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Abstract The robust tracking of point features throughout an image sequence is
one fundamental stage in many different computer vision algorithms (e.g. visual
modelling, object tracking, etc.). In most cases, this tracking is realised by means
of a feature detection step and then a subsequent re-identification of the same fea-
ture point, based on some variant of a template matching algorithm. Without any
auxiliary knowledge about the movement of the camera, actual tracking techniques
are only robust for relatively moderate frame-to-frame feature displacements. This
paper presents a framework for a visual-inertial feature tracking scheme, where im-
ages and measurements of an inertial measurement unit (IMU) are fused in order to
allow a wider range of camera movements. The inertial measurements are used to
estimate the visual appearance of a feature’s local neighbourhood based on a affine
photometric warping model.

1 Introduction

Many different applications in the field of computer vision (CV) require the robust
identification and tracking of distinctive feature points in monocular image sequences
acquired by a moving camera. Prominent examples of such applications are 3D scene
modelling following the structure-from-motion (SfM) principle or the simultane-
ous localisation and mapping (SLAM) for mobile robot applications. The general
procedure of feature point tracking can be subdivided in two distinctive phases:
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Fig. 1 Re-identification of
single feature point in two
subsequent frames of an
image sequence

• Detection—The first stage is the identification of a set of distinctive point features
kX = {x1, · · ·, xn} with xi = (x, y)T in image Ik , e.g. based on computing the
cornerness of each pixel (see [5]). At this stage each feature point is typically

assigned with some kind of a descriptor θ
(

Ik(xi )

)
, which is used in the second

stage for the re-identification of the feature. This descriptor could be a simple
local neighbourhood of pixels around xi or a more abstract descriptor such as the
SIFT/SURF descriptors described by [9].

• Re-identification—The general task of feature tracking is the successful re-
identification of the initial set of features kX from image Ik in the subsequent
frame Ik+1. Generally this can be described as an optimisation problem where
the distance between a descriptor for pixel x′ from Ik+1 and the given descriptor

θ
(

Ik(xi
)

)
should be minimised by varying x′ within the image boundaries. In most

cases the optimisation problem is not just driven by varying the image coordi-

nates, but also by using some kind of a motion model Ω
[
θ
(

Ik(xi )

)]

Mk+1
k

which

tries to compensate the change in the descriptors appearance based on an esti-
mation of the cameras movement Mk+1

k between Ik and Ik+1. In order to reduce
the computational complexity of the minimisation the range for varying both the
pixel coordinates and the motion model parameters are limited to certain search
regions. The general procedure of feature tracking is visualised in Fig. 1.

As it was shown by Aufderheide et al. [2], there are many ways for a feature tracking
method to fail completely or produce a non-negligible number of incorrect matches.
This can be clearly seen from a mathematical point of view by the fact that either the
optimisation problem converges within a local minimum or not at all.

In Aufderheide et al. [1], we described a general approach for the combination of
visual and inertial measurements within a parallel multi-sensory data fusion network
for 3D scene reconstruction called VISrec!. Closely related to this work is the adap-
tation of ideas presented by Hwangbo et al. [6] for using the inertial measurements
not only as an aiding modality during the estimation of the cameras egomotion, but
also during the feature tracking itself.
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The first stage for realising this was the development of an inertial smart sensor
system (S3) based on a bank of inertial measurement units in MEMS1 technology.
The S3 is able to compute the actual absolute camera pose (position and orientation)
for each frame. The hardware employed and the corresponding navigation algorithm
are described in Sect. 2. As a second step a visual feature tracking algorithm, as
described in Sect. 3, needs to be implemented. This algorithm considers prior motion
estimates from the inertial S3 in order to guarantee a greater convergence region of
the optimisation problem and deliver an improved overall tracking performance. The
results are briefly discussed in Sect. 4. Finally Sect. 5 concludes the whole work and
describes potential future work.

2 Inertial Smart Sensor System S3

For the implementation of an Inertial Fusion Cell (IFC) a smart sensor system (S3) is
suggested here, which is composed as a bank of different micro-electromechanical
systems (MEMS). The proposed system contains accelerometers, gyroscopes and
magnetometers. All of them are sensory units with three degrees of freedom (DoF).
The S3 contains the sensors itself, signal conditioning (filtering) and a multi-sensor
data fusion (MSDF) scheme for pose (position and orientation) estimation.

2.1 General S3 Architecture

The general architecture of the S3 is shown in the following Fig. 2, where the overall
architecture contains the main ‘organ’ consisting of the sensory units as described in
Sect. 2.2. A single micro controller is used for analogue-digital-conversion (ADC),
signal conditioning (SC) and the transfer of sensor data to a PC. The actual sensor
fusion scheme is realised on the PC.

2.2 Hardware

The hardware setup of the S3 is inspired by the standard configuration of a multi-
sensor orientation system (MODS) as defined in [13]. The used system consists of a
LY530AL single-axis gyro and a LPR530AL dual-axis gyro both from STMicroelec-
tronics, which are measure the rotational velocities around the three main axis of the
inertial coordinate system ICS (see Fig. 3). The accelerations of translational move-
ments are measured by a triple-axis accelerometer ADXL345 from Analog Devices.
Finally a 3-DoF magnetometer from Honeywell (HMC5843) is used to measure

1 MEMS—micro-electromechanical systems.
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Fig. 2 General architecture
of the inertial S3

µ

Fig. 3 General architecture
of the inertial measurement
units and measured entities

the earth’s magnetic field. All IMU sensors are connected to a micro controller
(ATMega328) which is responsible for initialisation, signal conditioning and com-
munication. The interface between sensor and micro controller is based on I 2C-Bus
for the accelerometer and magnetometer, while the gyroscope is directly connected
toADC channels of theAVR. So the used sensor setup consists of three orthogonal ar-
ranged accelerometers measuring a three dimensional acceleration ab = [

ax ay az
]T

normalised with the gravitational acceleration constant g. Here b indicates the actual
body coordinate system in which the entities are measured. The triple-axis gyro-
scope measures the corresponding angular velocities ωb = [

ωx ωy ωz
]T

around the
sensitivity axes of the accelerometers. The magnetometer is used to sense the earth’s
magnetic field mb = [

mx my mz
]T

. Figure 3 shows the general configuration of all
sensory units and the corresponding measured entities.
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Fig. 4 General sensor model

2.3 Sensor Modelling and Signal Conditioning

Measurements from MEMS devices in general and inertial MEMS sensors in partic-
ular suffer from different error sources. Due to this it is necessary to implement both:
an adequate calibration framework and a signal conditioning routine. The calibration
of the sensory units is only possible if a reasonable sensor model is available in ad-
vance. The sensor model should address all possible error sources. Here the proposed
model from [14] was utilised and adapted for the given context. It contains:

• Misalignment of sensitivity axes—Ideally the three independent sensitivity axes
of each inertial sensor should be orthogonal. Due to imprecise construction of
MEMS-based IMUs this is not the case for the vast majority of sensory packages.
The misalignment can be compensated by finding a matrix M which transforms
the non-orthogonal axis to a orthogonal setup.

• Biases—The output of the gyroscopes and accelerometers should be exactly zero
if the S3 is not moved at all. However there is typically a time-varying offset for real
sensors. It is possible to differentiate g-independent biases (e.g. for gyroscopes)
and g-dependent biases. For the latter there is a relation between the applied
acceleration and the bias. The bias is modelled by incorporation of a bias vector b.

• Measurement noise—The general measurement noise has to be taken into account.
The standard sensor model contains a white noise term n.

• Scaling factors—In most cases there is an unknown scaling factor between the
measured physical quantity and the real signal. The scaling can be compensated
for by introducing a scale matrix S = diag

(
sx , sy , sz

)
.

A block-diagram of the general sensor model is shown in the following figure (Fig. 4).
Based on this it is possible to define three separate sensor models for all three

sensor types2, as shown in the following equations:

ωb = Mg · Sg · ω′
b + bg + ng (1)

ab = Ma · Sa · a′
b + ba + na (2)

2 The different sensor types are indicated by the subscript indices at the entities in the different
equations.
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Fig. 5 Computational elements of an INS

mb = Mm · Sm · m′
b + bm + nm (3)

It was shown that M and S can be determined by sensor calibration procedure in which
the sensor array is moved to different known locations to determine the calibration
parameters. Due to their time-varying character, the noise and bias terms cannot
be determined a-priori. The signal conditioning step on the μC takes care of the
measurement noise by integrating an FIR digital filter structure. The implementation
realises a low-pass FIR filter based on the assumption that the frequencies of the
measurement noise are much higher than the frequencies of the signal itself. The
complete filter was realised in software on the μC, where the cut-off-frequencies for
the different sensory units were determined by an experimental evaluation.

2.4 Basic Principles of Inertial Navigation

Classical approaches for inertial navigation are stable-platform systems which are
isolated from any external rotational motion by specialised mechanical platforms.
In comparison to those classical stable platform systems, the MEMS sensors are
mounted rigidly to the device (here: the camera). In such a strapdown system,
it is necessary to transform the measured quantities of the accelerometers, into a
global coordinate system by using known orientations computed from gyroscope
measurements. In general the mechanis system level operation of a strapdown in-
ertial navigation systems (INS) can be described by the computational elements
indicated in Fig. 5. The main problem with this classical framework is that location
is determined by integrating measurements from gyros (orientation) and accelerom-
eters (position). Due to superimposed sensor drift and noise, which is especially
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significant for MEMS devices, the errors for the egomotion estimation tend to grow
unbounded.

The necessary computation of the orientation ξ of the S3 based on the gyroscope
measurements ωb and a start orientation ξ(t0) can be described as follows:

ξ = ξ(t0) +
∫

ωbdt (4)

The integration of the measured rotational velocities would lead to an unbounded
drifting error in the absolute orientation estimates. Figure 6 shows two examples for
this typical drifting behaviour for all three Euler angles. For the two experiments
shown in Fig. 6, the S3 was not moved, but even after a short period of time (here:
6000 · 0.01s = 60s) there is an absolute orientation error of up to 4◦ clearly recog-
nisable. For the estimation of the absolute position these problems are even more
severe, because the position φ can be computed from acceleration measurements, in
the inertial reference frame ai , only by double integration:

φ = φ(t0) +
∫ ∫

aidt (5)

Possible errors in the orientation estimation stage would lead also to a wrong
position, due to the necessity to transform the accelerations in the body coordi-
nate frame ab to the inertial reference frame (here indicated by the subscript i).

The following figure (Fig. 7) demonstrates the typical drifting error for the absolute
position (one axis) computed by using the classical strapdown methodology.

By using only gyroscopes, there is actually no way to control the drifting error for
the orientation in a reasonable way. It is necessary to use other information channels.
So the final framework for pose estimation considers two steps: an orientation esti-
mation and a position estimation as shown in Fig. 8. In comparison to the classical
strapdown method, the suggested approach here incorporates also the accelerometers
for orientation estimation. The suggested fusion network is given in the following
figure, and the different sub-fusion processes are described in Sects. 2.5 and 2.6.

2.5 Fusion for orientation

The general idea for compensating the drift error of the gyroscopes is based on
using the accelerometers as an additional attitude sensor. Due to the fact that the
3-DoF accelerometer measures not only (external) translational motion, but also
the influence of the gravity, it is possible to calculate the attitude based on the
single components of the measured acceleration. At this point it should be noted that
measurements from the accelerometers can only provide roll and pitch angle Thus,
the heading angle of the unit has to be derived by using the magnetometer instead.
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Fig. 8 System design of the inertial fusion cell (IFC)

Fig. 9 Geometrical relations
between measured
accelerations due to gravity
and the roll and pitch angle of
the attitude

Figure 9 gives an illustration showing the geometrical relations between measured
accelerations due to gravity and the roll and pitch angle of the attitude. The angles
can be determined by following relations:

θ = arctan2

(

a2
x ,
√

(ay + az)2

)

(6)

φ = arctan2
(
a2

y ,
√

(ax + az)2
)

(7)

The missing heading angle can be obtained by using the readings from the magne-
tometer and the already determined roll and pitch angles. Here it is important to be
aware that the measured elements of the earth magnetic field have to be transformed
to the local horizontal plane (tilt compensation is illustrated in Fig. 10) as indicating
in the corresponding relations

Xh = mx · cϕ + my · sθ · sϕ − mz · sθ · sϕ

Yh = my · cθ + mz · sθ

ψ = arctan 2 (Yh, Xh)

(8)
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Fig. 10 Local horizontal plane as a reference

a b

Fig. 11 a Discrete Kalman filter (DKF) for estimation of roll and pitch angles based on gyroscope
and accelerometer measurements. b DKF for estimation of yaw (heading) angle from gyroscope
and magnetometer measurements

Based on this approach a discrete Kalman filter bank (DKF-bank) is implemented
which is responsible for the estimation of all three angles of the camera’s orientation.
For the pitch and the roll angle the same DKF-architecture is used, as indicated in
Fig. 11a. In comparison the heading angle is estimated by an alternative architecture
as shown in Fig. 11b.

The Kalman filtering process is composed from the following classical steps,
where the following descriptions are simplified by referrring to just a single angle ξ .

Computation of an a priori state estimate x−
k+1

As mentioned earlier the hidden states of the system are x = [ξ , bgyro]T. The a
priori estimates are computed by following the following relations:

ω̂k+1 = ωk+1 − bgyrok

ξk+1 = ξk + ∫
ω̂k+1dt

bgyrok+1 = bgyrok

(9)
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Here the actual measurements from the gyroscopes ωk+1 are corrected for by the
actually estimated bias bgyrok

from the former iteration, before the actual angle ξk+1

is computed.
Computation of a priori error covariance matrix P−

k+1
The a priori covariance matrix is calculated by incorporating the Jacobi matrix A

of the states and the process noise covariance matrix QK as follows:

P−
k+1 = A · Pk · AT + QK (10)

The two steps (1) and (2) are the elements of the prediction step as indicated in
Fig. 11.

Computation of Kalman gain Kk+1

As a prerequisite for computing the a posteriori state estimate the Kalman gain
Kk+1 has to be determined by following Eq. 11.

Kk+1 = P−
k+1 · HT

k+1 · (Hk+1 · P−
k+1 · HT

k+1 + Rk+1
)−1

(11)

Computation of a posteriori state estimate x+
k+1

The state estimate can now be corrected by using the calculated Kalman gain Kk+1.
Instead of incorporating the actual measurements as in the classical Kalman structure
the suggested approach is based on the computation of an angle difference Δξ . The
difference is a comparison of the angle calculated from the gyroscope measures
and the corresponding attitude as derived from the accelerometers, respectively the
heading angle from the magnetometer, as already introduced in the introduction of
this chapter. So the relation for x+

k+1 can be formulated as:

x+
k+1 = x−

k+1 − Kk+1 · Δξ (12)

At this point it is important to consider the fact that the attitude measurements from the
accelerometers are only reliable if there is no external translational motion. Thus an
external acceleration detection is also needs to be part of the fusion procedure. For this
reason the following condition (see Rehbinder et al. [12]) is evaluated continuously:

‖a‖ =
√

(a2
x + a2

y + a2
z )

!= 1 (13)

If the relation is fulfilled there is no external acceleration and the estimation of the
attitude from accelerometers is more reliable than the one computed from rotational
velocities as provided by the gyroscopes. For real sensors, a threshold εg is introduced
to define an allowed variation from this ideal case. If the camera is not at rest the
observation variance for the gyroscope data σ 2

g is set to zero. By representing the
magnitude of the acceleration measurements as ‖a‖ and the earth gravitational field
g = [0, 0, −g]T the observation variance can be defined by following Eq. 14.

σ 2
g =

⎧
⎨

⎩

σ 2
g ,

0,

‖a‖ − ‖g‖ < εg

otherwise
(14)
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A similar approach is chosen to overcome problems with the magnetometer measure-
ments, in magnetically distorted environments for the DKF for the heading angle.
The magnitude of the earth magnetic field m is evaluated as shown in the following
Eq. 153, in an analogous way to Eq. 14 for describing variation due to gravity:

σ 2
g =

⎧
⎨

⎩

σ 2
g ,

0,

‖m‖ − mdes < εm

otherwise
(15)

Computation of posteriori error covariance matrix P+
k+1

Finally the error covariance matrix is updated in the following way:

P+
k+1 = P−

k+1 − Kk+1 · Hk+1 · P−
k+1 (16)

It was shown inAufderheide et al. [3], that the proposed strategy is able to outperform
other classical algorithms for inertial sensor fusion, such as complementarity filtering
or heuristic methods, in terms of accuracy and long-time stability.

If there is a robust estimate of the camera orientation available, it is possible to
compute a 2D homography H which describes the optical flow (motion of all image
pixels) between two successive image frames. According to Hwangbo et al. [7], it is
possible to compute H for a pure rotational camera movement by using the following
relation.

Hk+1
k = KRCI Rk+1

k K−1 (17)

Here K represents the intrinsic camera parameters (such as focal length f , pixel
size k, etc.), RCI describes relative orientation between inertial and visual reference
coordinate system and Rk+1

k describes the rotation of the camera between frame k

and k + 1, within the general frame-to-frame relative pose M̃k+1
k .

2.6 Fusion for Position

At this point the orientation of the camera is known by following the classical strap-
down approach. Hence, the position p can only be obtained by double integration of
the body accelerations a, when a known orientation Ξ = [φ θ ψ]T is available that
allows a rotation from body frame B to reference (or navigation) frame N by using
the direct cosine matrix (DCM) Cb

n, defined as follows4:

Cb
n =

⎡

⎢
⎢
⎣

cθcψ sϕsθcψ − cϕsψ cϕsθcψ + sϕsψ

cθsψ sϕsθsψ + cϕcψ cϕsθsψ − sϕcψ

−sθ sϕcθ cϕcθ

⎤

⎥
⎥
⎦ (18)

3 mdes describes the magnitude of the earth’s magnetic field (e.g. 48 μT in Western Europe).
4 For simplification: sα = sin(α) and cβ = cos(β).
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Cb
n(q) = 1

√
q2

4 + ‖e‖2
·

⎡

⎢
⎢
⎣

q2
1 − q2

2 − q2
3 + q2

4 2 (q1q2 + q3q4) 2 (q1q3 − q2q4)

2 (q1q2 − q3q4) −q2
1 + q2

2 − q2
3 + q2

4 2 (q2q3 + q1q4)

2 (q1q3 + q2q4) 2 (q2q3 − q1q4) −q2
1 − q2

2 + q2
3 + q2

4

⎤

⎥
⎥
⎦

(19)

The DCM can also be expressed in terms of an orientation quaternion q = [eT , q4]T ,
where e = [q1, q2, q3]T describes the vector part and q4 is the scalar part of q.
Equation 19 shows the relation between Cb

n and a computed q. The actual position
is computed by double integration of accelerometer measurements.

It should be noted here, that the absolute position estimate is affected by a much
higher rate of uncertainty, because the double integration leads to an enormous drift
which can not be bounded. The proposed approach for the visual-inertial feature
tracking uses mainly frame-to-frame motion estimates, so that the drift within the
absolute camera pose can be neglected.

3 Visual-Inertial Feature Tracking

Once there is a reliable motion estimate available it is very important to synchronise
the inertial and the visual measurements. For this a basic clock signal is used to trigger
both inertial sampling and acquiring images. The inertial measurements are available
with a much higher frequency than the 30 frames per seconds (FPS) delivered by a
standard camera module. Thus it is necessary to accumulate motion estimates from
the S3 to compute the frame-to-frame relative pose M̃k+1

k .
Figure 12 shows the general architecture of the visual-inertial feature tracking

system (VIFtrack!) for two subsequent frames of an image sequence.
The two camera positions for the frames Ik and Ik+1 are related by a relative

motion Mk+1
k . The inertial smart sensor system is able to generate an estimate of

that motion (translation and orientation) M̃k+1
k which can be used to update a set of

parameters of the affine photometric motion model p̂k+1
k .

The chosen motion model should be able to compensate typical changes of the
visual appearance of a descriptor over time. Here both photometric (illumination
changes, etc.) and geometric changes of an image patch need to be considered. For
this Jin et al. [8] propose a model which extended the classical affine geometric
distortion proposed by Tomasi and Shi [15] by adding an photometric term.

The following equation shows the implementation of the model by using a parame-
ter vector p = (

A[1,1], A[1,2], A[2,1], A[2,2], d[1], d[2], σ , o
)

which contains the different
elements of the affine warp (A and d) and two photometric parameters (σ , o).

Ω
[
θ
(
Ik(xi )

)]
p = (σ + 1) θ (Ik(Axi + d)) + o (20)

The photometric model is illustrated by Fig. 13, where a light source Λ illuminates
a scene and the emitted light is reflected by the main surface S to the image plane
Π , which is modelled by parameter σ .
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Fig. 12 General scheme of the VIFtrack! approach

Fig. 13 Illustration of the photometric model with light rays reflected by the surface of the main
object and reflectance from other objects
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Fig. 14 Prototype of a
visual-inertial sensor for
VIFtrack!

Due to reflectance from other objects (ambient light sources) there are additional
rays, which also change the intensity of an image pixel (parameter o). Due to the fact
that the photometric motion cannot be estimated by using the inertial measurements,
the corresponding values from the former frame are used as initial parameters for the
optimisation. After the warping of the descriptors the optimisation process for each
feature in X starts. For this optimisation, the following term needs to be minimized:

e = min

{
∑

x∈ν

[

Ω
[
θ
(

Ik(xi )

)]

p
kk+1

− Ik+1(x)

]2
}

(21)

The minimisation problem can be approximated by a linearisation5 around the ac-
tual set of parameters. Classical Gauss–Newton optimisation is used for finding the
optimal set of parameters p. As an abort criterion the actual change rate of p between
two successive iterations is evaluated (δp < ε).

The decision for determining whether a feature was successfully tracked can be
made by evaluating the final value for e after the last iteration. If e lies above a certain
threshold elimit the feature is deleted from the feature database.

4 Results

The approach was evaluated by using a visual-inertial prototype (as shown in Fig. 14)
which combines a standard industrial camera and the inertial smart sensor system. A
microcontroller located on the S3 is responsible for synchronising camera and IMU
data.

An industrial robot was used in order to generate measurements with known mo-
tion, which can be used as ground truth sequences. Due to the fact that the background
of the project is the area of 3D modelling, the used sequences contain only single

5 For this a simple first-order Taylor expansion of the minimisation term is used.
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Fig. 15 Different frames of a test sequence “Object”

objects and a uniform background. The following figure illustrates exemplary frames
of a typical sequence (Fig. 15).

We tested different motion patterns and optimised the corresponding parameters
of the algorithm in order to produce best results. It was found that especially for high
rotational velocities of the camera the VIFtrack! approach is able to outperform other
feature tracking methods. Due to the fact that classical methods, such as the KLT-
tracker from [11], utilise a purely translational model it is quite clear that especially a
rolling camera leads to non-converging behaviour for many feature points. Figure 16
shows a typical motion pattern (slow camera speed) which we used for the evaluation.
The suggested scheme can increase the number of successfully tracked features6 up
to 60 % in comparison to classical KLT for sequences with a rolling camera.

Figure 17 shows a comparison of the tracking performance for the VIFtrack!-
method and the same principle (affine-photometric warping) only based on visual
information for a given sequence. The mean number of successfully tracked features
increases from 74 for visual-alone feature tracking up to 91 for the VIFtrack! scheme
respectively. Especially for applications where a specific number of corresponding
features is necessary (e.g. visual odometry) the VIFtrack!-method is useful, because
while the visual-alone feature tracker loses up to 54 % of its feature points, VIFtrack!
loses only up to 21 %.

The algorithm was also tested for a hand-held camera which was moved through
an indoor environment. Figure 18 shows two typical examples for the tracking of
features between two subsequent frames of the sequence. This sequence is more
complex because the camera is freely moving within an indoor environment and no

6 Here a successfully tracked feature is a feature which is not neglected based on the error threshold
elimit .
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Fig. 16 Typical motion pattern for the evaluation describing rotation around the three Euler an-
gles: Black: ground truth motion from industrial robot (IRB), red: measured angles from inertial
measurements (IMU), green: estimated angles by fusion inertial and visual motion estimates (EKF))
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Fig. 17 Performance comparison between VIFtrack! and affine-photometric warping only based
on visual information for the “object” sequence
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Fig. 18 Two examples for subsequent feature tracking results for the sequence gathered from a
hand-held camera moved within an indoor environment

feature detected initially, within the first frame, remains visible for the entire se-
quence. For evaluating the VIFtrack! procedure a simple routine was introduced,
which generates a set of feature candidates 1X from the first frame. During the mo-
tion of the camera the number of successfully tracked features n decreases over time.
Once n reaches a certain threshold � , the algorithms generates a new set of feature
candidates kX from the actual frame k of the sequence. This simple procedure should
avoid that the tracking algorithm looses its track completely. The following table (Ta-
ble 1) shows how often the algorithm generates a new set of feature candidates for
the visual-inertial approach rV I and classical KLT rKLT .

Table 1 Comparison of the
number of reinitialisation of
feature candidates for
VIFtrack! and classical KLT

n rV I rKLT
rKLT −rV I

rV I

(%)

100 13 18 38

80 16 23 44

60 21 31 48

40 35 53 51

20 44 75 70
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It can be seen from Table 1, that the usage of the VIFtrack! scheme is able
to reduce the number of necessary re-initialisations of feature candidates due to
the more robust feature tracking. Especially for a small number of initial feature
candidates the visual-inertial feature tracking outperforms classical KLT.

5 Conclusion

The general problem of tracking a point feature throughout an image sequence ac-
quired by a moving camera requires the implementation of an algorithm which is
able to model the change of the visual appearance of each feature over time. The state
of the art motion model used for feature tracking is an affine-photometric warping
model, which models both changes in geometry and photometric conditions. For
camera movements which involve high rotational velocities the 2D displacement of
a point feature between two successive frames will increase dramatically. This leads
to a non-converging behaviour of the minimisation problem, which adjusts a set of
parameters in order to find the optimal match of the corresponding feature.

The usage of motion estimates, generated by an inertial smart sensor system as
initial estimates for the motion model, leads to an increasing number of feature
points, which can be successfully tracked throughout the whole sequence.

Future work will look into the possibility of fusing different motion estimates from
visual and inertial cues, which would hopefully lead to a higher robustness against
incorrect inertial measurements. For this visual-based relative pose estimators need
to be evaluated to get a handle on the accuracy (see Aufderheide et al. [4]).
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