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Abstract This chapter deals with some problems of using clustering techniques K-
means (KM) and K-harmonic means (KHM) in colour image quantisation. A lot of
attention has been paid to initialisation procedures, because they strongly affect the
results of the quantisation. Classical versions of KM and KHM start with randomly
selected centres. Authors are more interested in using deterministic initialisations
based on the distribution of image pixels in the colour space. In addition to two
previously proposed initialisations (DC and SD), here is considered a new outlier-
based initialisation. It is based on the modified Mirkin’s algorithm (MM) and places
the cluster centres in peripheral (outlier) colours of pixels cloud. New approach takes
into account small clusters, sometimes representing colours important for proper
perception of quantised image. Pixel clustering was created in the RGB, YCbCr and
CIELAB colour spaces. Finally, resulting quantised images were evaluated by means
of average colour differences in RGB (PSNR) and CIELAB(ΔE) colour spaces and
additionally by the loss of colourfulness (ΔM).

1 Introduction

True colour images acquired by a camera contain only a small subset of all possi-
ble 16.7 million colours. Therefore, it makes sense to further reduce the number of
colours in the image. Nowadays, the colour image quantisation (CIQ) is an important
auxiliary operation in the field of colour image processing and is very useful in image
compression, image pre-segmentation, image watermarking and content-based im-
age retrieval (CBIR). These algorithms are also still used to present the true colour
images on devices with limited number of colours. CIQ reduces significantly the
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Fig. 1 Simple colour image and its clusters in RGB colour space

number of colours in the image to the specially selected set of representative colours
(colour palette). Colour palette generation is the most important step in any CIQ
method. Proper choice of the colour palette helps minimize the colour difference
between the original image and the quantised image.

There exist two main classes of CIQ techniques: splitting techniques and clustering
techniques [1]. The splitting techniques divide the colour space into smaller disjoined
subspaces and then a colour palette is built by choosing representative colours from
these subspaces. Good examples of such techniques are the Median Cut [8], Octree
[5] and Wu’s [16] algorithms. For example, the Median Cut method first locates a
tightest box in RGB colour space, that encloses all image colours. Then, the box is
cut on the longest side and two subboxes are formed. As a result of a such cut both
subboxes should contain the same number of colours and from here comes the name
of the method. Next, a subbox with longest side is cut. This process continues until
the total number of subboxes is smaller than the number of colours in the palette
chosen for the quantised image. All colours in one subbox are represented by their
mean value.

On the other hand, the clustering techniques are the optimization tasks that min-
imize the quantisation errors by minimization the sums of distances between the
cluster centres and cluster points. One of the most popular clustering techniques is
the K-means (KM) technique [10] and its existing modifications e.g. K-harmonic
means (KHM) technique [19]. The clustering has a long tradition of use to quantize
colour images [18]. It can be easily to see that each of the dominant colours in nat-
ural image corresponds to a separate fragment of pixels cloud in the colour space,
which can be called a cluster (Fig. 1). As a generally statement, it may be found that
the splitting techniques are faster than the clustering techniques but they have larger
quantisation errors.

The results of many clustering techniques depend on method of determination of
initial cluster centres, used colour space, applied colour metric etc. Such sensitivity to
initialisation is an important disadvantage of these clustering techniques. A random
selection of the initial centres, used in classical KM version, is not able to achieve
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repeatable results in colour image quantisation. Therefore, in our previous paper [3]
we attempted to use two new heuristic methods of initialisation. The first method,
which is an arbitrary one, is based on uniform partitioning of diagonal of RGB cube
(DC) into k segments. Gray levels in the middle of segments are used as initial
centres. If an image is clustered into k clusters, k initial cluster centres are located
on the gray level axis. The second method, which is an adaptive one, uses a size
of pixel cloud of a colour image and the method has been marked as SD. First,
the mean value and standard deviation (SD) for each RGB component of all image
pixels are calculated. Then, around the point of mean colour (a pixel cloud centre)
a rectangular cuboid with sides equal 2σR , 2σG and 2σB is constructed. We assume
that it lies within the RGB cube. Next, the main diagonal of the cuboid is divided into
k equal segments. The centres of these segments are used as initial cluster centres.
Initial cluster centres in KM can also come directly from splitting algorithms e.g.
from MC or Wu’s algorithms and such combined approach (MC+KM, Wu+KM) was
proposed few years ago [14]. Experiments have shown that Wu+KM technique offers
a slightly better performance than MC+KM and KM initialised by SD approach.

Appropriate initialisation provides the high quality clustering achieved by run-
ning small number of iterations and avoids the formation of empty clusters, which
sometimes occurs in the case of DC initialisation. The result of empty clusters is a
reduction in the number of colours in quantised image. Removing empty clusters
needs changing the cluster centres or splitting a newly created cluster. Good initiali-
sation for the KM technique, used in colour quantisation, is still looked for by many
researchers [2].

The KHM is based on harmonic means, instead of arithmetic means and addition-
ally uses fuzzy membership of pixels to clusters and dynamic weight functions, what
means different influence an individual pixel on calculating new values of centres in
each iteration. KHM is robust to initialisation and creates non-empty clusters. A dis-
advantage of KHM in relation to KM is greater computational complexity, resulting
in a longer computation time.

The clustering process can be conducted not only in the RGB colour space, but
also in other colour spaces. Here a special role is played by recommended in 1976
the CIELAB colour space [17]. It is a perceptually uniform colour space which
approximately expresses a way of human colour perception. The Euclidean distance
in this space is approximately equal to the perceptual colour difference. This should
be of great importance in the process of clustering. Unfortunately, the transform from
RGB to CIELAB is complicated and nonlinear.

The YCbCr colour space is applied in CIQ task among other used colour spaces.
Its advantage, in comparison to CIELAB colour space, is a linearity of transforma-
tion from RGB space, which results in faster calculation of the YCbCr components.
Although the colour difference in the YCbCr space less corresponds to the human
colour perception than the colour difference calculated in CIELAB, however makes it
better than the Euclidean distance calculated in RGB space. The YCbCr components
can be received from the following transformation [9]:

Y = 0.257R + 0.504G + 0.098B + 16 (1)
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Fig. 2 The general idea of
CIQ quality measure

Cb = −0.148R − 0.291G + 0.439B + 128 (2)

Cr = 0.439R − 0.368G − 0.071B + 128 (3)

Therefore, later in this chapter, are tested the CIQ methods in the following colour
spaces: basic RGB, YCbCr and perceptually uniform CIELAB.

This chapter is organized as follows. In Sect. 2, we present two typical and one un-
typical quality measures used for CIQ quality evaluation. The results of experimental
tests for determination of factors influencing the quantisation errors are described
in Sect. 3. The idea of the new proposed initialisation method (modified Mirkin’s
algorithm) is illustrated on several images in Sect. 4. Section 5 shows on a larger set
of images a usefulness of a new MM initialisation in quantisation process, which is
oriented toward image segmentation. Finally we conclude the chapter in Sect. 6.

2 CIQ Quality Measures

The colour quantisation error depends on the number of colours in palette (e.g. 256,
64, 16, 8, 4 colours): the smaller number of colours in palette, then larger is the
quantisation error. Objective CIQ quality measures (Fig. 2) are very important in the
evaluation process of different colour quantizers.

Commonly used most popular measure is the Mean Squared Error (MSE) defined
by:

MSE = 1

3MN

M∑

i=1

N∑

j=1

[
(Rij − R∗

ij )2 + (Gij − G∗
ij )2 + (Bij − B∗

ij )2
]

(4)

where M and N are the image dimensions in pixels, Rij , Gij , Bij are the colour
components of the pixel at location (i, j ) in the original image and R∗

ij , G∗
ij , B∗

ij

are the colour components of the pixel in quantised image. The smaller the MSE
value, the better is the quantised image. Other error measure applied to evaluation of
quantisation is Peak Signal-to-Noise Ratio (PSNR), good correlated with MSE value
and expressed in decibel scale:

PSNR = 20log10
255√
MSE

(5)
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Unfortunately, these both measures that come from the signal processing field are
poorly correlated with subjective visual quality of an image. The quantisation error
can be treated as a colour error that should be determined in a perceptually uniform
colour space. Therefore, an average colour difference in CIELAB colour space (ΔE)
is sometimes applied as a quantisation error:

ΔE = 1

MN

M∑

i=1

N∑

j=1

√
(Lij − L∗

ij )2 + (aij − a∗
ij )2 + (bij − b∗

ij )2 (6)

where: Lij , aij , bij are the colour components of the pixel at location (i, j ) in the
original image and L∗

ij , a∗
ij , b∗

ij are the CIELAB colour components of the pixel in
the quantised image. Also the loss of image colourfulness due to colour quantisation
can be used as an additional tool for evaluation of quantisation error [13].

ΔM = ∣
∣Morig − Mquant

∣
∣ (7)

where: Morig - colourfulness of the original image, Mquant - colourfulness of the
quantised image. Formulas for computing of image colourfulness are simple and
good correlate with the perceptual colourfulness of the image [6]:

M =
√

σ 2
rg + σ 2

yb + 0.3 ×
√

μ2
rg + μ2

yb (8)

where σrg , σyb are the standard deviations and μrg , μyb are the mean values of
opponent colour components of the image pixels. The opponent components are
approximated by following simplified equations:

rg = R − G (9)

yb = 0.5(R + G) − B (10)

where rg - red-green opponency and yb - yellow-blue opponency.
It should be noted here that a common drawback of all these quality measures

based on colour similarity is that they compare the images by using pixel to pixel
comparison, without taking into account an impact of neighbouring pixels on the
perception of colour of considered pixel. The additional factors, defining the quality
of quantised image can include the edge similarity and structural similarity [7]. In this
paper a new quality measure as a combination of all three similarities was proposed.
However, in many cases the human visual system is the best final judge of quality of
quantised image (subjective quality measures).

3 Preliminary Experimental Tests

A set of five natural images has been randomly chosen from Berkeley’s image
database [11] and presented in Fig. 3 in order of their number of unique colours.
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Fig. 3 A set of five test images from Berkeley image database

All these images were acquired at the same spatial resolution, i.e. 481×321 pixels.
First tests were conducted to show that the larger unique number of colours in the
original image, the larger also quantisation errors for a given size of the palette (here
eight colours). The number of iterations in used clustering techniques was equal to
15 and the quantisation was realised by KM and KHM techniques in the RGB colour
space. The data in Table 1 shows the error values for KM technique with two different
initialisations: DC and SD. Similarly, Table 2 contains error values calculated for
more efficient KHM technique. It should be noted that in both cases with the decreas-
ing numbers of unique colours in images in Fig. 3 generally decreases the values of
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Table 1 Quantisation results of the KM technique (k = 8)

Image Colours PSNR (dB) ΔE ΔM

DC SD DC SD DC SD

#65010 49404 24.8 25.0 11.3 9.8 9.9 7.0

#188005 31797 26.4 26.4 8.6 8.5 9.3 8.2

#94079 31225 27.1 27.6 6.1 5.3 9.1 4.6

#67079 22217 27.9 29.4 5.0 4.3 1.8 1.0

#271031 7652 30.1 32.1 3.7 3.2 1.2 1.5

Table 2 Quantisation results of the KHM technique (k = 8)

Image Colours PSNR (dB) ΔE ΔM

DC SD DC SD DC SD

#65010 49404 24.9 24.9 11.1 10.8 11.1 10.8

#188005 31797 26.8 26.5 8.1 9.0 8.1 9.0

#94079 31225 27.2 27.2 6.0 5.8 6.0 5.8

#67079 22217 28.2 29.0 4.9 4.4 4.9 4.4

#271031 7652 32.1 32.1 3.2 3.2 3.2 3.2

Table 3 Quantisation results of the splitting techniques (k = 8)

Image Colours PSNR (dB) ΔE ΔM

MC Wu’s MC Wu’s MC Wu’s

#65010 49404 22.3 24.7 11.2 10.0 4.1 9.4

#188005 31797 25.7 26.1 8.6 8.9 6.9 10.4

#94079 31225 26.4 27.1 6.2 5.7 7.4 7.5

#67079 22217 28.1 28.6 5.2 4.7 1.1 1.6

#271031 7652 30.3 32.0 3.4 3.2 1.3 1.2

quantisation errors, i.e. increases PSNR and decrease ΔE and ΔM . A similar effect
also occurs for two tested splitting algorithms: MC and Wu’s (see Table 3).

In this way we confirmed a quite obvious hypothesis about the impact of the
number of unique colours in the image on the quantisation error.

4 Idea of Outlier-Based Initialisation

Both DC and SD initialisations generate the starting centres of clusters located close
to gray line. In the case of KM these locations of centres largely determine the
final colours of the quantised image. There exist colour images for which the KM
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technique with earlier presented initialisations (DC, SD) does not give good results,
particularly when the size of colour palette is small (e.g. four or eight colours).

Good example of such image is shown in Fig. 4a. This image is not very colour-
ful, but it contains 138 877 unique colours! Colour pixels, as in other images, are
generally grouped along diagonal of the RGB cube. Small red part of pixel cloud
represents a red letter lying in the middle of the image (see Fig. 4b). The forma-
tion of the separate red cluster can be very important for CIQ application in image
segmentation.

Unfortunately, the colour quantisation into 4 colours by KM and KHM techniques
with initialisations DC and SD does not permit to obtain the red letter in quantised
image (see Fig. 4c, d). Therefore we looked for a better method of initialisation
for our clustering techniques and we have found an intelligent initialisation of
KM proposed by Mirkin [12]. In this method the initialisation of KM is based on
so-called Anomalous Pattern (AP) clusters, which are the most distant from the
centre of cloud of points. Such outliers (peripheral points of the cloud) are the most
important in this initialisation. This algorithm is general in nature and can be used
in many different pattern recognition tasks.

Mirkin’s algorithm consists of the following steps:

1. Find the centre of cloud of points in RGB colour space and mark it as C.
2. Find a furthest point away from centre C and mark it as Cout .
3. Perform the KM clustering into two clusters based on appointed previously

centres: C and Cout and just the centre Cout is repositioned after each
iteration.

4. Add the RGB components of Cout to the list of stored centres.
5. Remove all points belonging to the cluster with centre Cout .
6. Check that there are still points in the cloud. If so, go back to the pt.2.
7. Sort obtained clusters by size (the number of elements) and select k largest

clusters. Their centres are final starting centres for KM clustering.

Modification of Mirkin’s (MM) algorithm proposed below is based on two important
changes in relation to the original Mirkin’s algorithm. First, the initial centres Cout

are used as starting centres instead of the final centres, which, in original algorithm,
are found after clustering into two clusters. Second, clusters are not sorted according
to size in the final step of the algorithm. In this way, the MM initialisation locates
the starting cluster centres in outlier points (colours) i.e. points, which are furthest
from the centre of pixels cloud. This allows to take into account the small clusters,
which represent the colours of small, but perceptually essential regions [4, 15].

Modified Mirkin’s algorithm looks as follows:
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Fig. 4 Results of colour quantisation: a original image, b colour gamut, c KM with DC (4 colours),
d KM with SD (4 colours), e KM with MM (4 colours)
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Fig. 5 Outlier cluster centres found during MM initialisation

1. Find the centre of cloud of points in RGB colour space and mark it as C.
2. Find a furthest point away from centre C and mark it as Cout .
3. Add the RGB components of Cout to the list of stored centres.
4. Perform the KM clustering into two clusters based on appointed previously

centres: C and Cout and just the centre Cout is repositioned after each
iteration.

5. Remove all points belonging to the cluster with centre Cout .
6. Check that there are still points in the cloud. If so, go back to the pt.2.
7. Select the first k clusters determined by this algorithm. Their centres are

final starting centres for KM clustering.

The MM initialisation permits to get the red letter in the image during the quantisation
into 4 colours (see Fig. 4e). For all the considered initialisations we calculated a
colour error for the red letter in quantised image: ΔE(DC) = 77, ΔE(SD) = 60 and
ΔE(MM) = 11. These results demonstrate the superiority of MM initialisation over
other tested initialisations.

Figure 5 illustrates subsequent eliminations of outlier clusters from the cloud of
points presented as 3D scatter plot and helps to understand the algorithm. Here, the



Colour Image Quantisation using KM and KHM Clustering . . . 271

Fig. 6 Results of colour quantisation a original image, b colour gamut for original image, c KM
with DC initialisation, d KM with SD initialisation, e KM with MM initialisation

third step of MM (see Fig. 5c) has particular importance, because a centre of red
cluster is detected.

Another example of usefulness of MM initialisation is the quantisation of the
image shown in Fig. 6. Particular attention should be paid to the blue beads, which
are perceptually important region in the original image. The image is quantised into
8 colours. The colour quantisation by KM technique with initialisations DC and SD
generates the images without blue pixels in quantised image; the beads are gray (see
RGB values in Fig. 6c, d). This problem is solved by using the MM initialisation,
as shown in Fig. 6e. We calculated appropriate colour errors for the blue beads:
ΔE(DC) = 32, ΔE(SD) = 33 and ΔE(MM) = 4. Definitely the smallest error
again achieved the MM initialisation.

Similar experiments were also carried out with other images. Their visual evalu-
ation confirmed the advantages of the MM initialisation. Despite the limited palette,
each quantised image contained the perceptually significant colours. On the other
hand, generally accepted image quality measures for quantised images do not give
clear results (see Table 4). Only ΔM , the loss of image colourfulness, that is strongly
related to colour perception, shows the advantage of MM initialisation.
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Table 4 Quantisation results of the KM with MM initialisation

Image PSNR (dB) ΔE ΔM

DC SD MM DC SD MM DC SD MM

Fig. 4 20.7 20.7 20.4 13.4 13.4 12.9 32.0 31.4 14.2

Fig. 6 26.5 26.2 25.9 6.0 5.7 6.1 4.7 3.9 3.6

Fig. 7 An original image, b Centres found in DC initialisation, c Centres found in SD initialisation,
d Centres found in MM initialisation. All clusterings for 8 clusters

5 Further Tests of New Initialisation

In the first group of tests were determined the positions of starting centres of clusters
for three compared initialisations: DC, SD and MM. The colour pixels in pixels cloud
of natural images are generally grouped along diagonal of the RGB cube. Black
dots plotted on a pixels cloud present the location of these centres. All clusterings
presented in this section were achieved after 30 iterations of KM technique.

5.1 Distributions of Clustering Starting Centres

The first test image (Fig. 7a) contains perceptually important red area lying in the
middle of the image and showing a paraglider, which can be seen in Fig. 7b, c, d
as a small part of pixels cloud directed to the red colour. In the case of DC and SD
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Fig. 8 An original image, b Centres found in DC initialisation, c Centres found in SD initialisation,
d Centres found in MM initialisation. All clusterings for 8 clusters

initialisation all eight initial centres are located on the diagonal of the RGB cube,
only the MM initialisation (Fig. 7d) generates two peripherally located centres, one
of which is contained in a cluster of red pixels. This gives a chance to get a good
CIQ result using the KM technique with MM initialisation.

The second test image (Fig. 8a), quantised into 6 colours, creates a specific pixels
cloud (Fig. 8 b, c, d) in the RGB space with three branches for three colours R, G

and B. Only the MM initialisation puts the initial centres in these sectors, which are
important for further clustering (Fig. 8d).

The third considered test image (Fig. 9a) presents a book cover and contains six
colour characters with distinct chromatic colours and it is characterized by more
complex pixels cloud (Fig. 9b, c, d). Again, only the MM initialisation (Fig. 9d)
settles a part of centres outside of the main pixels cloud, which gives a opportunity
to obtain a good CIQ result.

5.2 CIQ for Salient Region Detection

The second part of tests serves to compare the quality of images quantised with dif-
ferent initialisations. These tests were performed in the RGB colour space and two
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Fig. 9 An original image, b Centres found in DC initialisation, c Centres found in SD initialisation,
d Centres found in MM initialisation. All clusterings for 8 clusters

additional colour spaces: YCbCr (linear transformation of RGB space) and percep-
tually uniform CIELAB colour space (non-linear transformation of RGB space). In
addition to the subjective visual assessment a loss of image colourfulness ΔM was
used, and the other typical quality measures described in Sect. 2 were rejected. Their
nature makes that the colours of the perceptually significant regions with small areas
do not play a noticeable role.

Figure 10 shows quantised versions of the original image presented in Fig. 7a. The
visual assessment indicates a dominance of the MM initialisation since regardless of
the type of colour space a reddish paraglider remains in quantised image. Particular
attention is paid the quantisation in the CIELAB colour space, where the loss of
image colourfulness ΔM regardless of initialisation is smallest.

Figure 11 shows quantised versions of the original image presented in Fig. 8a.
Original image contains the three chromatic colours only, so it is easy to visually
assess the results of quantisation. These three chromatic colours remained in the
quantised images in four of nine cases only. There are three images quantised after
MM initialisation and one image quantised in CIELAB space after SD initialisation.
The original image is not a natural image. Perhaps that is why the relation between
the results is here not so clear.
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Fig. 10 KM results for the image from Fig. 7a, a, b, c, results with DC initialisation, d, e, f results
with SD initialisation, g, h, i results with MM initialisation (k = 8)

Figure 12 shows quantised versions of the original image in Fig. 9a. The original
image contains six characters with distinct chromatic colours, making easy a visually
assessment of the quantised images. The caption below Fig. 12 includes a number
of chromatic colours recognized by the observer. You can notice that the maximal
number of chromatic colours obtained after CIQ is 4 and it has been achieved only
in case of MM initialisation in the YCbCr and CIELAB spaces. These results occur
simultaneously with the least loss of image colourfulness ΔM .

6 Conclusions

In this chapter we showed for two different CIQ techniques that the number of unique
colours in the natural image significantly influences on the value of quantisation error.
But the main contribution of the work is a new alternative way for initialisation of KM,
which provides better CIQ results. This approach based on detection and elimination
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Fig. 11 KM results for the image from Fig. 8a, a, b, c results with DC initialisation, d, e, f results
with SD initialisation, g, h, i results with MM initialisation (k = 6)

outlier clusters, named here MM, does not lose the perceptually important colour
regions of the original image. Additionally, the usefulness of quality measure called
the loss of colourfulness to CIQ assessment has been confirmed.
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Fig. 12 KM results for the image from Fig. 9a, a, b, c results with DC initialisation, d, e, f results
with SD initialisation, g, h, i results with MM initialisation (k = 8)
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