
A GPU Accelerated Algorithm for Blood
Detection in Wireless Capsule Endoscopy Images

Sunil Kumar, Isabel N. Figueiredo, Carlos Graca and Gabriel Falcao

Abstract Wireless capsule endoscopy (WCE) has emerged as a powerful tool in
the diagnosis of small intestine diseases. One of the main limiting factors is that
it produces a huge number of images, whose analysis, to be done by a doctor, is
an extremely time consuming process. Recently, we proposed (Figueiredo et al.
An automatic blood detection algorithm for wireless capsule endoscopy images. In:
ComputationalVision and Medical Image Processing IV:VIPIMAGE 2013, pp. 237–
241. Madeira Island, Funchal, Portugal (2013)) a computer-aided diagnosis system
for blood detection in WCE images. While the algorithm in (Figueiredo et al. An
automatic blood detection algorithm for wireless capsule endoscopy images. In:
ComputationalVision and Medical Image Processing IV:VIPIMAGE 2013, pp. 237–
241. Madeira Island, Funchal, Portugal (2013)) is very promising in classifying the
WCE images, it still does not serve the purpose of doing the analysis within a very
less stipulated amount of time; however, the algorithm can indeed profit from a
parallelized implementation. In the algorithm we identified two crucial steps, seg-
mentation (for discarding non-informative regions in the image that can interfere with
the blood detection) and the construction of an appropriate blood detector function,
as being responsible for taking most of the global processing time. In this work, a
suitable GPU-based (graphics processing unit) framework is proposed for speeding
up the segmentation and blood detection execution times. Experiments show that the
accelerated procedure is on average 50 times faster than the original one, and is able
of processing 72 frames per second.

S. Kumar (�) · I. N. Figueiredo
CMUC, Department of Mathematics, Faculty of Science and Technology, University of Coimbra,
Coimbra, Portugal
e-mail: isabelf@mat.uc.pt

C. Graca · G. Falcao
Instituto de Telecomunicações, Department of Electrical and Computer Engineering, Faculty of
Science and Technology, University of Coimbra, Coimbra, Portugal

© Springer International Publishing Switzerland 2015 55
J. M. R. S. Tavares, R. Natal Jorge (eds.), Developments in Medical Image Processing
and Computational Vision, Lecture Notes in Computational Vision and Biomechanics 19,
DOI 10.1007/978-3-319-13407-9_4

56 S. Kumar et al.

1 Introduction

Wireless capsule endoscopy (WCE), also called capsule endoscopy (CE), is a non-
invasive endoscopic procedure which allows visualization of the small intestine,
without sedation or anesthesia, which is difficult to reach by conventional endo-
scopies. As the name implies, capsule endoscopy makes use of a swallowable capsule
that contains a miniature video camera, a light source, batteries, and a radio trans-
mitter (see Fig. 1). This takes continual images during its passage down the small
intestine. The images are transmitted to a recorder that is worn on a belt around
the patient’s waist. The whole procedure lasts 8 h, after which the data recorder
is removed and the images are stored on a computer so that physicians can review
them and analyze the potential source of diseases. Capsule endoscopy is useful for
detecting small intestine bleeding, polyps, inflammatory bowel disease (Crohn’s dis-
ease), ulcers, and tumors. It was first invented by Given Imaging in 2000 [12]. Since
its approval by the FDA (U.S. Food and Drug Administration) in 2001, it has been
widely used in hospitals.

Although capsule endoscopy demonstrates a great advantage over conventional
examination procedures, some improvements remain to be done. One major issue
with this new technology is that it generates approximately 56,000 images per exam-
ination for one patient, whose analysis is very time consuming. Furthermore, some
abnormalities may be missed because of their size or distribution, due to visual fa-
tigue. So, it is of great importance to design a real-time computerized method for the
inspection of capsule endoscopic images. Given Imaging Ltd. has also developed the
so called RAPID software for detecting abnormalities in CE images. But its sensitiv-
ity and specificity, respectively, were reported to be only 21.5 and 41.8 % [10], see
also [19]. Recent years have witnessed some development on automatic inspection
of CE images, see [1, 4–6, 7, 9, 14, 15, 18, 20].

The main indication for capsule endoscopy is obscure digestive bleeding [5, 9,
14, 18, 20]. In fact, in most of these cases, the source of the bleeding is located in the
small bowel. However, often, these bleeding regions are not imaged by the capsule
endoscopy. This is why the blood detection is so important when we are dealing
with capsule endoscopy. The current work is an extension of the paper [8], where
an automatic blood detection algorithm for CE images was proposed. Utilizing Ohta
color channel (R+G+B)/3 (where R, G and B denote the red, green and blue channel,
respectively, of the input image), we employed analysis of eigenvalues of the image
Hessian matrix and multiscale image analysis approach for designing a function
to discriminate between blood and normal frames. The experiments show that the
algorithm is very promising in distinguishing between blood and normal frames.
But, the algorithm is not able to process huge number of images produced by WCE
examination of a patient, within a very less stipulated amount of time. However, the
computations of the algorithm can indeed be parallelized, and thus, can process the
huge number of images within a very less stipulated amount of time. In the algorithm
we identified two crucial steps, segmentation (for discarding non-informative regions
in the image that can interfere with the blood detection) and the construction of an

A GPU Accelerated Algorithm for Blood Detection. . . 57

Fig. 1 a Image of the capsule. b Interior of the capsule

appropriate blood detector function, as being responsible for taking most of the global
processing time. We propose a suitable GPU-based framework for speeding up the
segmentation and blood detection execution times, and hence the global processing
time. Experiments show that the accelerated procedure is on average 50 times faster
than the original one, and is able of processing 72 frames per second.

This chapter is structured as follows. A choice of the suitable color channel is
made in Sect. 2.1 and segmentation of informative regions is done in Sect. 2.2. A
blood detector function is introduced in Sect. 2.3. The outline of the the algorithm is
given in Sect. 2.4. Validation of the algorithm on our current data set is provided in
Sect. 3. The GPU procedure for speeding up the segmentation and blood detection
is described in Sect. 4. Finally, the chapter ends with some conclusions in Sect. 5.

2 Blood Detection Algorithm

Notation Let Ω be an open subset of R2, representing the image (or pixel) domain.
For any scalar, smooth enough, function u defined on Ω , ‖u‖L1(Ω) and ‖u‖L∞(Ω),
respectively, denote the L1 and L∞ norms of u.

2.1 Color Space Selection

Color of an image carries much more information than the gray levels. In many
computer vision applications, the additional information provided by color can aid
image analysis. The Ohta color space [17] is a linear transformation of the RGB color
space. Its color channels are defined by A1 = (R + G + B)/3, A2 = R − B, and

58 S. Kumar et al.

A3 = (2G − R − B)/2. We observe that channel A1 has the tendency of localizing
quite well the blood regions, as is demonstrated in Fig. 3. The first row corresponds
to the original WCE images with blood regions and the second row exhibits their
respective A1 channel images. We also observe that, before computing the A1 channel
of the images, we applied an automatic illumination correction scheme [22] to the
original images, to reduce the effect of illumination.

2.2 Segmentation

Many WCE images contain uninformative regions such as bubbles, trash, dark re-
gions and so on, which can interfere with the detection of blood. More information
on uninformative regions can be found in [1]. We observe that the second component
(which we call henceforth a-channel) of the CIE Lab color space has the tendency
of separating these regions from the informative ones. More precisely, for better
removal of the uninformative regions, we first decompose the a-channel into geo-
metric and texture parts using the model described in [2, Sect. 2.3], and perform the
two phase segmentation. This latter relies on a reformulation of the Chan and Vese
variational model [2, 3], over the geometric part of the a-channel.

The segmentation method is described as follows: We first compute the constants
c1 and c2 (representing the averages of I in a two-region image partition). We then
solve the following minimization problem

min
u,v

{

T Vg(u) + 1

2θ
‖u − v‖2

L2(Ω) +
∫

Ω

(
λ r(I , c1, c2) v + α ν(v)

)
dx dy

}

(1)

where T Vg(u) := ∫
Ω

g(x, y)|∇u| dx dy is the total variation norm of the function u,
weighted by a positive function g; r(I , c1, c2)(x, y) := (c1−I (x, y))2−(c2−I (x, y))2

is the fitting term, θ > 0 is a fixed small parameter, λ > 0 is a constant parameter
weighting the fitting term, and α ν(v) is a term resulting from a reformulation of
the model as a convex unconstrained minimization problem (see [2, Theorem 3]).
Here, u represents the two-phase segmentation and v is an auxiliary unknown. The
segmentation curve, which divides the image into two disjoint parts, is a level set of
u, {(x, y) ∈ Ω : u(x, y) = μ}, where in general μ = 0.5 (but μ can be any number
between 0 and 1, without changing the segmentation result, because u is very close
to a binary function).

The above minimization problem is solved by minimizing u and v separately, and
iterated until convergence. In short we consider the following two steps:
1. v being fixed, we look for u that solves

min
u

{

T Vg(u) + 1

2θ
‖u − v‖2

L2(Ω)

}

. (2)

2. u being fixed, we look for v that solves

min
v

{
1

2θ
‖u − v‖2

L2(Ω) +
∫

Ω

(
λ r(I , c1, c2) v + α ν(v)

)
dx dy

}

. (3)

A GPU Accelerated Algorithm for Blood Detection. . . 59

It is shown that the solution of (2) is ([2, Proposition 3])

u = v − θdivp,

where div represents the divergent operator, and p = (p1, p2) solves

g∇(θdivp − v) − |∇(θdivp − v)|p = 0.

The problem for p can be solved using the following fixed point method

p0 = 0, pn+1 = pn + δt∇(divpn − v/θ)

1 + δt
g
|∇(divpn − v/θ)| .

Again from [2, Proposition 4], we have

v = min{max{u − θλr(I , c1, c2), 0}, 1}.
The segmentation results for some of the WCE images are shown in Fig. 2. The
first row corresponds to the original images, the second row shows the segmentation
masks, and the third row displays the segmentation curves superimposed on the
original images.

In these experiments (and also in the tests performed in Sect. 3) the values chosen
for the parameters involved in the definition of (1), are those used in [2], with g the
following edge indicator function g(∇u) = 1

1+β‖∇u‖2 and β = 10−3.

2.3 Detector Function

We now introduce the detector function that is designed to discriminate between blood
and non-blood frames. We resort to the analysis of eigenvalues of the image Hessian
matrix and multiscale image analysis approach. Based on the eigenvalues, both blob-
like and tubular-like structures can be detected. For a scalar image I : Ω ⊆ R

2 → R,
we define the Hessian matrix of one point (x, y), and at a scale s, by

Hs(x, y) =
⎛

⎝
I s
xx I s

xy

I s
xy I s

yy

⎞

⎠,

where I s
xx , I s

xy and I s
yy are the second-order partial derivatives of I and the scale

s is involved in the calculation of these derivatives. The Hessian matrix describes
the second order local image intensity variations around the selected point. Suppose
λs,1 and λs,2 are two eigenvalues of the Hessian matrix Hs. Further, suppose that
|λs,1| ≤ |λs,2|. Setting Fs = λ2

s,1 + λ2
s,2, we define

F (x, y) = max
smin≤s≤smax

Fs(x, y), (4)

60 S. Kumar et al.

Fig. 2 First row: Original image. Second row: Segmentation mask. Third row: Original image with
segmentation curve superimposed

where smin and smax are the minimum and maximum scales at which the blood regions
are expected to be found. We remark that they can be chosen so that they cover the
whole range of blood regions.

Setting now

f1 = exp
(−βF 2

s

)
and f2 =

(

1 − exp

(

−α

(
λs,1

λs,2

)2
))

,

and motivated from [11], we define the blob (Bs) and ridge (Rs) detectors (at each
point of the domain)

Bs =
⎧
⎨

⎩

0, if λs,1λs,2 < 0 or |λs,2 − λs,1| > δ

(1 − f1)f2, otherwise,
(5)

A GPU Accelerated Algorithm for Blood Detection. . . 61

and

Rs =
⎧
⎨

⎩

0, if λs,2 > 0,

(1 − f1)(1 − f2), otherwise.
(6)

Here α and β are the parameters which control the sensitivity of the functions and δ

is an user chosen threshold. We then compute the maximum for each scale

B(x, y) = max
smin≤s≤smax

Bs(x, y) and R(x, y) = max
smin≤s≤smax

Rs(x, y),

In the computations, we take s = 8, 10, 12, 14. The results of the functions F and
the sum B + R, for blood and non-blood images are displayed in Figs. 3 and 4,
respectively.

We denote by Ω̃ , in the image domain, the segmented region of I , that is, Ω̃ =
Ω ∩ Ωseg , where Ωseg is the segmented sub-domain of I containing the blood. We
use the intensity and gradient information of the above functions for designing our
detector function, DF , which is defined by

DF = ||F ||L∞(Ω̃)||B + R||L∞(Ω̃)

||B + R||L1(Ω̃)
.

2.4 Algorithm Outline

For each WCE image the algorithm consists of the following four steps:

1. Firstly, we remove additional details (such as patient name, date and time) from the
original image. For this purpose, we clip around the circular view of the original
image. Next, we apply an automatic illumination correction scheme [22], for
reducing the effect of illumination.

2. We then consider the Ohta color channel (R + G + B)/3 for the illumination
corrected image.

3. We next apply the two-phase segmentation method [2] for removing uninforma-
tive regions (such as bubbles, trash, liquid, and so on) over the geometric part of
the second component of the CIE Lab color space.

4. Finally, we compute the functions F , B +R and the blood detector function DF.

3 Validation of the Algorithm

We test the performance of the algorithm on a data set prepared by medical the
experts. Given Imaging’s Pillcam SB capsule was used to collect the videos in the
University Hospital of Coimbra. To make the data set representative, the images

62 S. Kumar et al.

0

10

20

30

40

50

60

70

80

0

10

20

30

40

50

60

70

80

0

10

20

30

40

50

60

70

80

0

100

200

300

400

500

600

50

100

150

200

250

300

0

50

100

150

200

250

300

350

400

0

0.1

0.2

0.3

0.4

0.5

0

0.1

0.2

0.3

0.4

0

0.1

0.2

0.3

0.4

0.5

Fig. 3 First row: Original image with blood region. Second row: A1 color channel. Third row:
Function F. Fourth row: Function B + R

were collected from 4 patients video segments. The data set consists of 27 blood
images and 663 normal images. We use standard performance measures: sensitivity,
specificity and accuracy. These are defined as follows:

Sensitivity = TP

TP + FN
, Specificity = TN

TN + FP
,

A GPU Accelerated Algorithm for Blood Detection. . . 63

0

10

20

30

40

50

60

70

80

0

10

20

30

40

50

60

70

80

0

10

20

30

40

50

60

70

80

0

50

100

150

200

0

20

40

60

80

100

20

40

60

80

100

120

140

160

0

0.05

0.1

0.15

0.2

0.25

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Fig. 4 First row: Original image without blood region. Second row: A1 color channel. Third row:
Function F. Fourth row: Function B + R

Accuracy = TN + TP

TN + FP + TP + FN
,

where TP, FN, FP and TN represent the number of true positives, false negatives,
false positives and true negatives, respectively. For a particular decision threshold T ,
if for an image frame J , DF > T , it is a positive frame; if DF ≤ T , it is a negative

64 S. Kumar et al.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FAR = 1 − Specificity

S
en

si
tiv

ity

Fig. 5 ROC curve for function DF

frame. If J belongs to the class of blood image frames and it is classified as negative,
it is counted as a false negative; if it is classified as positive, it is counted as a true
positive. If J belongs to the class of non-blood image frames and it is classified as
positive, it is counted as a false positive; if it is classified as negative, it is counted
as a true negative.

Sensitivity represents the ability of the algorithm to correctly classify an image as
a frame containing blood, while specificity represents the ability of the algorithm to
correctly classify an image as a non-blood frame. The third measure, accuracy, is used
to assess the overall performance of the algorithm. There is also another performance
measure commonly used in the literature, false alarm rate (FAR). However, it can be
computed from the specificity: FAR=1-Specificity.

Receiver operating characteristic (ROC) curve is a fundamental tool for detection
evaluation. In a ROC curve sensitivity is plotted in function of FAR. Each point
on the ROC curve represents a sensitivity/FAR pair corresponding to a particular
decision threshold. It shows the tradeoff between sensitivity and specificity. Figure 5
represents the ROC curve with respect to the function DF. For FAR ≤ 10 %, the
best sensitivity achieved is 70.37 %. In particular, the sensitivity, FAR and accuracy
obtained are 70.37, 9.6 and 89.56 %, respectively, for the threshold 2.8928E + 007.

In summary, these results show that the presented algorithm is very promising for
the detection of blood regions.

A GPU Accelerated Algorithm for Blood Detection. . . 65

4 Speeding up the Segmentation and Detector Performance

In this section we describe general facts about the apparatus specifications. In par-
ticular, we detail the GPUs adopted and the underlying architectures. Finally, we
address the parallelization of the algorithms proposed, namely by detailing the seg-
mentation and blood detector parallelization procedures on the GPU, and reporting
the results obtained for the current medical dataset.

The pipeline of the algorithm, described in Sect. 2, has been first implemented on a
CPU Intel Core i7 950 CPU @ 3.07 GHz, with 12 GB of RAM, running a GNU/Linux
kernel 3.8.0-31-generic. The C/C++ code was compiled using GCC-4.6.3.

In order to process more frames per second, the segmentation and blood detector
steps have been paralellized, for executing on GPU NVidia C2050 and NVidia GTX
680, compiled using NVIDIA Compute Unified Device Architecture (CUDA) driver
5.5 [21].

4.1 General Overview of the GPU Architecture

The host system usually consists of a CPU that orchestrates the entire processing
by sending data and launching parallel kernels on the GPU device. At the end of
processing, it collects computed data from the device and terminates execution. The
parallelization of segmentation and blood detection procedures is carried out using
the CUDA parallel programming model, by exploiting the massive use of thread- and
data-parallelism on the GPU. CUDA allows the programmer to write in a transparent
way, scalable parallel C code [21] on GPUs.

As shown in Fig. 6, each thread processes one pixel and thus multiple elements can
be processed at the same time. This introduces a significant reduction in the global
processing time of the proposed algorithm. When the host launches a parallel kernel,
the GPU device executes a grid of thread blocks, where each block has a predefined
number of threads executing the same code segment. Organized in groups of 32
threads (a warp), they execute synchronously and are time-sliced among the stream
processors of each multiprocessor.

Figure 7 depicts a simplified overview of the GPU architecture. It shows that
several multiprocessors contain a large number of stream processors (the number of
stream processors and multiprocessors depends on the model and architecture of the
GPU). In the present case, the NVidia GTX 680 GPU, which contains eight multi-
processors with each multiprocessor containing 192 stream processors, performing
a total of 1536 CUDA cores, executes the algorithm faster.

Before processing starts on the GPU, data is uploaded to device memory. This
process is typically slow and consists in transferring the information from the host
CPU memory to the GPU global memory (device). At the end of the processing,
results are transferred from the GPU device global memory to the host CPU RAM
memory.

66 S. Kumar et al.

Fig. 6 Demonstration of the structure of a grid and thread blocks and how the same segment of
code is executed by multiple threads. Each thread computes the result for one pixel

In the GPU, there are several memory types and they have different impacts on
the throughput performance. We highlight two of them:

• Global memory accesses are time consuming operations with high latency and
may represent a bottleneck in the desired system’s performance. Instead, co-
alesced accesses should be performed whenever possible. They imply data in
global memory to be contiguously aligned, so that all 32 threads within a warp
can access the respective 32 data elements concurrently on the same clock cycle,
with thread T(x,y) accessing pixel P(x,y), as depicted in Fig. 8.

• Also, modern GPUs have small and fast blocks of memory tightly coupled to the
cores, which is shared by all threads within the same block. We can have several
threads processing the same local data to optimize memory bandwidth (typically
shared memory is faster than global memory when we need to share information
among several threads), but shared memory is small in size. To maximize its use
and performance, it is important to consider such size limitations. When large
amounts of data have to be processed, data has to be partitioned in smaller blocks
in order not to exceed the limits of shared memory. This action also represents
penalties, since it increases the amount of data exchanges with global memory.
Therefore, in the current work we use shared memory for calculating some pro-
cedures and global memory to perform the remaining functionalities, globally
achieving an efficient memory usage as reported in later subsections.

A GPU Accelerated Algorithm for Blood Detection. . . 67

Fig. 7 Simplified GPU arquitecture. An example of how thread blocks are processed on GPU
multiprocessors. A multiprocessor can execute more then one thread block concurrently

Fig. 8 Coalesced memory accesses illustrating a warp of 32 threads reading/writing the respective
32 data elements on a single clock cycle

4.2 Segmentation Parallelization

Some functions in the segmentation procedure, mentioned in Sect. 2.2, need to share
image data between threads (e.g. neighboring pixels on the convolution procedure).

68 S. Kumar et al.

Table 1 Computation times in milliseconds (ms) for the segmentation procedure and throughput
measured in frames per second (fps). The tests were performed on WCE images with 576 × 576
pixels

Processing Platform Segmentation execution time (ms) Segmentation (fps)

CPU Intel i7 240.0 4.2

GPU NVidia C2050 6.0 166.7

GPU NVidia GTX 680 4.8 208.3

Therefore, the use of shared memory is the best option to achieve a higher speedup
(see [16] for a related work). These functions are: finding maximum and mean
values, and 2D separable convolution [13]. All other functions perform slower if
shared memory is used, because the total number of transactions to global memory
will be greater.

The results of maximum and mean values are processed in two steps: the first step
uses GPU grids with 256 × 256 block size; the second step uses 1 × 256 ; and in the
2D convolution, block sizes of dimension 16 × 16 are used.

The remaining functions in the segmentation step always use global memory and
1296 × 256 block sizes.

The computation times regarding the segmentation procedure are represented in
Table 1, that shows the real speedups obtained using parallel computation on the
GPU; as displayed, this procedure runs 40 times faster on GPU NVidia C2050 and
50 times faster on GPU NVidia GTX 680, when compared to an Intel i7 CPU.

4.3 Blood Detector Parallelization

For speeding up the blood detector procedure, described in Sect. 2.3, we only use
one function that shares image data between threads: 2D separable convolution [13].
The remaining functions perform slower if we use shared memory because the total
number of transactions to global memory would assume a higher impact. The results
of 2D separable convolution are computed using block sizes of dimension 16 × 16
and 8×8 for the scale values s = [8 10] and s = [12 14] (see Sect. 2.3), respectively.
All other functions always use global memory blocks with size 8 × 8.

The computation times of the blood detector procedure are presented in Table 2.
We clearly see the speedup obtained using parallel computation on GPU. This algo-
rithm runs 58.9 times faster on GPU NVidia C2050 and 59.5 times faster on GPU
NVidia GTX 680, when compared to an Intel i7 CPU.

A GPU Accelerated Algorithm for Blood Detection. . . 69

Table 2 Computation times in millisecons (ms) for the blood detector procedure and throughput
measured in frames per second (fps). The tests were performed on WCE images with 576 × 576
pixels

Processing platform Blood detector execution time (ms) Blood detector (fps)

CPU Intel i7 529.9 1.9

GPU NVidia C2050 9.0 111.1

GPU NVidia GTX 680 8.9 112.4

Table 3 Throughput measured in fps and speedup archived to the complete algorithm (Segmentation
and Blood Detector). Tests performed on WCE images with 576 × 576 pixels

Processing platform Segmentation and blood detector (fps) Speedup

CPU Intel i7 1.3 ——–

GPU NVidia C2050 66.7 51.3 times faster

GPU NVidia GTX 680 72.9 56.1 times faster

4.4 Speedup

Table 3 shows throughput measured in frames per second (fps) and the speedup of
the full algorithm achieved. It can be seen that GPU NVidia GTX 680 is faster than
NVidia C2050.

With the obtained speedup, the GPU NVidia GTX 680 shows to be able of pro-
cessing 72 fps, which is equivalent to observe that the approximate total number of
56000 frames, generated by a complete WCE exam, can be computed in less than
13 min.

5 Conclusions

With the rapidly enhancing performances of graphics processors, improved pro-
gramming support, and excellent price-to-performance ratio, GPUs have emerged
as a competitive parallel computing platform for computationally expensive and de-
manding tasks in a wide range of medical image applications. We have proposed a
GPU-based framework for blood detection in WCE images. The core of the algo-
rithm lies in the definition of a good discriminator for blood and non-blood frames.
This is accomplished by choosing a suitable color channel, image Hessian eigen-
value analysis and multiscale image analysis approach. Experimental results for our
current dataset show that the proposed algorithm is effective, and achieves 89.56 %
accuracy. Moreover, it is shown that the accelerated procedure is on average 50 times
faster than the original one, and is able of processing 72 frames per second. This
is achieved by parallelizing the two crucial steps, segmentation and blood detector
functionalities in the algorithm, that were consuming most of the global processing
time. To perform these steps more efficiently we now run parallel code on GPUs

70 S. Kumar et al.

with an appropriate use of memory (shared and global). This novel approach allows
processing multiple pixels of an image at the same time, thus sustaining the obtained
throughput levels.

Acknowledgements This work was partially supported by the project
PTDC/MATNAN/0593/2012, and also by CMUC and FCT (Portugal), through European
program COMPETE/ FEDER and project PEst-C/MAT/UI0324/2011. The work of Gabriel
Falcao was also partially supported by Instituto de Telecomunicações and by the project
PEst-OE/EEI/LA0008/2013.

References

1. Bashar M, Kitasaka T, SuenagaY, MekadaY, Mori K (2010)Automatic detection of informative
frames from wireless capsule endoscopy images. Med Image Anal 14:449–470

2. Bresson X, Esedoglu S, Vandergheynst P, Thiran JP, Osher S (2007) Fast global minimization
of the active contour/snake model. J Math Imaging Vis 28:151–167

3. Chan TF,Vese LA (2001)Active contours without edges. IEEE Transac Image Process 10:266–
277

4. Coimbra M, Cunha J (2006) MPEG-7 visual descriptors-contributions for automated feature
extraction in capsule endoscopy. IEEE Transac Circuits Syst Video Technol 16:628–637

5. Cui L, Hu C, ZouY, Meng MQH 2010) Bleeding detetction in wireless capsule endoscopy im-
ages by support vector classifier. In: Proceedings of the 2010 IEEE Conference on Information
and Automation, pp. 1746–1751. Harbin, China, June 2010

6. Cunha JPS, Coimbra M, Campos P, Soares JM (2008) Automated topographic segmentation
and transit time estimation in endoscopic capsule exams. IEEE Transac Med Imaging 27:19–27

7. Figueiredo IN, Kumar S, Figueiredo PN (2013) An intelligent system for polyp detection in
wireless capsule endoscopy images. In: Computational Vision and Medical Image Processing
IV: VIPIMAGE 2013, pp. 229–235. Madeira Island, Funchal, Portugal, 2013

8. Figueiredo IN, Kumar S, Leal C, Figueiredo PN (2013) An automatic blood detection algo-
rithm for wireless capsule endoscopy images. In: Computational Vision and Medical Image
Processing IV: VIPIMAGE 2013, pp. 237–241. Madeira Island, Funchal, Portugal, 2013

9. Figueiredo IN, Kumar S, Leal C, Figueiredo PN (2013) Computer-assisted bleeding detec-
tion in wireless capsule endoscopy images. Comput Meth Biomech Biomed Eng Imaging
Visualization 1:198–210

10. Francis R (2004) Sensitivity and specificity of the red blood identification (RBIS) in video
capsule endoscopy. In: 3rd international conference on capsule endoscopy. Miami, FL, USA,
Feb 2004

11. Frangi AF, Niessen WJ, Vincken KL, Viergever MA (1998) Multiscale vessel enhancement
filtering. In: Medical image computing and computer-assisted intervention, pp. 130–137.
Cambridge, MA, USA, 1998

12. Idan G, Meron G, Glukhovsky A (2000) Wireless capsule endoscopy. Nature 405, 417–417
13. Lee H, Harris M, Young E, Podlozhnyuk V (2007) Image convolution with CUDA. NVIDIA

Corporation
14. Li B, Q.-H-Meng M (2009) Computer-aided detection of bleeding regions for capsule

endoscopy images. IEEE Transac Biomed Eng 56:1032–1039
15. Liedlgruber M, Uhl A (2011) Computer-aided decision support systems for endoscopy in the

gastrointestinal tract: a review. IEEE Rev Biomed Eng 4:73–88
16. Martins M, Falcao G, Figueiredo IN (2013) Fast aberrant crypt foci segmentation on the GPU.

In: ICASSP’13: Proceedings of the 36th IEEE International Conference on Acoustics, Speech
and Signal Processing. IEEE

A GPU Accelerated Algorithm for Blood Detection. . . 71

17. Ohta YI, Kanade T, Sakai T (1980) Color information for region segmentation. Comput
Graphics Image Process 13:222–241

18. Pan G, Xu F, Chen J (2011) A novel algorithm for color similarity measurement and the
application for bleeding detection in WCE. Int J Image Graphics Signal Process 5:1–7

19. Park SC, Chun HJ, Kim ES, Keum B, Seo YS, Kim YS, Jeen YT, Lee HS, Um SH, Kim CD,
Ryu HS (2012) Sensitivity of the suspected blood indicator: an experimental study. World J
Gastroenterol 18(31):4169–4174

20. Penna B, Tilloy T, Grangettoz M, Magli E, Olmo G (2009) A technique for blood detec-
tion in wireless capsule endoscopy images. In: 17th European signal processing conference
(EUSIPCO 2009), pp. 1864–1868

21. Podlozhnyuk V, Harris M, Young E (2012) NVIDIA CUDA C programming guide. NVIDIA
Corporation

22. Zheng Y, Yu J, Kang SB, Lin S, Kambhamettu C (2008) Single-image vignetting correction
using radial gradient symmetry. In: Proceedings of the 26th IEEE conference on Computer
Vision and Pattern Recognition (CVPR ’08), pp. 1–8. Los Alamitos, California, USA, June
2008

	Chapter 4 A GPU Accelerated Algorithm for Blood Detection in Wireless Capsule Endoscopy Images
	1 Introduction
	2 Blood Detection Algorithm
	2.1 Color Space Selection
	2.2 Segmentation
	2.3 Detector Function
	2.4 Algorithm Outline

	3 Validation of the Algorithm
	4 Speeding up the Segmentation and Detector Performance
	4.1 General Overview of the GPU Architecture
	4.2 Segmentation Parallelization
	4.3 Blood Detector Parallelization
	4.4 Speedup

	5 Conclusions
	References

