the following. The generalization to multiple individuals is straight-
forward. It is sufficient to applying the same procedure to all individuals that
are (or assumed to be) instances of the considered concept.

Once the initial model Ir is built, all deterministic expansion rules, namely
all but �-rule, are applied to Ir following the standard Tableaux algorithm. For
the case of the �-rule, a heuristic is adopted. The goal of such a heuristic is
twofold: (a) choosing a new consistent ABox in almost one step, for saving the
computational complexity, if E(x) is consistent (see discussion above concerning
the �-rule); (b) driving the construction of the most plausible model given K
and R. The heuristic is determined as follows.

Let C � D be the disjunctive concept to be processed by �-rule. The choice
on C rather than D (or vice versa) will be driven by the following procedure5.

– The ARs in R containing C (resp. D) or its negation in the knowledge items
of the right hand side of the rules are selected.

– For each selected rule, the left hand side is considered and the degree of match
between the left hand side and the model under construction Ir, is computed.
Specifically, the degree of match is calculated by counting the number of (both
data and semantic) items in the left hand side of a rule that are contained
in Ir, and averaging this number with respect to the length of the left hand
side of the rule. Items with uncertain (unknown) values are not considered for
assessing the degree of match. The degree of match for the rules whose (part
of the) left hand side is contradictory with respect to the model Ir is set to
0. Details for the matching procedure are reported in Algorithm 3.

– Rules having 0 as a degree of match are discarded.
– For each of the remaining rules the weighted confidence value is computed as

weightedConf = ruleConfidence ∗ degreeOfMatch.
5 The case of a negated concept within the disjunction is treated similarily.
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– Rules that have the weighted confidence value below a given threshold are
discarded.

– The rule having the highest weighted confidence value is selected. In case of
multiple rules having the same weighted confidence value, a random choice is
performed.

– If the chosen rule contains C = true (resp. D = true) in the right hand side,
the model under construction Ir is enriched with C(x) (resp. D(x)), where x
is the individual under consideration.

– If the chosen rule contains C = false (resp. D = false) in the right hand side,
the model under construction Ir is enriched with D(x) (resp. C(x)).

– In the general case, the right hand side of the selected AR may contain addi-
tional items besides that involving C or D. Assertions concerning such addi-
tional items will be also added in Ir accordingly6.

– If no rules are available for one of the two concepts, e.g. concept D, the concept
for which some evidence, via existing rules, is available, i.e. C, will be chosen
for expanding Ir.

If no rule in R contains C (resp. D) or its negation in the right hand side,
the following approach may be adopted. Given Ir, a corresponding itemset is
created by transforming:

– each assertion Ai(ai) referring to an attribute in D into a data item Ai = ai;
– each positive (not negated) concept/role assertion into a knowledge item

concept/role name = true;
– each negative assertion into a knowledge item concept/role name = false.

Let θ be the conventional name of such a built itemset, hence four rules are
created, namely: (1) θ ⇒ (C = true), (2) θ ⇒ (C = false), (3) θ ⇒ (D = true)
and (4) θ ⇒ (D = false), and their confidence value is computed (see Sect. 3.2).
Then, the rule having the highest confidence value (satisfying a given confidence
threshold) is selected and the corresponding right hand side will be used as a
guideline for expanding Ir.

This solution may yield a rule with a lower reliability (the created items do
not necessarily refer to the same individual/object) and it is also computationally
expensive. As an alternative, the prior probability of C (resp. D) could be used.
It is computed by adopting a frequency-based approach as: P (C) = |ext(C)|/|A|
where ext(C) is the extension of the concept C, namely the number of individuals
that are instances (asserted or derived) of C and | · | returns the cardinality of
the set extension. P (D) is computed similarly. The concept to be chosen for
extending Ir is the one having the highest prior probability.

In the cases discussed above, the disjunctive expression is assumed to be
made by atomic concept names. However, in ALC, complex concepts may
occur as part of a disjunctive expression such as: existential concept restrictions
6 If a most conservative behavior of the heuristic has to be considered, only the asser-

tion concerning the disjunct C (resp. D) is added to Ir while the additional items
in the right hand side of the selected rule are not taken into account.
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Algorithm 3. Sketch of the Matching Algorithm.
Input: r:ass-rule, Ir:model under construction
Output: degreeOfMatch:real

let r := θ ⇒ ϕ
matchFound := 0
lenghtLeft := number of items in θ
for all (item (Ai = ai) in θ) do

if the item is a data item then
build an assertion assi := Ai(ai)
if assi ∈ Ir then

matchFound = matchFound + 1
else if the item is a knowledge item then

if (Ai is a concept name) then
if (ai = true) then

if there exists an assertion Ai(x) ∈ Ir with x arbitrary individual then
matchFound = matchFound + 1

else if (ai = false) then
if there exists an assertion ¬Ai(x) ∈ Ir with x arbitrary individual then

matchFound = matchFound + 1
else if (Ai is a role name) then

if (ai = true) then
if there exists an assertion Ai(x, y) ∈ Ir with x, y arbitrary individuals
then

matchFound = matchFound + 1
else if (ai = false) then

if there exists an assertion ¬Ai(x, y) ∈ Ir with x, y arbitrary individuals
then

matchFound = matchFound + 1
else if (Ai is a data type property name) then

if there exists an assertion Ai(x, ai) ∈ Ir with x arbitrary individual then
matchFound = matchFound + 1

degreeOfMatch := matchFound / lenghtLeft
return degreeOfMatch

(i.e. ∃R.A�∃R.B), universal concept restrictions (i.e. ∀R.A�∀S.B), nested con-
cept expression (i.e. ∃R.∃S.A or ∃R.(AB)). To cope with these cases a straight-
forward solution could be to create new artificial concept names for naming the
complex concepts so that a disjunction of atomic concept names is finally obtained.
These new artificial concept names have to be added in the unified tabular repre-
sentation T jointly with their corresponding values (see Sect. 3.3) and the process
for discovering ARs has to be run (see Sect. 3.3). This is because potentially use-
ful ARs for treating the disjuncts may be found. It is important to note that the
artificial concept names are not used for discovering new knowledge in itself (as
illustrated in Sect. 3.3) but only for the reasoning purpose.

In the following we present an example showing how the modified Tableaux
algorithm works when random choices occur and namely when processing a
�-rule.
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Table 3. Demographic example: data given at the inference stage

Object Job Age Parent Male Female

x7 Primary school teacher [46, 55] unknown unknown unknown

x8 Policeman [16, 25] true unknown unknown

x9 Student [16, 25] unknown unknown unknown

Example 3. Let us consider: (a) the demographic domain introduced in Sect. 1
and Sect. 3.3; (b) the extracted semantically enriched ARs reported in Table 2
and (c) the model Ir under construction for the inference procedure, as reported
in Table 3. Let us assume that the reasoning process needs to evaluate the expan-
sion of (Male � Female)(x) with respect to the model Ir under construction
reported in Table 3. The heuristic illustrated above is applied as follows.

– As a first step, the rules having Male (resp. Female) in the right hand side
are selected. Looking at Table 2, the selected rules are hence r2, r3, r4 and r5.

– For each of the selected rule, the degree of match is computed as follows:
• r2: matchFound = 1 (because of the item Job = Policemen in Table 3 (for

x8)) ⇒ degreeOfMatch = 1 (note that lengthLeft = 1 since the left hand
side of r2 is made by a single item, see Algorithm 3 for details)

• r3: matchFound = 2 (because of the items Age = [16, 25] and Parent =
True (for x8) in Table 3) ⇒ degreeOfMatch = 2 (note that lengthLeft = 2
since the left hand side of r3 is made by two items)

• r4: matchFound = 1 (because of the item Job = PrimarySchoolTeacher
(for x7) in Table 3) ⇒ degreeOfMatch = 1 (note that lengthLeft = 1 since
the left hand side of r4 is made by one item)

• r5: matchFound = 0 (because no item in Table 3 matches the left hand side
of r5) ⇒ degreeOfMatch = 0 (note that lengthLeft = 2 since the left hand
side of r5 is made by two items)

– Rules having a null degree of match are discarded, hence, for the particular
case r5 is descarded

– For each of the remaining rules, the weighted confidence value is computed
(for the rule confidence values see Table 2):
• r2: weightedConf = ruleConfidence ∗ degreeOfMatch = 0, 75 ∗ 1
• r3: weightedConf = 0.75 ∗ 1 = 0.75
• r4: weightedConf = 0.78 ∗ 1 = 0.78

– Rules having a weighted confidence value lower than a given threshold are
discarded. Provided that the threshold for the weighted confidence value is
0.5, none of the above rules is discarded

– The rule having the highest weighted confidence value is selected, for the
specific case r4 is selected

– Since the right hand side of r4 is the concept Female, the model under con-
struction Ir is enriched with the assertion Female(x) (where x is the individ-
ual under consideration) and this enriched model is the one to be considered
for the application of the successive expansion rules, until the stopping crite-
rion is met.
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Since processing a �-rule, assertions coming from the evidence of the avail-
able knowledge are always added, the proposed approach should ensure that the
resulting model is the one that is mostly compliant with the statistical regular-
ities learned from data.

5 Data-Driven Ontology Population

Semantically enriched ARs (see Sect. 3.3) can be exploited for (semi-)automati-
cally enriching the considered domain ontology. The problem is cast as a classifi-
cation problem that is solved by regarding the discovered semantically enriched
ARs as classification rules to be used by a rule-based classifier. The problem we
want to solve is formally defined as follows:

Definition 2 (Approximate concept membership).

Given: the following

– D, K, the set R of semantically enriched ARs,
– the grounding g of Σ on D
– the unified tabular representation T
– a tuple tj ∈ T

Determine: the set of concepts in K of which (some of) the attribute values
fi(tj) for i ∈ {1, . . . , n} is instance of

This problem can be easily generalized to the case of multiple tuples by repeat-
ing the same problem solution for each tuple. The assumption underlying this
problem is that the knowledge base K is assumed to be stable over the time,
specifically equality and inclusion axioms are assumed to be stable over the
time, while the assertional knowledge is evolving over the time with the addition
of new facts. This is what generally happens for DBs, where once the schema is
defined, it is generally considered stable while new data, in terms of new tuple
are added or deleted from the DB. Here we consider the monotonic scenario
where new tuples are basically added.

A rule-based classifier is a technique for classifying tuples/objects using a
collection of “if...then” rules. The set of the rules that are used for the classifica-
tion is called rule set. Rules within the rule set are assumed to be disjoint [18].
The left hand side of a classification rule is made by the conjunction of one
or more attribute tests while the right hand side is made by a unique element
representing the predicted class.

It is straightforward to notice the similarity between our semantically enriched
ARs and the classification rules described above, where our classes are given by
(some of) the concepts within the considered ontology. Differently from standard
classification rules, our ARs may have more than a single item in the right hand
side. We consider all the items in the right hand side of our ARs as multiple classes
with respect to which the classification is performed, similarly to a multi-class
classifier.
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A classification rule rc is said to cover a tuple in a table if the precondition
(the left hand side of the rule) matches the attributes of the tuple. rc is also said
to be fired or triggered whenever it covers a given tuple. A rule based classifier
classifies a test tuple based on the rule triggered by the tuple. Ideally a rule
set should have rules that are: (a) mutually exclusive, that is no more than one
rule is triggered by a tuple, and (b) exhaustive, that is there is a rule for each
combination of the attribute values. Together, these properties ensure that every
tuple is covered exactly by one rule. However in practice, most of the rule-based
classifiers do not have such properties. This is also valid for the case of our
classification rules for which these two properties are not necessarily satisfied.

Since our purpose is not classifying individuals/objects with respect to all
possible classes, namely concepts in K, rather we are only interested in complet-
ing the available knowledge by exploiting the evidence of the data represented
by the extracted semantically enriched ARs, we can safely discard the exhaustive
property of a rule set.

However, if a rule set is not made by mutually exclusive classification rules,
it may happen that the same tuple triggers more than one rule, possibly also
conflicting. In order to cope with this problem usually two different approaches
are adopted. One consists in considering the rule set as an ordered (in decreas-
ing priority order) list (also called decision list) with respect to a given metric
(e.g accuracy, coverage, total description length). The other solution consists in
applying a majority voting mechanism to the classes assessed by the fired rules.
Since the semantically enriched ARs may have more that one item in the rule
consequent (making the application of the majority vote not straightforward) we
adopt the ordered rule approach. Specifically, our rules are ordered in decreasing
order with respect to their confidence value.

By applying a rule-based classifier (whose classification rules are the seman-
tically enriched ARs) to the tuples in the unified tabular representation T (built
as described in Sect. 3.3), new knowledge can be induced as illustrated in the
following example.

Example 4. Rule r4 in Table 2 is fired by the tuple corresponding to x7 in Table 1
for which it is possible to induce that x7 is instance of the concept Female.

The induced new knowledge could be possibly validated before actually adding
it within the ontology.

Please note that the rule-based classifier could be also used for classifying
individuals with respect to the attributes in DB. However, this could led to
introduce tuples with several missing values, so we exploit this approach only
for enriching the ontology. This specifically implies that, at the current stage,
data items in the right hand side of a semantically enriched ARs are ignored for
the classification step.

The presented approach could be also used for classifying new tuples occur-
ring in the DB that are not known in the considered ontology. In order to do
this, firstly the grounding g of Σ on D has to be updated in order to include
in K the new objects of D. Indeed, the grounding g generally implements a cor-
respondence between two (or more) entities (attribute-concept and/or attribute
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value-individual) of D and Σ, consequently the new values of an attribute may
be added as instances of the corresponding concept in K. Consequently, new
tuples with respect to the new objects in D are added in the unified tabular rep-
resentation T (see Sect. 3.3) and the rule-based classifier is applied for these new
tuples. Since the absence of the new objects in the ontology could provoke sev-
eral missing (unknown) information for the new tuples inserted in T, this could
have as a consequence the reduction of the number of rules that can be fired
(basically rules containing only data items in the left hand side could be fired).
In order to cope with this problem a relaxed matching process could be applied
for the classification phase. Specifically, the match can be computed only with
respect to data items in the left hand side of the rules, hence a degree of match
between the left hand side of the rule and the new tuple is computed, similarly
to the computation of the degree of match in Algorithm 3. The ordered decision
list is dynamically rebuilt with respect to the computed degree of match.

6 Towards the Method Evaluation

Because on the lack of existing freely available complementary data that
are stored on relational DB and ontologies, an actual empirical evaluation of
the proposed approach is hard to be performed at this stage. In the following we
sketch the procedure that we envision and intend to follow for evaluating the pro-
posed solution, as soon proper data are available7. The experimental evaluation
should focuses on:

– assessing the validity of the proposed data-driven Tableaux algorithm when
compared to the standard Tableaux algorithm

– assessing the validity of the data-driven ontology population procedure that
is grounded on a rule-based classifier

As regards the first point, an essential aspect to be considered is the number
of ABox expansions that are performed by the data-driven Tableaux algorithm
when compared to the standard Tableaux algorithm. Indeed, since the heuristic
that is adopted by the data-driven Tableaux algorithm aims to reduce the num-
ber of ABox expansions, the experimental evaluation should empirically show
that the heuristic is able to significantly decreases the number of ABox expansion
when the consistency of a (possibly complex) disjoint concept, that is already
known to be consistent, is performed. In order to strengthen the result, a statis-
tical significance test should be performed and the test should be applied on a
number of different disjunctive concept descriptions (possibly of increasing com-
plexity). Additionally, since the data-driven Tableaux algorithm requires some
additional computations (for instance of computing the degree of match) with
respect to the standard Tableaux algorithm, a comparison of the two in terms of
execution time has to be performed. How to formally assess that the model com-
puted by the data-driven Tableaux algorithm is actually the one that is mostly
7 We are working for building an heterogeneous dataset for empirically evaluating the

proposed approach.
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compliant with the statistical regularities that are learnt from the data, namely
the most reliable model, is still an open issue.

As regards the evaluation of the data-driven ontology population procedure,
different aspects could be evaluated. One is the ability of the classifier to classify
instances with respect to one or more concepts8. At this regards the usual setting
proposed in [5,8] could be adopted, where the performances of an inductive
classifier are compared with the performances of a standard deductive reasoner
and the mistakes, correct predicted class-memberships and the new induced
class-memberships are measured. Particularly important is the ability of the
inductive classifier of inducing new knowledge that is not logically derivable.
Notably, this new knowledge should be validated by a domain expert in order
to assess its actual validity.

Even if other inductive classifiers for assessing the class-membership of indi-
viduals in an ontological knowledge base have been proposed in the literature
(see [15] for a survey), they cannot be used for comparing the performance our
developed data-driven ontology population procedure since, differently from the
methods at the state of the art, the method proposed in this chapter exploits,
besides of an ontological knowledge base, a relational DB as an additional source
of information. Instead, an aspect that could be interesting to evaluate is the
ability of our data-driven ontology population procedure to induce new knowl-
edge, when compared with other inductive classifiers at the state of the art, with
the final goal to show that exploiting a hybrid source of information actually help
to induce a larger (and/or more accurate) amount of new knowledge.

7 Related Works

In this paper we make a step towards the framework for knowledge represen-
tation and reasoning in which knowledge is specified by a mix of logical for-
mulas and data linked together. Differently from [16], where federated DBs are
considered with the goal of removing structural conflicts automatically while
maintaining unchanged the views of the different DBs, we focus on building a
new knowledge base that is able to collect the complementary knowledge that is
contained in heterogeneous sources of information. We also proposed a method
for data-driven logical reasoning, which is the result of combining logical reason-
ing and data mining methods embedded in a Tableaux algorithm. Differently
from [9], where an integrated system (AL-log) for knowledge representation
based on DL and the deductive database language Datalog is presented, here
purely relational databases are considered. Additionally, while in [9] a method
for performing query answering based on constrained resolution is proposed,
where the usual deduction procedure defined for Datalog is integrated with a
method for reasoning on the structural knowledge, here a more expressive DL is
considered and semantically enriched ARs are exploited. The reason for which
8 Concept names of the considered ontology could be considered as well as new query

concepts that are built starting (by using the constructors of the chosen DL language
[2]) from the concept names that are formalized in the ontology.
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the extracted association rules are adopted for driving the construction of the
model performed by the Tableaux algorithm is that association rules (supported
by a certain degree of confidence) represent meaningful and recurrent pattern in
the data. Hence association rules containing one of the two disjunctive concepts
in the right hand side represent a form of evidence coming from the available
data and as such a suitable heuristic for building the most reliable model, namely
the model that best fit the available heterogeneous knowledge.

To the best of our knowledge there are very few works concerning the extrac-
tion of ARs from hybrid sources of information. The one closest to ours is [14],
where a hybrid source of information is considered, specifically an ontology and
a constrained Datalog program. Association rules at different granularity lev-
els (w.r.t. the ontology) are extracted, given a specified query involving both
the ontology and the Datalog program. A similar approach has been adopted
in [13] for discovering ARs from expressive ontologies. In our framework, no
query is specified. A collection of data is built and all possible patterns (possi-
bly across the DB and the ontology) are learnt. Furthermore, some restrictions
are required in [14], i.e. the set of Datalog predicate symbols has to be dis-
joint from the set of concept and role symbols appearing in the ontology. In our
framework, such restrictions are not required. Additionally, [14] assumes that
the alphabet of constants in the Datalog program coincides with the alphabet
of the individuals in the ontology. In our case a partial overlap of the constants
would be sufficient.

Other usages of the ARs in the SW context have been presented in [10,17]. In
[17] association rules are extracted from RDF-data collections for learning use-
ful axioms to be exploited for building/enriching the related ontology schema.
Differently from this work, we cope with heterogeneous sources of information
and extract rules to be used for enriching an ontology at the instance level. At
this regards, a related approach is the one proposed in [10] where association
rules are extracted from RDF data collections for performing instance/resource
classification. Differently from this approach, we cope with heterogeneous data
sources and besides of exploiting the extracted association rules for classifying
individuals we also exploit association rules for an empowered, data driven, log-
ical reasoning.

8 Conclusions

This chapter summarized the proposal of a framework for knowledge represen-
tation and reasoning in which knowledge is specified by a mix of logical formulas
and data linked together. We focused on building a new knowledge base that is
able to collect the complementary knowledge that is contained in heterogeneous
sources of information and specifically in a relational DB and a domain ontology.

Eventually, we proposed a method for data-driven logical reasoning, which
is the result of combining logical reasoning and data mining methods embedded
in a Tableaux algorithm. The method is intended to improve the effectiveness of
the Tableaux algorithm when random choices, such as processing a disjointness
axiom, have to be processed.
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In order to accomplish with this goal, we exploited the semantically enriched
ARs extracted from the heterogeneous sources of information “packed” in a
unique tabular representation. The output of the extended Tableaux algorithm
is the so called most reliable model that is the model, if any, most close to the
evidence coming from the available knowledge.

We also exploited the extracted semantically enriched ARs for enriching the
available domain ontology at the instance level. We regarded the problem as a
classification problem and exploited the extracted semantically enriched ARs as
classification rules to be used by a rule-based classifier.

The proposed framework has to be intended as the backbone of a mixed mod-
els representation and reasoning. Several improvements and open issues need
still to be focused on. Firstly, in building the unified tabular representation,
currently concepts and roles are managed without considering any inclusion
relationships potentially existing among them. The explicit treatment of this
information could save computational costs and could also avoid the extraction
of redundant association rules. Additionally, at the current stage we focused on
the instance prediction problem with respect to the concepts of the ontology.
It would be of interest to be able to focus also on the membership of the indi-
viduals with respect to the roles of the ontology. An aspect that has not been
treated extensively concerns with the potential missing values in the original
DB and their impact on the presented framework. As regards the classification
phase, a decision list has been considered for the classification process. It would
be interesting to use an unordered list as an alternative for this phase. An addi-
tional improvement could be to apply the algorithm for learning association
rules directly on a relational representation, without building an intermediate
propositional representation.
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Abstract. Real-world knowledge often involves various degrees of
uncertainty. For such a reason, in the Semantic Web context, difficul-
ties arise when modeling real-world domains using only purely logical
formalisms. Alternative approaches almost always assume the availabil-
ity of probabilistically-enriched knowledge, while this is hardly known in
advance. In addition, purely deductive exact inference may be infeasible
for Web-scale ontological knowledge bases, and does not exploit statisti-
cal regularities in data. Approximate deductive and inductive inferences
were proposed to alleviate such problems. This article proposes casting
the concept-membership prediction problem (predicting whether an indi-
vidual in a Description Logic knowledge base is a member of a concept) as
estimating a conditional probability distribution which models the poste-
rior probability of the aforementioned individual’s concept-membership
given the knowledge that can be entailed from the knowledge base regard-
ing the individual. Specifically, we model such posterior probability dis-
tribution as a generative, discriminatively structured, Bayesian network,
using the individual’s concept-membership w.r.t. a set of feature concepts
standing for the available knowledge about such individual.

1 Introduction

Real-world knowledge often involves various degrees of uncertainty. For such a
reason, in the context of Semantic Web (SW), difficulties arise when trying to
model real-world domains using purely logical formalisms. For this purpose, the
Uncertainty Reasoning for the World Wide Web Incubator Group1 (URW3-XG)
identified the requirements for representing and reasoning with uncertain knowl-
edge in the SW context, and provided a number of use cases showing the clear
need for explicitly representing and reasoning in presence of uncertainty [23]. As
a consequence, several approaches, particularly focusing on enriching knowledge
bases and inference procedures with probabilistic information has been proposed.
1 http://www.w3.org/2005/Incubator/urw3/
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Some approaches extend knowledge representation formalisms actually used in
the SW (such as [7]), while others rely on probabilistic enrichment of Description
Logics [1] (DLs) or logic programming formalisms (such as [28]).

Uncertainty is pervasive in real-world knowledge, but it is often hard to
elicit it on both the logical and the probabilistic side. Machine Learning (ML)
methods have been proposed to overcome several potential limitations of purely
deductive reasoning and ontology engineering [9,19,34]. These limitations are
inherent to (i) the difficulty of engineering knowledge bases in expressive SW
formalisms, (ii)taking regularities in data into account, (iii) performing approxi-
mate reasoning on Web-scale SW knowledge bases, and (iv) reasoning in presence
of incomplete knowledge (because of the Open-World Assumption), noise and
uncertainty.

Various ML techniques have been extended to tackle SW representations.
These encode regularities emerging from data as statistical models that can
later be exploited to perform efficiently a series of useful tasks, bypassing the
limitations of deductive reasoning and being able to cope with potential cases of
inconsistency.

One of these tasks is the prediction of assertions, which is at the heart of
further often more complex tasks such as query answering, clustering, ranking
and recommendation. Data-driven forms of assertion prediction could be useful
for addressing the cases where, for various reasons related to cases of incom-
pleteness and inconsistency, it is not possible to logically infer the truth value of
some statements (i.e. assertions which are not explicitly stated in nor derivable
from the knowledge base). An example of such cases is the following:

Example 1. Consider a knowledge base K modeling familial relationships, where
persons (each represented by an individual in the ontology) are characterized by
multiple classes (such as Father, Uncle) and relationships (such as hasChild,
hasSibling). By relying on purely deductive reasoning, it might not be possible
to assess whether a certain property holds for a given person. For example, it
might not be possible to assess whether John is an uncle or not. Assuming the
property is represented by the concept Uncle and the person by the individual
john, this can be formally expressed as:

K � |=Uncle(john) ∧ K � |=¬Uncle(john),
i.e. it is not possible to deductively infer from K whether the property “uncle”
holds for the person John.

Semantic Web knowledge representation languages make theOpenWorldAssump-
tion: a failure on deductively infer the truth value of a given fact does not imply
that such fact is false, but rather that its truth value cannot be deductively inferred
from the KB. This differs from the Negation As Failure, commonly used in data-
bases and logic programs. Other issues are related to the distributed nature of the
data across the Web: multiple, mutually conflicting pieces of knowledge may lead
to contradictory answers or flawed inferences.
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Most approaches to circumvent the limitations of incompleteness and incon-
sistency rely on extensions of the representation languages or of the inference
services (e.g. ontology repairing [37] and epistemic reasoning [13] and paracon-
sistent reasoning [29]).

An alternative solution consists in relying on data-driven approaches to
address the problem of missing knowledge. The prediction of the truth value
of an assertion can be cast as a classification problem, to be solved through sta-
tistical learning [41]: domain entities described by an ontology can be regarded
as statistical units, and their properties can be statistically inferred even when
they cannot be deduced from the KB. Several methods have been proposed in
the SW literature (see [34] for a recent survey). In particular, Statistical Rela-
tional Learning [14] (SRL) methods face the problem of learning in domains
showing both a complex relational and a rich probabilistic structure. A major
issue with the methods proposed so far is that the induced statistical models (as
those produced by kernel methods, tensor factorization, etc.) are either difficult
to interpret by experts and to integrate in logic-based SW infrastructures, or
computationally impractical (see Sect. 5.1).

Contribution. A learning task can be either generative or discriminative [24],
depending on the structure of the target distribution. Generative models describe
the joint probability of all random variables in the model (e.g. a joint prob-
ability distribution of two sets of variables Pr(X,Y)). Discriminative models
directly represent aspects of the distribution that are important for a specific
task (e.g. a conditional probability distribution of a set of variables given another
Pr(Y | X)). The main motivation behind the choice of a discriminative model
is described by the main principle in [41]: “If you possess a restricted amount
of information for solving some problem, try to solve the problem directly and
never solve a more general problem as an intermediate step. It is possible that the
available information is sufficient for a direct solution but is insufficient for solv-
ing a more general intermediate problem”. Discriminative learning can also be
useful for feature selection (e.g. in the context of a mining or ontology engineer-
ing task). In [5], authors show that many feature selection methods grounding
on information theory ultimately try to optimize some approximation of a con-
ditional likelihood (that is, a quantity proportional to the true posterior class
probabilities in a set of instances).

In this article, we propose a method for predicting the concept-membership
relation of an arbitrary individual with respect to a given target concept given a
set of training individuals (members and non-members) within a DL knowledge
base. The proposed method relies on a Bayesian network with generative para-
meters (which can be computed efficiently) and discriminative structure (which
maximize the predictive accuracy of the model). The proposed model can be
used also with knowledge bases expressed in expressive DLs used within the SW
context, such as SHOIN (D) and SROIQ(D).

In particular, the proposed method relies on a committee of features (rep-
resented by possibly complex concepts) to define a set of random variables
{F1, . . . , Fn}. Such variables are then used to model a posterior probability dis-
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tribution of the target concept-membership, conditioned the membership w.r.t.
the aforementioned feature concepts Pr(C | F1, . . . , Fn): the value of each Fi

depends on the concept-membership w.r.t. the i-th feature concept, and C is a
Boolean random variable whose conditional probability distribution depends on
the value of the Fi’s. The proposed method relies on an inductive process: it
incrementally builds a Bayesian classifier through a set of hill-climbing searches
in the space of feature concepts using DL refinement operators [26].

This paper is organized as follows: Sect. 2 contains an introduction to the
Bayesian network formalism of describing independence relations among a set
of variables. In Sect. 3 we describe Terminological Bayesian Classifier models
for class-membership prediction in DL knowledge bases, and how such models
can be learned from data. In Sect. 4 we provide an empirical evaluation of the
discussed model. Finally, in Sect. 6 we summarize the proposed approach and
discuss possible research directions.

2 Bayesian Networks and Bayesian Classifiers

Graphical models [20] (GMs) are a popular framework that allows a compact
description of the joint probability distribution for a set of random variables,
by representing the underlying structure through a series of modular factors.
Depending on the underlying semantics, GMs can be grouped into two main
classes, i.e. directed and undirected graphical models, based directed and undi-
rected graphs respectively.

A Bayesian network (BN) is a directed GM which represents the conditional
dependencies in a set of random variables by using a directed acyclic graph
(DAG) G augmented with a set of conditional probability distributions θG (also
referred to as parameters) associated with G’s vertexes.

In a BN, each vertex corresponds to a random variable Xi, and each edge
indicates a direct influence relation between the two random variables. A BN
stipulates a set of conditional independence assumptions over its set of random
variables: each vertex Xi in the DAG is conditionally independent of any subset
S ⊆ Nd(Xi) of vertexes that are not descendants of Xi given a joint state of
its parents. More formally: ∀Xi : Xi ⊥⊥ S | parents(Xi), where the function
parents(Xi) returns the parent vertexes of Xi in the DAG representing the BN.

The conditional independence assumption allows representing the joint prob-
ability distribution Pr(X1, . . . , Xn) defined by a Bayesian network over a set of
random variables {X1, . . . , Xn} as a production of the individual probability
distributions, conditional on their parent variables:

Pr(X1, . . . , Xn) =
n

∏

i=1

Pr(Xi | parents(Xi)).

As a result, it is possible to define Pr(X1, . . . , Xn) by only specifying, for
each vertex Xi in the graph, the conditional probability distribution Pr(Xi |
parents(Xi)). Given a BN specifying a joint probability distribution over a set
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of variables, it is possible to evaluate inference queries by marginalization, like
calculating the posterior probability distribution for a set of query variables given
some observed event (i.e. assignment of values to the set of evidence variables).

In BNs, common inference tasks (such as calculating the most likely value for
some variables, their marginal distribution or their conditional distribution given
some evidence) are NP-hard. However, such inference tasks are less complex
for particular classes of BNs such tasks, approximate inference algorithms exist
to efficiently infer in restricted classes of networks. For example, the variable
elimination algorithm has linear complexity in the number of vertexes if the BN
is a singly connected network [20].

Approximate inference methods for BNs also exist in literature such as Monte
Carlo algorithms, belief propagation or variational methods [20]. The compact
parametrization in graphical models allows for effective learning both model
selection (structural learning) and parameter estimation. In the case of BNs,
however, finding a model which is optimal with respect to a given scoring crite-
rion (which measures how well the model fits observed data) may be not trivial:
the number of possible BN structures is super-exponential in the number of ver-
texes, making it generally impractical to perform an exhaustive search through
the space of its possible models.

Looking for a trade-off between efficiency and expressiveness, we focus on
Bayesian network classifiers, where a Bayesian network is used to model the
conditional probability distribution of a single variable, representing a concept-
membership relation.

For its simplicity, accuracy and low time complexity in both inference and
learning, we first focused on a particular subclass of Bayesian network classifiers.
Näıve Bayesian classifier models the dependencies between a set of random
variables X = {X1, . . . , Xn}, also called features, and a random variable C, also
called class, so that each pair of features are independent of each other given
the class, i.e. ∀Xi,Xj ∈ X : i �= j ⇒ (Xi ⊥⊥ Xj |C). This category of models
is especially interesting since it proved to be effective also in contexts in which
the underlying independence assumptions do not hold [12], outperforming more
recent approaches [6].

However, such strong independence assumptions may not capture correla-
tions between feature concepts properly. Therefore, we also consider employing
generic Bayesian network structures and polytree structures among feature vari-
ables, while retaining the edges from the class variable to feature variables. We
avoid performing an exhaustive search in the space of possible structures (that,
in the case of Bayesian classifiers, may be too complex to perform) and take the
path also used in [17,33] of performing an hill climbing search, making modifi-
cations at the network structures at each step until we get to an (possibly local)
optimal solution.
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3 Terminological Bayesian Classifiers
for Concept-membership Prediction

We propose employing the Bayesian network classifier [20] formalism to rep-
resent the statistical relations among a set of concepts in a given knowledge
base. In particular, we aim at using such BN to model the conditional probabil-
ity distribution Pr(C | F1, . . . , Fn), representing the probability that a generic
individual in a knowledge base is a member of a target concept C given its
concept-membership relation w.r.t. a set of feature concepts {F1, . . . , Fn} (the
random variables in the network can be considered as indicator functions tak-
ing different values depending on the concept-membership relation between the
individual and the corresponding concept).

An intuitive method for mapping the values of the random variable to the cor-
responding concept-membership relation is considering the variable as a Boolean
indicator function, assuming value True iff the individual is an instance of the
concept, False iff it is an instance of its complement, and otherwise consider-
ing the variable as non-observable: this allows to consistently handle the Open
World Assumption (OWA) characterizing the semantics of standard DLs, where
it is common to have partial knowledge about the concept-membership relations
of an individual.

However, this setting implies that not knowing the concept-membership rela-
tion w.r.t. a feature concept is uninformative [36] when predicting the concept-
membership relation w.r.t. a given target concept; this is a strong assumption
that does not hold in general. We will refer to such kind of networks as Termi-
nological Bayesian Classifiers (TBCs). More formally:

Definition 1. (Terminological Bayesian Classifier) A Terminological Bayesian
Classifier (TBC) NK, with respect to a knowledge base K, is defined as a pair
〈G,ΘG〉, representing respectively the structure and parameters of a BN, in which:

– G = 〈V, E〉 is an augmented directed acyclic graph, in which:
• V = {F1, . . . , Fn, C} (vertexes) is a set of random variables, each linked
to a concept defined over K. Each Fi (i = 1, . . . , n) is a Boolean random
variable, whose value depends on the membership w.r.t. a feature concept,
while C is a Boolean variable which indicates the membership relation to
the target concept (we will use the names of variables in V to represent
the corresponding concept for brevity);

• E ⊆ V × V is a set of edges, which model the (in)dependence relations
among the variables in V.

– ΘG is a set of conditional probability distributions (CPD), one for each vari-
able V ∈ V, representing the conditional probability distribution of the feature
concept given the state of its parents in the graph.

A very simple but effective structure is näıve Bayesian one (also described in
Sect. 2), which relies on the assumption the concept-membership w.r.t. each
of the feature concepts are independent given the concept-membership rela-
tion w.r.t. the target concept; this results in the edge set E = {〈C,Fi〉 | i ∈
{1, . . . , n}}.
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Example 2. (Example of Terminological Näıve Bayesian Classifier) Given the
following set of feature concepts2:

F = {Fe := Female,HC := ∃hasChild.�,HS := ∃hasSibling.�},

and a target concept FWS := FatherWithSibling, a terminological näıve
Bayesian classifier expressing the target concept in terms of the feature con-
cepts is the following:

We can also express correlations between feature concepts which may be use-
ful for making the conditional probability distribution more accurate, by relaxing
the constraints on the edge set E ; we consider allowing for generic (acyclic) graph
structures among feature variables, and for polytree (or singly connected tree)
graph structures, which allow for exact inference to be calculated in polynomial
time [20].

Let K be a knowledge base and a a generic individual so that K |= HC(a), and
the membership relation between a to the concepts Fe and HS is not known, i.e.
K �|= C(a) and K �|= ¬C(a), where C is either Fe or HS. It is possible to infer,
through the given network, the probability that the individual a is a member of
the target concept FWS:

Pr(FWS(a) | HC(a)) =
Pr(FWS) Pr(HC | FWS)

Pr(HC)
,

where Pr(HC) = Pr(FWS) Pr(HC | FWS) + Pr(¬FWS) Pr(HC | ¬FWS). �
In the following, we define the problem of learning a TBC NK, given a knowledge
base K and a set of positive, negative and neutral training individuals.

The problem consists in finding a TBC N ∗
K maximizing an arbitrary scoring

criterion, given a set of training individuals IndC(K). Such individuals are orga-
nized in positive, negative and neutral examples, accordingly to their concept-
membership relation w.r.t. the target concept C in K.

More formally:

Definition 2. (Terminological Bayesian Classifier Learning Problem)
The TBC learning problem can be defined as follows:

2 Here concepts have been aliased for brevity.
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Given :

– a target concept C;
– a set of training individuals IndC(K) in a knowledge base K such that:

∀a ∈ Ind+C(K) positive example: K |= C(a),
∀a ∈ Ind−

C(K) negative example: K |= ¬C(a),
∀a ∈ Ind0C(K) neutral example: K �|= C(a) ∧ K �|= ¬C(a);

– A scoring function specifying a measure of the quality of an induced termino-
logical Bayesian classifier NK w.r.t. the samples in IndC(K);

Find a network N ∗
K maximizing a given scoring function Score w.r.t. the samples:

N ∗
K ← arg max

NK
Score(NK, IndC(K))).

The search space for finding the optimal network N ∗
K may be too large to

be exhaustively explored. For such a reason, the learning approach proposed
here works by incrementally building the set of feature concepts, with the aim
of obtaining a set of concepts maximizing the score of the induced network.
Each feature concept is individually searched by an inner search process, guided
by the scoring function itself, and the whole strategy of adding and removing
feature concepts follows a forward selection/backward elimination strategy. This
approach is motivated by the literature about selective Bayesian classifiers [21],
where forward selection of attributes generally increases the classifier accuracy.
The algorithm proposed here is organized in two nested loops: the inner loop
is concerned with exploring the space of possible features (concepts), e.g. by
means of DL refinement operators; the outer loop implements the abstract greedy
feature selection strategy (such as forward selection [18]). Both procedures are
guided by a scoring function defined over the space of TBC models.

Algorithm 1. Scoring function-driven hill climbing search for a new concept
to add to the committee of DL concepts used to construct the Terminological
Bayesian Network.
function Grow(F , IndC(K), Start)

1: C ← Start;
2: {Iteratively refine the concept C until a stopping criterion is met}
3: repeat
4: {Let C be the set of (upward and downward) refinements of the concept C

obtained by means of the ρ refinement operator:}
5: C ← {C′ ∈ ρ↑(C) ∪ ρ↓(C) | |C′| ≤ min(|C| + depth, maxLength)};
6: {Select the concept in the set of refinements C providing the highest increase

to the score (measured by the Score function) to the TBC obtained (using the
ConstructNetwork function) by adding the selected concept to the set C}

7: C ← arg max
C′∈C

Score(ConstructNetwork(F ∪ {C′}, IndC(K)), IndC(K));

8: until Stopping criterion; {E.g. no further improvements in score}
9: return C
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In the inner loop, outlined in Algorithm 1, the search through the space of
concept definitions is performed as a hill climbing search, using the ρcl↓ refine-
ment operator [26] (ρcl↓ (C) returns a set of refinements D of C so that D � C,
which we consider only up to a given concept length n). For each new complex
concept being evaluated, the algorithm creates a new set of concepts F ′ and
finds an optimal structure, under a given set of constraints (which, in the case of
terminological näıve Bayesian classifiers, is already fixed) and parameters (which
may vary depending on the assumptions on the nature of the ignorance model).
Then, the new network is scored, with respect to a given scoring criterion.

Algorithm 2. Forward Selection Backward Elimination method for the incre-
mental construction of terminological Bayesian classifiers.
function FSBE(K, IndC(K))

1: t ← 0, F t ← ∅;
2: repeat
3: t ← t + 1;
4: {A new committee is selected among a set of possible candidates (represented

by the set of committees F̂), obtained by either adding of removing a set of
concepts to the structure, so as to maximize the score of the corresponding TBC
(measured by means of the Score function)}

5: F̂ = {Grow(F t−1, IndC(K), �), Shrink(F t−1, IndC(K), max)};
6: F t ← arg max

F∈F̂
Score(ConstructNetwork(F , IndC(K)), IndC(K));

7: until Stopping criterion; {E.g. the maximum number of concepts in F was reached}
8: N t

K ← ConstructNetwork(F t, IndC(K));
9: return N t

K;

function Shrink(F , IndC(K), max)

1: {Finds the best network that could be obtained by removing at most max feature
concepts from the network structure, w.r.t. a given scoring criterion Score}

2: F̂ ← {F ′ ⊆ F : |F| − |F ′| ≤ max};
3: F∗ ← arg max

F∈F̂
Score(ConstructNetwork(F , IndC(K)), IndC(K));

4: return F∗;

In the outer loop, outlined in Algorithm 2, it is possible to implement a vari-
ety of feature selection strategies [18]. In this specific case, we propose a Forward
Selection Backward Elimination (FSBE) method, which at each iteration con-
siders adding a new concept to the network (by means of the Grow function) or
removing an existing one (by means of the Shrink function).

Different Assumptions on the Ignorance Model. During the learning
process, it may happen that the concept membership between a training indi-
vidual and some of the feature concepts is unknown. The reason of such missing-
ness can be taken into account, when learning the parameters of the statistical
model [20]. Formally, the missing data handling method depends on the proba-
bility distribution underlying the missingness pattern [36], which in turn can be
classified on the basis of its behavior with respect to the variable of interest:
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– Missing Completely At Random (MCAR) – the variable of interest X is
independent from its observability OX, as any other variable in the probabilis-
tic model. This is the precondition for case deletion to be valid, and missing
data does not usually belong to such class [36]:

Pmissing |= (OX ⊥⊥ X);

– Missing At Random (MAR) – happens when the observability of the vari-
able of interest X depends on the value of some other variable in the proba-
bilistic model:

Pmissing |= (OX ⊥⊥ xy
hidden |xy

obs);

– Not Missing At Random/Informatively Missing (NMAR, IM) – here,
the actual value of the variable of interest influences the probability of its
observability:

Pmissing |= (OX �⊥⊥ X).

Example 3. (Different Ignorance Models in Terminological Bayesian Classifiers)
Consider the network in Example 2: if the probability that the variable Fe is
observable is independent on all other variables in the network, then it’s missing
completely at random; if it only depends, for example, on the value of FWS,
then it’s missing at random; if it is dependent on the value Fe would have if it
was not missing, then it is informatively missing.

Each of the aforementioned assumptions on the missingness pattern implies a dif-
ferent way of learning both network structure and parameters in presence of par-
tially observed data. If MCAR holds, Available Case Analysis [20] can be used,
where maximum likelihood network parameters are estimated using only avail-
able knowledge (i.e. ignoring missing data); we are adopting the heuristic used
in [17] of setting network parameters to their maximum likelihood value, which
is both accurate and efficient. This decision is further motivated by [33], which
empirically motivated that generative discriminatively structured Bayesian net-
works retain both the accuracy of discriminative networks and the efficiency of
parameter learning and ability to handle partial evidence typical of generative
networks.

As scoring function, similarly to [17], we adopt the conditional log-likelihood
on positive and negative training individuals, defined as3:

CLL(NK | IndC(K)) =
∑

a∈Ind+
C(K)

log Pr(C(a) | NK)

+
∑

a∈Ind−
C (K)

log Pr(¬C(a) | NK).

3 When used to score networks, conditional log-likelihoods are calculated ignoring
available knowledge about the membership between training individuals and the
target concept.



194 P. Minervini et al.

A problem with using simply CLL as scoring criterion is that it tends to favor
complex structures [20] that overfit the training data. To avoid overfitting, we
penalize the conditional log-likelihood through the Bayesian Information Crite-
rion (BIC) [20], where the penalty is proportional to the number of independent
parameters in a network (according to the minimum description length principle)
and is defined as follows:

BIC(NK | IndC(K)) = CLL(NK | IndC(K)) − log N

2
|ΘG |, (1)

where N is the number of data points and |ΘG | is the number of independent
parameters in the network.

Under the näıve Bayes assumption, there is no need to perform a search
for finding the optimal network, since the structure is already fixed (each node
except the target concept node has only one parent, which is the target concept
node).

For relaxing the independence assumptions in näıve Bayes structures, we
follow the approach also discussed in [17,33] to perform an hill-climbing search
in the space of structures, by looking for the one maximizing the (penalized)
CLL. The exploration in the space of possible structures is performed by making
atomic modification to the structure between feature variables, and consist in
atomic operation of either edge addition, removal or reversal.

When learning network parameters from MAR data, a variety of techniques
is available, such as Expectation-Maximization (EM) or gradient ascent [20]. In
this work, we employ the EM algorithm, as outlined in Algorithm 3: it first ini-
tializes network parameters using estimates that ignore missing data; then, it
considers individuals whose membership w.r.t. a generic concept D is not known
as several fractional individuals belonging, with different weights (corresponding
to the posterior probability of their concept membership), to both the compo-
nents D and ¬D. Such fractional individuals are used to recalculate network
parameters (obtaining the so-called expected counts) and the process is repeated
until convergence (e.g. when the improvement in log-likelihood is lower than a
specific threshold).

At each iteration, the EM algorithm applies the following two steps:

– Expectation: using available data and the current network parameters, infers
a distribution over possible completions for the missing knowledge;

– Maximization: considering each possible completion as a fully available data
case (weighted by its probability), infers next parameters through frequency
counting.

When data is NMAR/IM it may be harder to model, since we cannot
assume that observed and missing values follow the same distributions.

However, it is generally possible to extend the probabilistic model to produce
one where the MAR assumption holds; if the value of a variable associated to
the feature concept Fi is informatively missing, we can consider its observability
as a indicator Boolean variable Oi (such that Oi = False iff K �|= Fi(a) and
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Algorithm 3. Outline for our implementation of the EM algorithm for para-
meter learning from MAR data in a terminological Bayesian classifier.
function EM(N 0

K, IndC(K))

1: {N 0
K is initialized with arbitrary heuristic parameters Θ0

G}
2: N 0

K = 〈G, Θ0
G〉, G = 〈V, E〉; t ← 0;

3: repeat
4: {n̄(xi, πxi)} ← ExpCounts(NK, IndC(K));
5: {Network parameters Θt+1

G are updated according to the inferred expected
counts}

6: for Xi ∈ V, 〈xi, πxi〉 ∈ vals(Xi, parents(Xi)) do

7: θt+1
G (xi, πxi) ← n̄(xi,πxi

)
∑

x′
i
∈vals(Xi)

n̄(x′
i,πxi

)
;

8: end for
9: t ← t + 1;

10: N t
K = 〈G, Θt

G〉;
11: {The iterative process stops when improvements in log-likelihood are ≤ a thresh-

old}
12: until L(N t

K | IndC(K)) − L(N t−1
K | IndC(K)) ≤ τ ;

13: return N t
K;

function ExpCounts(NK, IndC(K))

1: NK = 〈G, ΘG〉, G = 〈V, E〉;
2: for Xi ∈ V, 〈xi, πxi〉 ∈ vals(Xi, parents(Xi)) do
3: n̄(xi, πxi) ← 0;
4: end for
5: {n̄(xi, πxi) will contain the expected counts for (Xi = xi, parents(Xi) = πxi)}
6: for a ∈ IndC(K) do
7: {vals(Xi, parents(Xi)) represents the set of possible values for Xi and its par-

ents}
8: for Xi ∈ V, 〈xi, πxi〉 ∈ vals(Xi, parents(Xi)) do
9: n̄(xi, πxi) ← n̄(xi, πxi) + Pr(xi, πxi | NK);

10: end for
11: end for
12: return {n̄(xi, πxi)};

K �|= ¬Fi(a), Oi = True otherwise) and include it in our probabilistic model, so
that Fi’s ignorance model satisfies the MAR assumption (since the probability
of Fi to be observable depends on the always observable indicator variable Oi).

Doing this may however raise some problems, since the induced probabilistic
model will be dependent on the specific ignorance model in the training set, and
changes in such missingness pattern may impact on the model’s effectiveness.
However, to empirically evaluate the impact of doing so, we include the observ-
ability of a variable in the model by allowing its possible values to be a part of
{True, False, Unknown} (the best partition is chosen by the search process itself,
considering each of the alternatives and choosing the one providing the major
increase in the penalized CLL), and compare it with the result obtained allowing
variables to vary in {True, False} only.
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4 Experiments

In this section we empirically evaluate the impact of adopting different missing
knowledge handling methods and search strategies, during the process of learning
Terminological Bayesian Classifiers from real world ontologies.

Table 1. Ontologies considered in the experiments.

Ontology Expressivity #Axioms #Inds. #Classes #ObjProps.

BioPax (Proteomics) ALCHN (D) 773 49 55 47

Family-Tree SROIF(D) 2059 368 22 52

MDM0.73 ALCHOF(D) 1098 112 196 22

NTNames SHOIN (D) 4434 724 49 29

Wine SHOIN (D) 1046 218 142 21

Starting from a set of real ontologies4 (outlined in Table 1), we generated a set
of 20 random query concepts (each corresponding to a DL complex concept) for
each ontology5, so that the number of individuals belonging to the target query
concept C (resp. ¬C) was at least of 10 elements and the number of individuals
in C and ¬C was in the same order of magnitude. A DL reasoner6 was employed
to decide deductively about the concept-membership of individuals to query
concepts.

Experiments consisted in predicting the membership w.r.t. automatically
generated concept queries in the form of Terminological Bayesian Classifiers,
using different sets of constraints on possible structures (and then obtaining näıve
Bayes structures, polytrees or generic Bayesian networks), and on the possible
values taken by variables. For predicting the membership w.r.t. the generated
query concepts, different constraints on the available values for the variable in
networks were empirically evaluated, allowing them to be either {True, False} or
to also take a Unknown value, which represents the case in which it is not possible
to entail an individual’s membership w.r.t. a concept nor to its complement.

During the learning process, we set the depth parameter to 3 and maxLength
to 6 (3 in the case of Family-Tree, for efficiency reasons); for exploring the space
of concepts we employed the ψ refinement operator [26], available in the DL-
Learner [25] framework, for moving both upwards and downwards in the concept
lattice starting from the concept �.

Regarding the feature selection strategy (corresponding to the outer loop in
Algorithm 2), two different methods were empirically evaluated, namely Forward
Selection (FS) and Forward Selection Backward Elimination (FSBE), where the

4 From TONES Ontology Repository: http://owl.cs.manchester.ac.uk/repository/.
5 Using the query concept generation method available at http://lacam.di.uniba.it/

∼nico/research/ontologymining.html.
6 Pellet v2.3.0 – http://clarkparsia.com/pellet/.

http://owl.cs.manchester.ac.uk/repository/
http://lacam.di.uniba.it/~nico/research/ontologymining.html
http://lacam.di.uniba.it/~nico/research/ontologymining.html
http://clarkparsia.com/pellet/
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Table 2. Statistics for cross-validated accuracy results on the generated data sets: for
each of the ontologies, 20 query concepts were generated, and each was used to obtain a
sample of positive/negative individuals, which were then used to evaluate the methods
using k-fold cross validation (with k = 10) through the accuracy (left) and the area
under the precision-recall curve (right) metrics.

former only adds (at most) one concept and the latter also considers removing
one concept from the committee at each iteration.

Results (expressed using the Accuracy and the Area Under the Precision-
Recall curve, calculated as proposed in [10]) have been obtained through k-
fold cross validation (with k = 10); we evaluated the proposed approach in the
Concept-membership prediction task, which consisted in predicting the mem-
bership w.r.t. automatically generated query concepts, which was also used in
[34] and whose results are summarized in Table 2.

From empirical evaluations, it emerged that looking for more complex struc-
tures under the penalized CLL did not provide any significant gain over sim-
ple näıve Bayesian structures, confirming the simplicity and the accuracy of
näıve Bayes network classifiers. There was no statistically significant difference
observed adopting different feature selection methods.

On the other hand, it was shown that the missing value handling method
impacted on the effective accuracy of the proposed approach: including the
observability of a concept-membership relation, i.e. whether it can or cannot
be proved true or false from the knowledge base, within the probabilistic model,
positively impacted on the final accuracy (but making the induced model depen-
dent on the particular ignorance mechanism).
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5 Related Works

The problem of managing uncertain knowledge in the SW context has been
focused particularly from the knowledge representation perspective. Several
approaches, particularly focusing on enriching knowledge and inference proce-
dures with probabilistic information has been proposed. Some of them extend
knowledge representation formalisms actually used in the SW. For example:
PR-OWL [7] extends the semantics of OWL through the first-order probabilistic
logic formalism of Multi-Entity Bayesian Networks [22]. Other approaches rely on
probabilistic enrichment of Description Logics [1] (DLs) or logic programming
formalisms. Specifically, [15,28] rely on probabilistic lexicographic entailment
from probabilistic default reasoning.

Log-Linear DLs [31] and crALC [8] extend DLs by means of probabilistic
graphical models [20]. Similarly, in [16] authors propose probabilistic extension of
the DL-Lite language based on Bayesian Networks. In [2], authors propose using
Binary Decision Diagrams for efficient reasoning over probabilistic ontologies
based on distribution semantics.

To handle vagueness, also fuzzy extensions of Description Logics have been
proposed in literature (see e.g. [3,38,39]).

5.1 Machine Learning Methods for Knowledge Base Completion

The idea of leveraging Machine Learning methods for handling incomplete and
noisy knowledge bases is being explored in SW literature. A variety of methods
have been proposed for predicting the truth value of assertions in Web ontologies:
those include generative probabilistic models (e.g. [11,32,35]), kernel methods
(e.g. [27,42]), matrix and tensor factorization methods (e.g. [30,40]) and energy-
based models (e.g. [4]).

An issue with existing methods is that they either rely on a possibly expen-
sive search process, or induce statistical models that are not meaningful to
human experts. For example, kernel methods induce models (such as separating
hyperplanes) in a high-dimensional feature space implicitly defined by a kernel
function. The underlying kernel function itself usually relies on purely syntactic
features of the neighborhood graphs of two individual resources (such as their
common subtrees [27] or isomorphic subgraphs [42]): in both cases, there is not
necessarily an explicit meaning of such syntactic features in terms of domain
knowledge.

The Latent variable method in [35], the matrix or tensor factorization meth-
ods in [30,40], and the energy-based models in [4], try to explain the observations
(assertions) in terms of latent classes or attributes, which also may be not mean-
ingful to the domain experts and knowledge engineers.

The approaches in [11,32] try to overcome this limitation by expressing the
induced model using a probabilistic extension of the ALC Description Logic and
Markov Logic, respectively. However, inference in these models is intractable in
general: inference in [11,32] reduces to probabilistic inference to the correspond-
ing ground graphical model.
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6 Conclusions and Future Work

This article proposes a method based on discriminatively structured Bayesian
networks to predict whether an individual is an instance of a given target con-
cept, given the available knowledge about the individual (in the form of its
concept-membership relation w.r.t. a set of feature concepts. Instead of model-
ing a fully fledged joint probability distribution among concepts in the knowledge
base, we face the simpler problem directly model the conditional probability dis-
tribution of the aforementioned target concept-membership given other, infor-
mative and eventually inter-correlated, feature concept-memberships. We then
propose a score-based approach to incrementally build the discriminatively struc-
tured Bayesian network, using Description Logic refinement operators [26].
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Abstract. Considering the increasing availability of structured machine
processable knowledge in the context of the Semantic Web, only relying
on purely deductive inference may be limiting. This work proposes a new
method for similarity-based class-membership prediction in Description
Logic knowledge bases. The underlying idea is based on the concept of
propagating class-membership information among similar individuals; it
is non-parametric in nature and characterized by interesting complex-
ity properties, making it a potential candidate for large-scale transduc-
tive inference. We also evaluate its effectiveness with respect to other
approaches based on inductive inference in SW literature.

1 Introduction

Standard Semantic Web (SW) reasoning services rely on purely deductive infer-
ence. However, this may be limiting, e.g. due to the complexity of reasoning
tasks, availability and correctness of structured knowledge. Approximate deduc-
tive and inductive inference were discussed as a possible approach to try to
overcome such limitations [25]. Various proposals to extend inductive inference
methods towards SW formalisms have been discussed in SW literature: induc-
tive methods can perform some sort of approximate and uncertain reasoning
and derive conclusions which are not derivable or refutable from the knowledge
base [25].

This work proposes a novel method for transductive inference on Description
Logic (DL) representations. In the class-membership prediction task, discrimi-
native methods proposed so far ignore unlabeled problem instances (individuals
for which the value of such class-membership is unknown); however, account-
ing for unlabeled instances during learning can provide more accurate results if
some conditions are met [6,35]. Generative methods, on the other hand, try to
model a joint probability distribution on both instances and labels, thus facing
a possibly harder learning problem than only predicting the most probable label
for any given instance.

In Sect. 2 we will shortly survey related works, and introduce a variant to
the classic class-membership prediction problem. In Sect. 3 we will introduce
the proposed method: the assumptions it relies on, and how it can be used
c© Springer International Publishing Switzerland 2014
F. Bobillo et al. (Eds.): URSW 2011-2013, LNAI 8816, pp. 202–218, 2014.
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for class-membership prediction on large and Web scale ontological knowledge
bases. In Sect. 4 we will provide empirical evidence for the effectiveness of the
proposed method with respect to other methods in SW literature. In Sect. 5 we
summarize the proposed approach, outline its limitations and discuss possible
future research directions.

2 Preliminaries

A variety of approaches have been proposed in the literature for solving the
class-membership prediction problem, either discriminative or generative [21].
Assuming instances are i.i.d. samples from a distribution P ranging over a space
X × Y (where X is the space of instances and Y a set of labels), generative
prediction methods first build an estimate P̂ of the joint probability distribution
P (X,Y ), and then use it to infer P̂ (Y | x) = P̂ (Y, x)/P̂ (x) for a given, unlabeled
instance x ∈ X. On the other hand, discriminative methods simply aim at
estimating when P (y | x) ≥ 0.5, for any given (x, y) ∈ X × Y (thus facing
a possibly easier problem than estimating a joint probability distribution over
X × Y ). The following shortly surveys class-membership prediction methods
proposed so far.

2.1 Discriminative Methods

Some of the approaches proposed for solving the class-membership prediction
problem are similarity-based. For instance, methods relying on the k-Nearest
Neighbors (k-NN) algorithm are discussed in [8,25]. A variety of (dis-)similarity
measures between either individuals or concepts have been proposed: according
to [5], they can be based on features (where objects are characterized by a set of
features, such as in [16]), on the semantic-network structure (where background
information is provided in the form of a semantic network, such as in [10,17])
or on the information content (where both the semantic network structure and
population are considered, such as in [9]).

Kernel-based algorithms [27] have been proposed for various learning tasks
from DL-based representations. This is made possible by the existence of a vari-
ety of kernel functions, either for concepts or individuals (such as [4,11,13]).

By (implicitly) projecting instances into an high-dimensional feature space,
kernel functions allow to adapt a multitude of machine learning algorithms to
structured representations. SW literature includes methods for inducing robust
classifiers [12] or learning to rank [14] from DL knowledge bases using kernel
methods.

2.2 Generative Methods

A generative model for learning from formal ontologies is proposed in [26]: each
individual is associated to a latent variable (similar to a cluster indicator) which
influences its attributes and the relations it participates in. It proposes using a
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Nonparametric Bayesian model for automatically selecting the number of possi-
ble values for such latent variables, with an inference method based on Markov
Chain Monte Carlo where posterior sampling is constrained by a predefined set
of DL axioms.

A different generative model is proposed in [23]: it focuses on learning the-
ories in a probabilistic extension of the ALC DL named crALC, and using DL
refinement operators to efficiently explore the space of concepts. It is inspired
by literature on Bayesian Logic Programs [19].

2.3 Semi-supervised and Transductive Learning

Classic discriminative learning methods tend to ignore unlabeled instances. How-
ever, real life scenarios are usually characterized by an abundance of unlabeled
instances and a few labeled ones [6,35]. This may also be the case for class-
membership prediction from formal ontologies: class-membership relations may
be difficult to obtain during ontology engineering tasks (e.g. due to availability
of domain experts) and inference (e.g. since deciding instance-membership may
have an intractable time complexity in some languages).

Using unlabeled instances during learning is generally known in the machine
learning community as Semi-Supervised Learning [6,35] (SSL). A variant to this
setting is known as Transductive Learning [31] and refers to finding a labeling
only to unlabeled instances provided in the training phase, without necessar-
ily generalizing to unseen instances (and thus resulting into a possibly simpler
learning problem). If the marginal distribution of instances PX is informative
with respect to the conditional probability distribution P (Y | x), accounting for
unlabeled instances during learning can provide more accurate results [6,35].

A possible approach is including terms dependent from PX into the objective
function. This results in the two fundamental assumptions [6]:

– Cluster assumption – The joint probability distribution P (X,Y ) is struc-
tured in such a way that points in the same cluster are likely to have the same
label.

– Manifold assumption – Assume that the distribution PX is supported on
a low-dimensional manifold: then, P (Y | x) varies smoothly, as a function of
x, with respect to the underlying structure of the manifold.

In the following sections, we discuss a similarity-based, non-parametric and
computationally efficient method for predicting missing class-membership rela-
tions. This method is discriminative in nature, but also accounts for unknown
class-membership during learning.

We will face a slightly different version of the classic class-membership pre-
diction problem, namely transductive class-membership prediction. It is inspired
to the Main Principle in [31]: “If you possess a restricted amount of information
for solving some problem, try to solve the problem directly and never solve a
more general problem as an intermediate step. It is possible that the available
information is sufficient for a direct solution but is insufficient for solving a more
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general intermediate problem”. In this setting, the learning algorithm only aims
at estimating the class-membership relation of interest for a given training set of
individuals, without necessarily being able to generalize to individuals outside
such set.

In this work, we formalize the transductive class-membership prediction prob-
lem as a cost minimization problem: given a set of training individuals IndC(K)
whose class-membership relation to a target concept C is either known or un-
known, find a function f∗ : IndC(K) → {+1,−1} defined over training individ-
uals and returning a value +1 (resp. −1) if the individual likely to be a member
of C (resp. ¬C), minimizing a given cost function. More formally:

Definition 1 (Transductive Class-Membership Prediction). The Transductive
Class-Membership Prediction problem can be formalized as follows:

– Given:
• a target concept C;
• a set of training individuals IndC(K) in a knowledge base K partitioned in

positive, negative and neutral examples or, more formally, such that:
Ind+C(K) = {a ∈ IndC(K) | K |= C(a)} positive examples,
Ind−

C(K) = {a ∈ IndC(K) | K |= ¬C(a)} negative examples,
Ind0C(K) = {a ∈ IndC(K) | K �|= C(a)∧K �|= ¬C(a)} neutral examples;

• A cost function cost(·) : F �→ R, specifying the cost associated to a set of
class-membership relations assigned to training individuals by f ∈ F , where
F is a space of labeling functions of the form f : IndC(K) �→ {+1,−1};

– Find a labeling function f∗ ∈ F minimizing the given cost function with
respect to training individuals IndC(K):

f∗ ← arg min
f∈F

cost(f).

The function f∗ can then be used to estimate the class-membership relation
with respect to the target concept C for all training individuals a ∈ IndC(K): it
will return +1 (resp. −1) if an individual is likely to be a member of C (resp.
¬C). Note that the function is defined on the whole set of training individuals;
therefore it can possibly contradict already known class-membership relations
(thus being able to handle noisy knowledge). If IndC(K) is finite, the space of
labeling functions F is also finite, and each function f ∈ F can be equivalently
expressed as a vector in {−1,+1}n, where n = |IndC(K)|.

3 Propagating Class-Membership Information Among
Individuals

This section discusses a graph-based semi-supervised [35] method for class-
membership prediction from DL representations. The proposed method relies on
a weighted semantic similarity graph, where nodes represent positive, negative
and neutral examples of the transductive class-membership prediction problem,
and weighted edges define similarity relations among such individuals.
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More formally, let K be a knowledge base, IndC(K) a set of training individu-
als with respect to a target concept C in K, and Y = {−1,+1} a space of labels
each corresponding to a type of class-membership relation with respect to C.
Each training individual a ∈ IndC(K) is associated to a label, which will be +1
(resp. −1) if K |= C(a) (resp. K |= ¬C(a)), and will be unknown otherwise, thus
representing an unlabeled instance. For defining a cost over functions f ∈ F , the
proposed method relies on regularization by graph: the learning process aims at
finding a labeling function that is both consistent with given labels, and changes
smoothly between similar instances (where similarity relations are encoded in
the semantic similarity graph). This can be formalized through a regularization
framework, using a measure of the consistency to the given labels as a loss func-
tion, and a measure of smoothness among the similarity graph as a regularizer.

Several cost functions have been proposed in SSL literature. An appealing
class of functions, from the side of computational cost, relies on the quadratic cost
criterion framework [6, ch. 11]: for this class of functions, a closed form solution
to the cost minimization problem can be found efficiently (Subsect. 3.2).

3.1 Semantic Similarity Graph

A similarity graph can be represented with a weight matrix W, where the value
of Wij represents the strength of the similarity relation between two training
examples xi and xj . In graph-based SSL literature, W is often obtained either
as a Nearest Neighbor (NN) graph (where each instance is connected to the k
most similar instances in the graph, or to those with a distance under a radius
ε); or by means of a kernel function, such as the Gaussian kernel.

Finding the best way to construct W is an active area of research. In
[6, ch. 20] authors discuss a method to combine multiple similarity measures
in the context of protein function prediction, while [1,18,32] propose different
methods for data-driven similarity graph construction.

When empirically evaluating the proposed method, we employ the family
of dissimilarity measures between individuals in a DL knowledge base defined
in [25], since it does not constrain to any particular family of DLs. We refer
to the resulting similarity graph among individuals in a formal ontology as the
semantic similarity graph. Given a set of concept descriptions F = {F1, . . . , Fn}
and a weight vector w, such family of dissimilarity measures dFp : IndC(K) ×
IndC(K) �→ [0, 1] is defined as:

δi(x, y) =

⎧

⎨

⎩

0 if (K |= Fi(x) ∧ K |= Fi(y)) ∨ (K |= ¬Fi(x) ∧ K |= ¬Fi(y))
1 if (K |= Fi(x) ∧ K |= ¬Fi(y)) ∨ (K |= ¬Fi(x) ∧ K |= Fi(y))

ui otherwise
(1)

where x, y ∈ IndC(K) and p > 0.
Two examples of (k-NN) semantic similarity graphs among all individuals in

the ontologies BioPax (Proteomics) and Leo, obtained using the aforemen-
tioned dissimilarity measure, are provided in Fig. 1.
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Fig. 1. k-Nearest Neighbor Semantic Similarity graphs for individuals BioPAX (Pro-
teomics) ontology (left) and for the Leo ontology (right), obtained using the dissimilar-
ity measure in [25]: F was defined as the set of atomic concepts in the ontology (each
weighted with its normalized entropy [25]) and p = 2.

3.2 Quadratic Cost Criteria

In quadratic cost criteria [6, ch. 11], the original label space {−1,+1} (binary
classification case) is relaxed to [−1,+1]. This allows expressing the confidence
associated to a labeling (and possibly provide an indicator of P (Y | x)). For
such a reason, in the proposed method, elements of the functions space F can
be relaxed to the form f : IndC(K) �→ [−1,+1].

As in Subsect. 2.3, labeling functions can be equivalently represented as vec-
tors y ∈ [−1,+1]n. Let ŷ ∈ [−1,+1]n be a possible labeling for a set of n
instances. We can see ŷ as a (l + u) = n dimensional vector, where the first l
indexes refer to already labeled instances, and the last u to unlabeled instances:
ŷ = [ŷl, ŷu].

Consistency of ŷ with respect to original labels can be formulated in the form
of a quadratic cost:

∑l
i=1(ŷi − yi)2 = ||ŷl − yl||2.

To regularize the labellings with respect to the graph structure, the graph
Laplacian [6] can be used. Let W be the adjacency (weight) matrix correspond-
ing to the similarity graph G and let D be the diagonal matrix obtained from
W as Dii =

∑n
j=1 Wij (i.e. by summing the elements in each column of W).

Hence, two alternative definitions for the graph Laplacian can be consid-
ered [6]:

Unnormalized graph Laplacian: L = D − W;
Normalized graph Laplacian: L = D− 1

2LD− 1
2 = I − D− 1

2WD− 1
2 .

Another regularization term in the form of ||ŷ||2 (or ||ŷu||2, as in [33]) can
be added to the final cost function to prefer smaller values in ŷ. This is useful
e.g. to prevent arbitrary labellings in a connected component of the semantic
similarity graph containing no labeled instances (Fig. 2).
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Putting the pieces together, we obtain two quadratic cost criteria discussed
in the literature, namely Regression on Graph [2] (RG) and the Consistency
Method [33] (CM):

Regression on Graph where the cost function can be written as:

cost(ŷ) = ||ŷl − yl||2 + μŷTLŷ + με||ŷ||2; (2)

Consistency Method where the cost function can be written as:

cost(ŷ) = ||ŷl − yl||2 + μŷTLŷ + ||ŷu||2. (3)

Fig. 2. Example of information propagation, from a single individual, to nearby indi-
viduals in a sample similarity graph.

We will now derive a closed form solution for the problem of finding a (global)
minimum for the quadratic cost criterion in RG; a similar process is also valid
in the case of CM. Its first order derivative is defined as follows:

1
2

∂cost(ŷ)
∂ŷ

= (S + μL + μεI)ŷ − Sy,

where S = diag(s1, . . . , sn), with si = 1 iff i ≤ l and 0 otherwise. Its second order
derivative is a positive definite matrix if ε > 0, since L is positive semi-definite.
Therefore, setting the first order derivative to 0 leads to a global minimum:

ŷ = (S + μL + μεI)−1Sy, (4)

showing that ŷ can be obtained either by matrix inversion or by solving a
(possibly sparse) linear system.
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Complexity of Inference. The linear system in Eq. 4 can be computed effi-
ciently, with a nearly-linear time complexity in the number of non-zero elements
in the coefficient matrix. Indeed, computing ŷ can be reduced to solving a linear
system in the form Ax = b, with A = (S + μL + μεI), b = Sy and x = ŷ.
A linear system Ax = b with A ∈ R

n×n can be solved in nearly linear time
if the coefficient matrix A is symmetric diagonally dominant1 (SDD). An algo-
rithm for solving SDD linear systems is proposed in [7]: its time-complexity is
≈ O

(

m log1/2 n
)

, where m is the number of non-zero entries in A and n is the
number of variables in the system of linear equations. This result applies to the
calculation in Eq. 4, since the graph Laplacian L is SDD [30], and thus the coef-
ficient matrix A is SDD. An efficient parallel solver for SDD linear systems is
proposed in [24].

Interpretation as a Probabilistic Graphical Model. The terms enforcing
similar labels among nearby individuals and the regularizer in the cost functions
in Eqs. 2 and 3 can be seen as energy functions [20] over ŷ in the form:

E(ŷ) = ŷT L̃ŷ, with ŷ ∈ R
n, (5)

where L̃ = μ(L + εI) in Eq. 2 and L̃ = μL + I in Eq. 3. The energy function in
Eq. 5 corresponds to a Gaussian Random Field [20] (GRF):

p(ŷ) =
1
Z

exp
[

− βE(ŷ)
]

=
1
Z

exp
[

− βŷT L̃ŷ
]

, (6)

where Z is a normalization factor and β is an “inverse temperature parameter”.
The GRF in Eq. 6 defines a multivariate Gaussian distribution N (0,Σ) on the
continuous labellings ŷ, where Ω = (2βL̃) and Σ = Ω−1 represent respectively
its information (or precision) and covariance matrix. Such matrices encode the
independence relations among variables in the multivariate Gaussian distribution
(Fig. 3).

Given that ŷ ∼ N (μ,Σ), ŷi and ŷj are independent iff Σij = 0 (i.e. ŷi ⊥
⊥ ŷj iff Σij = 0), while ŷi and ŷj are independent conditioned on all the other
variables iff Ωij = 0 (i.e. ŷi ⊥⊥ ŷj | ŷ − {ŷi, ŷj} iff Ωij = 0).

It is interesting to note that the information matrix Ω (and hence the graph
Laplacian of the similarity matrix) directly defines a minimal I-map Gaussian
Markov random field (GMRF) for the distribution p [20], where non-zero entries
in the matrix can be directly translated to edges in the GMRF.

Summary. This work leverages quadratic cost criteria to efficiently solve the
transductive class-membership prediction problem. Finding a minimum ŷ for
a predefined cost criterion is equivalent to finding a labeling function f∗ in the
form f∗ : IndC(K) �→ [−1,+1], where the labeling returned for a generic training
individual a ∈ IndC(K) correspond to the value in ŷ in the position mapped
to a. This can be done by representing the set of training individuals IndC(K)

1 A matrix A is SDD iff A is symmetric (i.e. A = AT ) and ∀i : Aii ≥∑i�=j |Aij |.
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Fig. 3. (a) Sample Similarity Graph among a set of 6 individuals in a Knowledge Base.
(b) Corresponding GMRF defined over the soft-labels of the individuals.

as a partially labeled vector y of length |IndC(K)| = n, such that the first l
(resp. last u) components correspond to positive and negative (resp. neutral)
examples in IndC(K). Such y can be then used to measure the consistency with
original labels in a quadratic cost criterion; while the semantic similarity graph
can be employed to enforce smoothness in class-membership predictions among
similar training individuals. An advantage of quadratic cost criteria is that their
minimization ultimately reduces to solving a large sparse linear system with a
SDD coefficient matrix. For large-scale datasets, a subset selection method is
discussed in [6, ch. 18], which allows to greatly reduce the size of the original
linear system.

4 Empirical Evaluations

In this section, we evaluate several (inductive and transductive) methods for
class-membership prediction, with the aim of comparing the methods discussed
in Sect. 3 with respect to other methods in SW literature. We are reporting evalu-
ations for the Regularization on Graph [2] (RG) and the Consistency Method [33]
(CM); Label Propagation [34] (LP); three kinds of Support Vector Machines [27]
(SVM), namely Hard-Margin SVM (HM-SVM), Soft-Margin SVM with L1 norm
(SM-SVM) and Laplacian SVM [3] (LapSVM); and

√
l-Nearest Neighbors for

class-membership prediction [25].

4.1 Description of Evaluated Methods

LP is a graph-based SSL algorithm relying on the idea of propagating label-
ing information among similar instances through an iterative process involving
matrix operations. It can be equivalently formulated under the quadratic crite-
rion framework [6, ch. 11]. More formally it associates, to each unlabeled instance
in the graph, the probability of performing a random walk until a positively (resp.
negatively) example is found.
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We also evaluated Support Vector Machines (SVM), which have been pro-
posed for inducing robust classifiers from ontological knowledge bases [13,25].
SVM classifiers come in different flavors: the classic HM-SVM binary classifier
aims at finding the hyperplane in the feature space separating the instances
belonging to different classes, which maximizes the geometric margin between
the hyperplane and nearest training points. The SM-SVM classifier is a relax-
ation of HM-SVM, which allows for some misclassification in training instances
(by relaxing the need of having perfectly linearly separable training instances
in the feature space). LapSVM is a semi-supervised extension of the SM-SVM
classifier: given a set of labeled instances and a set of unlabeled instances, it
aims at finding an hyperplane that is also smooth with respect to the (esti-
mated) geometry of instances. More formally, let (xl,yl) (resp. xu) be a set of
labeled (resp. unlabeled) instances. LapSVM finds a function f in a space of
functions HK determined by the kernel K (called Reproducing Kernel Hilbert
Space [27]) minimizing 1

l

∑l
i=1 V (xi, yi, f)+γL||f ||2HK

+γM||f ||2M, where V rep-
resents a costs function of errors committed by f on labeled samples (typically
the hinge loss function max{0, 1 − yif(xi)}), || · ||HK

imposes smoothness condi-
tions on possible solutions [27] and || · ||2M, intuitively, penalizes rapid changes
in the classification function between close instances in the similarity graph. It
generalizes HM-SVM (γL → 0, γM = 0) and SM-SVM (γM = 0). Our implemen-
tation of LapSVM follows the algorithm proposed in [3]; for HM-SVM, SM-SVM
and LapSVM, we solve the underlying convex optimization problems using the
Gurobi optimizer [15].

RG, CM, LP and LapSVM all rely on a semantic similarity graph W as a rep-
resentation of the geometry of instances. We first calculate distances employing
the dissimilarity measure defined in [25] and outlined in Eq. 1, with p = 2; then
we obtain W by building a k-Nearest Neighbor graph using such distances (since
sparsity in W influences the scalability of quadratic cost criteria, as written in
Subsect. 3.2). When building the neighborhood of a node, we handled the cases
in which nodes had the same distance by introducing a random ordering between
such nodes. The Kernel function used for Hard-Margin SVM, Soft-Margin SVM
and Laplacian SVM are also defined in [25], and directly correlated with the
aforementioned dissimilarity measure in Eq. 1 (given a committee of concepts
F and the parameters w and p, the dissimilarity was originally obtained as

Table 1. Ontologies considered in the experiments.

Ontology Expressivity #Axioms #Inds. #Classes #ObjProps.

BioPax (Proteomics) ALCHN (D) 773 49 55 47

Family-Tree SROIF(D) 2059 368 22 52

Leo ALCHIF(D) 430 61 32 26

MDM0.73 ALCHOF(D) 1098 112 196 22

Wine SHOIN (D) 1046 218 142 21
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Fig. 4. Variation of average Match Rates with respect to the number of folds used in
the training step, during a k-Fold Cross Validation (with k = 10).

1 − k(a, b), where k(a, b) is the value of the kernel function on a pair of indi-
viduals (a, b) in the knowledge base). We also provide a first evaluation for the
k-NN algorithm (with k =

√
l, where l is the number of labeled instances, as dis-

cussed in [25]): we simply choose the majority class among the
√

l most similar
individuals to label each unlabeled instance.

4.2 Evaluations

Starting from a set of real ontologies2 (outlined in Table 1), we generated a set of
20 random query concepts for each ontology3, so that the number of individuals
belonging to the target query concept C (resp. ¬C) was at least of 10 elements
and the number of individuals in C and ¬C was in the same order of magnitude.
A DL reasoner4 was employed to decide on the theoretical concept-membership
of individuals to query concepts. We employ the evaluation metrics in [8], which
take into account the peculiarities deriving by the presence of missing knowledge:

Match Case of an individual that got the same label by the reasoner and the
inductive classifier.

Omission Error Case of an individual for which the inductive method could
not determine whether it was relevant to the query concept or not while it
was found relevant by the reasoner.

Commission Error Case of an individual found to be relevant to the query
concept while it logically belongs to its negation or vice-versa.

Induction Case of an individual found to be relevant to the query concept or to
its negation, while either case is not logically derivable from the knowledge
base.

2 From TONES Repository: http://owl.cs.manchester.ac.uk/repository/.
3 Using the methods available at http://lacam.di.uniba.it/∼nico/research/

ontologymining.html.
4 Pellet v2.3.0 – http://clarkparsia.com/pellet/.

http://owl.cs.manchester.ac.uk/repository/
http://lacam.di.uniba.it/~nico/research/ontologymining.html
http://lacam.di.uniba.it/~nico/research/ontologymining.html
http://clarkparsia.com/pellet/
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Before evaluating on the test set, parameter tuning was performed for each
of the methods via a k-Fold Cross Validation (k = 10) within the training set,
for finding the parameters with lower classification error in cross-validation. For
LapSVM, the (γL, γM) parameters were varied in {10−4, 10−3, . . . , 104}, while
for SM-SVM, which follows the implementation in [27, pg. 223], the C parameter
was allowed to vary in {10−4, 10−3, . . . , 104}. Similarly, the (μ, ε) parameters in
RG and CM where varied in {10−4, 10−3, . . . , 104}. The parameter k for building

Table 2. Match, Omission, Commission and Induction [25] results for a k-Fold Cross
Validation (k = 10) on 20 randomly generated queries. For each experiment, the best
parameters within the training were found using a k-Fold Cross Validation (k = 10).

Leo Match Omission Commission Induction

RG 1 ± 0 0 ± 0 0 ± 0 0 ± 0

CM 1 ± 0 0 ± 0 0 ± 0 0 ± 0

LP 0.942 ± 0.099 0.007 ± 0.047 0.052 ± 0.091 0 ± 0

SM-SVM 0.963 ± 0.1 0 ± 0 0.037 ± 0.1 0 ± 0

LapSVM 0.978 ± 0.068 0 ± 0 0.022 ± 0.068 0 ± 0√
l-NN 0.971 ± 0.063 0 ± 0 0.029 ± 0.063 0 ± 0

BioPAX (Proteomics) Match Omission Commission Induction

RG 0.986 ± 0.051 0.004 ± 0.028 0.008 ± 0.039 0.002 ± 0.02

CM 0.986 ± 0.051 0.002 ± 0.02 0.01 ± 0.044 0.002 ± 0.02

LP 0.982 ± 0.058 0.002 ± 0.02 0.014 ± 0.051 0.002 ± 0.02

SM-SVM 0.972 ± 0.075 0 ± 0 0.026 ± 0.068 0.002 ± 0.02

LapSVM 0.972 ± 0.075 0 ± 0 0.026 ± 0.068 0.002 ± 0.02√
l-NN 0.972 ± 0.075 0 ± 0 0.026 ± 0.068 0.002 ± 0.02

MDM0.73 Match Omission Commission Induction

RG 0.953 ± 0.063 0.003 ± 0.016 0.011 ± 0.032 0.015 ± 0.039

CM 0.953 ± 0.063 0.001 ± 0.009 0.013 ± 0.036 0.018 ± 0.04

LP 0.942 ± 0.065 0 ± 0 0.026 ± 0.046 0.033 ± 0.054

SM-SVM 0.793 ± 0.252 0 ± 0 0.174 ± 0.255 0.033 ± 0.054

LapSVM 0.915 ± 0.086 0 ± 0 0.052 ± 0.065 0.033 ± 0.054√
l-NN 0.944 ± 0.069 0 ± 0 0.023 ± 0.051 0.033 ± 0.054

Wine Match Omission Commission Induction

RG 0.24 ± 0.03 0 ± 0.005 0.007 ± 0.017 0.5 ± 0.176

CM 0.242 ± 0.028 0 ± 0.005 0.005 ± 0.015 0.326 ± 0.121

LP 0.239 ± 0.035 0 ± 0.005 0.008 ± 0.021 0.656 ± 0.142

SM-SVM 0.235 ± 0.036 0 ± 0 0.012 ± 0.024 0.753 ± 0.024

LapSVM 0.238 ± 0.033 0 ± 0 0.009 ± 0.021 0.753 ± 0.024√
l-NN 0.241 ± 0.031 0 ± 0 0.006 ± 0.018 0.753 ± 0.024
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the k-NN semantic similarity graph, used by LapSVM, RG, CM and LP, was
varied in {2, 4, 8, 16}. We did not carefully choose the concept committee F
defining the dissimilarity measure: we simply used the set of atomic concepts
in the ontology, thus ignoring any prior knowledge about the structure of the
target concept C or the presence of statistical correlations in the knowledge base.
Each concept in the committee F was weighted with its normalized entropy [25].
RG, CM and LP give an indication of the uncertainty associated to a specific
labeling by associating values in the set [−1,+1] to each node. A labelingx ≈ 0
(specifically, when the label was in the set [−10−4, 10−4] we decided to leave
the node unlabeled, so to try to provide more robust estimates of labels (and
thus a possibly lower commission error and match rates and higher omission
error rates). This may happen e.g. when there are no labeled examples within a
connected component of the semantic similarity graph.

In Table 2 we report average index rates and standard deviations for each of
the ontologies in Table 1; the only exceptions is for the Family-Tree ontology,
which provided 0.76 ± 0.13 match rates and 0.24 ± 0.13 induction rates for all
methods (except for LP, where the induction rates were 0.21 ± 0.14. In general,
LapSVM outperformed the other two non-SSL SVM classification methods. This
happened with varying quantities of unlabeled data; this is shown for example in
the behavior of match rates in Fig. 4a, where results obtained in a k-Fold Cross
Validation using a varying quantity of labeled instances. However, standard SVM
training is O(m3) in general, where m is the number of training instances; there-
fore, some extra effort may be necessary to make SVM methods scale on SW
knowledge bases. Such results may provide some empirical evidence that induc-
tive methods for formal ontologies may take benefit from also accounting for
unlabeled instances during learning.

4.3 Limitations

A fundamental problem in graph-based SSL methods relies in the construction
of the similarity graph [6,35], which is known to have a strong impact on the
effectiveness of SSL methods. In this work, we identified similarity relations
among individuals using a measure defined in [25] together with a set of atomic
concepts defined in the ontology. However, this might not always be effective
(consider e.g. a shallow ontology, where only a few properties of each individual
are described by means of atomic concepts).

A possible approach to leverage the relational graph structure between indi-
viduals in a DL ontology, would be the use of graph and RDF kernels, such
as the one defined in [4,22,28]. By implicitly mapping individuals into a fea-
ture space, a kernel function k(·, ·) naturally induces a Euclidean distance in the
kernel feature space [27]:

||φ(xi) − φ(xj)||2 = k(xi, xi) + k(xj , xj) − 2k(xi, xj),

where φ is a function mapping each instance to some feature space. However, this
mightnot alwaysbe effective:Fig. 5 shows aSemantic SimilarityGraph constructed
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Fig. 5. Semantic Similarity Graph for the persons in the AIFB Portal ontology, after
removing predicates encoding research group affiliations: each color corresponds to a
distinct research group affiliation (white was used when no affiliation was available).

among persons in the AIFB Portal Ontology5, using the RDF kernel described
in [22] (ignoring research groupaffiliations),where eachdifferent colors corresponds
to a distinct research group. Similarity relations among individuals inferredby such
a kernel do not accurately reflect similarities in research group affiliations, suggest-
ing that the choice of a kernel could be task dependent in some contexts.

5 Conclusion and Future Works

This work proposes a method for transductive class-membership prediction based
on graph-based regularization from DL representations. It leverages neutral
examples by propagating class-membership information among similar individ-
uals in the training set. The proposed method relies on quadratic cost criteria,
whose optimization can be reduced to solving a (possibly sparse) symmetric and
diagonally dominant linear system. This is a well-known problem in the litera-
ture, with a nearly linear time complexity in the number of non-zero entries in
the coefficient matrix.
5 http://www.aifb.kit.edu/web/Wissensmanagement/Portal, as of 21 Feb. 2012.

http://www.aifb.kit.edu/web/Wissensmanagement/Portal
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The similarity graph is known to have a strong influence on the effective-
ness of graph-based SSL methods [35], suggesting that the graph construction
process might be guided by the prediction task at hand. The construction of
the similarity graph for class-membership learning tasks can be influenced by
factors such as the structure of the target concept C, or by finding statistical
correlation within the knowledge base. Also, it is not clear whether continuous
labels assigned by the proposed methods may correspond to posterior proba-
bility estimates from the statistical point of view. In future work, we aim at
investigating the aforementioned two aspects of graph-based transductive and
semi-supervised class-membership prediction from DL representations.
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Abstract. In many systems, the determination of trust is reduced to
reputation estimation. However, reputation is just one way of determin-
ing trust. The estimation of trust can be tackled from a variety of other
perspectives. In this chapter, we model trust relying on user reputation,
user demographics and from provenance. We then explore the effects of
combining trust computed through these different methods. Concretely,
the first contribution of this chapter is a study of the correlations of
demographics with trust. This study helps us to understand which cat-
egories of users are better candidates for annotation tasks in the cul-
tural heritage domain. Secondly, we detail a procedure for computing
reputation-based trust assessments. The user reputation is modeled in
subjective logic based on the user’s performance in the system evaluated
(Waisda? in the case of the work presented here). The third contri-
bution is a procedure for computing trust values based on provenance
information, represented using the W3C PROV model. We show how
merging the results of these procedures can be beneficial for the relia-
bility of the estimated trust value. We evaluate the proposed procedures
and their merger by estimating and verifying the trustworthiness of the
tags created within the Waisda? video tagging game from the Nether-
lands Institute for Sound and Vision. Through a quantitative analysis
of the results, we demonstrate that using provenance and demographic
information is beneficial for the accuracy of trust assessments.

Keywords: Trust · Provenance · Subjective logic · Machine learning ·
Uncertainty reasoning · Tags

1 Introduction

From deciding the next book to read to selecting the best movie review, we
often use the reputation of the author to ascertain the trust in the thing itself.
Reputation is an important mechanism in our set of strategies to place trust. In
fact, trusting (or placing trust) is an action that we decide or not to perform
after having evaluated specific indicators (as specified by O’Hara [25] and also by
c© Springer International Publishing Switzerland 2014
F. Bobillo et al. (Eds.): URSW 2011-2013, LNAI 8816, pp. 219–241, 2014.
DOI: 10.1007/978-3-319-13413-0 12
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Castelfranchi and Falcone, in their theory reprised by Sabater and Sierra [31]),
and reputation, i.e. the quantification of a user trustworthiness, is one of these.
However, we may base our trust assessment on a variety of other factors as
well, including prior performance, a guarantee, or knowledge of how something
was produced. Nevertheless, many systems, especially on the Web, choose to
reduce trust to reputation estimation and analysis alone. In this work, we take a
multi-faceted approach. We look at trust assessment of Web data based on user
reputation, provenance (i.e., how data has been produced), and the combination
of the two. We also determine the trust on the user based on user profile stereo-
types, that are user groups created on the basis of their demographic information.
We try to determine correlations between the demographics and the quality of
information provided by the users. We use the term “trust” for the trust in
information resources and “reputation” for the trust in agents (see the work of
Artz and Gil [1] for complete definitions).

We know that over the Web “anyone can say anything about any topic” [35],
and this constitutes one of the strengths of the Semantic Web (and of the Web
in general), since it brings democracy to it (everybody has the same right to
contribute) and does not prevent a priori any possible useful contribution. This
makes the Semantic Web a suitable environment for building crowdsourcing
platforms. These platforms are useful to collect data (e.g., annotations) from
a variety of users, for instance to help cultural heritage and other institutions
to classify their collections. However, this brings along trust concerns, since the
variety of the contributors can affect both the quality and the trustworthiness
of the data. One mechanism for addressing these concerns is to leverage the
reputation of the users and the provenance of data.

We perform a series of analyses to demonstrate the existence of correlation
between user demographics and identity and the trustworthiness of the data they
provide. On the bases of such results, we first propose a procedure for comput-
ing reputation that uses basic evidential reasoning principles and is implemented
by means of subjective logic opinions [19]. Secondly, we propose a procedure for
computing trust assessments based on provenance information represented in the
W3C PROV model [34]. Such a procedure is important because it is not always
possible to have complete user demographic information. Here, PROV plays a
key role, both because of the availability of provenance data over the Web cap-
tured using this standard, and because of its role of interchange format: having
modeled our procedure on PROV, any other different input format can be easily
treated after having been mapped to PROV. We implement this procedure by
discretizing the trust values and applying support vector machine classification.
Finally, we combine these two procedures in order to maximize the benefit of
both. The procedures are evaluated on data provided by the Waisda? [24] tag-
ging game1, where users challenge each other in tagging videos. We show how
to use the FOAF ontology to represent the user information provided in their
profiles, and we provide a small extension of it to represent user stereotypes.
1 A zip file containing the R and Python procedures used, together with the dataset,

is retrievable at http://trustingwebdata.org/books/URSW III/Waisda.zip.

http://trustingwebdata.org/books/URSW_III/Waisda.zip
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A stereotype is an abstraction of user demographics. We then provide a proce-
dure to compute the user trustworthiness based on stereotypes from informa-
tion in user profiles. Through our experiments, we try to determine correlations
between the trust of the users and the stereotype of their profile.

We show that a reputation-based prediction is not significantly different from
a provenance-based prediction and, by combining the two, we obtain a small
but statistically significant improvement in our predictions. We also show that
reputation-based and provenance-based assessments correlate and that there is
a correlation between the user profile stereotypes and the trust in a user.

This chapter is based on preliminary results published on the paper “Trust
Evaluation through User Reputation and Provenance Analysis” [7], presented
at the 8th Uncertainty Reasoning for the Semantic Web Workshop at the 11th
International Semantic Web Conference 2012. We have revised these results and
added an analysis of the correlation between demographics and trustworthiness.

The rest of the chapter is organized as follows: Sect. 2 describes related work,
Sect. 3 describes the dataset used for evaluation, Sects. 5–7 introduce respectively
the trust assessment procedures based on reputation, provenance and their com-
bination, including example associated experiments. Section 8 concludes.

2 Related Work

Trust is a widely explored topic within a variety of computer science areas. Here,
we focus on those works directly touching upon the intersection of trust, prove-
nance, Semantic Web and Web. We refer the reader to the work of Sabater and
Sierra [31], Artz and Gil [1], and Golbeck [16] for comprehensive reviews about
trust in respectively artificial intelligence, Semantic Web and Web. The first part
of our work focuses on reputation estimation and is inspired by the works col-
lected by Masum and Tovey [23]. Pantola et al. [26] present reputation systems
that measure the overall reputation of the authors based on the quality of their
contribution and the “seriousness” of their ratings; Javanmardi et al. [18] mea-
sure reputation based on user edit patterns and statistics. Their approaches are
similar to ours, but they are particularly tailored to wiki-based environments.
The second part of our work focuses on the usage of provenance information
for estimating trust assessments. In their works, Bizer and Cyganiak [2], Hartig
and Zhao [17] and Zaihrayeu et al. [38], use provenance and background infor-
mation expressed as annotated or named graphs [4] to produce trust values. We
do not make use of annotated or named graph, but we use provenance graphs
as features for classifying the trustworthiness of artifacts. The same difference
also applies to the two works of Rajbhandari et al. [29,30], where they quan-
tify the trustworthiness of scientific workflows and they evaluate it by means of
probabilistic and fuzzy models. The use of provenance information for comput-
ing trust assessments has also been investigated in a previous work of ours [6]
where we determined the trustworthiness of event descriptions based on prove-
nance information by applying subjective logic [19] to provenance traces of event
descriptions. In the current chapter, we still represent trust values by means of
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subjective opinions, but trust assessments are made by means of support vector
machines, eventually combined with reputations, again represented by means of
subjective opinions. The impact of user information such as age, gender, educa-
tion and demographics in crowd sourcing tasks have been explored in the works of
[20]. In their paper, they explore the relationship between worker characteristics
and the quality of their work. Their work has been applied to the crowdsourc-
ing domain and has proven that both the demographics and personality profiles
of the workers are strongly linked to the resulting label quality. We apply our
algorithm not on a labelling task on a crowdsourcing platform, but on a video
annotation task.

Another work by Venanzi et al. [33] addresses the issue of having too few
labels from a user to determine their quality by using a community based
Bayesian label aggregation model which assumes that crowd workers conform
to a few different types, where each type represents a group of workers with sim-
ilar confusion matrices. We use a similar approach to build stereotypes of users
behaviour based on information provided by the users, but not for crowdsourc-
ing systems. Their work is performed on the labeling task while ours is done on
annotations of videos. In general, much work has been done in crowdsourcing
platforms to determine the effect of a user profile on user accuracy and reputa-
tion (see [20,33]). However, these works focus mainly on labeling crowdsourced
data where ground truth data is already available. The main difference between
our work on determining correlation of user profiles on their quality with the
above mentioned work is that we do not have a ground truth. For the labeling
tasks on the crowdsourcing platforms, there is ground truth available for both
the works. In our case, we lack such information and thus rely on partial evi-
dence, which is that we trust a tag provided by a user more if there are other
users who provided the same tag into the system. Also, the procedure intro-
duced in Sect. 5 is a generalization of the procedure that we implemented in a
few preceding works [8–10], where we evaluated the trustworthiness of tags of
the Steve.Museum [32] artifact collection.

Lastly, the use of stereotyping as a bootstrapping method has already been
investigated by Liu et al. [22] and Burnett et al. [5]. There exist relevant similar-
ities between these works and ours, like, for example, the use of subjective logic
to represent trust (this probabilistic logic makes use of Beta and Dirichlet dis-
tributions to model trust statistically) and the fact that users can be grouped in
stereotypes to obtain useful informations to assess unknown users. Nevertheless,
there exist also relevant differences. In fact, both these papers take an agent-
approach and their final goal is to determine whether we can trust an agent
or not. Our goal, instead, is to determine the agent’s (user’s) trustworthiness
to be able to use it to determine the trustworthiness of the artifact that he or
she produces. Also, Burnett et al. propose that agents can learn a stereotyping
function, and also Liu et al. propose that stereotyping is based on a function,
although they do not investigate it. In our work, we propose to create stereo-
types based on user characteristics (and hence, implicitly, on a function of these
characteristics), although we do not explicitly characterize this function.
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3 The Waisda? Dataset

Waisda? [24] is a video tagging gaming platform launched by the Netherlands
Institute for Sound and Vision in collaboration with the public Dutch broad-
caster KRO. The game’s logic is simple: users watch video and tag the content.
Whenever two or more players insert the same tag about the same video in the
same time frame (10 s, relative to the video), they are both rewarded. The num-
ber of matches for a tag is used as an estimate of its trustworthiness. When a tag
which is not matched by others, it is not necessarily considered to be untrust-
worthy, because, for instance, it can refer to an element of the video unnoticed
by other users, or it can belong to a niche vocabulary. Thus, tags that have no
matches are not necessarily wrong. In the game, when counting matching tags,
typos or synonymity are not taken into consideration.

We validate our procedures by using tag matching to estimate the trust-
worthiness of tag entries produced within the game. Our total corpus contains
37850 tag entries corresponding to 115 tags randomly chosen. These tag entries
correspond to about 9 % of the total population. We have checked their represen-
tativity with respect to the entire dataset. First, we compared the distribution of
each relevant feature that we will use in Sect. 6 in our sample with the distribu-
tion of the same feature in the entire dataset. A 95 % confidence level Chi-squared
test [28] confirmed that the hour of the day and the day of the week distribute
similarly in our sample and in the entire dataset. The typing duration distribu-
tions (i.e., distributions of the time employed by users to insert tags) instead, are
significantly different according to a 95 % confidence level Wilcoxon signed-rank
test [37]. However, the mode of the two distributions are the same, and the mean
differs only 0.1 s which, according to the KLM-GOMS model [3], corresponds, at
most, to a keystroke. So we conclude that the used sample is representative for
the entire data set. A second analysis showed that, by randomly selecting other
sets of 115 tags, the corresponding tag entries are not statistically different from
the sample that we used. We used 26495 tag entries (70 %) as a training set, and
the remaining 11355 (30 %) as a test set.

In order to determine the correlation of user profile information with user
reputation, we used the data from 17 users who provided information about
themselves in their user profiles. The remaining users did not provide their data
or chose to remain anonymous. Initially, we tried to cluster the users based
on their features such as age, number of contributions etc., and tried to draw
conclusions about certain stereotypes. However since we had too few users to
draw conclusions based on this approach, we opted, instead, to use standard
correlation metrics on our data. We used Pearson correlation for the continuous
data such as number of tags provided, number of tags provided which were
matched with others and their age. For categorical variables such as gender, we
used the point biserial correlation metric.
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4 Analysis of Correlation Between User Demographics
and Data Trustworthiness

Demographics is the set of quantifiable statistics about a population. A user
profile is a collection of personal information about a given user. In this work,
we assume that information collected by aggregation of user profiles represents
the demographics of the population.

Here, we try to determine if there is a correlation between the user reputation
and demographics in the Waisda? system. We use the user reputation as a proxy
for data trustworthiness.

Our analysis is performed by grouping users based on their demographics
and by identifying a correlation between user groups and the trustworthiness of
the artifacts they produced. The drawback of our approach is that the users need
to provide their details to the system. Since Waisda? is an online game, many
users chose to participate as anonymous. We realised that the users who actively
returned back to the game are mostly the ones who provided their profile infor-
mation. This is a good indication of which users will actively participate in the
system for a longer time. Another thing to note is that, in general, the users may
not provide accurate information about themselves in their profile. However, for
the sake of this work, we do not take this possibility into account because the
users that provided their personal information in the game are known, and hence
their information trusted. Moreover, since we take a statistical approach, infor-
mation inaccuracies, if any, are compensated. The reason why we investigate the
correlation between demographics and data trustworthiness is that we hypoth-
esize that certain categories of users may be better performing than others. For
instance, younger users may be more attentive or older users may be more accu-
rate. If that is the case, then the stereotype that we define should help us in
identifying groups of users whose performance are higher or lower than others.

4.1 User Profiles and Their Representation

The information in the user profile and other quantitative information derived
about a user can help to estimate user reputation. Although different systems
gather different types of information from a user, there is an overlap between the
most common features such as the age, gender, education, etc. Such information
provided by the user can be represented using the FOAF ontology [13]. FOAF
provides a representation of the individual user along with his details. Apart
from the user provided details, we also derive information such as the number of
tags contributed by the user, percentage of tags matched with other users, etc.
For representing data that are specific to the tagging environment and system,
we do not adopt a standard and we use an ad-hoc representation (the property
ex:contributed tags for the number of user contributed tags, and the property
ex:matched tags for the number of matched tags for a given user).

In our procedure, we also build groups (or stereotypes) of users who share
similar characteristics. In order to form groups of users, we use percentiles for
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each characteristic in their profile and derived characteristics. Percentiles help in
obtaining an even distribution of the users across different profile characteristics
and grouping them in stereotypes. One example of a stereotype can be users
who are at least 30 years old and female. In order to represent these groups or
stereotypes, we utilize the group class of FOAF. The groups are formed based on
the information in the individual FOAF profile. Figure 1 depicts an example of
users Alice and Mary who are both females above 30 years of age and belong to
the same stereotype. In Fig. 1, the stereotype is represented by an entity of type
stereo:stereotype, that is a subclass of the foaf:group class. We propose such a
subclass to represent user stereotypes. The fact that we use FOAF and a small
extension of it is important, because it eases interoperability with the systems
that use this widely adopted ontology.

F-30-200-50

Female

User1 User2

35Mary

foaf:name

rdf:type

Alice

foaf:name
foaf:gender

31

foaf:age

52

rdf:type

51

ex:matched_tags

ex:matched_tags

205

ex:contributed_tags ex:contributed_tags

201

foaf:person

foaf:age

foaf:gender

foaf:member foaf:member

stereo:stereotype

rdf:type

foaf:group

rdf:type

Fig. 1. Graph representation of the users and groups. The group name F-30-200-50 is
formed by female users that are older than 30, provided more than 200 tags, and more
than 50 of these are matched.

In the next section, we explain a procedure for predicting the reputation of
a user based on the aggregation of the reputations of users within the same
stereotype.

4.2 Procedure for Analyzing the Correlation Between User
Demographics and Reputation

In order to evaluate the correlation between user demographics and the trustwor-
thiness of the artifacts that they produce, we developed a procedure that groups
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users in stereotypes according to their personal information, and we check the
existence of correlations between the fact that a given user belongs to a certain
stereotype and their reputation.

The procedure is as follows:

proc reputation profile prediction(user , reputation, user profile) ≡
attribute set := attribute selection(user profile, )
attributes := attribute extraction(attribute profile)
reputation levels aggregation
classified testset := classify(testset , trainingset)

The subprocedures used are described below:

attribute selection. Among all the profile information provided by the user,
the first step of our procedure chooses the most significant ones: age and
gender. In this process we also distinguish between the categorical variables
and the continuous variables. This selection can lead to an optimisation of
the computation. As shown in Eq. 1, the reputation of the user is influenced
by the characteristics in his profile.

user reputation = age ⊗ education ⊗ gender ⊗ salary ⊗ . . . (1)

attribute extraction. Apart from the user provided information in the pro-
file, we derive information about the user contributions in the system. This
information can be the total number of tags provided, total number of tags
matched with the other users, time spent in the system, etc. This derivation
can help us understand the behaviour of the user better and help derive
useful correlations about the user behaviour and reputation.

reputation levels aggregation. To ease the learning process, we aggregate
reputation of the users into n classes. The classes are formed by different
combinations of features. The features are created based on the extracted
user information. To create a feature, we compute percentiles for continuous
variables such as age, total tags contributed, etc. Using percentiles, we dis-
cretize the continuous variables into four values per feature with each value
representing a quarter of the data. However for categorical variables such
as gender, education, etc., we use each of the categories available. Once the
classes are formed, we consider them as stereotypes of the users. We assign
each user to a particular stereotype.

classification. Machine learning algorithms (or any other kind of classification
algorithm) can be adopted at this stage. The choice can be constrained
either from the data or by other limitations (e.g., computational power at
our disposal). In this subprocedure, we try to predict information about
the reputation of a new user belonging to a certain stereotype based on
the reputation of other users belonging to that particular stereotype. This
prediction helps to give an “a priori value” of reputation for new users in
the system based on information in their profiles.
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4.3 Application Evaluation

We apply the procedure to the tag entries from the Waisda? game as follows.

attribute selection and extraction. In the Waisda? dataset, we have 17
users who provided in their profile personal information such as e-mail, id,
age and gender. The remaining users of the tagging game participated as
anonymous. We extract the age and gender from the profiles and derive
information such as total number of tags contributed by each user and, for
each user, the total number of tags matched with the others. We also compute
the reputation of the users using the partial evidence extension of subjective
logic that we introduced in a previous work [11] and is summarized as:

b =
1

l + 2
Σl

i=1

pi + 1
pi + 2

d =
1

l + 2
Σl

i=1

1
pi + 2

u =
2

l + 2
(2)

where b is the belief, d is the disbelief and u is the uncertainty of a sub-
jective opinion. p is a vector of positive observations about distinct facts
(e.g., number of matches for different tags provided by the same user). l is
the length of p. Each entry in p has a prior probability that is set to the
default non-informative value 1

2 . The value of the reputation corresponds to
the expected value of the opinion we computed, and is determined as follows.

E = b +
1
2

· u (3)

reputation stereotypes computation. We discretize the continuous vari-
ables such as age, total number of tags contributed, total number of tags
matched into four values using percentiles. Each value represents a quarter
of the total data. We use this approach to ensure equal distribution of the
data for each feature. Categorical variables such as gender represent features
that take two values (male, female). Once the features are formed, we aggre-
gate them in different combinations to form the stereotypes of the users.
In our case for the Waisda? dataset we have 7 stereotypes. We compute a
reputation per stereotype based on the evidence at our disposal for the users
that belong to it.

regression/classification algorithm. We used a regression algorithm to pre-
dict the trustworthiness of the users belonging to a stereotype. Once we have
sufficient evidence (e.g. at least five or ten users belonging to a stereotype),
we can predict the trustworthiness of new users in the system who belong
to the same stereotype. This prediction can help us to give an idea about
the user trustworthiness in the system and also in the future help to recruit
users with certain characteristics for the system.

4.4 Results

Table 1 shows the results of our analysis about the user reputation per stereotype.
Here the user reputation is computed by using the formulas presented in Eq. (2)



228 D. Ceolin et al.

and following Subsect. 5.2: for each user in each stereotype we compute the
frequency of matched tags that he or she contributed, weighed on the sample
size. Here we want to check if stereotypes are able to discriminate users on their
reputations. Hence we compute user reputations based on the evidence at our
disposal.

Table 1. Stereotypes of user profiles and their reputation.

Stereotype # users User reputations

Stereotype 1 2 [0.96, 0.90]

Stereotype 2 2 [0.97, 0.95]

Stereotype 3 2 [0.91, 0.94]

Stereotype 4 2 [0.97, 0.96]

Stereotype 5 5 [0.97, 0.97, 0.97, 0.98, 0.98]

Stereotype 6 1 [0.94]

Stereotype 7 3 [0.95, 0.93, 0.95]

From Table 1, we observe that the maximum variance and maximum stan-
dard deviation between the reputations within a stereotype are 0.001 and 0.03
respectively. This shows that there is not much difference between the reputation
values of the users belonging to the same stereotype. Also, the difference between
stereotypes is very small. However, this small difference may be due to the fact
that these stereotypes do not correlate with users reputations. We will investi-
gate in the future the use of stereotypes based only on demographics features
that correlate with user reputations to discriminate users on their reputations.
Also, in this specific use case, the variance of the user reputation is quite low, so
it may be hard to group users based on their reputation. So, instead of checking
the correlation between the user stereotype and the user reputation, we evaluate
the correlation between user demographics and user reputation, so we decom-
pose the information that determines the user stereotype and we analyze them
independently. For data which is normally distributed, we use the Pearson cor-
relation. For categorical data such as age, we use point biserial correlation [15].
The results of our analysis are shown in Table 2.

Table 2. Results of correlation analysis on Waisda? dataset.

X Y Correlation method Corr(X,Y) p-value

# of tags Reputation Pearson 0.53 0.02

# of matched tags Reputation Pearson 0.61 0.008

Age Reputation Pearson −0.55 0.02

Gender Reputation Point biserial 0.46 0.06
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From Table 2 we can see that there is linear positive correlation between the
number of tags and the number of tags matched with other tags provided by a
user with their reputation. However, there is a negative correlation with the user
age and their reputation. The point biserial correlation method shows that there
is a positive correlation between the gender of the users and their reputation.

Thus, from our experiments, it can be seen that there is a correlation between
the information provided by the user and their reputation, at least in the Waisda?
dataset. For instance, the age correlation indicates that the youngest users per-
form best, perhaps because they are more reactive and attentive. Also, users that
contributed more tags tend to have a higher reputation. This is probably because
they developed a better tagging skill over time. Users that contributed a higher
number of matched tags also tend to be more precise (it is not given that to a higher
number of matched tags corresponds to a higher reputation, since the matched
tags could be accompanied by a lot of unmatched ones; this is not the case here).
The gender correlation is not significant, since it is even lower than the probability
to guess the correct reputation of a user based on his or her gender. These corre-
lations can help us to predict the reputation of new users based on reputations
computed from users with similar characteristics. For the moment, these results
hold only for this case study, but in the future, we aim to test these features also on
additional use cases and to enrich them (both derived from and provided in the
profile) to understand how the user characteristics impact the user reputation,
and we aim at identifying a corpus of characteristics (shared among use cases)
from which we can infer the user reputation. This information may be useful for
expert finding, since once we learn which stereotypes of users perform a certain
task well, we can recruit more users of that stereotype into the system.

5 Computing Reputation-Based Trust

In the previous section, we analyze some of the assumptions that underpin the
use of user reputations for making trust assessments. We find that there exists a
moderate correlation between the user demographics and the trustworthiness of
the data that the population produces. This leads us to conclude that by virtue of
the correlation between user reputation and demographics, demographics can be
used as a foundation for trust prediction, although particular countermeasures
need to be taken to compensate the fact that the existing correlation is only
moderate.

Here, we provide a generic procedure that allows to build a reputation for a
user, based on a set of evaluated artifacts (e.g., annotations), and to use it for
assessing trust of other artifacts created by him. We build the reputation based
on a set of evaluated tags contributed by the user and not on user demograph-
ics because we have such evaluations at our disposal, and this allows tailoring
the reputation to the specific user. Still, the analysis presented before lays the
foundations for the use of user reputation for trust prediction.
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5.1 Procedure

We present a generic procedure for computing the reputation of a user with
respect to a given artifact produced by him.

proc reputation(user , artifact) ≡
evidence := evidence selection(user , artifact)
weighted evidence := weigh evidence(user , artifact , evidence)
reputation := aggregate evidence(weighted evidence)

Evidence election. Reputation is based on historical evidence, hence the first
step is to gather all pieces of evidence regarding a given user and select
those relevant for trust computation. Typical constraints include temporal
(evidence is only considered within a particular time-frame) or semantics
(evidence is only considered when is semantically related to the given arti-
fact). evidence is the set of all evidence regarding user about artifact.

proc evidence selection(user , artifact) ≡
for i :=1 to length(observations) do

if observations[i ].user = user then evidence.add(observation[i ]) fi

Evidence Weighing. Given the set of evidence considered, we can decide if
and how to weigh its elements, that is, whether to count all the pieces of
evidence as equally important, or whether to consider some of them as more
relevant. This step might be considered as overlapping with the previous
one since they are both about weighing evidence: evidence selection gives a
boolean weight, while here a fuzzy or probabilistic weight is given. However,
keeping this division produces an efficiency gain, since it allows computation
to be performed only on relevant items.

proc weigh evidence(user , artifact , evidence) ≡
for i := 1 to length(evidence) do

weighted evidence.add(weigh(evidence[i ], artifact))

Aggregate evidence. Once the pieces of evidence have been selected and
weighed, these are aggregated to provide a value for the user reputation
that can be used for evaluation. We can apply several different aggrega-
tion functions, depending on the domain. Typical functions are: count, sum,
average. Subjective logic [19], a probabilistic logic that we use in the appli-
cation of this procedure, aggregates the observations in subjective opinions
about artifacts being trustworthy based on the reputation of their authors
are represented as follows:

ω(b, d , u) (4)

where
b =

p

p + n + 2
d =

n
p + n + 2

u =
2

p + n + 2
(5)

where b, d and u indicate respectively how much we believe that the artifact
is trustworthy, non-trustworthy, and how uncertain our opinion is. p and n
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are the amounts of positive and negative evidence respectively. Subjective
opinions are equivalent to Beta probability distributions (Fig. 2), which range
over the trust levels interval [0 . . . 1] and are shaped by the available evidence.
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Fig. 2. Example of a Beta probability distribution aggregating 4 positive and 1 neg-
ative piece of evidence. The most likely trust value is 0.8 (which is the ratio among
the evidence). The variance of the distribution represents the uncertainty about the
evaluation.

5.2 Application Evaluation

First, we convert the number of matches that each tag entry has into trust values.
We obtain an opinion for a given tag entry by aggregating all the evidence (in
form of match or non-match) from the other tag entries. For brevity, we report
the details about the computation of p and n (i.e. of the positive and negative
evidence counts). The corresponding subjective opinion is always computed as
in Eq. (5).

tag selection. For each tag inserted by the user, we select all the matching
tags belonging to the same video. In other contexts, the number of matching
tags can be substituted by the number of “likes”, “retweets”, etc.

tag entries weighing. For each matching entry, we weigh it on the time dis-
tance between the evaluated entry and the matched entry. The weight is
determined from an exponential probability distribution, which is a “memory-
less” probability distribution used to describe the time between events. If two
entries are close in time, we consider it highly likely that they match. If they
match but appear in distant temporal moments, then we presume they refer
to different elements of the same video. Instead of choosing a threshold, we
give a probabilistic weight to the matching entry.

Evidence that tagentryi contributes to the determination of the trustwor-
thiness of tagentry is represented as tagentrytagentryi

. The timestamp of
tagentry is represented as t(tagentry).

ptagentrytagentryi
= exp(y · (t(tagentry) − t(tagentryi)))

ntagentrytagentryi
= 1 − ptagentry,tagentryi
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where y is a weighing parameter that allows obtaining that 85 % of probabil-
ity mass is assigned to tags inserted in a 10 s range (in our case, y = 1

5000 ms).
tag entries aggregation. In this step, we determine the trustworthiness of

every tag. We aggregate the weighed evidence in a subjective opinion about
the tag trustworthiness. We have at our disposal only positive evidence (the
number of matching entries). The more evidence we have at disposal for the
same tag entry, the less uncertain our estimate of its trustworthiness will be.
Non-matched tag entries have equal probability to be correct or not.

ptagentry =
∑

i

ptagentry,tagentryi

ntagentry =
∑

i

ntagentry,tagentryi

We repeat the procedure above for each tag entry created by the user to compute
his reputation.

user tag entries selection. Select all the tag entries inserted by user. We
denote a tagentry inserted by a user as tagentryuser.

user tag entries weighing. Tag entries are weighed by the corresponding
trust value previously computed. If an entry is not matched, it is considered
as a half positive (tag trust value 0.5) and half negative (1 − 0.5 = 0.5)
item of evidence (it has 50 % probability to be incorrect), as computed by
means of subjective opinions. The other entries are also weighed according
to their trust value. So, user reputation can either rise or decrease as we
collect evidence.

ptagentryuser
= E(ωtagentry)

ntagentryuser
= 1 − E(ωtagentry)

In the future, we plan to use the reputation the user belongs to as a priori
value. In that case, if no items of evidence are available for a user, then his
reputation coincides with that of the stereotype he belongs to.

user tag entries aggregation. In turn, to compute the reputation of a user
with respect to a given tag, we use all the previously computed evidence to
build a subjective opinion about the user. This opinion represents the user
reputation and can be summarized even more by the corresponding expected
value.

puser =
∑

tagentryuser

ptagentryuser

nuser =
∑

tagentryuser

ntagentryuser
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5.3 Results

We implement the abstract procedure for reputation computation and we evalu-
ate its performance by measuring its ability to make use of the available evidence
to compute the best possible trust assessment. Our evaluation does not focus on
the ability to predict the exact trust value of the artifact by computing the user
reputation, because these two values belong to a continuous space, and they are
computed on a different basis. What we expect is that these two values hint at
trustworthiness in a similar fashion. We suppose that the trust evaluation system
is implemented in such a manner that tags are “accepted” as trustworthy when
their trust value is higher than a particular value (also called threshold). So, if
the user reputation is a good indicator of trustworthiness, the reputation of a
user should be higher than the threshold when the trust values of the artifacts
created by him pass the threshold, and vice-versa. The validation, then, depends
upon the choice of the threshold which, in turn, depends on constraints imposed
by each specific use case. For instance, as we explain below, in the case study
we tackle, “false negatives” are preferred over “false positives”, and this makes
the threshold more likely to be set high (e.g., at least 85 % or 90 %).

We run the procedure with different thresholds as presented in Fig. 4. Low
thresholds correspond to low accuracy in our predictions. However, as the thresh-
old increases, the accuracy of the prediction rises. Moreover, we should consider
that: (1) it is preferable to obtain “false negatives” (reject correct tags) rather
than “false positives” (accept wrong tags), so high thresholds are more likely to
be chosen (e.g., see [14]), in order to reduce risks. Rejecting correct tags means
rejecting useful information and therefore wasting part of the effort spent in
crowdsourcing tags. Accepting wrong tags means to introduce in the system
wrong information and therefore, the tasks that rely on these crowdsourced tags
may be affected by this (e.g. if we run an information retrieval task using these
tags, then we may retrieve wrong items). Hence we prefer the first situation
in place of the latter; (2) a Wilcoxon signed-rank test at 95 % confidence level
proved that the reputation-based estimates outperform blind guess estimates
(having average probability of accuracy 50 %). The average improvement is 8 %,
the maximum is 49 %.

We previously adopted this procedure to compute the trustworthiness of tags
on the Steve.Museum artifacts [8]. By adapting the procedure to the Waisda?
case, we were able to formulate the general procedure above.

6 Computing Provenance-Based Trust

User demographics and, in general, user identities are not always available when
estimating the trustworthiness of artifacts. Hence, we provide a procedure for
estimating the trustworthiness of artifacts based on “how” they were produced
rather then on “whom” produced them. Thus, we focus on the “how” part of
provenance, i.e., the steps or activities performed in the production of an artifact.
(For simplicity, in the rest of the chapter, we will use the word “provenance” to
refer to the “how” part). We learn the relationships between PROV and trust
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values through machine learning algorithms. This procedure allows to process
PROV data and, on the basis of previous trust evaluations, predict the trust
level of artifacts.

6.1 Procedure

We present the procedure for computing trust estimates based on provenance.

proc provenance prediction(artifact provenance, artifact) ≡
attribute set := attribute selection(artifact provenance)
attributes := attribute extraction(attribute set)
trust levels aggregation
classified testset := classify(testset , trainingset)

attribute selection. Among all the provenance information, the first step of
our procedure chooses the most significant ones: agent, processes, temporal
annotations and input artifacts can all hint at the trustworthiness of the out-
put artifact. This selection can lead to an optimization of the computation.

attribute extraction. Some attributes need to be manipulated to be used for
our classifications, e.g., temporal attributes may be useful for our estimates
because one particular date may be particularly prolific for the trustworthi-
ness of artifacts. However, to ease the recognition of patterns within these
provenance data, we extract the day of the week or the hour of the day
of production, rather than the precise timestamp. In this way we can dis-
tinguish, e.g., between day and night hours (when the user might be less
reliable). Similarly, we might refer to process types or patterns instead of
specific process instances.

trust level aggregation. To ease the learning process, we aggregate trust levels
in n classes. Our results will show that this classification process does not
affect accuracy significantly.

classification. Machine learning algorithms (or any other kind of classification
algorithm) can be adopted at this stage. The choice can be constrained either
from the data or by other limitations.

6.2 Application Evaluation

We apply the procedure to the tag entries from the Waisda? game as follows.

attribute selection and extraction. The provenance information available
in Waisda? is represented in Fig. 3, using the W3C PROV ontology. First,
for each tag entry we extract: typing duration, day of the week, hour of the
day, game id (to which the tag entry belongs), video id. This is the “how”
provenance information at our disposal. Here we want to determine the trust-
worthiness of a tag given the modality with which it was produced, rather
than the author reputation. Some videos may be easier to annotate than
others, or, as we mentioned earlier, user reliability can decrease during the
night. For similar reasons we use all the other available features.
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Fig. 3. Graph representation of the provenance information about each tag entry.

trust level classes computation. In our procedure, we are not interested in
predicting the exact trust value of a tag entry. Rather we want to predict the
range of trust values that hold for an entry. Given the range of trust values
[0 . . . 1], we split it into 20 classes of length 0.5: from [0, 0.05] to [0.95, 1.0].
This allows us to increase the accuracy of our classification algorithm without
compromising the accuracy of the predicted value or the computation cost.
The values in each class were approximated by the middle value of the class
itself. For instance, the class [0.5 . . . 0.55] are approximated as 0.525.

regression/classification algorithm. We use a regression algorithm to predict
the trustworthiness of the tags. Having at our disposal five different features
(in principle, we might have more), and given that we are not interested
in predicting the “right” trust value, but the class of trustworthiness, we
adopt the “regression-by-discretization” approach [21], that allows us to use
the Support Vector Machines algorithm (SVM) [12] to classify our data after
having discretized the continuous ones. The training set is composed by 70 %
of our data, and then we predict the trust level of the test set. We used the
SVM version implemented in the e1071 R library [36]. In the future, we will
consider alternative learning techniques.

6.3 Results

The accuracy of our predictions depends, again, on the choice of a threshold.
If we look at the ability to predict the right (class of) trust values, then the
accuracy is about 32 % (which still is twice as much as the average result that
we would have with a blind guess), but it is more relevant to focus on the abil-
ity to predict the trustworthiness of tags within some range, rather than the
exact trust value. Depending on the choice of the threshold, the accuracy in
this case varies in the range of 40 %–90 %, as we can see in Fig. 4. For thresh-
olds higher than 0.85 (the most likely choices), the accuracy is at least 70 %.
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We also compared the provenance-based estimates with the reputation-based
ones, with a 95 % confidence level Wilcoxon signed-rank test that proved that
the estimates of the two algorithms is not statistically different. For the Waisda?
case study, reputation- and provenance-based estimates are equivalent: when rep-
utation is not available or it is not possible to compute it, we can substitute it
with provenance-based estimates. This is particularly important, as the avail-
ability of PROV data grows, one can compute trust values for data which is not
associated with a trust value.

The “regression-by-discretization” approach consists in first a discretization
of the continuous features at our disposal (e.g., timestamps) and a subsequent
computation of regression by means of a classification algorithm (e.g., Support
Vector Machines). If we apply it for making provenance-based assessments, then
we approximate our trust values. This is not necessary with the reputation app-
roach. Had we applied the same approximation to the reputations as well, then
provenance-based trust would have performed better, as proven with a 95 % con-
fidence level Wilcoxon signed-ranked test, because reputation can rely only on
evidence regarding the user, while provenance-based models can rely on larger
data sets. Anyway, we have no need to discretize the reputation and, in general,
we prefer it because of its lightweight computational overhead.

7 Combining Reputation and Provenance-Based Trust

Lastly, we provide a procedure for combining reputation- and provenance-based
estimates to improve our predictions. If a certain user has been reliable so far, we
can reasonably expect him/her to behave similarly in the near future. So we use
reputation and we also constantly update it, to reduce the risk of relying on over-
optimistic assumptions (if a user that showed to be reliable once, will maintain
his/her status forever). However, reputation has an important limitation. To be
reliable, a reputation has to be based on a large amount of evidence, which is not
always possible. So, both in case the reputation is uncertain, or in case the user
is anonymous, other sources of information should be used in order to correctly
predict a trust value. The trust estimate based on provenance information, as
described in Sect. 6, is based on behavioral patterns which have a high probability
to be shared among several users. Hence, if a reputation is not reliable enough,
we substitute it with the provenance-based prediction.

7.1 Procedure

The algorithm is as follows:

proc provenance prediction(user , artifact) ≡
q ev = evaluate user evidence(user , artifact)
if q ev > min evidence then predict reputation else predict provenance fi

evaluate user evidence. This function quantifies the evidence. Some imple-
mentation examples: (1) count ; (2) compute a subjective opinion and check
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if the uncertainty is low enough. As future work we plan to investigate how
to automatically determine q ev and evaluate user evidence.

7.2 Application Evaluation

We adopt the predictions obtained with each of the two previous procedures.
The results are combined as follows: if the reputation is based on a minimum
number of observations, then we use it, otherwise we substitute it with the
prediction based on provenance. We run this procedure with different values for
both the threshold and the minimum number of observations per reputation. We
instantiate the evaluate user evidence(user,artifact) function as a count function
of the evidence of user with respect to a given tag.

7.3 Results

The performance of this algorithm depends both on the choice of the threshold
for the decision and on the number of pieces of evidence that make a reputation
reliable, so we ran the algorithm with several combinations of these two para-
meters (Fig. 4). The results converge immediately, after having set the minimum
number of observations at two. We compared these results with those obtained
before. Two Wilcoxon signed-rank tests (at 90 % and 95 % confidence level with
respect to respectively reputation- and provenance-based assessments) showed
that the procedure which combines reputation and provenance evaluations in this
case performs better than each of them applied alone. The improvement is, on
average, about 5 %. Despite the fact that most of the improvement regards the
lower thresholds, which are less likely to be chosen (as we saw in Sect. 5), even at
0.85 threshold there is a 0.5 % improvement. Moreover, we would like to stress
how the combination of the two procedures performs better than (in a few cases,
equal to) each of them applied alone, regardless of the threshold chosen.

Combining the two procedures allows us to go beyond the limitation of
reputation-based approaches. Substituting estimates based on unreliable rep-
utations with provenance-based ones improves our results without significantly
increasing risks, since we have previously proven that the two estimates are (on
average) equivalent. Hence, when a user is new in a system (and so his/her his-
tory is limited) or anonymous, we can refer to the provenance-based estimate
to determine the trustworthiness of his/her work, without running a higher risk
of poor trust prediction. This improvement is at least partly due to the exist-
ing correlation between the reputation and provenance-based trust assessments.
A small positive correlation (0.16) has been shown by a Pearson correlation test
[27] with a confidence level of 99 %. Thanks to this, we can substitute uncertain
reputations with the corresponding provenance-based assessments. This explains
also the similarity among the results shown in Fig. 4.
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Fig. 4. Absolute and relative (Reputation+Provenance vs. Reputation) accuracy. The
gap between the prediction (provenance-based) and the real value of some items
explains the shape between 0.5 and 0.55: only very low or high thresholds cover it.

8 Conclusion

In this chapter, we first explored the correlation between user demographics and
user reputations and showed the existence of such a correlation in the Waisda?
tagging dataset. Moreover, we showed how it is possible to use demographics
extracted from user profiles to create user stereotypes (user abstractions based
on demographics) and to possibly use them as a basis for trust estimation. How-
ever, in the Waisda? dataset user stereotypes were not useful to discriminate
user reputation, although we found a correlation between single demographics
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(age, gender, etc.) and user reputation. Moreover, we showed how to use the
FOAF ontology to both represent user profiles and stereotypes.

Additionally, we proposed and evaluated procedures for computing trust
assessments based on reputation, for computing trust assessments based on
provenance information, and for combining these two types of assessments. We
show that using reputation for trust assessment is simple, computationally light
and accurate. We also show the potential of provenance-based trust assessments:
these can be at least as accurate as reputation-based methods and can be used
to overcome the limitations of a reputation-based approaches (at least within
a tagging environment). In Waisda? the combination of the two methods was
more powerful than each of the two alone. In the future, we will investigate
the possibility of automatically extracting provenance patterns usable for trust
assessment, to automate, optimize and adapt the process to other case studies
and domains. We will also focus on the use of trust assessments as a basis for
information retrieval.
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Abstract. Subjective logic is a powerful probabilistic logic which is
useful to handle data in case of uncertainty. Subjective logic and the
Semantic Web can mutually benefit from each other, since subjective
logic is useful to handle the inner noisiness of the Semantic Web data,
while the Semantic Web offers a means to obtain evidence useful for per-
forming evidential reasoning based on subjective logic. In this chapter
we describe three extensions and applications of subjective logic in the
Semantic Web, namely: the use of deterministic and probabilistic seman-
tic similarity measures for weighing subjective opinions, a way for account-
ing for partial observations, and “open world opinion”, i.e. subjective
opinions based on Dirichlet processes, which extend multinomial opin-
ions. For each of these extensions, we provide examples and applications
to prove their validity.

Keywords: Subjective logic · Semantic similarity · Dirichlet process ·
Partial observations

1 Introduction

Subjective logic [12] is a probabilistic logic widely adopted in the trust man-
agement domain, based on evidential reasoning and statistical principles. This
logic focuses on the representation and the reasoning on assertions of which the
truth value is not fully determined, but estimated on the basis of the observed
evidence. The logic comes with a variety of operators that allow to combine such
assertions and to derive the truth values of the consequences.

Subjective logic is well-suited for the management of uncertainty within the
Semantic Web. For instance, the incremental access to these data (as a con-
sequence of crawling) can give rise to uncertainty issues which can be dealt
with using this logic. Furthermore, the fact that the fulcrum of this logic is the
concept of “subjective opinion” (which represents a logic proposition, its cor-
responding belief and the source of this evidence), allows correctly representing
how the estimated truth value of an assertion is bound to the source of the corre-
sponding evidence and allows to easily keep lightweight provenance information.
Finally, evidential reasoning allows to limit the typical noisiness of Semantic
Web data. On the other hand, we also believe that the Semantic Web can be
c© Springer International Publishing Switzerland 2014
F. Bobillo et al. (Eds.): URSW 2011-2013, LNAI 8816, pp. 242–264, 2014.
DOI: 10.1007/978-3-319-13413-0 13
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beneficial to this logic, as an immeasurably important source of information:
since the truth value of assertions is based on availability of observations, the
more data is available (hopefully of high enough quality), the closer we can get
to the correct truth value for our assertions. We believe that this mutual rela-
tionship can be improved. This chapter proposes extensions and applications of
subjective logic that aim at the Semantic Web, namely: the use of deterministic
and probabilistic semantic similarity measures for weighing subjective opinions,
a method for accounting for partial observations, and “open world opinions”,
that are subjective opinions based on Dirichlet processes. Open world opinions
allow modeling categorical data for which categories are partially known. Only
the latter is a proper extension of the logic, while the first two items are rep-
resentations within the logic of external elements, with proper mappings and,
when necessary, specific representations.

This chapter revises and extends the paper “Subjective Logic Extensions for
the Semantic Web” [5], presented at the 8th International Workshop on Uncer-
tainty Reasoning for the Semantic Web, at the 11th International Semantic Web
Conference 2012. Here, we add to that paper two methods to map probabilistic
semantic similarity measures and subjective opinions.

The rest of the chapter is organized as follows. Section 2 gives an overview of
subjective logic. Sections 3 and 4 show how to combine subjective logic with deter-
ministic and probabilistic semantic similarity measures respectively. Section 5
introduces a method for dealing with partial observations of evidence, Sect. 6
describes the concept of “open world opinion”. Section 7 describes related work,
and Sect. 8 provides a final conclusion about the work presented.

2 Subjective Logic

In subjective logic, so-called “subjective opinions” express the belief that source
x owns with respect to the value of proposition y. The values of y are chosen
among the elements of the set Θ (“frame of discernment”). For instance, if y is
a binomial proposition, then Θ = {true, false}. A subjective opinion describes
the belief in the elements of the power set of Θ (2Θ). In symbols, an opinion is
represented as

ωx
y (b, d, u, a)

when |Θ| = 2 (binomial opinion) or as

ωx
y (

−→
B, u,

−→
A )

when |Θ| > 2 (multinomial opinion). Throughout the paper we refer to vectors
with the following notation:

−→
B . Its elements are represented as bx. In the bino-

mial opinion, b represents the belief in y being true and d the belief in y being
false, i.e., the disbelief. The uncertainty u represents a part of probability mass
that we are unable to assign to either true or false and it therefore corresponds
to the belief in Θ. In the case of the multinomial opinion there is no disbelief
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because there is no specific false value, since y can assume multiple ones. a rep-
resent the prior probability that y has to be true, while A represents the vector
of prior probabilities for each of the possible truth values of y. The values b, d, u
are determined by observing pieces of evidence. a is given a priori. The posi-
tive and negative evidence is represented as p and n respectively. The belief (b),
disbelief (d), uncertainty (u), and a priori values (a) for binomial opinions are
computed as:

b =
p

p + n + 2
d =

n

p + n + 2
u =

2
p + n + 2

a =
1
2
. (1)

The value 2 indicates the cardinality of Θ, i.e., the number of values that y
can take. A subjective opinion is equivalent to a Beta probability distribution
(binomial opinion) or to a Dirichlet distribution (multinomial opinion). This
probability distribution describes the most likely probability values that y can
take. If y has Pr probability to be true, since we determine Pr starting from a
limited set of evidence, we estimate the most likely value of Pr by means of a
Beta (or Dirichlet) probability distribution.

Opinions can be contextualized. For example, source x provides an observa-
tion about assertion y in context c (e.g. about an agent’s expertise). The most
likely value for y in context c, represented as t(x, y : c), is the expected value of
the Beta distribution corresponding to the opinion and computed as:

E = t(x, y : c) = b + a · u. (2)

The reason why we rely on this logic is the fact that it makes use of a double
probabilistic layer. The probability of each proposition can be represented by
means of a Binomial distribution (or by means of a Multinomial distribution
if the proposition is multivalued). However, we base our truth estimations on
samples of Web data so the parameter p of the Binomial distribution (or the
vector of parameters

−→
P of the Multinomial) is rather uncertain. In fact, the Web

data sample is possibly unreliable, uncertain and partially representative of the
entire Web data population. Subjective logic uses a second-order distribution
based on the distribution and size of the sample at our disposal to estimate the
most likely value that the p (or

−→
P ) value can take. This is the primary reason

why we adopt this logic. Also, on the Web, data are exposed by different sources
presenting different reliability levels. The ability to keep track of the source
that exposes a given piece of data or a subjective opinion is crucial to be able
to assess the trust in that piece of data or subjective opinion. Subjective logic
allows keeping track of such provenance information and reasoning on subjective
opinions weighing them on the reputation of their source. Lastly, subjective logic
offers a variety of operators that allow combining subjective opinions in several
manners. For instance, operators allow “discounting” an opinion based on the
reputation of the source that exposes it, or computing the truth value (expressed
as a subjective opinion) of the logical disjunction or conjunction of two opinions
held by the same source. This makes the logic a useful tool to reason upon data
extracted from the Web. One important remark is that this logic allows reasoning
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on binomial or multinomial data, that include, for instance URIs. The Beta and
the Dirichlet distributions are used because they are “conjugated” [11] with the
Binomial and Multinomial distributions respectively, i.e., their computation is
particularly manageable. Other kind of data and other probability distributions
are outside the scope of this logic.

2.1 Base Rate Discounting Operator in Subjective Logic

An important class of operators of subjective logic is the so-called “discounting”
operator. In fact, a subjective opinion allows keeping track of the source of
the opinion itself. This permits the reuse of the opinion by third parties, because
these third parties, knowing where the opinion comes from, can decide to use it.
However, before using it, these third parties may require to “smoothen” the
opinion to take into account the limited reliability of the source or its possible
maliciousness. Therefore, in subjective logic there exists a variety of discounting
operators: for instance, one favors disbelief (to be used if the source is known
to be malicious), and one that favors uncertainty (to be used when no specific
intention of the source is known). We can also make use of the base-rate sensitive
discounting operator in the case we just have a probability (i.e., the expected
value of an opinion), instead of having at our disposal a complete subjective
opinion for a source. The base-rate sensitive discounting of opinion of source B
on y by opinion of source A on B ωA

B ,

ωB
y = (bB

y , dB
y , uB

y , aB
y )

by opinion
ωA

B = (bA
B , dA

B , uA
B , aA

B)

of source A produces transitive belief

ωA:B
y = (bA:B

y , dA:B
y , uA:B

y , aA:B
y )

where
bA:B
y = E(ωA

B)bB
y

dA:B
y = E(ωA

B)dB
y

uA:B
y = 1 − E(ωA

B)(bB
y + dB

y )

aA:B
y = aB

y .

(3)

3 Combining Subjective Logic with Deterministic
Semantic Similarity Measures

We saw in the previous section that opinions can be contextualized. Setting
the context is important, because it allows delimiting the validity of an opinion
and increasing the precision of the corresponding evaluation. For instance, if we
gather evidence about the expertise of a user in a given topic, let us say, flowers,
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then it is important to delimit the validity of the corresponding opinion to the
topic “flowers”. However, contexts may also impede the use of evidence about
a given subject, if the context differs from the context where the evidence was
collected. Therefore, we propose to “bridge” contexts by using semantic similar-
ity measures to import evidence from a context to another, after having weighed
them on the similarity of the two contexts. Many semantic similarity measures
have been developed (see the work of Budanitsky and Hirst [2]). These basically
split into two main classes: deterministic and probabilistic semantic similarity
measures. The deterministic ones are based on deterministic computations made,
for example, on word graphs (e.g. WordNet [19]). The probabilistic ones apply
probabilistic reasoning to derive semantic relatedness between words based, for
instance, on the occurrence and co-occurrence of these two words in large docu-
ment corpora. We extend the logic to incorporate these measures by representing
semantic similarity measures by means of subjective opinions (discounting), or
by using the similarity measures to weigh items of evidence before using them to
build subjective opinions (weighing). The first extension of subjective logic that
we propose regards the use of deterministic semantic similarity measures and is
described as follows.

3.1 Wu and Palmer Semantic Similarity Measure

Among all deterministic semantic similarity measures, our attention focuses on
those computed from WordNet. WordNet groups words into sets of synonyms
called synsets that describe semantic relationships between them. It is a directed
and acyclic graph in which each vertex v, is an integer that represents a synset,
and each directed edge from v to w represents that w is a hypernym of v. In
particular, we use the Wu and Palmer similarity measure [28], which calculates
semantic relatedness in a deterministic way by considering the depths between
two synsets in the WordNet taxonomies, along with the depth of the Least
Common Subsumer (lcs) as follows:

score(s1, s2) =
2 · depth(lcs(s1, s2))

depth(s1) + depth(s2)
. (4)

This means that score ∈ [0, 1]. For deriving the opinions about a concept where
no evidence is available, we incorporate score, which represents the semantic sim-
ilarity (sim(c, c′)) in our trust assessment, where c and c′ are concepts belonging
to synset s1 and s2 respectively which represent two contexts.

3.2 Using Semantic Similarity Measures Within Subjective Logic

We propose two means to import deterministic semantic similarity measures into
subjective logic, by mapping them with subjective opinions.

Deriving an Opinion About a New or Unknown Context. Since we
compute opinions based on contexts, it is possible that evidence required to



Bridging Gaps Between Subjective Logic and Semantic Web 247

compute the opinion for a particular context is unavailable. For example, suppose
that source x owns observations about a proposition in a certain context (e.g. the
expertise of an agent about tulips), but needs to evaluate them in a new context
(e.g. the agent’s expertise about sunflowers), of which it owns no observations.
The semantic similarity measure between two contexts, sim(c, c′), can be used for
obtaining the opinion about an agent y on an unknown or new context through
two different methods. We can weigh the evidence at our disposal, and for every
piece of evidence, use only the part that corresponds to the semantic similarity
between the two contexts. If I have one observation in the known context c′ and
the similarity between the two contexts is 0.5, then I can use that observation
in the new context c as 0.5 piece of evidence. Otherwise, I could compute a
subjective opinion in the known context c′ and then use it in the unknown
context c after having “discounted” it (using the subjective logic discounting
operator). The discounting factor would be a subjective opinion that represents
the semantic similarity between the two contexts. The reason why we have these
two different approaches is that weighing operates directly on the evidence, while
discounting applies on the subjective opinion. In the latter case uncertainty has
already been quantified (and therefore some probability mass has been assigned
to it), while in the first case not. Hence, the choice between the two alternative
depends on the strategy chosen (it could be that operating on the opinion is more
computationally efficient, and hence discounting is preferable), or on case study
constraints (e.g., if the evidence from a given context are already expressed as
a subjective opinion, then it is simpler to use it than to revert it to the pieces
of evidence on which it is computed). Below we provide more details about the
two methods.

Evidence weighing. We weigh the positive and negative evidence belonging to
a certain context (e.g. Tulips) on the corresponding semantic similarity to
the new context (e.g. Sunflowers), sim(Tulips, Sunflowers). We then perform
this for all the contexts for which source x has already provided an opinion,
∀c′ ∈ C, by weighing all the positive (p) and negative (n) evidence of c′ with
the similarity measure sim(c, c′) to obtain an opinion about y in c (see the
work of Ceolin et al. [4]).

Opinion discounting. In the second approach, every opinion source x has
about other related contexts c′, where c′ ∈ C, is discounted with the corre-
sponding semantic similarity measure sim(c, c′) using the Discounting oper-
ator in subjective logic. The discounted opinions are then aggregated to form
the final opinion of x about y in the new context c.

Discounting Operators and Semantic Similarity. Subjective logic offers
a variety of operators for “discounting”, i.e. for smoothing opinions given by
third parties, provided that we have at our disposal an opinion about the source
itself. “Smoothing” is meant as reducing the belief provided by the third party,
depending on the opinion on the source (the worse the opinion, the higher the
reduction). Moreover, since the components of the opinion always sum to one,
reducing the belief implies an increase of (one of) the other components: hence
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there exists a discounting operator favoring uncertainty and one favoring disbe-
lief. Finally, there exists a discounting operator that makes use of the expected
value E of the opinion. Following this line of thought, we can use the semantic
similarity as a discount factor for opinions imported from contexts related to the
one of interest, in case of a lack of opinions in it, to handle possible variations
in the validity of the statements due to the change of context.

So, we need to choose the appropriate discounting operator that allows us to
use the semantic similarity value as a discounting factor for opinions. The disbe-
lief favoring discounting is an operator that is employed whenever one believes
that the source considered might be malicious. This is not our case, since the
discounting is used to import opinions own by ourselves but computed in differ-
ent contexts than the one of interest. Hence we do not make use of the disbelief
favoring operator.

In principle, we would have no specific reason to choose one between the
uncertainty favoring discounting and the base rate discounting. Basically, having
that only rarely the belief (and hence the expected value) is equal to 1, the
two discounting operators decrease the belief of the provided opinion, one by
multiplying it by the belief in the source, the other one by the expected value of
the opinion about the source. In practice, we will see that, thanks to Theorem 1
these two operators are almost equivalent in this context.

Theorem 1 (Semantic relatedness measure is a dogmatic opinion). Let
sim(c, c′) be the semantic similarity between two contexts c and c′ obtained by
computing the semantic relatedness between the contexts in a graph through deter-
ministic measurements (e.g. [28]). Then, ∀ sim(c, c′) ∈ [0,1],

ωmeasure
c=c′ = (bmeasure

c=c′ , dmeasure
c=c′ , umeasure

c=c′ , ameasure
c=c′ )

is equivalent to a dogmatic opinion in subjective logic, i.e., a subjective opinion
with uncertainty equal to zero.

Proof. A binomial opinion is a dogmatic opinion if the value of uncertainty
is 0. The semantic similarity measure can be represented as an opinion about
the similarity of two contexts c and c′. However, since we restrict our focus on
WordNet-based measures, the similarity is inferred by graph measurements, and
not by probabilistic means. This means that, according to the source, this is
a “dogmatic” opinion, since it does not provide any indication of uncertainty:
umeasure

c=c′ = 0. The opinion is not based on evidence observation, rather on actual
deterministic measurements.

E(ωmeasure
c=c′ ) = bmeasure

c=c′ + umeasure
c=c′ · a = sim(c, c′), (5)

where measure indicates the procedure used to obtain the semantic relatedness,
e.g. Wu and Palmer Measure. The values of belief and disbelief are obtained as:

bmeasure
c=c′ = sim(c, c′) dmeasure

c=c′ = 1 − bmeasure
c=c′ . �� (6)
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Corollary 1 (Discounting an opinion with a dogmatic opinion). Let A be
a source who has an opinion about y in context c′ expressed as

ωA
y:c′ = (bA

y:c′ , dA
y:c′ , uA

y:c′ , aA
y:c′)

and let the semantic similarity between the contexts c and c’ be represented as a
dogmatic opinion

ωmeasure
c=c′ = (bmeasure

c=c′ , dmeasure
c=c′ , 0, ac′

c=c′).

Since the source A does not have any prior opinion about the context c, we derive
the opinion of A about c represented as

ωA:c′
c = (bA:c′

c , dA:c′
c , uA:c′

c , aA:c′
c )

using the base rate discounting operator on the dogmatic opinion.

aA:B
y = aB

y bA:B
y = sim(c, c′) · bB

y

uA:B
y = 1 − sim(c, c′) · (bB

y + dB
y ) dA:B

y = sim(c, c′) · dB
y .

(7)

Definition 1 (Weighing operator). Let C be the set of contexts c′ of which
a source A has an opinion derived from the positive and negative evidence in
the past. Let c be a new context for which A has no opinion yet. We can derive the
opinion of A about facts in c, by weighing the relevant evidences in set C with
the semantic similarity measure sim(c, c′) ∀c′ ∈ C. The belief, disbelief, uncer-
tainty and a priori obtained through the weighing operation are expressed below.

bA
c = sim(c,c′)·pA

c′
sim(c,c′)(pA

c′+nA
c′ )+2

dA
c = sim(c,c′)·nA

c′
sim(c,c′)(pA

c′+nA
c′ )+2

uA
c = 1 − sim(c,c′)·(pA

c′+nA
c′ )

sim(c,c′)(pA
c′+nA

c′ )+2
aA

c = aA
c′ .

(8)

Theorem 2 (Approximation of the weighing and discounting opera-
tors). Let

ωA:c′
y:c = (bA:c′

y:c , dA:c′
y:c , uA:c′

y:c , aA:c′
y:c )

be a discounted opinion which source A has about y in a new or unknown context
c, derived by discounting A’s opinion on known contexts c’ ∈ C represented as
ωA

c′ = (bA
c′ , dA

c′ , uA
c′ , aA

c′) with the corresponding dogmatic opinions (e.g. sim(c,c’)).
Let source A also obtain an opinion about the unknown context c based on the
evidence available from the earlier contexts c’, by weighing the evidence (positive
and negative) with semantic similarity between c and c’, sim(c,c’) ∀c′ ∈ C.
Then the difference between the results from the weighing and from the discount
operator in subjective logic are statistically insignificant.

Proof. We substitute the values of belief, disbelief, uncertainty values in Eq. (9)
for Base Rate Discounting with the values from Eq. (1) and expectation value
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from Eq. (5). We obtain the new value of the discounted base rate opinion as
follows:

bA:c′
c = sim(c,c′)·pA

c′
(pA

c′+nA
c′+2)

dA:c′
c = sim(c,c′)·nA

c′
(pA

c′+nA
c′+2)

uA:c′
c = 1 − sim(c,c′)·(pA

c′+nA
c′ )

(pA
c′+nA

c′+2)
aA:c′

c = aA
c′ .

(9)

Equations (9) and (8) are pretty similar, except for the sim(c, c′).(pA
c′ + nA

c′)
factor in the weighing operator. In the following section we use a 95 % t-student
and Wilcoxon signed-rank statistical test to prove that the difference due to that
factor is not statistically significant for large values of sim(c, c′) (at least 0.5).

3.3 Evaluations

We show empirically the similarity between the weighing and the discounting.1

First Experiment: Discounting and Weighing in a Real-Life Case. We
propose here a first validation of the similarity between weighing and discounting
by using both of them in the process of estimation of the trustworthiness of a
series of tags derived from a cultural heritage crowdsourcing project.

Steve social tagging project dataset. For the purpose of our evaluations,
we use the “Steve Social Tagging Project” [25] data (in particular, the
“Researching social tagging and folksonomy in the ArtMuseum”), which
is a collaboration of museum professionals and others aimed at enhancing
social tagging. In our experiments, we used a sample of tags which the users
of the system provided for the 1784 images of the museum available online.
Most of the tags were evaluated by the museum professionals to assess their
trustworthiness. The tags can be single words or a string of words provided
by the user regarding any objective aspect of the image displayed to them
for the tagging. We used only the evaluated tags for our experiments.

Gathering evidence for evaluation. We select a very small set of semanti-
cally related tags, by using a Web-based WordNet interface [23]. We then
gather the list of users who provided the tags regarding the chosen words
and count the number of positive and the negative evidence. The chosen
tags are only three (Asian, Chinese and Buddhist), and they correspond to
206 entries in total (i.e., they are associated 206 times to one or more pic-
tures by one or more users). This represents a small sample compared to
the total number of tag entries (0.5 %). However, this experiment is meant
only to exemplify the use of the semantic similarity measure when one needs
to compute an opinion about a new context (e.g., “Chinese”), given two
existing ones (e.g., “Asian” and “Buddhist”). Therefore, we consider the
Chinese-Asian pair (semantic similarity 0.933) and the Chinese-Buddhist
pair (semantic similarity 0.6667). We refer to the second experiment for a

1 Complete results are available at http://trustingwebdata.org/books/URSW III/
slsw.zip.

http://trustingwebdata.org/books/URSW_III/slsw.zip
http://trustingwebdata.org/books/URSW_III/slsw.zip
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more indicative evaluation. The opinions are calculated using two differ-
ent methods. First by weighing the evidence with the semantic relatedness
using Eq. (8) and the second method is by discounting the evidence with the
semantic relatedness using Eq. (9).

Results. We employ the Student’s t-test and the Wilcoxon signed-rank test to
assess the statistical significance of the difference between two sample means.
At 95 % confidence level, both tests show a statistically significant difference
between the two means. This difference, for the Chinese-Asian pair is 0.025,
while for the Chinese-Buddhist pair is 0.11, thanks also to the high similarity
(higher than 0.5) between the considered topics. Having removed the average
difference from the results obtained from discounting (which, on average, are
higher than those from weighing), both the tests assure that the results of
the two methods distribute equally.

Second Experiment: Discounting and Weighing on a Large Simulated
Dataset. In the Steve.Museum dataset, the average number of annotations
provided by a given user is limited (about 20). To check if the two methods for
building subjective opinions using semantic similarity measures are significantly
different, we built a large dataset consisting of 1000 sample tags and we treated
the tags as if they were contributed by the same user. In this manner, we could
check if the two methods present relevant differences both when the evidence
amount is small or large. We perform the Student’s t-test and the Wilcoxon
signed-rank test to evaluate the hypothesis that the two methods are not statis-
tically significantly different. For semantic relatedness values sim(c, c′) > 0.7, the
mean difference between the belief values obtained by weighing and discount-
ing is 0.092. Thus with 95 % confidence interval, both tests assure that both
the weighing operator and the discounting operator produce similar results. The
semantic similarity threshold sim(c, c′) > 0.7 is relevant and reasonable, because
it becomes more meaningful to compute opinions for a new context based on the
opinions provided earlier for the most semantically related contexts, while also
in case of lack of evidence for a given context, evidence about a very diverse
context can not be very significant.

4 Combining Probabilistic Semantic Similarity Measures
Within Subjective Logic

The second extension that we propose regards the use of probabilistic semantic
similarity measures within subjective logic.

Wikipedia Relatedness Measure. The Wu and Palmer measure introduced
above is a deterministic semantic similarity measure, because it is deterministi-
cally computed based on the position of the two examined words in WordNet.
We want to exemplify the adoption in subjective logic of semantic similarity
measures belonging to another class, that is the probabilistic class of measures.
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These measures determine the semantic similarity between two words in a sta-
tistical manner, by checking the occurrence and co-occurrence of the two words
within a large corpora of documents. A famous example of this kind of similarity
measures is the Normalized Google Distance [9], which uses Google as a corpus
of documents.

We use the Wikipedia [27] relatedness measure, as defined by Milne et al.
[20,21] because of its easiness of use. This distance adapts the Normalized
Google Distance to use Wikipedia as a corpus of reference for computation.
The Wikipedia similarity distance is defined as follows:

sim(c, c′) =
log(max(|A|, |B|) − log(|AB|)
log(|W |) − log(min(|A|, |B|) (10)

where |A| and |B| are the cardinalities of the set of documents containing s1 and
s2 respectively, and |W | is the size of Wikipedia.

Moreover, Milne et al. provide a disambiguation confidence score for the
measure, that ranges between zero and one.

4.1 Wikipedia Relatedness Measure as a Subjective Opinion

As in the previous section, given two synsets (s1 and s2), we name c and c′ the
respective context identified by them. To differentiate from the previous section,
we use measure′ as a placeholder for probabilistic similarity measures.

The elements at our disposal from the Wikipedia distance are:

– sim(c, c′) ∈ [0, 1] is the semantic relatedness between two synsets a and b;
– conf (c, c′) ∈ [0, 1] is the confidence in the semantic relatedness between a

and b.

To represent the Wikipedia distance in subjective logic, we need to map all its
elements to specific elements (or combinations of elements) of subjective logic,
while taking into account the logic’s constraints and mechanisms (e.g., the fact
that b + d + u = 1). We provide a mapping for each of the elements above, and
we provide a motivation for them as follows.

1. conf (s1, s2) = 1 − umeasure′
c=c′ because the confidence value determines exactly

the portion of probability mass that is certain. Therefore, the remaining part
of the probability mass is assigned to the uncertainty element of subjective
opinions.

2. Emeasure′
c=c′ = sim(c, c′). That is, the expected value of the subjective opinion

should coincide with the similarity between the two synsets considered.
3. bmeasure′

c=c′ = conf (c, c′) · sim(c, c′) because the certain part of an opinion
(1 − u) is assigned b + d. Thus, we assign this mass proportionally to the
value of the similarity measure, to represent our belief in the two synsets
being semantically related.
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However, given the constraints of subjective logic, by virtue of Eq. (2) that
we report as follows,

Emeasure′
c=c′ = bmeasure′

c=c′ + ameasure′
c=c′ · umeasure′

c=c′

we obtain
sim(c, c′) = ameasure′

c=c′

which is, of course, wrong. The similarity value might depend on the subjective
opinion’s prior, but if the equation above holds, then we do not even need to
compute the opinion, since the a priori value would already give the similarity
value.

We propose, then, two mappings between subjective opinions and proba-
bilistic semantic similarity measures, each of them satisfying two of the three
requirements above. Of the three requirements, only the first one is considered as
unavoidable, because of the definition of the uncertainty of subjective opinions.

Definition 2 (Wikipedia relatedness measure of two synsets as a sub-
jective opinion (expected value as semantic similarity)). We define a
subjective opinion capturing the similarity between synseta and synsetb using
the Wikipedia distance as follows:

sim(c, c′) ≡ ωmesaure′
c=c′ (bmeasure′

c=c′ , dmeasure′
c=c′ , umeasure′

c=c′ ) (11)

where

bmeasure′
c=c′ = sim(c, c′) − ameasure′

c=c′ + ameasure′
c=c′ · conf (c, c′)

dmeasure′
c=c′ = sim(c, c′) + ameasure′

c=c′ − ameasure′
c=c′ · conf (c, c′) + conf (c, c′)

umeasure′
c=c′ = 1 − conf (c, c′),

(12)

hence
Emesaure′

c=c′ ≡ sim(c, c′). (13)

We provide here motivation for the mapping that we propose. We treat the
confidence value conf (c, c′) as the inverse of the uncertainty of a subjective
opinion. In fact, we interpret the confidence as the percentage of probability
mass confidently assigned by the semantic relatedness: the semantic relatedness
ranges between zero and one, but we are confident on only conf (c, c′)% of that
mass. The rest of the probability mass (1 − conf (c, c′)) is, indeed, uncertain.

We also set the expected value of the opinion to coincide with the similarity
value, that is:

Emeasure′
c=c′ = sim(c, c′)

From this, given Eq. (2), and having set umeasure′
c=c′ = 1 − conf (c, c′), follows

that:
bmeasure′
c=c′ = Emeasure′

c=c′ − ameasure′
c=c′ · (1 − conf (c, c′)) =

= sim(c, c′) − ameasure′
c=c′ · (1 − conf (c, c′)) =

= sim(c, c′) − ameasure′
c=c′ + ameasure′

c=c′ · conf (c, c′)
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and

dmeasure′
c=c′ = 1 − bmeasure′

c=c′ − umeasure′
c=c′ =

= 1 − (sim(c, c′) − ameasure′
c=c′ + ameasure′

c=c′ · conf (c, c′)) − (1 − conf (c, c′)),

so

dmeasure′
c=c′ = sim(c, c′) + ameasure′

c=c′ − ameasure′
c=c′ · conf (c, c′) + conf (c, c′).

In this manner we define an opinion that reflects our constraints, that is:
(1) uncertainty as inverse of the confidence of the semantic similarity value and
(2) semantic similarity value as expected value of the subjective opinion. How-
ever, this mapping has the undesirable consequence that the belief bmeasure′

c=c′ and
the disbelief dmeasure′

c=c′ depend on the a priori value ameasure′
c=c′ . So, we propose an

alternative mapping.

Definition 3 (Wikipedia relatedness measure of two synsets as a sub-
jective opinion (belief as semantic similarity times confidence)). We
propose here an alternative mapping that allows a subjective opinion to capture
the similarity between synset a and b using the Wikipedia distance. The mapping
is defined as follows:

sim(c, c′) ≡ ωmeasure′
c=c′ (bmeasure′

c=c′ , dmeasure′
c=c′ , umeasure′

c=c′ ), (14)

where
bmeasure′
c=c′ = conf (c, c′) · sim(c, c′)

dmeasure′
c=c′ = conf (c, c′) · (1 − sim(c, c′))

umeasure′
c=c′ = 1 − conf (c, c′).

(15)

Again, we set the constraint umeasure′
c=c′ = 1 − conf (c, c′), however we do not

bind the expected value of the opinion to be equal to sim(c, c′).

4.2 Using Wikipedia Relatedness Measure as a Subjective Opinion

We have shown in the previous subsection that we can represent Wikipedia
relatedness measures between two synsets or two words by means of subjective
opinion. As with many other subjective logic operators [17], we propose two pos-
sible mappings for the probabilistic semantic similarity measure. In particular,
the second mapping that we propose does not present the undesirable charac-
teristic shown by the first one, that is a dependency between a priori value and
belief in the mapped opinion. Of course, these two mappings are different, so we
do not check their equivalence, like we did in the previous section for the mapping
between subjective logic and probabilistic semantic similarity measures.

Our goal is to show how to represent semantic similarity measures in sub-
jective logic, to import externally defined elements in the logic and increase its
capabilities. The choice of the mapping is dependent on the specific constraints
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given by a domain or an application where the logic is used in combination with
the similarity measure, although our preference goes for the second mapping,
because the first one presents an already mentioned undesirable dependency
between belief and a priori value. The same reasoning applies to the choice of
the semantic similarity measure to adopt. Each semantic similarity measure has
specific limitations, like the requirement that words are present in a given graph
or corpus of documents. The choice of a specific semantic similarity measure is
beyond our focus, because it is a very domain- and application-dependent choice.

5 Partial Evidence Observation

The Web and the Semantic Web are pervaded of data that can be used as
evidence for a given purpose, but that constitute partially positive/negative
evidence for others. Think about the Waisda? tagging game [22]. Here, users
challenge each other about video tagging. The more users insert the same tag
about the same video within the same time frame, the more the tag is believed
to be correct. Matching tags can be seen as positive observations for a specific
tag to be correct. However, consider the orthogonal issue of the user reputation.
User reputation is based on past behavior, hence on the trustworthiness of the
tags previously inserted by him/her. Now, the trustworthiness of each tag is
not deterministically computed, since it is roughly estimated from the number
of matching tags for each tag inserted by the user. The expected value of each
tag, which is less than one, can be considered as a partial observation of the
trustworthiness of the tag itself. Vice-versa, the remainder can be seen as a
negative partial observation. After having considered tag trustworthiness, one
can use each evaluation as partial evidence with respect to the user reliability:
no tag (or other kind of observation) is used as a fully positive or fully negative
evidence, unless its correctness has been proven by an authority or by another
source of validation. However, since only rarely the belief (and therefore, the
expected value) is equal to one, these observations almost never count as a fully
positive or fully negative evidence. We propose an operator for building opinions
based on indirect observations, i.e., on observations used to build these opinions,
each of which counts as an evidence.

Theorem 3 (Partial evidence-based opinions). Let
−→
P be a vector of pos-

itive observations (e.g. a list of “hits” or “match” counts) about distinct facts
related to a given subject s. Let l be the length of

−→
P . Let each opinion based on

each entry of
−→
P have an a priori value of 1

2 . Then we can derive an opinion
about the reliability of the subject in one of the following two manners.

– By cumulating the expected values (counted as partial positive evidence) of
each opinion based on each element of p:

bs =
1

l + 2
Σl

i=1

pi + 1
pi + 2

ds =
1

l + 2
Σl

i=1

1
pi + 2

us =
2

l + 2
. (16)
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– By averaging the expected values of the opinions computed on each of the
elements of p:

bs =
1
3l

Σl
i=1

pi + 1
pi + 2

ds =
1
3

− 1
3l

Σl
i=1

1
pi + 2

us =
2
3
. (17)

Proof. For each “fact” about s we have at our disposal a count of positive pieces
of evidence. We treat each fact as an observation about the trustworthiness
of s. Examples of these observations are tags inserted by s in a crowdsourcing
platform, and the items of evidence are the approvals or matches that these tags
obtain. We do not set an upper limit to the amount of positive evidence. Rather,
we convert it into a subjective opinion and we compute its expected value as
follows (remember that no negative evidence is registered):

Ei = bi + ai · u =
pi

pi + 2
+

1
2

· 2
pi + 2

=
pi + 1
pi + 2

. (18)

E is considered as partial positive evidence. If p is an extremely high number,
then E is approximated to 1. Otherwise, 1 − E is considered as partial negative
evidence. Given that we have l pieces of partial evidence (because we have l

distinct elements in
−→
P ), we compute the opinion about s following Eq. (1). Here

we have two possibilities. If l contains evidence about distinct and independent
facts, then we can cumulate all the pieces of evidence (represented as Ei, 1−Ei)
and by setting:

ps = Σl
i=1

pi + 1
pi + 2

ns = Σl
i=1

1
pi + 2

,

we obtain Eq. (16). In fact, we consider each item of
−→
P as providing an obser-

vation about s.
If, instead,

−→
P contains dependent observations, then it makes sense to average

them in order to uniformly represent the evidence about s. In this case, we set:

ps =
1
l
Σl

i=1

pi + 1
pi + 2

ns =
1
l
Σl

i=1

1
pi + 2

.

Following again Eq. (1), we obtain Eq. (17). Note that, in this case, we use
only the average of the observation as item of evidence. Therefore, we have only
one item of evidence. This justifies the fact that in Eq. 17 we always have 3 as
denominator: following Eq. (1), p + n + 2 = 1 + 2 = 3. ��
More often, we use Eq. 16, because we consider the cases where evidence from
different and independent facts about the same individual are provided.

For instance, consider the Waisda? tagging game [22]. Here, users challenge
each other in tagging videos. Whenever two tag entries for the same video from
two different users match, the users get a score. Indeed a matched tag has a
higher probability to be correct, and the goal of the game is to collect reliable
tags by incentivizing the users. How can we estimate a user reliability? Suppose
that a user user added two different tags about two different videos. One of them
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got five matches, the other got two. We can compute a subjective opinion about
user that represents his reputation using Eq. (16) and we obtain:

ωuser

(

1
l + 2

Σl
i=1

pi + 1
pi + 2

,
1

l + 2
Σl

i=1

1
pi + 2

, us =
2

l + 2

)

=

ωuser

(

1
4

(

6
7

+
3
4

)

,
1
4

(

1
7

+
1
4

)

,
1
4

(

2
4

))

=

ωuser

(

55
112

,
11
112

,
1
2

)

.

If, instead, the two tags got the same scores as before, but they were inserted
for the same video in different matches, we can average their contribution, since
they provide indications about the user reliability in the same situation. What
we obtain using Eq. (17) is:

ωuser

(

1
3l

Σl
i=1

pi + 1
pi + 2

,
1
3

− 1
3l

Σl
i=1

1
pi + 2

,
2
3

)

=

ωuser

(

1
6

(

6
7

+
3
4

)

,
1
3

− 1
6

(

6
7

+
3
4

)

,
2
3

)

=

ωuser

(

55
168

,
1

168
,
2
3

)

.

This method, and in particular Eq. (16), has been adopted and implemented
in a work of ours [3].

6 Dirichlet Process-Based Opinions: Open World
Opinions

We present here an extension of subjective logic that allows using Dirichlet
processes called “open world opinions”. We start from introducing Dirichlet
processes, and then describe the extension.

6.1 Preliminaries: Dirichlet Process

The Dirichlet process [10] is a stochastic process representing a probability dis-
tribution whose domain is a random probability distribution. As we previously
saw, the binomial and multinomial opinions are equivalent to Beta and Dirichlet
probability distributions. The Dirichlet distribution represents an extension of
the Beta distribution from a two-category situation to a situation where one
among n possible categories has to be chosen. A Dirichlet process over a set
S is a stochastic process whose sample path (i.e. an infinite-dimensional set of
random variables drawn from the process) is a probability distribution on S.
The finite dimensional distributions are from the Dirichlet distribution: if H is
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a finite measure on S, α is a positive real number and X is a sample path drawn
from a Dirichlet process, written as

X ∼ DP (α,H), (19)

then for any partition of S of cardinality m, say {Bi}m
i=1

(X(B1), . . . , X(Bm)) ∼ Dirichlet(αH(B1), . . . , αH(Bm)). (20)

Moreover, given n draws from X, we can predict the next observation as:

obsn+1 =

{

x∗
i (i ∈ [1 . . . k]) with probability n(x∗

i )
n+α

H with probability α
n+α

(21)

where x∗
i is one of the k unique values among the observations gathered.

6.2 Open World Opinions

Having to deal with real data coming from the Web, which are accessed incre-
mentally, the possibility to update the relative probabilities of possible outcomes
might not be enough to deal with them. We may need to handle unknown cate-
gories of data which should be accounted and manageable anyway. Ceolin et al.
[8] show how it is important to account for unseen categories, when dealing
with Web data. Here, we propose a particular subjective opinion called “open
world opinion” which accounts for partial knowledge about the possible out-
comes. A subjective opinion resembles personal opinion provided by sources with
respect to facts. Open world opinions represent the case when something about a
given fact has been observed, but the evidence allows also for some other (not yet
observed) outcome to be considered as plausible. With this extension we allow
the frame of discernment to have infinite cardinality. In practice, open world
opinions allow to represent situations when the unknown outcome of an event
can be equal to one among a list of already observed values (proportionally to
the amount of observations for each of them), but it is also possible that (and so
some probability mass is reserved for cases where) the outcome is different from
what has been observed so far, and is drawn from an infinitely large domain.

Definition 4 (Open world opinion). Let: X be a frame of infinite cardinality,
α ∈ R

+, k be the number of categories observed,
−→
P be the array of evidence per

category,
−→
B be a belief function over X, and H be a continuous function repre-

senting the prior probabilities for all the categories considered. New observations
will belong to the previously observed categories with probability determined by
the previous observations and to a new category with a probability determined by
the parameter α (that determines the uncertainty u). New categories are drawn
from H. We define the open world opinion ωx as:

ωx(
−→
B, u,H)

bxi
=

pxi

α + Σk
i=1pxi

u =
α

α + Σk
i=1pxi

1 = u + Σxi
bxi

.
(22)
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Definition 5 (Expected value of open world opinion). The expected value
of a category xi given an open world opinion is computed as follows:

E(xi, ωx(
−→
B, u,H))) = bxi

+ H(xi) · u =
pxi

+ α · H(xi)
α + Σpxt

=
pxi

α + Σpxt

, (23)

where
−→
P is the array of evidence observed, α is the concentration parameter, that

determines how frequently observations belonging to new categories are likely to
appear (we often set this parameter to 1 as default value; higher values imply that
observations belonging to new categories are drawn with high probability), and H
is the base distribution of the Dirichlet process, that is the probability distribution
from which new categories are drawn with probability α

α+Σpxt
. Given that H is a

continuous probability distribution (and hence with an infinite number of values),
the probability of xi determined by H is zero.

Theorem 4 (Equivalence between the subjective and Dirichlet process
notation). Let ωbn

X = (
−→
B,U,H) be an open world opinion expressed in belief

notation, and ωpn
X = (

−→
P , α,H) be an opinion expressed in probabilistic notation

(i.e., using the notation from a Dirichlet process;
−→
P is an array of evidence),

both over the same frame X. ωbn
X and ωpn

X are equivalent when the following
mappings holds:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

bxi
=

pxi

α + Σk
i=1pxi

⇔
u =

α

α + Σk
i=1pxi

⎧

⎪

⎨

⎪

⎩

pxi
=

αbxi

U

1 = u + Σbxi
.

(24)

Proof. Each step of the Dirichlet process can be seen as a Dirichlet distribution.
Hence the mapping between Dirichlet distributions and multinomial opinions [14]
holds also here. ��
Theorem 5 (Mapping between open world opinion and multinomial
opinion). Let ω1x

y(
−→
B, u,H) be an open world opinion and let ω2x

y(
−→
B, u,−→a ) be

a multinomial opinion. Let X2 and Θ2 be the frame and the frame of discernment
of ω2x

y . Let {bi}k
i=1 be the result of the partition of dom(H) such that:

1. |Θ2| = |{bi}|;
2.

⋃{bi}k
i=1 = dom(H);

3. ∀{xi}[({xi} ∈ X2 ∧ |{xi}| = 1 ∧ xi ∈ bj) ⇒ �xk �=j ∈ bi].
4. W = k, where W is the non-informative constant of multinomial opinions

Then there exists a function D : Dom(H) → {bi} such that D(ω1x
y) = ω2x

y .

Proof. The equivalence between the discretized open world opinion and the
multinomial opinion is proven by showing that:
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– given Eq. (20), since the partition {bi}k
i=1 covers the entire dom(H), then the

partition distributes like the corresponding Dirichlet distribution;
– to each category of ω2x

y corresponds one and only one partition of {bi} as per
item 2 of Theorem 5. ��

In other words, open world opinions extend multinomial opinions by allowing
the frame of discernment Θ to be infinite. However, by properly discretizing an
open world opinion, what we obtain is an equivalent multinomial opinion.

6.3 Example: Using Open World Opinions

Here we illustrate an example of the use of open world opinions. Piracy at sea
is a well-known problem. Every year, several ships are attacked, hijacked, etc.
by pirates. The International Chamber of Commerce has created a repository
of reports about ship attacks.2 van Hage et al. [26] have created an enriched
Semantic Web version of such a repository, the Linked Open Piracy (LOP).3 On
the basis of LOP, one might think to be able to predict the frequency of attacks
from one year based on the previously available data. However, a problem arises
in this situation, since new attack types appear every year and this makes that
frequencies vary. Ceolin et al. [8] have shown how the Dirichlet process can
be employed to model such situations. Having the possibility to represent this
information by means of an open world opinion adds the power of subjective
logic to the Dirichlet process based representation. We can merge contributions
from different sources, taking into account their reliability. Moreover, we can
combine these facts with others in a logical way and then estimate the opinion
(and the corresponding probability to be true) of the consequent facts. By using
open world opinions, we can easily apply usual subjective logic operators to
these data and easily represent them in a way that takes into account basic
provenance information (e.g. data source) when applying fusing or discounting
operators. For instance, if according to LOP, in Asia in 2010 we had ten hijacking
events and ten attempted boardings, then we would represent this as:

ωLOP
Attacks in Asia in 2010([0.48, 0.48], 0.04, U(0, 1)).

If our opinion about LOP is that is a reliable but not fully accountable source
(e.g. ωus

LOP (0.8, 0.1, 0.1)), then we can take this information into account by
weighing the opinion given by LOP as follows:

ωus
LOP (0.8, 0.1, 0.1) ⊗ ωLOP

Attacks in Asia in 2010([0.48, 0.48], 0.04, U(0, 1)) =

= ωus:LOP
Attacks in Asia in 2010([0.384, 0.384], 0.232, U(0, 1)).

The resulting weighted opinion is more uncertain than the initial one, because,
even though the two observed types are more likely to happen, the small uncer-
tainty about the source reliability makes the other probabilities to rise.
2 http://www.icc-ccs.org
3 http://semanticweb.cs.vu.nl/lop

http://www.icc-ccs.org
http://semanticweb.cs.vu.nl/lop
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Having represented this information in subjective logic allows us to reason
on the data that we gathered. For instance, we could estimate the cost of the
insurance premium for a ship that goes along Asian routes, given that insur-
ance companies relate their premiums to the attack predicted to happen. By
means of Dirichlet processes these attacks are quite precisely predictable. The
determination of the cost of the premium given the happening of some attacks
is representable by means of logical statements. In the future, we will develop
subjective logic operators that allow to combine logically open world opinions.
However, representing these opinions is the first step towards the possibility to
permit this kind of reasoning.

Another useful consequence of this representation is the fact that, as we saw
in the example above, we take into account the reputation of the source when
modeling the opinion. We could also merge contributions from different sources,
once we have developed extensions of the fusion operators tailored for open world
opinions.

So, in the future we plan to develop subjective operators that extend those
currently existing in order to handle open world opinions. The logical operators
will allow combining propositions in logical manners (conjunction, disjunction,
etc.) and will probably allow ontological reasoning, although this needs to be
investigated further, for instance, with respect to the feasibility of subsumption
computation et simila. The fusion and discounting operators will allow handling
opinions from different sources and accounting for their reliability.

7 Related Work

The core element of subjective logic is the concept of “opinion” that is, the rep-
resentation that a given source holds with respect to the truth value of a given
proposition. Subjective logic’s operators allow combining opinions in different
manners, and their development has been widely investigated. Remarkably, the
averaging and cumulative fusion [13,14] (i.e., operators that allow averaging
or cumulating opinions about the same proposition from different sources) and
the discounting [16] (i.e., the operator that allows weighing a source’s opinion
based on the source’s reputation) operators are among the most generic and
useful operators for this logic. These operators provide the foundations for the
work proposed in this chapter. The connections between subjective logic and
the (Semantic) Web are increasing. Ceolin et al. [7] adopt this logic for comput-
ing trust values of annotations provided by experts, using DBpedia and other
Web sources as evidence. Unlike this work, they do not use semantic similar-
ity measures. Ceolin et al. [4,6] and Bellenger et al. [1] provide applications of
the combination of evidential reasoning with semantic similarity measures and
Semantic Web technologies. In this chapter we provide the theoretical founda-
tions for these approaches, and we generalize them. Sensoy et al. [24] use seman-
tic similarity in combination with subjective logic to import knowledge from one
context to another. They use the semantic similarity measure to compute a prior
value for the imported data, while we use it to weigh all the available evidence.
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Kaplan et al. [18] focus on the exploration of uncertain partial observations used
for building subjective opinions. Unlike their work, we restrict our focus on par-
tial observations of Web-like data and evaluations, which comprise the number
of “likes”, links and other similar indicators related to a given Web item. The
weighing and discounting based on semantic similarity measures can resemble the
work of Jøsang et al. [13], although the additional information that we include
in our reasoning (that is, semantic similarity) is related only to the frame of
discernment in subjective logic, and not to the belief assignment function.

8 Conclusion

We show the potential for employing subjective logic as a basis for reasoning on
Web and Semantic Web data. We show that it can be really powerful for handling
uncertainty and how little extensions can help in improving the mutual benefit
that Semantic Web and subjective logic obtain from cooperating together. We
propose the use of semantic similarity measures, both deterministic (in particu-
lar, the Wu and Palmer similarity measure) and probabilistic ones (in particular,
the Wikipedia semantic relatedness), within subjective logic. Part of this work
is based on previously mentioned practical applications that show the usefulness
of it, and here we provide theoretical foundations for it.

Second, we propose a means to represent subjective opinions on the basis of
partial evidence, which is a common phenomenon on the Web (e.g. number of
hits or number of tweets). This operator has been employed in a few empirical
works already, but here we provide a formal definition for it.

Lastly, we extend subjective opinions to model Dirichlet processes. These
have shown to be particularly useful to represent at least some Web datasets.
We introduce open world opinions to incorporate Dirichlet processes in subjective
logic.

We plan to investigate further the integration of semantic similarity measures
in subjective logic, to make it more uniform, and possibly provide best practices
that help choosing the right measure and mapping for a given set of requirements.
Also, we will provide additional operators for managing open world opinions. We
foresee that other extensions will be possible as well like, for instance, the usage
of hyperopinions [15] to handle subsumption reasoning about uncertain data.

Acknowledgements. This research was supported by the Data2Semantics and
SEALINC Media projects in the Dutch national program COMMIT.
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Abstract. Web data often manifest high levels of uncertainty. We focus
on categorical Web data and we represent these uncertainty levels as
first- or second-order uncertainty. By means of concrete examples, we
show how to quantify and handle these uncertainties using the Beta-
Binomial and the Dirichlet-Multinomial models, as well as how take into
account possibly unseen categories in our samples by using the Dirichlet
process. We conclude by exemplifying how these higher-order models
can be used as a basis for analyzing datasets, once at least part of their
uncertainty has been taken into account. We demonstrate how to use
the Battacharyya stastistical distance to quantify the similarity between
Dirichlet distributions, and use such results to analyze a Web dataset of
piracy attacks both visually and automatically.

Keywords: Uncertainty · Bayesian statistics · Non-parametric
statistics · Beta-Binomial · Dirichlet-Multinomial · Dirichlet process ·
Bhattacharyya distance

1 Introduction

The World Wide Web and the Semantic Web offer access to an enormous amount
of data and this is one of their major strengths. However, the uncertainty about
these data is quite high, due to the multi-authoring nature of the Web itself and
to its time variability: some data are accurate, some others are incomplete or
inaccurate, and generally, such a reliability level is not explicitly provided.

We focus on the real distribution of these Web data, in particular of categor-
ical Web data, regardless of whether they are provided by documents, RDF [33]
statements or other means. Categorical data are among the most important
types of Web data, because they include also URIs. We assume that any kind
of reasoning that might produce new statements (e.g. subsumption) has already
taken place. Hence, unlike for instance Fukuoe et al. [16], that apply proba-
bilistic reasoning in parallel to OWL [32] reasoning, we propose some models to
address uncertainty issues on top of that kind of reasoning layers. These mod-
els, namely the parametric Beta-Binomial and Dirichlet-Multinomial, and the
c© Springer International Publishing Switzerland 2014
F. Bobillo et al. (Eds.): URSW 2011-2013, LNAI 8816, pp. 265–288, 2014.
DOI: 10.1007/978-3-319-13413-0 14
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non-parametric Dirichlet process, use first- and second-order probabilities and
the generation of new classes of observations, to derive safe conclusions on the
overall populations of our data, given that we are deriving those from possibly
biased samples. These models are chosen exactly because they allow modeling
categorical datasets, while taking into account the uncertainty related to the fact
that we observe these datasets through samples that are possibly misleading or
only partially representative.

Our goal is twofold. On the one hand, we want to show that higher-order
probability distributions are useful to model categorical Web datasets while
coping with their uncertainty. Hence we compare them with first-order prob-
ability distributions and show that taking uncertainty into account is preferable,
for instance, when such distributions are used as a basis for prediction. On the
other hand, we also show that it is possible to use higher-order probability dis-
tributions as basis for data analyses, rather than necessarily focusing on the raw
data.

This chapter revises and extends the paper “Estimating Uncertainty of Cat-
egorical Web Data” [6], presented at the 7th International Workshop on Uncer-
tainty Reasoning for the Semantic Web at the 10th International Semantic Web
Conference 2011. The extension regards mainly the demonstration of use of
higher-order probability distributions as a basis for categorical Web data analy-
sis. In particular, we show how to use statistical distances (specifically, the
Bhattacharyya statistical distance) to identify patterns and relevant changes
in our data.

The chapter continues as follows. First we describe the scope of these models
(Sect. 2), second we introduce the concept of conjugate prior (Sect. 3), and then
two classes of models: parametric and non-parametric (Sect. 4). We show how it
is possible to utilize such models to analyze dataset from the Web (Sect. 5) and,
finally, we discuss the results and conclude (Sect. 6).

2 Scope of This Work

We define here the scope of the work presented in this chapter.

2.1 Empirical Evidence from the Web

Uncertainty is often an issue in case of empirical data. This is especially the case
with empirical Web data, because the nature of the Web increases the relevance
of this problem but also offers means to address it, as we see in this section. The
relevance of the problem is related to the utilization of the mass of data that
any user can find over the Web: can one safely make use of these data? Lots of
data are provided on the Web by entities the reputation of which is not surely
known. In addition to that, the fact that we access the Web by crawling, means
that we should reduce our uncertainty progressively, as long as we increment our
knowledge. Moreover, when handling our sample it is often hard to determine
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how representative such a sample is of the entire population, since often we do
not own enough sure information about it.

On the other hand, the huge amount of Web data gives also a solution for
managing this reliability issue, since it can provide the evidence necessary to
limit the risk when using a certain data set.

Of course, even within the Web it can be hard to find multiple sources assert-
ing about a given fact of interest. However, the growing dimension of the Web
makes it reasonable to believe in the possibility to find more than one data set
about the given focus, at least by means of implicit and indirect evidence.

This work aims to show how it is possible to address the described issues by
handling such empirical data, categorical empirical data in particular, by means
of the Beta-Binomial, Dirichlet-Multinomial and Dirichlet process models.

2.2 Requirements

Our approach needs to be quite elastic in order to cover several issues, as
described below. The non-triviality of the problem comes in a large part from
the impossibility to directly handle the sampling process from which we derive
our conclusions. The requirements that we need to meet are:

Ability to handle incremental data acquisition. The model should be
incremental, in order to reflect the process of data acquisition: as long as
we collect more data (even by crawling), our knowledge should reflect that
increase.

Prudence. It should derive prudent conclusions given all the available informa-
tion. In case not enough information is available, the wide range of possi-
ble conclusions derivable should clearly make it harder to set up a decision
strategy.

Cope with biased sampling. The model should deal with the fact that we are
not managing a supervised experiment, that is, we are not randomly sam-
pling from the population. We are using an available data set to derive safe
consequences, but these data could, in principle, be incomplete, inaccurate
or biased, and we must take this into account.

Ability to handle samples from mixtures of probability distributions.
The data we have at our disposal may have been drawn from diverse distri-
butions, so we cannot use the central limit theorem, because it relies on the
fact that the sequence of variables is identically distributed. This implies
the impossibility to make use of estimators that approximate by means of
the Normal distribution.

Ability to handle temporal variability of parameters. Data distributions
can change over time, and this variability has to be properly accounted.

Complementarity with higher-order layers. The aim of the approach is
to quantify the intrinsic uncertainty in the data provided by the reasoning
layer, and, in turn, to provide to higher-order layers (time series analysis,
decision strategy, trust, etc.), reliable data and/or metadata.
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2.3 Related Work

The models adopted here are applied in a variety of fields. For the parametric
models, examples of applications are: topic identification and document cluster-
ing [12,24], quantum physics [20], and combat modeling in the naval domain [23].
What these heterogeneous fields have in common is the presence of multiple lev-
els of uncertainty (for more details about this, see Sect. 4.1).

Also non-parametric models are applied in a wide variety of fields. Examples
of these applications include document classification [9] and haplotype infer-
ence [36]. These heterogeneous fields have in common with the applications
mentioned above the presence of several layers of uncertainty, but they also
show a lack of prior information about the number of parameters. These con-
cepts are treated in Sect. 4.2 where the Wilcoxon sign-ranked test [35], used for
validation purposes, falls into the non-parametric models class.

Our focus is on the statistical modeling of categorical Web data. The analysis
of categorical data is a widespread and well consolidated topic (see, for instance,
the work of Davis and Koch [7] or Agresti [1]). About the statistical analysis
of Web datasets, Auer et al. [3] present a statement-stream-based approach for
gathering comprehensive statistics about RDF datasets that differs from our
approach as we do not focus on streams. To our best knowledge, the chosen
models have not been applied to categorical Web data yet. We propose to adopt
them, because, as the following sections show, they fit the requirements previ-
ously listed. Moreover, we see models such as SCOVO [18], RDF Data Cube [8]
and VoID [2] as complementary to our work, since these would allow modeling
and publishing the results of our analyses.

3 Prelude: Conjugate Priors

To tackle the requirements described in the previous section, we adopt some
Bayesian parametric and non-parametric models in order to be able to answer
questions about Web data.

Conjugate priors [17] are the “leit motiv”, common to all the models adopted
here. The basic idea starts from the Bayes theorem (1): given a prior knowledge
and our data, we update the knowledge into a posterior probability.

P (A|B) =
P (B|A) ∗ P (A)

P (B)
(1)

This theorem describes how it is possible to compute the posterior probability,
P (A|B), given the prior probability of our data, P (A), the likelihood of the
model, given the data, P (B|A), and the probability of the model itself, P (B).

When dealing with continuous probability distributions, the computation
of the posterior distribution by means of Bayes theorem can be problematic,
due to the need to possibly compute complicated integrals. Conjugate priors
allow us to overcome this issue: when prior and posterior probability distributions
belong to the same exponential family, the posterior probability can be obtained
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by updating the prior parameters with values depending on the observed sample
[15]. Exponential families are classes of probability distributions with a density
function of the form f(x) = ea(q)b(x)+c(q)+d(x), with q a known parameter and
a, b, c, d known functions. Exponential families include many important probabil-
ity distributions, like the Normal, Binomial, Beta, etc., [11]. So, if X is a random
variable that distributes as defined by the function P (p) (for some parameter or
vector of parameters p) and, in turn, p distributes as Q(α) for some parameter
(or vector of parameters α called “hyperparameter”), and P belongs to the same
exponential family as Q,

p ∼ Q(α), X ∼ P (p)

then, after having observed obs,

p ∼ Q(α′)

where α′ = f(α, obs), for some function f . For example, the Beta distribution is
the conjugate of the Binomial distribution. This means that the Beta, shaped by
the prior information and by the observations, defines the range within which the
parameter p of the Binomial is probably situated, instead of directly assigning to
it the most likely value. Other examples of conjugate priors are: Dirichlet, which
is conjugate to the Multinomial, and Gaussian, which is conjugate to itself.

Conjugacy guarantees ease of computation, which is a desirable characteristic
when dealing with very big data sets as Web data sets often are. Moreover, the
model is incremental, and this makes it fit the crawling process with which
Web data are obtained, because crawling, in turn, is an incremental process.
Both the heterogeneity of the Web and the crawling process itself increase the
uncertainty of Web data. The probabilistic determination of the parameters of
the distributions adds a smoothing factor that helps to handle this uncertainty.

4 Higher-Order Probability Distributions for Modeling
Categorical Web Data

This section presents three higher-order probability distributions that are useful
to model uncertain categorical Web data. We present them in order of growing
complexity, and then we outline a procedure for employing these models.

4.1 Parametric Bayesian Models for Categorical Web Data

Here we handle situations where the number of categories is known a priori, by
using the Dirichlet-Multinomial model and its special case with two categories,
i.e. the Beta-Binomial model [15]. Since we handle categorical data, the Binomial
and the Multinomial distributions could be the natural choice to model them,
depending on whether these data are divided into two or more categories. The
Binomial and the Multinomial distributions allow modeling n draws from these
datasets. These presume that the frequency of the categories is known, but this
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is not possible in our case, because we have at our disposal only a data sample
which representativity is unknown. So we still model the data distributions by
means of Binomial or Multinomial distributions (depending on the number of
categories that we have), but we also model the parameters of these distributions
by means of Beta or Dirichlet distributions respectively, since these are conju-
gated with the Binomial and with the Multinomial distributions. The shape of
the Beta and of the Dirichlet distribution is determined by both the size and the
distribution of the sample observed. The resulting models (Beta-binomial and
Dirichlet-Multinomial) allow us to model the data distribution even though we
base our modeling on samples that are uncertain and limited in size.

These models are parametric, since the number and type of parameters is
given a priori, and they can also be classified as “empirical Bayesian models”.
This further classification means that they can be seen as an approximation of
a full hierarchical Bayesian model, where the prior hyperparameters are set to
their maximum likelihood values according to the analyzed sample.

Case Study 1 - Ratio Estimation. Suppose that a museum has to annotate
a particular item I of its collection. Suppose further, that the museum does not
have expertise in the house about that particular subject and, for this reason, in
order to correctly classify the item, it seeks judgments from outside people, in
particular from Web users that provide evidence of owning the desired expertise.

After having collected judgments, the museum faces two possible classifica-
tions for the item, C1 and C2. C1 is supported by four experts, while C2 by only
one expert. We can use these numbers to estimate a probability distribution that
resembles the correct distribution of C1 and C2 among all possible annotations.

A basic decision strategy that could make use of this probability distrib-
ution, could accept a certain classification only if its probability is greater or
equal to a given threshold (e.g. 0.75). If so, the Binomial distribution repre-
senting the sample would be treated as representative of the population, and
the sample proportions would be used as parameters of a Bernoulli distribution
about the possible classifications for the analyzed item: P (class(I) = C1) =
4/5 = 0.8, P (class(I) = C2) = 1/5 = 0.2. (A Bernoulli distribution describes
the possibility that one of two alternative events happens. One of these events
happens with probability p, the other one with probability 1 − p. A Binomial
distribution with parameters n, p represents the outcome of a sequence of n
Bernoulli trials having all the same parameter p.)

However, this solution shows a manifest leak. It provides to the decision
strategy layer the probabilities for each of the possible outcomes, but these
probabilities are based on the current available sample, with the assumption
that it correctly represents the complete population of all existing annotations.
This assumption is too ambitious. (Flipping a coin twice, obtaining a heads and
a tails, does not guarantee that the coin is fair, yet.)

In order to overcome this limitation, we should try to quantify how much we
can rely on the computed probability. In other words, if the previously computed
probability can be referred to as a “first-order” probability, what we need to
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compute now is a “second-order” probability [20]. Given that the conjugate prior
for the Binomial distribution representing our data is the Beta distribution, the
model becomes:

p ∼ Beta(α, β), X ∼ Bin(p, n) (2)

where α = #evidenceC1 + 1 and β = #evidenceC2 + 1.
By analyzing the shape of the conjugate prior Beta(5,2), we can be certain

enough about the probability of C1 being safely above our acceptance threshold.
In principle, our sample could be drawn by a population distributed with a 40 %–
60 % proportion. If so, given the threshold of acceptance of 0.75, we would not
be able to take a decision based on the evidence. However, the quantification of
that proportion would only be possible if we know the population. Given that we
do not have such information, we need to estimate it, by computing (3), where
we can see how the probability of the parameter p being above the threshold is
less than 0.5. This manifests the need for more evidence: our sample suggests to
accept the most popular value, but the sample itself does not guarantee to be
representative enough of the population.

P (p ≥ 0.75) = 0.4660645, p ∼ Beta(5, 2) (3)

Table 1 shows how the confidence in the value p being above the threshold grows
as long as we increase the size of the sample, when the proportion is kept. By
applying the previous strategy (0.75 threshold) also to the second-order proba-
bility, we still choose C1, but only if supported by a sample of size at least equal
to 15. Finally, these considerations could also be based on the Beta-Binomial
distribution, which is a probability distribution representing a Binomial which
parameter p is randomly drawn from a Beta distribution. The Beta-Binomial
summarizes model (2) in one single function (4). We can see from Table 2 that
the expected proportion of the probability distribution approaches the ratio of
the sample (0.8), as the sample size grows. If so, the sample is regarded as a
better representative of the entire population and the Beta-Binomial, as sample
size grows, converges to the Binomial representing the sample (see Fig. 1).

X ∼ BetaBin(n, α, β) = p ∼ Beta(α, β),X ∼ Bin(n, p) (4)

Table 1. The proportion within the sample is kept, so the most likely value for p is
always exactly that ratio. However, given our 0.75 threshold, we are sure enough only
if the sample size is 15 or higher.

#C1 #C2 P (p ≥ 0.75)p ∼ Beta(#C1 + 1,#C2 + 1)

4 1 0.47

8 2 0.54

12 3 0.88
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Fig. 1. Comparison between Binomial and Beta-Binomial with increasing sample size.
As the sample size grows, Beta-Binomial approaches Binomial.

Case Study 2 - Confidence Intervals Estimation. The Linked Open Piracy
(LOP)1 is a repository of piracy attacks that happened around the world in the
period 2005–2011, derived from reports retrieved from the ICC-CCS website.2

Attack descriptions are provided, in particular covering their type (boarding,
hijacking, etc.), place, time, as well as ship type.

Data about attacks is provided in RDF format, and a SPARQL [34] endpoint
permits to query the repository. Such a database is very useful, for instance, for
insurance companies to properly insure ships. The premium should be related to

Table 2. The sample proportion is kept, but the “expected proportion” p of Beta-
Binomial passes the threshold only with a large enough sample. E(X) is the expected
value.

X E(X) p = E(X)/n

BetaBin(5,5,2) 3.57 0.71

BetaBin(5,9,3) 3.75 0.75

BetaBin(5,13,4) 3.86 0.77

1 http://semanticweb.cs.vu.nl/lop
2 http://www.icc-ccs.org/

http://semanticweb.cs.vu.nl/lop
http://www.icc-ccs.org/
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both ship conditions and their usual route. The Linked Open Piracy repository
allows an insurance company to estimate the probability of a ship to be victim of
a particular type of attack, given the programmed route. Different attack types
imply different risk levels.

an
ch

or
ed

at
te

m
pt

ed

bo
ar

de
d

fir
ed

_u
po

n

hi
ja

ck
ed

m
oo

re
d

no
t_

sp
ec

ifi
ed

ro
bb

ed

su
sp

ic
io

us

un
de

rw
ay

P
(X

)

0.0

0.1

0.2

0.3

0.4

0.5

Attack types

Fig. 2. Attack type proportion and confidence intervals.

However, directly estimating the probability of a new attack given the dataset,
would not be correct, because, although derived from data published from an
official entity like the Chamber of Commerce, the reports are known to be incom-
plete. This fact clearly affects the computed proportions, especially because it
is likely that this incompleteness is not fully random. There are particular rea-
sons why particular attack types or attacks happening in particular zones are
not reported. Therefore, beyond the uncertainty about the type of next attack
happening (first-order uncertainty), there is an additional uncertainty order due
to the uncertainty in the proportions themselves. This can be handled by a
parametric model that allows estimating the parameters of a Multinomial dis-
tribution. The model that we adopt is the multivariate version of the model
described in Subsect. 4.1, i.e., the Dirichlet-Multinomial model [12,23,24]:

Attacks ∼ Multinom(params), params ∼ Dirichlet(−→α ) (5)
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where −→α is the vector of observations per attack type (incremented by one unit
each, as the α and β parameters of Beta probability distribution). By adopting
this model, we are able to properly handle the uncertainty carried by our sample,
due to either time variability (over the years, attack type proportions could
have changed) or biased samples. Drawing the parameters of our Multinomial
distribution from a Dirichlet distribution instead of directly estimating them,
allows us to compensate for this fact, by smoothing our attacks distribution. As
a result of the application of this model, we can obtain an estimate of confidence
intervals for the proportions of the attack types (with 95 % of significance level,
see Eq. (6)). These confidence intervals depend both on the sample distribution
and on its dimension (Fig. 2).

∀p ∈ param,CIp = (p − θ1, p + θ2), P (p − θ1 ≤ p ≤ p + θ2) = 0.95 (6)

4.2 Non-parametric Bayesian Models

In some situations, the previously described parametric models do not fit our
needs, because they set a priori the number of categories, but this is not always
possible. In the previous example, we considered and handled uncertainty due to
the possible bias of our sample. The proportions shown by our sample could be
barely representative of the entire population because of a non-random bias, and
therefore we were prudent in estimating densities, even not discarding entirely
those proportions. However, such an approach lacks in considering another type
of uncertainty: we could not have seen all the possible categories and we are not
allowed to know all of them a priori. Our approach was to look for the prior
probability to our data in the n-dimensional simplex, where n is the number
of categories, that is, possible attack types. Now such an approach is no more
sufficient to address our problem. What we should do is to add yet another
hierarchical level and look for the right prior Dirichlet distribution in the space
of the probability distributions over probability distributions (or space of sim-
plexes). Non-parametric models differ from parametric models in that the model
structure is not specified a priori but is instead determined from data. The term
non-parametric is not meant to imply that such models completely lack para-
meters, but that the number and nature of the parameters are flexible and not
set in advance. Hence, these models are also called “distribution free”.

Dirichlet Process. Dirichlet processes [14] are a generalization of Dirichlet dis-
tributions, since they correspond to probability distributions of Dirichlet proba-
bility distributions. They are stochastic processes, that is, sequences of random
variables (distributed as Dirichlet distributions) which value depends on the
previously seen ones. Using the so-called “Chinese Restaurant Process” repre-
sentation [26], it can be described as follows:

Xn =

{

X∗
k with probability numn−1(X

∗
k)

n−1+α

new draw from H with probability α
n−1+α

(7)
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where H is the continuous probability measure (“base distribution”) from which
new values are drawn, representing our prior best guess. Each draw from H
returns a different value with probability 1. α is an aggregation parameter,
inverse to the variance: the higher α, the smaller the variance, which can be
interpreted as the confidence value in the base distribution H: the higher the
α value is, the more the Dirichlet process resembles H. The lower the α is, the
more the value of the Dirichlet process tends to the value of the empirical dis-
tribution observed. Each realization of the process is discrete and is equivalent
to a draw from a Dirichlet distribution, because, if

G ∼ DP (α,H) (8)

is a Dirichlet process, and {B}n
i=1 are partitions of the domain of H, S, we have

that
(G(B1)...G(Bn)) ∼ Dirichlet(αH(B1)...αH(Bn)) (9)

If our prior Dirichlet process is (8), given (9) and the conjugacy between
Dirichlet and Multinomial distribution, our posterior Dirichlet process (after
having observed n values θi) can assume one of the following representations:

(G(B1)...G(Bn))|θ1...θn ∼ Dirichlet(αH(B1) + nθ1 ...αH(Bn) + nθn
). (10)

G | θ1...θn ∼ DP

(

α + n,
α

α + n
H +

n

α + n

Σn
i=1δθi

n

)

(11)

where δθi
is the Dirac delta function [10], i.e., the function having density only in

θi. The new base function is therefore a merge of the prior H and the empirical
distribution, represented by means of a sum of Dirac delta’s. The initial status
of a Dirichlet process posterior to n observations, is equivalent to the nth status
of the initial Dirichlet process that produced those observations (using the De
Finetti theorem [19]).

The Dirichlet process, starting from a (possibly non-informative) “best guess”,
as long as we collect more data, approximates the real probability distribution.
Hence, it correctly represents the population in a prudent (smoothed) way, exploit-
ing conjugacy like the Dirichlet-Multinomial model, that approximates well the
real Multinomial distribution only with a large enough data set (see Subsect. 4.1).
The improvement of the posterior base distribution is testified by the increase of
the α parameter, proportional to the number of observations.

Case Study 3: Unseen Categories Generation. We aim at predicting the
type distributions of incoming attack events. In order to build an “infinite cat-
egory” model, we need to allow for event types to be randomly drawn from
an infinite domain. Hence, we map already observed attack types with random
numbers in [0..1] and, since all events are a priori equally likely, then new events
are drawn from the Uniform distribution, U(0, 1), that is our base distribution
(and is a measure over [0..1]). The model is:
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– type1 ∼ DP (α,U(0, 1)): the prior over the first attack type in region R;
– attack1 ∼ Categorical(type1): type of the first attack in R during yeary.

After having observed attack1...n during yeary, our posterior process becomes:

typen+1 | attack1...n ∼ DP

(

α + n,
α

α + n
U(0, 1) +

n

α + n

Σn
i=1δattacki

n

)

where α is a low value, given the low confidence in U(0, 1), and typen+1 is the
prior of attackn+1, that happens during yeary+1. A Categorical distribution is a
Bernoulli distribution with more than two possible outcomes (see Subsect. 4.1).

Results. Focusing on each region at time, we simulate all the attacks that hap-
pened there in yeary+1. Names of new types generated by simulation are matched
to the actual yeary+1 names, that do not occur in yeary, in order of decreasing
probability. The simulation is compared with a projection of the proportions of
yearn over the actual categories of yearn+1. The comparison is made by mea-
suring the distance of our simulation and of the projection from the real attack
types proportions of yeary+1 using the Manhattan distance [22]. This metric
simply sums, for each attack type, the difference between the real yeary+1 prob-
ability and the one we forecast. Hence, it can be regarded as an error measure.
Table 3 summarizes the results over the entire dataset.3 Our simulation reduces
the distance (i.e. the error) with respect to the projection, as confirmed by a
Wilcoxon signed-rank test [35] at 95 % significance level. (This non-parametric
statistical hypothesis test is used to determine whether one of the means of the
population of two samples is smaller/greater than the other.) The simulation
improves when a large amount of data is available and the category cardinality
varies, as in case of Region India, which results are reported in Figs. 3 and 4a.

Table 3. Averages and variances of the prediction errors. The simulation gets a better
performance.

Simulation Projection

Average distance 0.29 0.35

Variance 0.09 0.21

4.3 Model Selection and Utilization

Here we provide generic indication about the choice and use of the models
described before.

3 The code is available at http://trustingwebdata.org/books/URSW III/DP.zip.

http://trustingwebdata.org/books/URSW_III/DP.zip
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Fig. 3. Comparison between the projection forecast and the simulation forecast with
the real-life year 2006 data of region India.

Model Selection. The models presented above are closely related each other,
since each of them represents a generalization of the preceding model. Algo-
rithm1 is the algorithm that we propose for choosing the right model to apply
when handling categorical Web data. It is rather simple and, under the assump-
tion that we are handling categorical data, determines the choice of the model
to use based on the number of categories that are known to be present in the
data.

Model Building. Once the model has been selected, we build it based on the
observations at our disposal as follows:

Beta-Binomial. The Beta-binomial model has three parameters: n, i.e. the
number of draws performed and α and β, that are the frequencies of the two
categories. In case no prior knowledge is available, we add the uninformative
prior 1 to each frequency parameter. Otherwise, we add the prior frequency
to each parameter.
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Fig. 4. Error distance from real distribution of the region India (Fig. 4a) and differ-
ences of the error of forecast based on simulation and on projection (Fig. 4b). Positive
difference means that the projection predicts better than our simulation.
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if the number of categories is known then
if the number of categories is two then

return Beta-Binomial
else

return Dirichlet-Multinomial
end

else
return Dirichlet Process

end
Algorithm 1. Model Selection Algorithm.

Dirichlet-Multinomial. This model has a vector −→α of frequency parameters,
plus the same n parameter indicating the number of draws to perform, as
above. The frequency parameters need to be populated with the absolute
frequencies observed. In case no prior knowledge is available, we add the
uninformative prior 1 to each frequency parameter. Otherwise, we add the
prior frequency to each parameter.

Dirichlet Process. The Dirichlet Process is determined by two parameters: the
concentration parameter α and the base distribution H. If no prior informa-
tion is available, we set α = 1 and H = U(0, 1), where U stands for the
Uniform probability distribution. Then, after n categorical observations, we
obtain the process described in Eq. 11.

Model Utilization. In the examples above, we used the process for predic-
tion. In the following analyses we use them for comparison. To compare models,
we compute similarity measures between probability distributions and analyze
them. We present a detailed description of this utilization of the models in the
following section. To perform predictions, i.e., to draw from the probability dis-
tributions, we proceed as follows:

Beta-binomial (and Dirichlet-multinomial). Randomly draw a parameter
p (or a vector of parameters −→p in the case of the Dirichlet-multinomial) from
a Beta (Dirichlet) distribution shaped by the frequency parameters α and
β (−→α ) described above. Then, randomly draw from a Binomial (Dirichlet)
distribution shaped by the parameter p (−→p ).

Dirichlet Process. Draw from the Dirichlet distribution described above and
in Eq. 11. If the drawn value has not been observed yet, then draw again
from the base distribution H. Then update the process in order to obtain a
new Dirichlet distribution representing its updated state.

5 Analyzing Datasets Using Higher-Order Probability
Distributions

In the previous sections we have shown that higher-order probability distribu-
tions are useful to model Web data and account for their uncertainty. Here we
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want to show that higher-order probability distributions, despite the fact that
they introduce a computational layer in the data management process, are eas-
ily utilizable as a basis for data analyses. The analyses presented here aim at
showcasing how a data analyst could use the models presented before to derive
insights from the data, for summarizing them and for extracting potentially
useful information from large datasets. Besides the uncertainty management
advantage, these models provide a means to abstract the data we analyze, thus
allowing us to identify interesting patterns and regularities that would be hidden
otherwise.

We apply our analyses on the LOP dataset introduced before. In the previous
section, and in particular in Case Study 3 (Subsect. 4.2), we represent piracy
attacks spread over the world by means of Dirichlet processes that “generate” the
attacks over time. Each step of the Dirichlet process is represented by a Dirichlet
distribution. We analyze the type distribution of the attacks with respect to time
and regions. So, we use the data at our disposal to build one Dirichlet distribution
per region per year, to represent the attack types distributions while taking into
account the uncertainty in the data. Then, we use a statistical similarity to
measure the likeness of distributions over time and regions. Clearly, we could
have used different methods (e.g., mixture models), but we prefer this approach
for its flexibility and simplicity (Fig. 5).

Data

Uncertainty
Management

Analyses

Fig. 5. Data abstraction and analysis overview.

5.1 Bhattacharyya Distance

We adopt the Bhattacharyya distance [4] to quantify the similarity between
attack types distributions. The Bhattacharyya distance is a measure of diver-
gence between probability distributions, that allows measuring the dissimilarity
between two continuous or discrete probability distributions. As such, it goes
from zero (when the compared distributions are identical) to infinite (when there
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is no overlap between the compared distributions). For continuous probability
distributions, it is defined as follows:

DB(dista, distb) = − ln
(∫

√

dista(x)distb(x)dx

)

When applied to the Dirichlet Distributions (Rauber et al. [28]), the
Bhattacharyya distance becomes:

DB(Dira(x1, . . . , xn),Dirb(y1, . . . , yn)) =

Γ

⎛

⎝
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⎠

An advantage of the adopted approach is that the computation of the
Bhattacharyya distance is particularly convenient. The only change we apply
to the distance is to apply the logarithm base 2 to the result of the measure
when the value is different from zero. This allows us to handle large numbers
without any problem. Thus, the formula becomes:

sim(Dira,Dirb) =

{

0, if DB(Dira,Dirb) = 0
log2(DB(Dira,Dirb)), otherwise

5.2 Analysis of the Distribution of Piracy Attacks

We measure the Bhattacharyya distance for all the possible combinations of
regions and years in the LOP dataset at our disposal. Since the set obtained
by computing such similarities is rather big, we split it in two manners: first we
look at the similarity of the attack type distributions of different regions, year by
year, and second, we analyze the temporal evolution of such similarities, region
by region. In this manner, we aim at identifying: (1) similarities in the type
distribution across different regions and, (2) patterns related to the temporal
distribution of attack types across different regions.

Attack Type Distribution Analysis per Year. We start by grouping our
distances per year, and by analyzing their distribution across different regions
of the world. In this manner, we aim at identifying similarities between regional
attack distributions, while taking into account the temporal evolution of the
attacks. Figure 6 shows six heatmaps representing the similarity between all pos-
sible combinations of regions for the years considered. Here, we can identify a
few peculiar facts. For instance, Indonesia happens to be a region particularly
different from the others (due to the presence of a high number of “boarded”
and “attempted” attacks in that region), although this difference reduces in the
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last years of the period considered. With respect to previous analyses based
on the actual piracy attacks counts [31], this difference is higher. From a man-
ual investigation, we note that, besides a difference in the data distribution,
Indonesia presents a difference in the total number of attacks registered. The
higher-order models that we propose allow taking into account both aspects at
the same time. Also, we note that the region that comprises India and Bengal
differentiates from the rest in the first three years considered, while an important
change in the similarity trend happens in Gulf of Aden in 2008 and continues
afterwards.

Attack Type Distribution Analysis per Region. Figures 7 and 8 show a
series of heatmaps representing the yearly distribution of piracy attacks, grouped
by region. Here we can see, for instance, that North America (and, in part, also
Europe) is characterized by being quite uniform in its distributions (thanks also
to the fact that piracy attacks are quite rare in this region). Also, 2009 and 2010
are two years representing a changing point in several regions (e.g., Gulf of Aden,
South America). Given the extension of such changes, we suppose this might be
due to one or more events causing the global distribution of piracy attacks to
change, although we are not aware of any.

5.3 Automating Piracy Attacks Analysis

The previous section proposes a combination of automatic and visual analysis
of the data. Here we finally propose a procedure for automating the process of
identifying potential interesting pieces of data in our datasets.

compute distance matrix. This procedure computes a similarity matrix that
contains a distance between higher-order probabilistic models (e.g., the
Bhattacharyya distance defined above in our case).

aggregate data. This procedure aggregates the data with respect to a feature
of interest. For instance, we can aggregate the data by time or region of the
world, to see variation of attack types over either time or space.

changepoint. This procedure relies on the R package “ChangePoint” [21] and
identifies points in the aggregated series of piracy attacks distributions that
significantly differ from the rest. In particular, we make use of the cpt.meanvar
function of the package, that determines the change point on the basis of a
change in the mean and variance with respect to the rest of the series.

Results. We run the above procedure on the LOP dataset, and we obtained:

Regional Aggregation. India and Bengal (in 2005), Indonesia (in 2006), West
Africa (in 2007, 2008 and 2010) are the regions identified as change points;

Yearly Aggregation. 2005 (in East Africa, North America and West Africa),
2006 (in Europe and Gulf of Aden), 2007 (in East Asia), 2008 (in Caribbean,
India and Bengala, Indonesia, Middle East, South-East Asia and South
America) are the years indicated as change point.
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Fig. 6. Heatmaps of the similarity of attack type distributions of different regions of
the world, divided by years.
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Fig. 7. Attack type distributions of different regions of the world.
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Data: A dataset (dataset) of piracy attacks
Result: A set of change points in the piracy attacks dataset
Data Analysis dataset

dm ← compute distance matrix (dataset);
agg data ← aggregate data (dm);
res ← changepoint (agg data);
return res;

Algorithm 2. Data Analysis Algorithm.

The results of the visual and of the automated analyses present an overlap.
The differences are possibly due to the change point detection algorithm chosen.
The use of other algorithms will be investigated in the future.

6 Conclusions and Future Work

We propose a series of higher-order probabilistic models to manage Web data and
we show that these models allow us to take into account the inner uncertainty
of these data, while providing a probabilistic model that allows reasoning about
the data. We demonstrate that these models are useful to handle the uncertainty
present in categorical Web data by showing that predictions based on them are
more accurate than predictions based on first-order models. Higher-order models
allow us to compensate the fact that they are based on limited or possibly
biased samples. Moreover, we show how these models can be adopted as a basis
for analyzing the datasets that they model. In particular, we show through a
case study, how to exploit statistical distances of probability distributions to
analyze the data distribution to identify interesting points within the dataset.
This kind of analysis can be used by data analysts to have an insight about the
dataset, possibly to be combined with domain knowledge. We propose two kinds
of analyses, one based on visual interpretation of heatmaps, the other one based
on automatic determination of change points by means of a procedure that we
introduce. The results obtained with these two analyses are partially overlapping.
Differences are possibly due to the choice of the change point detection algorithm.

In the future, we aim at expanding this work in two directions. Firstly, we
plan to extend the set of models adopted, to deal with concrete domain data
(e.g. time intervals, by means of the Poisson process [15]), and more sophisti-
cated to improve the uncertainty management part (e.g., Mixture Models [27],
Nested [29] and Hierarchical Dirichlet processes [30] and Markov Chain Monte
Carlo algorithms [13,25]). Secondly, we will work on the generalization of the
data analysis procedures, by combining this work with a previous work on the
analysis of the reliability of open data [5] and extending both of them.
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Abstract. Representing and reasoning about preferences is a key issue
in many real-world scenarios in which personalized access to information
is required. Many approaches have been proposed and studied in the
literature that allow a system to work with qualitative or quantitative
preferences; among the qualitative models, one of the most prominent are
CP-nets. Their clear graphical structure unifies an easy representation
of user preferences with good computational properties when computing
the best outcome. In this paper, we show how to reason with CP-nets
when the attributes modeling the knowledge domain are structured via
an underlying domain ontology. We show how the computation of all
undominated feasible outcomes of an ontological CP-net can be reduced
to the solution of a constraint satisfaction problem, and study the com-
putational complexity of the basic reasoning problems in ontological
CP-nets.

1 Introduction

During the recent years, several revolutionary changes have been taking place in
the classical Web. First, the so-called Web of Data is increasingly being realized
as a special case of the Semantic Web. Second, as part of the Social Web, users
are acting more and more as first-class citizens in the creation and delivery of
contents on the Web. The combination of these two technological waves is called
the Social Semantic Web (or also Web 3.0), where the classical Web of interlinked
documents is gradually turning into (i) semantic data and tags constrained by
ontologies, and (ii) social data, such as connections, interactions, reviews, and
tags. The Web is thus shifting away from data on linked Web pages and towards
more semantic and social data. This requires new technologies for search and
query answering, where the ranking of search results is no longer solely based on
the link structure between Web pages, but rather on the information available in
the Social Semantic Web—in particular, the underlying ontological knowledge
and the preferences of the users. Given a query, the latter play a fundamental
role when a crisp yes/no answer is not enough to satisfy a user’s needs, as there
might be a certain degree of uncertainty in the possible answers [14].
c© Springer International Publishing Switzerland 2014
F. Bobillo et al. (Eds.): URSW 2011-2013, LNAI 8816, pp. 289–308, 2014.
DOI: 10.1007/978-3-319-13413-0 15
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There exist two main ways of modeling preferences: (a) quantitative
preferences are associated with a number (or a quantity) representing their worth
(e.g., “my preference for wi-fi connection is 0.8” and “my preference for cable
connection is 0.4”), while (b) qualitative preferences are related to each other
via pairwise comparisons (e.g., “I prefer wi-fi over cable connection”). The two
approaches can also be combined (see, e.g., [24]). In many applications in prac-
tice, it is more natural to use a qualitative approach, as humans are not always
comfortable or capable of expressing their preferences via a meaningful numer-
ical value. To have a quantitative representation of her preferences, the user
needs to explicitly determine a value for a large number of alternatives, usually
described by more than one attribute. It is generally much easier to provide
information about preferences as pairwise qualitative comparisons [14]. One of
the most powerful qualitative preference formalisms are perhaps CP-nets [5],
which are described in a graphical way and unifies an easy representation of user
desires with nice computational properties when computing the best outcome.

Previous work on CP-nets, and more generally on preference representa-
tion approaches, mainly deals with a propositional representation of preferences.
In this paper, we propose an enhancement of CP-nets by adding ontological
information associated with preferences. We especially aim at using the resulting
ontology-based partial strict orders in personalized semantic search on the Social
Web. This is a first step towards a new type of ranking technologies, which are
based on ontological and personalized information, and which go beyond PageR-
ank and similar rankings. They will exploit ontological background knowledge as
well as social information (e.g., from social networks and other platforms) and
model them as semantic-enabled user preferences.

The main contributions of this paper can be briefly summarized as follows.

– We introduce ontological CP-nets, which combine CP-nets with description
logics (DLs) so that variable values (which can be non-Boolean) correspond
to DL concepts relative to an underlying domain TBox. We define the notions
of feasible outcomes, dominance between such outcomes, and consistency in
this context.

– We define the semantics of ontological CP-nets by a reduction to the notion of
constrained CP-nets, which allows the problem of finding optimal outcomes
in ontological CP-nets to be reduced to a constraint satisfaction problem.

– We study the complexity of the main reasoning problems for ontological
CP-nets, namely consistency checking, whether a given outcome is undom-
inated, and dominance testing, in relation to both the complexity of checking
satisfiability of the underlying ontological language and the structure of the
CP-net:
• For tractable ontology languages, we show that the complexity is deter-

mined by that of CP-nets; i.e., the problems are complete for PSPACE.
• For EXP- (resp., NEXP-) complete ontology languages, the complexity of

these problems is dominated by the complexity of the ontology language.
• Finally, if the CP-net is a polytree, and the ontology language is tractable,

we show that dominance can be decided in polynomial time.
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The rest of this paper is organized as follows. In Sect. 2, we briefly recall the
background on description logics (DLs) and on CP-nets. Section 3 introduces
ontological CP-nets, i.e., CP-nets enriched with ontological descriptions, while
Sect. 4 describes how to compute optimal outcomes of ontological CP-nets. In
Sects. 5 and 6, we provide complexity results and discuss related work, respec-
tively. Finally, we give a summary of the results presented in this paper and an
outlook on future work.

2 Preliminaries

In this section, we briefly recall from the literature the basics of description logics
(DLs) and of CP-nets (a graphical representation for conditional preferences),
which both form the main components of the formalism that we present in this
paper.

2.1 Description Logics

Intuitively, description logics (DLs) [1] model a domain of interest in terms of
concepts and roles, which represent classes of individuals and binary relations on
classes of individuals, respectively. A DL knowledge base (or ontology) encodes
in particular (i) subsumption relationships between concepts, (ii) subsumption
relationships between roles, (iii) instance relationships between individuals and
concepts, and (iv) instance relationships between pairs of individuals and roles,
which represent (i) subset relationships between classes of individuals, (ii) subset
relationships between binary relations on classes of individuals, (iii) the mem-
bership of individuals to classes, and (iv) the membership of pairs of individuals
to binary relations on classes, respectively. There are many different DLs of
different expressiveness [1]. In this section, we recall the DLs SHIF(D) and
SHOIN (D), which stand behind the web ontology languages OWL Lite and
OWL DL [18], respectively. Note, however, that the approach in this paper does
not depend on a specific DL and may, e.g., also be applied to the very expressive
SROIQ(D), which is the logic language behind OWL 2 [30].

Syntax. We now recall the syntax of SHIF(D) and SHOIN (D). We first
describe the syntax of the latter, which has the following datatypes and elemen-
tary components. We assume a set of elementary datatypes and a set of data
values. A datatype is an elementary datatype or a set of data values (called
datatype oneOf ). A datatype theory D= (ΔD, ·D) consists of a datatype domain
ΔD and a mapping ·D that assigns to each elementary datatype a subset of
ΔD and to each data value an element of ΔD. We extend·D to all datatypes by
{v1, . . .}D = {vD

1 , . . .}. Let A, RA, RD, and I be pairwise disjoint sets of atomic
concepts, abstract roles, datatype roles, and individuals, respectively. We denote
by R−

A the set of inverses R− of all R ∈RA.
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Roles and concepts are defined as follows. A role is any element of RA ∪R−
A

∪RD. Concepts are inductively defined as follows. Each φ ∈A is a concept, and
if o1, . . . , on ∈ I, then {o1, . . . , on} is a concept (called oneOf). If φ, φ1, and φ2

are concepts and if R ∈RA ∪R−
A, then also ¬φ, (φ1 � φ2), and (φ1 � φ2) are

concepts (called negation, conjunction, and disjunction, respectively), as well
as ∃R.φ, ∀R.φ, �nR, and �nR (called existential, value, atleast, and atmost
restriction, respectively) for an integer n� 0. Note that for decidability reasons,
number restrictions will be restricted to simple abstract roles (see below). If D is
a datatype and U ∈RD, then ∃U.D, ∀U.D, �nU , and �nU are concepts (called
datatype existential, value, atleast, and atmost restriction, respectively) for an
integer n� 0. We use � (resp., ⊥) to abbreviate the top (resp., bottom) concept
φ�¬φ (resp., φ�¬φ). Furthermore, we write ∃R to abbreviate ∃R.�, and we
eliminate parentheses as usual.

We next define axioms and knowledge bases. An axiom is an expression of
one of the following forms: (1) φ 
ψ (called concept inclusion axiom), where
φ and ψ are concepts; (2) R 
S (called role inclusion axiom), where either
R,S ∈RA ∪R−

A or R,S ∈RD; (3) Trans(R) (called transitivity axiom), where
R ∈RA; (4) φ(a) (called concept membership axiom), where φ is a concept and
a∈ I; (5) R(a, b) (resp., U(a, v)) (called role membership axiom), where R ∈RA

(resp., U ∈RD) and a, b∈ I (resp., a∈ I and v is a data value); and (6) a= b
(resp., a �= b) (equality (resp., inequality) axiom), where a, b∈ I. Two axioms φ 
ψ
and ψ 
φ of the form (1) are also abbreviated as φ ≡ ψ (called definition
axiom). Note that such axioms can be used to define a new atomic concept φ
used as synonym of a concept ψ. A TBox T is a finite set of axioms of the
form (1), (2), (3), and (6), while an ABox A is a finite set of axioms of the
form (4) and (5). A knowledge base (or ontology) KB is a finite set of axioms
(1)–(6).

We next define simple abstract roles. For abstract roles R ∈RA, we define
Inv(R) = R− and Inv(R−)= R. Let 
�

KB denote the reflexive and transitive
closure of 
 on

⋃{{R 
 S, Inv(R)
 Inv(S)} | R 
S ∈KB , R, S ∈RA ∪R−
A}. An

abstract role S is simple relative to KB iff for each abstract role R such that
R 
�

KB S, it holds that (i) Trans(R) �∈KB and (ii) Trans(Inv(R)) �∈KB . Infor-
mally, an abstract role S is simple iff it is neither transitive nor has transitive
subroles. For decidability, number restrictions in KB are restricted to simple
abstract roles [19].

In SHOIN (D), concept and role membership axioms can also be expressed
in terms of concept inclusion axioms, since φ(a) can be expressed by {a}
 φ,
while R(a, b) (resp., U(a, v)) can be expressed by {a} 
 ∃R.{b} (resp., {a} 
 ∃
U.{v}).

The syntax of SHIF(D) is as the above syntax of SHOIN (D), but without
the oneOf constructor and with the atleast and atmost constructors limited to
0 and 1.

Example 1 (Conference Organization). A simple TBox Tconf may describe a
conference organization website and consist of the following axioms:
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Hotel � ∃hasRoom; ∃hasRoom− � Room;
Hotel � ∃hasBuilding; ∃hasBuilding− � Building;
Room � ∃hasFeature; ∃hasFeature− � Feature;
Room � ∃hasRoomPack; ∃hasRoomPack− � Package;

Old � Building; Small � ¬Medium;

New � Building; Small � ¬Large;
Old � ¬New; Medium � ¬Large;
Wifi � Feature; LuxuryPackage � Package;

VideoConference � Feature; StandardPackage � Package;
∃hasFeature.Wifi � ∃hasFeature.VideoConference; StandardPackage � ¬LuxuryPackage;

∃hasRoomPack.StandardPackage � ¬∃hasRoomPack.LuxuryPackage.

Roughly speaking, the above axioms describe that hotels have either new
or old buildings, and they have either small, medium, or large rooms. In turn,
rooms have associated features such as wi-fi, video conference, etc.; if a room has
wi-fi, then one can use the wi-fi connection for video conferences. Finally, rooms
have associated stay packages; there are two types of packages; luxury packages
in general (though not always) provide features that standard packages do not,
for instance wi-fi connection. �

Semantics.We now define the semantics of SHIF(D) and SHOIN (D) in terms
of general first-order interpretations, as usual. An interpretation I = (ΔI , · I) rel-
ative to a datatype theoryD= (ΔD, ·D) consists of a nonempty (abstract) domain
ΔI disjoint from ΔD, and a mapping · I that assigns to each atomic concept
φ ∈A a subset of ΔI , to each individual o ∈ I an element of ΔI , to each abstract
role R ∈RA a subset of ΔI × ΔI , and to each datatype role U ∈RD a subset of
ΔI × ΔD. We extend · I to all roles and concepts as usual (where #S denotes the
cardinality of a set S):

– (R−)I = {(y, x) | (x, y)∈ RI};

– {o1, . . . , on}I = {oI
1 , . . . , oI

n}; (¬φ)I = ΔI\φI ;

– (φ1 � φ2)I = φI
1 ∩ φI

2 ; (φ1 � φ2)I = φI
1 ∪ φI

2 ;

– (∃R.φ)I = {x∈ ΔI | ∃y : (x, y)∈ RI ∧ y ∈ φI};

– (∀R.φ)I = {x∈ ΔI | ∀y : (x, y)∈ RI → y ∈ φI};

– (�nR)I = {x∈ ΔI | #({y | (x, y)∈ RI}) � n};

– (�nR)I = {x∈ ΔI | #({y | (x, y)∈ RI}) � n};

– (∃U.D)I = {x∈ ΔI | ∃y : (x, y)∈ UI ∧ y ∈DD};

– (∀U.D)I = {x∈ ΔI | ∀y : (x, y)∈ UI → y ∈DD};

– (�nU)I = {x∈ ΔI | #({y | (x, y)∈ UI}) � n};

– (�nU)I = {x∈ ΔI | #({y | (x, y)∈ UI}) � n}.

The satisfaction of an axiom F in an interpretation I = (ΔI , · I) relative to a
datatype theory D= (ΔD, ·D), denoted I |=F , is defined as follows: (1) I |=φ 
 ψ
iff φI ⊆ ψI ; (2) I |=R 
S iff RI ⊆ SI ; (3) I |= Trans(R) iff RI is transitive;
(4) I |= φ(a) iff aI ∈φI ; (5) I |= R(a, b) iff (aI , bI) ∈ RI ; (6) I |= U(a, v) iff
(aI , vD) ∈ UI ; (7) I |= a= b iff aI = bI ; and (8) I |= a �= b iff aI �= bI .
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The interpretation I satisfies the axiom F , or I is a model of F , iff I |=F .
We say that I satisfies a knowledge base KB , or I is a model of KB , denoted
I |=KB , iff I |= F for all F ∈KB . We say that KB is satisfiable (resp., unsatisfi-
able) iff KB has a (resp., no) model. An axiom F is a logical consequence of KB ,
denoted KB |=F , iff each model of KB satisfies F . We say that φ is subsumed
(resp., not subsumed) by ψ relative to KB , denoted φ 
KB ψ (resp., φ �
KB ψ),
iff KB |= φ 
 ψ (resp., KB �|= φ 
 ψ). We say that φ is unsatisfiable (resp.,
satisfiable) relative to KB , denoted φ 
KB ⊥ (resp., φ �
KB ⊥), iff KB |= φ 
 ⊥
(resp., KB �|= φ 
 ⊥).

2.2 CP-Nets

CP-nets [5] are a widespread formalism to represent and reason with qualita-
tive preferences. More specifically, they are a graphical representation for condi-
tional ceteris paribus (all else being equal) preference statements, which allows
the specification of preferences based on the notion of conditional preferential
independence (CPI) [20].

We assume a finite set of variables V, where each variable Xi ∈V has a
finite domain of values, denoted Dom(Xi). A value for a set of variables X =
{X1, . . . , Xn} ⊆ V is a mapping x : X → ⋃n

i=1 Dom(Xi) such that x(Xi) ∈
Dom(Xi) for all i ∈ {1, . . . , n}; the domain of X, denoted Dom(X), is the set of
all values for X. If x and y are values for disjoints sets of variable X,Y ⊆ V,
then xy denotes the combination of x and y. A preference relation � is a strict
partial order (an irreflexive and transitive binary relation). We write o1 � o2 iff
either o1 � o2 or o1 = o2. We say that o1 is strictly preferred (resp., strictly or
equally preferred) to o2 iff o1 � o2 (resp., o1 � o2). We say that o2 is dominated
by o1 iff o1 � o2, and that o2 is directly dominated by o1, denoted o1 �d o2 iff
(i) o2 is dominated by o1, and (ii) no o exists such that o1 � o and o � o2. We
say that o1 is undominated iff no o exists with o � o1.

A CP-net N over V consists of a directed graph G= (V, E), where the
nodes are variables in V and if there is a directed edge (Xj ,Xi) ∈ E, this shows
that the preferences over values of Xi is influenced by the values of Xj . Each
node Xi ∈ V has an annotated conditional preference table (CPT), denoted
CPT (Xi), which associates a total (or partial) order �i

u over the values of Xi

with each value u of Xi’s parents in G, denoted Pa(Xi). Intuitively, given a
particular value assignment to Pa(Xi), one is able to determine a preference
order for the values of Xi, all other things being equal.

An outcome of N is a value o ∈ Dom(V). A preference relation � on the set
of all outcomes of N is defined via the notion of worsening flip, which informally
combines the preference relations on the values of the variables of N (as encoded
by their CPTs) to a preference relation on the outcomes of N . More specifically,
given two outcomes o and o′ of N , it holds o �wf o′ in N iff (i) there exist
a variable Xi ∈V, values x, x′ ∈ Dom(Xi), and a value u∈ Dom(Pa(Xi)) such
that (i) o(Xi)= x, (ii) o′(Xi)= x′, (iii) o(Xj)=o′(Xj) for all Xj ∈V\{Xi},
(iv) o(Pa(Xi)) = u, and (v) x �i

u x′; here, the single change from x to x′,
moving from o to o′, is called a worsening flip. The preference relation � is
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then defined as the transitive closure of �wf . Intuitively, o � o′ iff there exists
a sequence of worsening flips from o to o′.

CP-net actually assumes that its directed graph encodes conditional prefer-
ential independences (CPIs). In detail, let X, Y, and Z partition V, and let � be
a preference relation over Dom(V). Then, X is conditionally preferentially inde-
pendent of Y given Z iff for all x,x′ ∈ Dom(X), y,y′ ∈ Dom(Y), z∈ Dom(Z), we
have that xyz � x′yz iff xy′z � x′y′z. Hence, every variable in a CP-net, given
its parents, is conditionally preferentially independent of all the other variables
in the CP-net.

Example 2. A CP-net with five variables R, W , B, C, and P that expresses the
preferences over different features of hotels is shown in Fig. 1. The variables have
the domains {rs, rm, rl}, {wy, wn}, {bo, bn}, {cy, cn}, and {ps, pl}, respectively.
This CP-net tells us that large rooms (rl) are preferred to medium rooms (rm),
which in turn are preferred to small rooms (rs). If only small rooms are available
then a hotel in an old building is preferred to one in a new building (perhaps
for historical reasons). A hotel that has a wi-fi connection (wy) is preferred to
one that does not (wn). Furthermore, a hotel that facilitates video conferences
(cy) is preferred to one that does not (cn). If the hotel is a new building, and
the rooms facilitate video conferences, then the luxury package (pl) is preferred
to the standard package, otherwise the standard package is preferred (ps). Here,
we have a worsening flip moving from o1 = rl wy bn cy pl to o2 = rl wy bo cy pl,
since bn is preferred to bo, given rl. Similarly, we have a worsening flip from o2

to o3 = rl wn bo cy pl. Hence, o1 � o2, o2 � o3, and o1 � o3. Given the
room size, the building type is conditionally preferentially independent of all the
other variables. �

The following are the two main computational tasks for CP-nets:

Fig. 1. CP-net for Example 2
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– Dominance query: given a CP-net N and two outcomes o1 and o2 of N , decide
whether o1 � o2 holds in N .

– Outcome optimization: given a CP-net N , compute an undominated outcome
of N .

Acyclic CP-nets (i.e., the associated directed graph does not have any directed
cycles) with total orders in their conditional preference tables have only one
undominated outcome, which can be computed in linear time [4]. The algorithm
just follows the order among the variables that is represented by the directed
graph and assigns values to the variables Ai from top to bottom, satisfying the
preference relations in the CPTs corresponding to the variables. For arbitrary
CP-nets, deciding dominance queries are PSPACE-complete [16], and computing
an optimal outcome is NP-hard [12].

2.3 Constrained CP-Nets

In constrained CP-nets [6,26], constraints among variables are added to the basic
formalism of CP-nets, which may reduce the set of possible outcomes. The app-
roach in [26] to finding all optimal outcomes of a CP-net (if some exist) relies
on a reduction of the preferences represented in the CP-net to a set of hard con-
straints taking into account the variables occurring in the preferences. Given a
CP-net N and a set of constraints C, an outcome o is feasible iff it satisfies all the
constraints in C. A feasible outcome is Pareto-optimal iff it is undominated [6].
In [13], the authors present an approach to finding the Pareto-optimal outcomes
by solving a constraint satisfaction problem in the presence of soft and hard con-
straints. Here, we focus only on the latter. For every variable A and every instan-
tiation γ of its parents in N , the conditional preferences for Dom(A) encoded
in N yield an optimality constraint. The undominated outcomes of (N , C) are
then exactly the solutions of the conjunction of all optimality constraints. For
example, consider a variable A in N with domain Dom(A) = {a1, . . . , am} and
an instantiation γ of its parents in N . If the conditional preferences encoded
in N are a total order over the values in Dom(A), i.e., a1 � a2 � · · · � am,
which means that a1 is undominated relative to all other ai, then the optimality
constraint is given by γ → a1. In the most general case, where we have more
than one undominated value, the optimality constraint is given by:

γ →
∨

ai∈undom(A|γ) ai, (1)

where undom(A|γ) denotes the set of all undominated values of A under γ.
In the following, we consider only the case with one undominated value, i.e.,
|undom(A|γ)| = 1. The approach can be extended to the general case in a
straightforward way.

3 Ontological CP-Nets

We now introduce an approach to ontological CP-net-based preference represen-
tation, which combines CP-nets and DLs, harnessing the technologies described
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in the previous section. Intuitively, the main idea behind this approach is to use
certain satisfiable concepts relative to an underlying TBox as values of the vari-
ables of a CP-net. More precisely, the values are taken from a finite nonempty
set C of basic classification concepts (or basic c-concepts for short), which are
(not necessarily atomic) concepts C in SHIF(D) (resp., SHOIN (D)) that are
free of individuals from I.

Definition 1 (ontological CP-net). Let V be a finite set of variables. An
ontological CP-net (N , T ) over V consists of a CP-net N over V and a TBox
T such that the domain of each variable A ∈ V is of the form Dom(A) =
{α1, . . . , αm}, where:

1. every αi, i∈ {1, . . . , m}, is a concept from C that is satisfiable relative to T ,
2. T |= αi � αj 
 ⊥ for all i, j ∈ {1, . . . , m} with i < j, and
3. T |= � 
 αi � · · · � αm.

The following example illustrates the above notion of ontological CP-net.

Example 3 (Conference Organization cont’d). An ontological CP-net (N , T ) over
V is given by the TBox T from Example 1 and the CP-net N over V from
Example 2, where the values of the variables are now defined as the following
DL concepts:

rs = ∃hasRoom.Small; rm = ∃hasRoom.Medium;
rl = ∃hasRoom.Large;

wy = ∃hasRoom.(∃hasFeature.Wifi);wn = ¬wy;
bo = ∃hasBuilding.Old; bn = ∃hasBuilding.New;
cy = ∃hasRoom.(∃hasFeature.VideoConference); cn = ¬cy;
pl = ∃hasRoom.(∃hasRoomPack.LuxuryPackage);
ps = ∃hasRoom.(∃hasRoomPack.StandardPackage). �

Observe here that even if we do not have any explicit hard constraint expressed
among the values of the variables of the CP-net, due to their logical structure and
the underlying TBox, we have a set of implicit constraints among these values.
We will show in Sect. 4.2 below how to explicitly encode these constraints. Hence,
due to these constraints among the values of the variables of the CP-net, some
outcomes are infeasible, where outcomes are values o of the set V of all variables
of the CP-net. The following definition formally introduces feasible outcomes and
undominated feasible outcomes (which are not dominated by any other feasible
outcome) as well as the consistency of CP-nets as the existence of at least one
undominated feasible outcome.

Definition 2 (feasible outcome, dominance, and consistency). Given an
ontological CP-net (N, T ) over V, an outcome o ∈Dom(V) is feasible iff

�
o(V)

(=
�

A∈V o(A)) is satisfiable relative to T . A feasible outcome o is undominated
iff no feasible outcome o′ exists such that o′ � o. We say that (N , T ) is consistent
iff it has a feasible outcome.
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The following example briefly illustrates the above notions of feasible outcomes,
undominated feasible outcomes, and consistent CP-nets.

Example 4 (Conference Organization cont’d). Reconsider the ontological CP-net
of the running example. The outcome rl bn wy cy pl is feasible and undominated,
while rl bn wy cn ps is not feasible (as the availability of wi-fi implies the availabil-
ity of video conferences). Thus, the ontological CP-net of the running example
is consistent. �

4 Computing Optimal Outcomes

The main computational task around ontological CP-nets that we want to solve
in this paper is how to determine all undominated feasible outcomes of a consis-
tent ontological CP-net. In this section, we show how to compute them, given an
ontological CP-net. The approach mainly relies on the Hard-Pareto algorithm
of [26] (see Algorithm 1).

Generalizing the results of Sect. 2.3 to ontologies, we express the undominated
feasible outcomes of an ontological CP-net (N , T ), if some exist, in an ontological
way as follows. For every variable A and every value γ of its parents in (N , T ),
the conditional preferences for Dom(A) encoded in (N , T ) yield the optimality
constraint �

γ(Pa(A)) 
 ⊔

undom(A|γ).

Let DL-opt(N ) denote the set of all these optimality constraints. The undom-
inated feasible outcomes of (N , T ) are then exactly the set of all outcomes
o ∈Dom(V) such that

�
o(V) is satisfiable relative to T ∪ DL-opt(N ).

4.1 Propositional Compilation of DL Formulas

A TBox can be seen as a set of logical constraints that reduces the set of models
for a formula. Given a set of concepts F , we now show how to compute a compact
representation of a TBox T as a set of clauses whose variables have a one-to-one
mapping to the concepts in F . Hereafter, we write φ̃ to denote φ̃ ∈ {φ,¬φ}.

Definition 3 (ontological constraint). Given a TBox T and a set of satisfi-
able concepts F = {φi | i ∈ {1, . . . , n}} relative to T , we say that F is minimally
constrained relative to T iff

1. there exists a concept φ̃1 � · · · � φ̃n such that T |= � 
 φ̃1 � · · · � φ̃n, and
2. there is no proper subset E ⊂ F such that the previous condition holds.

The ontological axiom � 
 φ̃1 � · · · � φ̃n is an ontological constraint.

An ontological constraint is an explicit representation of the constraints
existing among a set of concepts, due to the information encoded in the
TBox T .
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Definition 4 (ontological closure). Given a TBox T and a set of satisfiable
concepts F = {φ1, . . . , φn} relative to T , the ontological closure of F and T ,
denoted OLC(F , T ), is the set of all ontological constraints, if any, for each
subset of F .

The ontological closure of F and T is an explicit representation of all the
logical constraints among a set of concepts F , considering also an underlying
TBox T .

Proposition 1. Given a TBox T and a set of satisfiable concepts F =
{φ1, . . . , φn} relative to T , if T |= �n

i=1 φ̃i 
 ⊥, then OCL(F , T ) |= �n
i=1 φ̃i 
⊥.

Proof. Since T |= �n
i=1 φ̃i 
 ⊥, this means that we have the corresponding

clause ψ =
⊔n

i=1 ¬φ̃i such that T |= � 
 ψ. If F = {φ1, . . . , φn} is minimally
constrained, then ψ ∈ OCL(F , T ), otherwise, by definition of OCL(F , T ), there
will be a clause ψ′ ∈ OCL(F , T ) such that ψ′ ⊂ ψ. �

Hence, if we are interested only in the relationships between predefined
concepts (due to their logical structure and T ), then the corresponding onto-
logical closure is a compact and complete representation. Note that we are
only looking for minimal clauses, as we are interested in computing the actual
constraints between the formulas representing the domain of a variable in the
CP-net. Hence, to compute the final outcomes, it is preferable to deal with a
compact representation of all possible constraints.

Example 5 (Conference Organization cont’d). Given the set of concepts
F = {wy, cy, pl, ps}, due to the axioms in the TBox, we have the minimally
constrained sets F ′ = {wy, cy} and F ′′ = {pl, ps} and the two corresponding
ontological constraints � 
 ¬wy � cy (indeed wy 
T cy) and � 
 ¬pl � ¬ps

(as pl � ps 
T ⊥). The corresponding ontological closure is then OCL(F , T ) =
{� 
 ¬wy � cy,� 
 ¬pl � ¬ps}. �

The set F̃ = {φ̃1, . . . , φ̃n} is a feasible assignment for F and T iff

OCL(F , T ) �|= �n
i=1 φ̃i 
 ⊥.

We are interested in feasible assignments, since (as we will show in the
following), they represent feasible outcomes for an ontological CP-net. Note that
by Proposition 1, if F̃ = {φ̃1, . . . , φ̃n} is a feasible assignment for F and T , then
T �|= �n

i=1 φ̃i 
 ⊥, i.e.,
�n

i=1 φ̃i is satisfiable relative to T . The next proposition
shows that there always exist feasible assignments for sets of satisfiable concepts
relative to an underlying TBox.

Proposition 2. Let T be a TBox, and F = {φ1, . . . , φn} be a set of satisfiable
concepts relative to T . Then, there always exists a feasible assignment for F
and T .
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Proof. If OCL(F , T )= ∅, then every F̃ = {φ̃1, . . . , φ̃n} is a feasible
assignment for F and T . Otherwise, since T |= OCL(F , T ), every interpre-
tation I that satisfies T also satisfies OCL(F , T ). That is, I satisfies every
� 
 φ̃i1 � · · · � φ̃im ∈ OCL(F , T ), which means that (φ̃ij )

I �= ∅ for some
j ∈ {1, . . . , m} (as every interpretation I has a nonempty domain ΔI). Thus,
there exists a feasible assignment for F and T . �

4.2 Computing Optimal Outcomes

If we have an ontological CP-net (N , T ), the variable values (concepts) in a
set F may constrain each other, and the corresponding constraints are encoded
in OCL(F , T ). The ontological closure of a set of concepts explicitly represents
all the logical constraints among them with respect to an underlying ontology.
The computation of all undominated feasible outcomes for an ontological CP-net
goes through the Boolean encoding of both the ontology T and of the clauses
corresponding to the preferences represented in the CPTs of N for each variable
A ∈ V. To use Hard-Pareto, we need a few pre-processing steps. Given the
ontological CP-net (N , T ):

1. for every Ai ∈V and every αi
j ∈ Dom(Ai)= {αi

1, . . . , α
i
mi

}, choose a fresh
atomic concept V i

j ;
2. define the ontology T ′ = T ∪ {V i

j ≡ αi
j | Ai ∈ V, j ∈ {1, . . . , mi}};

3. define the ontological CP-net (N ′, T ′), where N ′ is obtained from N by iso-
morphically replacing every αi

j by V i
j , for all Ai ∈ V and j ∈ {1, . . . , mi};

4. define F = {V i
j | Ai ∈ V, j ∈ {1, . . . , mi}};

5. compute OCL(F , T ′);
6. introduce a Boolean variable vi

j for each V i
j ∈ F ;

7. transform OCL(F , T ′) into the corresponding set of Boolean clauses C by
replacing V i

j by the corresponding binary variable vi
j (and the ontological

constant “�” and the ontological connectives “�” and “
” by the Boolean
constant “true” and the Boolean connectives “∨” and “→”, respectively);

8. transform DL-opt(N ′) into the set of Boolean clauses opt(N ′) by replacing
every V i

j by the corresponding variable vi
j (and the ontological connectives

“�”, “�”, and “
” by the Boolean connectives “∧”, “∨”, and “→”, respec-
tively).

Note that T is logically equivalent to T ′, as we only use equivalence axioms to
define new concepts V i

j as synonyms of complex concepts αi
j . The same holds

for (N , T ) and (N ′, T ′), as we just replace concepts in Dom(Ai) by equivalent
concepts.

Once we have C and opt(N ′), we can compute the optimal outcome of
(N , T ) by using the slightly modified version of Hard-Pareto, shown in Algo-
rithm 1. The function sol(·) used in Algorithm 1 computes all the solutions
for the Boolean constraint satisfaction problem represented by C, opt(N ′) and
C ∪ opt(N ′). Differently from the original Hard-Pareto, by Proposition 2, we
know that C is always consistent, and so we do not need to check its consistency
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at the beginning of the algorithm. Moreover, note that the algorithm works with
propositional variables although we are computing undominated feasible solu-
tions for an ontological CP-net. That is, the dominance test in line 11 can be
computed using well-known techniques for Boolean problems.

Input: opt(N ′) and C
1 Sopt ← sol(C ∪ opt(N ′));
2 if Sopt = sol(C) then
3 return Sopt;
4 end
5 if sol(opt(N ′)) �= ∅ and Sopt = sol(opt(N ′)) then
6 return Sopt;
7 end
8 S ← sol(C) − Sopt;
9 repeat

10 choose o ∈ S;
11 if ∀o′ ∈ sol(C) − o, o′ �� o then
12 Sopt ← Sopt ∪ {o};
13 end
14 S ← S − {o};

15 until S = ∅;
16 return Sopt.

Algorithm 1. Algorithm Hard-Pareto adapted to ontological CP-nets

The outcomes returned by Algorithm 1 in Sopt are true/false assignments
to the Boolean variables vi

j . To compute undominated outcomes for the original
ontological CP-net (N , T ), we need to revert to a DL setting. Hence, we build the
set DL-Sopt, where for each outcome o ∈ Sopt, we add to DL-Sopt the following
value o′:

o′(Ai) = V i
j iff o(vi

j) = true, for all Ai ∈ V and j ∈ {1, . . . , mi}.

The following example shows a trace of Algorithm 1 for our running example.

Example 6 (Conference Organization cont’d). For the CP-net in Fig. 1, we
obtain:

– T ′ = T ∪ {V 1
1 ≡ ∃hasRoom.Small, V 1

2 ≡ ∃hasRoom.Medium,
V 1
3 ≡ ∃hasRoom.Large, V 2

1 ≡ ∃hasRoom.(∃hasFeature.Wifi),
V 2
2 ≡ ¬∃hasRoom.(∃hasFeature.Wifi),

V 3
1 ≡ ∃hasBuilding.Old, V 3

2 ≡ ∃hasBuilding.New,
V 4
1 ≡ ∃hasRoom.(∃hasFeature.VideoConference),

V 4
2 ≡ ¬∃hasRoom.(∃hasFeature.VideoConference),

V 5
1 ≡ ∃hasRoom.(∃hasRoomPack.LuxuryPackage),

V 5
2 ≡ ∃hasRoom.(∃hasRoomPack.StandardPackage)};
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– F = {V 1
1 , V 1

2 , V 1
3 , V 2

1 , V 2
2 , V 3

1 , V 3
2 , V 4

1 , V 4
2 , V 5

1 , V 5
2 };

– OCL(F , T ′) = {� 
 ¬V 2
1 � V 4

1 , � 
 ¬V 1
1 � ¬V 1

2 , � 
 ¬V 1
2 � ¬V 1

3 ,
� 
 ¬V 1

1 � ¬V 1
3 , � 
 V 1

1 � V 1
2 � V 1

3 , � 
 ¬V 2
1 � ¬V 2

2 ,
� 
 V 2

1 � V 2
2 , � 
 ¬V 3

1 � ¬V 3
2 ,� 
 V 3

1 � V 3
2 ,

� 
 ¬V 4
1 � ¬V 4

2 , � 
 V 4
1 � V 4

2 , � 
 ¬V 5
1 � ¬V 5

2 ,
� 
 V 5

1 � V 5
2 };

– C = {¬v2
1 ∨ v4

1 , ¬v1
1 ∨ ¬v1

2 , ¬v1
2 ∨ ¬v1

3 , ¬v1
1 ∨ ¬v1

3 , v1
1 ∨ v1

2 ∨ v1
3 , ¬v2

1 ∨ ¬v2
2 ,

v2
1 ∨ v2

2 , ¬v3
1 ∨ ¬v3

2 , v3
1 ∨ v3

2 , ¬v4
1 ∨ ¬v4

2 , v4
1 ∨ v4

2 , ¬v5
1 ∨ ¬v5

2 , v5
1 ∨ v5

2};

– DL-opt(N ′) = {V 1
3 , V 2

1 , V 1
1 
 V 3

1 , V 1
2 
 V 3

2 , V 4
1 , V 1

3 
 V 3
2 , V 3

2 � V 4
1 
 V 5

1 ,
V 3
1 � V 4

1 
 V 5
2 , V 3

2 � V 4
2 
 V 5

2 , V 3
1 � V 4

2 
 V 5
2 };

– opt(N ′) = {v1
3 , v2

1 , v1
1 → v3

1 , v1
2 → v3

2 , v4
1 , v1

3 → v3
2 , v3

2 ∧ v4
1 → v5

1 ,
v3
1 ∧ v4

1 → v5
2 , v3

2 ∧ v4
2 → v5

2 , v3
1 ∧ v4

2 → v5
2}.

Then, Sopt = {v1
3 v2

1 v3
2 v4

1 v5
1}, and rl wy bn cy pl is the only optimal

outcome. �

The following theorem shows the correctness of the algorithm.

Theorem 1. Given an ontological CP-net (N , T ) over V, the values o′ ∈ DL-
Sopt are all the undominated feasible outcomes for (N , T ).

Proof. We start by showing that o′ is a feasible outcome. If we consider the final
assignment o =

∧|V|
i=1

∧mi

j=1 ṽi
j , the corresponding formula o′ =

�|V|
i=1

�mi

j=1 Ṽ i
j is

a feasible assignment. In fact, if we had OCL(F , T ′) |= �|V|
i=1

�mi

j=1 Ṽ i
j 
 ⊥, then

we should have the corresponding constraint (or one that implies)
∨|V|

i=1

∨mi

j=1 ¬ṽi
j

in C, thus not allowing o to be a solution. By Definition 1, for each variable Ai,
both T |= ai

j � ai
j′ 
 ⊥, for all j, j′ ∈ {1, . . . , mi} with j < j′, and T |= � 


ai
1�· · ·�ai

mi
. These axioms are encoded in the corresponding binary constraints

¬vi
j ∨ ¬vi

j′ and vi
1 ∨ · · · ∨ vi

mi
saying that, given Ai, in o, we have all vi

j negated
but one. As a consequence, in o′, we have only one V i

j for each Ai, i.e., o′ is an
outcome. Overall, o′ is a feasible outcome. Finally, as o satisfies all the optimality
constraints, o′ is an undominated outcome. �

5 Computational Complexity

We now explore the complexity of the main computational problems in onto-
logical CP-nets for underlying ontological languages with typical complexity of
deciding knowledge base satisfiability, namely, tractability and completeness for
EXP and NEXP. We also provide some special tractable cases of dominance
testing in ontological CP-nets.

5.1 General Results

For tractable ontology languages (i.e., those for which deciding knowledge base
satisfiability is tractable), the complexity of ontological CP-nets is dominated
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by the complexity of CP-nets. That is, deciding (a) consistency, (b) whether
a given outcome is undominated, and (c) dominance of two given outcomes
are all PSPACE-complete. Note also that the same complexity results hold for
ontology languages with PSPACE-complete knowledge base satisfiability checks
and that even computing the set of all undominated outcomes (generalizing (b))
is PSPACE-complete under the condition that there are only polynomially many
of them.

Theorem 2. Given an ontological CP-net (N , T ) over a tractable ontology
language,

(a) deciding whether (N , T ) is consistent,
(b) deciding whether a given outcome o is undominated,
(c) deciding whether o � o′ for two given outcomes o and o′

are all PSPACE-complete.

Proof (sketch). The lower bounds follow immediately from the fact that onto-
logical CP-nets generalize CP-nets, for which these problems are all PSPACE-
complete [16].

As for the upper bounds, compared to standard CP-nets, these problems addi-
tionally involve knowledge base satisfiability checks, which can all be done in
polynomial time and thus also in polynomial space. Note that in (a) (resp., (b)),
one has to go through all outcomes o′ and check that it is not the case that
o � o′ (resp., o′ � o), which can each and thus overall be done in polynomial
space. �

In particular, if the ontological CP-net is defined over a DL of the DL-Lite
family [9] (which all allow for deciding knowledge base satisfiability in polynomial
time, such as DL-LiteR, which stands behind the important OWL 2 QL profile
[31]), deciding (a) consistency, (b) whether a given outcome is undominated, and
(c) dominance of two given outcomes are all PSPACE-complete.

Corollary 1. Given an ontological CP-net (N , T ) over a DL from the DL-Lite
family,

(a) deciding whether (N , T ) is consistent,
(b) deciding whether a given outcome o is undominated,
(c) deciding whether o � o′ for two given outcomes o and o′

are all PSPACE-complete.

For EXP (resp., NEXP) complete ontology languages (i.e., those for which knowl-
edge base satisfiability is complete for EXP (resp., NEXP)), the complexity of
ontological CP-nets is dominated by the complexity of the ontology languages.
That is, deciding (a) inconsistency, (b) whether a given outcome is dominated,
and (c) dominance of two given outcomes are all complete for EXP (resp.,
NEXP). Note that computing the set of all undominated outcomes (general-
izing (b)) is also EXP-complete for EXP-complete ontology languages.
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Theorem 3. Given an ontological CP-net (N , T ) over an EXP (resp., NEXP)
complete ontology language,

(a) deciding whether (N , T ) is inconsistent,
(b) deciding whether a given outcome o is dominated,
(c) deciding whether o � o′ for two given outcomes o and o′

are all complete for EXP (resp., NEXP).

Proof (sketch). The lower bounds follow from the fact that all three problems
in ontological CP-nets can be used to decide knowledge base satisfiability in the
underlying ontology language.

As for the upper bounds, in (a) and (b), we have to go through all outcomes,
which is in EXP (resp., NEXP). Then, we have to perform knowledge base
satisfiability checks, which are also in EXP (resp., NEXP), and dominance checks
in standard CP-nets, which are in PSPACE, and thus also in EXP (resp., NEXP).
Overall, (a) to (c) are thus in EXP (resp., NEXP). �

In particular, if the ontological CP-net is defined over the expressive DL SHIF(D)
(resp., SHOIN (D)) [18] (which stands behind OWL Lite (resp., OWL DL)
[30,32], and allows for deciding knowledge base satisfiability in EXP [18,29]
(resp., NEXP, for both unary and binary number encoding; see [25,29] and the
NEXP-hardness proof for ALCQIO in [29], which implies the NEXP-hardness
of SHOIN (D))), deciding (a) inconsistency, (b) whether a given outcome is
dominated, and (c) dominance of two given outcomes are all complete for EXP
(resp., NEXP).

Corollary 2. Given an ontological CP-net (N , T ) over the DL SHIF(D)
(resp., SHOIN (D)),

(a) deciding whether (N , T ) is inconsistent,
(b) deciding whether a given outcome o is dominated,
(c) deciding whether o � o′ for two given outcomes o and o′

are all complete for EXP (resp., NEXP).

5.2 Tractability Results

If the ontological CP-net is a polytree (i.e., the underlying undirected graph has
no cycles) and defined over a tractable ontology language, deciding dominance
of two outcomes can be done in polynomial time. Note that polytree ontological
CP-nets are always consistent.

Theorem 4. Given an ontological CP-net (N , T ) over a tractable ontology lan-
guage, where N is a polytree, deciding whether o � o′ for two given outcomes o
and o′ can be done in polynomial time.



Ontological CP-Nets 305

Proof (sketch). We have to decide whether (i) o � o′ holds in N and (ii) o and
o′ are feasible outcomes of (N , T ). The former can be done in polynomial time,
as for standard polytree CP-nets, dominance can be decided in polynomial time
[5], while the latter can also be done in polynomial time in tractable ontology
languages. �

In particular, if the ontological CP-net is a polytree and defined over a DL of the
DL-Lite family, deciding dominance of two outcomes can be done in polynomial
time.

Corollary 3. Given an ontological CP-net (N , T ) over a DL from the DL-Lite
family, where N is a polytree, deciding whether o � o′ for two given outcomes o
and o′ can be done in polynomial time.

6 Related Work

Modeling and dealing with preferences has traditionally been studied in several
areas within computer science. In the databases community, the work of [21]
stands out as the seminal work in the area; see [28] for a survey of notable
works in this line. Much work has also been carried out in the intersection of
databases and knowledge representation and reasoning, such as in preference
logic programs [17], incorporation of preferences into formalisms such as answer
set programs [8], and answering k-rank queries in ontological languages [22].

On the other hand, in the philosophical tradition, preferences are usually
expressed over mutually exclusive “worlds”, such as truth assignments to for-
mulas. The work of [2] is framed in this interpretation of preferences, aiming
at bridging the gap between several formalisms from the AI community such as
CP-nets and those studied traditionally in philosophy. In this regard, CP-nets [5]
is one of the most widely known formalisms. More recently, the work of Wang
et al. [33] proposes an efficient algorithm and indexing scheme for top-k retrieval
in CP-nets.

Constrained CP-nets were originally proposed in [6], along with algorithm
Search-CP, which uses branch and bound to compute undominated outcomes.
The algorithm has an anytime behavior: it can be stopped at any time, and the
set of computed solutions are a subset of the set containing all the undominated
outcomes. This means that in case one is interested in any undominated outcome,
one can use the first one returned by Search-CP. In [26], Hard-Pareto is
presented; the most notable difference is that Hard-Pareto does not rely on
topological information like Search-CP, but it exploits only the CP-statements,
thus allowing to work also with cyclic CP-nets. Differently from the previous
two papers, in our work, we allow the variable domains to contain DL formulas
constrained via ontological axioms.

Recently, there has been some interest regarding the combination of
Semantic Web technologies with preference representation and reasoning.
A combination of conditional preferences (very different from CP-nets) with
DL reasoning for ranking objects is introduced in [24]. A ranking function is
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described that exploits conditional preferences to perform a semantic person-
alized search and ranking over a set of resources annotated via an ontological
description. In [22], Datalog+/– is extended with preference management for-
malisms closely related to those previously studied for relational databases; the
authors further extend this formalism to the case where ontological inferences
involve probabilistic uncertainty [23]. Another interesting approach to mixing
qualitative preferences with Semantic Web technology is presented in [27], where
an extension of SPARQL that can encode user preferences in the query is pro-
posed.

There is, however, very little work on the particular combination of Semantic
Web technologies and CP-nets. To our knowledge, the most notable work is that
of [3], developed within an information retrieval context; in this work, Wordnet
is used to add semantics to CP-net variables.

7 Summary and Outlook

In classical decision theory and analysis, the preferences of decision makers are
modeled by utility functions. Unfortunately, the effort needed to obtain a good
utility function requires a significant involvement of the user [15]. This is one
of the main reasons behind the success obtained by CP-nets since they were
originally proposed [4]: they are compact, easily understandable, and well-suited
for combinatorial domains, such as multi-attribute ones. In this paper, we have
described how to reason with CP-nets that are augmented by assigning descrip-
tion logic axioms to its variable values—such axioms refer to a common underly-
ing ontology and constrain the possible outcomes in the CP-net. Furthermore, we
studied the complexity of the problems of consistency checking, whether a given
outcome is undominated, and dominance testing for ontological CP-nets, show-
ing how the complexity of checking satisfiability of the underlying ontological
language and the structure of the CP-net affects the complexity of solving these
problems. The proposed framework is very useful in many semantic retrieval
scenarios, among which we distinguish semantic search.

Other formalisms related to the original CP-nets have been subsequently
proposed in the literature, such as TCP-nets (Trade-off CP-nets) [7] or CP-
theories [34]. TCP-nets extend CP-nets by allowing to express also statements
of relative importance between variables. With TCP-nets, the user is allowed to
express her preferences over compromises that sometimes may be required. CP-
theories generalize (T)CP-nets allowing conditional preference statements on the
values of a variable, along with a set of variables that are allowed to vary when
interpreting the preference statement. In future work, we plan to enrich these
frameworks by introducing ontological descriptions and reasoning, thus allowing
the development of more powerful semantic-enabled preference-based retrieval
systems.
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Abstract. Social media content represents a large portion of all textual
content appearing on the Internet. These streams of user generated con-
tent (UGC) provide an opportunity and challenge for media analysts to
analyze huge amount of new data and use them to infer and reason with
new information. A main challenge of natural language is its ambigu-
ity and vagueness. To automatically resolve ambiguity, the grammatical
structure of sentences is used. However, when we move to informal lan-
guage widely used in social media, the language becomes more ambiguous
and thus more challenging for automatic understanding.

Information Extraction (IE) is the research field that enables the
use of unstructured text in a structured way. Named Entity Extraction
(NEE) is a sub task of IE that aims to locate phrases (mentions) in the
text that represent names of entities such as persons, organizations or
locations regardless of their type. Named Entity Disambiguation (NED)
is the task of determining which correct person, place, event, etc. is
referred to by a mention.

The goal of this paper is to provide an overview on some approaches
that mimic the human way of recognition and disambiguation of named
entities especially for domains that lack formal sentence structure. The
proposed methods open the doors for more sophisticated applications
based on users’ contributions on social media. We propose a robust
combined framework for NEE and NED in semi-formal and informal
text. The achieved robustness has been proven to be valid across lan-
guages and domains and to be independent of the selected extraction
and disambiguation techniques. It is also shown to be robust against the
informality of the used language. We have discovered a reinforcement
effect and exploited it a technique that improves extraction quality by
feeding back disambiguation results. We present a method of handling
the uncertainty involved in extraction to improve the disambiguation
results.

Keywords: Named entity extraction · Named entity disambiguation ·
Informal text · Uncertainty handling
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1 Introduction

Computers cannot understand natural languages like humans do. Our ability to
easily distinguish between multiple word meanings is developed in a lifetime of
experience. Using the context in which a word is used, a fundamental understand-
ing of syntax and logic, and a sense of the speaker’s intention, we understand
what another person is telling us or what we read. It is the aim of the Natural
Language Processing (NLP) society to mimic the way humans understand nat-
ural languages. Although efforts spent for more than 50 years by linguists and
computer scientists to get computers to understand human language, there is
still long way to go to achieve this goal.

A main challenge of natural language is its ambiguity and vagueness. The
basic definition of ambiguity, as generally used in natural language processing,
is “capable of being understood in more than one way”. Scientists try to resolve
ambiguity, either semantic or syntactic, based on properties of the surrounding
context. Examples include, Part Of Speech (POS) tagging, morphology analysis,
Named Entity Recognition (NER), and relations (facts) extraction. To automat-
ically resolve ambiguity, typically the grammatical structure of sentences is used,
for instance, which groups of words go together (phrases) and which words are
the subject or object of a verb. However, when we move to informal language
widely used in social media, the language becomes more ambiguous and thus
more challenging for automatic understanding.

The rapid growth in the IT in the last two decades leads to the growth in the
amount of information available on the World Wide Web (WWW). Social media
content represents a big part of all textual content appearing on the Internet.
According to an eMarketer report [1], nearly one in four people worldwide will use
social networks in 2013. The number of social network users around the world
rose to 1.73 billion in 2013. By 2017, the global social network audience will
total 2.55 billion. Twitter as an example of highly active social media network,
has 140 million active users publishing over 400 million tweet every day1.

These streams of user generated content (UGC) provide an opportunity and
challenge for media analysts to analyze huge amount of new data and use them
to infer and reason with new information. Making use of social media con-
tent requires measuring, analyzing and interpreting interactions and associations
between people, topics and ideas. An example of a main sector for social media
analysis is the area of customer feedback through social media. With so many
feedback channels, organizations can mix and match them to best suit corporate
needs and customer preferences.

Another beneficial sector is social security. Communications over social net-
works have helped to put entire nations to action. Social media played a key
role in The Arab Spring that started in 2010 in Tunisia. The riots that broke
out across England during the summer of 2011 also showed the power of social
media. The growing criminality associated with social media has been an alarm
to government security agencies. There is a growing demand to automatically
1 https://blog.twitter.com/2012/twitter-turns-six

https://blog.twitter.com/2012/twitter-turns-six
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monitor the discussions on social media as a source of intelligence. Nowadays,
increasing numbers of people within investigative agencies are being deployed
to monitor social media. Unfortunately, the existing tools and technologies used
are limited because they are based on simple keyword selection and classification
instead of reasoning with meaningful information. Furthermore, the processes
followed are time and resources consuming. There is also a need for new tools
and technologies that can deal with the informal language widely used in social
media.

Information Extraction (IE) is the research field that enables the use of such
a vast amount of unstructured distributed data in a structured way. IE systems
analyze human language in order to extract information about different types of
events, entities, or relationships. Named Entity Extraction (NEE) is a sub task
of IE that aims to locate phrases (mentions) in the text that represent names
of persons, organizations or locations regardless of their type. It differs from the
term Named Entity Recognition (NER) which involves both extraction and clas-
sification to one of the predefined set of classes. Named Entity Disambiguation
(NED) is the task of exploring which correct person, place, event, etc. is referred
to by a mention. NEE and NED have become a basic steps of many technologies
like Information Retrieval (IR), Question Answering (QA).

Although state-of-the-art NER systems for English produce near-human per-
formance [2], their performance drops when applied to informal text of UGC where
the ambiguity increases. It this the aim of this paper to study the interdependency
ofNEEandNEDon the domain of informal text, and to showhowone could be used
to improve the other and vice versa. We call this potential for mutual improvement,
the reinforcement effect. It mimics the way humans understand natural language.
Natural language processing (NLP) tasks are commonly split into a set of pipelined
sub tasks. The residual error produced in any sub task propagates, adversely affect-
ing the end objectives. This is why we believe that back propagation would help
improving the overall system quality. We show the benefit of using this reinforce-
ment effect on two domains: NEE and NED for toponyms in semi-formal text that
represents advertisements for holiday properties; and for arbitrary entity types in
informal short text in tweets.Weproved that thismutual improvementmakesNEE
and NED robust across languages and domains. This improvement is also indepen-
dent on what extractions and disambiguation techniques are used. Furthermore,
we developed extraction methods that consider alternatives and uncertainties in
text with less dependency on formal sentence structure. This leads to more relia-
bility in cases of informal and noisy UGC text.

2 Examples of Application Domains

Information extraction has applications in a wide range of domains. There are
many stakeholders that could benefit from UGC on social media. Here, we give
some examples for applications of information extraction:

– Security agencies typically analyze large amounts of text manually to search
for information about people involved in criminal or terrorism activities.
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Social media is a continuously instantly updated source of information. Foot-
ball hooligans sometimes start their fight electronically on social media net-
works even before the sport event. Another real life example is the Project X
Haren2. Project X Haren was an event that started out as a public invitation
to a birthday party by a girl on Facebook, but ended up as a gathering of
thousands of youths causing riots in the town of Haren, Groningen. Automatic
monitoring and gathering of such information could be helpful to take actions
to prevent such violent, and destructive behaviors. As an example for real
application, we contribute to the TEC4SE project3. The aim of the project
is to improve the operational decision-making within the security domain by
gathering as much information available from different sources (like cameras,
police officers on field, or social media posts). Then these information is linked
and relationships between different information streams are found. The result
is a good overview of what is happening in the field of security in the region.
Our contribution to this project is to the enrich Twitter stream messages by
extracting named entities at run time. The amount and the nature of the
flowing data is beyond the possibility of manually tracking. This is why we
need new technologies that is capable of dealing with such huge noisy amounts
of data.

– As users become more involved in creating contents in a virtual world, more
and more data is generated in various aspects of life for studying user attitudes
and behaviors. Social sciences study human behavior by studying their phys-
ical space and belongings. Now, it is possible to investigate users by studying
their online activities, postings, and behavior in a virtual space. This method
can be a replacement for traditional surveys and experiments [3]. Prediction
and understanding of the attitudes and behaviors of individuals and groups
based on the sentiment expressed within online virtual communities is a nat-
ural area of research in the Internet era. To reach this goal, social scientists
are in dire need of stronger tools to provide them with the required data for
their studies.

– Financial experts always look for specific information to help their decision
making. Social media can be a very important source of information about the
attitudes and behaviors of stakeholders. In general, if extracted and analyzed
properly, the data on social media can lead to useful predictions of certain
human related events. Such prediction has great benefits in many realms,
such as finance, product marketing and politics [4]. For example, a finance
company may want to know the stakeholders’ reaction towards some political
action. Automatically finding such information from user posts on social media
requires special information extraction technologies to analyze the noisy social
media streams and capture such information.

– With the fast growth of the Web, search engines have become an integral part
of people’s daily lives, and users search behaviors are much better understood
now. Search based on bag-of-words representation of documents can no longer

2 http://en.wikipedia.org/wiki/Project X Haren
3 http://www.tec4se.nl/

http://en.wikipedia.org/wiki/Project_X_Haren
http://www.tec4se.nl/
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provide satisfactory results. More advanced information needs such as entity
search, and question answering can provide users with better search experi-
ence. To facilitate these search capabilities, information extraction is often
needed as a pre-processing step to enrich the document with information in
structured form.

3 Challenges

NEE and NED in informal text are challenging. Here we summarize the chal-
lenges of NEE and NED for tweets as an example of informal text:

– The informal nature of tweets makes the extraction process more difficult.
For example, in Table 1 case 1, it is hard to extract the mentions (phrases
that represent NEs) using traditional NEE methods because of the ill-formed
sentence structure. Traditional NEE methods might extract ‘Grampa’ as a
mention because of it capitalization. Furthermore, it is hard to extract the
mention ‘Speechless ’, which is a name of a song, as it requires further knowl-
edge about ‘Lady Gaga’ songs.

– The limited length (140 characters) of tweets forces the senders to provide
dense information. Users resort to acronyms to reserve space. Informal lan-
guage is another way to express more information in less space. All of these
problems make both the extraction and the disambiguation processes more
complex. For example, in Table 1 case 2 shows two abbreviations (‘Qld ’ and
‘Vic’). It is hard to infer their entities without extra information.

Table 1. Some challenging cases for NEE and NED in tweets (NE mentions are written
in bold).

Case # Tweet Content

1 – Lady Gaga - Speechless live @ Helsinki 10/13/2010
http://www.youtube.com/watch?v=yREociHyijk. . . @ladygaga
also talks about her Grampa who died recently

2 Qld flood victims donate to Vic bushfire appeal

3 Laelith Demonia has just defeated liwanu Hird. Career wins is 575,
career losses is 966.

4 Adding Win7Beta, Win2008, and Vista x64 and x86 images to
munin. #wds

5 history should show that bush jr should be in jail or at least never
should have been president

6 RT @BBCClick: Joy! MS Office now syncs with Google Docs (well,
in beta anyway). We are soon to be one big happy (cont) http://tl.
gd/73t94u

7 “Even Writers Can Help..An Appeal For Australian Bushfire
Victims” http://cli.gs/Zs8zL2

http://www.youtube.com/watch?v=yREociHyijk
http://tl.gd/73t94u
http://tl.gd/73t94u
http://cli.gs/Zs8zL2
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– The limited coverage of a Knowledge Base (KB) is another challenge facing
NED for tweets. According to [5], 5 million out of 15 million mentions on the
web cannot be linked to Wikipedia. This means that relying only on a KB for
NED leads to around 33 % loss in disambiguated entities. This percentage is
higher on Twitter because of its social nature where users discuss information
about infamous entities. For example, Table 1 case 3 contains two mentions for
two users on the ‘My Second Life’ social network. It is very unlikely that one
could find their entities in a KB. However, their profile pages (‘https://my.
secondlife.com/laelith.demonia’ and ‘https://my.secondlife.com/liwanu.hird’)
can be found easily by a search engine.

– Named entity (NE) representation in KB implies another NED challenge.
YAGO KB [6] uses Wikipedia anchor text as possible mention representation
for named entities. However, there might be more representations that do not
appear in Wikipedia anchor text. Either because of misspelling or because of
a new abbreviation of the entity. For example, in Table 1 case 4, the mentions
‘Win7Beta’ and ‘Win2008 ’ do not appear in YAGO KB mention-entity look-
up table, although they refer to the entities ‘http://en.wikipedia.org/wiki/
Windows 7’ and ‘http://en.wikipedia.org/wiki/Windows Server 2008’ respec-
tively.

– The processes of NEE and NED involve degrees of uncertainty. For exam-
ple, in Table 1 case 5, it is uncertain whether the word jr should be part
of the mention bush or not. Same for ‘Office’ and ‘Docs’ in case 6 which
some extractors may miss. Another example, in case 7, it is hard to assess
whether ‘Australian’ should refer to ‘http://en.wikipedia.org/wiki/Australia’
or ‘http://en.wikipedia.org/wiki/Australian people’4. Both might be correct.
This is why we believe that it is better to consider possible alternatives in the
processes of NEE and NED.

– Another challenge is the freshness of the KBs. For example, the page of ‘Barack
Obama’ on Wikipedia was created on 18 March 2004. Before that date ‘Barack
Obama’ was a member of the Illinois Senate and you could find his profile
page on ‘http://www.ilga.gov/senate/Senator.asp?MemberID=747’. It is very
common on social networks that users talk about some infamous entity who
might become later a public figure.

– Informal nature of language used in social media implies many different random
representations of the same fact. This adds new challenges to machine learning
approaches which need regular patterns for generalization. We need new meth-
ods that require less training data and generalize well at the same time.

Semi-formal text is text lacking the formal structure of the language but
follows some pattern or format like product descriptions and advertisements.
Although semi-formal text involves some regularity in representing information,
this regularity implies some challenges.

In Table 2, cases 1 and 2 show two examples for true toponyms included
in a holiday description. Any machine learning approach uses cases 1 and 2
as training samples will annotate ‘Airport ’ as a toponym following the same
4 Some NER datasets consider nationalities as NEs [7].

https://my.secondlife.com/laelith.demonia
https://my.secondlife.com/laelith.demonia
https://my.secondlife.com/liwanu.hird
http://en.wikipedia.org/wiki/Windows_7
http://en.wikipedia.org/wiki/Windows_7
http://en.wikipedia.org/wiki/Windows_Server_2008
http://en.wikipedia.org/wiki/Australia
http://en.wikipedia.org/wiki/Australian_people
http://www.ilga.gov/senate/Senator.asp?MemberID=747
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Fig. 1. Example of EuroCottage holiday home descriptions (toponyms in bold).

Table 2. Some challenging cases for toponyms extraction in semi-formal text
(toponyms are written in bold).

Case # Semi-formal Text Samples

1 Bargecchia 9 km from Massarosa

2 Oľsova Vrata 5 km from Karlovy Vary

3 Bus station in Armacao de Pera 4 km

4 Airport 1.5 km (2 planes/day)

pattern of having a capitalized word followed by a number and the word ‘km’.
Furthermore, the state-of-the-art approaches performs poorly on this type of
text. Figure 2 shows the results of the application of three of the leading Stanford
NER models5 on a holiday property description text (see Fig. 1). Regardless of
NE classification, even the extraction (determining if a phrase represents a NE or
not) is performing poorly. Problems vary between (a) extracting false positives
(like ‘Electric’ and ‘Trips’ in Fig. 2a); or (b) missing some true positives (like
‘Sehora da Rocha’ in Fig. 2b, c); or (c) partially extracting the NE (like ‘Sehora
da Rocha’ in Figs. 2a and ‘Armacao de Pera’ in Fig. 2b).

4 General Approach

Natural language processing (NLP) tasks are commonly composed of a set of
chained sub tasks that form the processing pipeline. The residual error produced
in these sub tasks propagates, affecting the final process results. In this paper
we are concerned with NEE and NED which are two common processes in many
NLP applications.
5 http://nlp.stanford.edu:8080/ner/process

http://nlp.stanford.edu:8080/ner/process
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Fig. 2. Results of Stanford NER models applied on semi-formal text of holiday property
description.

Let us first formalize the NEE and NED problems. Given a sequence of words
(tokens) {w} = {w1, w2, ..wn}, NEE is the process of identifying sub-lists of words
that represents mentions of NEs where mention {m} = {wi, wi+1, ..wj}. The
process of NED is to assign m to one of its possible entities {e} = {e1, e2, ..en}.
The final output of the two processes is list of pairs (m, e). Figure 4 shows the for-
malization of the two problems.
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Fig. 3. Traditional approaches versus our approach for NEE and NED.

We claim that feedback derived from disambiguation would help in improving
the extraction and hence the disambiguation. This is the same way we as humans
understand text. The capability to successfully understand language requires
one to acquire a range of skills including syntax, semantics, and an extensive
vocabulary. We try to mimic a human’s way of reasoning to solve the NEE and
NED problems. Consider the tweet in Table 1 case 1. One would use syntax
knowledge to recognize ‘10/13/2010’ as a date. Furthermore, prior knowledge
enables one to recognize ‘Lady Gaga’ and ‘Helsinki ’ as a singer name and location
name respectively or at least as names if one doesn’t know exactly what they
refer to. However, the term ‘Speechless ’ involves some ambiguity as it could be
an adjective and also could be a name. A feedback clue from ‘Lady Gaga’ would
increase one’s certainty that it refers to a song. Even without knowing that
‘Speechless ’ is a song of ‘Lady Gaga’, there are sufficient clues to guess with
quite high probability that it is a song. The pattern ‘live @’ in association with
disambiguating ‘Lady Gaga’ as a singer name and ‘Helsinki ’ as a location name,
leads to infer ‘Speechless ’ as a song.

Although the logical order for a traditional Information Extraction (IE) sys-
tem is to complete the extraction process before commencing the disambiguation,
we start with an initial phase of extraction which aims to achieve high recall (find
as many reasonable mention candidates as possible) then we apply the disam-
biguation for all the extracted possible mentions. Finally we filter those extracted
mention candidates into true positives and false positives using features (clues)
derived from the results of the disambiguation phase such as KB information and
entity coherency. Figure 3 illustrates our general approach.

Unlike NER systems which extract entities mentions and assign them to one
of the predefined categories (like location, person, organization), we focus first
on extracting mentions regardless of their categories. We leave this classification
to the disambiguation step which links the mention to its real entity.

The potential of this order is that the disambiguation step can give extra
clues (such as entity-context similarity and entity-entity coherency) about each
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Fig. 4. Formalization of NEE and NED problems

NE candidate. This information can help in the decision whether the candidate
is a true NE or not.

The general principal we claim is that NED could be very helpful in improving
the NEE process. For example, consider the tweet in case 1 in Table 1. It is
uncertain, even for humans, to recognize ‘Speechless ’ as a song name without
having prior information about songs of ‘Lady Gaga’. Our approach is able to
solve such problematic cases of named entities.

5 Case Study 1: Toponym Extraction and Disambiguation
in Semi-formal Text

The task we focus on is to extract toponyms from EuroCottage holiday home
descriptions6 (an example is shown in Fig. 1) and use them to infer the country
where the holiday property is located. We use this country inference task as a
representative example of disambiguating extracted toponyms.

We propose an entity extraction and disambiguation approach based on
uncertain annotations. The general approach illustrated in Fig. 5 has the fol-
lowing steps:
6 www.eurocottage.com

http://www.eurocottage.com
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Training 
data

Extraction model
(here: HMM & CRF)

learning

Test 
data

extraction

Matching
(here: with GeoNames)

Disambiguation
(here: country inference)

extracted
toponyms

candidate
entities

including
alternatives
with probabilities

Result

highly ambiguous terms
and false positives

Fig. 5. Extraction and disambiguation approach

1. Prepare training data by manually annotating named entities.
2. Use the training data to build a statistical extraction model.
3. Apply the extraction model on test data and training data.
4. Match the extracted named entities against one or more gazetteers.
5. Use the toponym entity candidates for the disambiguation process.
6. Evaluate the extraction and disambiguation results for the training data.

Automatically find a list of highly ambiguous named entities and false posi-
tives that affect the disambiguation results and use it to re-train the extraction
model.

7. The steps from 2 to 6 are repeated automatically until there is no improve-
ment any more in either the extraction or the disambiguation.

5.1 Toponym Extraction

For toponym extraction, we developed two statistical named entity extraction
modules7, one based on Hidden Markov Models (HMM) and one based on Con-
ditional Ramdom Fields (CRF).

The goal of HMM [8] is to find the optimal tag sequence (in our case, whether
the word is assigned to toponym tag or not) T = t1, t2, t3, ..., tn for a given word
sequence W = w1, w2, w3..., wn that maximizes P (T | W ).

Conditional Random Fields (CRF) can model overlapping, non-independent
features [9]. Here we used a linear chain CRF, the simplest model of CRF.

7 We made use of the lingpipe toolkit for development: http://alias-i.com/lingpipe.

http://alias-i.com/lingpipe
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5.2 Extraction Modes of Operation

We used the extraction models to retrieve sets of annotations in two ways:

– First-Best: In this method, we only consider the first most likely set of
annotations that maximize the probability P (T | W ) for the whole text. This
method does not assign a probability for each individual annotation, but only
to the whole retrieved set of annotations.

– N-Best: This method returns a top-25 of possible alternative hypotheses
for terms annotations in order of their estimated likelihoods p(ti|wi). The
confidence scores are assumed to be conditional probabilities of the annotation
given an input token.

5.3 Toponym Disambiguation

For the toponym disambiguation task, we only select those toponyms annotated
by the extraction models that match a reference in GeoNames. We furthermore
use an adapted version of the clustering approach of [10] to disambiguate to
which entity an extracted toponym actually refers.

5.4 Handling Uncertainty of Annotations

Instead of giving equal contribution to all toponyms, we take the uncertainty in
the extraction process into account to include the confidence of the extracted
toponyms. In this way terms which are more likely to be toponyms have a higher
contribution in determining the country of the document than less likely ones.

5.5 Improving Certainty of Extraction

In despite of the abovementioned improvement, the extraction probabilities
are not accurate and reliable all the time. Some extraction models retrieve some
false positive toponyms with high confidence probabilities. This is where we take
advantage of the reinforcement effect. To be more precise. We introduce another
class in the extraction model called ‘highly ambiguous’ and annotate those terms
in the training set with this class that the disambiguation process finds more
than τ countries for documents that contain this term.

The extraction model is subsequently re-trained and the whole process is
repeated without any human interference as long as there is improvement in
extraction and disambiguation process for the training set. The intention is that
the extraction model learns to avoid prediction of terms to be toponyms when
they appear to confuse the disambiguation process.

5.6 Experimental Results

Here we present the results of experiments with the presented methods of extrac-
tion and disambiguation applied to a collection of holiday properties descriptions.
The data set consists of 1579 property descriptions for which we constructed a
ground truth by manually annotating all toponyms.
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Experiment 1: Effect of Extraction with Confidence Probabilities.
Table 3 shows the percentage of holiday home descriptions for which the cor-
rect country was successfully inferred. We can see that the N-Best method
outperforms the First-Best method for both HMM and CRF models. This
supports our claim that dealing with alternatives along with their confidences
yields better results.

Table 3. Effectiveness of the
disambiguation process for
First-Best and N-Best methods
in the extraction phase.

HMM CRF

No Filtering 68.95 % 68.19 %

1st Iteration 73.28 % 68.44 %

Table 4. Effectiveness of the
disambiguation after iteration of
refinement.

HMM CRF

No Filtering 68.95 % 68.19 %

1st Iteration 73.28 % 68.44 %

Experiment 2: Effect of Extraction Certainty Enhancement. Tables 4
and 5 show the effectiveness of the disambiguation and the extraction processes
respectively before and after one iteration of refinement. We can see an improve-
ment in HMM extraction and disambiguation results. The initial HMM results
showed a high recall rate with a low precision. In spite of this, our approach
managed to improve precision through iteration of refinement. The refinement
process is based on removing highly ambiguous toponyms resulting in a slight
decrease in recall and an increase in precision. In contrast, CRF started with
high precision which could not be improved by the refinement process.

6 Case Study 2: Named Entity Extraction
and Disambiguation Approach for Tweets

In this case study, we present a combined approach for NEE and NEL for tweets
with an application on #Microposts 2014 challenge [11]. Although the logical
order for such system is to do extraction first then the disambiguation, we start
with an extraction phase which aims to achieve high recall (find as much NE
candidates as possible). Then we apply disambiguation for all the extracted
mentions. Finally, we filter those extracted NE candidates into true positives and
false positives using features derived from the disambiguation phase in addition
to other word shape and KB features. The potential of this order is that the
disambiguation step gives extra information about each NE candidate that may
help in the decision whether or not this candidate is a true NE. Figure 3 shows
our system architecture versus traditional one.
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Table 5. Effectiveness of the extraction process after iteration of refinement.

HMM
Pre. Rec. F1

No Filtering 0.3584 0.8517 0.5045
1st Iteration 0.7667 0.5987 0.6724

CRF
Pre. Rec. F1

No Filtering 0.6969 0.7136 0.7051
1st Iteration 0.6989 0.7131 0.7059

6.1 NE Candidates Generation

For this task, we unionize the output of the following candidates generation
methods:

– Tweet Segmentation: Tweet text is segmented using the segmentation algo-
rithm described in [12]. Each segment is considered a NE candidate.

– KB Lookup: We scan all possible n-grams of the tweet against the mentions-
entities table of DBpedia. N-grams that matches a DBpedia mention are con-
sidered NE candidates.

– Regular Expressions: We used regular expressions to extract numbers,
dates and URLs from the tweet text.

6.2 NE Linking

Our NEL approach is composed of three steps; matcher, feature extractor, and
SVM ranker.

– Matcher: This module takes each extracted mention candidate and looks for
its Wikipedia reference candidates on DBpedia. Furthmore, for those men-
tion candidates which don’t have reference candidates in DBpedia, we use
Google Search API to find possible Wikipedia pages for these mentions. This
search helps to find references for misspelled or concatenated mentions like
‘justinbieber ’ and ‘106andpark ’.

– Feature Extractor: This module is responsible for extracting a set of con-
textual and URL features for each candidate Wikipedia page as described
in [13]. These features give indicators on how likely the candidate Wikipedia
page could be a representative to the mention.

– SVM Ranker: After extracting the aforementioned set of features, SVM
classifier is trained to rank candidate Wikipedia pages of a mention. For the
challenge, we pick the page on the 1st order as a reference for the mention.
The DBpedia URI is then generated from the selected Wikipedia URL.

6.3 NE Candidates Filtering

After generating the candidates list of NE, we apply our NE linking approach to
disambiguate each extracted NE candidate. After the linking phase, we use SVM
classifier to predict which candidates are true positives and which ones are not.
We use the following set of features for each NE candidate to train the SVM:
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– Shape Features: If the NE candidate is initially or fully capitalized and if
it contains digits.

– Probabilistic Features:
• The joint and the conditional probability of the candidate obtained from

Microsoft Web N-Gram services.
• The stickiness of the candidate as described in [12].
• The candidate’s frequency over around 5 million tweets8.

– KB Features:
• If the candidate appears in WordNet.
• If the candidate appears as a mention in DBpedia KB.

– Disambiguation Features:
• All the features used in the linking phase as described in [13]. We used

only the feature set for the first top ranked entity page selected for the
given NE candidate.

6.4 Final NE Set Generation

Beside the SVM, we also train a CRF model for NEE. We used the CRF model
described in [14]. To generate the final NE set, we take the union of the CRF
annotation set and SVM results, after removing duplicate extractions, to get the
final set of annotations. We tried two methods to resolve overlapped mentions. In
the first method (used in UTwente Run1.tsv), we select the mention that appears
in Yago KB [6]. If both mentions appear in Yago or both don’t, we select the one
with the longer length. In the second method (used in UTwente Run2.tsv), we
select only the mention with the longer length among the two overlapped men-
tions. The results shown in the next section are the results of the first method.

The idea behind this unionization is that SVM and CRF work in a different
way. The former is a distance based classifier that uses numeric features for classi-
fication which CRF can not handle, while the latter is a probabilistic model that
can naturally consider state-to-state dependencies and feature-to-state depen-
dencies. On the other hand, SVM does not consider such dependencies. The
hybrid approach of both makes use of the strength of each.

6.5 Experimental Results

In this section we show our experimental results of the proposed approaches
on the challenge training data [11] in contrast with other competitors. All our
experiments are done through a 4-fold cross validation approach for training
and testing. Table 6 shows the results of ‘Our Linking Approach’ presented
in Sect. 6.2, in comparison with two modes of operation of AIDA [15]. The first
mode is ‘AIDA Cocktail’ which makes use of several ingredients: the prior
probability of an entity being mentioned, the similarity between the context
of the mention in the text and an entity, as well as the coherence among the
entities. While the second mode is ‘AIDA Prior’ which makes use only of the
8 http://wis.ewi.tudelft.nl/umap2011/ + TREC 2011 Microblog track collection.

http://wis.ewi.tudelft.nl/umap2011/
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Table 6. Linking Results

Percentage

Our Linking Approach 70.98%

AIDA Cocktail 56.16%

AIDA Prior 55.63%

Table 7. Extraction Results

Pre. Rec. F1

Candidates Generation 0.120 0.945 0.214

Candidates Filtering (SVM) 0.722 0.544 0.621

CRF 0.660 0.568 0.611

Final Set Generation 0.709 0.706 0.708

Stanford NER 0.716 0.392 0.507

Table 8. Extraction and Linking Results

Pre. Rec. F1

Extraction + Linking 0.533 0.534 0.534

Stanford + AIDA 0.509 0.279 0.360

prior probability. The results show the percentage of finding the correct entity of
the ground truth mentions. Table 7 shows the NEE results along the extraction
process phases in contrast with ‘Stanford NER’ [16]. Finally, Table 8 shows
our final results of both extraction and entity linking in comparison with our
competitor (‘Stanford + AIDA’) where ‘Stanford NER’ is used for NEE
and ‘AIDA Cocktail’ is used for NEL.

7 Future Research Directions

Although many machine learning and fuzzy techniques abound, some aspects
often remain absolute: extraction rules absolutely recognize and annotate a
phrase or not, only a top item from a ranking is chosen for a next phase, etc.
We envision an approach that fundamentally treats annotations and extracted
information as uncertain throughout the process. We humans happily deal with
doubt and misinterpretation every day, why shouldn’t computers?

We envision developing information extractors ‘Sherlock Holmes style’ —
“when you have eliminated the impossible, whatever remains, however improba-
ble, must be the truth” — by adopting the principles and requirements below.

– Annotations are uncertain, hence we process both annotations as well as infor-
mation about the uncertainty surrounding them.

– We have an unconventional conceptual starting point, namely not “no anno-
tations” but “there is no knowledge hence anything is possible”. Figure 6a
shows all possible annotations for an example sentence for one entity type.

– A developer gradually and interactively defines an ontology with positive and
negative knowledge about the correctness of certain (combinations of) anno-
tations. At each iteration, added knowledge is immediately applied improving
the extraction result until the result is good enough (see also [17]).

– Storage, querying and manipulation of annotations should be scalable. Prob-
abilistic databases are an attractive technology for this.

Basic forms of knowledge are the entity types one is interested in and dec-
larations like τ1 —dnc— τ2 (no subphrase of a τ1-phrase should be interpreted
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as τ2, e.g., Person—dnc—City). See Fig. 6b for a small example. We also envi-
sion application of background probability distributions, uncertain rules, etc.
We hope these principles and forms of knowledge also allow for more effective
handling of common problems (e.g., “you” is also the name of a place; should
“Lake Como” or “Como” be annotated as a toponym).

7.1 Uncertain Annotation Model

An annotation a = (b, e, τ) declares a phrase ϕb
e from b to e to be interpreted as

entity type τ. For example, a8 in Fig. 6a declares ϕ = “Paris Hilton” from b = 1
to e = 2 to be interpreted as type τ = Person. An interpretation I = (A,U) of
a sentence s consists of an annotation set A and a structure U representing the
uncertainty among the annotations. In the sequel, we discuss what U should be,
but for now view it as a set of random variables (RVs) R with their dependencies.

Fig. 6. Example sentence and NEE ontology

Rather unconventionally, we don’t start with an empty A, but with a ‘no
knowledge’ point-of-view where any phrase can have any interpretation. So our
initial A is {a | a = (b, e, τ) ∧ τ ∈ T ∧ ϕb

e is a phrase of s} where T is the set of
possible types.

With T finite, A is also finite. More importantly, |A| = O(klt) where k = |s| is
the length of s, l is the maximum length phrases considered, and t = |T |. Hence,
A grows linearly in size with each. In the example of Fig. 6a, T = {Person,
Toponym,City} and we have 28 · |T | = 84 annotations. Even though we envision
a more ingenious implementation, no probabilistic database would be severely
challenged by a complete annotation set for a typical text field.

7.2 Knowledge Application Is Conditioning

We explain how to ‘apply knowledge’ in our approach by means of the example
of Fig. 6, i.e., with our A with 84 (possible) annotations and an ontology only
containing Person, Toponym, and City. Suppose we like to add the knowledge
Person—dnc—City. The effect should be the removal of some annotations and
adjustment of the probabilities of the remaining ones.
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Fig. 7. Initial annotation set stored in a
probabilistic database (MayBMS-style)

An initial promising idea is to store
the annotations in an uncertain rela-
tion in a probabilistic database, such
as MayBMS [18]. In MayBMS, the
existence of each tuple is determined
by an associated world set descriptor
(wsd) containing a set of RV assign-
ments from a world set table (see
Fig. 7). RVs are assumed independent.
For example, the 3rd annotation tuple
only exists when x1

8 = 1 which is the
case with a probability of 0.8. Each
annotation can be seen as a probabilis-
tic event, which are all independent in our starting point. Hence, we can store
A by associating each annotation tuple aj

i with one boolean RV xj
i . Consequently,

the database size is linear with |A|.

Fig. 8. Defining a and b to be mutually exclusive means conditioning the probabilities.

Adding knowledge such as Person—dnc—City means that certain RVs become
dependent and that certain combinations of RV assignments become impossible.
Let us focus on two individual annotations a2

1 (“Paris” is a City) and a1
8 (“Paris

Hilton” is a Person). These two annotations become mutually exclusive. The
process of adjusting the probabilities is called conditioning [19]. It boils down
to redistributing the remaining probability mass. Figure 8 illustrates this for
a = a2

1 and b = a1
8. The remaining probability mass is 1 − 0.48 = 0.52. Hence,

the distribution of this mass over the remaining possibilities is P (a ∧ ¬b) =
0.12
0.52 ≈ 0.23, P (b ∧ ¬a) = 0.32

0.52 ≈ 0.62, and P (∅) = P (¬a ∧ ¬b) = 0.08
0.52 ≈ 0.15.

A first attempt is to replace x2
1 and x1

8 with one fresh three-valued RV x′ with
the probabilities just calculated, i.e., wsd(a2

1) = {x′ = 1} and wsd(a1
8) = {x′ = 2}

with P (x′ = 0) = 0.15, P (x′ = 1) = 0.23, and P (x′ = 2) = 0.62. Unfortunately,
since annotations massively overlap, we face a combinatorial explosion. For this
rule, we end up with one RV with up to 22·28 = 256 ≈ 7 · 1016 cases.
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Solution directions. What we are looking for in this paper is a structure that
is expressive enough to capture all dependencies between RVs and at the same
time allowing for scalable processing of conditioning operations. The work of [19]
represents dependencies resulting from queries with a tree of RV assignments.
We are also investigating the shared correlations work of [20].
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