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Abstract This chapter describes a method for meta-research, based on image mining
from neuroscientific publications. It extends earlier investigation to the study of
a large scale data set. Using a framework for extraction and characterisation of
reported fMRI images, based on their coordinates and colour profiles, we propose
that significant information can be harvested automatically. The coordinates of the
brain activity regions, in relation to a standard reference templates are estimated.
We focus on the analysis of scientific reports of the default mode network. Both the
commonalities and the differences of brain activity between control, Alzheimer and
schizophrenic patients are identified.

1 Introduction

1.1 Meta-Analysis in Neuroscience

There is an ever increasing number of scientific publications in many research fields
in general, and in neuroscience in particular. Hundreds of articles are published ev-
ery month, with a considerable amount devoted to functional magnetic resonance
imaging (fMRI) ([7, 12]). When comparing results obtained with a particular ex-
perimental setup with those reported in the existing literature, one may validate,
integrate or confront different theories. This analysis is usually performed in a rather
human-intensive manner, through the use of dedicated curators, e.g. [14, 15]. The
development of tools able to synthesise and aggregate such large-data can then be
seen as crucial.

Meta-analysis of neuroscience research would clearly benefit from direct access
to their original data sets. This is often not possible, due to the unavailability of such
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data. Yet, albeit of poorer quality, there is a plethora of summarising information,
readily available in many published reports. Its analysis is the main topic of the
current manuscript. That information is encoded both in text structures, as well as
in image content, providing ample scope for mining information at various levels.
The extraction of relevant information is not a simple task, and constitutes a major
subject of information retrieval and data mining [11].

1.2 Previous Work

As stated above, previous approaches often used a considerable amount of curator
work, with researchers reading from several sources, and extracting by hand the
relevant information (cf., [14]). This severely limits the range of possible analyses.
It is, therefore, of significant importance that robust automated information retriev-
ing approaches be added to the current attempts to build functional neuro-atlases. A
recent, fully automated approach was proposed by [21]. Their framework combines
text-mining, meta-analysis and machine-learning techniques, to generate probabilis-
tic mappings between cognitive and neural states. One drawback of this method is
that it addresses only text mining, and requires the presence of activation coordinates
in the articles analysed. Those peak-coordinates and some text tags are the only rep-
resentation of the activations, which results in the discarding of valuable information
from the neural activity.

We see our approach as a complementary way to tackle the problem, when image
information, rather than text, is automatically harvested from published data.

1.3 Default Mode Network

An open field of research with increasing interest in neuroscience is the resting state
and default mode networks (RSN & DMN, respectively). These networks comprise
areas such as the occipital, temporal and frontal areas of the brain. They are active
when the individual is not performing any goal-oriented task, and suppressed during
activity [6, 17]. In spite of the great attention to those networks, scientific research
of brain’s “resting state” still poses various conceptual and methodological difficul-
ties [19]. A commonly topic of study consists in investigating the differences and
commonalities in the activity of healthy brains when compared to, e.g., Alzheimer
or schizophrenic brains. Specifically, how different is the composition of RSN and
DMN, in healthy and pathological brains, and how do these differences influence
cognitive and functional performances.
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1.4 Proposed Approach

In this chapter, we propose a complementary framework to text analysis, focusing
instead on image information. It relies on the automatic extraction and character-
isation of image information in fMRI literature. Such information often takes the
form of activation/suppression of activity in the brain, in a variety of image settings,
orientations and resolutions. This framework aims to open different means to build-
ing and improving functional atlases of the human brain, based solely on the large
number of images published in neuroscientific articles.

We demonstrate the feasibility and results of our method in studies of the resting
state and default mode networks, and highlight three outcomes of such research. The
first is the identification of common neuronal activity across all subjects. Several re-
gions are expected to participate in the DMN structures, in spite of possible existence
of any of the aforementioned diseases. The second outcome focuses on differences
between the activation patterns of healthy subjects and unhealthy ones, which can
be explained with information already reported in articles within the data set used.
Finally, we aim at identifying also variations in activity, not reported in the literature,
and which could constitute evidence for proposing new research questions.

In the following sections, we will describe the procedure used for the extraction
of reported fMRI images and subsequent mapping of functional activity patterns to
a common brain template. Then we demonstrate the results obtained when mining
information from a collection of articles related to the DMN. Using those results,
we subsequently compare brain activity in healthy, Alzheimer and schizophrenic
brains. We conclude the article with some remarks about the proposed approach, its
limitations and possible future work.

2 Methodology

2.1 Data

The first step of our research consisted in the construction of a database of rele-
vant publications. With this in mind, we searched for neuroscientific publications
published online, in which the topic of discussion was related to the default mode
network. This search was carried out using a keyword based search, with words such
as DMN, Alzheimer, fMRI, cognitive impairment, Schizophrenia and resting state.

We gathered 183 articles in pdf format, from journals such as NeuroImage, Hu-
man Brain Mapping, Brain, Magnetic Resonance Imaging, PNAS and PLOS ONE.
The time-frame for these articles ranged from early 2000 to June 2013. All papers
were then separated according to the specificity of the analysis carried therein (see
Table 1), distinguishing between studies on healthy brains (132), Alzheimer (29) and
Schizophrenia (18) research.
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Table 1 Number of articles
used in this study, separated
by type of study, as well as
figures, images and blobs,
obtained by our method

Articles Figures Images Blobs

Healthy 132 217 1200 5303

Alzheimer 29 44 184 573

Schizophrenia 18 23 103 307

183 284 1487 6183

2.2 fMRI Activity

Consider typical images of fMRI activity, as shown in Fig. 1. In a brief glance,
it is easy to identify several features of relevance, such as the kind of section of
the image (axial in this case, as opposed to sagittal or coronal), various anatomical
features of the section, as well as the functional activity regions or ‘blobs’ within
the section. We do that by relating the image to an internal representation of our
anatomical and physiological knowledge of the brain. This relation takes into account
physical and geometrical properties of the underlying structural image, as well as
of the superimposed blob. In addition to the activity location, other features, such
as intensity, area, perimeter or shape can be used to fully characterise the activity,
c.f. ([1, 18]). Other non-pictorial features, such as the text in the caption, could also
be used to characterise said images.

In Fig. 1, one can also see the various reporting styles illustrated, including various
underlying, gray-scale, structural images, colours and formats. The leftmost image
shows a typical example where a slight increase of activity when compared to the
reference corresponds to dark red while a big increase is depicted in bright yellow,
which is typically called the hot colour scale. On the rightmost image, the decrease
of activity when compared to the reference is shown in a gradation of blue, from
dark to bright, corresponding to a small to big decrease. The image on the middle
shows an example where the authors only chose to report the areas of difference in
activation, without giving intensity information.

2.3 Image Extraction Procedure

In Fig. 2, we show a flowchart of our framework. We start by extracting figures from
the PDF files of publications, using an open source command-line utility pdfimages,
running in Linux.

For each journal publication there is a pre-defined, common reporting style, but,
as shown before, different authors produce their figures with different styles. They
have non-homogeneous content, such as multiple image frames per figure, other
plots, annotations or captions. Since we desire a clear image in order to accurately
isolate the fMRI activity of interest, it is necessary to morphologically process those
figures.
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Fig. 1 Examples of images presented in fMRI reports. On the leftmost image (adapted from [13]),
activity is present in the occipital, left temporal and frontal areas of the brain, and the activity is
reported using the hot colour scale. The activity on the second image (adapted from [9]) is shown
in three different uniform colours, while the third image (adapted from [22]) shows a combination
of hot and cold colour scales, for increase and decrease of activity when compared to the reference

Blob 
Mining

Blob 
Mining

Object identificationFigure extraction

FMRI image retrieval

Blob identification

Image cleaning

Article

Fig. 2 Flowchart describing the blob mining procedure. First, figures are retrieved from articles
(images adapted from Johnson et al.(2007)). This is then followed by the detection of possible
objects containing fMRI activity reports. After processing and retrieval of these images, they are
cleaned of artifacts, such as lines and text, allowing for a final stage of blob identification

The first stage is the object identification. Many figures have a simple background
colour, like black or white, but others have different colours, e.g., gray. Hence, the
background colour needs to be detected, which is done through histogram and border
analysis. The possible background colours are detected from the borders of the image,
and the one with highest number of pixels is selected.
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To detect different objects in a figure, and after background detection, figures are
converted to black (background) and white (objects) colour. In those binary images,
the white areas correspond to the smallest rectangle enclosing a object. Objects in
the border of the respective figure, as well as those composed of only a few pixels are
discarded. The next step is to analyse the images that are left inside the remaining
objects. After extracting said images, we need to identify and extract the ones that
correspond to fMRI reports. This is done using various properties, such as:

• a minimum perimeter of the image, which we have set to 80 pixels, to allow a
sufficient processing resolution;

• a minimum and maximum number of image/background pixel ratio, between 0.1
and 97.5, to avoid non-brain images;

• percentage of colour pixels in the image between 0 and 40 % of coloured pixels,
filtering out non-fMRI images or images with activity all over the brain;

• image aspect ratio between 0.66 and 1.6, typical of a brain image;
• one image should occupy more than 50 % of the frame, to eliminate multiple

images in the same object frame.

Regarding the last property, we repeated the object identification procedure when
objects included several images, until no more images could be found.

In the example shown in Fig. 2, the object frame containing the figure colour map
is discarded, due to the aspect ratio. Two of the brain images are also discarded since
they don’t have colour present, therefore not being considered as originating from
an fMRI study.

The following step removes undesired annotations. In Fig. 2, these correspond
to coordinate axis as well as letters ‘L’and ‘R’. This stage is done by removing
all images inside the frame, except for the biggest one. Also any lines in 0 or 90
degree angles are removed, using the Hough transform [8, 20] on each frame. Pixels
belonging to vertical/horizontal lines that are present in more than two thirds of the
height/width of the object are replaced with an average intensity of the surrounding
pixels.

2.4 Volume and Section Identification

Once the activity images have been retrieved and cleaned, the type of template used
in the images, i.e. volume type, and sections are identified, to estimate the three-
dimensional coordinates of the activated regions. To represent the three dimensional
changes in brain activity, views from three different planes are used to represent
them in two dimensions. Thus we have axial sections, along the transversal plane
that travels from the top of the brain to bottom; the sagittal section that travels along
the median plane, from left to right; and the coronal section, along the frontal plane,
that travels from front to back. To do a proper characterisation of the images, instead
of focusing on the internal features of each section, the symmetry characteristics of
the section shapes are used, as show in Fig. 3.
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Fig. 3 Section identification—Top column contains example fMRI activity images (after conversion
to grey scale) and below them their corresponding binary masks. From left to right, we have axial,
coronal and sagittal sections

The images are again converted to binary images, thereby outlining the respective
shape of the section. Simple symmetry allows for a suitable distinction between
sections. One axial section is mostly symmetric about both the horizontal and vertical
axis (Fig. 3a, d). The coronal section displays some symmetry only with respect to
its vertical axis (Fig. 3b, e) while the sagittal section is asymmetric (Fig. 3c, f).

Most researchers map the activity changes found onto either SPM [10] or Colin [3]
volume templates. Colin volumes contain higher resolution sections, when compared
to SPM. Regarding the spatial separation between adjacent sections, SPM volume
templates uses 2 mm, whereas that distance is 1mm for Colin templates.

To detect the volume type, one can use a complexity measure of the images. We
used a Canny filter, [4], to detect the voxels corresponding to contrast edges. This is
done for both template volumes, i.e. Colin and SPM, and for all the image slices from
the section identified before. The volume template we select corresponds to the one
with the minimal difference between the analysed image and the volume template
images. This difference is calculated for the whole image and for a centred square
with half the image size. We then average both values and use this as the difference
measure.
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To identify which slice of the template’s volume corresponds to the extracted
image, we compare that image with all of the template’s slices. This comparison is
performed using a combination of correlation and scale invariant feature transform
(SIFT, [16, 20]). If there is a slice with a correlation of more than .9 with the extracted
image, then that slice is selected. Otherwise, we select the slice which obtains the
smallest distance of SIFT features as the correct mapping. Once this information is
found, the complete coordinate set is identified for the reported image.

2.5 Blob Information Mapping

Once the geometrical considerations of the image have been dealt with, we can now
characterise in the more detail the regions reported therein.

Activity regions are generated in response to stimulation. The properties of these
regions largely define the fMRI activity and hence it is crucial that an analysis of the
coloured blobs is carried out. Since we assume that only activations are color coded,
these regions are easily segmented based on hue information (cf. ‘blob identification’
box in Fig. 2).

As mentioned before, the reporting style of different researchers can vary. This
variety of reporting methods restricts the analysis that can be performed, since the
same article can contain images with different colour scales. We tried to obtain
intensity information from each fMRI image by using a colour map detection pro-
cedure, through histogram analysis. Since some images showed both increased and
decreased activity, this step comprised from mild human intervention, aimed at fixing
some wrongly detected colour maps. This was only applied to the rare cases where
the automatic histogram analysis couldn’t detect the correct colour scale, and was
performed rather easily.

Using the Colin brain template as a reference to our own reporting, we mapped
all blob intensity information to their respective coordinates. We sum all intensities
found in the data, for each voxel. Then those intensities are normalised to a scale
from 0 to 1, where one corresponds to the highest possible common activity.

This produces a three-dimensional intensity map, where each voxel displays the
intensity corresponding to the average activity in the data, for the respective voxels.
Since this intensity map was built using two-dimensional images, we also performed
a 3D smoothing, using a Gaussian ellipsoid with dimensions corresponding to 5 %
of the template size.

In our reporting, we decided to use the jet colour scale for the summarising
intensity map. There, colours go from dark blue to dark red, covering also green
and yellow. One big difference between our scale and typical fMRI reports is that
we don’t distinguish between increase or decrease of activity, when compared to a
reference, but consider any coloured report as “interesting”. Therefore the dark blue
corresponds to locations with very low reporting of activity (positive or negative)
while dark red is used for locations with many reports. To avoid showing all the brain
in dark blue, we show only intensities for locations where the number of reported
blobs is more than 10 % of the total.
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By superimposing this intensity map over the template volume, we can obtain a
visual summary of all the results found in the articles1.

3 Results

3.1 Extracted Information

Table 1 shows how many articles, figures, images and blobs were found according
to the publications analysed. Note that the number of samples for the unhealthy
cases is quite small when compared to the healthy brains. This bias might affect the
quality of the results, but the same problem would occur to any other meta-researcher,
investigating brain activity in Alzheimer/Schizophrenia, due to the smaller sample
of research dealing with these cases, when compared to the healthy controls.

Regarding the accuracy of the method, a simple visual inspection shows that
once the volume and type of section are identified, the section coordinates were
typically accurate within 1 voxel of distance. Also, the cleaning procedure of images
mentioned in Sect. 2.3 doesn’t remove all artifacts from images, e.g., when the
letters are inside the brain. Nonetheless we found that leftover artifacts rarely affected
activity detection and subsequent mapping.

3.2 Meta-Analysis

After the compilation of all the results and the creation of the three-dimensional
activity maps, one can perform analyses on the different types of brains studied.

3.2.1 Healthy Brain Activity

Figure 4 shows the brain activity reported for healthy subjects, displayed on axial
section of the standard Colin reference. The highest areas of activity are the typical
subsystems that compose the DMN: the posterior cingulate/precuneous, the medial
pre-frontal cortex and the inferior parietal lobes. Note that, in the majority of the
reports, including Alzheimer and Schizophrenia, most subjects presented the bulk of
the activity in these major areas.

3.2.2 Alzheimer vs Healthy Brain Activity

We can now focus on the comparison between healthy, Alzheimer and Schizophrenia
DMN activity, for example at axial height 114 of Colin’s standard brain (see Fig. 5).

1 The 2D projections of said summarising volumes were produced using the ITK-SNAP tool [23].
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Fig. 4 Average brain activity reported in publications dealing with healthy brains, superimposed
on a Colin-based brain template, shown at various axial heights. Most of the activity is reported on
the occipital, temporal and frontal areas of the brain, which correspond to the typical default mode
network areas

According to [2], one would expect that older brains have larger areas of activity than
younger ones. We can see this in the posterior cingulate and in the inferior parietal
lobes for Alzheimer when compared to the healthy brain image. On the other hand,
the aged brain image shows somewhat less spread activity on the frontal lobe, when
compared to the other areas of DMN. This seems counter-intuitive in light of the
referred work. One may say that the lack of samples could cause this phenomenon,
but our results seem rather consistent for the other areas. To find out a possible reason
for this discrepancy, we can search for corroborating evidence in one of the articles
analysed. In Fig. 1 of [5], there is a similar decrease in activity for aged brains,
compared to healthier ones, confirming our own results.
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Fig. 5 Brain activity reported for healthy (a), Alzheimer (b) and schizophrenic (c) brains, at height
114 of the colin standard brain. The reports on brains affected byAlzheimer show a smaller intensity
of activity in the pre-frontal cortex, when compared to the other DMN areas, unlike the reports for
healthy and schizophrenic brains

Fig. 6 Brain activity reported for healthy (a), Alzheimer (b) and schizophrenic (c) brains, at height
130 of the colin standard brain. (a) image shows wider activation in the posterior cingulate area,
suggesting that both Schizophrenia and Alzheimer might play a big role in this area of the brain

3.2.3 Schizophrenia vs Healthy Brain Activity

Another analysis that can be performed with our method relates to finding areas of the
brain with different activities between unhealthy brains and healthy ones. In Fig. 6,
one can see images for axial height 130, where publications dealing with healthy
brains report a bigger area of activity in the posterior cingulate area (PCC), when
compared with brains suffering from Alzheimer, and even more so on schizophrenic
brains.

3.2.4 Overall Comparison between Healthy, Alzheimer and Schizophrenia
DMN Activity

To have a better overall perspective of the reported brain activations/deactivations,
we can look at the 3D images of the intensity map, as depicted in Fig. 7. In this figure,
we can clearly see that the areas reported on the healthy brains correspond exactly
to the ones normally expected for studies of the DMN. On the brains suffering with
Alzheimer, the intensity values decrease when compared to the healthy brain, as
we suggested already in Fig. 5, although the areas reported are still the same as the
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Fig. 7 Three dimensional images of brain activity reported for healthy (top row), Alzheimer (middle
row) and schizophrenic (bottom row) brains. All reported images show the expected main DMN
areas, although the reports on Alzheimer show a decreased intensity and the brains suffering with
Schizophrenia report a more distributed activity pattern

from normal controls. Regarding the brains with Schizophrenia, we can see an area
increase in the frontal region of the brain, while several smaller foci of activation
appear, e.g., near the cerebellum.

4 Discussion

We gathered more than 180 articles studying the default mode network, and analysed
the images contained therein, in order to get a summarising overview of their results.
Our main goal was to automatically map the results of studies reported by several
researchers, onto a standard brain, and use this mapping to analyse the differences
between healthy and unhealthy brains. This task would involve a tremendous amount
of work and time if done by a human curator, whereas our method retrieves most
information in a uniform and almost automatic manner.

The complete procedure is done in approximately 1 min per article (including
human intervention if needed), while it takes 30–60 min when done by a curator, as
in [15]. In that publication, the researchers went through 13 publications to obtain the
information they desired. Using our method, not only it would save a considerable
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amount of manual work, it would enable them to find other fMRI studies related to
the areas they are interested in.

Looking at the results, it seems clear that our method performs remarkably well,
suggesting that it could be used to help creating a comprehensive functional brain
atlas. Since we only performed a rough analysis of a particular research topic, we
didn’t aim at a complete report of all brain activities that might be studied.

There are some problems with our approach, that also occur in other automatic
data-mining approaches. First, by using only image information we are giving the
same weight to all publications, irrespectively of the number of subjects studied.
Furthermore, statistical thresholds and analysis methods vary in every publication,
hence we cannot claim to make a thorough statistical analysis. Also, the number
of articles dealing with the unhealthy cases is quite small when compared to the
healthy brains. All these problems will affect quantitatively our analysis, although
we may still draw valuable information from the data. We also expect their influence
to decrease with an increasing number of analysed publications.

We showed that with a clear topic in mind, it is possible to obtain results of high
relevance. As an example, we have seen that most reports on DMN, regardless of the
health condition of the subjects show activity on the posterior cingulate/precuneous,
the medial pre-frontal cortex and the inferior parietal lobes. On the other hand,
the pre-frontal activity of Alzheimer subjects is shown to be spatially restricted.
Corroborating evidence for this finding can be traced back to the original published
reports. Due to the reduced sample statistics for the unhealthy brains, we can’t
guarantee that there is a ‘real’ lack of activity, or just the absence of reports, but it
suggests a possible area of investigation.

As stated before, there is a considerable variability in how each researcher displays
their results. In the future, and to mitigate the lack of availability of original data,
our method could be included in online submission systems for publication, after
authors have uploaded their document. With minimal manual effort, the authors
could validate the proposed summarising data, and hence improve the quality of the
information gathered.

Lately there have been more and more efforts to increase data availability, either
through common databases or by submitting the data at the same time as the article.
Naturally, when available, this would allow for a much better analysis of the data,
avoiding all the problems of detecting fMRI images or which colour scale they have.
Nevertheless, these databases are still rather rare.

Despite the specificity of the method regarding fMRI images, we believe the
principles behind it could be easily ported to other areas of investigation, such as
weather reports or earthquake maps.

We hope to further refine our method by combining it with a text-mining approach,
and test it in situations where there is either a clear agreement between different
research reports, or a challenge between theories. The former is a key aspect to the
construction of functional neuro-atlases, whereas the latter may lead to true findings
in neuroscience.
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