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Preface

The following are the Proceedings of the First International Workshop on Biometrics
(BIOMET 2014), held in Sofia, Bulgaria, during June 23–24, 2014. This initiative is
part of the FP7 Capacity Programme project AComIn (Advanced Computing for Inno-
vation) of the Institute of Information and Communication Technologies at Bulgarian
Academy of Sciences (IICT-BAS). Besides, the Workshop was organized with the ac-
tive participation of key members of the European COST Action IC1106 (Integrating
Biometrics and Forensics for the Digital Age). Another scientific community that coop-
erated in the organization of the Workshop is the Technical Committee on Biometrics of
the GIRPR (Group of Italian Researchers in Pattern Recognition) as well as the Com-
puter Vision and Multimedia Laboratory (CVML) of the University of Pavia (Italy).

BIOMET 2014 is intended to provide a forum to present the current work and
new ideas in this challenging field. It renovates and continues the Biometrics tradition
(2007–2010) of the CompSysTech International Conferences, one of the longest run-
ning international conferences in computer science in Bulgaria that started in 2000. At
the same time, BIOMET 2014 is primarily connected with the goals of the IICT-BAS’s
AComIn project (http://www.iict.bas.bg/acomin) to disseminate recent advances in Bio-
metrics among the research groups and companies in Bulgaria and Balkan countries as
well.

The Workshop consisted of a pilot phase of four invited lectures, from renowned
world experts, on the state of the art of the Workshop’s main thematics, and suggest-
ing possible synergies between different modalities and strategies, stressing links and
outlining open questions. In detail, the four basic thematics were given by Mark Nixon
(“On Semantic Soft-Biometric Labels”), Andrzej Drygajlo (“From Speaker Recogni-
tion to Forensic Speaker Recognition”), Massimo Tistarelli (“Biometrics in Forensic
Science: Challenges, Lessons and New Technologies”), and Chang-Tsun Li (“People
Identification and Tracking Through Fusion of Face and Gait Features”). Besides these
advances, seven special sessions were organized in conjunction with the workshop sub-
missions in order to fathom a few selected topics of current interest: Gait and behavior
analysis; Iris analysis and eye tracking; Voice recognition and speech analysis; 3D ear
recognition; Face and facial attributes analysis; Handwriting and signature recognition;
Multimodal and soft biometrics. The volume’s Table of Contents varies somewhat from
the scheduled Workshop program, to accommodate the various positions that emerged
as significant contributions in the paper discussions and from the debates.

The Workshop raised considerable interest among researchers from different fields,
and this volume has emerged from an intense and careful reviewing process which
perfected the highly qualified papers submitted. The good number of contributions con-
cerning real-world applications attests to the field’s maturity.

Besides the four invited papers, further 17 papers were presented at the Workshop,
and the number of participants and listeners topped 30, half of them from Bulgaria, as
well as from Italy, the UK, Cyprus, Finland, Saudi Arabia, etc. A paper from Iran was
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also presented in absentia. For young participants in the Workshop, the GIRPR offered
a best student paper award to promote their contributions, give them opportunities to
interact with senior colleagues, and sustain our initiative. In recognition of the original-
ity of his research, the quality of his presentation and contribution to the development
of biometrics, the award was conferred on Atanas Nikolov, a PhD student in the In-
stitute for Information and Communication Technology of the Bulgarian Academy of
Sciences.

Face, voice, fingerprint, and signature recognition were the main inspiration and
driving forces behind the practical application of authentication and identification pro-
cesses. Presently, new challenges are arising from areas like the iris but also gait and
the ear considered with both 2D and 3D data are increasingly being investigated. But
very often, it is the merging of a subset of these sources that comes to be considered
even in practical applications, naturally paying careful attention to meeting computa-
tional demands. Multimodal approaches may improve authentication and identification
through more effectiveness, provided that the different modes are combined synergisti-
cally. Nevertheless, how to integrate the different modes is still a subject for research.
We expect that research regarding these topics will increase rapidly. On the whole, these
proceedings represent the latest results from both academia and industry and address
challenging topics in the field.
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On Semantic Soft-Biometric Labels 

Sina Samangooei and Mark S. Nixon() 
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Abstract. A new approach to soft biometrics aims to use human labelling as 
part of the process. This is consistent with analysis of surveillance video 
where people might be imaged at too low resolution or quality for conven-
tional biometrics to be deployed. In this manner, people use anatomical  
descriptions of subjects to achieve recognition, rather than the usual meas-
urements of personal characteristics used in biometrics. As such the labels 
need careful consideration in their construction, and should demonstrate cor-
relation consistent with known human physiology. We describe our original 
process for generating these labels and analyse relationships between them. 
This gives insight into the perspicacity of using a human labelling system for 
biometric purposes.   

Keywords: Soft Biometrics · Human Descriptions · Retrieval · Semantic Labels 

1 Introduction 

Descriptions of humans based on their physical features has been explored for several 
purposes including medicine, eyewitness analysis [1] and human identification [2]. 
Descriptions gathered vary in levels of visual granularity and include features that can 
be measured visibly and those that are only measurable using specialised tools. To 
understand the recent use of labels for recognition [3, 4], we must explore the seman-
tic terms people use to describe one another. Once these terms are outlined, the sec-
ond task becomes the collection of a set of manually ascribed annotations against 
these terms. In isolation these terms allow the exploration of semantic descriptions as 
a tool for identification. To explore their capabilities in biometric fusion and auto-
matic retrieval, these annotations must be collected against a set of individuals in an 
existing biometric dataset. 

We developed [3] a set of key semantic terms people use to describe one another  
at a distance. We start with an overview of human description, from early anthropom-
etry, to modern usage in police evidence forms and in soft biometrics. We then out-
line a set of key physiological traits observable at a distance and explore a set of se-
mantic terms used for their description. The contents of the semantic annotation data-
sets are examined and we perform correlation analysis, exploring the underlying 
structures and other facets of the gathered data. We describe a study of the labels and 
their properties, concerning in particular information content and utility. 
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2 Bertillonage 

One of the first attempts to systematically describe people for identification based on 
their physiological traits was the anthropometric system developed by Bertillon [5] in 
1879. By 1809 France had abandoned early methods of criminal identification such as 
branding. However, no systematic method of identification was outlined as an alterna-
tive, which meant the verification of repeat offenders or confirmation of criminals’ 
identity of was nearly impossible. Long descriptions, including semantic terms such 
as “Large” or “Average” to describe height and limbs, proved inadequate due to sub-
jectivity as well as to disproportionate numbers of individuals of “Average” height 
and “Brown” haired. This, coupled with an uncontrolled lexicon, resulted in many 
descriptions which added nothing to identification process. By 1840, the photography 
of criminals was introduced. However, the photographic techniques themselves were 
not standardised and, though useful for confirmation of identity, a photograph is of 
little use in discovery of identity when relying on manual search. Bertillon noted the 
failings of the police identification and cataloguing system and developed his father’s 
anthropological work to a more systematic method of identifying people. His system 
of anthropometrics, eponymously Bertillonage, outlined the tools and techniques for 
the careful measurement of: 

• physiological features including length/width of head, lengths of certain fingers 
and the dimensions of the feet, arm, right ear and standing height; 

• descriptions of the dimensions of the nose, eye and hair colour; and 
• the description and location of notable scars, tattoos and other marks 
 

  

Fig. 1. Examples of Bertillon’s gathering of measurements [5] 

The method for gathering these features was outlined in Bertillon’s manual [5] along 
with a set of diagrams (see Fig. 1). The measurements for a given individual were 
held on separate slides along with standardised photographs of the individual. The 
metrics of the system were chosen primarily to be simple so that they could be gath-
ered accurately. As such measurements were taken by a trained individual, though  
not necessarily a skilled individual. To this end, features were chosen to allow easy 
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identification of points to begin and to end measurement. The success of Bertillonage 
came from its ability to geometrically reduce the probability of type 1 errors. Though 
two individuals may have very similar height, the chance of the same two having 
similar measurements for the other features is unlikely. Furthermore, Bertillonage 
inherently allowed for efficient discovery of an individual’s existing measurement 
card and therefore their identity. Cards were stored according to specific range com-
binations of each metric in a given order. As such that once new measurements of an 
unidentified individual were taken the identity of the individual could be easily  
ascertained. 

Achieving great success and popularity in France, Bertillonage progressed to the 
United States as well as Great Britain in the late 19th century. Difficulties in cases 
such as West vs. West [6] (where Bertillonage could not reconcile differences be-
tween identical twins, though this was later disputed) led it being superseded by forms 
of identification such as fingerprint analysis (since the fingerprints of identical twins 
differ) and more recently biometric analysis. In spirit, all these systems attempt to 
reduce the identity of an individual to a representative and measurable set of classifi-
cation metrics, though not using descriptions of the human body as a whole. 

3 Data Acquisition 

3.1 Traits 

To match the advantages of automatic surveillance media, a primary concern is to 
choose traits that are discernible by humans at a distance. To do so, it is needed to 
determine which traits humans are able to consistently and accurately notice in each 
other and describe at a distance. The traits can be grouped by similar levels of mean-
ing, namely:  

•  global traits (sex, ethnicity etc.) 
• build features that describe the target’s perceived somatotype (height, weight 

etc.); and 
• head features, an area of the body humans pay great attention to if it is visible 

(hair colour, beards etc.). 
With regards to global attributes, three independent traits - Age, Race and Sex – are   
agreed to be of primary significance in cognitive psychology with respect to human 
description. For gait, humans have been shown to successfully perceive such catego-
ries using generated point light experiments and in other adverse viewing conditions 
involving limited visual cues. 

In eyewitness testimony research there is a relatively well formed notion of which 
features witnesses are most likely to recall when describing individuals. Koppen and 
Lochun [1] provide an investigation into witness descriptions in archival crime re-
ports. Unsurprisingly, the most accurate and highly mentioned traits were Sex (95% 
of the respondents mentioned this and achieved 100% accuracy), Height (70% men-
tion 52% accuracy), Race (64% mention 60% accuracy) and Skin Colour (56% men-
tion, accuracy not discussed). Detailed head and face traits such as Eye Shape and 
Nose Shape are not mentioned as often and when they are mentioned, they appear to 
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be inaccurate. More prominent head traits such as Hair Colour and Length are men-
tioned more consistently. Descriptive features which are visually prominent yet less 
permanent (e.g. clothing) often vary with time and are of less interest than other more 
permanent physical traits. 

Traits regarding build are of particular interest in our investigation having a clear 
relationship with gait while still being reliably recalled by eyewitnesses at a distance. 
Few studies thus far have attempted to explore build in any amount of detail beyond 
passing mention of Height and Weight. MacLeod et al. [7] performed a unique analy-
sis on whole body descriptions using bipolar scales to define traits. There were two 
phases in their approach towards developing a set of descriptive build traits. 

Firstly a broad range of useful descriptive traits was outlined with a series of ex-
periments where a mixture of moving and stationary subjects were presented to a 
group of annotators who were given unlimited time to describe the individuals. A 
total of 1238 descriptors were extracted, of which 1041 were descriptions of overall 
physique and the others were descriptions of motion. These descriptors were grouped 
together (where synonymous) and a set of 23 traits generated, each formulated as a 
bipolar five-point scale. 

Secondly the reliability and descriptive capability of these traits was gauged. An-
notators were asked to watch video footage of subjects walking at a regular pace 
around a room and rate them using the 23 traits identified. The annotators were then 
split into two groups randomly from which two mean values were extracted for each 
subject for each trait. Pearson’s product-moment correlation coefficient (Pearson’s r) 
was calculated between the sets of means and was used as an estimate of the reliabil-
ity for each trait. Principal Components Analysis (PCA) was also used to group traits 
which represented similar underlying concepts. The 13 most reliable terms, the most 
representative of the principal components, have been incorporated into the final trait 
set described later.  

3.2 Terms 

Having outlined the considerations made in choosing the physical traits which should 
be collected, the next question is how these traits should be represented. One option 
for their representation is a free text description for each trait. The analysis of such 
data would require lexical analysis to correlate words used by different annotators. 
Following the example of existing soft biometric techniques, a mixture of semantic 
categorical metrics (e.g. Ethnicity) and value metrics (e.g. Height) could be used to 
represent the traits. Humans are generally less accurate when making value judge-
ments when compared to category judgements. Therefore a compromise is to formu-
late all traits with sets of mutually exclusive semantic terms. This approach avoids the 
inaccuracies of value judgments, being more representative of the categorical nature 
of human cognition. Simultaneously this approach avoids the complex synonymic 
analysis that would be required to correlate two descriptions if free text descriptions 
were gathered. With categorical metrics there is an inherent risk that none of the cate-
gories fit, either because the information is unclear or due to the presence of a bound-
ary case where any annotation whatsoever may feel disingenuous. For this purpose 
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each trait is given the extra term “Unsure”, allowing the user to make the ambiguity 
known. For reasons covered in Section 4 the “Unsure” annotation is also the default 
option for any given trait on the annotation user interface. What remains is the selec-
tion of semantic terms that best represent the many words that could be used to de-
scribe a particular trait. This task can be logically separated by considering those traits 
which are intuitively describable using discrete metrics and those intuitively requiring 
value metrics. 

4 Semantic Annotation 

In this section we describe the process undertaken to gather a novel dataset of seman-
tic annotations of individuals in an existing biometric dataset. We outline the design 
of the data entry system created to allow the assignment of manual annotations of 
physical attributes to individuals. Using this system, individuals in the Southampton 
Large (A) HumanID Database (HIDDB) and the new Southampton Multibiometric 
Tunnel Database (TunnelDB) datasets [8] were annotated against recordings taken of 
the individuals in lab conditions. The original purpose of these recordings was the 
analysis of subject gait biometrics and, in the case of TunnelDB, their face and ear 
biometrics. We discuss the composition of these datasets in greater detail in Section 5, 
here we concentrate on the procedure undertaken to assign annotations. Two systems 
were developed to gather annotations: The PHP based Gait Annotation system 
(GAnn), and later, the Python/Pylons based Python Gait Annotation system (Py-
GAnn).  

 

Fig. 2. GAnn interface 

Both systems were used to collect semantic annotations using the web interface ini-
tially designed for the GAnn web application (Fig. 2). This interface allows annota-
tors to view all samples of an arbitrary biometric gathered from a subject as many 
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times as they require. Annotators were asked to describe subjects by selecting seman-
tic terms for each physical trait. They were instructed to label every trait for every 
subject and that each trait should be completed with the annotator’s own notions of 
what the trait meant. Guidelines were provided to avoid common confusions, for ex-
ample that rough overlapping boundaries for different age terms and height of an 
individual should be assigned absolutely compared to perceived global “Average”, 
while traits such as Arm Length could be annotated in comparison to the subject’s 
overall physique.  

To attain an upper limit for the capabilities of semantic data we strive to assure our 
data is of optimal quality. The annotation gathering process was designed carefully to 
avoid (and allow the future study of) inherent weaknesses and inaccuracies present in 
human generated descriptions. The error factors that the system was designed to deal 
with include: 

• Memory - Passage of time may affect a witness’ recall of a subject’s traits.  
• Defaulting - Features may be left out of descriptions in free recall, often not be-

cause a witness failed to remember a feature, but rather that it has a default value.  
• Observer Variables [9] - A person’s own physical features, namely their self 

perception and mental state, may affect recall of physical variables.  
• Anchoring - When a person is asked a question and is initially presented with 

some default value or even seemingly unrelated information, replies given are often 
weighted around those initial values.  

Table 1. Some Semantic Traits and Labels 

Body  Global 
Trait Term  Trait Term 

 
 
0. Arm 
Length 

(0.1) Very Short   
 
12. Figure 

(12.1) Very Thin 
(0.2) Short  (12.2) Thin 
(0.3) Average  (12.3) Average 
(0.4) Long  (12.4) Big 
(0.5) Very Long  (12.5) Very Big 

 
 
2. Chest 

(2.1) Very Slim   
 

13. Age 

(13.1) Infant 
(2.2) Slim  (13.2) Pre Adolescence 
(2.3) Average  (13.3) Adolescence 
(2.4) Large  (13.4) Young Adult 
(2.5) Very Large  (13.5) Adult 

 
 
3. Figure 

(3.1) Very Small  (13.6) Middle Aged 
(3.2) Small  (13.7) Senior 
(3.3) Average  18. Facial 

Hair 
Length 

(18.1) None 
(3.4) Large  (18.2) Stubble 
(3.5) Very Large  (18.3) Moustache 
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The semantic data gathering procedure was designed to accommodate these factors. 
Memory issues were addressed by allowing annotators to view videos of subjects as 
many times as required, allowing repeat of a particular video if necessary. Defaulting 
was avoided by explicitly asking individuals for each trait outlined in Table 1, this 
means that even values for apparently obvious traits are filled in and captured. This 
style of interrogative description, where constrained responses are explicitly re-
quested, is more complete than free-form narrative recall but may suffer from inaccu-
racy, though not to a significant degree. Observer variables can never be completely 
removed so instead we allowed the study of differing physical traits across various 
annotators. Users were asked to self-annotate based on self-perception, also certain 
subjects being annotated themselves provided annotations of other individuals. This 
allows for some concept of the annotator’s own appearance to be taken into consid-
eration when studying their descriptions of other subjects. Anchoring can occur at 
various points of the data capture process. Anchoring of terms gathered for individual 
traits was avoided by setting the default term of a trait to a neutral “Unsure” rather 
than any concept of “Average”. Another potential source of anchoring is that attrib-
uted by the order subjects are presented to an annotator. A sequence of relatively tall 
individuals may unfairly weight the perception of an averaged sized individual as 
short. We aimed to account for this by randomising the order of subjects presented to 
different annotators. In order to use the annotations in future analysis, they were rep-
resented numerically.  

5 Dataset Statistics 

The Southampton Large (A) HumanID Database (HIDDB) contains between 6 and 20 
sample videos of 115 individual subjects each taken from side-on; the later South-
ampton Multibiometric Tunnel Database (TunnelDB) contains samples of subjects for 
which 10 gait sample videos from between 8 to 12 viewpoints are taken simultane-
ously and stored to extract 3D gait information [8]. TunnelDB also contains high 
resolution frontal videos to extract face information and high resolution still images 
taken to extract ear biometrics. There are roughly 10 such sets of information gath-
ered for each subject in TunnelDB The GAnn annotation system used to collect data 
against the HIDDB was designed to allow annotation by anonymous annotators across 
the internet, though in reality the primary source of annotations came from two sepa-
rate sessions involving a class of psychology students. In the first session, all the stu-
dents were asked to annotate the same group of subjects, while in the second session 4 
equally sized groups of subjects were allocated between the students. 

The PyGAnn annotation system used to collect data against the TunnelDB was de-
signed to gather annotations after recording biometric signatures when annotators 
were asked to annotate themselves and a group of 15 subjects. Due to time constraints 
some annotators annotated fewer subjects but all annotators captured provided a self-
annotation. We selected 4 groups of 15 subjects to be annotated by progressively few 
annotators, aiming to maximise the number of annotators describing the same subjects 
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while simultaneously annotating the maximum spread of subjects. Table 2 shows a 
summary of the data collected. The annotations gathered are discussed in three ways: 

• Self Annotations - Annotations an individual gave to themselves; 
• Subject Annotations - Annotations given by an individual to a subject; and 
• Ascribed Annotations – derived from subjects in TunnelDB who were also an-

notators.  

Table 2. Summarising composition of the annotations gathered in 2 biometric datasets 

 
 

 HIDDB TunnelDB Totals 

 
Terms 

Observed 20976 58023 78999 
Self 1659 4957 6616 

Of Annotators 0 31874 31874 
 

Partial De-
scriptions 

Observed 334 956 1290 
Self 10 77 87 

Of Annotators 0 544 544 
 

Complete 
Descriptions 

Observed 625 1685 2310 
Self 63 149 212 

Of Annotators 0 904 904 
 

Individuals 
Described 

Observed 115 71 186 
Self 73 226 299 

Of Annotators 0 43 43 
 

  

Fig. 3. Example distributions of self-annotations of the TunnelDB 

6 Dataset Distributions 

Trait Distribution Comparison. In the datasets a total of 414 individuals were de-
scribed. For the normalised distribution of self and subject annotations for all traits in 
both datasets. An aspect of note is the distribution of measures of physical length 
including Height, Leg Length and Arm Length. For both datasets ascribed lengths 
tend towards long and average annotations meaning annotators avoid the use of the 
term short. This is in contrast to measurements of thickness or bulk such as Figure, 
Weight, Chest and Arm/Leg Thickness which display a more normal distribution. 
From these graphs, Fig.3, we can also see different terms for traits such as Proportions 
were not used. It is possible that such traits were not perceived or the trait itself was 
not understood by either group of annotators, with most subjects described as having 
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normal Proportions. Alternatively, the subjects collected may indeed portray inher-
ently “Normal” proportions. Leg Direction seemed to enjoy similar term patterns in 
both datasets, a relatively unexpected result as the HIDDB did not provide the view-
points one would expect to be necessary to make such judgements. The results for the 
major global features seem weighted towards Young Adult as Age; White as Ethnic-
ity and Male as Sex. This distribution is to be expected from the datasets as both  
contain many subjects from the Engineering departments of the University of South-
ampton, UK. Overall, we note that self-annotations taken in both systems used seman-
tic terms in ratios comparable to those used in the ascribed annotations, as well as 
ratios comparable to each other. This is evidence towards the idea that individuals do 
not wholly believe themselves to be an average; rather individuals can reasonably 
describe themselves as others might see them, using the full set of semantic terms 
others might use. Despite this, later use of relative measurements was demonstrated to 
relieve problems associated with categorical labels, especially height [3]. 

Table 3. Lowest p-values of the difference in annotations between the TunnelDB and HIDDB 
dataset 

Trait p-value  Trait p-value 
Ethnicity  0.62  Hair Colour 0.66 0.66 
Hair Colour 0.7  Facial Hair Length 0.66 
Hair Length 0.84  Skin Colour 0.79 
Facial Hair Length 0.84  Sex 0.80 
Age 0.9  Facial Hair Colour 0.86 
Shoulder Shape 0.91  Ethnicity 0.87 
Sex 0.92  Hair Length 0.92 
Leg Direcation 0.92  Figure 0.93 

(a) ascribed annotations  (b) self-annotations 
 

 
Cross-Dataset Distribution Comparison. In Table 3 we explore the differences in 
the distribution from self-annotations and ascribed annotations of the two datasets. 
There are small disparities between the self- annotations of HIDDB when compared 
to those of TunnelDB, though these are mostly insignificant differences with large p-
values. The p-values in these tables represent the probability of a shared distribution 
having created the annotation distributions across the HIDDB and TunnelDB datasets. 
Two extremely similar distributions will produce p-values close to 1.0 while com-
pletely dissimilar distributions will produce p-values close to 0. 

The individuals annotated were overall similarly distributed in appearance. More 
precisely, disparate groups of annotators described the different individuals in the 
different datasets using similar annotations. Some traits enjoy higher disparity be-
tween the datasets and therefore lower p-values; namely Ethnicity and associated 
attributes of Hair Colour. A special effort was made in the collection of TunnelDB to 
include individuals of different ethnic backgrounds in order to analyse ethnicity as  
a covariate of gait; this may explain the apparent higher degree of ethnic disparity 
reported by annotators of the TunnelDB. Individuals with beards were specifically 
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chosen to be annotated in the TunnelDB due to a lack of such individuals in the 
HIDDB. This was performed to test the ability of the facial hair related traits to some 
degree. With regards to self-annotations across the two datasets, both from the graphs 
and the relatively lower p-values in Table 3, we note a disparity in the ratio of self-
annotation of Sex. However, the graphs and p-values show comparatively similar 
distributions in other traits. 

6.1 Internal Correlations 

Having outlined the overall content and distributions of the gathered datasets in the 
previous sections, it is appropriate to explore notable correlations found between the 
various semantic annotations gathered. The goal of this section is to highlight internal 
structures inherent in the datasets gathered, some of which are supported by previous 
studies, therefore confirming the data’s validity. In this section the correlation be-
tween relevant pairings of self, subject and ascribed annotations (see Section 5) are 
ex[lored. Though interesting for its own merits, these correlations could also have 
some useful practical applications. For example, by knowing the correlation between 
traits, estimated terms for missing traits could be inferred. This would result in more 
accurate results for a given incomplete semantic query, though such query competi-
tion could also be achieved through related techniques. In this section we also explore 
in greater detail the correlation between especially notable traits, such as Sex and 
Ethnicity when compared to other physical characteristics. 
 

 

Fig. 4. Term Correlations of annotations ascribed by individuals in HIDDB 
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The correlation matrices containing the Pearson’s r between each term are repre-
sented graphically. Colours closer to red represent correlation coefficients closer to 
1.0 and thus a positive correlation, while colours closer to blue represent correlation 
coefficients closer to -1.0 and thus a negative correlation. Pale green represents  posi-
tive correlation. 

We calculate the correlation coefficient between two terms using individual anno-
tator responses of individual subjects. Pearson’s r is calculated as: ݎ ൌ ∑ ൫௑೔ି௑൯൫௒೔ି௒൯೙೔సభට∑ ൫௑೔ି௑൯మ೙೔సభ ට∑ ൫௒೔ି௒൯మ೙೔సభ        2.1 

where ܺ and ܻ represent two semantic terms. Each semantic term was set to 1 if the 
annotation contains the term and 0 if the annotation did not. ௜ܺ and ௜ܻ are the value 
ascribed to an individual in a single annotation, where there exist n annotations. Note 
that if ൫ ௜ܺ െ ܺ൯൫ ௜ܻ െ ܻ൯> 0 then  ௜ܺ and ௜ܻ lie on the same side of their respective 
means. In the binary case, where ܺ and ܻ can only take the values 0 or 1, this de-
notes simultaneous annotation. Therefore, Pearson’s r when applied to these semantic 
annotations is positive if  ௜ܺ  and ௜ܻ  are simultaneously present in an annotation. 
Furthermore, a higher correlation simultaneously represents how far an appearance of ܺ or ܻ is from the mean, as well as the frequency of simultaneous appearances of ܺ and  ܻ across all n annotations.  

 

Fig. 5. Term Correlations of self annotations in HIDDB 

In Fig. 4 we explore the correlations between subject annotation autocorrelation, 
representing how often individual trait and term pairings were used by annotators. 
Due to its nature, in the identity of the graph we achieve a perfect correlation. This is 
a trivial result meaning simply that a term appeared with itself every time it was used 
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in an annotation. More informative correlations can be seen firstly between traits 0 to 
12. These are build traits whose terms describe overall thickness and length of  
the body, as well as extremities. We note that Figure and Weight are highly corre-
lated. In turn they are both correlated with Arm Thickness, Leg Thickness and Chest 
annotations. Correlation can also be noted between Height and Leg Length, each also 
portraying correlations with Arm Length. We also notice some inverse correlations. 

In Neck Length against Neck Thickness we see signs of thinner necks being corre-
lated with longer necks, bulky necks with shorter necks and so on. This inverse corre-
lation can also be noted in both Neck Length and Neck Thickness compared to other 
traits of bulk and length respectively, though it should be noted that these inverse 
relationships are not as significant. There seems to exist two groups of traits whose 
terms correlate in ascending order. Namely traits denoting some notion of bulk or 
girth (represented by Weight, Figure etc.) and those denoting some notion of length 
(represented by Height and appendage lengths). 

In Fig. 5 we see the auto-correlations of self-annotations. The correlations in self 
annotations are very similar to those found between ascribed annotations and many of 
the same statements with regards to build and global features can be made as above. 
This shows that in describing themselves that annotators are as consistent as they are 
when describing other people. This corresponds well with the similarity in annota-
tions distributions noticed. 

7 Conclusions and Future Work 

A new approach to soft biometrics aims to use human description as part of the rec-
ognition/ retrieval process. A semantic labelling system has been described and some 
of the properties explored. The semantic labels have been chosen with psychology in  
mind: the labels are those derived from human vision and attention must be paid to 
minimise bias introduced by the (human labelling) process. As the procedure has been 
design for use with surveillance video, with necessarily low resolution and quality, it 
would prove interesting to study the effect of these on the correlations noted here. 
Equally, a fruitful avenue of research might be to explore the structure revealed here, 
as this might enable recovery of occluded labels. 
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Abstract. Gait exhibits several advantages with respect to other bio-
metrics features: acquisition can be performed through cheap technology,
at a distance and without people collaboration. In this paper we perform
gait analysis using skeletal data provided by the Microsoft Kinect sen-
sor. We defined a rich set of physical and behavioral features aiming
at identifying the more relevant parameters for gait description. Using
SVM we showed that a limited set of behavioral features related to the
movements of head, elbows and knees is a very effective tool for gait
characterization and people recognition. In particular, our experimental
results shows that it is possible to achieve 96% classification accuracy
when discriminating a group of 20 people.

Keywords: Gait characterization · Gait analysis · Kinect · Support
Vector Machine

1 Introduction and Related Work

Biometrics is the science that studies the human characteristics for anthropometry
research, people identification, access control and many more. Biometric features
are measurable data classified as physical or behavioral [1]. The former are related
to thebodyand its shape. Someexamples are face, hand, iris, retina andfingerprint.
Behavioral characteristics are associated to particular human action, for instance
handwritingandwalking.Automaticrecognitionsystemsareoftenexpensive, intru-
siveandrequirethecooperationofthesubjectduringtheacquisition.Thelattercan-
not be always guaranteed, for instance in a video surveillance context. In this case,
it is useful to recognize people through biometric parameters that can be captured
at a distance and without the collaboration of the person, such as gait [2].

Gait analysis finds interest in video surveillance systems [3,4] and forensics sci-
ence [5,6]. Furthermore, many applications analyze the gait in order to discover
pathologiesof thebodymovement [7], rehabilitationtherapy [8], identifythe fall risk
in elderly population in order to assess the frailty syndrome [9,10]. All these appli-
cations are based on the analysis of video and2D images. Images andvideos are pro-
cessed in order to collect gait parameters applying both model-based approaches,
using thedefinitionof a 3Dmodel of thebody inmovement [11–13], or bymodel-free
approaches, that process the silhouette of a walking person [14].
c© Springer International Publishing Switzerland 2014
V. Cantoni et al. (Eds.): BIOMET 2014, LNCS 8897, pp. 16–27, 2014.
DOI: 10.1007/978-3-319-13386-7 2
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In this paper we implemented a model-based approach using the Microsoft
Kinect sensor. Kinect is more that a simple RGB camera, since it is equipped
with a depth sensor providing 3D information related to the movements of body
joints. The 3D data are more precise compared to the 2D information extracted
from images but, on the contrary, the depth sensor, based on the infrared rays,
does not work in outside environment and the depth range is quite limited. In
literature exists some applications that exploit Kinect 3D data for people recog-
nition and classification. Preis et al. [15] used only anthropometric features, such
as height, length of limbs, stride length and speed, for gait characterization. They
tested few combination of features using three different classifiers: 1R, a C4.5
decision tree and a Naive Bayes classier. Borras et al. [16] extracted 2D and
3D gait features based on the body silhouettes, to achieve gender identication
using a Kernel SVM. Satta et al. [17] combined the body silhouette, colors cloth-
ing and 3D skeleton data (torso and legs length) aiming at tracking people for
video-surveillance application. Ball et al. [18] proposed several angular features
related to the leg articulations and used K-means algorithm, with an Euclidean
distance metric, for classification.

A preliminary work has been already presented in [19], where we only shown
that dynamic gait features extracted from Kinect allow one to discriminate
between two subjects with similar biometric features, a much simpler scenario
as opposed to the classification task studied in this paper.

The major contributions of this paper are:

– exploitation of cheap and widespread Kinect sensor for joint acquisition of
static biometric features, e.g. height, leg length, etc.., and dynamic param-
eters related to gait, e.g. knees movement, head oscillation;

– analysis and selection of the biometric and gait features that are the most
effective for people identification;

– experimental campaign worked out on a set of 20 subjects showing that the
proposed set of features can be profitably exploited to classify people using
SVM.

The paper is organized as follows. In Sect. 2 is explained our method to
extract gait features while the clustering approach is presented in Sect. 3. The
experiments done are shown in Sect. 4 together with the discussion of achieved
results. Conclusion and future work are outlined in Sect. 5.

2 Proposed Method

In this work we propose a model-based approach for gait characterization using
dynamic skeleton acquisition. In particular, we have used the widespread diffuse
Microsoft Kinect sensor for acquisition of gait parameters. Kinect is a popular
gaming device, that is able to capture body motion and gestures based on camera
and depth sensor. Kinect is able to track in real-time a skeleton model, composed
of 20 body joints Ji shown in Fig. 1. The skeleton can be used to describe body
movements in real-time and in 3D space [20].
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Fig. 1. Kinect skeleton model

(a) The Kinect 3D coordinate system. (b) Body planes.

Fig. 2. Kinect reference system and coordinate system according to the walking
direction

The skeleton data provided by Kinect consist in the coordinates of the 20
joints in its local reference system as shown in Fig. 2-(a) where (X,Y,Z) are
the horizontal, vertical and depth direction, respectively. Joint coordinates are
provided at a rate of 30 Hz along with the estimated floor clipping plane, that
is the plane where the user is walking. The floor plane equation is derived as
AX +BY +CZ +D = 0, where (A,B,C) is the normal vector to the plane and
D is the height of the camera center with respect to the floor. As opposed to
the Kinect reference system, human biometric parameters are usually measured
with respect to the body planes shown in Fig. 2-(b), where coronal, sagittal and
transverse plane are represented. The latter is clearly parallel to the floor clipping
plane provide by Kinect, whereas the sagittal plane can be determined if we infer
the walking direction. Since the Kinect depth range is between 80 centimeters
and 4 meters, we can easily assume that the observed subject follows a straight



Human Classification Using Gait Features 19

path within a single gait acquisition. As a consequence, we have estimated the
walking direction as the line connecting the initial and final coordinates of the
center of mass (Joint 0). To make the estimation more robust, the initial and
final coordinates of the center of mass are averaged at the beginning and at the
end of the acquisition. Finally, the novel reference system (x, y, z) is constructed
as shown in Fig. 2-(b), considering the floor clipping plane, its normal and the
walking direction as the novel z axis. In the following all the joints coordinates
will be expressed according to (x, y, z).

Since Kinect depth sensor exhibits limited resolution and precision, all joint
estimates can be considered as noisy acquisitions. To limit this effect we pro-
pose to use median filter on all acquired data before performing any further
processing. Such refined estimates are then exploited to define our gaits feature
vector that comprises both physical and behavioral parameters, as detailed in
the following. All the collected features are summarized in Table 1.

Table 1. Gait features list

Label Features

α arms length

β legs length

γ height

δ stride length

υ walking speed

ε elbows distance

κ knees distance

η hands distance

λ ankles distance

μJ3,x — σ2
J3,x mean/variance of head (along x)

μJ3,y — σ2
J3,y mean/variance of head (along y)

μJ4,x — σ2
J4,x mean/variance of left shoulder (along x)

μJ8,x — σ2
J8,x mean/variance of right shoulder (along x)

μJ13,y — σ2
J13,y mean/variance of left knee (along y)

μJ17,y — σ2
J17,y mean/variance of right knee (along y)

2.1 Physical Features

Using joint coordinates we have estimated some physical biometric features that
are almost constant during the walk, namely the height and the length of arms
and legs, respectively. The height is defined as:

γ =
∑

i∈τ

√
(Ji,x − Ji+1,x)2 + (Ji,y − Ji+1,y)2 + (Ji,z − Ji+1,z)2

where τ = [3, 2, 1, 0, 12, 13, 14, 15] or τ = [3, 2, 1, 0, 16, 17, 18, 19], i.e. the joints
going from the head to the right (or left) foot. All the estimates of γ acquired
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during a given gait acquisition are averaged to get a single average value. Simi-
larly, we compute the length of the left (and right) arm as the overall length of
the skeleton segments from the shoulder to the hand. A single parameter α is
obtained by averaging both left and right arm lengths along all the acquisition
period. The same approach is used to get a single feature β by averaging the
lengths of the skeleton segments from the hip to the feet.

2.2 Behavioral Features

A clear advantage of using Kinect is the possibility to devise a rich set of behav-
ioral gait features derived by the continuous monitoring of joint positions. Usu-
ally gait behavior is characterized in terms of stride length and walking speed.
The former is the distance between two stationary position of the same foot while
walking. The stride is detected using the same technique we already presented in
[19]. The latter is the ratio between the distance covered by the center of mass
and its duration in a single stride. In this study we estimate such features in
real time and all their measurements are averaged to get the gait parameters δ
and υ shown in Table 1. We complement these standard gait parameters with
other behavioral features that are related to the gait dynamic, in particular the
movement of head, shoulders, elbows, hands, knees and ankles. To this end, we
track the movement of the corresponding joints along the x and y axes, i.e. we
measure the vertical and lateral oscillations of the corresponding skeleton joints.
Then the dynamic of their trajectory during the acquisition is represented in
terms of mean value μ and variance σ2. These features are denoted as μJi,x

,
μJi,y

, σ2
Ji,x

, σ2
Ji,y

where i indexes the relevant joint and x (or y) refers to the
considered coordinate component (see Table 1).

Finally, our experiments showed that other important gait features are the
distance between the left and right elbows ε, hands η, knees κ and ankles λ. Also
in this case we average all the estimates during the acquired walking period. All
the collected features are summarized in Table 1.

3 Classification

In this paper we used Support Vector Machine (SVM), a widely-used and robust
clustering algorithm, to classify people based on both physical and behavioral
gait biometric feature. SVM is a supervised learning method for data classifi-
cation. The main idea is to find the pair of parallel hyperplane that separates
between a set of features having different class memberships. Each pair of par-
allel hyperplanes is characterized by specific sets of feature points, the so-called
support vector. In a 2D feature space the planes are fully defined by three sup-
port vectors, so in ND the support vector examples should have N + 1 points,
in order to avoid overfitting. Since SVM is a supervised algorithm, the classifica-
tion task involves separating data into training and testing sets. Each instance
in the training set contains one “target value” (i.e. the class labels) and several
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“attributes” (i.e. the features or observed variables). The goal of SVM is to pro-
duce a model (based on the training data) which predicts the target values of
the test data.

The hyperplane algorithm proposed by Vapnik in 1963 was a linear classifier.
The nonlinear classification, proposed in 1992 [21], is possible by applying the so-
called kernel trick, originally proposed by Aizerman et al. [22]: the dimensional
space of the function is mapped into an higher (maybe infinite) dimensional
space, so that it is possible to find a linear separating hyperplane with the
maximal margin in that higher dimensional space. The advantage of the kernel
function is that it does not require explicit calculation of the data coordinates
in the new space. It is done by simply computing the inner products between
the images of all pairs of data in the feature space: this is a computationally
cheaper operation respect to the explicit computation of the coordinates. To
construct an optimal hyperplane, SVM employs an iterative training algorithm,
which is used to minimize an error function. According to the form of the error
function, in multi-class classification, SVM models can be classified into two
distinct groups: classification SVM Type 1 (also known as C-SVM classification)
and classification SVM Type 2 (also known as ν-SVM classification).

The C-SVM training involves the minimization of the error function:

1
2
wT w + C

N∑

i=1

ξi, C > 0

subject to the constraints:

yi(wT φ(xi) + b) ≥ 1 − ξi and ξi ≥ 0, i = 1, . . . , N

where C is the capacity constant, w is the vector of coefficients and ξ rep-
resents parameters for handling nonseparable data (input). xi is the training
vector, so the index i labels the N training samples, that are mapped into an
higher dimensional space by the function φ. b is a constant. C should be chosen
with care to avoid overfitting.

The ν-SVM model minimizes the error function:

1
2
wT w − νρ +

1
N

N∑

i=1

ξi, 0 ≤ ν ≤ 1

subject to the constraints:

yi(wT φ(xi) + b) ≥ ρ − ξi, ξi ≥ 0, i = 1, . . . , N and ρ ≥ 0

The kernel functions that can be used in SVM are:

– Linear: K(xi, xj) = xT
i xj .

– Polynomial: K(xi, xj) = (γxT
i xj + r)d, γ > 0.

– Radial Basis Function (RBF): K(xi, xj) = exp(−γ ‖xi − xj‖2), γ > 0.

– Sigmoid: K(xi, xj) = tanh(γxT
i xJ + r).
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where γ, r and d are kernel parameters.
The effectiveness of SVM depends on the selection of kernel and the kernel’s

parameters.

4 Experimental Results

The goal of our experimentation is, first to find out which features collected
in Sect. 2 are more relevant for gait characterization, and then to evaluate the
achievable classification accuracy.

Since a standard gait dataset acquired with the Kinect sensor is not available,
we have collected a set of gait samples. To this end we acquired gait samples
with Kinect for Windows, recording 20 subjects that were asked to walk natu-
rally along a corridor; each subject is acquired 10 times for a total of 200 gait
samples. The software model to estimate the features proposed in Sect. 2 has
been developed using SDK 1.7.

Finally, for classification, we resort to the LIBSVM tool [23], an SVM free
library. We used both the C-SVM type and the ν-SVM type, with linear and RBF
kernel function. The dataset is divided in two subset: 60% of samples are used
for training and the remaining for testing. Before applying SVM we normalized
our features matrix to the range [0, 1]. Scaling data is very important in order to
avoid attributes in greater numeric ranges dominating those in smaller numeric
ranges. Another advantage is to simplify the calculations of the kernel function.
As said in Sect. 3 the parameters C and ν should be chosen with care. The
C parameter is computed using the K-fold cross-validation procedure [23]. The
training set is divided into K subsets of equal size. A single subset is tested using
the classifier trained on the remaining K − 1 subsets. The process is repeated
K times for each of the K subset. The K results are then averaged to produce
a single estimation. The ν parameter is calculated as suggested in [24]:

ν = 2 ∗ min(|SVs+|, |SVs−|)/|SVs|

where SVs is the vector containing the support vector elements (the feature
points of each hyperplane), while SVs+ and SVs− are the vectors containing the
positive and negative support vectors, respectively.

As an objective metric for performance evaluation we used the classification
accuracy, defined as:

accuracy =
ψ

Ω
∗ 100%

where ψ is the number of correctly classified samples and Ω is the total number
of samples.

4.1 Discussion

To investigate the effectiveness of the different features that we proposed, we
analyze the classification accuracy obtained with several sets of gait parameters.
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Table 2. Classification accuracy of different features sets.

Set Features
C-SVM ν-SVM

Linear RBF Linear RBF

S1 α, β, γ 37.50 25.00 62.50 58.75

S2 δ, υ 23.75 23.75 13.75 17.50

S3 α, β, γ, δ, υ 46.25 41.25 48.75 37.50

S4 ε, κ, 37.50 38.75 52.50 46.25

S5 ε, κ, λ 42.50 37.50 55.00 53.75

S6 ε, κ, η 41.25 38.75 32.50 35.00

S7 ε, κ, λ, η 45.00 43.75 56.25 55.00

S8 λ, η 18.75 17.50 15.00 10.00

S9 α, β, γ, ε, κ 72.50 55.00 75.00 76.25

S10 S1, S4, σ2
J3,x, σ2

J3,y 70.00 56.25 61.25 46.25

S11 S1, S4, μJ3,x, μJ3,y 86.25 85.00 86.25 85.00

S12 S1, S4, σ2
J13,y, σ2

J17,y 75.00 52.50 63.75 51.25

S13 S1, S4, μJ13,y , μJ17,y 81.25 65.00 81.25 81.25

S14 S1, S4, σ2
J4,x, σ2

J8,x 66.25 55.00 55.00 45.00

S15 S1, S4, μJ4,x, μJ8,x 77.50 71.25 77.50 77.50

S16 S1, S4, σ2
J3,x, σ2

J3,y , σ2
J4,x, σ2

J8,x 65.00 57.50 57.50 41.25

S17 S1, S4, μJ3,x, μJ3,y, μJ4,x, μJ8,x 83.75 82.50 86.25 83.75

S18 S1, S4, σ2
J3,x, σ2

J3,y , σ2
J13,y, σ2

J17,y 70.00 53.75 55.00 46.25

S19 S1, S4, μJ3,x, μJ3,y, μJ13,y, μJ17,y 88.75 82.50 90.00 90.00

S20 S1, S4, σ2
J3,x, σ2

J3,y , σ2
J4,x, σ2

J8,x, σ2
J13,y, σ2

J17,y 66.25 55.00 58.75 42.50

S21 S1, S4, μJ3,x, μJ3,y, μJ4,x, μJ8,x, μJ13,y, μJ17,y 87.50 82.50 90.00 88.75

S22 S4, σ2
J3,x, σ2

J3,y 48.75 41.25 46.25 43.75

S23 S4, μJ3,x, μJ3,y 90.00 80.00 92.50 91.25

S24 S4, σ2
J13,y, σ2

J17,y 36.25 35.00 46.25 48.75

S25 S4, μJ13,y, μJ17,y 58.75 57.50 57.50 45.00

S26 S4, σ2
J4,x, σ2

J8,x 47.50 38.75 55.00 51.25

S27 S4, μJ4,x, μJ8,x 61.25 50.00 57.50 57.50

S28 S4, σ2
J3,x, σ2

J3,y, σ2
J4,x, σ2

J8,x 48.75 37.50 45.00 35.00

S29 S4, μJ3,x, μJ3,y , μJ4,x, μJ8,x 86.25 76.25 87.50 88.75

S30 S4, σ2
J3,x, σ2

J3,y, σ2
J13,y , σ2

J17,y 45.00 32.50 32.50 32.50

S31 S4, μJ3,x, μJ3,y, μJ13,y, μJ17,y 92.50 81.25 96.25 96.25

S32 S4, σ2
J3,x, σ2

J3,y, σ2
J4,x, σ2

J8,x, σ2
J13,y, σ2

J17,y 48.75 32.50 41.25 30.00

S33 S4, μJ3,x, μJ3,y , μJ4,x, μJ8,x, μJ13,y, μJ17,y 92.50 78.75 76.25 65.00

S34 S1, σ2
J3,x, σ2

J3,y 45.00 42.50 43.75 37.50

S35 S1, μJ3,x, μJ3,y 71.25 65.00 73.75 73.75

S36 S1, σ2
J13,y, σ2

J17,y 40.00 27.50 46.25 33.75

S37 S1, μJ13,y, μJ17,y 61.25 45.00 67.50 70.00

S38 S1, σ2
J4,x, σ2

J8,x 45.00 43.75 37.50 31.25

S39 S1, μJ4,x, μJ8,x 55.00 43.75 62.50 62.50

S40 S1, σ2
J3,x, σ2

J3,y, σ2
J4,x, σ2

J8,x 48.75 51.25 47.50 36.25

S41 S1, μJ3,x, μJ3,y , μJ4,x, μJ8,x 68.75 58.75 75.00 76.25

S42 S1, σ2
J3,x, σ2

J3,y, σ2
J13,y , σ2

J17,y 46.25 46.25 41.25 33.75

S43 S1, μJ3,x, μJ3,y, μJ13,y, μJ17,y 77.50 60.00 75.00 78.75

S44 S1, σ2
J3,x, σ2

J3,y, σ2
J4,x, σ2

J8,x, σ2
J13,y, σ2

J17,y 50.00 51.25 42.50 35.00

S45 S1, μJ3,x, μJ3,y , μJ4,x, μJ8,x, μJ13,y, μJ17,y 78.75 58.75 77.50 80.00
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As a benchmark for classification accuracy, we run a first experiment where
we discriminate subjects considering only physical features, in particular their
height (γ) and arms (α) and legs (β) lengths; this is representative of usual
classification based only on simple anthropometric parameters. The classification
results using this set of features (S1) are shown in Table 2, where it can be noted
that ν-SVM yields an accuracy of about 60%. As a second trial we used the set
S2 that includes two standard gait parameters, namely stride length (δ) and
walking speed (υ) but, as shown in Table 2, the achieved classification accuracy
turns to be rather poor. Also, jointly using sets S1 and S2 (set S3 in Table 2)
we cannot improve performance, significantly. The limited performance obtained
using gait parameters in S2 can be explained by considering the limited depth
range of the Kinect, that allows one to acquire only three/four strides, leading
to poor estimates of δ and υ.

As a consequence, we move our investigation towards other gait features
that can be estimated more reliably by Kinect, i.e. the inter-distance between
corresponding left and right body joints. A subset of the obtained classification
results is reported in Table 2 (see sets S4-S9). Inspecting these results one can
notice that, using physical features and the distance between elbows and knees
(set S9) we achieve about 75% accuracy, with an improvement of about 15%
with respect to the S1 benchmark.

Then, we try to further improve the classification accuracy including in the
features vector the remaining dynamic parameters defined in Sect. 2, namely the
mean and variance of the position of head, shoulders, elbow and knees. In sets
S10-S21 these latter are used along with S1 and S4. It can be noted that a few
parameter sets yield accuracy larger than 80%. In particular, the best classifica-
tion is obtained by S19 that yields 90% accuracy with ν-SVM. In sets S22-S33 we
perform the same experiments removing S1 from the feature vector, i.e. without
using the standard physical features. In this case a few combinations reach an
accuracy around 90%. In particular, the features set S31 exhibits an accuracy of
96%, that represents the best result we obtained. Finally, the remaining experi-
ments S34-S45 use S1 along with the proposed dynamic gait parameters, but the
obtained accuracy does not achieves 80%.

To better appreciate all our experimental results in Fig. 3 we plot the accu-
racy as a function of the features sets for C-SVM (a) and ν-SVM (b), respectively.
To improve the readability of the graph the last three groups of parameters sets,
are highlighted by boxes labeled by A, B and C respectively.

In conclusion, our experiments show that gait parameters extracted using
Kinect, can be used as a powerful biometric feature. In particular, we can argue
that simple statistics estimated from a set of skeletal joints are very effective for
people classification based on SVM.
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(a)

(b)

Fig. 3. Classification accuracy of C-SVM (a) and ν-SVM (b) for different combinations
of gait features

5 Conclusions and Future Work

Relying on the information provided by the Kinect sensor, an analysis system
able to classify people based on their gait has been proposed. We have especially
pointed out that the movement of elbows, knees and head are of great importance
for diversifying gait. The achieved results obtained by using the robust SVM
clustering algorithm show an accuracy classification equal to 96.25% when a
suitable parameter set is chosen. Future works include the exploitation of other
statistical procedures, such as the principal component analysis, to better rank
the importance of gait parameters in terms of classification accuracy. Moreover,
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we are planning an extensive gait acquisition campaign to better validate the
classification results from a statistical viewpoint. From the applicative point of
view we will consider other scenarios that go beyond classification, e.g. forensic
and health/well-being contexts.
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Abstract. Tracking of human beings represents a hot research topic in the field 
of video analysis. It is attracting an increasing attention among researchers 
thanks to its possible application in many challenging tasks. Among these, ac-
tion recognition, human/human and human/computer interaction require body-
part tracking. Most of the existing techniques in literature are model-based ap-
proaches, so despite their effectiveness, they are often unfit for  the specific re-
quirements of a body-part tracker. In this case it is very hard if not impossible 
to define a formal model of the target.  This paper proposes a multi-anchor 
tracking system, which works on 8 bits color images and exploits the mutual in-
formation to track human body parts (head, hands, ...) without performing any 
foreground/background segmentation. The proposed method has been designed 
as a component of a more general system aimed at human interaction analysis.  
It has been tested on a wide set of color video sequences and the very promising 
results show its high potential. 

1 Introduction 

Tracking human beings in video sequences represents a challenging problem that is 
increasingly attracting the researchers attention, as it is essential for many applica-
tions in video analytics. Significant progresses have been achieved in many recent 
works in literature along this research line [1][5][12]. Most approaches from the pre-
sent state of the art focus their attention on the estimation of the human body configu-
ration, since they are aimed at recognizing human actions and activities. The first step 
of the tracking process consists in segmenting the human shape from the background. 
It represents a very complicated problem, as real-world applications work with com-
plex and possibly moving backgrounds, large changes in illumination conditions and 
self-occlusions. In order to address these issues, several approaches have been pro-
posed, which are based on background subtraction [10], optical flow [8] or statistical 
modeling of the human appearance [13][4]. All those methods try to segment video 
frames to extract edges, silhouettes or blobs. Blobs are often preferred with respect to 
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other features, as they are more suited to the task of detecting human body parts. As a 
matter of fact, in connection with a suitable model of the body structure, tracking 
single body parts allows to compensate for partial occlusions due to mutual people 
overlapping during interaction, or caused by objects in the scene that may partially 
hide a person for a few frames. Blobs are also more suitable than other descriptors, 
like 2D contour, for modeling  the articulated motion of human body parts. Models 
for approximating the articulated motion generally rely on a stick figure, which was 
first defined by Johansson [6] as the union of segments linked by joints [9]. Thus, 
detection methods can either locate blobs composing the human shape or simply the 
joints and end points of a stick figure (elbows, knees, head, hands, feet). 

Yilmaz  et al. categorized all detection methods in four main classes: i) background 
subtraction, ii) segmentation, iii) supervised learning, iv) point detector. Approaches 
based on background subtraction suffer from illumination changes and partial occlu-
sions, since precisely separating the human silhouette from  a cluttered background 
with several moving objects may turn in a very difficult task. Similarly, segmentation 
methods also encounter problems with complex scenes, even if they further rely on 
additional features like color or gradient direction. Supervised learning overcomes all 
these limitations, but it requires a training phase, which binds the tracker to a specific 
application context. A point based method detects interest points that are considered 
representative in terms of a specific feature, like contour, intensity or color. Interest 
points have been largely used in computer vision to solve a wide range of problems 
like image registration, image retrieval or tracking systems. Due to the higher robust-
ness of this kind of approach, we adopt it here. We track interest points defined as 
anchors, without requiring a prior separation of foreground from background. As a 
matter of fact, this latter task is often very complex and its precision strongly influ-
ences tracking results. In our case, anchor tracking is performed by locally processing 
information right in the color frame, without any kind of foreground detection. To this 
aim, we exploit concepts borrowed from Information Theory. The core idea of the 
algorithm, named MIMA (Mutual Information Multi-Anchor), is to use mutual infor-
mation [10] for multi-anchor tracking of human figures. 

Mutual information (MI) finds several uses in the context of computer vision, such 
as the detection of cut/fade in video sequences [1]. Dame and Marchand used it with 
good results, for the tracking of feature points in the context of augmented reality [3]. 
Probabilistic measures are used in [7] to track multiple faces in scenes with a simpli-
fied setting with respect to the one addressed here, and tracking cues are provided by 
mutual information. 

The above works suggest that MI can be a valuable tool, even for multi-anchor 
tracking of people. As a matter of fact, MIMA uses MI to track relevant interest 
points tied to the human body (head, hands , ...). Compared to classical methods , it 
has the additional advantage of working on color images. This is crucial to assure 
greater precision also on regions, such as the hands, which in a video with a limited 
resolution have a structure not easily distinguishable and, therefore, difficult to track 
in grayscale images. Furthermore, the lack of a geometric reference model, difficult to 
formalize as in the case of the hands, makes it difficult to apply techniques such as 
that described in [3], which is strongly model-based. 
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2 Mutual Information 

Shannon theory is a mathematical abstract one that has very important applications in 
many concrete fields, such as physics (thermodynamics), economics (Stock Market), 
computer science (data compression and transmission). Entropy is a key measure of 
information, which quantifies the uncertainty involved in predicting the value of a 
random variable. Starting from it, the joint entropy, the conditional entropy and the 
mutual information can be derived. Given a random variable X defined over a set of 

values ࣲ with distribution function ݌௑ሺݔሻ, entropy is defined as: ܪሺܺሻ ൌ െ ෍ ሻݔ௑ሺ݌ ڄ log ࣲאሻ.௫ݔ௑ሺ݌  (1)

Given two random variables ܺ and ܻ defined over two alphabets  ࣲ and ࣳ, with re-
spective marginal distribution function ݌௑ሺݔሻ and pY(y), and with joint distribution 
function ݌௑௒ሺݔ, ;ሺܺܫܯ :ሻ, mutual information is defined asݕ ܻሻ ൌ ෍ ෍ ,ݔ௑௒ሺ݌ ሻݕ ڄ log ,ݔ௑௒ሺ݌ ሻݔ௑ሺ݌ሻݕ ڄ ሻݕ௒ሺ݌ .௬ࣳא௫ࣲא  (2)

The above formulation for mutual information (MI) is the generic one applied to 
the communication theory. In the following we will rely on a more specific definition 
better bound to the problem at hand. In the context of image processing, the random 
variables I and J refer to the intensity values of the pixels in two images, denoted as I1 
and I2. These intensity values are respectively denoted as i and j. For instance, if I1 
and I2 are two grey-level images, i and j can take values in the interval Ωூభ ൌ Ωூమ ൌሾ0,255ሿ ؿ Գ. The probability ݌ூభሺ݅ሻ is related to the frequency with which the inten-
sity value i appears in image I1. In general, such probability is estimated through his-
tograms: ݌ூభ I1   (3)

Where (x, y) will denote from now on the position within the image, M=W⋅H (W and 
H represents the image width and height, respectively) is the total number of pixels in 
the image and ߜሺ݇ሻ is the Kronecker function defined as: ߜሺ݇ሻ ൌ ቄ 1 if ݇ ൌ 00 (4) ݁ݏ݅ݓݎ݄݁ݐ݋

In histogram computation, every time I1ሺݔ, ሻݕ ൌ ݅ the value of the i-th bin of the his-
togram is incremented by 1. Likewise, the joint probability ݌ூభூమሺ݅, ݆ሻ  of the pair (i, j) 
indicates the frequency of joint occurrence of (i,j) in the pair of images (I1, I2), in the 
sense that when i appear in I1, j appears in I2 in the same position. Its value is obtained 
by computing the joint histogram of the two images normalized to the same number 
M of pixels:  

ூభூమሺ୧,୨ሻ݌ I1 I2  (5)
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As a consequence, the MI for a pair of images can be expressed as:  MIሺܫଵ, ଶሻܫ ൌ ෍ ෍ ,ூభூమሺ݅݌ ݆ሻ ڄ log ቆ log ,ூభூమሺ݅݌ ݆ሻ݌ூభሺ݅ሻ ڄ ூమሺ݆ሻቇ݌ .௝אΩ಺మ௜אΩ಺భ  (6)

3 MIMA System 

MIMA is a multi-anchor tracking system which exploits the mutual information to 
follow the movement of the anchors in a video sequence. The system pre-processes 
the single frames so that the individual channels of the color image undergo a process 
of quantization, and the resulting bits are interleaved. In this way, though converting 
an image, originally represented in an RGB color space, into one with 8 bits depth, 
part of the information concerning the color is still preserved. The MI is the base of 
the tracking process, which has also been made more robust through further expedi-
ents such as the use of a weight matrix to discard outliers from the selection of the 
current position for an anchor, and the integration of a skin detection algorithm to 
increase the accuracy of hands tracking. 

3.1 Image Preprocessing 

The first step in the MIMA operations pipeline is the transformation of a 24-bit RGB 
image into a new 8-bit representation. The conversion is meant to preserve part of the 
information given by the color, which would be irretrievably lost with a trivial con-
version of the image in grayscale. MIMA divides the image into the three fundamen-
tal channels R, G and B and for each of them considers only the most significant bits: 
namely three for red, three for green and two for blue. The bits selected for the indi-
vidual channels are interleaved in order to form a string of 8 bits of the form <R1 G1 
B1 R2 G2 B2 R3 G3>. The resulting image has the same aspect of a grayscale image, 
but carries information related to both luminance and chrominance. An example is 
provided in Figure 1. 

 

Fig. 1. An example of a frame before and after reduction to 8 bits 

3.2 Anchor Selection and Tracking 

A correct initial selection of each anchor is an important condition for the general 
performance of tracking. Actually, this is a key problem in any tracking algorithm, 
because a wrong selection leads to a faster loss of the anchor. In a real application, the 
anchor would be selected automatically and in the shortest possible time, so as not to 
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delay the start of the tracking process. Since the focus of our present work is on track-
ing rather than detection, in its current state MIMA provides manual selection for the 
initialization of the anchors. However, it is possible to adopt any algorithm in litera-
ture for automatic detection of head and hands, and use its results for automatic ini-
tialization of the anchors. MIMA represents each anchor Ak with a data structure, 
which contains the first and last frame in which the anchor has been detected, and the 
list of the coordinates of the upper left corner of its bounding box Bk, in the consecu-
tive frames in this interval. 

MIMA works on pairs of consecutive frames (Fi-1, Fi). Given the position of each an-
chor Ak in Fi-1, it looks for its position in the following frame Fi. The search process as-
sumes that, although an anchor changes its position in two consecutive frames, the 
movement is limited within a neighborhood of the original position. Therefore, MIMA 
calculates the MI between the region of Fi-1 contained within the bounding box Bk, start-
ing from the upper left corner (x, y), and with width w and height h, and all its possible 
homologous ones contained in the rectangular region of Fi delimited by the vertices (x-w, 
y-h) and (x+2w, y+2h), as shown in Figure 2. Of course a containment test is performed 
for each possible homologous, to check if it is inside  the image. 

 

 
Fig. 2. Searching the position of an anchor in a frame, given its position in the preceding one 

The values for MI computed for homologous bounding boxes are included in a ma-
trix M, with dimension 2w×2h. In particular, position M(l, m) contains the value of MI 
computed  between Bk in Fi-1  at position (x, y) and the homologous in Fi at position 
(x-w+l, y-h+m) with l in [0,2w] and m in [0, 2h]. The more similar the two homolo-
gous bounding boxes, the higher the MI. As a consequence, to determine the position 
of the anchor in the frame Fi it is sufficient to find the cell (l*, m*) in M correspond-
ing to the maximum value of MI. The upper left corner of Bk in Fi will be therefore 
fixed at (x-w+l*, y-h+m*). 

3.3 Outlier Discarding and Error Correction  

In the calculation of the matrix M, we might observe the possible presence of more 
maxima, some of which would possibly be relatively far away from the actual position 
of the anchor. The selection of one of these maxima, in place of the correct one, causes 
the bounding box to move to an incorrect position. Since the latter is considered after-
wards for the search of a further new position for the anchor, the error would propagate 
frame by frame leading to a completely wrong position of the anchor (drift problem, see 
Figure 3). 
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Fig. 3. Propagation of an anchor location error 

We can notice that, while the correct maximum of matrix M is usually in the centre 
of a cloud of relatively high values, maxima different (and relatively far) from the 
correct one are isolated and can be therefore considered as outliers. MIMA weights 
the values in matrix M with respect to the distance of the new candidate point in 
frame Fi from the anchor position in frame Fi-1. Each weight is computed as:  ߛሺ݈, ݉ሻ ൌ 1 െ ඥሺݓ െ ݈ሻଶ ൅ ሺ݄ െ ݉ሻଶ√ݓଶ ൅ ݄ଶ  (7)

Therefore, the new weighted matrix ܯఊ is in the form: ܯఊሺ݈, ݉ሻ ൌ ,ሺ݈ߛ ݉ሻ ൉ ,ሺ݈ܯ ݉ሻ (8) 

where 0 ≤l≤2w and 0 ≤m≤2h. A further increase in the precision of the tracker can be 
obtained by considering the specific context in which the MIMA system operates, 
namely, the tracking of human body parts. In fact, both the hands and the face (frontal 
and side pose) are usually characterized by a high content of skin. MIMA integrates a 
skin detector to increase the tracking accuracy of anchors attached to hands and face. 
The method adopted by MIMA for skin detection is the Explicitly Defined Skin Re-
gion, i.e., it defines the threshold values for the region of skin in the YCbCr 
colorspace. During the search for the new position of the bounding box Bk associated 
to the anchor Ak, MIMA does not select the absolute maximum in the weighted matrix ܯఊ, but considers the n highest values (in the present implementation, n=5). In this 
phase, the original color frames are considered. For each of the corresponding posi-
tions, MIMA measures the amount of skin present in the bounding box and selects the 
one with more skin. In practice, each out of the n candidate bounding boxes is trans-
formed from the RGB color space to the YCbCr color space and a skin map is com-
puted for it, i.e., a binary image where white pixels (value 1) represent skin and black 
pixels (value 0) represent a no-skin regions (Figure 4), according to the following 
equation: 

,ሺ݈݌ܽ݉݊݅݇ݏ ݉ሻ ൌ  ൝ 1 ݂݅ ,ሺ݈ܾܥ ݉ሻ ሾ77, 127ሿ   ܽ݊݀ ,ሺ݈ݎܥ ݉ሻ ሾ137,155ሿ0 ݔ ൒ 0  (9)

The amount of skin for the bounding box Bk is computed by counting the number of 
pixels set to one inside it. 

 

∈
∈
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Fig. 4. Skin map for the anchors of hand and face 

3.4 Anchors Overlapping and Algorithm for Conflict Solution 

Occlusion and self-occlusion represent an important critical element for all tracking 
systems, since the overlap of two anchors may cause that when they separate the sys-
tem continues to track only one of the two. MIMA solves this problem by using an 
algorithm to resolve conflicts between anchors. Even for this specific procedure, color 
frames are considered. The process of conflict resolution is limited to the analysis of 
only the portion of the image occupied by the bounding boxes involved in the colli-
sion (Figure 5) and is divided into two steps: i) recognition of the frame in which two 
disjoint bounding boxes merge/collide, ii) reallocation of the right anchors to the two 
bounding boxes detected. To this aim, when MIMA detects the collision between two 
anchors, it starts storing the centroid ck of each bounding box involved in the colli-
sion. In addition, MIMA calculates and stores for the same bounding boxes the corre-
sponding color histogram Hk . Specifically, the histogram Hk on the three channels R, 
G, and B is obtained by concatenating the three histograms calculated on individual 
channels. MIMA needs this information to be able  to reassign correctly the anchors 
when they separate again. In the following we provide a more detailed description of 
the two steps of the algorithm for conflict resolution. 

 

Fig. 5. Collision between two hands shaking 

3.4.1 Detection of the Separation Between Two Overlapping Bounding Boxes 
To better understand conflict resolution, assume to track two bounding boxes B1 and 
B2, associated respectively to anchors A1 and A2, and with centroids c1 and c2. The 
algorithm which determines the moment when the two anchors separate again works 
as follows: 
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1. determine the segment joining the two centroids and computes its midpoint 
cm(xm, ym); 

2. using the method described in Section 3.3, compute the skin map for the portion 
of image delimited by the vertices (xm-s, ym-t) e (xm+s, ym+t), where s and t are the 
dimensions of the smaller bounding box between the two conflicting ones; then 
apply to the skin map the cascade of morphological operators opening, closing 
and hole filling. 

3. identify the set of connected components C in the skin map obtained (regions 
with only 1s); the result of this step is the starting point to identify a possible an-
chor separation (i.e., the separation of a formerly merged region);  

4. if at the previous point two connected components at least, say CA and CB, have 
been identified with a number of pixels higher than a threshold δ (in present im-
plementation, δ=100 pixels and depends on image resolution), then execute the 
procedure to reassign anchors; in case of more candidates, the biggest ones are 
chosen. 

3.4.2 Reassignment of Anchors to the Corresponding Bounding Boxes 
The procedure to reassign anchors to the corresponding bounding boxes computes the 
Pearson correlation coefficient. The procedure uses the two histograms ܪଵ and ܪଶ, 
that MIMA stored for the two bounding boxes ܤଵ and ܤଶ, when it detected the colli-
sion, and the two histograms ܪA e ܪ஻ computed for the two connected components 
identified when the bounding boxes separated. MIMA computes the four correlation 
coefficients, one for each possible coupling  ܪଵ,ଶ/ܪ஺,஻, and selects the greatest one to 
determine the first final coupling; the second one is a mere consequence. 

4 Experiments and Results 

The test set [14] includes 24 videos (720×480) with different length and presenting dif-
ferent challenges. It was necessary to create a new dataset, since publicly available ones 
are not suited to carry out tests on the specific problem of body-part tracking, and in par-
ticular on the detection and recognition of interactive actions, which will be the object of 
our future work. As an example, the dataset described and made available at http://www-
prima.inrialpes.fr/FGnet/data/03-Pointing/index.html#Scene%20setup is limited to video 
sequences of hand gestures, while we address a more complex setting were gestures are 
immersed in a real scenario involving full-body images of more subjects. Human Activi-
ty Video Datasets (https://www.cs.utexas.edu/~chaoyeh/web_ action_data/dataset_list. 
html) includes either datasets with higher “resolution” actions, like running, walking, 
etc., or with finer action classes which are out of the scope of our study. The whole da-
taset created for this work was partitioned into two groups, characterized by different 
kinds of problems. The first group includes videos where anchors do not undergo occlu-
sions; the second group includes videos with partial or total occlusions of the anchors to 
track. Figure 6 shows an example of the first group (subjects exchanging a document) 
while Figure 7 shows a further example of the second group (see also Figure 5). 
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Videos were manually annotated to build a ground truth that is used to compare the 
anchor positions determined by MIMA. For each frame Fi, the coordinates of each 
anchor Ak in the ground truth are denoted with ܩ ௜ܶ,௞൫ݔ௜,௞ீ் , ௜,௞ீ்ݕ ൯, while those deter-
mined by MIMA are denoted as  B௜,௞൫ݔ௜,௞஻ , ௜,௞஻ݕ ൯. Similarly, rectangular regions corre-

sponding to the anchors from the ground truth and MIMA are denoted by  and 

, respectively. 

 

 

Fig. 6. Example frame with no anchor collision 

 

Fig. 7. Example frame with anchor collision 

Performance were measured according to the Pascal index, which offers an assess-
ment of the validity of the determined anchor position. It is defined as: 

 (10)

An anchor tracking is considered incorrect when the corresponding Pascal index falls 
below a threshold set to 1/3. A frame where all anchors are tracked correctly is  
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considered as valid, while if for one anchor at least  the index falls below the thresh-
old, the frame is considered invalid. Though useful to determine the correctness of an 
estimated anchor position, Pascal index provides no information about the amount of 
error. For this reason we use a further indicator which evaluates the error between the 
positions of the bounding boxes estimated by the algorithm with respect to the ground 
truth of each anchor. The position error is given by the Euclidean distance between 
the coordinates B௜,௞ estimated by MIMA for the anchor and the corresponding ones 
contained in ground truth ܩ ௜ܶ,௞: ܧ௜,௞ ൌ ฮB௜,௞ െ ܩ ௜ܶ,௞ฮଶ. (11)

In Table 1 we report the results for videos in the first group, where anchors are never 
occluded: 

Table 1. Results for videos without anchor occlusion (Group I) 

Video Frames Anchors 
 

Valid Frames Position Error 

Video_01 65 4  (87,7 %) 0.56% 
Video_02 45 4  (100 %) 0.34% 
Video_03 180 4  (98,3 %) 0.46% 
Video_04 100 4  (95 %) 0.46% 
Video_05 100 4  (100 %) 0.23% 
Video_06 125 4  (100 %) 0.34% 
Video_07 120 4 (100 %) 0.46% 
Video_08 75 4 (89,3 %) 0.46% 
Video_09 70 4 (98,6 %) 0.34% 
Video_10 85 4 (100 %) 0.34% 
Video_11 130 4 (100 %) 0.34% 
Video_12 40 4 (100 %) 0.34% 
Video_13 55 4 (100 %) 0.46% 

Table 2. Results for videos with anchor occlusion (Group II) 

Video Frames Anchors 
 

Valid Frames Position Error 

Video_15 82 4 (98,8 %) 0.23% 
Video_16 50 2 (88 %) 0.46% 

Video_17 95 2 (87,4 %) 0.56% 
Video_18 180 4 (98,3 %) 0.23% 
Video_19 130 4 (94,4 %) 0.56% 
Video_20 95 4 (92,6 %) 0.46% 
Video_21 110 4 (92,7 %) 0.46% 
Video_22 100 4 (83 %) 0.56% 

Video_23 92 4 (86,9 %) 0.46% 
Video_24 90 4 (93,3 %) 0.46% 
Video_15 82 4 (98,8 %) 0.23% 
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Table 3. Summary of results 

Video Frames Valid Frames Position Error 

Group I 1280  (98 %) 0.46% 
Group II 1024  (92,3 %) 0.34% 

 
From Table 1, Table 2 and Table 3 we can see that the percentage of valid frames 

is firmly around 98% for videos without occlusion, and 92% for videos with partial or 
total anchor occlusion. Therefore, MIMA is able to achieve good results even with 
problematic anchor tracking. A slightly lower percentage of valid frames is obtained 
for videos in the second group, because the positioning of bounding boxes on the 
respective anchors during overlap is not optimal; this is due to the fact that the bound-
ing boxes are located on the area pertaining to the anchor appearing in  
the foreground in the video. However, for such videos the position error is lower on 
the average, because after overlap the bounding boxes are positioned precisely from 
the conflict resolution procedure. 

5 Conclusions 

We proposed MIMA, a new multi-anchor approach for tracking human body parts. 
The system pre-processes the original RGB frame to obtain a new 8 bits grayscale 
image carrying on most color information. Mutual information allows MIMA to track 
anchors without performing any foreground/background segmentation. Several exper-
iments have been carried out on 24 color video sequences. Results are encouraging: 
all targets were precisely tracked, as demonstrated by the low error rate. Anchor over-
lapping also does not represent a critical issue, since MIMA implements a collision 
detection/resolving protocol. Our current research along this line aims at integrating 
MIMA in a more general system for human interaction analysis. To this aim, a new 
dataset has been created and is publicly available, which better supports experiments 
related to the detection of specific interactive actions. In the future such dataset will 
be further extended and enlarged. 
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Abstract. We present a computational framework, which combines depth and 
colour (texture) modalities for 3D scene reconstruction. The scene depth is cap-
tured by a low-power photon mixture device (PMD) employing the time-of-
flight principle while the colour (2D) data is captured by a high-resolution RGB 
sensor. Such 3D capture setting is instrumental in 3D face recognition tasks and 
more specifically in depth-guided image segmentation, 3D face reconstruction, 
pose modification and normalization, which are important pre-processing steps 
prior to feature extraction and recognition. The two captured modalities come 
with different spatial resolution and need to be aligned and fused so to form 
what is known as view-plus-depth or RGB-Z 3D scene representation. We dis-
cuss specifically the low-power operation mode of the system, where the depth 
data appears very noisy and needs to be effectively denoised before fusing with 
colour data. We propose using a modification of the non-local means (NLM) 
denoising approach, which in our framework operates on complex-valued data 
thus providing certain robustness against low-light capture conditions and adap-
tivity to the scene content. Further in our approach, we implement a bilateral fil-
ter on the range point-cloud data, ensuring very good starting point for the data 
fusion step. The latter is based on the iterative Richardson method, which is ap-
plied for efficient non-uniform to uniform resampling of the depth data using 
structural information from the colour data. We demonstrate a real-time imple-
mentation of the framework based on GPU, which yields a high-quality 3D 
scene reconstruction suitable for face normalization and recognition. 

Keywords: ToF · 2D/3D · Depth · Fusion · Denoising · NLM · Face · ICP 

1 Introduction 

In the fields of pattern recognition, computer vision and biometrics, 2D and 3D scene 
capture and understanding are active areas of research due to the variety of practical 
applications such as biometric identification/authentication for security and access 
control purposes, behavioral and psychological analysis for various commercial ap-
plications, object tracking, and many others. Among visual scenes, scenes containing 
human faces are of particular interest and the task of face recognition has been thor-
oughly studied mainly by using two-dimensional (2D) imagery. One particular ad-
vantage of conventional face recognition systems based on 2D images is a fast and 
low-cost data acquisition. However, 2D facial images can vary strongly depending on 
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many factors such as viewpoint, head orientation, illumination, different facial ex-
pressions, even aging and makeup, which can significantly decrease the system per-
formance. Thus, in most cases, it is necessary to maintain a canonical frontal facial 
pose and consistent illumination in order to achieve good recognition performance. 

In order to overcome the above-mentioned limitations and improve face recogni-
tion accuracy, more and more approaches suggest utilizing 3D facial data, which can 
be acquired by dedicated range sensors. Systems utilizing structural information of 
the facial surface are less dependent to the pose and/or illumination changes, which 
mostly affecting 2D image based systems. Accurate depth sensing is a challenging 
task especially in presence of a real-time constraint. Recent advances in Time-of-
Flight (ToF) depth sensing technologies made fast acquisition of 3D information 
about facial structure and motion a feasible task. ToF sensors are much less expensive 
and more compact than other traditional 3D imaging systems used for 3D model ac-
quisition. ToF sensors can deliver range data at high frame rates enabling real-time 
interactive applications. ToF depth sensors acquire depth information in a form of 
perspective-fixed range images often referred to as 2.5D models, which provides val-
uable information for object detection and recognition and can greatly assist tasks of 
face segmentation, i.e. removal of non-facial data such as neck, torso and hair, and 
face normalization, i.e. alignment of the face data in a canonical position. These tasks 
are usually performed before the actual feature extraction and recognition take place. 

A number of ToF imaging applications has been proposed in the fields of face de-
tection and recognition [1–4], gesture recognition [5], and real-time segmentation and 
tracking [6, 7]. A survey on face recognition and 3D face recognition using depth 
sensors has been presented in [1]. A face recognition system based on ToF depth im-
ages has been proposed in [2]: as the performance of 3D face recognition is highly 
dependent upon the distance noise, the problem of low quality of the ToF data has 
been specifically addressed. A ToF face detection approach has been presented in [3], 
where range data yields a significant robustness and accuracy improvement of the 
face detector. Other systems tend to utilize multimodal approaches combining 2D and 
3D features. A face recognition system using a combination of color, depth and ther-
mal-IR data has been proposed in [4]. The system is calibrated and tested in order to 
select optimal sensor combination for various environmental conditions. In [5], a real-
time 3D hand gesture interaction system based on ToF and RGB cameras has been 
presented: an improved hand detection algorithm utilizing ToF depth allows for 
recognition of complex 3D gestures. A framework for real-time segmentation and 
tracking fusing depth and color data has been proposed in [6], aimed at solving some 
common problems, such as fast motion, occlusions and tackling objects with similar 
color. In [7], a low-complexity real-time segmentation algorithm utilizing color and 
ToF depth information has been presented. The robust performance for the approach 
is based on simultaneous analysis of depth, color and motion information. 

The major advantage of a ToF sensor compared to other depth estimation tech-
niques is its ability to deliver entire depth map at a high frame rate and independently 
of textured surfaces and scene illumination. However, current ToF devices have cer-
tain technology limitations associated with their working principle, such as low sensor 
resolution (e.g. 200×200 pixels) compared to Full High-Definition (HD) (1920×1080) 
of color cameras, inaccuracies in depth measurements, and limited ability to capture 
color information [8]. A solution is to combine a depth sensor with one or multiple 
2D cameras responsible for color capture into a single multisensor system. 
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maximum likelihood solution utilizing a checkerboard similar to a stereo system cali-
bration has been proposed in [14, 15]. Range-specific calibration techniques have 
been proposed in [14, 16]. First, the cameras are calibrated separately for the internal 
parameters, such as focal length and principal point coordinates, resulting in the cam-
era calibration matrices KRGB and KTOF. Second, the stereo calibration step provides 
the external camera parameters: a rotation matrix - R3x3 and a translation vector – t3x1, 
which form the relative transformation RTTOF→RGB=[R|t] between optical centers of 
the ToF camera and the RGB camera. Due to the fixed setup, these parameters have to 
be determined only once during the preliminary initialization stage in offline mode. 

In our setup, a ToF camera based on the Photonic Mixer Device (PMD) principle is 
used [17]. To get distance data, a PMD sensor measures the phase-delay between an 
emitted wave and its reflected replica. A typical PMD consists of a beamer, an elec-
tronic light modulator and a sensor chip (e.g. CMOS or CCD). The beamer is made of 
an array of light-emitting diodes (LED) operating in near-infrared wavelengths (e.g. 
850 nm). It radiates a point-source light of a continuously-modulated harmonic signal 
which illuminates the scene. The light reflected from object surfaces is sensed back 
by pixels of the sensor chip, which collects pixel charges for some interval denoted as 
integration time. For each pixel, the range data is estimated in relation to phase-delay 
between the sensed signal and the one of the light modulator. The phase-delay estima-
tion is performed as a discrete cross-correlation of several successively captured sam-
ples taken between equal intervals during same modulation periods of fixed frequen-
cy. Denote the sample data as Rn (n=1, 2,…, N-1,  N≥4). The amplitude A and phase 
φ of the signal are estimated from the sampled data, while the sensed distance D is 
proportional to the phase φ: 
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where j is the imaginary unit, f is the frequency of the emitted signal and cL is the 
speed of light through dry air (~298.109km/h).  

Due to the operational principles of the ToF range sensor, significant amount of 
noise is present in the captured range data. The depth measurement noise is amplified 
during the fusion process and degrades the quality of the fused data. Thus, prior to the 
data fusion step, denoising of depth data should be performed in order to reduce the 
noise and remove outliers. The problem of denoising of ToF data has been addressed 
in a number of works [18-21]. Modern denoising approaches, such as edge-preserving 
bilateral filtering [22] and non-local filtering [23], have been modified to deal with 
ToF data [19, 21]. In [18], a range-adaptive bilateral filter has been proposed, by ad-
justing its size according to ToF amplitude measurements, since the noise level in 
distance measurements varies depending on the amplitude of the recorded signal [19]. 
In our work, we specifically consider the 2D/ToF fusion in the so-called low-sensing 
mode. In such a mode, the ToF sensor is restricted, e.g. by technological limitations, 
to operate in poor imaging conditions. These include low number of emitting diodes, 
or low power or short integration time. In such conditions, the noise becomes a domi-
nant problem, which should be addressed by dedicated denoising methods [20, 21].  
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2.1 ToF Denoising 

Measurement accuracy of a ToF sensor is limited by the power of the emitted signal 
and depends on many factors, such as light intensity, different reflectivity of surfaces, 
distances to objects in a scene, etc. Erroneous range measurements [21] can be caused 
e.g. by multiple reflections to the sensed signals, sensing objects having low-
reflectivity materials and colors, or small incident angle. 

When in low-powered sensing mode, the ToF sensor is usually also with low spa-
tial resolution, meeting technological limitations such as requirements for miniaturi-
zation of the beamer size and reducing the number of LED elements for cost-efficient 
hardware and embedding into portable devices. This leads to very noisy range images 
of a very low resolution. Degradations in the range data impede the projective map-
ping function in the 2D/3D fusion process. The case is illustrated in Fig. 2: one can 
observe that while the original noisy range data represents some scene structure, the 
fused output is fully degraded and useless. The process of surface based z-ordering 
becomes extremely unstable and no confidence of occluded and hidden data can be 
estimated (Fig. 2 3rd row). Due to the noise influence on the projected position, some 
areas of the rendered surface get artificially expanded and shadow some true areas. 
The effect impedes the non-uniform resampling at the stage of data fusion and also 
illustrates the importance of proper care of the range noise prior to fusion procedure. 

We specifically address the noise reduction as a post-capture stage applied to low-
sensed range data with the aim to achieve a 2D/ToF data fusion result with quality as 
if the ToF sensor was working in normal operating mode (Fig. 2). We have proposed 
a three-stage denoising technique: a raw data (system) denoising, point-cloud projec-
tion and denoising, and non-uniform resampling combined with depth refinement.  

For the system denoising stage, we propose a technique based on the state-of-the 
art non-local means (NLM) denoising approach [24]. The general idea of NLM filter-
ing is to find blocks (patches) similar to a reference block and to calculate a noise-free 
estimate of the central pixel of that reference block based on weighted average of the 
corresponding pixels in the similar blocks, where weights are proportional to the 
measured similarities.  

In our approach, the signal components of the phase-delay and the amplitude of the 
sensed signal are regarded as components of a complex-valued random variable and 
processed together in a single step. The map for similarity search, denoted by U in our 
approach is chosen to be the pre-computed maps of (A, φ) – (AU, φU) given in Eq.(1) 
and pixel-wise combined into a complex-valued map, denoted by Z, while the modi-
fied NLM filter (NLMCLX ) is given by: 
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In the equation CN  denotes a normalization factor, G is a Gaussian kernel, Ω is the 
search range, U is the pixel map, x is the index of filtered pixel, y is the running index 
of center pixels in similarity patches, h is a tuning filter parameter, and ×·(0) denotes a 
centered convolution operator, while (+ ·) denotes the range of pixel indices of spatial 
neighborhood.  
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Fig. 2. Role of denoising. Left, (clockwise): ToF range image; detected face region; noisy 
(IT=50µs) face region; GT face region. Right, in rows: fusion, segmentation and z-ordering; 
using (in columns) GT, noisy, denoised depth. 

The complex-valued representation of the sensed signal facilitates the block search 
stage and leads to better filter adaptivity and similarity weighting with reduced com-
putational complexity. The complex-domain filtering implies simultaneous filtering of 
all signal components in a single step, thus it provides additional feedback in the form 
of improved (noise-reduced) confidence parameter given by A, which can be utilized 
in iterative de-noising schemes. Such NLMCLX filter can be easily extended to similari-
ty search in temporal neighborhood of successively-captured frames, where temporal 
similarity is beneficial [28]. Such spatio-temporal filtering provides significant boost 
in denoising for small number of frames (e.g. 3) and for decreased size of the 
searched spatial neighborhood. The spatio-temporal search allows additional trade-off 
for using shorter integration times, and thus increases the number of frames which can 
be used. This provides an effective over-complete observation structure instrumental 
for effective denoising. Further modification is focused on speed. We have proposed a 
real-time version of NLMCLX denoising filter – S(implified)NLMCLX. It is only slightly 
inferior in terms of quality, however achieves an O(1) complexity. The idea is to first 
apply a global pre-filtering in order to simplify the patch similarity search by utilizing 
summed area tables (SATs) and smart look-up table data fetching [28].  

In contrast to other 2D/ToF fusion approaches, which suggest working in planar 
coordinates, our approach includes a second-stage denoising refinement data project-
ed in the 3D world coordinate system (i.e. data point cloud). It makes use of the  
surface information presented in the point cloud of range measurements [20]. The 
property that surf mesh data could exist on the unique optical ray formed by corre-
sponding range pixel and camera center can be used for a surface mesh denoising in 
the flavor of the techniques given in [13]. 

2.2 Resampling and Data Fusion 

Depth and color data fusion refers to a process of depth data reprojection and color-aided 
resampling. As the two cameras in the setup cannot be placed at the same position, their 

0.8m

3 m
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obtained after i-th iteration as di, initial depth values at irregular positions as z, and a 
relaxation parameter by λ, the whole iterative procedure can be formalized as follows:  

 .)))(((  dLzλVdJBFd ii1i −+=+
 (5) 

The use of bilinear interpolation for depth values calculation at the irregular locations 
is motivated by the observation that depth maps can be modeled as piecewise-linear 
functions at local neighborhood and interpolators of higher degree are not beneficial. 

The point-based depth reprojection comes along with one particular problem, 
namely z-ordering of projected points for detecting possible dis-occlusions. This re-
quires an additional pre-processing of the projected data: ToF samples which are not 
visible from the color camera position are considered as “hidden points” and have to 
be filtered out before interpolation, in order to prevent the liking of hidden back-
ground information. A solution to the z-ordering problem is provided by our GPU-
based rendering approach [26]. In order to generate a depth map corresponding to the 
viewpoint of the color camera, the algorithm makes use of a 3D mesh representation 
of the scene obtained using the ToF depth data. The depth data is represented as a 
triangulated surface mesh and then rendered as if observed from the point of view of 
the color camera. This constructs a depth map projectively aligned with the color 
image. During the rendering process, some depth testing is performed automatically 
and only the minimum per-pixel z-distance is stored in the depth buffer. Modern 
GPUs provide hardware support for triangulated non-uniform bi-linear resampling, 
which can be used for the fast resampling of the obtained depth map. However, the 
depth map obtained with bilinear interpolation needs to be further refined by a color-
controlled filtering, e.g. JBF, so that color edges and depth discontinuities get aligned. 
The color image can be applied as a texture to the refined 3D depth surface. The tex-
tured surface can be then rotated, scaled and translated as needed to generate any 
arbitrary view (Fig. 3). 

2.3 Depth-Assisted Segmentation  

In a color plus depth imagery, a region containing a face can be detected by a cascade 
classifier mechanism, as in [27]. Then, the associated depth can be utilized for effi-
cient face segmentation. An example of fast depth-assisted segmentation approach 
utilizing 2D color and depth information as well as motion information has been pro-
posed in [7], where motion between two consecutive color and range frames is ana-
lyzed to locate preliminary region of interest within the scene. Then, a refinement 
algorithm delineates the segmented area. Object motion in a scene is detected by 
tracking pixel-wise color and depth changes between two consecutive frames. The 
temporal differences between both color and depth are mutually thresholded with 
certain value resulting in a region mask of detected motion. Initial foreground mask is 
estimated by applying a region growing algorithm, which uses so called “pixel seeds”, 
which in our case are the ones detected in motion mask. The idea of the region grow-
ing algorithm is the following: a chosen seeding pixel is compared for similarity with 
the neighboring ones, and then added to the seeding region, thus growing it. 

The foreground mask obtained with the growing algorithm can contain false inclu-
sion of background areas due to errors in the depth map. This kind of errors can be 
tackled by using more precise edge information from the color data, which results in 
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improved foreground mask. To reduce boundary errors, so-called ‘tri-map’ is generat-
ed as follows: pixels inside the foreground mask are marked as ‘certain foreground’, 
the ones outside – as ‘certain background’, and pixels near the edges are marked as 
‘uncertain’. Then a K-nn search of the nearest pixels is performed in order to decide 
whether an uncertain pixel belongs to foreground or background by comparing its 
color to the certain foreground and certain background neighbors. The segmentation 
results, obtained using the described method, are illustrated in Fig. 2 Right. 

2.4 Face Normalization by Iterative Closest Point Methods 

A proper face alignment is viable for biometric applications involving facial data such 
as facial feature extraction, expression estimation, motion tracking and recognition. 
Usually such applications heavily rely on the use of trained classified data where cer-
tain face pose of limited misalignment variation was utilized for training. The process 
of face alignment to certain pose is referred in the state of the art literature to as face 
normalization [3, 4, 32, 33]. A rigid alignment for face normalization utilizing de-
grees of freedom (DoF) such as: angle rotations, translation shifts, and scaling can be 
obtained by utilizing so called Iterative Closest Points (ICP) algorithm [31]. 

Basically, the ICP algorithm is data registration applied on 3D data point clouds 
[30]. First, the algorithm takes a source of point cloud data as reference and targets 
one as template. Then, for each point in the template, it locates the closest point in the 
source, and aims at minimizing the error between these points by applying a rigid 
transformation between the two meshes. This process is repeated until a threshold 
error is reached. The ICP solution may vary according to data selection [34], outlier 
filtering [31, 34], minimization constraints [29], or “closeness” metrics [34]. 

3 Performance Validation on Biometric Pre-processing Tasks 

We illustrate the performance of our 3D capture and processing framework by exper-
iments characteristic for typical biometric tasks such as face detection, tracking and 
recognition [2, 3, 4]. The first experiment demonstrates face projection alignment and 
fusion of color and depth data in the presence of noise. The second experiment 
demonstrates the performance of the system for ICP-based face normalization. The 
experimental equipment consists of custom designed 2D/ToF camera setup consisting 
of a Prosilica GE-1900C high-definition color camera and a PMDTech CamCube 2.0 
ToF device mounted on a rig, where both cameras are vertically aligned with a base-
line B = 6 cm. The scene represents a person frontally facing the cameras at a distance 
of 1.2 meters and sitting in front of a flat background situated in 2.5 meters. 

3.1 2D/ToF Fusion of Face Images  

The face is detected utilizing a real-time modification of the Viola and Jones algorithm 
[27], [35] (Fig. 2). The detected face region UF in the range map is used to quantify the 
denoising performance. The effect of noise in low-powered sensing environment was 
simulated by changing the integration times of the ToF sensor for range IT ϵ 
[2000÷50]µs, where the normal operating mode corresponds to IT=2000µs. To get 
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ground truth data (GT), we have averaged 200 consecutively captured frames in nor-
mal operating mode. The low-sensing case is characterized by measured amplitude of 
the reflected signal A<250 units [21]. For such amplitudes, it is expected that the error 
of the measured depth exceeds the one specified for normal operating mode [17]. The 
corresponding input low-sensed (and potentially wrong) depth pixels are counted as 
percentage of all available depth pixels and denoted as “BAD” (Table 1). Pixels having 
measurement error twice exceeding the corresponding GT range value after processing 
are considered uninformative and marked as “IMP”. The noisy data has been processed 
by our SNLMCLX approach, working in real time. The denoising results are given in 
Table 1 and depicted in Fig. 4, where the comparison metrics are calculated as follows: 

                    (6) 

where UF and UF’ correspond to noise-free input and noisy (or denoised) range output 
of face regions, SU is number of pixels, and DMAX=7.5m. The results demonstrate a 
robust denoising performance as the processed output is quite close to the ground 
truth data. Facial features such as filtrum, nose, and eyelids are apparently visible (c.f. 
Fig. 4). The denoising improvement is substantial and higher than 14 dB. As com-
mented in [2], a denoising improvement of 12-14 dB ensures some 50-70 percent 
improvement in recognition when PCA or M(LDA) classifiers are used (see Table 1 
in [2]). 

Table 1. Denoising performance of proposed algorithms 

3.2 Face Normalization  

For the face normalization experiment we have implemented the classical ICP ap-
proach as presented in [29]. The following test was performed. A face with given GT  
 

 

Fig. 4. Image and surface plots. Rows: noisy input and denoised output for IT = 200, 100, 50 µs. 

√⎯

IT[µs] 2000 1000 800 500 400 200 100 80 50 

BAD pixels, [%] 1 20 26 44 51 100 100 100 100 

IMP pixels[%] 0 0 0 0 0 0.1 1.7 6.5 11.8 

Noisy,[dB] 40.18 36.29 35.43 31.64 29.82 23.41 14.92 12.29 14.32 

SNLMCLX,[dB] 47.23 38.15 39.62 37.89 37.73 36.01 32.75 30.21 30.02 
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Abstract. In this paper, we present a new iris detection method based on the 
use of watershed segmentation. The watershed transform is used for both pupil 
and iris detection, in combination with image quantization, aimed at reducing 
the number of gray levels, and image thresholding, aimed at obtaining a tenta-
tive discrimination between foreground and background. The method has been 
tested on the CASIA-Iris-Interval Image database.  

Keywords: Biometrics · Iris detection · Watershed transformation 

1 Introduction 

Biometric systems, based on a single biometric or on the combination of different 
biometrics, are of interest for many applications, such as physical access control, em-
ployee identification, and information systems security. In this context, iris recogni-
tion is frequently employed for the identification of individuals by means of pattern 
recognition techniques applied to video images of their eyes. Indeed the iris of a hu-
man being is characterized by complex patterns that are peculiar and remain stable 
during her/his entire life. Moreover, the iris can be scanned at different distances, 
from a few centimeters up to a few meters, and acquisition does not cause troubles to 
the subject due to the use of iris cameras that operate in the near infrared spectrum, 
[1,2], or with visible light technology, [3]. 

The whole iris recognition process includes acquisition of the eye image, iris seg-
mentation with the purpose of separating both iris and pupil from the rest of the im-
age, features extraction to associate a template to the detected iris, and recognition 
accomplished by using mathematical and statistical algorithms to compare the current 
template with those stored in a suitable database. Accuracy is extremely important as 
regards iris segmentation, since the outcome of the whole recognition process is high-
ly conditioned by the quality of the detected iris. See the two recent special issues 
[4,5] devoted to iris segmentation and iris recognition, respectively. 

In this paper, we focus on iris segmentation. We refer to the CASIA-Iris-Interval 
Image database Version 4.0, [6] and introduce a new method based on watershed 
transformation that allows us to obtain precise iris segmentation. The paper is  
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organized as follows. In Section 2, the watershed based iris segmentation method is 
described. Section 3 is devoted to iris and pupil detection. A brief conclusion is given 
in Section 4. 

2 Segmentation  

We refer to the CASIA-Iris-Interval Image database Version 4.0 [6], which consists 
of 2639 gray level images with size 320×280. To reduce the computation time, all 
images in the database are preliminarily resized to 160×140. See Fig. 1 left, where a 
160×140 resized image I is shown that will be used as running example throughout 
the paper. Size reduction is achieved by using a linear interpolation scaling down 
method with reduction factor set to 0.5. Noise removal and smoothing of sharp gray 
level differences is then obtained by using a median filter with window size 7×7 (see 
Fig. 1 middle). Finally, the gradient image is computed by using the Sobel operator 
(see Fig. 1 right). Size reduction, noise removal, smoothing, and gradient image ex-
traction have been implemented by using standard OpenCV libraries. 
 

        

Fig. 1. From left to right, a 160×140 resized image, image resulting after median filter applica-
tion, and gradient image 

For iris segmentation we use the watershed transformation, introduced in [7], 
which originates a partition of the image by applying region growing to a suitable set 
of seeds. The seeds are generally detected as the regional minima in the gradient im-
age. Region growing is accomplished by taking into account a specific homogeneity 
criterion so that each region of the partition will be homogeneous, while the union of 
any two adjacent regions will not.  

Different approaches can be followed to compute the watershed transform. In this 
paper, we use the topographical distance watershed transformation suggested in [8] 
and explain how the partition of the image is obtained by resorting to the paradigm of 
the landscape drenched with rain.  

The 2D gray level gradient image is seen as a topographic relief, where the gray 
level of a pixel is interpreted as its altitude in the relief. If rain floods the landscape, 
raindrops falling on the topographic relief flow from the areas of high altitude (re-
gions with high gray level in the 2D image), along paths of steepest descent until they 
reach regional minima (regions with low gray level in the 2D image). The catchment 
basins are the drainage areas of regional minima and are separated by dams (water-
shed lines). The watershed lines surround the basins and are located on the outer 
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ridges of each catchment basin. For any pixel p of a watershed line, there are at least 
two paths of steepest descent starting from p, which lead to different regional minima.  
To simulate flooding along the paths of steepest descent, any non-minimum plateau 
(i.e., any region with constant altitude) should be eliminated so that raindrops do not 
stop and flow down along areas with lower altitude. This goal is reached by applying 
to the gradient image the Lower Completion process [8] that originates an image 
(lower complete) in which any non-minimum plateau is transformed into a slope. 
Precisely, any pixel of the lower complete image that doesn’t belong to any regional 
minimum has at least one neighbor with smaller value. The effect of Lower Comple-
tion as regards plateau removal can be seen in the synthetic example in Fig. 2 left, 
where a section of a landscape is shown before and after the application of the pro-
cess. Each non-minimum plateau, visible along the profile (a), is replaced by a slope 
in the profile (b). The result of applying Lower Completion to the gradient image of 
the running example is the lower complete image shown in Fig. 2 right.  

 

                          

Fig. 2. Left, section of a landscape where each plateau in the profile (a) is replaced by a slope in 
the profile (b). Right, lower complete image of the gradient image for the running example.  

Once the lower complete image of the gradient image is available, we flood it ac-
cording to the Hill-Climbing algorithm [8] to obtain the desired watershed partition 
into a number of disjoint regions Ri. If all regional minima in the lower complete 
image are taken as seeds, the watershed partitioned image results to be over-
segmented (see Fig. 3 left, where for visualization purpose the watershed lines are 
shown superimposed on a white background). To reduce over-segmentation, some 
regional minima of the lower complete image have to be removed. To this purpose, 
before flooding the lower complete image, we apply the faster version [9] of the Multi 
Otsu Threshold Algorithm [10], so as to group pixels according to three increasing 
thresholds into four different classes, each of which including pixels lighter than the 
pixels in the previous class. Then, we set to zero in the lower complete image the very 
dark pixels, i.e., those belonging to the first class, which mainly correspond to quasi-
uniform regions of the input image. This process reduces the number of regional min-
ima by merging some scattered regional minima in a single connected component. 
The effect can be seen in Fig. 3 middle, where the watershed transform computed 
starting from the reduced set of seeds is shown. The pixels in the remaining classes of 
the lower complete image are left unchanged. In fact, some pixels of the iris boundary 
may be not characterized by very dark gray level. They would become regional min-
ima by setting their value to zero, so causing the loss of parts of the iris boundary. In 
turn, light pixels are mainly contour pixels, which should definitely be kept.  
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We observe that the reduction of the number of seeds significantly reduces over-
segmentation, by originating wide regions in correspondence of the main quasi-
uniform areas (sclera, iris and eyelids) in the image. We are aware that our seed  
reduction does not totally eliminate over-segmentation. In principle, the number of 
regions of the watershed partitioned image might be furthermore reduced by setting to 
zero also some of the pixels not belonging to the first class, or by applying a merging 
process based on some features of adjacent regions. However, for the database used in 
this work, the contrast among iris, sclera and eyelids is generally rather low, and tex-
ture changes are not particularly relevant. Thus, we argue that the use of a larger tol-
erance when setting to zero pixels in the lower complete image, or a further merging 
process to be done once the watershed partition is obtained could cause the loss of 
some parts of the iris boundary. 

 

         

Fig. 3. Watershed lines obtained by using all regional minima in the lower complete image of 
the gradient image, left, watershed lines obtained after thresholding the lower complete image, 
middle, quantized image, right 

3 Iris and Pupil Detection 

Let W be the watershed transform computed so far. First, W is used for pupil detec-
tion. Then, W is used together with the detected pupil for iris detection. 

3.1 Pupil Detection 

We point out that for the images in the CASIA-Iris-Interval Image database, pupil and 
eyelashes are always the darker areas. For the selection of these areas, we compute a 
binary version of the watershed partitioned image W. To this aim, we build a quan-
tized version Q of the image I and will apply to Q image thresholding.  

We build the gray level quantized version Q of the image I by assigning to all pix-
els in the same partition region Ri of W a unique representative gray level, computed 
as the arithmetic mean of the gray levels of all their homologous pixels in I. For the 
running example, the quantized image Q is shown in Fig. 3 right. By looking at Fig. 3 
right and Fig. 1 left, we observe that in both Q and I, the pupil and some parts of the 
eyelashes are darker areas; on the contrary, light spots, clearly visible in the pupil of 
the input image I, and some parts of eyelashes result to be respectively darker and 
clearer in Q than they actually are in I. This difference between Q and I has a positive 
effect as far as the binarization of W is concerned. In fact, it reduces the number of 
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parts into which the pupil is fragmented, and limits the number of foreground regions 
corresponding to eyelashes.  

We apply the thresholding algorithm [10] to the quantized image Q, so as to identi-
fy three different thresholds, θ1, θ2 and θ3. To this purpose, let lmin and lmax be respec-
tively the lowest and the highest gray level in Q. The intermediate gray level lint  
between lmin and lmax is computed as lint=(lmax - lmin)/2+ lmin-1. Since gray values larger 
than lint are regarded as definitely too high to be in correspondence with the pupil, the 
three thresholds θ1, θ2 and θ3 are orderly computed in the interval [lmin, lint].  

Let Wp be the binarized version of W that will lead to pupil detection. All regions 
of W whose representative gray levels are smaller than θ2 are assigned to the fore-
ground of Wp. In this way, we ascribe to the foreground of Wp the regions of W that 
we regard as candidate to belong to the pupil or the eyelashes, while all other regions 
of W are assigned to the background of Wp. The result of this binarization for the 
running example can be seen in Fig. 4 left. 

 

                  

Fig. 4. Binarized version Wp of the watershed transform W, left, result of morphological opera-
tions and features extraction, right 

We note that the foreground of Wp is likely to include part of the eyelashes. More-
over, the pupil may have been only partially assigned to the foreground of Wp, or may 
result to be affected by noisy holes. Thus, to remove holes, as well as components of 
the foreground corresponding to part of the eyelashes and possible links between 
pupil and eyelashes, morphological dilation and erosion are applied to Wp. For each 
connected component of the foreground remaining after the application of dilation 
and erosion, we compute the corresponding bounding box. This is used both to get rid 
of foreground components of small size and to evaluate the roundness of the remain-
ing foreground components to detect the pupil.  

We have experimentally observed that foreground regions whose bounding box has 
at least one side shorter than eight pixels can be considered as noise and can be safely 
considered background. For each remaining foreground component the ratio between 
the longest side and the shortest side of the relative bounding box is computed and is 
used to establish whether the bounding box can be interpreted as reasonably well 
approximating a square. This check is done since the pupil, due to its almost circular 
shape, is certainly enclosed by a bounding box shaped more or less exactly as a 
square. Only foreground regions for which the above ratio is smaller than 1.2 are 
regarded as delimiting a circular region.  Of course, more than one foreground region 
may exist whose bounding box satisfies the above condition. If this is the case, we 
accept as (part of) the pupil the connected component with the bounding box better 
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approximating a square, i.e., with the smallest ratio. If no bounding box exists that is 
shaped as a square, part of the pupil is detected as the foreground region with the 
largest area. Of course, once the foreground component detected as corresponding to 
(part of) the pupil has been selected, all other connected components are considered 
background. For the running example, the foreground component taken as pupil can 
be seen in Fig 4 right.  

When the bounding box of the region selected as pupil is a square in the limits of 
the adopted tolerance, the selected region has almost circular shape. Thus, center and 
radius of the pupil can be computed as center and half the largest side of the bounding 
box, respectively. Otherwise, the selected region is only part of the pupil; this is likely 
to happen for the images in the database where the light spots appear very close to the 
boundary of the pupil. In this case, the points placed in the middle with respect to the 
first and to the last foreground pixel along each of the four sides of the bounding box 
are identified. The four straight lines passing through the homologous pairs of these 
points on opposite sides of the bounding box are considered. The distances between 
the center of the bounding box and the intersection points of the four straight lines are 
computed. The intersection point characterized by the smallest distance is taken as 
center of the pupil. The radius of the pupil is taken equal to the smallest distance from 
the detected center to the sides of the bounding box.  

Once center and radius of the pupil have been computed, the circle representing the 
pupil can be easily generated. See Fig. 5 left, where the boundary of the circle is col-
ored in blue. Then, the circle is used to identify as precisely as possible the pupil 
boundary. To this purpose, all regions of the watershed transform that are at least 
partially overlapping the circle are regarded as belonging to the pupil and are merged 
into a single region in W (shown in gray in Fig. 5 right). Information about the region 
representing the pupil will be used for iris detection. 

 

                      

Fig. 5. Circle computed for the pupil, left. Detected pupil, right. 

3.2 Iris Detection 

A second binarization of W is performed, leading to iris detection. Let us call Wi the 
second binarized image. Regions of W that are not adjacent to the region selected as 
pupil in W and that are adjacent to the frame of the image are regarded as belonging to 
the sclera or to the eyelids. In both cases, these regions are certainly assigned to the 
background in Wi. The remaining regions of W, shown in white in Fig. 6 left, are 
tentatively assigned to the foreground of Wi. Actually, only the connected component 
with the largest area is considered as foreground in Wi. See Fig. 6 middle. 



 

 

 

 

Fig. 6. Result after assignmen
frame and are not adjacent to 
foreground in Wi, middle. Circ

The bounding box of the
distances between the cente
puted and the largest one is
center of the pupil (Fig. 6 ri

The circular mask is sup
the regions of W classified 
pletely overlapping the ma
middle) and are assigned to

 

Fig. 7. Use 

The regions of W that co
cent to the background are
them, the region having ma
is computed as the arithme
the pixels of the portion of 
ground of Wi. The center 
obtain a circle fitting the ir
senting pupils and of the ci
running example is the top l

 

Iris Detection Through Watershed Segmentation 

      

nt to the background of the regions of W that are adjacent to
the pupil, left. Only the region with the largest area is taken

cular mask, right.  

e detected foreground component of Wi is considered. T
er of the pupil and the sides of the bounding box are co
 taken as the radius of a circular mask to be centered in 
ight). 
erimposed on W (Fig. 7 left), and is used to identify amo
as belonging to the foreground in Wi, those that are co

ask. The remaining regions of W are merged in W (Fig
o the background in Wi . 

      

of the circular mask for iris detection (see text) 

orrespond to foreground regions in Wi and are there ad
e interpreted as potentially belonging to the iris. Amo
aximal area is selected (Fig. 7 right). The radius of the 
etic mean of the distances between the center of pupil 
the boundary separating the selected region from the ba
of the pupil and the computed radius are finally used
ris. See Fig. 8, where the boundaries of the circles rep
ircles fitting irises are shown in blue for a few images. T
left image in Fig. 8. 

63 

 

o the 
n as 

The 
om-
the 

ong 
om-
g. 7 

 

dja-
ong 
iris 
and 

ack-
d to 
pre-
The 



64 A. Ferone et al. 

 

         
 

         

Fig. 8. The (blue) circles correspond to iris and pupil detected by our method 

Once the circle fitting the iris has been detected, it is used together with the water-
shed transform to identify as precisely as possible the iris boundary. The regions of 
the watershed transform Wi that are at least partially overlapping the circle are regard-
ed as belonging to the iris. For the running example, the obtained result is shown in 
Fig. 9. 

 

 

Fig. 9. The blue lines delimit the detected iris 

The method has been tested on the images in the CASIA-Iris-Interval Image data-
base Version 4.0. The obtained results have been evaluated by experts, who found 
them satisfactory. Only in a very few cases, the pupil or the iris were not correctly 
detected. In particular, in some cases the radius of the circle representing the pupil 
was slightly larger than expected. This happens when some eyelashes overlap the 
pupil causing the size of the connected component, included by the bounding box, to 
be larger than the pupil. In some other cases regions actually belonging to the eye-
lashes or the sclera were erroneously detected as belonging to the iris. 
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4 Conclusion 

A new iris detection method has been suggested, based on the use of watershed seg-
mentation. The Multi Otsu Threshold Algorithm and a quantized version of the input 
image, obtained by assigning to all pixels in the same watershed region a unique gray 
level, have been used to guide binarization of the watershed segmented image. The 
watershed transform is used for both pupil and iris detection. The method has been 
tested on the CASIA-Iris-Interval Image database, obtaining in general satisfactory 
results. Our future work will consist in evaluating the performance of the suggested 
method with respect to other methods in the literature. 
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Abstract. The iris has been proposed as a highly reliable and stable biometric 
identifier for person authentication/recognition about two decades ago.  Since 
then, most work in the field has been focused on segmentation and matching  
algorithms able to work on pictures of whole face or eye region typically cap-
tured at close distance, while preserving recognition accuracy. In this paper we 
present an iris matching algorithm based on spatial histograms that, while 
showing good recognition performance on some of the most referenced public 
iris dataset, is also able to perform a one-to-one comparison in a small amount 
of time thanks to its low computing load, thus resulting particularly suited to 
iris recognition applications on mobile devices.  

Keywords: Biometrics · Iris recognition · Smartphone · Spatial histograms 

1 Introduction 

Since the pioneering work of Daugman [1] in 1993, who assessed the statistical inde-
pendence of two coded patterns originated from different eyes, the iris has been pro-
posed as a biometric identifier. In his work, the author described a method for iris 
localization based on integro-differentials operators exploiting the 2D Gabor filters in 
order to extract iris texture features and a statistical-based approach to iris codes 
matching. A few years later, Wildes [2] focused his research effort on a non-invasive 
system for iris recognition and compared that to the one from Daugman. Both works 
mainly focused on achieving maximum accuracy in iris recognition under controlled 
conditions including specific enrollment protocols for the user to undergo.  

In the following years, studies in the field of biometrics have progressively led to 
two main classes of issues. From one side the segmentation of the iris and from the 
other one its recognition. Nowadays, research efforts aim at facing those issues under 
less predictable acquisition conditions involving uncontrolled lighting and environ-
mental factors which can result in noisy iris images (e.g., strong reflections over the 
cornea surface, blur, low contrast, etc.). Literature presents several solutions that have 
been proposed to this matter. Lim et al. [3] exploited the Haar wavelet transform to 
optimize the dimension of feature vectors to 87 bits, to the aim of reducing processing 
time without affecting accuracy of recognition. Combining the proposed descriptor 
with a method of initializing weight vectors and another one of determining winners 
for recognition in a competitive learning neural network, the authors were able to 
achieve a level of accuracy enough reliable even for “real world” applications. In [4] 



 Fast Iris Recognition on Smartphone by Means of Spatial Histograms 67 

the authors suggested a representation of iris features by means of wavelet transform 
zero crossing. The most significant aspects of the descriptor are its invariance to 
translation, rotation, and scale as well as its robustness against variations in illumina-
tion and noise levels.  

Particularly significant in the field of iris segmentation was the result of the NICE.I 
contest for the performance evaluation of recognition algorithms on noisy iris images 
by Proença and Alexandre in 2007 [5]. Focusing on performance in feature extraction 
and matching, Bowyer and Kevin recently resumed the results of the NICE.II Iris 
Biometric Competition [6] arguing that “since the top-ranked algorithms seem to have 
relatively distinct technical approaches, it is likely that a fusion of the top algorithms 
would result in further performance improvement”. In this line of research, Jeong  
et al. [7] presented a new iris segmentation method that combines an AdaBoost detec-
tor for eyes detection and some color-based obstructions removal techniques. The 
results achieved and discussed by the authors let suppose that it could be successfully 
used to accurately extract iris regions from non-ideal quality iris images. Shin et al. 
[8] proposed an integrated iris recognition method that discriminates the left or right 
eye on the basis of the eyelash distribution and specular reflection and exploits iris 
region color and texture information to achieve a reliable classification.  

The first attempt of demonstrating the possibility of developing it on mobile 
phones dates back to 2006 by a work of Jeong et.al. [9] who proposed to extract the 
iris code by means of Adaptive Gabor Filter (whose operating parameters depends on 
the amount of blurring and sunlight in captured image). To the aim of improving the 
robustness of iris recognition on mobile phones in various environments, Park et al. 
[10] presented a recognition method for mobile phones based on corneal specular 
reflections while Kang [11] proposed to pre-process iris through an automatic seg-
mentation of pupil region, pupil and eyelids detection to remove the most noise from 
the iris image and improve recognition performance. On a similar line of research, 
Cho et al. [12] presented a pupil and iris localization method exploiting not only in-
formation of the pupil and iris, but also the characteristics of the eye images. In [13] 
pupil and iris localization is based instead on detecting dark pupil and corneal specu-
lar reflection by changing brightness and contrast value. Exploiting the ever-
increasing computing power of mobile platforms, which makes them compared to that 
of low-end desktop computers, De Marsico et al. [14] have recently presented a com-
bined face-iris mobile recognition system proving that multi-biometrics person au-
thentication on mobiles can be a feasible option.  

In this paper we describe a recognition algorithm based on spatial histograms with 
two main advantages. First of all it features a good recognition accuracy and, on the 
other hand, it achieves a fast iris matching requiring low computing power. Due to 
these reasons, it proves to suit mobile computing architectures, such as smartphones 
or tablet computers, very well, as our experimental results confirm. 

The rest of this paper is organized as follows: in section 2 the proposed method is 
described with regard to iris segmentation, feature extraction and matching. Section 3 
describes the experiments conducted and, finally, section 4 concludes the paper sum-
marizing the lessons learned and the issues to be addressed in future work. 
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2 Description of the Proposed Method 

As already introduced in the section 1., the purpose of this study aims at developing a 
complete system for iris-based person authentication suitable to mobile platforms. 
The processing pipeline is quite easy to describe as it consists of two main stages: 
detection/segmentation of the iris and features extraction/matching. Specifically con-
cerning the segmentation of acquired iris, the approach proposed in ISIS [15] was 
exploited. It is composed by four main stages: iris image pre-processing; pupil locali-
zation; image linearization and limbus localization. Following subsections provide 
details for each one of these steps. 

2.1 Iris Segmentation 

The pupil, which can be considered as a circular region with a homogeneous distribu-
tion of pixels, is a perfect candidate to the segmentation of an iris. The easiest as-
sumption that could be done is that, typically, the darker region within the image is 
the pupil. However, the pupil changes its appearance in relation to the lighting making 
this assumption insufficient in uncontrolled or outdoor environments. On the contrary,  
the shape of the pupil allows to exploit concepts like homogeneity and separability 
that are successfully used for the selection of the best circle. For this reason, combin-
ing both approaches leads to a more robust method to pupil selection. The proposed 
function, based on the histogram H of gray tones in the region of the pupil, starts 
counting the number of occurrences of the same gray tone [0, 255]: ݏு ൌ max௜ ሾܪሺ݅ሻሿ  ଶହହ     ௜ୀଵ  ൘  ሺ݅ሻ                                                           ሺ1ሻܪ

The outline of the pupil, as well as for the limbo, has a zone in which it passes 
from a dark color to a lighter one. However this assumption becomes weaker when an 
iris dark in color is analyzed (in those cases the transition is more subtle). Therefore, 
we define an index of separability. Given a candidate circle C with center c=(cx, cy) 
and radius ρ in the image I, the Cartesian coordinates are given by: 

,ߩ஼ሺݔ • ሻߠ ൌ ܿ௫ ൅ ߩ cos     ߠ
,ߩ஼ሺݕ • ሻߠ ൌ ܿ௬ ൅ ߩ sin ߠ , ߠ ݁ݎ݄݁ݓ א ሾ0,2ߨሿ 
Considering the circle CIN, internal to C, with radius ߩଵ ൌ  ,and the circle COUT ߩ0.9

external to C, with radius ߩଶ ൌ  measuring the difference of gray tones, on the ;ߩ1.1
edge of the circle for each angle ߠ௜, using an operator similar to the Daugman’s  
integro-differential operator, structured as follows:  ܦሺ݅ሻ ൌ ,ଶߩ௖ሺݔ൫ܫ  ,௜ሻߠ ,ଶߩ௖ሺݕ ௜ሻ൯ߠ െ ,ଵߩ௖ሺݔ൫ܫ  ,௜ሻߠ ,ଵߩ௖ሺݕ  ௜ሻ൯                           ሺ2ሻߠ
where i = 1, ...., 360 represents the discrete value of the angle and then the index 
within the gradient vector h; while ߠ௜ ൌ  is the same angle in radians. At the ,180/ߨ݅
pupil, we expect a high and constant value for D. In other terms, a high average value  
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and a low variance are expected. Based on these observations, the index of separabil-
ity can be defined as: ݏ஽ ൌ ሻܦሺߪܦ ൅  1                                                                              ሺ3ሻ 

By analyzing the polarized image of the eye in the horizontal direction, (see Figure 1), 
it is possible to accurately localize the limbo that appears in the region of separation 
between the iris and the sclera. 

Considering that features like pores of the skin, eyelashes and eyelids can negative-
ly impact on the detection of edges of the iris, the first stage of ISIS implements an 
enhancement filter in order to eliminate interferences. A square window W of size k × 
k, scans the entire image pixel by pixel. A histogram hW is computed and the value 
with the highest occurrence is replaced in the central position of the histogram.  

A “canny” filter applied to the resulting image is exploited in order to locate the 
pupil. Ten different thresholds th= 0.05,0.010,0.015, ...., 0.055 are used and each 
frame at different threshold level is stored. For each of them, the connected compo-
nents are identified. All components whose number of pixels exceeds a given thresh-
old THC, are included in a list L. Then, the algorithm of Taubin [16] is applied to 
each element of the list to compute the corresponding circle. The circles that fall over 
the boundary of the image are promptly removed from the list L, which leads to the 
final list LC. Once obtained the list LC of potential connected components, homoge-
neity and separability criteria are applied on each of them to find the pupil. For each 
circle the value S = SH + SD is calculated. In the end of this process, the circle shape 
that best approximates the pupil is the circle Cmax with the highest value Smax. 

At this stage, the algorithm looks for the pixels with highest ρ distance starting 
from the center of the localized pupil. The resulting sub image is transformed from 
Cartesian coordinates to polar coordinates, producing a new image İ (Figure 1, right 
inset). The advantage of such transformation is that it makes easier to locate the 
boundary between the sclera and the iris. A median filter is also performed on the 
image İ to further improve the sub image. Considering R as a row of the image and 
the neighborhood of each pixel P contained in R including 2q +1 pixels (i.e., itself, q 
previous pixels and q following pixels). Then the neighborhood pixels are sorted and 
the pixel P takes the median value. It is possible to assert that for each column, which 
is located beyond ρJ and the corresponding position on the horizontal axis of i and θi, 
the following weighted difference is calculated pixel wise: ∆൫ߩ௝, ௜൯ߠ ൌ ߮൫ܫ, ,௝ߩ ௜൯ߠ · ቀܫ൫݌௝ ൅ ,ߜ ௜൯ߠ െ ௝ߩ൫ܫ െ ,ߜ  ௜൯ቁ                                ሺ4ሻߠ

where: 

߮൫ܫሶ, ,௝ߩ ௜൯ߠ ൌ ൞1   ݂݅ ௝ߩሶ൫ܫ ൅ ,ߜ ௜൯ߠ െ ௝ߩሶ൫ܫ െ ,ߜ ௜൯ߠ ൐ 0         ܽ݊݀ min ቀܫሶ൫ߩ௝ െ ,ߜ ,௜൯ߠ ௝ߩሶ൫ܫ ൅ ,ߜ ௜൯ቁߠ ൐ εG0 ݁ݏ݅ݓݎ݄݁ݐ݋                ሺ5ሻ 
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Fig. 1. Subject’s eye-region captured (left inset), its iris correctly segmented and outlined in 
green (small inset below on the right), and mapped through polar coordinates (right inset 
above) 

According to (5) the pupil occupies the lower part ρJ of the polarized image İ, fol-
lowed by the iris and sclera. The sign of the difference is relevant as it is expected that 
the sclera is brighter than the iris. This indicates that the algorithm looks for changes 
with a positive sign, which represent the transition region between iris and sclera. In 
formula (5) the first inequality imposes a positive gradient; the second inequality 
excludes the pixels of the border between the pupil and iris, as it requires the darkest 
pixel in the pair to have a gray level greater than a threshold ߝ א ሾ0,255ሿ. The area on 
the limb is composed of points that maximize the weighted difference (4) for each 
column θi in I. 

2.2 Iris Matching by Means of Spatial Histograms  

Before discussing the matching method, it is useful to clarify the difference berween 
histograms and spatiograms (or otherwise called spatial histograms) and how obtain-
ing a spatiograms form a given image.  

For a given discrete function ݂: ݔ ՜ ݔ where ,ݒ א ܺ and ݒ א ܸ, a histogram of f 
counts the number of occurrences for each element in the range of f. In particular, the 
histogram is ݄௙: ݒ ՜ ݒ where ,כܼ א ܸ and ܼכ is the set of positive integers, and ݄௙ሺݒሻis 
the number of elements ݔ א ܺ such that ݂ሺݔሻ ൌ  The histogram ݄௙ can also be seen .ݒ
as a binary function ݃௙ሺݔ, ,ݔሻ, where ݃௙ሺݒ ሻݒ ൌ 1 if ݂ሺݔሻ ൌ ,ݔand ݃௙ሺ ݒ ሻݒ ൌ 0 other-
wise. The moment of zero order of g on the dimension v is: ݄௙ሺݒሻ ൌ ෍ ݃௙ሺݔ, ௑אሻ                                                        ሺ6ሻ௫ݒ  

Limbus  ࡵሶ ሺ࣋૛,  ሻࣂ

Pupil       ࡵሶሺ࣋૚,  ሻࣂ
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Histograms suit segmentation issue, and in this specific case the segmentation of the 
iris, because they ignore the information about the domain. This leads to an alternative 
representation that is invariant for one by one transformations of domain of the original 
function. A limited amount of information regarding the domain, can be extrapolated by 
means of higher order moments to the binary function g, where the i-th order moment is 
given by: ݄௙ሺ௜ሻሺݒሻ ൌ ෍ ,ݔ௜݃௙ሺݔ ௑אሻ௫ݒ                                                         ሺ7ሻ 

This is defined as spatial histogram or simply spatiograms, because it captures the 
occurrences of information relating to the range of the function, as a common histo-
gram does, but it also contains information related to the spatial domain. We define 
the k-th order spatiogram as a tuple containing all the moments up to k: ݄ۃ௙ሺ௢ሻሺݒሻ, … , ݄௙ሺ௞ሻሺݒሻۄ                                                               ሺ8ሻ 

In other terms, an histogram is only the zero-order moment of a spatiogram. As for 
histograms, the spatiograms efficiently calculate the differences between the corre-
spondences of the images. Being more specific models, spatiograms retain information 
about the geometry of the region of image. In fact, they can be also seen as a geometric 
model that allows arbitrary transformations such as: translation, similarity, etc.  

Differently from a simple co-occurrences comparison between arrays, spatiograms 
capture the global position of the pixels instead of the relation between their pairs. To 
understand how the comparison between two spatiograms works, let consider an im-
age is a two-dimensional map ܫ: ݔ ՜  of pixel x = [x, y]T with v values. The pixel ݒ
value may tipically represent an arbitrary value such as gray tones, colors, or the re-
sult of a preprocessing (quantization, the color transformation of the space, etc..). The 
second order spatiogram of the image can be represented as: ݄ூሺଶሻሺܾሻ ൌ ,௕݊ۃ  ,௕ߤ Σ௕ۄ     ܾ ൌ 1, … ,  ሺ9ሻ                                                 ܤ

Where nb is the number of pixels whose values are represented by the b-th bin, μb 
is the mean vector and Σb are the covariance matrices. B = | V | is the number of bins 
in the spatiogram. Once defined the entities above, we are ready to define the similari-
ty between two spatiograms h and h’ as the weighted sum of the similarities between 
two histograms: 

,ሺ݄ߩ ݄Ԣሻ ൌ ෍ ߰௕ߩ௡ሺ݊௕݊௕ᇱ ሻ஻
௕ୀଵ                                                      ሺ10ሻ 

For a zero-order spatiogram ψb = 1. For a second order spatiogram, ψb can be seen 
as the probability that xb is calculated by a Gaussian distribution described by multi-
plying the probability in the reverse direction: ߰௕ ൌ ݌ݔ݁ ߟ ൜െ 12 ሺߤ௕െߤ௕ᇱ ሻ்Σ෠௕ି ଵሺߤ௕ െ ௕ᇱߤ ሻൠ                                           ሺ11ሻ 

Where η is the normalization constant Gaussian and Σ෠௕ି ଵ ൌ ሺΣ෠௕ି ଵ ൅ ሺΣ෠௕ᇱ ሻିଵ is a co-
variance matrix. It should be noted that the values of the summation are the average of 
the two Mahalanobis distances, one between x and x' and the other between x' and x. 
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3 Experiments 
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Table 1. Average timing for iris detection and/or recognition on a Samsung S4 smartphone 
under Android rel 4.3. The timing is measured with regard to iris detection /segmentation and 
iris recognition, while total time is simply the sum of these two contributes. 

GS4 

Front Camera 

1920x1080 

Detection 1774,8 ms 

Recognition 8,6 ms 

Total time 1783,4 ms 

GS4 

Rear Camera 

4128x2322 

Detection 4181,33 ms 

Recognition 9,67 ms 

Total time 4191 ms 

 
On a final note, we measured the average timing required for iris detection and 

recognition on a recent high-end smartphone, Samsung’s S4 running Android rel. 4.3 
(see Table 1). We measured these timing in case the acquisition is performed with 
either the front camera (featuring a Full-HD capture resolution of 1920x1080 pixels) 
or the rear camera (capable of 4128x2322 pixels), as the image size directly affects 
the computing time (and particularly the time required to segment the iris). Overall 
we can confirm that the smartphone version of the spatiograms based recognition 
algorithms is fast enough to make iris recognition a viable option in a mobile applica-
tion scenario. 

4 Conclusions and Future Works 

In this paper, we presented an iris recognition algorithm that exploits spatiograms for 
feature matching. This approach applied to probes and gallery selected from public iris 
datasets UPOL and UBIRIS, provided a good performance in terms of both ROC and 
CMS curves, also featuring an average computing time for one-to-one comparison 
around 10ms on last generation multicore smartphones, such as Samsung’s S4. These 
preliminary experiments suggest that the usage of iris biometric on smartphones and 
mobile devices is practically feasible in general. For this reason, we plan to perform an 
extensive experimentation involving subjects’ enrollment and probes acquisition by 
means of built-in front and rear cameras of most advanced mobile devices. The main 
aim is to test the algorithm’s robustness in uncontrolled environmental conditions and 
to evaluate its behavior in a real world scenario, though an extensive testing on a wider 
range of devices and acquisition condition is necessary to fully assert the feasibility of 
our approach. 
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Abstract. Fusion biometric modal contributes in two aspects. It can not only 
improve the biometric recognition accuracy, but also gives a comparatively safe 
strategy, since it is difficult for intruders to achieve multi-biometric information 
simultaneously, especially the iris information. The contourlet transform is a 
new two-dimensional extension of the wavelet transform using multiscale and 
directional filter banks. The contourlet expansion is composed of basis images 
oriented at various directions in multiple scales, with flexible aspect ratios. In 
this paper, by using Contourlet transform, we extract the features of retina and 
iris, and fuse them at feature level and utilize Hamming distance for matching 
purpose to provide a higher accuracy than unimodal system. The experimental 
results show that our biometric system based on the integration of retina and iris 
traits achieve an EER= 0.0413%. 

Keywords: Multimodal Biometric System · Feature Fusion Level · Contourlet 
Transform · Retina Recognition · Iris Recognition 

1 Introduction 

Biometric-based recognition systems represent a valid alternative to conventional 
approaches. Traditionally biometric systems, operating on a single biometric feature, 
have many limitations, which are as follows [1]. 

1) Trouble with data sensors: Captured sensor data are often affected by noise due 
to the environmental conditions (insufficient light, powder, etc.) or due to user phys-
iological and physical conditions (cold, cut fingers, etc). 

2) Distinctiveness ability: Not all biometric features have the same distinctiveness 
degree (for example, hand geometry- based biometric systems are less selective than 
the fingerprint-based ones). 

3) Lack of universality: All biometric features are universal, but due to the wide 
variety and complexity of the human body, not everyone is endowed with the same 
physical features and might not contain all the biometric features, which a system 
might allow. 

The multimodal biometric systems are a recent approach developed to overcome 
these problems. These systems demonstrate significant improvements over unimodal 



76 M. Modarresi and I.S. Oveisi 

 

biometric systems, in terms of higher accuracy and high resistance to spoofing. Multi-
modal biometric systems address the shortcomings of unimodal systems.  

The contourlet transform is a new two-dimensional extension of the wavelet trans-
form using multiscale and directional filter banks. The contourlet expansion is com-
posed of basis images oriented at various directions in multiple scales, with flexible 
aspect ratios. Given this rich set of basis images, the contourlet transform effectively 
captures smooth contours that are the dominant feature in natural images. There have 
been several other developments of directional wavelet systems in recent years with 
the same goal, namely a better analysis and an optimal representation of directional 
features of signals in higher dimensions.  

At the feature level fusion, the information extracted from sensors of different mo-
dalities is stored in vectors on the basis of their modality. These feature vectors are 
then combined to create a joint feature vector, which is the basis for the matching and 
recognition process. Since the feature set contains richer information about the raw 
biometric data than the match score or the final decision, integration at this level is 
expected to provide better recognition results.  In this paper, a feature level fusion 
algorithm resulting in a unified biometric descriptor and integrating retina and iris 
features for personal identification is presented. Successively, the Hamming Distance 
(HD) between two vectors is used to matching purpose to provide a higher accuracy 
than unimodal system.  

The rest of this paper is structured as follows: Section 2 deals with Related Works. 
Section 3 deals with Proposed Multimodal Biometric System. Section 4 deals with 
Retina Preprocessing. Section 5 deals with Iris Preprocessing. Section 6 deals  
with Contourlet Transform. Section 7 deals with Feature Extraction. Section 8 deals 
with Fusion feature vector construction via combination of the retina and iris vector. 
Section 9 deals with Hamming Distance Based Matching. Section 10 deals with Ex-
perimental Results. Section 11 deals with Conclusion and Future Work. 

2 Related Works 

Multimodal biometric recognition system is the approach of using multiple biometric 
traits from a single user in an effort to improve the result of recognition process and to 
reduce error rates. Many researchers have demonstrated that the fusion process is 
effective, because fused scores provide much better discrimination than individual 
scores. Geetika et al. [2] develop Multimodal based fuzzy vault using iris retina and 
fingervein by fusion of extracted feature points (end points and bifurcations points 
from three biometric traits). Their method measures the security of the resultant vault 
by using min-entropy. 

Some multimodal biometric fusion approaches include of iris: Wang et al. [3] 
adopt an efficient feature-level fusion scheme for iris and face in series, and normal-
izes the original features of iris and face using z-score model to eliminate the unbal-
ance in the order of magnitude and the distribution between two different kinds of 
feature vectors, and then connect the normalized feature vectors in serial rule, which 
has proved to be effective. Besbes et al. [4] proposed a multimodal biometric system 
using fingerprint and iris features. They use a hybrid approach based on: 1) finger-
print minutiae extraction and 2) iris template encoding through a mathematical  
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representation of the extracted iris region. This approach is based on two recognition 
modalities and every part provides its own decision. The final decision is taken by 
considering the unimodal decision through an “AND” operator. Meraoumia et al. [5] 
develop the multimodal biometric identification system based on palmprint and iris. 
They used (Unconstrained) minimum average correlation energy filter method for 
fusion at matching score level.  

3 Proposed Multimodal Biometric System 

Most of the problems and limitations of biometrics are imposed by unimodal bio-
metric systems, which rely on the evidence of only a single biometric trait. Some of 
these problems may be overcome by multi-biometric systems and an efficient fusion 
scheme to combine the information presented in multiple biometric traits. In this pa-
per, a multimodal biometric system on feature fusion level, based on retina and iris 
characteristics, is proposed. The following framework explains the workflow of the 
system in fig. 1. 
 

 

Fig. 1. Workflow of the proposed system 

4 Retina Preprocessing 

4.1 Retina Anatomy 

The retina provides a higher level of security for recognition due to uniqueness and 
the stability of the blood vessel pattern during one's life. Fig.2 (a) shows a side view 
of the eye. A ray of light, after passing through the cornea, which partially focuses the 
image, passes through the anterior chamber, the pupil, and the lens, which focuses the 
image further, the vitreous and is then focused on the retina [6]. The retina is approx-
imately 0.5mm thick and covers the inner side at the back of the eye. In the center of 
the retina is the optical nerve or optical disk (OD), a circular to oval white area meas-
uring about 2×1.5mm across (about 1/30 of retina diameter). Blood vessels are con-
tinuous patterns with little curvature, branch from OD and have tree shape on the 
surface of retina (Fig. 2(b)). The mean diameter of the vessels is about 250μm (1/40 
of retina diameter) [6]. 

Iris 
Pre- 

processing 
Contourlet 
Transform 

Feature 
Extraction 

Retina 
Pre- 

processing 
Contourlet 
Transform 

Feature 
Extraction 

Feature 
Fusion 

Recognition/ 
Decision Matching 

Stored 
Fused 

Features 



78 M. Modarresi and I.S. Oveisi 

 

                  

                                  (a)                                                                             (b)  

Fig. 2. (a) Side view of the eye  (b) Sample retina image   

4.2 Rotation Compensation Using Radial Tchebichef Moments 

One of the most important problems in using retinal images for recognition is rotating 
the eye in front of the fundus camera that resultant to make two images from one 
person maybe not the same. To overcome this deficiency, a method based on the  
Radial Tchebichef moments is used to estimate the rotation angle of head or eye 
movement. Tchebichef moments were first introduced by Mukundan et al. [7]. They 
adopted the discrete orthogonal Tchebichef polynomials in order to derive a set of 
orthogonal moments. For a given positive integer N, the Tchebichef polynomial is 
given by the following recurrence relation [7]: 

 (1)
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The moments defined in Equation (4) are not rotation invariant. Therefore, a rota-
tion invariant method based on the Radial Tchebichef Moments is used to estimate the 
rotation angle of head or eye movement [8]. The basic functions of Radial-Tchebichef 
moments are products of one-dimensional Tchebichef polynomials in radial distance r 
and circular functions of the angle  ߠ. For a given image of size, we require a discrete 
domain for these functions. The most appropriate mathematical structure for compu-
ting radial Tchebichef moments is a set of discrete concentric rings, where each ring 
represents a fixed integer value of radial distance r from the center of the image. In 
this method, the angle of rotation, ߙ , is estimated using the relationship between the 
rotated and non-rotated radial Tchebichef moments [8]. If we denote the image inten-
sity value at location (r, θ) by f(r, θ), then the radial Tchebichef moments of the non-
rotated image, ܵ௣௤, of order p and repetition q are given by: 

                              
(6) 

where n denotes maximum number of pixels along the circumference of the circle, 
and m denotes the number of samples in the radial direction and the radial distance is 
defined in the range of r = 0, 1, …,           (N/2)−1. The angle θ is a real quantity 
measured in radians and varies from 0 to 2ߨ and calculated by: 
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Radial Tchebichef moments of the rotated image with angle, ߠ௥ ൌ ߠ ൅ -are giv , ߙ
en by: 
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If an image is rotated about the origin (r = 0) by an angle ߙ, and if the intensity values 
are preserved during rotation, then the moments ܵ௣௤ should ideally get transformed to  ܵ௣௤௥  , where ߙ is computed by: 

 . jqr
p q p q eS S α−=                               (9) 

In the above equation, both r and θ take integer values. The mapping between (r, θ) 
and image coordinates x, y is given by: 
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(10) 

Fig. 3(a) shows the typical rotated retinal image, Fig. 3(b) shows the Discrete Pixel 
Sampling of radial Tchebichef Moments in Polar Form and Fig.3(c) shows the rota-
tion compensation retinal image. 
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                                        (a)                               (b)                                 (c) 

Fig. 3. (a) A typical rotated retinal image, (b) The discrete pixel sampling of Radial Tchebichef 
Moments in polar form, (c) Rotation compensation retinal image of (a) 

5 Iris Preprocessing 

The colored part of the eye is called the iris.  It controls light levels inside the eye 
similar to the aperture on a camera. The round opening in the center of the iris is 
called the pupil. The iris is embedded with tiny muscles that dilate (widen) and con-
strict (narrow) the pupil size. The iris is flat and divides the front of the eye (anterior 
chamber) from the back of the eye (posterior chamber). Its color comes from micro-
scopic pigment cells called melanin. The color, texture, and patterns of each person's 
iris are as unique as a fingerprint. A frontal view of the human eye is shown in Fig. 4 
A very important characteristic of an iris is that it’s a naturally protected organ and is 
stable without any variations including effects of an individual aging [9]. 

 
Fig. 4. A frontal view of the human eye 

In this paper, the median filter is used to remove specular reflections from iris im-
age, the canny Edge Detection and Hough Transform is adopted to estimate the iris 
boundary, then the Daugman's Rubber Sheet Model is used to normalize the iris im-
age, and finally the Contourlet Transform is employed to extract the iris feature.  

5.1 Reflection Removal from Iris Image 

In order to remove specular reflections from iris image, we used the median filter. A 
median filter is a kernel based, convolution filter which blurs an image by setting a pixel 
value to the median of itself with its neighbors. For implement, we consult Perreault's 
paper [10], which describes an algorithm to create a median filter in linear time. The 
process (see algorithm 1) involves constructing individual column histograms and com-
bining them to form histograms centered around a pixel, known as a kernel histogram. 
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The significant speed increase comes from the way in which the column histo-
grams are updated and combined. For each pixel we remove an old column histogram 
from the kernel, shift a new column histogram down one pixel so it is centered on the 
required row and then add this new histogram to the kernel histogram. While this 
radically reduces the number of operations which need to be performed for each pixel, 
there is an initialization step for each row which has runtime linear in the size of the 
kernel histogram. This enabled the entire median filter to be applied in a matter of 
milliseconds. 

 

 
                                           (a)                                       (b) 

Fig. 5. Iris image preprocessing by median filter. (a) Before reflection removal (b) After reflec-
tion removal. 

 
Algorithm 1. Median filtering algorithm as proposed  
 
Input: Image X of size ݉ ൈ ݊, kernel radius r. 
Output: Image Y of size ݉ ൈ ݊. 
Initialize each column histogram ݄଴, … , ݄௡ିଵ as if centered on row -1. 
for i = 1 to m do 
      Shift the first r column histograms ݄଴, … , ݄௥ିଵ down 1 pixel. 
      Combine these r column histograms to form the kernel histogram H. 
      for j = 1 to n do 
      Set pixel ௜ܻ,௝ equal to the median of H. 
      Shift column histogram ௝݄ା௥  down 1 pixel. 
      Remove column histogram ௝݄ି௥ିଵ. 
     Add column histogram ௝݄ା௥. 
      end for 
end for 
 

5.2 Circular Boundaries and Parameters Estimation 

Due to the significant feature of handling spurious noisy images of canny operator, 
canny edge detection algorithm is used to generate the edge map of the iris image 
here. As pupil is a black circular region, it is easy to detect the pupil inside an eye 
image. Firstly, pupil is detected using thresholding operation. An appropriate thresh-
old is selected to generate the binary image which contains pupil only. Morphological 
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operator is applied to the binary image to remove the reflection inside the pupil region 
and other dark spots caused by eyelashes. Figure 6(b) shows the binary image after 
thresholding and morphological operator. 

 
                                          (a)                          (b)                         (c)    

Fig. 6. (a) Original eye image (b) Binary image after thresholding and morphological operator 
(c) Pupil localization 

Since the inner boundary of an iris can be approximately modeled as circles, circu-
lar Hough transform is used to localize the iris [11]. Fig 6(c) shows the iris localiza-
tion by using Hough Transform. 

5.3 Eyelid Detection 

Two search regions were selected for the purpose of upper and lower eyelids detec-
tion. The search regions are confined within the pupil and area of the iris. 

Width of search region = radius of iris - radius of pupil 

The width of search region was 24 for CASIA database and upper and lower search 
region labeled as shown in Fig. 7. A horizontal edge map was used to find an eye 
image as eyelid part is present in upper or lower horizontal region. At each edge point 
within the search regions, a parabolic Hough transformation was applied for eyelids 
detection. 

 

 
Fig. 7. Eyelids detection on CASIA database 

5.4 Eyelash Segmentation 

Two classes of eyelashes are defined in eyelash detection model, separable and multi-
ple eyelashes [12]. Separable eyelashes are defined as the eyelashes that can be dis-
tinguished from other eyelashes and multiple eyelashes are the eyelashes that overlap 
in a small area.  
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5.4.1 Separable Eyelashes 
By the definition of separable eyelashes, they can be distinguished from other eye-
lashes; thus, the pixels around separable eyelash should not belong to other eyelashes. 
In fact, most of pixels around separable eyelashes are iris pixels. Because of the inten-
sity difference between iris pixels and eyelashes pixels, a separable eyelash can be 
regarded as an edge in an image.  Based on this property, a real part of Gabor filter is 
proposed to detect separable eyelashes, which, in the spatial domain has the following 
general form, ܩሺݔ, ,ݑ ሻߪ ൌ exp ቄ ௫మଶఙమቅ cos ሺ2ݔݑߨሻ                                   (11) 

where u is the frequency of the sinusoidal wave and ߪ  is the standard derivation of 
the Gaussian envelope. The resultant values are small when a separable eyelash con-
volutes with the filter. In fact, the filter serves as an edge detector. If a resultant value 
of a point is smaller than a threshold, it is noted that this point belongs to an eyelash. 
Mathematically, it can be represented by: ݂ሺݔሻ כ ,ݒሺܩ ,ݑ ሻߪ ൏  ଵ                                            (12)ܭ

where ܭଵ is a pre-defined threshold that is -45 using in the following experiments and 
“ *” represents an operator of convolution. 

5.4.2 Multiple Eyelashes 
For multiple eyelashes, many eyelashes overlap in a small area, which results in less 
intensity variation in this area. Thus, for detecting multiple eyelashes, if the variance 
of intensity in the area is less than a threshold, the center of the window is noted as a 
pixel of eyelash. It can be described by: 

where M is the mean of intensity in the small window; ሺ2ܰ ൅ 1ሻଶ is the window size 
and ܭଶ is a threshold. In the following experiments, ܭଶ is defined as 6 and ሺ2ܰ ൅ 1ሻଶ 
as 5×5. 

5.5 ROI Normalization and Enhancement 

Normalization of the iris image involves unwrapping the iris and converting it into its 
polar equivalent. Here we use the Daugman's Rubber Sheet Model to achieve this 
goal [13]. Fig. 8(a) depicts the polar coordinate system for segmented iris image and 
the corresponding linearized visualization. For each Cartesian point of the segmented 
iris, image is assigned a polar coordinates pair (r, θ), with ݎ א ሾܴଵ, ܴଶሿ and ߠ -ሿ, where ܴଵ is the pupil radius and ܴଶ is the iris radius. In fig. 8(b) the normalߨሾ0,2א
ized iris image is shown. 
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    (a)                                                                     (b) 

Fig. 8. (a) Polar coordinate system for an iris ROI and the corresponding linearized visualiza-
tion. (b) Normalized Image. 

In feature extraction process of the Retina and iris image, here we use the 
Contourlet Transform. 

6 Contourlet Transform 

Contourlet transform, developed by Do and Vetterli [14] provides a flexible image 
multi resolution presentation. Compared with wavelet and curvelet, contourlet repre-
sents richer directions and shapes while 2D wavelet transform can only capture in-
formation in horizontal, vertical and diagonal directions. Besides, contourlet trans-
form performs better in depicting the geometrical structure of images. After 
contourlet transform, the low frequency sub-images gather most energy and conse-
quently they suffer little impact caused by regular image processing. The resulting 
transform has the multiscale and time-frequency-localization properties of wavelets, 
but also offers a high degree of directionality and anisotropy. 

Laplacian pyramid (LP) is used to perform a multi-resolution decomposition over 
the image to capture the singular points. Fig. 9 shows a multiscale and directional 
decomposition using a combination of a Laplacian pyramid (LP) and a directional 
filter bank (DFB). 

 

Fig. 9. The contourlet filter bank: first, a multiscale decomposition into octave bands by the 
Laplacian pyramid is computed, and then a directional filter bank is applied to each bandpass 
channel 
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It is simple with low computational complexity due to its single filtering channel 
and has higher dimension. LP is a multiscale decomposition of the ܮଶሺܴଶሻ space in to 
a series of increasing resolution:  

0

2 2

0

( ) ( )j j

w

j j
WVL R

=
= ⊕ 

                                            
(14) 

where 
0jV  is the approximation at scale 2௝ and multi resolution ௝ܹ contains the add-

ed detail to the finer scale 2௝ିଵ . By using L appropriate low pass filters, L low pass 
approximations of the image are created. The difference between each approximation 
and its subsequent down sampled lowpass version is a bandpass image. The result is a 
Laplacian pyramid with L+1 equal size levels; one coarse image approximation and L 
bandpass images. The original DFB is efficiently implemented via j-level binary tree 
leading to  2௝  subbands with wedge-shaped frequency partitioning where j is the 
level of the directional filter. Fig. 10 depicts subsequent contourlet decomposition on 
a retina sub-image. For clear visualization, each image is only decomposed into three 
pyramidal levels, which are then decomposed into 4, 8 and 16 directional subbands. 
By performing the contourlet transform on the retina (and iris) we acquire diverse 
subbands, each one of these subbands interprets the characteristics of the image in 
particular direction. 

 

 

Fig. 10. Contourlet transform of the retinal image. The image is decomposed into three pyrami-
dal levels. 

7 Feature Extraction  

Due to the iterated lowpass filtering the most relevant texture information has been 
separated, thus the retina and iris texture information is mainly contained in the direc-
tional subbands of each scale. As a result, the lowpass image is not taken into consid-
eration when calculating the texture feature vector. A set of statistical texture features 
proposed in literature are evaluated in this study. This set is presented in Table 1. 
Mean energy, Standard deviation, Information entropy, Contrast and Homogeneity 
has been utilized for the contourlet domain in [15]. 
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Table 1. List of the statistical measures used. ܫ௝௞ is the subband image of the kth direction in 
the jth level. ܯ௝௞ is the row size and ௝ܰ௞ the column size of the subband image ܫ௝௞. 
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The feature vector of the subband image of the kth direction in the jth level is  

defined as: 

, , , , }{jk jk jk jk jk jkME SD IE CO HOf =    
                     (22) 

A contourlet transform decomposition is referred as being J level when the retina and 
iris image is decomposed using a J level laplacian pyramid decomposition with a ܭ௝ 
subband DFB applied at the jth level, ( j = 1,2,…,J ). For a J level contourlet trans-
form, the total number of directional subbands ܭ௧௢௧௔௟  is calculated as: 
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(23) 

After calculating the feature vector of each subband image, these vectors are rearranged 

and combined to form the complete feature vector , , , , }{ i i i i iF M E S D IE C O H O=    

, i = 1, 2,…, ܭ௧௢௧௔௟ , of the input image as shown on:  

1 1 1 1 1,..., , ,..., , ,..., , ,..., , ,..., }{
total total total total totalK K K K KME ME SD SD IE IE CO CO HO HOF=     

      (24) 
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Where ܧܯ௜ , ܥ , ௜ܧܫ, ௜ܦܵ ௜ܱ and ܪ ௜ܱ  refer to the respective statistical measure of the 
ith directional subband of the contourlet transform decomposition. At this feature 
vector, the number of elements increases exponentially with the level of DFB decom-
position. Final feature vector, content of retina and iris features, is normalized be-
tween [0, 1]. 

8 Fusion Feature Vector Construction via Combination of the 
Retina and Iris Vector 

In this paper, we used 3th level decomposition for retina and 2th level decomposition 
for iris images. After extracting the retina and iris features via Contourlet transform, 
we can get a m dimensional feature ܨ௥௘௧௜௡௔ and n dimensional feature ܨ௜௥௜௦ respective-
ly, where ܨ௥௘௧௜௡௔ ൌ ሼܨ௥భ, ,௥మܨ … , ௜௥௜௦ܨ ,௥೘ሽܨ ൌ ሼܨ௜భ, ,௜మܨ … , -௜೙ሽ, then the min-max reguܨ
larization principle is adopted to normalize the feature vector [16], thus the following 
equation can be acquired: 

௥௘௧௜௡௔ᇱܨ  ൌ ௥௘௧௜௡௔ܨ െ minሺܨ௥௘௧௜௡௔ሻmaxሺܨ௥௘௧௜௡௔ሻ െ minሺܨ௥௘௧௜௡௔ሻ                                  ሺ25ሻ 

௜௥௜௦ᇱܨ  ൌ ௜௥௜௦ܨ െ min ሺܨ௜௥௜௦ሻmaxሺܨ௜௥௜௦ሻ െ min ሺܨ௜௥௜௦ሻ                                             ሺ26ሻ 

 
Finally, the new fusion vector can be acquired via the weighted concatenated way by 
the following equation: 

ܨ    ൌ ௥௘௧௜௡௔ᇱܨ ߙ ൅ ௜௥௜௦ᇱܨ ߚ                                            (27) 

where ߙ and ߚ is the weight value of retina and iris feature while maintaining ߙ ൅ ߚ ൌ 1. The fusion feature F in equation (27) will be the final multimodal feature 
adopted in the following recognition process. 

9 Hamming Distance Based Matching 

Comparing the feature vectors ௝ܺ and ௝ܻ, the Hamming distance is defined as: 

ܦܪ ൌ 1ܰ ෍ ܱܴܺሺ ௝ܺ, ௝ܻሻே
௝ୀଵ                                                          ሺ28ሻ 

where ௝ܺ is jth component of the sample feature vector, ௝ܻ  is jth component of tem-
plate feature vector and N is the dimension of input feature vector. If the result of the 
XOR is zero, it means that the jth component of sample feature vector and template 
feature vector are the same. 
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10 Experimental Results 

In this paper, we use DRIVE database for retina images and CASIA database for iris 
images in order to evaluate the performance of the proposed algorithm. 40 images from 
DRIVE (565 × 584 pixels) [17] was selected and then rotated randomly each image 10 
times to obtain 400 images. Also 400 images from CASIA (320 × 280 pixels) [18] (100 
unique eyes, each eye has 4 images) were selected randomly to perform our experiments. 
Fig. 11 shows some examples of retina and iris images in our experiments.  

 

 
Fig. 11. Some example of DRIVE (top row) and CASIA images (down row) in our experiments 

 
                                     (a)                                                                     (b) 

 
(c) 

Fig. 12. FAR and FRR curves for proposed system with each EER. (a) In retina database (b) In 
iris database (c) In multimodal retina and iris database. 
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In order to better check the validity of proposed system, we used false acceptance 
rate (FAR), false rejection rate (FRR) and equal error rate (EER). Fig.12 (a) shows the 
FAR vs. FRR from bimodal retina database. In Fig.12 (b) show the FAR vs. FRR 
from bimodal iris database. Fig.12 (c) shows the FAR vs. FRR from multimodal reti-
na and iris database. All EERs are taken in bottom of each figure, so that shown the 
EER in multimodal retina and iris database is better than in comparison of each bi-
modal database. 

In order to better performance test of our proposed method, we test method based 
on contourlet transform in comparison of Haar wavelet transform. In our experiment, 
wavelet was decomposition in 5-th level and the contourlet was decomposition in 3-th 
level and the typical ROC curves of the experiment results are shown in Fig. 13. 
Therefore, it can be seen that the properties of the coarse coefficients of contourlet are 
very good in comparison of wavelet, and obtain higher recognition rate. 

 
Fig. 13. ROC curves for comparison of contourlet and wavelet transform 

Also for finding the better matching, we applied other matching algorithms based 
on Euclidean Distance and Manhattan distance. Table 2 shows the results of matching 
algorithms in our proposed method. 

Table 2. Feature Matching Type 

Feature Matching Type EER 
Hamming distance 0.0413 
Euclidian Distance 0.0723 
Manhattan distance 0.1162 

11 Conclusion and Future Work 

Biometric systems are widely used to overcome the traditional methods of authentica-
tion. But the unimodal biometric system fails in case of biometric data for particular 
trait. A feature level fusion scheme to improve multimodal matching performance has 
been proposed. The scheme has been tested on two relatively biometric systems, reti-
na and iris images. Thus, we have attempt to present new insights by joint of retina 
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and iris images at feature fusion level based on the Contourlet transform. Experiments 
results show that, the proposed multimodal biometric recognition method can achieve 
relatively high performance as compared to unimodal biometrics, thus it could be 
widely used in personal recognition applications in the future. Future work will in-
clude studying the effect of noisy data on the performance of our technique and the 
adoption of other biometric traits in this work. 
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Abstract. The goal of this paper is to review automatic systems for
forensic speaker recognition (FSR) based on scientifically approved meth-
ods for calculation and interpretation of biometric evidence. The objective
of this paper is not to promote one speaker recognition method against
another, but is to make available to the biometric research community
data-driven methodology combining automatic speaker recognition tech-
niques and a rigorous forensic experimental background. Forensic speaker
recognition is the process of determining if a specific individual (suspected
speaker) is the source of a questioned speech recording (trace). This paper
aims at reviewing forensic automatic speaker recognition (FASR) meth-
ods that provide a coherent way of quantifying and presenting recorded
speech as biometric evidence, as well as the assessment of its strength
(likelihood ratio) in the Bayesian interpretation framework compatible
with interpretations in other forensic disciplines. Forensic speaker recog-
nition has proven an effective tool in the fight against crime, yet there is
a constant need for more research due to the difficulties involved because
of the within-speaker (within-source) variability, between-speakers
(between-sources) variability, and differences in recording sessions con-
ditions.

1 Introduction

Fueled by the increasing identity fraud and theft, biometrics constitutes one of
the most fast growing areas in the field of the security and forensic applications.
Forensic speaker recognition (FSR) is a relatively recent combination of biomet-
ric and forensic methods for judicial purposes and particularly law enforcement.

1.1 Biometrics and Forensics

Biometrics is the science of establishing identity of individuals based on their bio-
logical and behavioral characteristics [14]. On the other side, forensics (forensic
science) refers to the applications of scientific principles and technical meth-
ods to the investigation of criminal activities, in order to demonstrate the exis-
tence of a crime, and to determine the identity of its author(s) and their modus
c© Springer International Publishing Switzerland 2014
V. Cantoni et al. (Eds.): BIOMET 2014, LNCS 8897, pp. 93–104, 2014.
DOI: 10.1007/978-3-319-13386-7 8
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operandi [15]. Forensics means the use of science or technology in the investi-
gation and establishment of facts or evidence in the court of law. The role of
forensic practitioner is the provision of information (factual or opinion) to help
answer questions of importance to investigators and to courts of law.

1.2 Forensic Speaker Recognition

Speaker recognition is the general term used to include all of the many different
tasks of discriminating people based on the sound of their voices. In particular,
forensic speaker recognition (FSR) is the process of determining if a specific indi-
vidual (suspected speaker) is the source of a questioned voice recording (trace).
This process involves the comparison of recordings of an unknown voice (ques-
tioned recording) with one or more recordings of a known voice (voice of the
suspected speaker) [23].

There are several types of forensic speaker recognition [24]. When the recog-
nition employs any trained skill or any technologically-supported procedure, the
term technical forensic speaker recognition is often used. In contrast to this,
so-called näıve forensic speaker recognition refers to the application of everyday
abilities of people to recognize familiar voices.

The approaches commonly used for technical forensic speaker recognition
include the aural-perceptual, auditory-instrumental, and automatic methods [24].
Aural-perceptual methods, based on human auditory perception, rely on the care-
ful listening of recordings by trained phoneticians, where the perceived differences
in the speech samples are used to estimate the extent of similarity between voices
[19]. The use of aural-spectrographic speaker recognition can be considered as
another method in this approach. The exclusively visual comparison of spectro-
grams in what has been called the voiceprint approach has come under consider-
able criticism in the recent years [4]. The auditory-instrumental methods involve
the acoustic measurements of various parameters such as the average fundamen-
tal frequency, articulation rate, formant centre-frequencies, etc. [18,23,24]. The
means and variances of these parameters are compared. In forensic automatic
speaker recognition (FASR), the deterministic or statistical models of acoustic
features of the suspected speakers voice and the acoustic features of questioned
recordings are compared [10,16].

1.3 Forensic Automatic Speaker Recognition (FASR)

Forensic automatic speaker recognition (FASR) is an established term used when
automatic speaker recognition methods are adapted to forensic applications [7].
Generally, automatic speaker recognition can be classified into two main meth-
ods: speaker verification and speaker identification. Recently, an investigation
concerning the inference of identity in forensic speaker recognition has shown
the inadequacy of the speaker verification and speaker identification (in closed
set and in open set) techniques for forensic applications [5]. Speaker verification
and identification are the two main automatic techniques of speech recognition
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used in security applications. When they are used for forensic speaker recogni-
tion they imply a final discrimination decision based on a threshold. Speaker
verification is the task of deciding, given a sample of speech, whether a specified
speaker is the source of it. Speaker identification is the task of deciding, given a
sample of speech, who among many speakers is the source of it. Therefore, these
techniques are clearly inadequate for forensic purposes, because they force the
forensic expert to make decisions which are devolved upon the court.

The forensic experts role is to testify to the worth of the evidence by using, if
possible a quantitative measure of this worth [1,7]. It is up to the judge and/or
the jury use the testimony as an aid to the deliberations and decisions. Therefore,
forensic automatic speaker recognition (FASR) methods should be developed
on the basis of current state-of-the-art interpretation of forensic evidence, the
concept of identity used in criminalistics, a clear understanding of the inferential
process of identity and the respective duties of those involved in the judicial
process. The forensic expert should base his opinion upon the four principles of
balance, logic, robustness and transparency [3]:

– Balance: the expert should address at least two competing propositions
(adversary system).

– Logic: the expert should address the probability of the evidence given the
proposition and relevant background information and not the probability of
the proposition given the evidence and background information.

– Robustness: the expert should provide opinion that is capable of scrutiny by
other experts and cross-examination.

– Transparency: the expert should be able to demonstrate how he came to his
conclusion in way that is suitable for a wide audience (i.e. participants in
the justice system).

Results of FASR based case assessment and interpretation may be of piv-
otal importance at any stage of the course of justice, be it the very first police
investigation or a court trial. In the forensic evaluative mode for a court trial,
an opinion of evidential weight, based upon case specific propositions (hypothe-
ses) and clear conditioning information (framework of circumstances) should be
provided for use as evidence in court [13]. If there are two, mutually exclusive,
competing propositions, exhaustive in the framework of circumstances of the
case, then the odds form of Bayes’ theorem can be used. The evaluative opinion
of the forensic expert should be based around an assessment of a likelihood ratio
(strength of evidence) of the observations given specific individual propositions
(hypotheses) for the scientific findings. Consequently, three measures should be
provided:

– First Measure: Biometric Evidence,
– Second Measure: Strength of Evidence,
– Third Measure: Evaluation of the Strength of Evidence.

Forensic automatic speaker recognition (FASR) offers data-driven biometric
methodology for quantitative interpretation of recorded speech as evidence [9].
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Commonly, in FASR the distribution of various features extracted from a sus-
pect’s speech is compared with the distribution of the same features in a refer-
ence population with respect to the questioned recording. The goal is to infer
the identity of a source [1], since it cannot be known with certainty.

The paper is structured as follows. Section 2 highlights the meaning of bio-
metric evidence in the forensic speech recognition. In Section 3 a general Bayesian
framework for interpretation of the biometric evidence of speech is introduced.
Section 4 presents evaluation of the strength of evidence using the Bayesian
interpretation method. Section 5 concludes the paper.

2 Biometric Evidence in Forensic Automatic Speaker
Recognition

The major scientific and technological aspect in the domain of forensic automatic
speaker recognition (FASR) is that there is a critical need for developing forensic
speaker recognition methods in the light of current state-of-the-art technology
related to the interpretation of forensic evidence [1,6,18]. This approach needs
biometric methods for recognition of individuals based on their biological and
behavioural characteristics, as a common practice [14].

In one of such methods, univariate (scoring) method, the biometric evidence
consists of the quantified degree of similarity between speaker-dependent features
extracted from the trace and speaker-dependent features extracted from recorded
speech of a suspect, represented by his or her model [2,10].

Feature  
extraction 

Comparative  
analysis 

Modeling of  
suspected speaker  
features 

Similarity  
score 

Feature  
extraction 

Suspected speaker  
reference database (R) 

Questioned recording  
(Trace) 

Suspected speaker model 

Evidence (E) 

Training 

Testing 

Fig. 1. Processing chain for calculating biometric speech evidence [10]

In another method, multivariate (direct) method, multivariate trace evidence
is represented by the ensemble of features extracted from the questioned record-
ing (trace) [2]. In both cases, the calculated evidence does not allow the forensic
expert alone to make an inference on the identity of the speaker.
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Fig. 2. General processing chain of feature extraction, comparative analysis and esti-
mation of biometric evidence for univariate (scoring) method with deterministic or
statistical models of automatic speaker recognition

The interpretation of recorded speech as biometric evidence in the forensic
context presents particular challenges, including within-speaker (within-source)
variability, between-speakers (between-sources) variability, and differences in
recording session conditions.

Consequently, FASR methods must provide a probabilistic evaluation which
gives the court an indication of the strength of the evidence given the estimated
within-source, between-sources and between-session variabilities, and this eval-
uation should be compatible with other interpretations in other forensic disci-
plines [17,20,22]. The Bayesian interpretation framework, using a likelihood ratio
concept, offers such interoperability. At a high level of abstraction, Bayesian data
analysis is extremely simple, following the same, basic recipe: via Bayes Rule,
we use the data to update prior beliefs about unknowns [12]. Of course, there is
much to be said on the implementation of this procedure in any specific appli-
cation, in particular FASR.

3 Bayesian Interpretation of Biometric Evidence

The court and investigative bodies are faced with decision-making under uncer-
tainty. In a case involving FASR they want to know how likely it is that the
speech samples of questioned recording have come from the suspected speaker.
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Fig. 3. Processing chain for calculating within-source similarity scores and their dis-
tribution [10]

The answer to this question can be given using the Bayes interpretation frame-
work and a data-driven approach to interpret the evidence [6,22,23].

3.1 Bayesian Interpretation Framework

An interpretation framework, which relies on Bayes theorem becomes more and
more accepted in many fields of forensic science [1,3,22], and has been adapted
to speaker recognition. The preliminary research work done by the two research
teams (EPFL School of Engineering and UNIL (University of Lausanne) School
of Criminal Sciences) proves that a probabilistic model – the Bayes Theorem
– is a useful tool for assisting forensic scientists in the assessment of the value
of scientific evidence, jurists in the interpretation of scientific evidence and for
clarifying the respective roles of forensic scientists and members of the court [10].
Bayes’ theorem offers a practical, robust mechanism for inductive reasoning.
The theorem provides a logical framework to appraise the value of new pieces
of information and to update one’s uncertainty about a questioned event. It is
gaining wide acceptance as a robust approach to forensic science problems and
it is the basis of the Case Assessment and Interpretation (CAI) model [13,15].

The odds form of Bayes theorem shows how new data (questioned record-
ing) can be combined with prior background knowledge (prior odds (province of
the court)) to give posterior odds (province of the court) for judicial outcome
(Eq. 1). It allows for revision based on new information of a measure of uncer-
tainty (likelihood ratio of the evidence E (province of the forensic expert)) which
is applied to the pair of competing hypotheses (propositions), e.g.: H0 - the sus-
pected speaker is the source of the questioned recording, H1 - the speaker at the
origin of the questioned recording is not the suspected speaker [5,11,18]:

p(H0|E)
p(H1|E)

=
p(E|H0)
p(E|H1)

· p(H0)
p(H1)

. (1)
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Fig. 4. Processing chain for calculating between-source similarity scores and their dis-
tribution [10]

3.2 Strength of Speech Evidence

The strength of speech evidence is the result of the interpretation of the bio-
metric evidence, expressed in terms of the likelihood ratio of two alternative
hypotheses LR = p(E|H0)/p(E|H1). This interpretation consists of calculating
the likelihood ratio using the probability density functions (pdfs) of the vari-
abilities and the evidence. The likelihood ratio (LR) summarizes the statement
of the forensic expert in the casework. It gives the degree of support for one
hypothesis against the other. This way it allows the forensic expert to make an
inference on the identity of the suspected speaker.

The value of a likelihood ratio depends critically on the choices one makes for
describing the hypotheses and evidence, which depend on the feature extraction
and speaker modelling processes.

3.3 Deterministic and Statistical Modelling of Speech

Automatic speaker recognition systems can be text-dependent or text-
independent. In forensic applications, a text-independent automatic speaker
recognition system is preferable to a text-dependent one, since the suspected
speakers can be considered non-cooperative as they do not wish to be recog-
nized. Classical speaker models can be deterministic or statistical [16]. In deter-
ministic models, training and test feature vectors are directly, or after clustering,
compared with each other with the assumption that either one is an imperfect
replica of the other. Vector quantization (VQ) algorithms represent a rich fam-
ily of deterministic models for text-independent recognition using a variety of
clustering techniques. In statistical models, each speaker is modelled as a prob-
abilistic source with fixed probability density function. The training phase is
to estimate the parameters of the probability density function from a train-
ing sample. Comparison is usually done by evaluating the likelihood of the test
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E=9.94 

Fig. 5. The likelihood ratio (LR) estimation given the value of the evidence E and the
probability density functions (pdfs) of the within-source and between-sources similarity
scores [7,10]

utterance with respect to the model. The Gaussian mixture model (GMM) is
the most popular statistical models for text-independent recognition [21] but it
needs much more data for training in comparison with deterministic VQ model.

Speaker recognition based on statistical modeling techniques such as Gaus-
sian Mixture Modeling (GMM) has a useful property in that it directly returns
a likelihood of whether an utterance can come from the statistical model created
for a speaker [21]. As a consequence, in order to calculate the likelihood ratio
we can follow two approaches, one directly using the likelihoods returned by the
GMMs (multi-variate, direct method), and the other by modelling the distribu-
tion of these likelihood scores and then deriving the likelihood ratio on the basis
of these score distributions (uni-variate, scoring method) [2].

Consequently, the state-of-the-art speaker recognition algorithms using vec-
tor quantization (VQ) and Gaussian mixture models (GMMs) for text-
independent forensic tasks have to be adapted to the interpretation of the
evidence using both direct and scoring methods. Generally, the latter approach is
preferred, as it does not depend on the automatic speaker recognition technique
(VQ or GMM) used [10].

4 Evaluation of the Strength of Evidence

The likelihood ratio (strength of evidence) summarizes the statement of the
forensic expert in the casework. However, the greatest interest to the jurists is
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Fig. 6. General processing chain of the Bayesian interpretation of biometric multi-
variate trace evidence for calculating the likelihood ratio (LR) or its deterministic
substitute for multivariate (direct) method using directly deterministic or statistical
models of automatic speaker recognition

the extent to which the likelihood ratios correctly discriminate the same speaker
and different-speaker pairs under operating conditions corresponding to those of
the case in hand.

It should be criterial for the admissibility of scientific evidence to know to
what extent the method can be, and has been, tested.

The principle for evaluation of the strength of evidence consists in the esti-
mation and the comparison of the LRs that can be obtained from the evidence,
on one hand when the first hypothesis is true (e.g., the suspected speaker truly
is the source of the questioned recording) and, on the other hand, when the
second hypothesis is true (the suspected speaker is truly not the source of the
questioned recording).

The performance of an automatic speaker recognition method is evaluated by
repeating the experiment described when calculating the strength of evidence,
with several speakers being at the origin of the questioned recording, and by
representing the results using experimental (histogram based) probability dis-
tribution plots and cumulative distribution functions in the form of Tippett
plots [6,11].
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Fig. 7. General processing chain of the Bayesian interpretation of biometric univariate
evidence for calculating the likelihood ratio (LR) for univariate (scoring) method using
the probability density functions (pdfs) of the within-source and between-sources sim-
ilarity scores (likelihoods for statistical models or distances for deterministic models)

LR=9.165 

Fig. 8. Cumulative distribution functions in the form of Tippett plots corresponding
to the probability density functions of likelihood ratios in Figure 5 [6,7,9]
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5 Conclusions

Over the last decade telecommunication and biometric technology has become
affordable and widely available to the population at large. With the increas-
ing sophistication of communication devices and networks, there has also been
an increase in the number and complexity of crimes in which the speech is
used.Forensic speaker recognition experts have to adapt forensic casework tech-
niques to this increasing sophistication. Therefore, there is a need to interpret
speech as forensic evidence. With several different aspects of this specific bio-
metric evidence, it is necessary to understand and deal with the dependencies
that exist between them by using formal deterministic and statistical modelling
in the Bayesian interpretation framework.

The main focus of this paper was to show what can be done in the domain of
forensic automatic speaker recognition using deterministic and statistical eval-
uation of biometric speech evidence. It was shown that the data-driven based
evaluation methodology using Bayesian framework provides a coherent way of
assessing and presenting the biometric speech evidence of questioned recording.

This paper gives guidelines for the calculation of the biometric speech evi-
dence and its strength under operating conditions of the casework. Bayesian
framework methods such as calculation of likelihood ratios based on automatic
(deterministic and statistical) pattern recognition methods, have been criticized,
but they are the only demonstrably rational means of quantifying and evaluat-
ing the value of biometric speech evidence available at the moment. The future
methods to be developed for interpretation of speech as forensic evidence should
combine the advantages of automatic signal processing, pattern recognition and
biometrics objectivity with the methodological transparency solicited in forensic
investigations.
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Abstract. In this paper a new robust feature for speech endpoint detection is 
proposed. It combines the properties of the Modified Group Delay Spectrum 
(MGDS) and the Mean Delta (MD) approach in order to obtain the more robust 
endpoint detection. This feature is named as Group Delay Mean Delta (GDMD) 
feature. The effectiveness of proposed feature and other three features for tra-
jectory-based endpoint detection is experimentally evaluated in the fixed-text 
Dynamic Time Warping (DTW) - based speaker verification task with short 
phrases of telephone speech. The analysed features are - Modified Teager En-
ergy (MTE), Energy-Entropy (EE) feature and MD feature. The results of the 
experiments have shown that the GDMD feature demonstrates the best per-
formance in endpoint detection tests in terms of verification rate. 

Keywords: Teager energy · Speech activity detection · Group delay spectrum 

1 Introduction 

The errors in the automatic speech and speaker recognition systems designed to oper-
ate in noisy real-world environments are due to many reasons including the inaccurate 
detection of the endpoints of the analyzed speech utterance. The wrong Endpoint 
Detection (ED) increases the cases when the system processes data different from the 
actual speech utterance. These errors are crucial especially for recognition systems, 
which use short phrases with length of few seconds. 

The ED algorithm consists of two main processing steps - feature extraction and 
decision step. In the first processing step, the features based on signal energy [3], [9], 
autocorrelation functions [27], spectral entropy [4], [6, 7], [23], group delay functions 
[8], [18], wavelets [21], bi-spectrum [10], etc., are extracted. In the second step, using 
the properties of the estimated features, the start and the end points of the utterance 
are estimated. This is accomplished by using a state automaton [9], [24] or some type 
of classification scheme, e.g., classification and regression tree [22], hidden Markov 
models [26], support vectors machines [20], etc. 

In the study a new robust feature for endpoint detection is proposed. This is a 
Group Delay-Mean Delta (GDMD) feature. This feature utilized the Mean Delta ap-
proach proposed in [14] but the spectral autocorrelation function is defined, not with 
the power or magnitude spectrum, but with the Modified Group Delay Spectrum [5], 
[11]. The performance of the GDMD feature was compared with three additional 
features – the Mean Delta feature (MD) [14], [17], the Modified frame Teager Energy 
(MTE) [4], [6] and the Energy-Entropy feature (EE) [6]. These features are utilized in 
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the trajectory-based real-world speech data endpoint detection paradigm. The state 
automaton and a set of thresholds are used and the endpoints are estimated based only 
on trajectory characteristics [17]. 

In order to estimate the performance of the considered endpoint detection algo-
rithms two experiments are carried out. In the first experiment was measured the ED 
accuracy, i.e. the frames differences between manually labelled and detected end-
points [24]. The second one was conducted to estimate the effect of different ED algo-
rithms on the recognition rate in the Dynamic Time Warping (DTW) fixed-text 
speaker verification task with short noisy telephone phrases in Bulgarian language 
[16].  

The HTERZ -test method proposed in [1] is applied to check whether the verification 

rate obtained by a given endpoint detection feature is statistically significantly differ-
ent from the rate provided by another one. 

2 Endpoint Detection Parameters 

2.1 Mean-Delta Feature 

The Mean-Delta (MD) feature was proposed by the author in [14] and it is defined as 
the mean absolute value of the Delta Spectral Autocorrelation Function (DSACF) of 
the power spectrum of speech signal. This function is obtained in a way similar to the 
delta cepstrum evaluation and its purpose was to remove the slope of the spectral 
autocorrelation function and enhance the peaks. For a particular frame, the DSACF 

)(lRPΔ is computed utilizing only the frame’s spectral autocorrelation lags as follows  
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where Ll ,...,0= ; L is the number of correlation lags and )(lRP  is the biased spectral 

autocorrelation function defined with the power spectrum. The parameter Q deter-
mines the window width around the lag l and its effect on the accuracy of the approx-
imation. 

For the given frame the MD feature dm  is computed as follows  
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where )(lRPΔ is the DSACF in (1) for lag l , L  is the number of lags. For more details 

about the MD feature, see [14]. 
The vector version of the MD feature is utilized in speech detection module as a 

part of speaker recognition tasks [15]. The results obtained in the trajectory-based 
endpoint detection task using the magnitude spectrum-based version of the MD  
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feature are described in [17]. This version of the MD feature will be used in the cur-
rent study. 

2.2 Group Delay Mean Delta Feature 

The Group Delay Spectrum (GDS) is defined as the negative derivative of the Fourier 
transform phase. If )(nx  is the given speech sequence then the GDS )(ωτ can be 

computed from the signal according to [5], [11] as 
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where with subscripts R and I are noted the real and imaginary parts of the Fourier 
transform. )(ωX  and )(ωY  are the Fourier transform of )(nx  and )(nnx , respective-

ly. The GDS possesses two main properties – additive property and high-resolution 
property [5]. It is evident from the results presented in [5], [11] that the GDS is spiki-
er than the magnitude spectrum, i.e. it possesses more clearly distinguished peaks. 
And due to the additive property there is a little influence between the peaks. As a 
consequence the closely spaced peaks (formants) in speech spectrum are resolved 
better in the GDS than in the magnitude spectrum. But if the denominator’s term in 
(3) is a small value (spectrum’s dip) then the GDS becomes very spiky and that com-
plicate its usability in speech analysis. These small values (zeroes close to the unit 
circle in the vocal tract transfer function) can be due to the excitation source or to the 
short-term processing [5].  

To overcome this drawback several approaches were proposed. One of them is the 
Modified Group Delay Spectrum (MGDS) and it is proposed in [5], [11]. The MGDS 

)(ωτ m is defined as  
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and )(ωS is the cepstrally smoothed spectrum of )(ωX . The parameters α and γ 
vary from 0 to 1 (0 <  α  ≤  1) and (0 <  γ  ≤  1). These two parameters and the 
cepstrally-smoothed spectrum in denominator are introduced to decrease the spikes’ 
amplitudes and to restrict the dynamic range of the MGDS. To control the level of 
cepstral smoothing of )(ωS  the low-order cepstral window (lifter) wl is used.  

In the study a new robust feature named as Group Delay Mean Delta (GDMD) fea-
ture is proposed. This feature utilized the Mean Delta approach proposed in [14] but 
the spectral autocorrelation function is defined based on MGDS, not on the magnitude 
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spectrum. The aim of this is to obtain peak-enhanced delta spectral autocorrelation 
function and thereafter more effective Mean Delta feature.  

The biased spectral autocorrelation function )(lRm defined with the MGDS )(kmτ
is 
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where K is the number of points in the discrete Fourier transform, Ll ,...,0= ; L is the 
number of correlation lags and 4/KL = . The GDMD feature is calculated in an 
analogous manner as the MD feature according to the formulas (1) and (2) and using 

)(lRm instead of )(lRP . 

For each frame, the GDMD feature is computed into two steps as follows: 

A. First step – calculation of the MGDS according to [5], [11]: 

• let )(nx  is the given speech frame; 

• compute the Fast Fourier Transform (FFT) with size K of the sequences 
)(nx  and  )(nnx . Let these transforms are )(kX  and )(kY , respectively. 

• compute the )(kS - cepstrally smoothed spectrum of )(kX  using low-order 

cepstral lifter wl ; 

• compute the MGDS )(kmτ  as 
 

α

γτ 2)(

)()()()(
.)(

kS
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signk IIRR

m

+= ,       (7) 

 
• where sign is given by the sign of the term 

 

γ2)(

)()()()(

kS

kXkYkYkX IIRR +
.     (8) 

• the parameters α, γ and wl are adjusted according to the particular require-

ments.  

B. Second step – calculation of the MD feature using the MGDS )(kmτ  (7) from 

previous step as: 

• compute the average MGDS – averaged over all frames in the utterance; 
• apply mean normalization - the frame MGDS is divided by the average 

MGDS; 
• compute the non-normalized biased spectral autocorrelation function )(lRm  

by (6) with lags 4/KL =  using the mean normalized MGDS; 
• compute the delta spectral autocorrelation function )(lRmΔ by equation (1) 

using )(lRm with Q=3 as 
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• perform a trajectory smoothing for delta spectral autocorrelation function 

)(lRmΔ  (inter-frame processing) by J-order long-term spectral envelope al-

gorithm with J=3 [19]. The obtained smoothed version of )(lRmΔ  is noted 

as )(lRS
mΔ ; 

• compute the GDMD gdm  by equation (2) using )(lR S
mΔ  as  
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In Fig.1 are shown frame of the speech sound ‘i’ with length of 30 milliseconds (8 
kHz sampling rate) and the corresponded FFT magnitude spectrum, the MGDS, the 
spectral and delta spectral autocorrelation functions. The MGDS parameters values 
are selected according to the recommendations in [5] and they are α=0.4, γ=0.9 and 

8=wl . 

2.3 Modified Frame Teager Energy Feature 

The modified frame Teager energy is computed according to the algorithm described 
in [4], [6]. The MTE feature tE  for the given frame is 
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where fΔ  is the frequency resolution, 
2

)(kX  is the FFT power  spectrum and K is 

the FFT size; 

2.4 Energy Entropy Feature 

An endpoint detection feature, obtained by combination of the energy and the spectral 
entropy, is proposed in [4]. This combination of features is made in order to overcome 
the drawbacks of each other and to form a new feature more resistant to the some kind 
of noises. For the given frame the Energy-Entropy (EE) feature EE  is computed as 
follows  
 

)1( HEEE ×+= ,    (12) 
 

where E  is the energy and H is the spectral entropy for the frame.  
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                      (a)               (b)         (c) 

 
          (d)               (e)    (f) 

Fig. 1. Comparison of various spectra and corresponded parameters for part of speech sound 
‘i’. (a) FFT magnitude spectrum. (b) Spectral autocorrelation function of the FFT spectrum.  
(c) Delta spectral autocorrelation function of the FFT spectrum. (d) MGDS. (e) Spectral auto-
correlation function of the MGDS. (f) Delta spectral autocorrelation function of the MGDS. 

 
In order to make correct comparisons among different features, the limitation of 

the frequency range from 250 Hz to 3750 Hz (as was done in [4]), was not applied in 
our case. 

For illustration in Fig.2 are shown the trajectories of the described above features 
for a record of the phrase obtained by a cell phone with a speaker standing on the 
noisy street. The clean version of the phrase is additionally obtained by a noise re-
moval. The noise in Fig.2 (a) from 7.4 sec to 12 sec is due to the passing tram. In 
Fig.2 (c), (d), (e), (f) and (g) are shown the normalized features trajectories of the 
noisy phrase in Fig.2 (a). In Fig.2 are shown the trajectories of two versions of the 
GDMD feature – GDMD1 and GDMD2. The GDMD1 feature in Fig.2 (f) is obtained 
with parameters α, γ and wl  tuned according to recommendations in [5], i.e. α=0.4, 

γ=0.9 and 8=wl . While the GDMD2 feature in Fig.2 (g) is computed with parame-

ters which provide best verification rate in the current study and they are α=0.6, γ=0.4 
and 32=wl (see 4.2).  
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Fig. 2. An example of noisy speech: (a) original noisy speech data; (b) speech data after noise 
removal; (c) modified Teager energy contour; (d) energy entropy feature contour; (e) MD fea-
ture contour; (f) GDMD1 feature contour; (g) GDMD2 feature contour 

3 Detection Algorithm 

In the study the detection algorithm proposed in [17] is used. This algorithm is based 
on the single parameter trajectory variations and utilizes two fixed thresholds and six-
state automaton. It is designed for endpoint detection of a word or single phrase with 
a short length (few seconds). For more details about detection algorithm, see [17]. 

4 Experiments and Discussion 

In the study two experiments were carried out. In the first one the accuracy was 
evaluated in terms of frame difference between manually labelled and detected end-
points. The second experiment was conducted to evaluate the endpoint algorithms in 
terms of speaker verification performance.  

The speech data used in the experiments are selected from the BG-SRDat corpus 
[13]. This corpus is in Bulgarian language and it is recorded over noisy telephone  
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channels and intended for speaker recognition. The speech data is collected from dif-
ferent types of telephone calls and various acoustical environments. The data are 
sampled with frequency of 8 kHz at 16 bits, PCM format, and mono mode. The  
length of the phrase is about 2 seconds and the length of the single record is about 
2.5-3 seconds.  

It is worth to make some clarifications about the used phrase in Bulgarian lan-
guage. It starts with voiced fricative ‘z’ and ends with unvoiced fricative‘s’. The 
phrase is: “Zdravei Manolov. Kak se chuvstvash dnes?”. Its English meaning is “Hel-
lo Manolov! How are you today?”. The pronunciation (roughly) is – “[zdra`vei:] 
[ma`nolov]! [kak] [se] [`tʃuvstvaʃ] [dnes]?”[13]. In addition, the manual labelling of 
the endpoints of all speech data is done in order to have reference endpoints for com-
parative purposes.  

4.1 Endpoint Accuracy  

In this experiment the endpoints accuracy was evaluated in terms of frames difference 
between manually labelled and detected endpoints [24]. 

The frames difference )(sDB between manually labelled and detected beginning 

points is defined as (for each utterance) 
 

)()()( sEDsMsD BBB −= ,    (13) 
 

where )(sM B is the manually labelled beginning point; )(sEDB is the beginning point 

obtained by endpoint detection algorithm and Ss ,,1= is the number of utterances. 
The frames difference for ending points )(sDE is defined as 
 

)()()( sEDsMsD EEE −= ,    (14) 

 
where )(sM E is the manually labelled beginning point; )(sEDE is the beginning point 

obtained by endpoint detection algorithm. 
The histograms of BD and ED  are presented in Figure 3. In Table 1 are shown for 

BD and ED  the rates of distribution (in %) less than 5-frames and 10-frames differ-

ences, respectively. The used phrase begins with the following two phonemes ‘z’ and 
‘d’ (it is the Bulgarian word ‘zdravei’). The stacked histogram in Fig.3 (a) has two 
modes. This is due to the fact that for some records all algorithms skip the voiced 
fricative ‘z’ and set the beginning point at the voiced stop consonant ‘d’ (after the 
voice bar). These errors correspond to the left mode with mean value of difference of 
about -10 frames, whereas the right mode corresponds to the correct beginning points. 
As seen in Table 1 for beginning points the rate is highest for the GDMD feature. The 
phrase ended with unvoiced fricative ‘s’ which is difficult to detect in noise due to its 
noise-like characteristics. According to Table 1 the maximum rate of ED  belongs to 

the MTE feature.  
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(a)      (b) 

Fig. 3. The histograms of the frame differences between manually labeled and detected points: 
(a) BD ; (b) ED  

Table 1. The rate of distribution (%) 

№ Features ABS(DB) ABS(DE) 
≤ 5 ≤ 10 ≤ 5 ≤10 

1 MTE 39.69 68.70 37.02 61.83 
2 EE 41.22 67.55 20.99 44.27 
3 MD 40.45 74.80 29.00 51.52 
4 GDMD 49.23 83.20 34.73 56.87 

4.2 Speaker Verification Performance 

The proposed endpoint detector is examined as a part of the fixed-text DTW-based 
speaker verification system. In the text below only a brief description of the speaker 
verification scheme is included. 

The speech data used in the study include 262 records of a phrase collected from 
12 male speakers. As the speech corpus is not large enough we cannot use two sepa-
rate data set in training mode – one for reference template creation (training set) and 
another for thresholds settings (validation set). Therefore, in the study the training set 
is used directly as a validation set.  

The different numbers of records per speaker (from 16 up to 34) and requirements 
to use equal number of records for speaker’s reference creation [16] impose the fol-
lowing training procedure [16]. For reference creation are randomly selected 10 re-
cords per speaker. The rest of speaker’s data are used for testing. This procedure is 
repeated 5 times. In the verification mode there are 142 client accesses or false rejec-
tion tests and 1562 impostor accesses or false acceptance tests. After 5 runs the total 
tests are: for false rejection - 710 and for false acceptance – 7810 [17].  
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In the pre-processing step the Hamming-windowed frames of 30 milliseconds with 
rate of 10 milliseconds are used. The number of the Mel-Frequency Cepstral Coeffi-
cients (MFCC) is 14. In addition, cepstral mean subtraction is applied (for each file 
separately) to obtain the MFCC feature. For endpoint detection features a FFT-size of 
512 points is chosen [16]. 

In the study, the normalize-wrap DTW algorithm with the root power sum - cep-
stral distance is applied [12]. In this algorithm are used the constrained endpoints 
conditions [12]. This is more correct approach (compared with the relaxed boundary 
conditions used in [17]) when analyses the performance of the endpoint detection 
algorithms in the DTW-based recognition task. The speaker’s reference is obtained by 
averaging (after dynamic time warping alignment) of his training utterances [25]. The 
individual speakers’ verification thresholds are estimated by using of the cohort nor-
malization method [2]. 

The performance of various endpoints detection features is compared via the veri-
fication results, i.e. for each ED algorithm a separate speaker verification task is car-
ried out. Additional verification task is done with manually labelled endpoints. 

The values of the parameters α, γ and wl  used in the MGDS estimation are crucial 

for the performance of the GDMD feature. In [5] as a result of exhaustive experi-
mental work in speaker recognition, language identification and continuous speech 
recognition was found that the best across all tasks and all databases the MGDS pa-
rameters values are α=0.4, γ=0.9 and 8=wl . As the features in these experiments are 

utilized the cepstral coefficients obtained from the MGDS via the discrete cosine 
transform.  

In the current study the MGDS is used slightly different in comparison to [5]. To 
estimate the actual values in the particular task it is necessary to perform line search 
for all parameters values. Based on the preliminary experiments with different values 
of the MGDS parameters and histogram analysis of the 5- and 10-frames differences 
was found the following set of values, performing best in terms of verification rate. 
This set of values for particular endpoint detection and verification framework is 
α=0.6, γ=0.4 and 32=wl . All experiments in the study were done with these values. 

Since the best values set was not obtained by the line search therefore another set of 
values, yielding better verification results might exist. This could be clarified in the 
future research. 

For limited real-world data the single value error is not reliable estimation of the 
speaker verification performance [1]. Since this is our case it was decided to apply the 
methodology for performance estimation of the speaker verification proposed in [1].  

The verification results are presented as rate ratios - False Rejection Rate (FRR), 
False Acceptance Rate (FAR) and the Half Total Error Rate (HTER) [1]. Also the 
95% Confidence Interval (CI) for the HTER is shown computed according to [1]. The 

HTERZ -test method proposed in [1] is applied to verify whether the given classifier is 

statistically significantly different than another. In Table 2 are shown the speaker 
verification results in rates and confidence interval for the HTERs. These rates are 
obtained for each feature and also for the manual end pointing. As seen in the table 
the GDMD feature performs the best among the features set.  
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Table 2. Speaker verification results 

№ Features FRR[%] FAR[%] HTER[%] 95% CI 
1 Manual 6.90 4.98 5.94 ±0.0096 
2 MTE 11.83 10.47 11.15 ±0.0123 

3 EE 14.08 12.48 13.28 ±0.0133 
4 MD 10.56 8.06 9.31 ±0.0116 
5 GDMD 8.30 7.31 7.80 ±0.0105 

 
 

In Table 3 are shown the confidence values δ and standard deviations σ obtained 
from the HTERZ -tests (independent case) [1]. With [A, B] are noted the two endpoints 

detection features A and B being tested. 

Table 3. Confidence values 

 [GDMD, MD] [GDMD, MTE] 
δ  93.88 99.99 

σ 0.0080 0.0082 
 
 

As seen in the Table 3, the GDMD feature is statistically significantly different 
from the MD and MTE features. For both tests the confidence values δ on their 
HTERs differences are greater than 90%.  

It was found that there is not direct relationship between maximal rates in  
the frames differences histograms and verification rates. In other words, the maximal 
5-frames differences rate obtained for a given feature does not lead to the maximal 
verification rate for that feature. The main reason for this is the phrases with serious 
endpoint detection errors. For them, the frames differences are greater than e.g. 20 
frames (200 milliseconds). Since in the training mode are always used 10 utterances, 
no matter how accurate their endpoint detections are, these errors contribute to the 
poorly trained templates.  

This observation is confirmed by the results shown in Table 1 where the GDMD 
feature possesses maximal rate for 5- and 10-frames differences for beginning points, 
but not for ending ones. Nevertheless, it provides the best verification rate as seen in 
Table 2. This is explained by the minimal number of the serious endpoint detection 
errors obtained for the GDMD feature, and is clearly seen in the histograms - in the 
last bar in Fig.3 (a), also in the first and in the last bars in Fig.3 (b). 

5 Conclusions 

In the study a new robust feature for endpoint detection, which combining the proper-
ties of the MGDS and the MD approach in order to obtain more robust endpoint de-
tection is proposed. Its effectiveness was experimentally compared with three other 
features in the fixed-text DTW-based speaker verification task with short phrases of 
telephone speech. As seen in Table 2 the GDMD feature demonstrates the best per-
formance in endpoint detection tests in terms of verification rate. 
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Future work in this area will be focused on three main objectives – the develop-
ment of more efficient version for the GDMD feature with fewer adjustable parame-
ters, the improvement of the endpoint detection accuracy especially for weak  
phonemes and the examination of the developed endpoint detector in the hidden 
Markov models framework for short phrases. 
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Abstract. The paper presents an approach for recognition of 3D objects using a 
database (DB) of precedents. Each object of interest for recognition is presented 
in the DB through a sufficient number of 2D projections (images), each from a 
different view point. If it is available a CBIR method to access the DB that is to 
be fast enough and noise resistant, the number of necessary view positions for 
each 3D object can be substantially reduced, for example, to several tens or a 
few hundreds of images. The authors have already applied successfully this ap-
pearance-based approach two times: i) for recognition of palm signs from a sign 
language alphabet and ii) for human face recognition. The recent advance in 3D 
scanning technologies allow to fresh up the training phase of the proposed 
method, i.e. the DB gathering of the necessary appearance of precedents for 3D 
objects, now more accurately and simply. At the same time, the true recognition 
remains based on images from conventional 2D cameras. This study aims to 
experiment the mentioned approach for the case of human ears recognition, 
which, according to our research is of interest to the guild on Biometrics, in the 
country, in Europe and worldwide. 

Keywords: Human ears recognition · 3D object recognition · Appearance-based 
3D methods · Content Base Image Retrieval (CBIR) for 3D solids · Rapid and 
reliable CBIR 

1 Introduction 

The first activity in human identification by ears morphology has been in France more 
than a century ago [1]; new efforts were given with success in USA later by Iannarelli 
[2]. In fact, the human outer ear is usually segmented by six basic components: i) the 
outer helix, ii) the antihelix, iii) the lobe, iv) the tragus, v) the antitragus and finally vi) 
the concha. This shape evolves during the embryonic state from six growth nodules; its 
structure therefore is not completely random, in practice it is considered universal, 
unique and averagely permanent (even if it is still not demonstrated that ears of all 
people are unique, but it has been shown that it does not change consistently with ag-
ing [3]). A real explosion happened in the last decades so that we can here quote 
twelve surveys on ear biometrics starting from ten years [4-15]. Today, generally 
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speaking, the most popular targets are identification (also known as recognition, “Who 
is he/she?”), authentication (also known as verification, “Am I who I claim I am?”), 
and surveillance. Identification implies matching a biometric sample against all records 
in a database of templates (“one to many matching”). The most commonly used bio-
metrics for identification according to Ratha et al. [16] are fingerprints, face, voice, 
iris, signature, and hand geometry that are physiological characteristics that are based 
on data derived from direct measurements of a part of the human body. Biometric au-
thentication requires comparing an enrolled biometric sample (biometric template) 
with a newly presented one. It is a “one-to-one matching” process. For authentication 
purposes the characteristics exploited frequently are voice and signature that even 
though they are person’s physical characteristics they are behavioral biometric traits. 

Following Jain et al. [17], human physiological or behavioral characteristic to be 
used in biometry must be universal, unique, permanent and collectable. That is each 
person should own a characteristic (universal feature) not shared with others (unique 
feature), that cannot change (permanent feature) and that is detectable to a sensor and 
reckonable (collectable feature). However in biometric systems there are more re-
quirements, e.g. performance (system’s accuracy and speed), acceptability in a daily 
routines and circumvention (how easy it is to fool the system).  

Ear recognition for authentication has some advantages: it is more consistent com-
pared to the variability due to expression, orientation and effect of aging. Further-
more, it has a more uniform distribution of color, and its appearance is fixed e.g. 
when converting the original image into gray scales. Data collection is convenient in 
comparison to the more invasive technologies like iris, retina, fingerprint etc. Other 
mammals like horses, dogs, and cats can articulate their ears to locate sound sources; 
humans instead can hardly articulate ears that are held rigidly in position on the side 
of the head, and this makes detection easier. Moreover, the acquisition of ear images 
does not necessarily require a person’s cooperation, and is considered to be non-
intrusive by most people; in fact the ear can easily be captured from a distance, even 
if the subject is not fully cooperative.  

From visual complexity viewpoint face and ear are roughly similar. However note 
that since the face is symmetrical from a biometrics perspective the information on 
the left side usually reflects that on the right. Human ears have some degree of sym-
metry that can perhaps be systematically exploited, at the same time, thus the degree 
of asymmetry provides additional information about their identity and may be used in 
schemes that combine the face and ears information.  

Nevertheless while face recognition is very popular, up to now ear recognition is 
not; but it is normally accepted that with the decreasing cost of the necessary 3D 
scanners and their increased performance the 3D ear biometrics is a promising “soft” 
biometric and is foreseen to be extremely useful in most real-world applications in the 
near future. 

2 3D Ear Biometrics Approaches 

Ear biometrics approaches are relying on morphological ear properties. Pattern recogni-
tion problem generally require the solution of two sub-problems: target representation 
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and discriminant technique. Also ear recognition system follows this framework:  
description and feature extraction and the comparison strategy.  

The ear color distribution is roughly monotone and the 3D appearance is due main-
ly to shading effects, thus it is morphology that characterizes look and trait. For this 
reason, pose and camera position variations are very critical features in 2D ear recog-
nition. A 3D representation enriches the input data with depth information and can 
increase consistently the accuracy of ear recognition systems.  

Chen and Bhanu [18] presented one of the first 3D ear recognition system that ex-
ploited the depth and structure of the ear’s surface. The morphological components 
were characterized by a distribution of shape indices applied on profile images. 

Chen et al. [19] proposed a 3D ear detection and recognition system using Iterative 
Closest Point (ICP) and a local surface descriptor for recognition, reporting a recogni-
tion rate of more than 90%.  

Yan and Bowyer [20] developed an ear detection method which fuses 2D color im-
ages and images captured by a range scanner. The concha serves as the reference 
point, applies the active contour model and uses ICP registration.  

Cadavid and Abdel-Mottaleb [21] developed a technique for ear recognition from 
videos. They reconstructed the 3D shape of an ear by using the Shape from Shading 
(SfS) technique. The ICP algorithm is then used to calculate the similarity between 
the 3D shapes of two ear videos. 

Zhou et al. [22] train a 3D shape model based on the histogram of shape indexes. 
The ear descriptor is built from shape index histograms, which are extracted from 
sliding window of different sizes inside the image. A Support Vector Machine (SVM) 
classifier is trained to decide whether an image region is or not an ear segment.  

A number of multimodal approaches that include ear recognition have also been 
mentioned, such as ear images and speech, face, various combinations of 2D Principal 
Component Analysis (PCA), 3D-PCA, and 3D-Edges. All these studies reported an 
increase in performance when using multimodal instead of individual biometrics. For 
further details of multi-modal ear and face biometrics see [23]. 

Prakash and Gupta [24] extend the quoted 2D approach to a 3D one. In this version 
the edges are computed as discontinuities in the depth image. Using the 3D represen-
tations of the same subset as in the 2D analysis they report an increase of the detec-
tion rate from 96.63% to 99.38%. In particular, this 3D graph-based approach looks 
robust to the influence by rotation and scale. 

3 Our Approach Description 

In this paper, an appearance based CBIR approach is considered for recognition of 3D 
objects using a DB of precedents. Every object of interest for recognition is presented 
in the DB through a sufficient number of 2D projections (images), each from a differ-
ent view point. If it is available a CBIR method to access the DB that is to be fast 
enough and noise resistant, the number of necessary view positions for each repre-
sented 3D object can be substantially reduced, for example, to several tens or  
a few hundreds of images. Furthermore, for most applications for 3D solids, the  
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appropriate viewpoints may be grouped together in a spatial sector of about from 90 
up to 180 degrees. The approach is considered promising in recent surveys, like view 
based similarities [25] or image signatures [26], as it is relatively simple to implement 
and fits the consumer perceptions of effective marketability. There are two main prob-
lems to be solved here: (i) gathering of precedents for the DB and (ii) choosing a suit-
able CBIR method. We have already applied this appearance-based approach two 
times: for recognition of palm signs from a sign language alphabet, and for human 
faces recognition. The image DB (IDB) in these cases was collected through the so-
called "circumvention film" by a conventional camera, with the help of a special  
mechanical construction for more accurate scanning of 3D objects. Now we use a 
modern 3D scanner to create an intermediate 3D computer model, to obtain from it 
the necessary number of 2D projections of the given object and to record them in the 
IDB, and so on for all 3D objects of interest. Of course, the input image for recogni-
tion is not required to act on such an expensive (now) 3D device; it can come from 
simple 2D camera as a video clip or even as a single still image. For the CBIR method 
to access the IDB, it is necessary to have enough processing speed, for example, pro-
portional to log(|IDB|), where |IDB| is the IDB volume in number of images. Our 
experience shows that it is desirable that the 2D projections of each 3D object, no 
matter how great their number is, are to be evenly distributed in the most likely stereo 
sector of inputs (positions of 2D camera). This allows an optimal noise immunity to 
be achieved by the chosen CBIR. The current study aims to experiment the mentioned 
approach in the case of human ears recognition. The paper text hereinafter is orga-
nized as follows: 3.1 The used IDB structure, 3.2 Our CBIR in brief, 3.3 General 
phases of the method, and finally − Experiments, Discussion, and Conclusion. 

3.1 The Used IDB Structure  

The Institute of Information and Communication Technologies (IICT) of the Bulgari-
an Academy of Sciences (BAS) has collected a 3D Ears' DB with the goal of provid-
ing data of higher definition than comparable collections. The DB contains 3D models 
of ears for ~20 subjects of various ages, gender, etc., gathered through a VIUscan 3D 
scanner1 under optimal lighting conditions. Only 11 of the 3D models from this DB 
are used so far (the others are of relatively insufficient quality). An image example 
from the 3D Ears DB is shown in Fig. 1. The logical structure of this DB restriction 
respects the following rules: 

• The necessary representative 2D projections (images) of a 3D object are consid-
ered positioned in a square grid over the experimental sector of visibility that for 
the current case of ears is considered the front stereo angle of about 90°; 

• Two sets of images are implemented (a test set and a verification set) for each of 
the 10 used 3D models (one per a subject); one of the available 11 models is left in 
reserve for verification of false negative cases of searching the IDB. 

 

                                                           
1
 http://iict.bas.bg/acomin/smart_lab/Hand-held-3D-scanner.pdf 
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Fig. 1. A primary 3D ear model (directly after scanning, on the left), and after its post-
processing (on the right) 

 
• A square grid (10×10) is defined for the test images that divides evenly the exper-

imental sector of vision, or a total of 100 nodes (view positions), each of them cor-
responding to a particular 2D projection (test image) for the given 3D ear  
object; 

• One more square grid (9×9) is defined for the verification images that also divides 
evenly the experimental sector of vision totally on 81 view positions, each of them 
corresponding to a particular 2D projection (verification image) for the given 3D 
object; 

• The verification grid is centrally located relatively to the test grid. Each verifica-
tion image is positioned in the centre of a basic square of the test grid to represent 
"the worst case" of recognition by the proposed method; 

• Thus, every 3D object should draw 100 test projections, one for each view position 
(node) of the test grid, as well as 81 verification projections, one for each verifica-
tion view position. 

The set of test projections for all 3D objects of recognition, i.e. the entire test set, was 
charged into the IDB. The set of all verification projections, i.e. the entire verification 
set is used to check the efficiency of the method here proposed. 

Either the test set or the verification one consist of images (2D projections) ob-
tained from a smoothed (by a spline approach) visualization of the corresponding 3D 
model. Thus, 2D projections received from the canonical triangular representation of 
the 3D model as well as other coarse visualizations of it can be considered as noisy 
versions of the basic 2D projections. 

By default (according to the software used) the lighting of given 3D object origi-
nates from a centralized cohesive source, i.e. a point source located on the main focal 
axis, infinitely remote and of constant and sufficient power. Choosing different posi-
tions of lighting source(s), we can get other versions of the described test and/or veri-
fication sets and consider them as extra noisy versions. 
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3.2 Our CBIR Method in Brief 

The time necessary for comparison of an input image with all the samples in the dic-
tionary (i.e. our IDB) has to be short enough to ensure the operation in real-time. The 
realization of the proposed method idea is possible if we have enough noise tolerant 
and fast CBIR method of access to large IDB. Such CBIR methods are provided by 
the system EFIRS (Experimental Fast Image Retrieval System) that is a development 
of the SP&PR department of IICT-BAS, and can be associated with the so-called 
“early” CBIR [27]. At the same time, experiments show that EFIRS can be success-
fully extended for visual signature based [26] or view based [25], or multiple projec-
tions based 3D recognition [29], or finally as an appearance based CBIR approach to 
3D recognition (this paper).  

For our purposes of 3D recognition we will consider EFIRS primarily as a system 
for recognition by a more or less large vocabulary (IDB) of samples (precedent imag-
es). Besides of a sufficient number of images necessary, the images EFIRS operates 
with must comply with the basic restriction on its CBIR methods − the images have to 
be relatively "clean", i.e. to contain whole object of interest (ear) in color or gray scale 
on a white background, and if possible without any noise artifacts from the natural 
environment.  

The currently used technologies for obtaining 3D models by our scanner (VIUscan 
of CreaForm) require additional manual and/or semi-automatic processing of the pri-
mary models (immediately after scanning); see also the brief description of respective 
software: VXElements (for the scanner), and MeshLab 2 (for 3D objects post-
processing). By using "relatively clean" 3D models of the objects (human ears) we 
obtain the required "clean" images (2D projections) easily. 

Their processing speed is of the order of t.log2(N), in number of accesses into the 
computer HDD, where IDB resides, where N is the size of the IDB (in number of 
images), and t is the average access time of HDD. CBIR noise immunity of EFIRS 
covers any random linear transformations of the input (translation, rotation and scal-
ing) as well as the so-called 'regular' noise in images. Thus, the current study can be 
seen also as an experimental evaluation of the available built-in noise tolerance of the 
CBIR methods of EFIRS. Moreover, EFIRS provides noise immunity against 'rough 
noise artifacts', but this is not interesting in our case because it is provided by the 
manual/semi-automatic processing of 3D models that is usually required immediately 
after scanning. 

A Few Necessary Properties of CBIR Methods 
• The input precedents (2D images), whose nearest similarity is sought in IDB, have 

to be normalized in advance (against random linear transformations and by intensi-
ty as well); the same normalization are also performed for all the images of IDB. 

• All images, incoming for recognition or already recorded in IDB, are represented 
as fixed-length strings, each one composed of the values of the most informative 
features describing the corresponding image content. Each string is declared as a 

                                                           
2 http://meshlab.sourceforge.net/  
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CBIR can be also considered a basic approach to pattern recognition that uses a 
large dictionary of image instances. This approach accents on preprocessing of imag-
es for adapting the applied recognition technique to the conventional retrieval meth-
ods of the DBMS used (to maintain the IDB of interest). We apply the EFIRS method 
based on our Polar-Fourier-Wavelets Transform (PFWT) definition of keys [30]. 

3.3 General Phases of the Method Proposed 

Like the majority of recognition methods based on input precedents the proposed 
method consists also of two general phases: 

1. Training phase: i.e. data collection for the IDB, through 3D scanning;  
2.  Operational phase: i.e. the actual recognition. 

The Methodology for IDB Collection  
The methodology consists of the following steps: 

1. Obtain a 3D model of each 3D object of interest by 3D scanning of it: yet this op-
eration requires certain practical skills of the operator of 3D scanner. To facilitate 
post-processing of the obtained 3D models we use a special helmet for the human 
head to paste the necessary markers that the 3D scanner needs for precise 3D orien-
tation, see Fig. 4. 

2. Post-process the scanner raw data: (i) to remove typical artifacts of 3D scanning, 
i.e. residues from the markers, artifacts corresponding to the scanned object envi-
ronment, etc., and (ii) to fill the gaps in the scanned surface of the object. These 
gaps usually correspond to hard to reach areas of scanning; besides, the quality of 
soft filling is not acceptable for very large gaps. To post-process the raw data we 
use a combination of the basic software (VXElements) of the available scanner and 
the MeshLab software as well. 

   

Fig. 4. 3D scanning of an ear using an optional helmet 
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3. Prepare the required number of 2D projections from the post-processed 3D model by 
combined use of MeshLab and a proprietary software written in Matlab and/or C++. 

4. Load the necessary views (2D images) of the given 3D object into the IDB and re-
index it. Images for all 3D objects of interest can be loaded also directly through 
EFIRS, in a batch mode. For this aim, some modules of EFIRS have been appro-
priately extended/modified. 

At this phase of experiments we use 3D models of only the right ear (of each sub-
ject/person to be presented in the IDB). In previous applications of the proposed 
method [29], we organized the training phase through short video clips tracking the 
3D object (face, or gesturing palm) by uniform scanning (in position and time) and for 
enough open spatial sector in front of the object. The necessary 2D projections had 
been extracted from the video clips of the so-called "surrounding filming" [29]. How-
ever, the use of a 3D scanner allows for greater precision of the experiments. 

Operational Phase  
The actual recognition scenario remains the same as in the above mentioned two ap-
plications, i.e. it is believed that the input data (2D image-precedents) used to 
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Fig. 5. 2D projections from an ear 3D model, evenly distributed in the expected stereo sector of 
visibility (for simplicity only odd rows/columns of the grid are shown) 
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extract/retrieve the most similar image from the IDB, is obtained by conventional 2D 
scanning devices, such as digital 2D cameras. The main idea is the true recognition 
scenario to be simple, fast and robust. 

4 Experiments 

An experimental study of the proposed approach is conducted through the system 
EFIRS, [28]. For the purposes of experiment, the EFIRS's test that operates on a sin-
gle input image is extended for a series of input (verification) images. The EFIRS 
conventions are used to generate the necessary IDBs. The CBIR method chosen is 
PFWT, described in [30]. 
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Fig. 6. 2D projections of an ear 3D model, evenly distributed in the central zone of the IDB 
virtual grid. The outer square represents the nodes of the base grid 10×10 (i.e. D = 10°), the 
intermediate square − 20×20 extended grid (i.e. D = 5°), and the inner square − the densest grid 
40×40 (i.e. D = 2.5°). 
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4.1 Nature of the Experiment 

Ten 3D ear models are presented in our IDB. From each 3D model, a set of 100 
(=10×10) 2D projections is generated to form the test set of projections (images) for 
the model. All images are in a "gray" scale, where the intensity of each true image 
object is inverted on a white background as required by EFIRS. Each image corre-
sponds to a node of the visualization grid, see Fig. 5. The test sets for all 10 objects 
(human ear models) are loaded into the IDB, i.e. the basic version of IDB contains 
1000 images. 

Additionally, a set of 81(=9×9) 2D projections is also generated from the respec-
tive 3D model to form its verification set of projections (images). Thus, the total  
verification set (for the all 10 objects) consists of 324 images that are submitted se-
quentially to EFIRS recognition.  

To realize the so-called "worst-case", each verification image is positioned in the 
center of a basic square of the chosen grid, see Fig. 6. This achieves the desired uni-
formity of distribution of the verification positions towards the IDB (test) images. The 
Error Recognition Rate (ERR) results for these basic verification sets are not very 
impressive, ERR ≈ 32.0%, see Table 1. 

To improve the recognition ability, we reduced the basic distance D among test 
images of IDB; where D, i.e. the size of each basic square of the chosen grid, was 
initially chosen D=D0=10°. To use the same verification set with the new experiment, 
we chose the new D as a half of previous D0, i.e. D=D1=D0/2=5°. Thus, the new test 
set for a given 3D object should have 324 (=18×18) images that makes 3240 images 
for all 3D objects (10 human ear models), i.e. almost 3 times more. The ERR attained 
decreased to 10.4%, which was considered promising.  

Table 1. Recognition results for the three IDB versions extracted from our 3D Ears DB 

  Test IDB0 ⇔ 100 ear 

images per person 

Test IDB1 ⇔ 324 ear 

images per person 

Test IDB2 ⇔ 1156 ear 

images per person 

personal ID verif.power errors % errors % errors % 

Ф0 81 25 30.49 4 4.88 3 3.66 
Ф1 “ 34 41.46 7 8.54 1 1.22 
Ф2 “ 18 21.95 8 9.76 2 2.44 
Ф3 “ 32 39.02 11 13.41 5 6.10 
Ф4 “ 19 23.17 5 6.10 1 1.22 
Ф5 “ 21 25.61 7 8.54 3 3.66 
Ф6 “ 30 36.59 8 9.76 1 1.22 
Ф7 “ 21 25.61 11 13.41 3 3.66 
Ф8 “ 29 35.37 14 17.07 3 3.66 
Ф9 “ 30 36.59 9 10.98 3 3.66 

Totally: 810 259 31.98 84 10.37 25 3.09 

Proc. speed 

[sec per input img]

 
0.54 

 
0.57  0.63  
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We conducted one more cut (by halves) of D1, i.e. D=D2=D0/4=2.5°. This new test 
set of all 3D objects contains 11560 = 10×(34×34) images, and the achieved ERR 
became 3.1%. 

Thus, we can consider that the expected trend of decreasing ERR, respectively in-
creasing True RR (TRR), by reducing the basic (reference) distance D that means an 
increase in the number of necessary view positions for each 3D object, is experimen-
tally confirmed. 

4.2 Discussion of Results 

The recognition results for the three experimented versions of IDB, based on our 3D 
Ears DB, are shown on the Table 1. The rows Фi, i = 0-9, represent the number of 
recognition errors and the appropriately ERR, in percentage of the number (= 81) of 
the verification images per an ear. By columns the results for the 3 types of experi-
ments conducted are grouped from left to right: for IDB0, |IDB0|=1000, i.e. with 
D0=10° (the basic version); for IDB1, |IDB1|=3240 with D1=5°; and for IDB2, |IDB2 
|=11560 with D2=2.5° (the best version). In the penultimate row the corresponding 
average results are given and in the last line − the appropriate time to recognize a 
given input precedent (image); this is approximately constant because the time for 
accessing the IDB is proportional to the logarithm of the number of its records.  

Below we systemize some directions for future research and improvement of the 
proposed method: 

• At present, only the right ear is considered because of presumed symmetry, and for 
definiteness as usual. 

• Ear region isolation, from scenes in still images and/or video, is considered outside 
of this paper scope. To this aim, it can be essentially used the obvious fact that the 
human ears are almost immovably fixed at the head, i.e. can be selected after glob-
al selection of a human face in the scene.  

• The achieved TRR of ~ 97% is, of course, insufficient in practice. However, a 
more detailed treatment of the transitions from the true 2D object to its  back-
ground in each of the images (as in the IDB and the input) is expected to lead to a 
substantial reduction of ERR, until about ERR <1%. 

• A possible IDB alternative: the necessary experimental IDB could also be a less or 
more similar IDB, available by Internet. Thus, instead of a full grid of projections 
we will have only a few single images of an ear, which is insufficient for the pro-
posed method, but better than nothing. Obviously, the images from these external 
databases should not be able to be find/recognized in our database (if the ears are 
really an unique characteristic of humans). 

• By default (according to the software used), the lighting of a 3D object is produced 
from a centralized coherent source. Choosing different directions of the light, we 
can get other versions of the described testing and/or verification sets considering 
them as noisy versions. Thus, for the proposed method assessment, besides the 
basic (test and verification) sets we can also use extra sets as follows: 
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─ A test set, in the basic grid nodes, but lightened from different positions. We ask 
for 8 surrounding positions of lighting angles ± 45°, horizontally and/or vertical-
ly that gives 8 extra sets of the "test" type (each one of the same power of 100). 

─ Similarly, for verification grid nodes we posed an extra total of 8 sets of the  
"verification" type (each one of the same power of 81). 

─ The verification 2D images produced for the selected 3D object are taken in the 
"worst case", in the square centre of the 4 (stereo-metrically) closest images 
from the test set. I.e., it is believed that the other cases of input image location, 
relatively to the test grid nodes are easier to recognize, i.e. TRR will be higher. 

• 3D devices (like scanners) are expensive now, so we use them only for the collec-
tion of our IBD, while the input images for recognition are expected to be derived 
from conventional 2D cameras or other 2D scanning devices. The latter also needs 
specific ear selection techniques similar to the above mentioned for IDB  
gathering. 

• If the input device is a simple camera (giving a video clip or a still image), a simi-
lar behavior of the method proposed is believed, with eventual differences in pre-
processing and/or normalization of the input images (2D precedents). 

5 Conclusion 

An appearance-based 3D recognition method has been described and experimented 
for the case of human ears recognition. The experimentally achieved ERR ~3%, i.e. 
TRR ~97% is considered very promising to future extension/modification of the 
method proposed. The method is generally designed to application for human authen-
tication and/or identification in several secure and pass control systems for large lists 
of subjects the system considers in its IDB. Even though its relatively not very high 
TRR, the method seems enough rapid, robust, reliable and probably firsthand one for 
the implementation in real-time systems, where all its recognition refusals (< 3%) are 
to be assigned to more sophisticated and probably slower extra developments. The 
method can be also fused (applied in combination) with other types of human identifi-
cation modalities in a stand-alone multimodal system. 
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Abstract. In this paper, a new method to represent human ear for biometrics 
purposes is introduced. Even if ear has a uniform distribution of color, human 
external ear characteristics are considered unique to each individual and perma-
nent during the lifetime of an adult. For these reasons ear biometrics approaches 
are relying on morphological ear properties. Even if ear biometrics is a young 
topic a variety of approaches have been proposed to characterize the ear geome-
try and topology. Moreover, note that the ear morphology is the biggest human 
head concavity, and that its convex hull complement is mainly convex. In this 
connection, the matching potential for ear discrimination can be effectively ex-
ploited through an Extended Gaussian Image (EGI) representation. The original 
EGI representation and its correspondent concrete data-structure are here ap-
plied to ear description and discussed for human authentication and identifica-
tion purposes. 

Keywords: Ear authentication · Ear biometrics · Ear identification · Ear recog-
nition · Ear verification · Extended Gaussian Image 

1 Introduction 

In the computer society personal identification is emerging as a crucial problem: fi-
nancial institutions, general computer networks, cellular phones, personal work-
stations, etc. have an ever-growing need to authenticate individuals. Traditionally the 
identity is established by means of passports, identity cards, badges, keys, or by 
userid, electronic passwords and personal identification numbers (PIN). These meth-
ods are based on possession or knowledge, but possessions can be lost, or stolen, and 
knowledge can easily be forgotten, or observed. For these reasons the biometrics  
science is rapidly evolving under the pressure of a large range of application in the 
civilian computer society. It can be applied in transactions conducted via telephone 
(exploiting voice recognition technology) and in e-business (exploiting cryptography 
and public/private password). Biometric methodologies offer today a much higher 
accuracy than the more traditional ones, and are now normally applied in a variety of 
applications ranging from personal laptop access to international border control. 
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In this last decade, more than twenty databases of ears have been collected. These 
candidate benchmarks differ consistently by number of images, subjects and features. 
Some of them consider only right ear, or are characterized by variable lighting condi-
tions, rotations, postures, occlusions, yaw and pitch poses, headdresses and earrings, 
side face, multi-scale, multi-race, ground truth ear’s position, or exploitation of depth 
images (3D), successive sessions, indoor versus outdoor scene, multi-camera, cropped 
from video streams, etc. Each DB usually considers only a few of these features. For 
this reason the performances evaluated with the above variability are often not com-
parable, and the weighting with DB cardinality is certainly not sufficient. Only a few 
approaches and new proposals have been evaluated and compared on the same 
benchmark.  

Following a very popular taxonomy most of the proposed solutions up-to now suc-
cessfully proposed are classified as active modalities in which the tested candidate is 
conscious of the identification or authentication action. These require personal coop-
eration and will not work if one denies participation. The alternative modality does 
not require user’s active participation, it is relating instead to a passive analysis which 
usually exploits approaches such as ear recognition or behavioral ones as gait analy-
sis. These modalities can be successful also without that people even know that they 
are analyzed.  

The human outer ear (or pinna) is usually segmented in six basic components: i) 
the outer helix; ii) the antihelix; iii) the lobe; iv) the tragus; v) the antitragus and final-
ly vi) the concha. This shape in fact evolves during the embryonic state from six 
growth nodules; its structure therefore is not completely random. Moreover, the de-
tailed structure of the human ear is considered universal and unique (however, it is 
still to be demonstrated that ears of all people are unique). Furthermore it is consid-
ered averagely permanent (the ear appearance does not change consistently when a 
person ages [1] and is normally collectable. Nevertheless, ear biometrics is not com-
monly used. 

Face recognition has advantages; it can routinely be used in a covert manner, since 
a person’s face is easily captured by video technology and individuals are identified 
by analyzing certain facial features, such as the medial and lateral corners of the eye 
or sides of the mouth, nose etc. But it has as well drawback: the face is the most 
changing part of the body due to facial expressions, during speech and when express-
ing emotions, and its appearance is often altered by make-up, spectacles, and beards 
and moustaches and hair styling, moreover there is the effect of age that brings 
changes in the facial morphology. The ear does not move and only has to support 
earrings, glasses frames, hearing aids, and it is often occluded by hair. As such, the 
ear is much less susceptible to interference than many other biometrics, with particu-
lar invariance to age. 

From the visual complexity viewpoint, face and ear are roughly the same; it is ac-
cepted by the researchers that with the decreasing cost of the required 3D scanner and 
the increasing performance of the ear recognition techniques, ear biometric will be 
very useful in most practical applications in the near future. 
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2 Ear Biometrics Approaches 

Even if ear biometrics is a young topic a variety of approaches have been proposed, 
from simple appearance-based methods such as principal component analysis to a 
whole new perspective based on scale-invariant feature transforms, local binary pat-
terns, force fields, etc. Another proposed taxonomy is related to the general strategies 
pursued: based on shapes versus contours analysis; on the domain, spatial or trans-
formed by Gabor, Fourier, Hough, Ray, Haar, or by wavelet transformations; consid-
ering the pursued ear alignment technique e.g. rigid motion evaluated with the concha 
area [2, 3] versus the external triangle [4, 5, 6]. 

Following another taxonomy proposed by Pflug and Busch [7] the proposed solu-
tions are classified on the bases of the input ear image dimensionality (2D or 3D) and 
then on a quad hierarchy: holistic, local, statistical or hybrid approaches.  

The holistic approach is characterized by description of the components as they are 
mutually interconnected and integrated to compose the ear. A method developed by 
Burge and Burger [8] is based on the ear representation through a graph model built 
by the Voronoi diagram on the edge and curve segments extracted from the intensity 
image, and applies graph matching as discriminant technique. A different model to 
describe the ear, [9] is built by treating every pixel as an attractor following the  
Newton’s law of gravitation (pixels have a mutual attraction proportional to their 
intensities and inversely to the square of the distance between them), and the ear is 
represented by a force field. The discrimination is founded on force field comparison. 
In [10] the ear image is subdivided into a number of equally large tiles and the self-
similarity is evaluated by affine transform of image sub regions. If one tile is occlud-
ed, the other tiles may contain a sufficiently distinctive set of features and this make 
the approach robust to occlusion. In [11] the authors compose six different feature 
vectors by using seven moment invariants. The moment invariants are robust against 
changes in scale and rotation. The feature vectors are applied to a back propagation 
neural network which is trained to classify the feature sets.  

Among the holistic methods a large number of proposals exploit classical computer 
vision transforms. In [12] the generalized Hough transform is used to detect the edges 
distribution. The cumulative approach make the ear detection Hough transform-based 
robust to extraction edge misplacement and to pose variation. Extra edges can be due 
to earing and glasses or hair (mainly strait lines). In [13] a method exploiting the ray 
transform, which is robust to detect ear in different poses and extra straight edges, is 
developed. The ray transform is based on the light ray analogy; the simulated ray is 
reflected by the curved structures like the outer helix in bright regions, hence high-
lighting these regions in the transformed image. In [14] a Fourier descriptor into fre-
quency space for rotation and scale invariant feature representation is adopted. The 
ear images have to be aligned and (as in other approaches) the concha region is used 
to fix a reference point for the alignment step. In [15] a multi-resolution Trace trans-
form and the Fourier transform are exploited to build a feature vector invariant to 
rotations and scale. In [16] the feature vector consists of some selected wavelet 
coefficients from Haar-wavelet compression. Applying iteratively a four-level wavelet 
transform on the ear image, at each iteration new derived coefficients are produced 
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and stored. In [17] the distinctiveness of different feature extraction methods is com-
pared. In particular, the performance of Fourier descriptors, Gabor transform, moment 
invariants and statistical features are compared, and the conclusion is that the highest 
recognition rate is achieved by using moment invariants and Gabor transform.  

It is worth to point out the original proposal [18] which develops an ear biometric 
system based on the acoustic properties of the ear. The method is founded on the es-
timation of the acoustic transfer function of the ear by stimulating the ear though a 
sound wave and evaluating the reflected signal. 

Basic primitives of the local approach are landmark assessment and local binary 
pattern. Scale invariant feature transform (SIFT) is known to be a robust way for 
landmark extraction and can also be used for estimating the rotation and translation 
between two normalized ear images. A proposal exploiting this approach is [12] in 
which a reference landmark model, containing a small number of non-redundant 
landmarks, constitutes the training set. This landmark model is used for filtering the 
SIFT landmarks, which were initially detected in the reference ear; it is then possible 
to assign the landmarks with its counterpart. This assignment becomes critical with 
pose variations and in highly structured regions.  

In [19] is proposed  2D ear detection based on edge segmentation through concav-
ity and convexity and then represented in a connectivity graph. A convex hull is ap-
plied to the edge in order to detect the ear region. This approach has been extended 
(with some updating) to the 3D ear analysis. 

The keywords of the Statistical approach are principal component analysis (PCA), 
independent component analysis (ICA), and locally linear embedding (LLE). PCA is 
by far the most widely adopted method used in ear biometrics; the goal is to reduce 
the feature vectors dimension. In [20] the performances of PCA when applied on face 
and ear recognition are compared. In their experiments, the performance of face based 
recognition overcomes the one of ear based recognition. However, in [21] it is 
reached (in similar experiments) a different conclusion: no appreciable difference was 
found between face and ear in terms of recognition performance. 

In [22] the performance in ear identification by neural network classifiers is inves-
tigated. The ear image is represented by outer ear points, information collected from 
ear shape and folds, and macro features assessed by compression network. The con-
clusion was that compression network support the best performance.  

In [4] the outer contour of the ear is located by searching for the top, bottom and 
left points of the detected ear boundary; these points form a triangle and its barycenter 
is selected as reference point for image alignment and consequently for the matching 
process. 

An example of the hybrid approach is given in [23, 24] that use the active shape 
model for extracting the outline of the ear. In [23] manually cropped ear images are 
used. A feature extractor stores selected points on the outline of the ear together with 
their distance to the tragus which is selected as reference. Before applying a linear 
classifier, the dimensionality of the feature vectors is reduced by PCA. 
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3 Extended Gaussian Image 

A 3D mesh model, approximating a 3D object, is represented by a set of triangles (see 
Fig. 1a): 

ࢀ                ൌ ሼ ଵܶ , … , ேܶሽ,  ௜ܶ ؿ ܴଷ, (1) 

where N is the number of triangles of the object mesh. 
Each triangle ௜ܶ  consists of a set of three vertices: 

                ௜ܶ ൌ ሼࡼ஺೔, ,஻೔ࡼ  ஼೔ሽ (2)ࡼ

Being ࢏࢝  and ࢔ഥ௜  respectively the center and the normal of a triangle ௜ܶ  (see Fig. 
1b), the surface area ܣ௜  of triangle ௜ܶ , and the area A of the mesh are given by: 

௜ݓ               ൌ ሺ ஺ܲ೔ ൅ ஻ܲ೔ ൅ ஼ܲ೔ሻ/3  (3) 

ഥ࢔                ௜ ൌ ሺ ஼ܲ೔ െ ஺ܲ೔ሻ ൈ ሺ ஻ܲ೔ െ ஼ܲ೔ሻ (4)                                                     ܣ௜ ൌ ଵଶ หሺ ஼ܲ೔ െ ஺ܲ೔ሻ ൈ ሺ ஻ܲ೔ െ ஼ܲ೔ሻห (5) 

ܣ                ൌ ∑ ௜ே௜ୀଵܣ  (6) 

 
The Extended Gaussian images (EGI) of a 3D object or shape is the histogram of 

orientations that represents the distribution of surface area with respect to surface 
orientation (see Fig. 2) [25]. 

Each surface patch is mapped to a point on the unit Gaussian sphere according to 
its surface normal. The weight for each surface normal (represented by a point on the 
Gaussian sphere) is the total sum of area of all the surface patches having that surface 
normal.  

The EGI can be easily built from needle or depth maps generated by range or ste-
reo devices. In fact, for an effective digital representation the Gaussian sphere is dis-
cretized by a triangular tessellation (sometimes called geodesic dome). Starting with a 

a) b) 

Fig. 1. a) A 3D triangular mesh model; b) normal vectors to mesh triangles; Both images are 
scaled and respectively cropped for better visualization of the triangular mesh 
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regular polyhedron (e.g. the icosahedron herewith adopted), recursively in a more 
detailed description level each triangle is split into four smaller triangles (see Fig. 3). 
Being ݇  the number of iterative subdivision steps, the number of triangles is  ݉ ൌ 2ଶ௞ܭ଴, where ܭ଴  is the number of faces of the starting polyhedron (20 for the 
icosahedron) and the area (solid angle) of the single cell is ܣ∆ ൌ -଴ሻ reܭሺ2ଶሺ௞ିଵሻ/ߨ
spectively [26]. 
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Fig. 3. a) From left to right: hierarchical refinement of successive searching for maximum dot
product between the normal vector of an input patch and the icosahedron ones or of the three
polyhedrons with 80, 320, and 1280 faces; b) 2D representation of the face positions of the four 
polyhedrons (expressed by azimuth and altitude of triangle vertices). The representation
of a given input orientation    is also shown. 
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Fig. 2. a) & b) 3D/2D EGI histograms: in each EGI bin (oriented triangle from discretized
polyhedron) the triangle areas with the same orientation were accumulated. 
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Main properties of the EGI for convex polyhedrons and for general convex objects 
are: 

• Rotation of the polyhedron corresponds to an equal rotation of the EGI, and vice 
versa, since the surface normal vectors rotate with the object. 

• Being the total mass of the EGI obviously just equal to the total surface area of 
the polyhedron, and being the same the projected area when viewed from any 
pair of opposite directions, the center of mass of an EGI has to lie at the origin. 

• Herman Minkowski in 1897 demonstrated that a convex object is fully  
described by the area and orientation of its faces, that is, two different convex 
polyhedrons have different EGIs. Vice versa two different EGIs represent two 
different polyhedrons. Moreover, this property is maintained for a general con-
vex object: in case of convex objects, there is an injective correspondence with 
their EGI. 

• The EGI is invariant to translation being a distribution with respect to surface 
orientation. In registering two 3D objects, the translation can be ignored and the 
rotation can be evaluated minimizing ݁ሺࡾሻ i.e. just comparing the EGI of the 
model ܯ௡ො  and the EGI  ܵ௡ො,ࡾ of the shape rotated by R: 

               ݁ሺࡾሻ ൌ  ∑  ൫ܯ௡ො െ  ܵ௡ො,ࡾ൯ଶ௡ොא௠  (7) 

To this regard, many approaches are known to solve or to lighten the above mini-
mization problem, e.g. by the Principal Component Analysis (PCA) method, both the 
3D objects can be preliminary normalized by position and size. 

3.1 Describing the Process of Creation an Icosahedron and Its 2D Mapping 

In brief, the process of building a 3D/2D icosahedron consists of the following steps 
(see also Fig. 4):  

• determine the azimuth ߮௜ for each vertex; 
• estimate the radius ߩ from a known relationship between edge length ܽ of the 

icosahedron and the radius ݎ of the circumscribed sphere;  
• express each ሺݔ,  ; and ߮௜ ߩ ሻ coordinate of the vertices of the icosahedron byݕ
• compute the ݖ coordinate of the vertices by the radiuses ߩ and ݎ, ሺݎ ൌ 1ሻ; 
• find both altitude levels ൅ߠଵ and -ߠଵ, which are necessary for the 2D representa-

tion.  

A more detailed description of the creation of an icosahedron and its 2D mapping 
is given here (see Fig. 4):  

1. The azimuth to the vertices with altitude ߠଵ is equal to: ߮௜ା ൌ ݅ ∆߮ ൌ  and ,5/ߨ2 ݅
respectively for the vertices with altitude - ଵߠ , the azimuth is: ߮௜ି ൌ ݅ ∆߮ െ∆߮/2 ൌ 5ሺ2݅/ߨ െ 1ሻ , where ݅ ൌ 0 ൊ 4. The azimuth of the top and bottom ver-
tex is zero. 
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2. It is known that if the edge length of an icosahedron is ܽ, the radius ݎ of the cir-

cumscribed sphere around the icosahedron is: ݎ ൌ ܽ sin ቀଶగହ ቁ.  

In our case ሺݎ ൌ 1ሻ ֜ ܽ ൌ ଵୱ୧୬ቀమഏఱ ቁ ൎ 1.0515 and the radius ߩ  :ߩ ൌ ܽ ቀ2 sin ቀ௱ఝଶ ቁቁିଵ ൌ ቀ2 sin ቀ஠ହቁ sin ቀଶగହ ቁቁିଵ ൎ 0.8944. 

3. The ሺݔ, ሻݕ  coordinates of vertices on ߠଵ altitude level are: ݔ௜ା ൌ cos ሺ߮௜ାሻ ߩ ௜ାݕ , ൌ ௜ିݔ :ଵaltitude levelߠ- sinሺ߮௜ାሻ. Respectively for vertices on ߩ ൌ cosሺ߮௜ି ߩ ሻ, ݕ௜ି ൌ sinሺ߮௜ି ߩ ሻ, ݅ ൌ 0 ൊ 4. The ሺݔ,  ሻ coordinates of the top (N) and bottom (S)ݕ
vertex are ሺ0, 0ሻ. 

4. The distance ܱ ାܱതതതതതത ൌ ඥݎଶ െ ଶߩ ൌ ඥ1 െ ଶߩ ൎ 0.4472, which actually is 2/ߩ. So 
the ݖ coordinates of vertices lying on ߠଵand -ߠଵ levels are േ2/ߩ . The top and 
bottom vertex has ݖ ൌ േ1. 
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Fig. 4. a) Parameters description of an icosahedron: radius ሺݎ ൌ 1ሻ of the circumscribed unit
sphere; icosahedron edge length ܽ; azimuth ߮ א ሾ0, 360ሿ; altitude ߠ א ሾെ90, 90ሿ; radius ߩ of
the ௫ܱ௬ା  and ௫ܱ௬ି 2D sections; altitude levels ߠଵ and -ߠଵ of the vertices belonging to the both
2D sections of the icosahedron; b) the same icosahedron mapped into 2D plane, represented by
azimuth ߮ and altitude ߠ of its triangular faces; c) the icosahedron, inscribed in a unit sphere,
and formed by three mutually orthogonal ‘golden rectangles’, whose sides ratio is equal to the
golden ratio ሺ1 ൅ √5ሻ/2 ൎ 1.6180 
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5. The altitude levels േߠଵ, can be estimated as: േߠଵ ൌ arccos ൬ඥ௫మା௬మ௥ ൰ ൎ 26.57௢ , 

for any ሺݔ, ݎ ሻ point on these levels, whereݕ ൌ 1.  

The above data is enough for building a 3D icosahedrons and its 2D mapping. It is 
worth mentioning that higher discretization levels from an icosahedron can be 
achieved by computing the vertices coordinates, dispatching each triangle into four 
new ones. 

3.2 Evaluation of Similarity Between EGI Histograms 

Among the matching indexes adopted to determine a geometrical score of similarity 
with EGI applications, we have considered the following [27]:  

• the Minkowski distance: 

ெܧ                     ൌ ඥ∑ ௡ොܯ| െ  ܵ௡ො|௣௠௡ොୀଵ೛
   (8) 

the Manhattan (݌ ൌ 1) and the Euclidean (݌ ൌ 2) distances are obtained respectively; ܯ௡ො and  ܵ௡ො  are histograms under comparing (of model and input object). 
• the Bray Curtis figure of merit:                                               ܧ஻஼ ൌ ∑  หெ೙ෝ ି ௌ ೙ෝ ห೘೙ෝసభ∑  หெ೙ෝ ା ௌ ೙ෝ ห೘೙ෝసభ  (9) 

obviously 0 ൑ ஻஼ܧ ൑ 1; 
 

• a new figure of merit is defined in [29] as the ratio EZ ൌ g/m , where g is the 
number of histograms bins, for which this condition is fulfilled:                       ቄሺܯ௡ො ൌ   ܵ௡ො ൌ 0ሻ ׫ ቀ หெ೙ෝ ି ௌ ೙ෝ หሾெ೙ෝ,ௌ ೙ෝሿౣ౗౮ ൑ θቁቅ׊୬ෝ,ଵஸ୬ෝஸ୫ (10) 

being ߠ a suitable threshold, 0 ൑ ߠ ൑ 1. 
In our experimentations the distances of type (8) has been normalized by the num-

ber of polyhedron faces. 
The EGI has been initially proposed for applications of photometry by B.K.P. Horn 

[25] in the '80 and has been extended by K. Ikeuci (the Complex-EGI) [29] in the '90 
to overcome the ambiguity that are introduced by the concave parts. Later other im-
provements have been proposed always with the purpose to reduce the quoted ambi-
guities, among the others in chronological sequence: the More Extended Gaussian 
Image (MEGI) in 1994 [30], the Multi-Shell Extended Gaussian Image (MSEGI) and 
the Adaptive Volumetric Extended Gaussian Image (AVEGI) in 2007 [31], and the 
Enriched Complex Extended Gaussian Image (EC-EGI) in 2010 [32].  

In this preliminary work our experiments are limited to the EGI, because it consti-
tutes a compact and effective representation of a 3D object. Besides, the feeling is that 
being an ear basically a cavity (certainly with convexities) the EGI can be both effec-
tive and efficient [33]. After suitable experiments, other more precise solutions, but 
not only limiting to derivations of the EGI, can be adopted too. 
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4 Experimental Analysis 

The Institute of Information and Communication Technologies (IICT) of the Bulgari-
an Academy of Sciences (BAS) has collected an ear dataset with the goal of providing 
more high definition data than comparable collections. The dataset now represents 11 
subjects of various ages and consist of 66 3D ear models in total. For each subject, the 
dataset contains 6 3D ears (where 5 are intentionally noised). All 3D ear models are 
taken under optimal lighting conditions through a VIUscan 3D scanner. This type of 
scanners is composed of a laser cross beam and of two HD cameras surrounded by a 
set of LEDs, thus allowing the laser triangulation and 3D data acquisition. The scan-
ner can reach a geometry resolution of 0.1mm, an accuracy of 50μm, and 24 bits of 
texture colors. In Fig. 5, some examples of 2D frontal projections from the 3D dataset 
are shown. 

The preprocessing of the ears consists of cropping the ear from the background and 
holes filling by the VIUscan 3D scanner’s software (VXelements). Then in a post-
processing phase by an open source system for the processing and editing of 3D tri-
angular meshes - MeshLab, the final result of Fig. 5 is obtained. Note that this phase 
is applied just for the model construction that is an off-line procedure. 

 
One of the aims of our experiments is to determine the most appropriate distances 

for similarity evaluation between EGI histograms (see section 3), as well as their ro-
bustness to noise for object recognition. This noise is introduced to represents differ-
ent accuracy of 3D scanning systems. For this purpose, a uniform noise in a given 
range was generated, and added to each 3D vertex coordinate of the scanned objects 
(Fig. 6a). It could be easily seen that: the higher noise, the more uniform the orienta-
tion histogram (see Fig. 6b, c), and the more challenging the recognition process.  

For each ear in the dataset the corresponding EGI represented by 3D/2D histo-
grams are built. There, in each EGI bin (see Fig. 2) all the areas of object’s triangle 
having the same orientation are accumulated. In order to do this, the histogram bin is 
selected by the maximum dot product between the input patch orientation and the 
coarse-to-fine set of triangles’ normals of the polyhedron (see Fig. 3). Thus, the total 
area of the EGI histogram is equal to the object’s area.  

Before forming the 3D/2D EGI histograms, the PCA method was used to equalize 
position and scale of the 3D objects in a global coordinate system. Thus, all ears mod-
els become invariant to scaling and only their morphology is taking into account. 
Obviously the eigenvectors and eigenvalues can be applied (and are more and more 
applied) for recognition purposes, but in our experimentation we use them just for 
alignment and scaling using as discriminant characteristics only the EGI. 

11 1 2 3 4 5 6 7 8 9 10 

Fig. 5. The current test dataset of 11 original 3D ear models 
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So far, our primary recognition strategy is based on the classical approach of the 

nearest neighbor, i.e. the shortest distance is pursued between an EGI histogram of 
given noisy input ear, compared to all ear model histograms, using (8), (9) and (10). 
As an example, in Table 1, on rows, the distances between input noisy ears with uni-
formly distributed noise in range [-0.1, 0.1] and all original ears (models) are given, 
using matching index ܧ஻஼ . To have true recognition of given noisy ear, the minimal 
distance in every row must lie on the main diagonal (green cells). If this is not the 
case, a false detection is attained – as in the case in Table 2 (the red cells). Further-
more, in addition to have true recognition, it is important to evaluate its reliability. 
Therefore, an evaluation of the recognition reliability is given in the last column of 
each table. It represents the ratio between the true matches and the first false one. The 

[0.0, 0.0] 

[-0.3, 0.3] 

[-0.1, 0.1]

[-0.4, 0.4]

[-0.2, 0.2] 

[-0.5, 0.5] 

[-0.1, 0.1] [-0.2, 0.2] [-0.3, 0.3] [-0.4, 0.4] [-0.5, 0.5] 

a) 

b) 

c) 

[0.0, 0.0] [-0.1, 0.1] [-0.2, 0.2] [-0.3, 0.3] [-0.4, 0.4] [-0.5, 0.5] 

Fig. 6. a) An ear model corrupted with uniform noise in a given range, added to each of its ሺݔ, ,ݕ  ሻ coordinates, thus simulating the varying accuracy of a 3D scanning device; b) & c) theݖ
corresponding 3D/2D EGI histograms of the noisy ears 

[0.0, 0.0] 
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smaller its value, the better the reliability. If the reliability value ߟ ൒ 1, it is a false 
recognition detection. 

A set of analogous 20 tables for each of the 4 mentioned distances (ܧெሺ௣ୀଵ|ଶሻ, ܧ஻஼  
and ܧ௓) and for 5 ranges of the noise have been computed in order to view the impact 
of noise on these distances reliability. All the results of true and false detections are 
summarized in Table 3, where the True Recognition Rate (TRR) and average reliabil-
ity ߟ෥ for each of 20 tables (cases) is presented.  

Table 1. The matching index ܧ஻஼ is used between input noisy [± 0.1] ears and model ears. The 
last column represents the ratio ߟ between the true matches and the first false one (in gray) 

     Model 
Noisy 

 ߟ 11 10 9 8 7 6 5 4 3 2 1

1 0.099 0.321 0.276 0.211 0.224 0.259 0.255 0.235 0.255 0.264 0.218 0.468 
2 0.318 0.099 0.327 0.307 0.308 0.251 0.294 0.280 0.306 0.285 0.330 0.394 
3 0.285 0.321 0.089 0.297 0.273 0.305 0.286 0.298 0.309 0.307 0.290 0.325 
4 0.222 0.305 0.288 0.079 0.242 0.262 0.234 0.218 0.232 0.275 0.213 0.370 
5 0.230 0.316 0.275 0.234 0.087 0.223 0.262 0.237 0.255 0.240 0.243 0.390 
6 0.250 0.246 0.299 0.257 0.231 0.093 0.252 0.251 0.265 0.251 0.243 0.404 
7 0.263 0.290 0.298 0.234 0.254 0.266 0.089 0.257 0.222 0.274 0.255 0.401 
8 0.230 0.285 0.295 0.210 0.227 0.253 0.253 0.096 0.243 0.261 0.249 0.458 
9 0.235 0.293 0.292 0.206 0.235 0.246 0.214 0.234 0.104 0.236 0.218 0.507 

10 0.267 0.280 0.308 0.264 0.224 0.239 0.268 0.269 0.249 0.101 0.246 0.452 
11 0.237 0.321 0.284 0.212 0.238 0.243 0.241 0.250 0.242 0.244 0.090 0.426 

AVG 0.418 

Table 2. The matching index ܧ஻஼ is used between input noisy [± 0.4] ears and model ears. The 
last column represents the ratio ߟ between the true matches and the first false one (gray | red) 

     Model 
Noisy 

 ߟ 11 10 9 8 7 6 5 4 3 2 1

1 0.215 0.298 0.235 0.226 0.228 0.249 0.228 0.237 0.258 0.283 0.232 0.954 
2 0.282 0.208 0.296 0.279 0.283 0.233 0.265 0.261 0.291 0.283 0.293 0.892 
3 0.263 0.308 0.213 0.272 0.268 0.286 0.260 0.276 0.289 0.307 0.293 0.821 
4 0.249 0.310 0.262 0.203 0.237 0.259 0.224 0.247 0.245 0.284 0.237 0.905 
5 0.230 0.311 0.247 0.230 0.208 0.236 0.220 0.240 0.258 0.279 0.247 0.946 
6 0.256 0.265 0.264 0.252 0.245 0.206 0.232 0.252 0.271 0.286 0.262 0.887 
7 0.283 0.315 0.281 0.267 0.265 0.271 0.204 0.276 0.263 0.311 0.268 0.775 
8 0.230 0.302 0.259 0.218 0.227 0.232 0.223 0.216 0.245 0.281 0.241 0.988 
9 0.235 0.309 0.265 0.222 0.240 0.249 0.211 0.255 0.223 0.271 0.228 1.055 

10 0.233 0.285 0.269 0.212 0.225 0.236 0.244 0.238 0.246 0.211 0.233 0.994 
11 0.248 0.315 0.265 0.229 0.246 0.259 0.221 0.256 0.259 0.282 0.219 0.992 

AVG 0.928 
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Table 3. True Recognition Rate (TRR) and corresponding average reliabilities ߟ෤ (the smaller, 
the better), based on different combinations of the investigated distances and ranges of noise 

       Noise
Distance 

݌ெሺܧ 0.5 ± 0.4 ± 0.3 ± 0.2 ± 0.1 ± ൌ 1ሻ 100% 0.415 100% 0.655 100% 0.828 72.7% ݌ெሺܧ 1.002 36.4% 0.939 ൌ 2ሻ 100% 0.427 100% 0.705 63.6% 0.917 45.5% 1.031 36.4% 1.101 

EBC 100% 0.418 100% 0.657 100% 0.830 90.9% 0.928 54.5% 0.987 

EZ 100% 0.776 100% 0.847 90.9% 0.927 72.7% 0.966 36.4% 1.019 

 
According to these experiments, it seems that the figure of merit ܧ஻஼  is the most 

robust to this kind of uniform noise with the highest TRR and the best average relia-
bility ߟ෤ of recognition. A little bit worse for high noise data are the results for the ܧெሺ݌ ൌ 1ሻ metric.  

The ܧ௓ index shows good performance, but it ranks on third place by goodness of 
TRR. This result is subject to the experimentally chosen threshold which is here set to 
0.5. 

The last ܧெሺ݌ ൌ 2ሻ distance gives the lowest TRR.  
The experiments show that the results are very promising, i.e. even the simplest 

EGI representation of ear models could distinguish them very well each other, no 
matter that their surface is not entirely convex. Also it would be interesting to use 2D 
mapping of EGI representation not only for overall better observing the resulting 
histograms, but also for applying the well-known or new adopted 2D recognition 
approaches on it.  

5 Conclusion 

In this paper a new approach suitable for ear authentication and identification has 
been proposed. The first results look promising for considering these new strategies 
among the candidates for a practical exploitation. Certainly it is necessary to extend 
the investigation to more general conditions for the acquisition and experiment also in 
the large variety of cases and people. Moreover, the computer demanding prepro-
cessing phase is easily supported because it is offline, certainly it must be investigated 
the amount of preprocessing necessary for the online authentication and identification 
to be applied to the ear under test. Nevertheless, these preliminary results show ro-
bustness to image degradation that looks very encouraging.  

The near future activity is related to a few tuning aspects of the current implemen-
tation. In particular we will consider: i) relationship between input 3D ear image qual-
ity and EGI resolution; ii) speed-up analysis considering simpler data representations, 
e.g. 2D EGI descriptions as in Fig. 2 b); iii) analysis if there are cases for which more 
complex EGI representations are required (e.g. Complex EGI, Enriched C-EGI, etc.). 
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Abstract. Biometrics has historically found its natural mate in Foren-
sics. The first applications found in the literature and over cited so many
times, are related to biometric measurements for the identification of
multiple offenders from some of their biometric and anthropometric char-
acteristics (tenprint cards) and individualization of offender from traces
found on crime-scenes (e.g. fingermarks, earmarks, bitemarks, DNA).
From sir Francis Galton, to the introduction of AFIS systems in the sci-
entific laboratories of police departments, Biometrics and Forensics have
been “dating” with alternate results and outcomes. As a matter of facts
there are many technologies developed under the “Biometrics umbrella”
which may be optimised to better impact several Forensic scenarios and
criminal investigations. At the same time, there is an almost endless list
of open problems and processes in Forensics which may benefit from
the introduction of tailored Biometric technologies. Joining the two dis-
ciplines, on a proper scientific ground, may only result in the success
for both fields, as well as a tangible benefit for the society. A number
of Forensic processes may involve Biometric-related technologies, among
them: Evidence evaluation, Forensic investigation, Forensic Intelligence,
Surveillance, Forensic ID management and Verification.

The COST Action IC1106 funded by the European Commission, is
trying to better understand how Biometric and Forensics synergies can
be exploited within a pan-European scientific alliance which extends its
scope to partners from USA, China and Australia.

Several results have been already accomplished pursuing research in
this direction. Notably the studies in 2D and 3D face recognition have
been gradually applied to the forensic investigation process. In this paper
a few solutions will be presented to match 3D face shapes along with some
experimental results.

1 Introduction

Forensic science is defined as the body of scientific knowledge and technical
methods used to solve questions related to criminal, civil and administrative law.
c© Springer International Publishing Switzerland 2014
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Biometric technologies are the set of automated methods used for the recognition
of individuals using their physiological and behavioral traits. Forensic biomet-
rics can be defined as the scientific discipline that makes use of the biomet-
ric technologies for the demonstration of the existence and the investigation of
infringements, the individualization of perpetrators and the description of modus
operandi. These tasks are embedded in several forensic processes: forensic inves-
tigation, forensic evaluation, forensic intelligence, automated surveillance and
forensic identity management.

Methods like, the forensic anthropometry (Bertillon), the forensic dacty-
loscopy (Galton) and “le portrait parlé” (Reiss), exploiting physiological and
behavioral traits, since the end of the 19th century have been used for the iden-
tification of criminals as well as for the transmission of the information relevant
for remote identification. From the 1960s the development and implementation
of automatic fingerprint identification systems (AFIS) represent the first foren-
sic deployment of biometrics, with the automation of the identity verification
process [1]. This is also used for the automation of the first step of the individ-
ualization process (selection/rejection of candidates). In the 1980s the discovery
of forensic DNA profiling led to identity verification process from DNA reference
material and the individualization process from biological traces.

In the 1990s the development of computer science and signal processing
allowed a performance breakthrough of biometric technologies, offering prac-
tical solutions for access control based on several modalities. Speaker, face and
gait recognition became of interest for forensic biometrics, as a consequence
of the development of mobile telecommunication and surveillance technologies
(CCTV). During the same decade the first solutions integrating biometric tech-
nologies and the Bayesian inference framework were proposed for forensic indi-
vidualization, with the aim of ensuring a logical and transparent approach for
the evaluation of the biometric forensic evidence.

In the last decade interest has arisen in so-called soft biometric modalities,
based on biometric features such as height, weight, gender, hair, skin and clothing
color. This interest is mainly due to their availability of data, allowing capture
without constraint that is a prerequisite in surveillance environments. However,
their limited typicality enhanced the necessity to consider the fusion of several
modalities. Some aspects of this technological progress are potentially interesting
for forensic biometrics, for example the estimation of the body height and body
weight from individuals present on still and live images. Attempts to combine
several biometric modalities are not only of interest for forensic biometrics but
for forensic science in general, as it is related to the combination of forensic
evidence [2,3]. The critical gap is the analysis of all the forensic processes that can
integrate biometric technologies, to understand their specificities and translate
them in clear needs, for the biometric community to be able to propose specific
solutions.

A number of Forensic processes may involve some sort of Biometric-related
technology, among them:
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• Evidence evaluation. Likelihood ratio-based method to quantify the eviden-
tial value of biometric traces

• Forensic investigation. List of putative sources of biometric traces from one
or several combined modalities

• Forensic Intelligence. Grouping of putative sources of biometric traces on
basis of one or several combined modalities

• Surveillance. Capture of biometric traces and detection of putative sources
on the basis of one or several combined modalities

• Forensic ID management and ID Verification. ID infrastructure and manage-
ment, ID processes (create, challenge (access control / ID verification) and
end an identity)

Several results have been already accomplished pursuing research in this
direction. Notably the studies in 2D and 3D face recognition are being gradually
applied to the forensic investigation process. [4]

2 Biometric Challenges in Forensics

Obtaining and using biometric evidence from the multimedia content available
on social networking sites is a promising forensic activity for which the forensic
community lacks biometric solutions. On the other hand the biometric commu-
nity has developed technologies that are still not fully implemented in all the
possible forensic processes:

• Even though uniqueness is not an issue in some forensic processes [5], several
law enforcement applications still require the extent to which fingerprints
coded in AFIS systems are unique to individuals.

• The role of the human operator in comparing the results of automated pro-
cessing of fingerprints, facial images, etc.

• Systems engineering approaches to the application of biometric recognition
in a forensic context

• Coding of scars, marks and tattoos; and a quantitative assessment of their
contribution to identification or verification of identity

• The role of international standards and codes of practice to support research
as well as in the interchange of forensic information

• Establishing robust test procedures (on the lines of work undertaken in the
testing of biometric devices, software and systems in the ISO 19795 series of
standards)

• Development of privacy-enhancing techniques to reduce privacy invasion in
the collection and processing of material relating to people who are only
incidentally involved in a capture event (e.g. processing a video stream in a
crowded public place, where many hundreds of individuals are involved).

The EU COST Action IC1106 “Integrating Biometrics and Forensics for the
Digital Age” represents an ideal opportunity for the Biometric and Forensic
communities to join and understand each others needs, challenges and opportu-
nities in a realistic manner. These synergies will lead to the development of a
coherent joint vision and its dissemination across disciplinary and geographical
borders [6].
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2.1 Biometric Evidence for Forensic Evaluation and Investigation

Biometric data analysis may be of pivotal importance at any stage of the course
of justice, be it the very first police investigation or a court trial. In the police
investigative mode, reasoning follows a process of generating likely explanations,
testing these with new observations and eliminating or re-ranking the explana-
tions. In the forensic evaluative mode for a court trial, an opinion of evidential
weight, based upon case specific propositions (hypotheses) and clear conditioning
information (framework of circumstances) should be provided for use as evidence
in court. The main objective of this task is to establish a robust methodology for
forensic automatic biometric recognition based on statistical and probabilistic
methods. Such a methodology should provide guidelines for the calculation of
biometric evidence value and its strength and the evaluation of this strength
under operating conditions of casework. This theoretical approach and corre-
sponding design methodology are intended to bridge the gap between forensics
and biometrics. This task involves several aspects of the forensic casework pro-
cess: from the collection of evidence to the evaluation of the strength of evidence,
to provide a unified framework which models the assumptions, conditions, and
uncertainty implicit in the casework. A complete set of interpretation methods,
based on the likelihood ratio approach, needs to be defined independently of the
baseline biometric recognition system [7]. It should also define the integration
procedure of these interpretation methods with the state-of-the-art automatic
biometric recognition algorithms.

2.2 Audiovisual Biometrics for Forensics Examination

Nowadays digital evidence rather than physical evidence is increasingly getting
easier to acquire from the scene of crime or cyber-crime.1

In fact, the Internet, computers, video surveillance cameras, mobile phones,
telephone networks, social networks are all examples of methods for generating,
collecting and sharing information on a massive scale. Therefore, by exploiting
biometric technologies it will be possible to capture identity information from
strong biometric data left on the scene of a crime, like:

• facial imaging (face, ear, iris) which can be acquired from both single images
and surveillance video recordings, etc.;

• voice recording acquired from video sequences, ambient microphones, phone
call recordings;

• Audio-visual recording containing lip-motion and faces;
• gait information acquired from video sequences.

In many cases, face and iris samples are not ideal since they depend on the camera
position, occlusions, and the degree of cooperation of the suspected person. This
1 Some of the forensic concepts developed for physical evidence may be transposed

to digital evidence, some other not, due to the property of digital information. It is
desirable to define the extent and limits of such a transposition. For example the
question of chain of evidence is different for the physical and digital evidence.
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information must be complemented with other sources of evidence like voice
recording, lip-motion, gait information, etc.

Audio-visual speech can be also useful to determine the authenticity of a
recorded media. This is a challenging task because of the enormous amount of
recorder data and the non-cooperative acquisition scenario, which may reduce
the recognition accuracy. Interactive multimodal biometric authentication tech-
niques, using quality and reliability measures, offer a potential solution. In the
near future, audiovisual biometrics could be regarded as the best starting point
of forensic investigations, also to orient the collection of physical traces.

2.3 Soft Biometrics for Forensics Examination

Soft biometrics like age, gender, ethnicity, height, weight, eye color, hair style,
can not be used to authenticate individuals since they lack of sufficient perma-
nence and distinctiveness. Nevertheless, they can be used as ancillary informa-
tion to support the forensic evaluation process to either narrow down the field
of search or if only partial strong biometrics data are available. Moles, freckles,
birthmarks, scars, marks, and tattoos possess higher discriminative capabilities.
Being permanent imprints on the body, they can be used to assist the process
of people identification in forensic applications or disaster recovery. Automating
the accrual of evidential value, based on soft biometrics, would provide experts
a valuable tool for: supplementing the decision made from other biometrics (like
face, iris, etc); improving the identification accuracy: increasing the search speed
in a database with hierarchical searches; improving the strength of evidence, also
when partial information is available.

2.4 Forensic Behavioral Biometrics

From a forensic perspective, it is becoming increasingly important being able
to infer various aspects about criminal activities. As such, biometric data are
not only usable in forensic science for inference of identity of source, but also
for inference at activity level. Either single user or crowd behavioral analysis is
one of these aspects. Given an audio visual or visual scene is there any unusual
or abnormal event taking place in the scene? Are there any specific contexts or
events that will change the behavior of the scene dynamics by triggering other
events without necessarily leading to unusual events? For instance, it is expected
that when a train is near its departure time, that many individuals start run-
ning to catch it. One of the major difficulties in extracting useful information
from a long dynamic visual flow, is the identification of that small portion of
data that contains important information. Algorithms that could automatically
detect unusual events within streaming or archival audio/video would signifi-
cantly improve the analysis efficiency and save valuable human attention for only
the most salient content. For example, algorithms for real time scene analysis,
fight scene detection, weapon detection, etc. The outcome of this research task
is to associate Actions/events with a group, identifying the role of the various
individuals leading up to the potentially criminal activities. In this framework
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special focus will be on real time analysis of the actions to detect a suspect
behavior in order to prevent crime.

2.5 Biometric Analysis of Crime Scene Traces and Their Forensic
Interpretation

The collection of forensic traces from a crime scene involves a number of different
processes which may be used for evidential purpose. Biometric technologies can
be deployed to process data from:

• latent fingerprints and palmprints;
• written documents (signatures and handwriting analysis, etc.).

At the crime scene, fingerprints and palmprints can be found on many different
surfaces [8]. Although fingerprints have been studied for decades, both in the
forensic and in the biometric community, the progress made followed parallel and
almost never convergent tracks. The potential convergence can be investigated
by adopting high resolution optical capturing devices, to obtain non destructive
quality measurements. For example, recovering the age of a latent fingerprint
can be very important to determine if the suspect was present before or after
a crime took place.2 Moreover, the use of the whole electromagnetic spectrum
(from infrared to X-rays) may track potential biometrics, even in a covert mode,
such as latent finger and palm marks, for a subsequent forensic analysis (e.g.
contaminations, DNA, etc.).

Novel means of fingerprints and palmprints visualization can be addressed.
Especially when a conventional treatment is unlikely to work, such as on metal
surfaces subject to extreme conditions [9]. Techniques that extend the range
of treatments available for latent fingerprint visualization, all of which would
extend the usefulness of an AFIS database in searching for offenders, would be
very useful.

Written documents represent another source of physical evidence that is used
by forensic experts and whose analysis can benefit from the studies conducted
in the biometric field on both signature and handwriting analysis. The focus of
this research should be on the development of pattern recognition algorithms,
to complement and expedite the experts judgment. Algorithmic solutions for
a semantic analysis, i.e. for extracting and representing the contextual usage
meaning of words, by means of statistical processes applied to a large corpus of
text, can be also exploited to infer the users identify.

2.6 Combination of Multimodal Biometrics with Other Forensic
Evidence

Data fusion may involve the same biometric trait, acquired from different devices,
or different traits from different sources. For example, the same walking individ-
ual can be acquired by different surveillance cameras placed in different loca-
tions. On the other hand, several data like gait, face, ear, voice, can be acquired
2 Research on datation in forensic science exists (in the fingerprint field and others)

and has proven extremely difficult as the environmental parameters are unknown.
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from the same video. This data needs to be properly represented, with feature
extraction techniques, and fused. In the forensic community, little or no effort
has been devoted to the multimodal integration and fusion of data from multiple
sensory channels. On the contrary, multimodal data fusion has been extensively
studied by the biometrics community. This may resort in a multidisciplinary app-
roach where techniques for effective evidential evaluation, based on fragmentary
evidence, object and behavior recognition, are concurring to provide a robust
support for the case, in agreement with the appropriate privacy/legal require-
ments and recommendations. Soft biometrics may be also exploited, together
with other sources of evidence, to provide support to the hypothesis of criminal
behaviour.

2.7 Ethical and Societal Implications of Emerging Forensic
Biometrics

It is of crucial importance for law enforcement practices to accomplish with
key democratic principles and fundamental human rights. Three main areas of
intervention should be considered:

• Impact on Fundamental Rights: according to the Strategy for the effec-
tive implementation of the Charter of Fundamental Rights by the European
Union (COM(2010) 573 final, the Charter Strategy) adopted by the Com-
mission on 19 October 2010, all EU policies should be assessed against their
impact on fundamental rights. This holds true in particular for RTD policies
and technologies concerning justice and law enforcement.

• Impact on Privacy and Data Protection: the likely impact of new and emerg-
ing biometrics on privacy and data protection should be assessed and specific
guidance issued. In particular, the possibility to adopt a privacy by design
approach to forensic biometrics, should be explored. Policy issues concerning
international biometric data sharing for forensic purposes and the establish-
ment of crossborder biometric forensic databanks, are also relevant.

• Impact on vulnerable and disadvantaged groups: the risk that the imple-
mentation of new forensic biometrics may produce discrimination against
ethnical and religious minorities, low income or geographically dispersed pop-
ulations, children and minors, persons with disabilities and aging population,
should be carefully assessed and minimized.

This process may result in increasing the understanding of non-technical chal-
lenges of emerging forensics biometrics among the international scientific com-
munity and in strengthening the Biometric-Forensic EU COST IC1106 network.

3 3D to 2D Face Recognition

The analysis of 3D face data is very promising in improving the identification
performances of individuals. 3D acquisition systems are also becoming affordable,
user friendly and easy to install in different environments. For these reasons it
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is envisaged that, in the near future, 3D face acquisition and matching can be
successfully employed in forensic applications as well.

There are different scenarios where three-dimensional data can be acquired
and used to to provide forensic evidential value to face images in criminal inves-
tigations:

• (3D to 3D) The conventional face mug shots taken from arrested criminals
are substituted with a full 3D representation of the face. A 3D face can be
obtained from a video acquired by a surveillance camera in the crime scene.
The degree of similarity of two 3D faces is computed to accrue evidence for
a potential suspect.

• (3D to 2D) As in the previous case, a 3D face representation is available
from a list of suspects, but only a 2D face image is available from the crime
scene. The 3D face representation is used to generate a synthetic 2D view
of the face and perform the matching with the face image taken from the
crime scene.

In order to perform the 3D to 2D matching a number of salient features are
extracted from the two face images. The similarity is determined by comparing
the two feature-based representations.

4 Pattern Matching Algorithm

3D face data is acquired for enrolment while 2D face images are used for iden-
tification. This is the case of convicted criminals whose 3D faces were acquired
and stored, while 2D snapshots or a video clip is available from the crime scene.
In this case the police officer should be able to identify the criminal whose face
is depicted in the captured image or video. In most cases identification from
images taken from a surveillance camera is quite difficult because the face is
often rotated with respect to the camera. Having 3D face data allows to re-
project face images with any orientation and use these images to perform the
matching.

To perform the matching a series of 2D views were first produced, corre-
sponding to 9 different head orientations, spaced 30 degrees along the horizontal
and vertical axes. The 2D projections and the test images are aligned and scaled
according to the positions of the eyes and the mouth. To ensure the proper
scale and position on the 2D image plane a simple planar affine transforma-
tion is adopted. The image brightness is also normalized with a multi-window
histogram equalization technique. Finally all 2D projections of all subjects are
matched against the probe 2D face image.

The face matching algorithm is based on the comparison of the Scale Invari-
ant Feature Transform (SIFT) feature sets extracted from the probe and gallery
(3D projected) images [20]. One of the interesting features of the SIFT approach
is the capability to capture the main gray-level features of an object’s view by
means of local patterns extracted from a scale-space decomposition of the image.
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Fig. 1. Sample 2D images obtained by projecting the 3D texture mapped model

Fig. 2. (left) SIFT computed from a 2D test face image. (right) SIFT extracted from
the corresponding pose-projected 3D face from training.

In order to perform the matching the SIFT features are first extracted from
the gray scale images [21]. The matching score is computed, as proposed in [20],
by counting the number of most similar SIFT features in the probe and gallery
images. As several views are projected for each subject it is expected that the
2D projection corresponding to the closest head orientation of the probe image
produces the smallest matching score.

Several tests were performed to determine the expected performances of the
proposed biometric technology as a potential forensic application. Six out of
the total nine 2D projected images of one subject are shown in figure 1. In
figure 2 the test and probe image, with the same head orientation and registered
with the extracted SIFT features are shown. The genuine and impostor score
distributions, obtained by performing a complete matching test on the acquired
dataset, are shown in figure 3. The equal error rate computed from the two
distributions is equal to 4%.3

3 It is worth noting that even though the EER provides a good performance indica-
tion for the technology evaluation, in the forensic evaluation scenario, some more
appropriate metrics have been developed, such as [22]:

• Tippet plot, rates of misleading evidence (RMEP, RMED);
• Empirical Cross Entropy (ECE) and Cost Log Likelihood Ratio (Cllr);
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Fig. 3. Impostor and client score distribution computed with the 3D to 2D matching
using the SIFT features and using the global distance of the features. In forensic science
these distributions are often termed “between-source variability of the features for the
relevant population” and the “within-source variability of the features for the suspected
person”.

5 Conclusion

Biometrics and Forensics have an undiscussed strong potential for mutual cross-
fertilization. Several forensic processes may be automated and rationalized by
the introduction of biometric classification algorithms. Several forensic traces
and sources of evidence in criminal cases may be better analyzed and repre-
sented by means of feature extraction techniques. Different traces and evidence
sources could be more efficiently combined by means of multibiometric tech-
niques. Some examples of how biometrics may complement forensic science have
been discussed. Practical implementations and further studies are the subject
of a newly started pan-European network (EU COST Action IC1106) aiming to
the development of a task force to properly address and solve these as well as
other emerging issues in forensic biometrics.

Face-based identification has been extensively used in forensic applications.
Generally 2D face images are captured both from convicted criminals and in the
crime scene. We argue that 2D face images do not convey enough information to
perform automatically a reliable matching of a probe and gallery pair. Extremely
different acquisition conditions between the enrollment set-up and the crime
scene make it difficult to compare images from the same subject. While mug shots
are taken from criminals with a camera directly looking at the subject’s face, the
pictures taken from the crime scene generally originate from surveillance cameras
looking at faces from above. A viable solution is to exploit the information
content of a full 3D face, at least for the enrollment phase.
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In this paper a forensic scenario has been considered where a 3D face repre-
sentation is available from a list of suspects, but only a 2D face image is available
from the crime scene. The 3D face representation of the suspect is used to gen-
erate a synthetic 2D view of the face and perform the matching with the face
image taken from the crime scene. 3D to 2D experiments are presented produc-
ing promising results. Improvements are expected by increasing the number of
synthetic head pose variations in the training set.
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Abstract. It has been well known that there is a correlation between facial ex-
pression and person’s internal emotional state. In this paper we use an approach 
to distinguish between neutral and some other expression: based on the dis-
placement of important facial points (coordinates of edges of the mouth, eyes, 
eyebrows, etc.). Further the feature vectors are formed by concatenating the 
landmarks data from Supervised Descent Method, applying PCA and use these 
data as an input to Support Vector Machine (SVM) classifier. The experimental 
results show improvement of the recognition rate in comparison to some state-
of-the-art facial expression recognition techniques. 

Keywords: Supervised Descent Method · SVM · PCA · Facial expression · 
Emotion recognition 

1 Introduction 

Face plays significant role in social communication. This is a 'window' to human per-
sonality, emotions and thoughts. The face we look at is a mix of both physical charac-
teristics and emotive expressions. According to the psychological research, nonverbal 
part is the most informative channel in social communication. Verbal part contributes 
about 7% of the message, vocal – 34% and facial expression -55% [8]. Due to that, 
the face is a subject of study in many areas of science such as psychology, behavioral 
science, medicine and finally computer science. 

One of the grand challenges for computational intelligence is to understand how 
people process and recognize each other’s face and expression and to develop auto-
mated and reliable face recognition systems. In the field of computer science much 
effort is put to explore the ways of automation the process of face detection and seg-
mentation. Several approaches addressing the problem of facial feature extraction 
have been proposed [8, 25]. The main issue is to provide appropriate face representa-
tion, which remains robust with respect to diversity of facial appearances.  

The objective of this paper is to outline the problem of facial expression recogni-
tion that is a great challenge in the area of computer vision. Advantages of creating a 
fully automatic system for facial action analysis are constant motivation for exploring 
this field of science. The emotion recognition system is a considerably challenging 
task to generate such an intelligent system that is able to identify and understand  
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human emotions for various vital purposes, e.g. security, society, entertainment, 
health care, human-computer interaction, industrial and personal robotics, surveil-
lance and transportation.  

Some already developed emotion recognition applications have demonstrated  
their capabilities in different areas of everyday life; for instance, they can predict the 
criminal’s behavior by analyzing the images of their faces that are captured by the 
surveillance camera. Furthermore, such system is very useful and powerful in signed 
language recognition that deals with deaf people. Additionally, it is used to build the 
intelligent automobile systems that will allow the car to recognize the physical condi-
tion of its driver (in case of heart attack for example). The emotion recognition system 
has had a considerable impact on the game and entertainment fields besides its use to 
increase the efficiency of robots for specific tasks such as caring services, military 
tasks, medical robots, and manufacturing servicing. In general, the intelligent com-
puter with the emotion recognition system can be used to improve our daily lives. 

The scientists have analyzed the human emotions and realized that human emotion 
recognition can be achieved by analyzing speech or the facial expressions. There are 
many algorithms which study the speech [26-28] or the 2D or 3D facial expressions 
[29] in order to discern the emotion. According to many studies, both kinds of algo-
rithms succeed in classifying the emotions but the facial expression algorithms have 
been revealed to be more accurate than the speech algorithms [30]. 

The goal of the facial expression recognition system is to imitate the human visual 
system in the most similar way. This is very challenging task in the area of computer 
vision because not only it requires efficient image/video analysis techniques but also 
well-suited feature vector used in machine learning process.  

The first principle of this system is that it should be effortless and efficient. That is 
connected with full automation, so that no additional manual effort is required. The 
system should be able to avoid limitations on body and head movements which could 
also be an important source of information about displayed emotion. The constraints 
about facial hair, glasses or additional make-up should be reduced to minimum. Other 
important features that are desired in this kind of a system are user and environment 
independence. The former means that, the algorithm must be invariant to skin color, 
age, gender or nation. 

Despite 40 years of research, however, today’s recognition systems are still largely 
unable to handle the extraordinary wide range of appearances and facial expression 
assumed by people in typical images or video sequences. 

The rest of the paper is organized as follows: In the next section we present a brief 
survey on popular automatic facial feature extraction algorithms a necessary step for 
the emotion recognition. In Section 3 we present the approach Supervised Descent 
Method (SDM) for facial feature extraction that will be used later for the facial ex-
pression analysis. In Section 4 we will present the proposed method in several steps: 
Viola-Jones for face detection followed by SDM, PCA for feature vector dimension-
ality reduction and SVM for data classification.  Section 5 will illustrate the experi-
mental results for the classification of the processed data with various classification 
techniques and we will present a comparison between similar methods. Finally sec-
tion 6  conclude the paper. 
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2 Brief Survey on Existing Automatic Facial Feature 
Extraction Algorithms 

On fig. 1 is illustrated the basic structure of a facial expression analysis system. 
 

 

Fig. 1. Basic structure of facial expression analysis systems 

One of the most important steps of the facial expression analysis is the face feature 
extraction and representation. Deformation of facial features are characterized by 
shape and texture changes and lead to high spatial gradients that are good indicators 
for facial actions and may be analyzed either in the image or the spatial frequency 
domain. The latter can be computed by high-pass gradient or Gabor wavelet-based 
filters [31], which closely model the receptive field properties of cells in the primary 
visual cortex. They allow to detect line endings and edge borders over multiple scales 
and with different orientations. These features reveal much about facial expressions, 
as both transient and intransient facial features often give raise to a contrast change 
with regard to the ambient facial tissue. They have shown to perform well for the task 
of facial expression analysis and were used in image-based or frame-based approach-
es [13, 14, 20].  

Model-based approaches constitute an alternative to image-based deformation ex-
traction. Appearance-based model approaches allow to separate fairly well different 
information sources such as facial illumination and deformation changes. Lanitis et al. 
[21] interpreted face images by employing active appearance models (AAM) [22, 23]. 
Faces were analyzed by a dual approach, using both shape and texture models. Active 
shape models (ASM) allow to simultaneously determine the shape, scale and pose by 
fitting an appropriate point distribution model (PDM) to the object of interest.  
A drawback of appearance-based models is the manual labor necessary for the con-
struction of the shape models. The latter are based on landmark points that need to be 
precisely placed around intransient facial features during the training of the models. 
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Huang and Huang [24] used a point distribution model to rep-resent the shape of a 
face, where shape parameters were estimated by employing a gradient-based method. 

Recently in [4] a new method is proposed based on a Supervised Descent Method 
(SDM) for minimizing a Non-linear Least Squares (NLS) function. This method is 
fast and reliable and can be used to detect facial features necessary for the expression 
recognition system. Based on the performance of the source code provided by the 
authors the method achieves state-of-the-art performance in real time facial feature 
detection from static camera. 

This method will be described in the next section and it will be used further in the 
proposed system for facial expression recognition developed in our research. 

3 Supervised Descent Method for Facial Feature Extraction 

Given an image 1d ×ℜ∈ m of m pixels, 1d(x) ×ℜ∈ p indexes p landmarks in the image. 

h is a non-linear feature extraction function (e.g., SIFT) and h( 1128d(x)) ×ℜ∈ p in the 

case of extracting SIFT features. During training the SDM learns a sequence of de-
scent directions that minimizes the mean of NLS functions sampled at different points 
(see Fig 2).  

 

 

Fig. 2. a) Using the training set SDM learns a generic set of descent directions ሼܴ௞ሽ. Each 
parameter update ൫∆ݔ௜൯ is the product of ܴ௞  and an image specific component ൫ݕ௜൯ [4]. 

So we will assume that the correct p landmarks (in our case 66) are known, and we 
will refer to them as x* (see Fig. 3 a).  
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SDM is a supervised technique learning generic set of descent directions.  It is able 
to overcome many drawbacks of second order optimization schemes, such as 
nondifferentiability and expensive computation of the Jacobians and and Hessians and 
at the same time it performs in an extremely fast and accurate way. 

4 Proposed Method 

The processing flowchart of the proposed method for expression classification is illus-
trated on fig. 4. In the subsections below we describe each stage. 
 

 

Fig. 4. Overview of the proposed system 

4.1 Face Detection 

As first stage, the input image is analyzed for face presence and determination of its 
location. There are many face detection methods available in the literature [1]. In our 
system we used an open source code library (OpenCV) that implements algorithm 
based on Viola-Jones [2] which is known to be a very fast and efficient. Fig.  shows 
an example image from CK+ database [3] (©Jeffrey Cohn) and located face (bounded 
is square) using the OpenCV face detector. 

 

           

Fig. 5. An illustration of example image from CK+ database and detected face using OpenCV 

4.2 Facial Features Extraction 

For features extraction we obtain the coordinates of important facial points using the 
Supervised Descent Method (SDM) presented in [4]. The source code and models we 
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used are provided by the authors1. Afterwards the feature vector is computed by sub-
tracting the coordinates of each pair of two neighbor landmarks. To explain this, let’s 
denote the set of coordinates of keypoints for given face as: {(x1,y1), (x2,y2), (x3,y3),…, 
(xN,yN)}, where N = 49. Then the future vector is 96 dimensional and is formed as 
follows: 

 
)}(....,),(),(),(

),(....,),(),(),{(

1342312

1342312

−

−

−−−−
−−−−=

NN

NN

yyyyyyyy

xxxxxxxxf
 (3) 

In this way the feature vector is invariant with respect to the location of detected 
face. Fig. 6 depicts the keypoints obtained after applying the SDM method. 

 

 

Fig. 6. An example image and detected keypoints 

4.3 Dimension Reduction with Principal Component Analysis  

One of the main advantages of PCA is its ability to reduce the dimensionality without 
much loss of information. In our experiments PCA is used to reduce the size of fea-
ture for each image to 24 dimensional vector. This vector is input into the Support 
Vector Machine (SVM) classifier. 

4.4 Multi-class Support Vector Machine Expression Classification 

SVM is very popular and powerful method for binary and multi-class classification as 
well as for regression problems. For two class separation, SVM applies a maximum 
margin manner that estimates the optimal separating hyper-plane. In our investigation 
we used the LibSVM library2 [5]. In general SVMs can only solve binary classifica-
tion problems. For multi-class classification, LibSVM computes decision surfaces for 
all class pairs (one-against-one technique) and then find the correct class by a voting 
mechanism.  

                                                           
1 http://www.humansensing.cs.cmu.edu/intraface/ 
2 http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 
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where ),...,1( Kii =ξ  are slack variables which measure the degree of misclassifica-

tion of their associated training data points with respect to the current decision  
boundary and margin. 

In our experiments, we used non-linear classifier with Gaussian kernel. 

5 Experimental Results 

In our experiments we used the Cohn-Kanade Extended Facial Expression Database 
(CK+) [3]. This database is developed for evaluation and comparison of methods and 
algorithms for facial expression analysis. It contains 123 different subjects and 593 
image sequences. From these, 118 subjects are annotated with 7 universal emotions: 
anger, contempt, disgust, fear, happy, sad and surprise (Table 1). The corresponding 
labels are used as the “ground truth” data. 

Table 1. Distribution of emotion labels for 118 subjects from CK+ database 

Emotion anger contempt disgust fear happy sad surprise 
Number of imag-
es per emotion 

45 18 59 25 69 28 83 

 
We trained a multi-class SVM using leave-one-subject-out cross validation method 

in which all images of the test subject were excluded from the training data.  
The conducted results of the classification accuracy are shown in Table 2. It can be 

seen that emotions with large displacement of keypoints (such as surprise and happy) 
gave more than 97% correct classification. For the worst case (fear), the accuracy is 
76%. The average recognition rate is 86,27%. 
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Table 2. Emotion classification confusion matrix for CK+ database using the proposed method 

% anger contempt disgust fear happy sad surprise 

anger 82,22 6,67 6,67 0,00 2,22 2,22 0,00 

contempt 16,67 77,78 0,00 5,56 0,00 0,00 0,00 

disgust 8,47 0,00 89,83 0,00 0,00 1,69 0,00 

fear 4,00 0,00 0,00 76,00 4,00 4,00 12,00 

happy 2,90 0,00 0,00 0,00 97,10 0,00 0,00 

sad 14,29 0,00 0,00 0,00 0,00 82,14 3,57 

surprise 0,00 1,20 0,00 0,00 0,00 0,00 98,80 
Recognition 
Rate (Avg.) 

86,27 

 
Looking at the results produced by the most accurate implementations of the Ac-

tive Appearance Model (AAM) that utilizes shape and texture information [3] and the 
Constrained Local Model (CLM) that uses only texture information [6], it can be seen 
that with our proposed method, the average recognition accuracy is higher (from 
83,3% and 74,4% to 86,27% respectively). We can also see some reasonable im-
provement of classification rate by comparing our work with different learning meth-
ods, including SVMs and the Grassmann manifold [7] (from 85,8% to 86,27%). 
However we should note that direct comparison analysis is misleading because the 
results in [7] are reported on the first version of the CK dataset with different emotion 
labels. These works are summarized in Table 3. 

Table 3. Comparison of the results for CK+ database with other methods 

% An. Co. Di. Fe. Ha, Sa. Su. Avg. 

AAM-SVM (Shape) [3] 35 25 68,4 21,7 98,4 4 100 50,3 

AAM-SVM (Texture) [3] 70 21,9 94,7 21,7 100 60 98,7 66,7 

AAM-SVM (Texture and Shape) [3] 75 84,4 94,7 65,2 100 68 96 83,3 

CLM-SVM (Texture) [6] 70,1 52,4 92,5 72,1 94,2 45,9 93,6 74,4 

G-KLDA [7] 65,7 - 86,8 83 95,1 85,7 98,6 85,8 

E-SVM [7] 62,8 - 78,9 74,4 91,3 80,3 97,2 80,8 

G-SVM [7] 65,7 - 78,9 74,5 95 85,7 97,2 82,8 

Proposed method 82,2 77,8 89,8 76 97,1 82,1 98,8 86,27 

6 Conclusion and Comments 

In this paper we proposed a method for automatic facial expression classification.  
The system is able to detect a human face from still image, extract feature vectors 
(differences of the coordinates of specific important facial key-points), applying PCA 
and then classify expression presented in the face using trained SVM. From the con-
ducted experiments on CK+ database, the classification rate vary between 76% and 
98,8% (recognition rate is 86,27%). The system is capable to distinguish “surprised”, 



174 A. Manolova et al. 

 

“happy”, “disgusted”, “angry” and “sad” expressions at maximum rate (more than 
82%). The other two expressions – “contempt” and “fear” are recognized at lower 
rates – 77,8% and 76% respectively. In comparison to some state-of-the-art facial 
expression recognition techniques [3], [6] and [7] our method reaches reasonable 
improvement of performances over the different classes (Table 3). 

It can be concluded that key-points location information is very efficient for facial 
expression recognition provided that details of coordinates’ changes are determined 
precisely. It can be observed that different emotion expressions cause changes in the 
texture of the skin from the formation of wrinkles for some specific regions (between 
eyebrows, cheeks, forehead, etc.). Thereby the current system can be extended by 
texture based algorithms to improve performance. 

Acknowledgment. This work was sponsored by the Ministry of Education and Science of 
Bulgaria, National Foundation “Science and Research”,  Slovenian-Bulgarian R&D joint pro-
ject, NSF Grant DNTS/Slovenia 01/08 – “Fast and Reliable 3D Face Recognition”. 
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Abstract. This paper presents a framework for determining the direc-
tion of human gaze with an active multi-camera system. A fixed camera
is employed in order to estimate the position of the human face and
its features, like the eyes. By means of the Supervised Descent Method
(SDM) for minimizing a Non-linear Least Squares (NLS) function we
can compute correctly the position of the two eyes using 6 landmarks for
each of them and the pose of the head. Then an active pan-tilt camera is
oriented to one of the users eyes. This way a high precision gaze direction
determination is accomplished.

Keywords: Eye tracking · Gaze tracking · Face tracking · Active cam-
era · Pan-tilt camera

1 Introduction

The eyes are one of the most important ways for gathering information about
the world around us in our everyday live. A users gaze is suggested to be the
best proxy for attention or intention. Using the information from the gaze as a
form of input can enable a computer system to gain more contextual information
about the users task at hand, which in turn can help to design interfaces which
are more interactive and intelligent. Gaze tracking is a promising research area
with application that goes from advanced human machine interaction systems,
to human attention processes studying, modeling and use in cognitive vision
fields, multimedia and gaming systems, marketing and commercial statistical
studies, security systems and etc. At the beginning the eye tracking as a form
of input was primarily developed for impaired users who were unable to use the
keyboard and the mouse as standard input devices. However, with the increasing
accuracy and decreasing cost of eye gaze tracking systems the everyday users
are able to use gaze as a form of input in addition to keyboard and mouse to
augment or facilitate the human-computer interaction experience. In [13] the
authors have developed gaze-enhanced interaction techniques for pointing and
selection, scrolling [14], password entry [12] and typing [6].

The existing gaze tracking techniques are broadly classified into intrusive
and non-intrusive. The intrusive techniques require attachments around the eye
c© Springer International Publishing Switzerland 2014
V. Cantoni et al. (Eds.): BIOMET 2014, LNCS 8897, pp. 176–188, 2014.
DOI: 10.1007/978-3-319-13386-7 14
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to determine the gaze. These include search coils, electrooculography [4], con-
tact lens and head mounted devices. Non-intrusive techniques use video cameras
under infrared or natural light sources.

The non-intrusive or video based techniques are classified into two categories
appearance-based and model-based. Appearance-based approaches directly treat
an eye image as a high dimensional feature. In [7] the authors use the image
contents as to map directly to the screen coordinates. These methods require
several significant calibration points to infer the gaze direction from the images.
The analysis of the images at calibration points is important for gaze estima-
tion. Baluja and Pomerleau use a neural network to learn a mapping function
between eye images and gaze points (display coordinates) using 2,000 training
samples [2]. Tan et al. take a local interpolation approach to estimate unknown
gaze point from 252 relatively sparse samples [16]. Recently, Williams et al. pro-
posed a novel regression method called S3GP (Sparse, Semi-Supervised Gaussian
Process), and applied it to the gaze estimation task with partially labeled (16
of 80) training samples [18]. Appearance-based approaches can make the system
less restrictive, and can also be very robust even when used with relatively low-
resolution cameras. The appearance models are used for tracking smaller eye
movements compared to the size of the object.

Model-based approaches use an explicit geometric model of the eye, and
estimate its gaze direction using geometric eye features. For example one typical
feature is the pupil glint vector ([8], [10]), the relative position of the pupil center
and the specular reflection of a light source, pupil corneal reflection. Model-based
approaches typically need to precisely locate small features on the eye using a
high-resolution image and often require additional light sources but can be very
accurate. The local gaze features include pupil and limbus position, iris center,
eye corner, inner eye boundary and sclera region. The global gaze features are
face skin color, inter pupil distance, ratio between average intensity, shapes, sizes
of both the pupil and orientation of pupil ellipse with respect to face pose [11].

In this paper we present an improved framework for determining the direction
of human gaze with an active multi-camera system. We employ a fixed camera
in order to determine the position of the human face and its features most
importantly the eyes. By means of the Supervised Descent Method (SDM) for
minimizing a Non-linear Least Squares (NLS) function we can compute correctly
the position of the two eyes using 6 landmarks for each eye and the position of the
head. Then an active pan-tilt camera is oriented to one of the users eyes and this
way a high precision gaze direction determination is accomplished. In Section 2
a detailed system overview will be presented with the components of the eye
tracking system. Section 3 will introduce the systems geometrical model and the
calibration method. Sections 4 and 6 will illustrate the facial feature extraction
and tracking and the gaze direction estimation algorithms. The experimental
results are described in Section 7.

2 System Overview

The components which the gaze tracking system consists of are shown on Fig. 1.
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Fig. 1. System overview

The purpose of the system described in this paper is to estimate the gaze
direction of a user which is standing in front of a computer screen. To accomplish
that task with a video camera, as precise as possible, a larger scale image of the
user’s eye(s) is needed. This can be achieved by mounting a telephoto lens on the
camera, but such an action will narrow the camera’s field of view and respectively
will constrain the user’s movements in order to keep the image of its eye(s) inside
the camera frame. To overcome this problem a multi camera gaze tracking system
is constructed which consists mainly of two parts - a fixed 3D wide angle depth
sensor and a movable telephoto camera which is mounted on an active pan-tilt
unit (PTU). The wide angle 3D sensor is used to detect the 3D position of the
user’s face and eyes in a global coordinate frame. This information is needed
by the PTU control system to estimate the angles of rotation of the telephoto
camera so it will be pointed towards the user’s eye(s). Then the gaze direction
can be estimated by extracting eye’s features from the large scale image and
applying them to a human eye geometrical model.

The 3D depth sensor “Kinect” is equipped with two imaging devices - a color
RGB camera and a grayscale camera which works in the IR spectrum and in
combination with a IR laser projector they construct a 3D range sensor. The
disparity map and the pixels registration between it and the image from the
RGB camera are automatically calculated. As an output from “Kinect” we get
a depth map and by employing the “Kinect” intrinsic camera parameters, like
lens focal length and principal point coordinates, the so called 3D point cloud is
estimated. This information will be used later on for 3D face and eye tracking
as mentioned above.

The block diagram shown on Fig. 2 describes the main stages and their
consistency for processing the information of the two data sources (marked in
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Fig. 2. System block diagram

blue) until the final aim is achieved. All of them are described in the rest of this
article.

3 System Geometrical Model and Calibration

The interpretation of the data retrieved from the “Kinect”, in order to control
the active camera, requires an employment of a 3D system geometrical model
which will be the backbone of all the calculations concerning the user’s face and
eye tracking.

OK

XK

ZK

ZC

OC

YC
XC

YG

OG

XG

ZG

”Kinect”

Screen

3D Depth Sensor

Video camera

Pan-tilt unit

YK

Fig. 3. System geometrical model

On Fig. 3 is depicted the common system geometrical model. The depth sen-
sor and the video camera have their own coordinate frames denoted as
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{K} ≡ {OKXKYKZK} and {C} ≡ {OCXCYCZC} respectively. {G} ≡ {OGXG

YGZG} is the fixed global coordinate frame which is used as a reference for the
all other frames.

The transformation of the coordinates from one frame to another is realized
by 4 × 4 homogeneous transformation matrices T ∈ SE(3) [15]:

T =
[

R t
0 1

]
, (1)

where R is the rotation matrix and t is the translation vector.
As can be seen from Fig. 1 and Fig. 3 there is no obvious relation between

the global and the “Kinect”’s coordinate frames ({G} and {K}) which can
be expressed analytically as a transformation matrix. That’s why a template
based calibration procedure is performed to determine the transformation of the
coordinates between these two coordinate frames and it is described below in
Section 3.2. In contrast the relation between the frames of the telephoto camera
{C} and global frame {G} is clear and it depends only on the pan and tilt angles
(θ and φ respectively (Fig. 4)) and some physical dimensions. The derivation of
this transformation is detailed in the following section.

3.1 Modeling Pan-Tilt Unit

For the aims of the project a pan tilt unit model PTU-D46-17 produced by the
company Directed Perception (now known as FLIR Motion Control Systems,
Inc.) is employed. This unit is distinguished by its precision (≈ 0.01◦), build
quality and ease of use through its controller.

The derivation of the matrix for transforming the coordinates between the
telephoto camera and the global fames is based on the kinematic chain of the
PTU, which is shown on Fig. 4. The relation between {C} and {G} can be
expressed as five simple intermediate transformations - translations or rotations
about a single axis. Let all this transformations be depict by a numeric index
which will distinguish them from the main frames. The first coordinates transfor-
mation is a translation along YG axis at a height equal to h1, which is a physical
parameter of the PTU. This kind of transformation is expressed by the following
matrix

TG→1 =

⎡

⎢⎢⎣

1 0 0 0
0 1 0 −h1

0 0 1 0
0 0 0 1

⎤

⎥⎥⎦ . (2)

The second transformation is simple rotation about axis Y1 ≡ YG by angle θ -
which represents the pan motion

T1→2 =

⎡

⎢⎢⎣

cos(θ) 0 sin(θ) 0
0 1 0 0

−sin(θ) 0 cos(θ) 0
0 0 0 1

⎤

⎥⎥⎦ . (3)



Human Gaze Tracking with an Active Multi-camera System 181

Camera
image
plane

Y3 ≡ Y4

ZC ≡ Z4

X4

YG ≡ Y1 ≡ Y2

Z3

X2 ≡ X3

X1

Z2

XG

ZG

OG

YG

O1 ≡ O2 ≡ O3

Z1

rT

h
1

XC

fC

u
v

φ

θ

Fig. 4. Pan-tilt unit geometrical model

The third transformation is simple rotation about X2 ≡ X3 by angle φ - which
represents the tilt motion of the PTU

T2→3 =

⎡

⎢⎢⎣

1 0 0 0
0 cos(φ) −sin(φ) 0
0 sin(φ) cos(φ) 0
0 0 0 1

⎤

⎥⎥⎦ . (4)

The transformation from frame {3} and frame {4} is a translation along axis
Y3 ≡ Y4 by the PTU eccentricity radius rT

T3→4 =

⎡

⎢⎢⎣

1 0 0 0
0 1 0 −rT

0 0 1 0
0 0 0 1

⎤

⎥⎥⎦ . (5)

The final simple transformation consists of rotation about axis Z4 ≡ ZG by π
radians. This rotation is done to align the camera coordinate frame to the image
coordinate frame - (u, v)

T4→C =

⎡

⎢⎢⎣

cos(π) −sin(π) 0 0
sin(π) cos(π) 0 0

0 0 1 0
0 0 0 1

⎤

⎥⎥⎦ . (6)
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By multiplying (2), (3), (4), (5) and (6) the geometrical model of the PTU is
constructed and has the following form

TG→C = T4→C .T3→4.T2→3.T1→2.TG→1 =

=

⎡

⎢⎢⎣

−cθ 0 −sθ 0
−sθsφ −cφ cθsφ rT + h1cφ

−sθcφ sφ cθcφ −h1sφ

0 0 0 1

⎤

⎥⎥⎦ ,
(7)

where with s and c are depicted the sin and cos functions respectively. The
reverse transformation {C} → {G} is achieved by inverting the shown above
matrix

TC→G = T−1
G→C . (8)

3.2 Estimating the Transformation {G} ↔ {K}
As mentioned above, there is no clear kinematic relation between the depth
sensor’s and the global coordinate frames. That’s why a calibration technique
has been developed to estimate the transformation matrix between these two
frames, which is based on the assumption that they are fixed in space and the
transformation between them is constant

TG→K = T−1
K→G = const. (9)

As a calibration target the simple pattern shown on Fig. 5a was used. The
algorithm for detecting such kind of targets is based on the marker detection
technique from [1], but it has been modified and the target corner detection
accuracy is improved to sub-pixel level. As can be seen from the figure, the
calibration target consists of a black square and inscribed in it another white
one. The algorithm [1] detects the contours of the squares and tracks them.
As the calibration target is planar, its plane defines the XY plane of the 3D
coordinate frame attached to it. The origin of this frame is placed in one of the
corners of the inner (white) square defined by a little black marker (Fig. 5a).

In order to estimate the transformation matrix TK→G the calibration target
will be used as a reference coordinate frame which will give the relation between
the two imaging devices. This means that the target should be present in the
images of the two input devices during the calibration procedure. But this is a
problem because their FOVs are completely different. That’s why a combination
of two calibration patterns with different sizes corresponding to the FOVs of the
cameras are used. Their coordinate frames share common XY plane (Fig. 5b),
thus the transformation between them is described as translation only

TtK→tC =

⎡

⎢⎢⎣

1 0 0 −xt

0 1 0 −yt

0 0 1 0
0 0 0 1

⎤

⎥⎥⎦ , (10)
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Fig. 5. Calibration target

where {tK} and {tC} are the coordinate frames of the two calibration target
- for “Kinect” and for telephoto video camera, xt and yt are the translations
between the two frames along the X and the Y axes (Fig. 5b). As the dimen-
sions of the calibration target are known the pose of the cameras can be esti-
mated with respect to the calibration target by employing an algorithm for
solving the Perspective-n-Point (PnP) problem. This will produce the transfor-
mation matrices TtK→K and TtC→C . Such kind of algorithms like the iterative
method based on Levenberg-Marquardt optimization or the P3P solution in [5]
are implemented as C/C++ libraries and can be used for real-time applications.

OK

XK

YK ZK

ZC

OC

YC
XC

YG

OG

XG

ZG

ZtK

YtK

XtK

YtC
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TK→tK = T−1
tK→K

TtK→tC
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TC→G = T−1
G→C
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Fig. 6. Estimation of the TG→K transformation matrix

On Fig. 6 is shown the scheme for estimating the transformation between
the {K} and {G}. From the figure it is obvious that TK→G can be expressed as
four consequential transformations of the coordinates: 1. between the “Kinect”’s
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frame to the frame of its calibration pattern ({K} → {tK}), 2. between the two
calibration patterns ({tk} → {tC}), 3. between the telephoto camera calibration
and its pattern {tC} → {C} and finally 4. between the active camera and the
global coordinate frame ({C} → {G}). This is described by the following product

TK→G = TC→G.TtC→C .TtK→tC .TK→tK =

= T−1
G→C .TtC→C .TtK→tC .T−1

tK→K .
(11)

4 Facial Features Extraction and Tracking

The gaze direction estimations relies on detection of the eye corners positions
and the head pose (Section 6). The positions of the eye corners are estimated
by employing a modern optimization technique, called SDM (Supervised Decent
Method), for aligning a face model, consisting of 48 landmarks, to a face image
[19]. The main advantage of the SDM is that during the optimization process
none of the Jacobian and Hessian is calculated (in contrast with the New-
ton’s optimization methods), which could be computationally expensive. This
is achieved by learning a series of decent directions and re-scaling factors such
that a sequence of updates of the optimized function produced starting from the
initial face model state (x0) that converges to the manually aligned face model
(x∗) in the training data (Fig. 7). The x0 are the landmarks positions of the
mean face given by a face detector algorithm [17] (Fig. 7b). After aligning the
face model to the image of the face, the head pose is estimated.

(a) x∗ (b) x0

Fig. 7. a) Manually labeled image with 48 landmarks. The blue outline depicts the
result of the face detector. b) Mean landmarks, x0, initialized by using the face detector.
[19].

Since each pixel from the RGB camera of the “Kinect” has a corresponding
point from the point-cloud array of the same device, the 2D locations of the eyes,
estimated as a mean of the eye landmarks positions, are directly converted into
3D location in the {K} coordinate frame. By using (11) they can be transformed
into coordinates of the global frame {G}. Thus the PTU active camera can be
navigated to track the location of one of the eye with the help of (7).
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5 Pupil Detection and Tracking

Pupil detection and tracking is realized by the means of a Particle Filter (PF).
Particularly the pupil’s contour is modeled as an ellipse which parameters rep-
resent the system (PF) state vector x (Fig. 8a) [3]

x = [cx, cy, λ1, λ2, θ] , (12)

where cx and cy are the coordinates of the ellipse center, λ1 and λ2 are the big
and the small ellipse axes and θ is the rotation angle of the contour. The system
state evolves according to the following law

xt+1 = xt + νt, νt ∼ N(0,Σt), (13)

where νt is a normally distributed random variable and Σt is a time dependent
covariance matrix. The observation is realized with so called Measurement Lines
(ML), depicted with blue color on Fig. 8a.
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Fig. 8. Pupil detection and tracking with optimized Particle Filter

To decrease the required number of particles and improving the accuracy
for contour parameters estimation an optimization stage is implemented as a
combination of EM and 1-dimensional MeanShift algorithm (Fig. 8b) [3]. Thus
the image intensity profile along a ML is filtered and the pupil contour boundary
is underlined, which makes its detection much more robust.
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Fig. 9. Gaze estimation geometric model

6 Gaze Direction Estimation

In this section a description of the geometrical eye model which we use to esti-
mate the gaze direction is given. There is nothing particularly novel about this
model. We assume that the eyeball is spherical and the inner and outer eye cor-
ners have been estimated, in our case using the SDM (Section 4). The algorithm
is split into two steps [9]:

1. Estimate the center and the radius of the eyeball in the image from the eye
corners and the head pose.

2. Estimate the gaze direction from pupil location, the center and the radius
of the eyeball.

The first of these two steps requires the following anatomical constants (Fig. 9):

– R0 : The radius of the eyeball in the image when the scale of the face is 1.
– (Tx, Ty) : The offset in the image between the mid-point of the two eye

corners and the center of the eyeball.
– L : The depth of the center of the eyeball relative to the plane containing

the eye corners.

7 Experimental Results

On Fig. 10 is shown an example of aligning a face model to an actual face in
the RGB image from “Kinect” sensor. By using the information about the eyes
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Fig. 10. Demonstration of aligning a model to an image of a face from the RGB camera
of “Kinect” sensor by the means of the SDM optimization algorithm. Consequentially
by taking the information of the locations of the eyes in the image and applying it to
the depth map of the “Kinect” the 3D coordinates of them are estimated in the {K}
frame.

locations in the color image their 3D position can be estimated by applying this
information to the depth map of the sensor. Thus the PTU is directed to one
of the eyes and the gaze direction is estimated by the technique described in
Section 6.

The estimated gaze direction estimation accuracy is 1.67◦.
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Introduction  

The long research studies on the use of computer technology to decipher and deter-
mine the individual characteristics of handwriting have led to progress in some trends 
and set limits in others. At present the products for handwriting recognition and its 
conversion into printed text are widespread and easily accessible. There is a large 
number of programs which cope with the task to verify the author in a satisfactory 
way. It is possible to introduce and make use of enough handwriting features which 
are calculable and may serve as reliable criteria when the author of a particular writ-
ing is automatically confirmed or rejected.  

However, the use of computer programs in the process of the forensic comparative 
handwriting analysis with the purpose of identifying the author remains a problem.  

In one case when it comes to confirmation, there is a comparison of a specimen and 
on-line or off-line handwriting made under the same conditions with the help of the au-
thor and it is possible to make use of calculable features. In the case of identification the 
comparison is made between the questioned off-line handwriting and the comparative 
material. In most cases they are not made under the same conditions and the author tries 
to prevent the identification, so the calculable features proved to be not insufficient. 

Why Identification May Be Impeded in Case of Comparing only 
Quantitative Handwriting Parameters? 

The handwriting characteristics determining its individual nature are formed as a de-
viation of the handwriting standard. They may be quantitative and qualitative. This 
depends on the fact whether the author has adopted and acquired as a habit the writing 
of the handwriting characters with some deviations in calculable parameters as for 
example the quantity of the movements made (Fig. 1) or in qualitative ones as the 
sequence of movements (Fig. 2). 

There are deviations in both cases. They represent structures which are individual 
for the particular person. The question however is which are the more stable features 
regarding the formation of the individual complex of peculiarities rarely displayed. 

In order to be able to answer this question we have to start from the fact that unlike 
the fingerprint, the iris structure, the DNA profile, etc., the handwriting is changeable. 
The character is not constant and it can vary under the influence of inner factors like 
the changing environment in which the handwriting character appears (Fig. 3). 
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Without claiming for a big representativeness we made experiments which gave us 
an initial idea about the effect of the changes. We gave 50 students who had relatively 
high writing practices the following tasks: to write under dictation in Bulgarian Cyril-
lic alphabet the same text in normal posture – seated and in the non-standard and 
more inconvenient posture – standing (Fig. 4 and Fig. 5). 

 

Fig. 4.  Fig. 5.  

The purpose was to determine the effect of the undeliberate changes, which are not 
isolated phenomena in the writing practices, on the handwriting features. 

First, the changes concerning the main handwriting features with quantitative char-
acter were reported and analyzed. These features included level of junction, size, 
slant, stretching, quantity of movements, movement orientation1. After comparing the 
results obtained from writing in the normal seated posture and in the standing posture 
it was found that the participants in the experiment changed the said features when 
writing in the standing posture and the number/percentage of the participants making 
such changes is given in the diagram below (Fig. 6). 

 

 

Fig. 6.  

 

                                                           
1 Calculable by comparing the movement coordinates on the surface area. 
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It turned out that the most reliable feature is the level of junction. Only 4% of the 
participants made some changes in this feature. As far as the other features were con-
cerned most of the participants made changes in them. The most significant changes 
were found in the movement orientation - 58% of the participants and in the size of 
the writing characters - 48% of the participants. 

 
Fig. 7. Handwriting in a seated posture 

 
Fig. 8. Handwriting of the same person in a standing posture 

As can be seen from the examples above (Fig. 7 and Fig. 8) the quantitative fea-
tures size and orientation are changed when writing in a standing posture but there are 
no significant changes in the qualitative ones. All typical ways of writing any particu-
lar handwriting character are kept. Thus, for example, the form, the direction, the 
sequence and the structural complexity of the letter "a" remain unchanged. 

In order to make the experiment more extensive the participants were given also 
another task - to try to change the typical features of their handwriting in such a way 
that it will prevent their identification as authors of the particular handwriting. The 
purpose was to find out the effect of the deliberate handwriting changes. As a whole 
these changes do not occur very often in the writing practice but they are often the 
subject of forensic handwriting examination. 

 

 
Fig. 9.  
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The results proved the observations from our expert practice showing that in trying 
to deliberately change their handwriting the people make changes in all quantitative 
features and mostly in the slant and the size. 

As far as the qualitative features were concerned we got the following results: 
 1. Insignificant changes (Fig. 10 and Fig. 11); 
 

 
Fig. 10. A text written without trying to distort the handwriting 

 
Fig. 11. The same text written by the same participants trying to distort his/her handwriting 

It can be seen from the examples above that there are qualitative changes in some 
writing characters as for example in the letters "г" and "н". In most ways of writing 
"я", "з", "й", "ц", "м", which are significant and rarely seen deviations from the writ-
ing standard, however, the form, the direction, the sequence and the structural com-
plexity remain the same. These results were found with 44 participants, i.e. 88% of 
the participants in the experiment. The reason for this is that few people can suppress 
their dynamic stereotype more strongly in order to distort it. 

 2. Significant changes (Fig. 12 and Fig. 13). 
 

 
Fig. 12. Text written without trying to distort the handwriting 
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Fig. 13. The same text written by the same participants trying to distort his/her handwriting 

6 persons, i.e. 12% of the participants in the experiment, managed to make more 
significant changes in their handwriting which can mislead some experts who are not 
experienced. In fact, as illustrated by the example, there are coincidences in the form, 
the direction, the sequence and the structural complexity despite the good disguise as 
in the word "друго" on the last line of the two texts where the slant was changed but 
all the rest is the same. In all the 6 cases the qualitative features are preserved despite 
the fact that the dynamic stereotype was more strongly suppressed. These qualitative 
features raise serious doubt and if not anything else this doubt should lead to search of 
new comparative material. 

Conclusion 

From the viewpoint of forensic handwriting identification the result from this experi-
ment show that the possibilities for automation of this process with the help of com-
puterized systems could be reduce to two main trends. If only calculable quantitative 
features are used then only materials written under the same conditions, excluding the 
possibility for deliberate or undeliberate handwriting changes, should be compared. 
With the changes deviations are observed in the qualitative features which change the 
calculated parameters to a large extent and will lead to mistakes. 

This condition is easy to satisfy in the process of biometric verification when the 
writing person has no interest to change his/her writing characteristics in order not to 
be rejected in the recognition of the peculiarities of his/her handwriting. 

The other possibility is to apply criteria obtained through connected-component 
contours, edge-based features [7] or other similar methods to interpret the qualitative 
handwriting features which however are more reliable. This concerns mainly the pos-
sibility to make use of such automated systems in the process of forensic identifica-
tion by comparing materials with possible changes because there is a big percentage 
of fault of acceptance or fault of rejection in such computer guided methods. 
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Abstract. In this paper a method for on-line signature verification is presented. 
The proposed approach consists of the following consecutive steps:  feature se-
lection and classification. Experiments are carried out on SUsig database [5] of 
genuine and forgery signatures of 89 users. The results obtained by applying 
two different types of classifiers (NN and k-nearest neighbours) are compared. 
For each user, several NN and kNN models are evaluated by 10-fold cross vali-
dation and LOOCV respectively. The “optimal” models are found together with 
their parameters: number of hidden neurons for NN, type of signature forgeries 
for training, input features and value of k. The influence of the signature forgery 
type (random and skilled) over the feature selection and verification is investi-
gated as well. 

Keywords: On-line signature verification · Neural networks (NNs) · Signature 
features · Feature selection · SUsig database · Mallows Cp · k-nearest neigh-
bours (kNN) · N-fold cross validation · Leave one out cross validation 
(LOOCV) 

1 Introduction 

Signature recognition is the process of confirming the identity based on the handwrit-
ten signature of the user as a form of behavioral biometrics [1]. From one hand, the 
signatures are a convenient, widely used and secure mean for authentication, and from 
the other, their input to biometric systems is fast, easy, natural and non-invasive. For 
these reasons, the problem of the signature verification is broadly investigated in the 
past years. Novel methods and algorithms are developed, mostly for on-line signa-
tures, and lots of them are implemented in practice [1, 2, 3, 4, 16, 17].  

Signature recognition systems are on-line and off-line depending on the acquisition 
method. The off- line method uses a captured image of a written signature after the 
writing process is over while the on-line method uses devices such as graphical tablets 
to capture signature during signing and thus a lot of writer specific features like pres-
sure, speed, pen tilt, azimuth, etc. are available.  

In this paper we propose an approach to signature verification and present the re-
sults obtained on SUsig database [5]. The values of 24 global features are evaluated 
for each user. Since some of the features are interconected, to discard the less in-
formative of them, feature space reduction is achieved applying consecutevely the 



 Neural Network and kNN Classifiers for On-line Signature Verification 199 

 

method of correlation pleiads [12], and  Mallows Cp criterion [10, 11] for selection of 
regression variables. Thus, for each user in the database an individual set of features 
is obtained. Next, several NN and kNN models for verification are constructed and 
tested. At last, we train, validate and test all the chosen user’s models and obtain the 
average accuracy.  

The paper is organized as follows: in Section 2 a brief overview over the proposed 
methodology is given, the experimental results are presented and discussed in Section 
3, and finally Section 4 draws the conclusion and points out directions for further 
investigation. 

2 Methodology 

The development of a particular signature recognition system consists of the follow-
ing steps [6]: signature acquisition, preprocessing, feature extraction, feature selection, 
verification and accuracy estimation. Below we shall describe our method in the terms 
of these steps. 

Table 1. Global features 

A1 Signature length L A13 
Angle of the line between 
initial  and end  points 

A2 Signature height H A14 
Distance between leftmost and 
center  points 

A3 
Height to width ratio 
H/L 

A15 
Distance between center  and 
rightmost points 

A4 Number of points N A16 
Angle of the line between 
center and leftmost  points 

A5 Time duration  A17 
Angle of the line between 
center and rightmost  points 

A6 Number of segments A18 
Distance between leftmost and 
initial  points 

A7 
Signature density 
A4/A1*A2 

A19 
Distance between rightmost  
and end  points 

A8 
Distance between initial 
and center point 

A20 
Angle of the line between 
leftmost and initial  points 

A9 
Distance between end 
and center point 

A21 
Angle of the line between end 
and rightmost  points 

A10 
Distance between initial 
and end  point 

A22 Number of strokes 

A11 
Angle of the line be-
tween center and initial 
points 

A23 Average tilt 

A12 
Angle of the line be-
tween center and end  
points 

A24 Average pressure 
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1. Signature acquisition: Signature data is acquired by a graphical tablet (Wacom 
Graphire2). Raw data consist of the following information about each signature 
point:  x and y coordinates, pressure level, timestamp, stroke indicator.  

2. Signature preprocessing: To facilitate feature extraction, it is necessary the raw da-
ta to be preprocessed.  The operations applied depend on the selected features and 
the acquisition protocol. The coordinates x and y of the ink coordinate space are 
called himetric units [7] and their values fall in [0, 7999] x [0, 5999]. It is necessary 
to transform them in the application coordinate system in [0, 1279] x [0,799]. This 
is performed automatically by a method from Microsoft Tablet PC SDK. Since the 
acquired signatures may be rotated, we have to align them horizontally. The next 
pre-processing operation is translation of the signatures to a given point of the ap-
plication coordinate system because it is possible some of the coordinates to obtain 
negative values after rotation. So the following operations are performed to all the 
signature data in the databases: coordinate transformation, rotation and translation. 

3. Feature extraction: There are three groups of signature features: global, local and 
segmental [8]. Global features are extracted for the whole signature, local features 
are extracted for each sample point in the signature, and segmental features are ex-
tracted for each signature segment. Over 100 features used in signature verification 
are listed in [9]. The extracted global signature features used are presented in  
Table 1.  

4. Feature set selection: Since some features demonstrate higher discriminatory ca-
pability than others, feature selection should be performed. This is related to the 
process of selecting k features of most discrimination power out of p available ones 
(k ≤ p) and it aims to identify and remove as much irrelevant and redundant infor-
mation as possible. A review of the processes of feature set selection for signatures 
is done in [8].  

We approach feature set selection step in signature verification in two ways (1) by 
using a common feature subset for all users, and  (2) by using an individual feature 
subset for each user. 

At the beginning we extract all the signature features for all database users and we 
perform z-score feature normalization. We find all high correlated features at 0.01 
confidence level, 99% confidence interval, met in more than 25% of the users. We use 
Pearson correlation coefficient. By applying the correlation pleiads method [12] we 
identify all groups (pleiads) of features having high intraclass correlation and low 
interclass correlation and leave only one random feature in a group. For each pleiad 
we retain only one feature.  In this way we create the common feature subset. 

In order to find individual feature subset for each user we apply the methods of 
Hocking, Leslie and LaMotte for selection of regression variables based on Mallows 
Cp criterion for regression [10, 11] on the already found common feature subset. This 
criterion is used to decide on suitable subset among contending subsets. It is a meas-
ure of the standardized total squared error defines as follows: 

௣ܥ  ൌ ோௌௌ೛ఙෝమ െ ሺ݊ െ  ሻ (1)݌2
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Here ܴܵܵ௣ denotes the residual sum of squares for the particular regression with p 
variables and ߪොଶ  is an estimate of residual mean square ߪଶ for full regression. 

                 σෝଶ ൌ ଵ୬ି୩ ∑ ሺy୨ െ ∑ β୧x୧୨୩୧ୀଵ ሻଶ୬୨ୀଵ ൌ RSSౡ୬ି୩                                     ሺ2ሻ  

If a model is adequate, i.e. does not suffer from lack of fit, then  ܧሺܥ௣ሻ ൎ  (3)          ݌

This means that we expect Cp value to be about p. A plot of Cp versus p displays 
the adequate models as points close to the line Cp = p. Subsets with small values of 
Cp and values of Cp close to p are considered good. Hocking and Leslie [10] further 
describe a method which allows thus subset to be identified after consideration of 

only a small fraction of all ቀ௞௣ቁ possible subsets of size p. LaMotte and Hocking [11] 

modified this algorithm in a way that moderately large problems can be treated with 
minimum of computation. The algorithm specifies the subset of size r to be deleted. In 
the following, the terms r-subset and p-subset refer, respectively, to subsets being 
deleted and subsets being retained. The method for selection of best subset is based on 
m-variable reductions,i.e. reductions in the regression sum of squares due to eliminat-
ing subsets of size m from the k-variable equation. Typically 1 ൑ ݉ ൑ 4 and m = 1 in 
the original method [10]. These m-variable reductions are used to determine the best r-
subset to be removed, for r > m. The reduction in the regression sum of squares due to 
removing a set of r variables is given by: 

 ܴ݁݀௥ ൌ ܴܵܵ௣ െ ܴܵܵ௞ (4) 

The set of r variables for which this reduction is minimum specifies the subset of size 
p (p = k - r) variables in the regression to be retained for which residual sum of 
squares is minimum. It is suggested in [10] that Cp statistic can also be computed by 
using this reduction in the following way: 

௣ܥ  ൌ ோ௘ௗೝఙෝమ െ ሺ2݌ െ ݇ሻ (5) 

   The steps of the generalized algorithm can be found in [11]. 

By applying the methods of Hocking, Leslie and LaMotte we identify best feature 
subsets of various size for each user on the basis of his/her eight or ten genuine signa-
tures and ten random forgeries. Among these subsets we select the best subset that 
have Cp value closest to p, but smaller than p, where p is the number of regression 
coefficients. Thus, for each user we obtain the best feature subset of different size. 

5. Verification: Neural networks are suitable to be used for signature verification 
since they are an excellent generalization tool (under normal conditions) and are a 
useful means of coping with the diversity and variations inherent in handwritten 
signatures [13].  Usually, a particular NN is built for each user on the basis of 
his/her genuine and forgery signatures. The number of input neurons is p where p 
is the number of the features. The single output neuron has a value 1 for genuine 
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signature and a value 0 for forgery signature. After the training, a score threshold is 
determined. If the verification result (at the time of testing of a signature) is greater 
than the corresponding score threshold, the signature is considered genuine, other-
wise – forgery. This approach is widespread because it allows fast adding and de-
leting of signatures for new and existing users [13].  Usually, NN training takes 
lots of time but in this approach it is done off-line so the users are not forced to 
wait. 

We compare NN classifiers with kNN classifiers with Euclidean distance. Before 
applying the kNN classifier, we first normalize the features. Since ݇௠௔௫ ൌ  , ݊ݎݐܰ√
where ܰ݊ݎݐ is the number of signatures used for training and it is recommended for 
the value of k to be an odd number, we choose k= 1 and k = 3. 

For each user, several NN and kNN models are evaluated by 10-fold cross valida-
tion and LOOCV respectively. The “optimal” models are found together with their 
parameters: number of hidden neurons for NN, type of signature forgeries for train-
ing, input features and value of k. 

After finding the “optimal” model of a classifier by cross validation, the corre-
sponding classifier is being trained on all the user’s signatures and is ready to be used 
for verification.  

6. Accuracy estimation: The performances of classifiers are evaluated by the follow-
ing well known metrics: FAR (false accept rate), FRR (false reject rate), TAR (true 
accept rate), TRR (true reject rate), and Accuracy. 

3 Experimental Results 

Experiments are carried out in MATLAB environment. We use Neural Network 
Toolbox. Tablet PC SDK 1.7 [15] is used to facilitate signature acquisition. Raw and 
transformed signature data is stored in a database in SQL Server Compact Edition 
2008. We experiment with two types of classifiers: NN and kNN with varying param-
eters values (number of features, forgery signature types, number of hidden neurons H 
and number of neighbors’ k). Since we have small amount of data, we evaluate classi-
fier accuracy with N-fold cross validation [14]. We use 10-fold CV for NN parame-
ters tuning and LOOCV for kNN parameters tuning. 

Let us denote by Var.1 the case in which feature subset is determined by using the 
genuine and random forgery signatures and denote by Var.2 the case in which feature 
subset is determined by using the genuine and skilled forgery signatures. Let us de-
note by Case 1 the case in which only random forgeries are used for NN training, and 
denote by Case 2 the case in which both random and skilled forgeries are used.   

Signature database SUsig [5] consists of genuine signatures, skilled and random 
forgeries of 89 users. By applying the method of correlation pleiads, the initial num-
ber of features - 24, is reduced by around 50% and the remaining features are А1, А2, 
А4, А6, А10, А12, А13, А16, А17, А21, А22, А23, А24. 

The size of the obtained p-subset and the corresponding number of users are speci-
fied in Table 2. There is a significant reduction in features number for both Var.1 and 
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Var.2 since its initial number - 13 is reduced down to 9 for about half of the users, 
reduced down to 5 or 6 features for 30% of the users. 

Table 2. Individual p-subsets 

Var. 
Size of  
p-subset 

Number 
of users 

 
Var. 

Size of  
p-subset 

Number  
of users 

1 9 42  2 9 48 

1 8 5  2 8 9 

1 7 7  2 7 4 

1 6 12  2 6 10 

1 5 14  2 5 15 

1 4 5  2 4 3 

1 3 4  2 3 0 
 

Table 3. Parameters of the NN models 

# of 

model 

Features (input 

neurons) 

Genuine 

signatures
Forgery signatures 

Number of 

hidden neurons H

Number of 

neighbors  k 

1 Common set 

8 or 10 

15 random Case 1 

1 to 5 1 or 3 

2 Var. 1  

3 Var. 2  

4 Var. 2  
9 random and 

6 skilled 
Case 2 5 Var. 1  

6 Common set 

 
In Table 3, all the NN and kNN models are described together with their parame-

ters. All the 30 NN models are evaluated by 10-fold cross validation for each user and 
the best performed “optimal” NN model is selected together with its parameters: 
number of hidden neurons, type of signature forgeries for training and input features. 
All the 12 kNN models are evaluated by LOOCV and the best performed “optimal” 
kNN model is selected together with its parameters: value of k, type of signature for-
geries for training and input features. 

The average estimated accuracy of the “optimal” NN models for all users is equal 
to 97.95%, and the average estimated accuracy of the “optimal” kNN models for all 
users is equal to 96.13%. These results demonstrate the advantage of the NN classifier 
over the kNN classifier. The value of t-statistics is equal to 3.29 and this value is sig-
nificant for a probability level equal to 0.99 and DF=176. The average estimated ac-
curacy for all the “optimal” models are presented in Table 4 for NN and in Table 5 for 
kNN.  
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Table 4. Average estimated accuracy for all the “optimal” models for NN 

 
Common feature 

set 
Var. 1  Var. 2  

Average 

accuracy 

Number of 

occurances 

Case 1 

97.36 

(Model #1,13 

occurances) 

98.36  

(Model #2, 

27 occurances) 

97.85 

(Model #3, 

13 occurances) 

97.99 53 

Case 2 

97.71 

(Model #6, 

11 occurances) 

97.98 

(Model #5, 

9 occurances) 

97.96 

(Model #4, 

16 occurances) 

97.89 36 

Average 

accuracy 
97.52 98.27 97.91 - - 

Number of 

occurances 
24 36 29 - 89 

 
The data presented in Table 4 reveals higher NN accuracy if using individual fea-

ture subsets (Var. 1 and Var. 2) compared to the accuracy if using a common feature 
subset. The accuracy is slightly higher if Var. 1 is used. The accuracy of models built 
on Var. 1, Case 1 (random forgeries for training) suppresses the accuracy of models 
built on Var. 2, Case 2 (random and skilled forgeries for training). 

The data presented in Table 5 reveals higher kNN accuracy if using a common 
feature subset compared to the accuracy if using individual feature subsets (Var. 1 and 
Var. 2). The accuracy of models built on Var. 2, Case 1 (random forgeries for train-
ing) suppresses the accuracy of models built on Var. 2, Case 2 (random and skilled 
forgeries for training). 

Table 5. Average estimated accuracy for all the “optimal” models for kNN 

 
Common feature 

set 
Var. 1  Var. 2  

Average 

accuracy 

Number of 

occurances 

Case 1 

100 

(Model #1, 

 5 occurances) 

95.92 

(Model #2, 

 27 occurances) 

97.84 

(Model #3, 

15 occurances) 

96.97 [647 

Case 2 

84 

(Model #6, 

1 occurances) 

95.5 

(Model #5, 

20 occurances) 

95.45 

(Model #4, 

21 occurances) 

95.20 42 

Average 

accuracy 
97.33 95.74 96.45 - - 

Number of 

occurances 
6 47 36 - 89 

 
The comparison between the average estimated accuracy of NN and kNN based 

on common and individual feature subsets demonstrate the advantage of NN.  
The number of “optimal” models, trained on random forgeries (Case 1) is met in 

more than the half of the users. It is equal to 53 (for 60% of the users) for NN and it is 
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equal to 47 (for 53% of the users) for kNN.  The most frequent “optimal” models are 
built on Var.1 features:  for NN, it is equal to 36, and for kNN it is equal to 47. 

NN and kNN classifiers are built for each user. They are evaluated on the same 
training (~70% of the signatures) and testing sets (~30% of the signatures). The fol-
lowing results are obtained: 1) for NN: average accuracy 98.46 %, 2.70 % FAR  и 0 
% FRR NN; 2) for kNN:  average accuracy 89.47 %, 8.09 %  FAR и 14.61 % FRR. 
These results demonstrate the aadvantage of NN over the kNN classifier. The value of 
t-statistic is equal to 5.98 and this value is significant for a probability level of 0.99. 

For comparison, a classifier of Yanikoglu и Kholmatov [18] has 1.64% FRR и 
1.28% FAR on the same signature database. 

4 Conclusion 

The following conclusions can be drawn from the presented experiments. First, the 
number of the features is reduced by around two times by consecutive applying of the 
method of correlation pleiads and Mallows Cp criterion for selection of regression 
variables. Second, there is not a common feature subset valid for all users; there is a 
specific feature subset for each user which describes his signature writing style. This 
subset consists of 3-5 features for some users. Third, the using of random forgeries as 
negative cases (Var.1) in regression model drives to greater reduction in feature num-
ber. Initial feature set size is reduced to a higher extend if random forgeries (Var. 1 ) 
are used for building the regression model for the Hocking, Leslie and LaMotte meth-
od instead of skilled forgeries. At last, the classifiers trained on only random forgeries 
(Case 1) gives better verification results than those trained on both random and skilled 
forgeries (Case 2). 

Research and investigation in on-line signature recognition are about to continue in 
the future. They will be towards 1) improvement of the proposed system – its automa-
tion and accuracy; 2) testing of the system over different databases and other signa-
ture features; 3) forgery detection.  
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Abstract. This paper reviews the contemporary (face, gait, and fusion)
computational approaches for automatic human identification at a dis-
tance. For remote identification, there may exist large intra-class varia-
tions that can affect the performance of face/gait systems substantially.
First, we review the face recognition algorithms in light of factors, such
as illumination, resolution, blur, occlusion, and pose. Then we introduce
several popular gait feature templates, and the algorithms against factors
such as shoe, carrying condition, camera view, walking surface, elapsed
time, and clothing. The motivation of fusing face and gait, is that, gait
is less sensitive to the factors that may affect face (e.g., low resolution,
illumination, facial occlusion, etc.), while face is robust to the factors
that may affect gait (walking surface, clothing, etc.). We review several
most recent face and gait fusion methods with different strategies, and
the significant performance gains suggest these two modality are com-
plementary for human identification at a distance.

1 Introduction

Human identity recognition is fundamental to human life, and the technology of
human identification and tracking from a distance may play an important role
in crime prevention, law enforcement, search for missing people (e.g., missing
children or people with dementia), etc. Nowadays, CCTV cameras are widely
installed in public places such as airports, government buildings, streets and
shopping malls for the afore-mentioned purposes. In 2013, the British Security
Industry Authority (BSIA) estimated there are up to 5.9 million CCTV cameras
nationwide, and that is around 1 every 11 people [11]. Because of the need for
sufficient manpower to supervise such a large number of CCTVs, the need for
automatic human identification systems is acute.

Out of various biometric traits (e.g., fingerprint, iris, palmprint, voice, face,
gait, etc.), face recognition is deemed as one of the most popular one, which
can be performed at a distance without subject’s cooperation. CCTV footage
or images containing face information are often released to the public for the
c© Springer International Publishing Switzerland 2014
V. Cantoni et al. (Eds.): BIOMET 2014, LNCS 8897, pp. 209–221, 2014.
DOI: 10.1007/978-3-319-13386-7 17



210 Y. Guan et al.

(a) (b)

Fig. 1. (a) CCTV images of the angle-grinder gang, released by BTP [4] (b) CCTV
images of the two perpetrators in Boston Marathon bombings, released by FBI [69]

(a) (b)

Fig. 2. (a) CCTV images for the robbery case in Denmark [57], left: the perpetra-
tor, right: the suspect; (b) CCTV images for the burglary case in UK [34], left: the
perpetrator, right: the suspect

identification of the perpetrators. For example, in June 2014, British Transport
Police (BTP) released CCTV in hunt for angle-grinder gang, who broke the ticket
machines at railway stations in UK, as shown in Fig. 1(a). In April 2013, Federal
Bureau of Investigation (FBI) released the face images of the two perpetrators in
Boston Marathon bombings [69], as shown in Fig.1(b). However, for automatic
systems, factors like illumination, resolution, blur, occlusion (e.g., sunglasses),
or pose may make the recognition unreliable.

Recently, a number of reports (e.g.,[57][34]) suggested that behavioral bio-
metrics, gait recognition, can be used for human identification from CCTV
footage. In [57], based on a checklist for forensic gait analysis, Larsen et al. man-
aged to identify a bank robber in Denmark by matching surveillance footage, as
illustrated in Fig. 2(a). Fig. 2(b) shows a gait recognition scenario in UK where a
burglar was identified through gait analysis from a podiatrist [34]. These pieces
of gait-based evidences proved their usefulness by providing incriminating evi-
dence, leading to convictions in a court of law. However, similar to automatic face
recognition, covariate factors like camera viewpoint, carrying condition, cloth-
ing, etc. may limit the performance of the automatic gait recognition systems.
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It was shown that combining multiple biometric traits may reduce the error
rate effectively[36], [59], [74]. In the context of automatic human identification
at a distance, it is natural to fuse gait and face, which can be acquired from the
same camera. They may be complementary traits for recognition since gait is
less sensitive to the factors that affect face recognition, such as low resolution,
illumination, etc. while face is robust to covariates that affect gait recognition,
e.g., carrying condition, walking surface, clothing, etc. Although there are vari-
ous face/gait recognition algorithms, research on gait and face fusion is still at its
early stage, which will be reviewed in this paper. The rest of this paper is orga-
nized as follows. In section 2 and 3, we introduce automatic remote face/gait
recognition and the limitations. In section 4, we review several gait and face
fusion strategies and analyze their performance. Summary and further research
directions on gait+face fusion will be provided in section 5.

2 Automatic Face Recognition

Automatic face recognition is one of the most active research topics in computer
vision and pattern recognition. Over the past decades, major advances occurred
in automatic face recognition, yet the recognition accuracy of faces captured at
a distance is still unsatisfactory. It is challenging due to the large intra-class
variations caused by 1) less controlled environment, e.g., with factors like low
resolution, blur, illumination, etc.; 2) non-cooperative subjects, e.g., with factors
like pose, occlusion (e.g., sunglasses, scarf, hat, veil), etc.

2.1 Face Recognition Algorithms

A gamut of face recognition algorithms were proposed to tackle the effect of the
afore-mentioned factors.

Low Resolution. There are two directions to handle the problem of low
resolution. 1) super-resolution (SR) based methods [24],[38],[27],[28],[32], which
reconstruct high-resolution images from low resolution images for visual enhance-
ment. After applying SR, a higher resolution image can be obtained and used for
recognition. One major drawback of SR is that significant reconstruction arti-
facts may be introduced, thus hampering the recognition accuracy. 2) Non-SR
based methods, which include support vector data description (SVDD) [46], cou-
pled mappings (CMs) [47], multi-dimensional scaling [8], class specific dictionary
learning [63], etc.

Image Blur. There are two classes of blur that affect face images: focus blur
and motion blur. A focus is the point where lights originating from a point on the
object converge. When the light reflected by an object diverges, a out-of-focus
image will be generated by the sensor, resulting in the blur effect. The work in
[31] analyzed the impact of out-of-focus blur on face recognition performance.
Motion blur, however, occurs when exposure time is not brief enough due to
the rapid object moving or camera shaking. There are two main categories of
approaches for improving the quality of the blurred face images: 1) blurred image
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modelling using methods such as subspace analysis [55] or sparse representation
[82], and 2) blur-tolerant descriptor based methods which attempt to extract blur
insensitive features such as Local Phase Quantization (LPQ) [1],[25].

Illumination Variations. There are three categories of approaches to handle
illumination variations: 1) illumination normalization [12],[62],[9] which seeks to
suppress the illumination variations either by image transformations or by synthe-
sising an unaffected image, 2) illumination invariant representation [14],[2],[71]
which attempts to extract features invariant to illumination changes, and 3) illu-
mination variation modelling [16],[58],[3] which is based on the theoretical prin-
ciple that the set of images of a convex Lambertian object [45]obtained under a
wide variety of illumination conditions, can be approximated by a low-dimensional
linear subspace, in which the recognition can be performed [5].

Pose Variations. Early approaches [85] include: 1) multi-view method [7]
which is an extension of the conventional frontal face recognition where a set of
images depicting the object from multiple angles are required, 2) pose variation
modelling [6] which assumes that the 3D shape of an object can be represented
by a linear combination of prototypical objects, and 3) linear subspace method
[56] which represents each person in the gallery by a parametric linear subspace
model. Recently, with the development of novel 3D sensors, 3D-based approaches
achieve successful performance when addressing pose variations [84].

Occlusion. There are three main categories of approaches for occlusion
handling: 1) reconstruction-based approaches, that formulate the recognition of
occluded faces as a reconstruction problem [37],[79],[54],[83],[76]. An occluded
query face is reconstructed by a linear combination of gallery images before being
assigned to the class with the minimal reconstruction error. 2) local matching
based approaches [52],[67], [66], [48], [77], [78], [75] that extract features from
the local areas of a face (e.g., patches), such that the affected and unaffected
parts of the face can be analyzed separately. To minimize matching errors of
the occluded parts, several strategies can be used such as local space learn-
ing [66],[52],[67], multi-task sparse representation learning [48] or voting [75].
3) occlusion-insensitive feature based approaches [10],[70],[88] that utilize fea-
tures such as line segments [10], image gradient orientation (IGO) difference [70]
and the Gabor phase (GP) difference [88] which were shown to be robust to
occlusion.

2.2 Open Issues in Face Recognition

As afore-introduced, a plethora of algorithms for handling different types of
factors have been proposed. However, in real-world face recognition scenarios,
these factors can be coupled. For example, low resolution and blur effects are
often coupled with other uncontrolled variations such as pose, illumination or
occlusion, making the tasks of automatic face recognition difficult. When a face is
fully occluded (e.g., Fig. 2(a)) or at a long distance, most of the afore-mentioned
methods would become useless. In this case, the behaviorial biometric trait, such
as gait, may be of great aide.
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(a)

(b) (c) (d) (e) (f) (g)

Fig. 3. Gait representations for a subject on the OU-ISIR-LP dataset [35], (a) the
original gait silhouettes (b)-(g) the 6 period-based feature templates from left to right:
GEI [26], GEnI [39], MGEI [40], CGI [72], GFI [64], and FDF (with 0, 1, and 2 times
frequency elements)[51]

3 Automatic Gait Recognition

Existing gait recognition algorithms can be roughly divided into two categories:
model-based and appearance-based approaches. Model-based methods (e.g.,[17])
aim to model the human body structure for recognition, while appearance-based
approaches can perform classification regardless of the underlying body struc-
ture. Although model-based methods may perform well in some challenging cases
(e.g., when the view change is large [17]), they generally have lower performance
than appearance-based methods. One major reason is that when affected by
self-occlusion, low resolution or other factors, it is often difficult to estimate
the body structure features precisely, and in this case they only provide limited
information for recognition. As such we focus on introducing appearance-based
methods in this paper.

3.1 Gait Feature Templates

In earlyworks, researchers formulated gait recognition as a three dimensional video
classification problem, based on the preprocessed gait data after background sub-
straction, silhouette binarization and alignment, etc. For example, Sarkar et al.
proposed the gait recognition baseline method, which applies spatial-temporal cor-
relation on the gait silhouettes [60]. Wang et al. used spatial-temporal correlation
on the gait features extracted through PCA [73]. These algorithms often require
significant computational complexity, and tend to be less robust to segmentation
errors.

To deal with these dilemmas, period-based gait feature templates were pro-
posed in recent works that encode the information of the frames from a gait cycle
into a single image and formulate gait recognition as a two dimensional image
classification problem. On the OU-ISIR-LP dataset, consisting of more than 3000
subjects, Iwama et al. [35] conducted a study on six popular period-based feature
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 4. GEIs of one subject walking in different walking conditions from the USF
gait dataset [60]. (a) is the GEI in normal condition. (b)-(h) are the GEIs under the
influences of (b) viewpoint, (c) walking surface, (d) viewpoint and walking surface, (e)
carrying condition, (f) carrying condition and viewpoint, (g) elapsed time, shoe type,
and clothing, (h) elapsed time, shoe type, clothing, and walking surface.

templates including gait energy image (GEI)[26], gait entropy image (GEnI) [39],
masked GEI based on GEnI (MGEI) [40], chrono-gait image (CGI) [72], gait
flow image (GFI)[64], and frequency-domain feature (FDF) [51] (as shown in
Fig. 3). The results showed that when there are no covariates, GEI-based tem-
plate can generally yield the best performance. However, when the walking con-
dition changes, directly applying GEI matching makes the classification prone
to errors. Fig. 4 shows some GEIs of one subject in walking conditions with
different covariates, from the USF gait dataset [60]. It follows that covariates
may significantly change the human appearance, thus giving rise to recognition
difficulties. It is important to extract covariate-insensitive features for robust
gait recognition.

3.2 Gait Feature Extraction and Classification

Covariates can be roughly divided into three categories: 1) subject-related, e.g.,
shoe type, carrying condition, speed, clothing, etc., and 2) environmental, e.g.,
walking surface, elapsed time, etc. 3) camera viewpoint. To reduce such effects,
various feature extraction and classification methods have been proposed.

Shoe, (Small Changes in) View, and Carrying Condition. Based on
concatenated GEIs, Han and Bhanu utilized PCA and LDA for feature extrac-
tion [26]. By using two subspace learning methods, coupled subspaces analysis
(CSA) and discriminant analysis with tensor representation (DATER), Xu et al.
extract features directly from GEIs[81]. Both methods demonstrate their effec-
tiveness against several simple covariates such as shoe, and (small changes in)
camera viewpoint. In [68], Gabor-filtered GEIs were used as the gait feature
template, and general tensor discriminant analysis (GTDA) was proposed for
feature extraction. The extracted Gabor features demonstrated their robustness
in tackling the carrying condition covariate.

Walking Speed. In order to handle variations in walking speed, the feature
template head and torso image (HTI) was proposed, which removes the unstable
leg parts from silhouettes [65]. Kusakunniran et al. proposed higher-order deriva-
tive shape configuration (HSC) to extract speed-invariant gait features from the
procrustes shape analysis (PSA) descriptors [42]. Based on the HSC framework,
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a differential composition model (DCM) was proposed, which can adaptively
assign weights to different body parts [43]. Although it was claimed that DCM
is insensitive to large speed changes, it requires an additional training data that
covers all the possible speeds.

Walking Surface. By using a ”cutting and fitting” scheme, Han and Bhanu
[26] generated synthetic GEIs to simulate the walking surface effect. By claim-
ing that walking surface may cause spatial misalignment, Image-to-Class dis-
tance was utilized in [33] to allow feature matching to be carried out within a
spatial neighborhood. By using the techniques of universal background model
(UBM) learning and maximum a posteriori (MAP) adaptation, Xu et al. pro-
posed the Gabor-based patch distribution feature (Gabor-PDF) [80]. Significant
performance gain can be achieved against walking surface by these methods
[26],[33],[80].

Elapsed Time and Clothing. Most existing algorithms perform unsatisfac-
torily when elapsed time is taken into consideration, as elapsed time potentially
also includes the changes of clothing, walking conditions, etc. In [53], by fusing
gait features, Matovski et al. studied the effect of elapsed time on a small gait
dataset and found that short term elapsed time does not affect the recognition
significantly. They claimed that clothing may be the most challenging covariate
[53]. Based on a newly constructed gait dataset consisting of 32 different clothes
combinations, Hossain et al. proposed an adaptive scheme for weighting different
body parts to reduce the effect of clothing [50]. However, this method requires
an additional training data that covers all the possible clothes types, which is
less practical in real-world applications.

General Covaraite-Invariant Gait Recognition. From the perspective
of effect, Guan and Li contended that most of the covariates only affect parts
of human silhouettes (with unknown locations)[20]. They proposed an effective
framework based on the concept of the random subspace method (RSM) [29].
From the perspective of learning-based methods, they claimed that overfitting
the less representative training data is the major problem in gait recognition
[21]. They combined a large number of RSM-based weak classifiers to reduce the
generalization errors [21]. Experimental results suggest that RSM is robust to a
large number of covariates such as shoe, (small changes in) camera viewpoint,
carrying condition[21], clothing[22], speed[20], frame-rate[18],[19], etc.

3.3 Open Issues in Gait Recognition

As introduced above, a large number of algorithms have been proposed to tackle
different types of covariates. However, gait is a relatively weak trait and the
performance can be limited when intra-class variations are extremely large [36].
With gaits taken from the lateral view, the recognition accuracies are still low
when facing covariates like elapsed time, walking surface, etc. For cross-view
gait recognition, it is challenging when the view difference (between gallery and
probe) is large (e.g., greater than 36◦)[44], which can change the gait appearance
significantly.
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4 Fusing Gait and Face

When performing human identification at a distance without the subject’s coop-
eration, large intra-class variations can affect the performance of gait/face recog-
nition systems substantially. Large intra-class gait variations may be attributed
to walking surface, clothing, etc., while face recognition may suffer from low
resolution, facial occlusion, etc. Multimodal fusion is a solution to reduce the
error rate, and it has been widely applied to the biometrics field [36], e.g.,
face+fingerprint[59], face+iris[74].

Compared with remote human identification based on gait or face recognition,
the technology of fusing gait and face is still at the early stage. We will introduce
several recent works on fusing these two modalities. In [61], after applying canon-
ical view rendering technique (CVRT), face and gait information from multiple
camera views were fused at the score level. Performance improvement is signif-
icant by fusing these two modalities in a multiple camera environment. In [41],
Kale et al. showed that even in single camera environment, directly combining
the scores of face and gait can boost the overall performance. Based on popu-
lation hidden Markov model (pHMM), Liu and Sarkar selected gait stances for
recognition in the outdoor environment [49]. Extensive experimental results were
reported on handling variations in the walking surface and elapsed time covari-
ates, based on different fusion strategies. They found performance is higher when
fusing gait and face than intra-model fusion (i.e., face+face or gait+gait) [49]. By
claiming that the reliability of face and gait varies with different subject-camera
distances, Geng et al. proposed an adaptive score-level fusion scheme [15]. The
weights of the face score and gait score are distance-driven. It was experimen-
tally shown to outperform score-level fusion with fixed weights in the multi-view
environment. In [87], Zhou and Bhanu performed a score-level fusion of gait and
the enhanced side face image(ESFI). Compared with original side face image
(OSFI), they found that improving face image quality can further enhance the
fusion performance. They further applied feature-level fusion by concatenating
the ESFI and gait [86]. In [30], alpha matte preprocessing (AMP) was used by
Hofmann et al. to segment gait and face images with improved qualities, before
score-level fusion. Recently, Guan et al. proposed the multimodal-RSM frame-
work [23]. In RSM systems, weak classifiers with lower dimensionality tend to
have better generalization ability [29]. However, they encounter the underfitting
problem if the dimensionality is too low. In [23], face was used as ancillary infor-
mation to strengthen the gait-based weak classifiers, before the majority voting
was carried out among these updated classifiers. Significant performance gains
are achieved in tackling the most challenging elapsed time covariate, which also
includes the changes of clothing, carrying condition, shoe, etc.

We report the performance of the afore-mentioned fusion algorithms in Table 1.
For multiple results based on different fusion rules, only the best ones are reported.
As listed in Table 1, fusing gait and face can yield significant performance improve-
ment, given by Δ = (Fusion − max(Face,Gait))/max(Face,Gait). We find
that: 1) Feature-level fusion yields higher Δ than score-level fusion, although more
experiments on larger dataset have to be conducted to support the final conclusion.
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Table 1. The performance (recognition accuracy) of gait and face fusion algorithms

Algorithm Condition Gait Face Fusion Type Δ #Subjects

CVRT[61] Multi-cameras 68% 72% 89% score-level 23.6% 26

View-invariant[41] Outdoor+C1 60% 94% 100% score-level 6.3% 30

Distance-
driven[15]

view 0◦ 82.5% 58.8% 90.0% score-level 9.1% 20
view 45◦ 82.5% 77.5% 95.0% score-level 15.2% 20
view 90◦ 80.0% 70.0% 90.0% score-level 12.5% 20

pHMM[49]
Outdoor+C2 39% 40% 71% score-level 77.5% 70
Outdoor+C3 30% 40% 50% score-level 25% 70

OSFI+GEI [87] C4 82.2% 64.4% 82.2% score-level 0% 45

ESFI+GEI [87] C4 82.2% 80.0% 88.9% score-level 8.2% 45

OSFI+GEI [86] C4 82.2% 64.4% 86.7% feature-level 5.5% 45

ESFI+GEI [86] C4 82.2% 80.0% 91.1% feature-level 10.8% 45

AMP [30] Outdoor+C5 53.6% 54.6% 65.2% score-level 19.4% 122

Multimodal-RSM[23]
C6 88.2% 74.0% 95.6%

score-level &
decision-level

8.4% 155

Δ denotes the performance improvement. C1-C6: Covariate factors. C1: (small changes in)
view; C2: walking surface; C3: elapsed time; C4: clothing; C5: (small changes in) view, shoe,
carrying condition, walking surface, elapsed time, and clothing; C6: shoe, carrying condition,
elapsed time, and clothing.

2) Fusing gait and face can effectively tackle difficult covariates (e.g.,[49],[30],[23])
like clothing, walking surface, elapsed time, etc. However, to the best of our knowl-
edge, without a multi-view gallery to facilitate in-depth investigations, how (large
changes in) camera viewpoint covariate should be handled remains an open ques-
tion. 3)Generally,Δ is higherwhengait and facehave similar accuracies (e.g.,23.6%
for [61], 77.5% for [49],19.4% for [30]), and vice versa (e.g., 6.3% for [41], 0% for
[87], 5.5% for [86]). To improve the overall fusion performance, it is important to
improve the performance of relatively weak modality (e.g., [87],[86]), or employ an
adaptive mechanism (e.g., [15]).

5 Summary and Further Research Directions

In this paper, we review the contemporary (face, gait, and fusion) algorithms for
human identification at a distance. Significant performance gain can be achieved
when gait and face modalities are combined to tackle the hard problems in less
controlled environments. Research on fusing these two modalities is in its infancy,
and we propose the following possible lines of investigation. 1) Fusion strategy :
Most existing works are based on score-level fusion, and it is desirable to explore
the effectiveness of other fusion strategies such as feature-level fusion, decision-
level fusion, rank-level fusion, etc. 2) Adaptive mechanism: the work in [15] used
an adaptive weighting scheme based on different subject-camera distances. In the
future, one can extend this scheme to a quality-driven one. For example, gait will
have a high weight when face is occluded (e.g., Fig. 2(a)), while face will have
a high weight when gait information is unavailable (e.g., Fig. 1(b)). Moreover,
before the fusion, different face/gait algorithms should be adaptively chosen for
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the most suitable scenarios. 3) Segmentation quality : the quality for gait or face
is important. The works in [86],[87] suggest that the performance of fusion can
be improved on higher quality face images. In [30], alpha mattes segmentation is
used for higher gait quality. In the future, more advanced segmentation methods
(e.g.,the superpixels-based method [13]) will be of great aide.
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Abstract. We investigate the possibility of using pupil size as a discriminating 
feature for eye-based soft biometrics. In experiments carried out in different 
sessions in two consecutive years, 25 subjects were asked to simply watch the 
center of a plus sign displayed in the middle of a blank screen. Four primary at-
tributes were exploited, namely left and right pupil sizes and ratio and differ-
ence of left and right pupil sizes. Fifteen descriptive statistics were used for 
each primary attribute, plus two further measures, which produced a total of 62 
features. Bayes, Neural Network, Support Vector Machine and Random Forest 
classifiers were employed to analyze both all the features and selected subsets. 
The Identification task showed higher classification accuracies (0.6194 ÷ 
0.7187) with the selected features, while the Verification task exhibited almost 
comparable performances (~ 0.97) in the two cases for accuracy, and an in-
crease in sensitivity and a decrease in specificity with the selected features.     

Keywords: Eye tracking · Gaze analysis · Eye-based biometrics · Pupil size ·  
Soft biometrics 

1 Introduction 

Eye features and behaviors are increasingly being considered as biometric traits. 
While the cost of eye trackers is still rather high, it is likely that relatively cheap de-
vices will become available in a not too distant future, thus opening the door to a wide 
range of applications. The majority of eye-based approaches are employed for soft 
biometric classification. Therefore, they usually provide a probability that specific 
features are associated to a certain person rather than finding a one-to-one matching 
between certain eye characteristics and a subject. Used in conjunction with common 
authentication solutions, such as those exploiting PINs or passwords, soft biometrics 
can increase security with limited effort on the part of the user. 

Essentially, eye movements occur as very fast saccades (< 100 ms) followed by fixa-
tions (~ 100-600 ms), during which the eye can be considered almost still. Several ap-
proaches to gaze-based identification and verification have been developed to date, most 
of which are based, to a lesser or greater extent, on fixation and saccadic characteristics. 

Depending on the specific activity being carried out, the vision process occurs  
either overtly or covertly, with this last modality capable of capturing the essence of a 
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person’s cognitive and psychological processes [1]. Eye parameters can therefore be 
employed for emotion and cognitive stress detection, as well as for visual attention 
studies. In these contexts, pupil size is an important source of information, and has 
been exploited in several investigations (e.g., in [2]).  

In this paper, we explore the possibility of using pupil size also as a biometric trait. 
In particular, we examine eye data acquired during the very basic task of watching a 
single static graphical element (a plus sign) displayed on a screen. Through several 
descriptive statistics, we analyze the performance of different classifiers used for both 
identification and verification purposes.  

The paper is structured as follows. Section 2 presents a short survey of eye-based 
biometric solutions developed to date. Section 3 describes the data acquisition proce-
dure and the pre-processing stage. Section 4 explains the adopted feature selection 
criteria and illustrates the results obtained. Lastly, Section 5 draws some conclusions 
and provides hints for future work. 

2 Related Works 

In the last decade, several studies have been carried out in the scope of eye-based 
biometrics. In the following, we propose a short summary of the most relevant works. 

Kasprowski and Ober [3] considered gaze coordinates of subjects while watching a 
point jumping on the screen. Eye features were examined through different classify-
ing algorithms, using the inverse Fourier transform of the logarithm of the power 
spectrum of a signal. Bednarik at al. [4] exploited eye features such as pupil size and 
gaze speed in three kinds of tests, involving reading, fixating a static cross (similarly 
to our experiments) and watching a gray level picture. Deravi and Guness [5] meas-
ured gaze duration, pupil position, pupil diameter and the observed point of testers 
while watching a few images for five seconds. Holland and Komogortsev [6] studied 
the effects of various stimuli and different spatial accuracies and temporal resolutions. 
Komogortsev et al. [7] combined eye behaviors and iris structure to obtain better 
recognition rates, exploiting both eye anatomical properties and visual attention strat-
egies. Cuong et al. [8] proposed Mel-frequency cepstral coefficients (MFCCs) as a 
technique to code different features (such as eye position, eye difference, and eye 
velocity) and train various classifiers. Rigas et al. [9] compared the distributions of 
saccadic velocities and accelerations obtained from the observation of a moving spot 
on a screen. Also Juhola et al. [10] focused on saccades to develop a computational 
verification method, involving in their experiments both healthy subjects and 
otoneurological patients. Darwish and Pasquier [11] exploited eye movement features 
and iris constriction and dilation parameters, examining changes in pupil diameter 
during fixations and saccades. 

Some works focused on the free observation of specific kinds of pictures, such as 
faces (e.g., Rigas et al. [12] and Cantoni et al. [13]). Video stimuli were used by  
Kinnunen et al. [14] in experiments in which eye movements were described in terms 
of angles traveled by the eyes in certain time spans. Liang et al. [15] devised a video-
based identification method which exploited visual attention features such as accel-
eration, geometric and muscle properties. 
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With the purpose to detect potentially unusual user behaviors, Holland and 
Komogortsev [16] analyzed several biometric characteristics based on eye movement 
and their potential to identify specific persons, especially when reading. With the 
same goal, Biedert et al. [17] developed an intrusion detection system based on 
“learning effects”, presuming that people become gradually used to certain tasks (e.g., 
checking for emails and reading messages) as they are repeated over time. Silver and 
Biggs [18] considered both keystroke and eye-tracking as distinctive characteristics, 
thus implementing a multimodal biometric approach. 

In the context of explicit authentication systems, like ATMs, Kumar et al. [19] dis-
cussed different design solutions to allow gaze-based PIN input. De Luca et al. [20] 
proposed a verification method based on eye gestures, performed by moving the eyes 
so as to “draw” certain patterns on the screen. Dunphy et al. [21] implemented an 
approach in which the user has to watch specific faces within a sequence of 3x3 grids. 
Symbols displayed in a virtual keyboard were instead exploited by Weaver et al. [22] 
as targets to be watched according to a specific succession. Maeder et al. [23] ana-
lyzed gaze sequences of subjects while looking at specific spots of a previously seen 
picture. Rozado [24], lastly, compared the speed and error rates of different gaze-
based password methods. 

3 Data Acquisition 

3.1 Participants and Experiments 

The experiments were conducted in two sessions in 2012 and 2013 (about one year 
follow-up), with 25 volunteer subjects taken from students and the research staff of 
our department. Participants were composed of 18 males and 7 females, with ages 
ranging from 21 to 70. Ten testers attended the experiments in both 2012 and 2013, 
while 15 of them were involved solely in one year (8 in 2012 and 7 in 2013). In any 
case, all subjects attended at least three tests, at intervals between two days and one 
week in the same year. In total, 98 tests were carried out (52 in 2012 and 46 in 2013). 

3.2 Apparatus  

Eye data were recorded using a Tobii 1750 eye-tracker, with a 50 Hz sampling rate 
(which means that 50 data samples were acquired per second). Two different gaze 
recording software tools were used in 2012 and 2013, namely ClearView and Tobii 
Studio. Apart from some negligible differences in terms of numbers’ decimal preci-
sion, the two programs provided fully comparable outputs. 

3.3 Procedure 

Experiments were conducted in a quiet laboratory environment. The task of partici-
pants was simply to fixate the center of a plus sign (78x78 pixels) displayed in the 
middle of a blank white screen (1280x1024 resolution), as shown in Fig. 1. This stim-
ulus was in fact part of another experiment, in which the tester was asked to freely 
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watch a sequence of 18 photographs containing mostly faces and shown for ten se-
conds each. The blank screen with the plus sign (simply “plus screen” in the follow-
ing) was displayed before each photo, for five seconds the first time and for three 
seconds afterward. 
 

 

Fig. 1. Experiment stimulus 

3.4 Data Pre-Processing 

In the pre-processing phase, only valid raw data were selected, thus excluding those 
samples which missed correct eye information for either the left or right eye (for ex-
ample because of blinks). From these valid data, only the first 50 samples were ex-
tracted. This guaranteed the same number of raw values for all the 18 “plus screens” 
in each test of each session (except for a few cases, which were excluded from the 
analysis because less than 50 valid samples could be found). In total, 1,754 “plus 
screens” were considered for all sessions. 

After pre-processing, derivative raw features were calculated, namely the ratio and 
the difference between the left and right pupil sizes. Pupils’ sizes and the derivative 
data were then smoothed by means of a single-iteration median filter with window 
size equal to 5 (Fig. 2). 

3.5 Features 

For each one of the four primary features (left and right pupil size, ratio and differ-
ence between left and right pupil sizes), the following 15 descriptive statistics were 
used to summarize data: minimum, maximum, mean, standard deviation, variance, 
median, median deviation, geometric mean, harmonic mean, inter-quartile range 
(IQR), first quartile, third quartile, kurtosis, range and skewness. In addition, two 
other statistical measures were considered, namely the sum of squares of differences 
between left and right pupil sizes and the correlation between left and right pupil siz-
es. Globally, 62 (i.e., 154 + 2) features were therefore calculated for each “plus 
screen”. These features were provided as input to four different classifiers. 
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Fig. 2. Example of data smoothing (left and right pupil diameter for each one of the 50 samples 
considered) 

3.6 Classifiers 

Both identification (i.e., searching for an individual matching a biometric sample) and 
verification (i.e., confirming an individual’s claimed identity) analyses were conduct-
ed. The classifying tasks were carried out using Bayes, Neural Network (NN), Sup-
port Vector Machine (SVM), and Random Forest (RF) classifiers. The composition of 
training and testing data was 70% and 30%, respectively. The classification result was 
the average value of 10-time repetitions with stratified random data. 

4 Results 

4.1 Feature Selection 

For both identification and verification, we performed two trials: one with all the 62 
features and one with a selected subset. In the identification case, the selection was 
accomplished by sorting features according to their ranking, adding one feature at a 
time (through an iterative process) and calculating the Classification Accuracy (CA): 
if the inclusion of a feature increased CA, then that feature was added to the subset; 
otherwise, if CA was the same or decreased, the feature was omitted. Feature ranking 
was calculated using an SVM weight approach, and the features obtained were ap-
plied separately for each classifier. In preliminary trials, some other feature ranking 
approaches were also considered, such as ReliefF, Information Gain, Gain Ratio and 
Gini, but the SVM weight solution produced the best outcomes. The same subset of 
features selected for identification was also used for the verification case. 
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As shown in Fig. 3 and Fig. 4, at each iteration (as many as the number of features, 
i.e., 62) a new feature was introduced (according to the ranking), and the average 
accuracy of 10-time trials was calculated. In the end, 18, 23, 29, and 27 features were 
selected for Bayes, NN, SVM, and RF classifiers, respectively (Table 1).  

 

 

Fig. 3. Number of features used by the four classifiers at each iteration of the selection process 

 

Fig. 4. Classification Accuracy achieved by the four classifiers in the feature selection process 
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Table 1. Features selected for Bayes (BA), Neural Networks (NN), Support Vector Machine 
(SV) and Random Forest (RF) classifiers, ordered according to their ranking (R)  

R Feature BA NN SV RF R Feature BA NN SV RF 

1 
Left pupil  
variance  

x x x x 24 
Stand. dev. 
of ratio  

         

2 
Ratio  
range  

x x x x 25 
Skewness 
of difference  

        
 

3 
Right pupil  
skewness  

x x x x 26 
Right pupil  
Stand. dev.  

         

4 
Right pupil  
range  

x x x x 27 
First quartile 
of difference  

         

5 
Left pupil  
median dev.  

  x x x 28 
Median of 
difference  

    x   
 

6 
Right pupil 
IQR  

  x x x 29 
Stand. dev. 
of difference  

      x  

7 
Left pupil  
median  

x x x x 30 
Mean of  
difference  

         

8 
Right pupil  
variance  

    x x 31 
Maximum 
difference  

        
 

9 
Ratio  
variance  

    x x 32 
Kurtosis of 
ratio  

x     x  

10 
Left/right 
pupil corr. 

x x x x 33 
Median of 
ratio  

    x x  

11 
Left pupil  
range  

  x x x 34 
Left pupil  
IQR  

        
 

12 
Left pupil 
stand. dev.  

  x x x 35 
Left pupil  
first quartile  

         

13 
Right pupil  
median  

x x x x 36 
Median dev. 
of ratio  

    x    

14 
Minimum of 
difference  

x x x x 37 
Right pupil 
third quartile  

        
 

15 
Left pupil  
skewness  

x x x x 38 
Minimum 
ratio  

x        

16 
Right pupil  
minimum  

x x x x 39 
Kurtosis of 
right pupil  

x        

17 
Left pupil 
minimum  

x x x x 40 
Median dev. 
of difference  

      x 
 

18 
Maximum 
of ratio  

x x x x 41 
Range of 
difference 

    x    

19 
Geom. mean 
of differences  

  x x x 42 
Kurtosis of 
left pupil  

         

20 
Third quart. 
of difference  

x x x x 43 
Skewness  
of ratio  

x       
 

21 
Sum of squar. 
of diff. 

  x x x 44 
Third quartile 
of ratio  

         

22 
Harm. mean 
of difference  

  x     45 
IQR of 
difference 

         

23 
Right pupil  
median dev.  

  x x   46 
Left pupil 
third quartile  
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Table 1. (continued) 

R Feature BA NN SV RF R Feature BA NN SV RF 

47 
Right pupil 
first quartile  

        55 
First quartile 
of ratio  

    x    

48 
Maximum of  
left pupil  

        56 
IQR of 
ratio 

x        

49 
Variance of 
difference  

    x   57 
Left pupil 
harm. mean  

        
 

50 
Kurtosis of 
difference  

      x 58 
Left pupil  
geom. mean  

  x      

51 
Mean of 
ratio  

        59 
Left pupil  
mean  

         

52 
Geom. mean 
of ratio  

  x     60 
Right pupil  
harm. mean  

      x 
 

53 
Harm. mean 
of ratio  

        61 
Right pupil  
geom. mean  

         

54 
Maximum of 
right pupil  

    x   62 
Right pupil  
mean  

         

4.2 Identification 

The NN classifier produced the best Classification Accuracy (0.708) using all the 62 
features, while the SVM classifier had the best performance (0.7187) with the select-
ed 29 features (Table 2). As can be seen, the selection process increased the classifi-
cation accuracy for all classifiers. In particular, the Bayes classifier had the largest 
gain of accuracy (12.5%) with the smallest number of features (18).  

Table 2. Identification results 

Features Classifier Num. of features CA 

All features Bayes 62 0.5508 

NN 62 0.7080 

SVM 62 0.6998 

RF 62 0.6376 

Selected features Bayes 18 0.6194 

NN 23 0.7097 

SVM 29 0.7187 

RF 27 0.6757 

4.3 Verification 

Using all the 62 features, the best results were produced by the NN classifier for accu-
racy (0.9773) and AUC (area under ROC curve, 0.9727), by the SVM classifier for 
Sensitivity (0.9977) and by the Bayes classifier for Specificity (0.8223). As shown in 
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Table 3, in the verification case the selected features showed a different trend com-
pared to identification. The reduction of the number of features tended to increase 
Sensitivity (0.07% ÷ 7.8%) but decreased Specificity (2.7% ÷ 24.7%). This tendency 
made the overall classification accuracy gain vary from -0.19% to 6.75%. 

Table 3. Verification results 

Features Classifier Num. of 
features

CA Sensitivity Specificity AUC 

All features Bayes 62 0.8964 0.8997 0.8223 0.9438 

NN 62 0.9773 0.9948 0.5208 0.9727 

SVM 62 0.9672 0.9977 0.1482 0.6123 

RF 62 0.9731 0.9955 0.4078 0.9500 

Selected  
features 

Bayes 18 0.9569 0.9702 0.6190 0.9604 

NN 23 0.9754 0.9960 0.4445 0.9710 

SVM 29 0.9668 0.9978 0.1421 0.6114 

RF 27 0.9734 0.9962 0.3968 0.9556 

 
As examples, Fig. 5 and Fig. 6 show the ROC curves for the testers with the best 

and worst classification performance. 

 

Fig. 5. ROC curve (the best case) 
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Fig. 6. ROC curve (the worst case) 

5 Conclusions 

In this paper we have explored the possibility of using pupil size as a soft biometric 
trait. Apart from very few previous studies (e.g., the work of Bednarik at al. [3], 
which, however, exploited also additional features), to date pupil size has been little 
considered for biometric purposes. 

Although the number of testers involved in our experiments was relatively low, the 
obtained results are encouraging, and suggest that pupil diameter can provide reliable 
information for both identification and verification tasks. In particular, it is interesting 
to note that a reasonably limited group of features (from 18 to 29, depending on the 
classifier) can produce results almost comparable with those that can be obtained 
using the whole set of 62 features. 

Future experiments will allow us to further investigate the potential of pupil size as 
a biometric characteristic. Besides involving more testers, we will also consider dy-
namic features (such as the evolution of pupil size and related statistics with time). 
More complex stimuli will be considered too, in order to obtain more variegated and 
potentially more meaningful data.      
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Abstract. Soft biometrics continues to attract research interest. Traditional body 
and face soft biometrics have been the main research focus and have been 
proven, by many researchers, to be usable for identification and retrieval. Also, 
soft biometrics have been shown to provide several advantages over classic 
biometrics, such as invariance to illumination and contrast. Other than body and 
face, little attention has focussed on semantic descriptions of an individual, 
including clothing attributes. Research has yet to concern clothing characteristics 
as a major or complementary set of biometric traits. In this paper, we analyse the 
reliability and significance of clothing information for retrieval purposes. We 
investigate and rate the viability of semantic clothing descriptions to retrieve a 
subject correctly, given a verbal description of their clothing.  

Keywords: Soft Biometrics · Human Descriptions · Retrieval · Semantic 
Clothing Attributes · Relative Attributes 

1 Introduction 

In recent years, there has been an increasing interest in soft biometrics. Traditional 
soft biometrics such as age, gender, and ethnicity in addition to body and face traits 
like height, and arm length, have been the most considered traits for different 
objectives and in a variety of applications. 

Subject retrieval is a useful and challenging biometric application. Bodily human 
features can be described using human understandable labels and measurements, 
which in turn, allow for recognition and retrieval using only verbal descriptions as the 
sole query [1, 2]. The features also allow prediction of other measurements as they 
have been observed to be correlated [3]. Indeed, soft traits are not unique to an 
individual but a discriminative biometric signature can be designed from their 
aggregation. Verbal identification can be used to retrieve subjects who have been 
previously enrolled in database [4] and it could be extended, in a more challenging 
application, for retrieval from video footage [1]. The capability of verbal retrieval 
from images and videos can pave the way for applications that can search surveillance 
data of a crime scene to match people to potential suspects described verbally by 
eyewitnesses. Soft biometric databases based on categorical labels can be 
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incorporated with other biometrics to enhance recognition, such as integrating soft 
body traits with a gait signature [4], and using soft facial traits along with other (hard) 
facial traits [5]. Nevertheless, soft comparative labels have been demonstrated to be 
more successful in representing the slight differences between people in bodily 
descriptions [1]. Facial marks, for instance, can be automatically detected and 
ascribed to be used as micro soft traits to supplement primary facial features for 
improved face recognition and fast retrieval, besides they may enable matching with 
low resolution or partial images [6, 7]. For surveillance purposes, different forms of 
soft biometrics take place in various means of applications and scenarios [1, 8, 9]. 

Human clothes are a predominant visible characteristic of the person’s appearance. 
However, clothing has rarely been adopted for representing soft biometric traits for an 
individual and has been considered unlikely to be a clue to identity [10]. Clothing can 
reflect some cues regarding social status, lifestyle and cultural affiliation. In addition, 
clothing encodes more information about an individual, beyond just their visual 
appearance [10]. There are few research studies associated with using clothing for 
biometric purposes [2, 5, 9, 11, 12]. The majority of existing research employs 
computer vision algorithms and machine learning techniques to extract and use visual 
clothing descriptions in applications including: online person recognition [5, 11]; 
semantic attributes for re-identification [13]; detecting and analysing semantic 
descriptions (labels) of clothing colours and types to supplement other bodily and 
facial soft attributes in automatic search and retrieval [9]; and utilizing some clothing 
attributes like colour [14] and style to improve the observation and retrieval at a 
distance in surveillance environments [2]. Even with images captured on different 
days, there remains sufficient information to compare and establish identity, since 
clothes are often re-worn or a particular individual may prefers a specific clothing style 
or colour [15]. Clothing descriptions like indicative colours and decorations could be 
utilized to supplement other behavioural biometrics like human motion pattern, hence 
they can form a biometric fingerprint that serves as a person’s identifier [11]. 

This research aims to investigate the capability of soft clothing traits towards 
reinforcing biometric signatures. We have previously studied the identification 
capability of these new measures [16]. This paper focusses on using clothing to 
enable accurate subject retrieval, and the efficacy of the clothing labels.  
Furthermore, a set of experiments validates and evaluates the retrieval performance of 
clothing-based techniques and the new sets of clothing labels. We outline and discuss 
their retrieval performance, measured by a set of evaluation metrics. The main 
contributions of this paper comprise: 

• extended analysis and investigation of reliability and significance of proposed 
categorical and comparative soft clothing traits; 

• new soft clothing-based biometrics techniques for subject retrieval; and 
• detailed retrieval assessment and comparison of soft clothing approaches. 

Section 2 outlines the proposed semantic attributes and their labels. Section 3 
explains the mechanism used for data collection and clothing database design.  
Section 4 introduces soft clothing biometrics. Section 5 demonstrates clothing 
information analysis. Section 6 describes subject retrieval using soft clothing 
biometrics. Finally, Section 7 concludes the paper and discusses future work. 
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Table 1. Semantic clothing attributes and corresponding categorical and comparative labels 

Body zone Semantic Attribute Categorical Labels Comparative Labels 

Head 

1. Head clothing category [None, Hat, Scarf, Mask, Cap]  
2. Head coverage [None, Slight, Fair, Most, All] [Much  Less,  Less,  Same,  

More, Much more] 
3. Face covered [Yes, No, Don't know] [Much  Less,  Less,  Same,  

More, Much more] 
4. Hat [Yes, No, Don't know]  

Upper 
body 

5. Upper body clothing category [Jacket, Jumper, T-shirt, Shirt, Blouse, 
Sweater, Coat, Other] 

 

6. Neckline shape [Strapless, V-shape, Round, Shirt collar, 
Don’t know] 

 

7. Neckline size [Very Small, Small, Medium, Large,  
Very Large] 

[Much  Smaller,  Smaller,  
Same,  Larger, Much Larger] 

8. Sleeve length [Very Short, Short, Medium, Long,  
Very Long] 

[Much  Shorter,  Shorter,  
Same,  Longer, Much Longer] 

Lower 
body 

9. Lower body clothing category [Trouser, Skirt, Dress]  
10. Shape [Straight, Skinny, Wide, Tight, Loose]  
11. Leg length (of lower 

clothing) 
[Very Short, Short, Medium, Long,  
Very Long] 

[Much  Shorter,  Shorter,  
Same,  Longer, Much Longer] 

12. Belt presence [Yes, No, Don't know]  

Foot 
13. Shoes category [Heels, Flip flops, Boot, Trainer, Shoe]  
14. Heel level [Flat/low, Medium, High, Very high] [Much  Lower,  Lower,  

Same,  Higher, Much higher] 

Attached 
to body 

15. Attached object category [None, Bag, Gun, Object in hand, gloves]  
16. Bag (size) [None, Side-bag, Cross-bag, Handbag, 

Backpack,  Satchel] 
[Much  Smaller,  Smaller,  
Same,  Larger, Much Larger] 

17. Gun [Yes, No, Don't know]  
18. Object in hand [Yes, No, Don't know]  
19. Gloves [Yes, No, Don't know]  

General 
style 

20. Style category [Well-dressed, Business, Sporty,  
Fashionable, Casual, Nerd, Bibes, Hippy, 
Religious, Gangsta, Tramp, Other] 

 

Permanent 21. Tattoos  [Yes, No, Don't know]  

2 Semantic Clothing Attributes 

A subject’s clothing can be described using different semantic attributes. For the 
purpose of this research, amongst several possible clothing attributes and labels, an 
initial set of attributes is considered (see Table 1, as described elsewhere [16]).  
A group of categorical and comparative labels are used to describe these attributes. 

Categorical labels can be defined as nameable descriptions used to describe 
semantic attributes of an individual’s clothing, usually associated with multiple 
clothing categories or styles such as (Upper body clothing category: ‘Jacket’, 
‘Jumper’, ‘T-shirt’ etc.) or can be labels describing the degree of presence of relative 
attributes such as (Sleeve length: ‘Very short’, ‘Short’, ‘Medium’ etc.). Comparative 
labels are nameable descriptions used to describe only relative attributes of an 
individual’s clothing compared with another individual’s clothing. In other words, 
these labels describe the degree of comparisons of relative attributes, such as 
(Neckline size: ‘Much smaller’, ‘Smaller’, ‘Same’, ‘Larger’ and ‘Much larger’). 

A list of 21 semantic attributes is proposed and each attribute is described by a 
specified group of suitable categorical labels. Furthermore, seven of the 21 attributes 
are both categorical and relative enabling comparison, whereas the remaining 14 are 
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The second task required a user to compare one subject, selected randomly from the 
ten already annotated, with other ten new subjects. A comparison, between two 
subjects was performed by selecting seven appropriate comparative labels. In this way 
27 labellers provided a total of 12747 categorical and comparative labels on 128 
subjects. Clothing attributes were grouped based on their zones and relevance as: 
Head, Upper body, Lower body, Foot, Attached to body, General style and Permanent 
as shown in Table 1 and Fig. 1. 

6636 categorical and 2219 comparative labels were collected from the 27 users via 
the website. All 128 samples were labelled by multiple users, with one or more 
separate user annotations per subject describing the 21 categorical attributes such that, 
each subject’s annotation provided by a single annotator. All subjects were compared 
using the seven relative attributes by multiple users. To enrich the comparison data 
from the available number of collected comparisons, 3892 additional comparisons 
were inferred when two subjects were both compared with another same subject. 

4 Soft Clothing Biometrics 

4.1 Categorical Clothing Traits (Cat-N) 

Categorical annotations are used to form a categorical-based feature vector for each 
subject in a Training dataset. This feature vector is deduced by computing a 
normalized average-label per attribute for a set of labels provided by multiple users 
describing the same subject. The resulting 21 attribute values per subject are used to 
form a number of categorical feature vectors and to construct their galleries, 
containing the same type of feature vectors for all subjects in database. The first 
feature vector is formed using the values of all the 21 attributes, constructing a gallery 
called Cat-21. The second feature vector is formed from the values of a subset of the 
only seven relative clothing attributes, shown in bold in Table 1 (attributes 2, 3, 7, 8, 
11, 14, and 16), to build a gallery called Cat-7. 

Feature Subset Selection. A third feature vector is formed by applying one-way 
analysis of variance (ANOVA) to determine the most effective traits (and attributes) 
for discrimination. After analysing traits separately, traits were ranked as shown in 
Fig. 2. A minimum number of traits that achieve the best retrieval performance were 
selected. The third feature vector is formed using a subset of the top five traits 
(attributes 2, 8, 9, 12, and 11) outlined in Table 2-(a), building a gallery called (Cat-5). 

4.2 Comparative Clothing Traits (Cmp) 

Comparison data can be used to convey meaningful information describing a subject 
in relation to the remaining population [1]. The collected comparative annotations 
need to be anchored, per attribute, to define invariant relative measurements for each 
subject. To derive these measurements, a ranking method needs to be applied to 
arrange a list of ordered subjects with respect to a single attribute. In the ranking 
process, the comparisons between subjects are used as rules to enforce ordering for 
subjects, and to adjust a relative measurement per attribute for each. 
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Ranking SVM. To achieve ordering and to derive the desired relative measurements 
to represent comparative soft clothing traits, a soft-margin Ranking SVM method [19] 
is used, along with a supporting formulation of similarity constraints [20]. This 
applies a pairwise technique based on learning a ranking function per attribute, which 
can be used not only to determine the relative strength of attributes in a training 
sample, but also to predict the relative strength in a new test sample. Thus, for a set of 
attributes A, a ranking linear function ra is learned for each attribute a such that: 

 i
T
aia xwxr =)(  (1) 

where wa is the coefficient of the ranking function ra and xi is a feature vector of 
attributes of a subject being ranked. A set of comparisons is rearranged into two 
groups to represent the pairwise relative constraints required to learn a ranking 
function. The first group consists of a set of dissimilarity comparisons Da of ordered 
pairs so that (i, j) ∈ Da  i > j whereas the second group comprises a set of similarity 
comparisons Sa of non-ordered pairs so that (i, j) ∈ Sa  i = j. Da and Sa sets are then 
utilized to derive the wa coefficients of ra according to the following formulation:                                       minimise ቆ12 ԡ T

aw ԡଶ ൅ C ෍ ௜௝ଶߦ ቇ                                       subject to )( ji
T
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        | )( ji
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The degree of misclassification is measured by ݆݅ߦ  and the trade-off between 
maximizing the margin and minimizing the error (i.e. satisfying constraints) is 
denoted as C. The resulting optimal function wa can enforce (explicitly) a desirable 
ordering for all training samples, in respect to a. A feature vector xi is mapped using 
Eqn. (1) to a corresponding feature vector comprising a number of real-value relative 
measurements. Each measurement represents the relative strength of a single attribute. 

All subjects in the Cat-7 gallery are used as a training dataset to learn seven 
optimal ranking functions for the seven relative attributes. The weighting of each 
function is derived using the formulation in Eqn. (2). The desirable per attribute 
ordering of all subjects is deduced from w. Then by Eqn. (1), each value of w is used 
to map each feature vector in Cat-7 to a corresponding vector of seven relative 
measurements (i.e. comparative traits) describing a single subject. All the obtained 
relative measurement vectors are gathered to compose a fourth gallery called (Cmp). 

5 Data Analysis 

5.1 Analysis of Variance (ANOVA) 

Table 2 provides the ordered lists of resulting ANOVA test values for categorical and 
comparative clothing traits. Accordingly, Fig. 2 shows ordered p-values scaled 
positively by computing the absolute logarithm of the p-value, which emphasises 
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smaller p-values. Scaling is used to magnify small differences between p-values and 
to be visually observable. Head coverage is highly discriminative since few subjects 
had covered heads. It is perhaps surprising that sleeve length is so discriminative, 
especially compared with the length of the trousers, but that is what this analysis 
reveals, and no summary analysis is possible by human vision. 
 

 
(a) Categorical traits (b) Comparative traits 

Fig. 2. Attributes ordered according to p-values 

Table 2. Ordered list of clothing traits by their F-ratios 

(a) Categorical trait (b) Comparative trait 

Soft clothing biometrics F-ratio 
(df = 315 )

P-value 
(p ≤ 0.05 )

Soft clothing 
biometrics 

F-ratio 
(df = 315 ) 

P-value 
(p ≤ 0.05 ) 

2. Head coverage 13.239 8.45E-53 2. Head coverage 11.369 1.08E-47 
8. Sleeve length 10.549 3.07E-45 8. Sleeve length 9.790 7.79E-43 
9. Lower body clothing category 10.189 4.07E-44 16. Bag (size) 4.258 1.73E-19 
12. Belt presence 4.600 2.46E-21 11. Leg length 

(of lower clothing)
3.622 7.16E-16 

11. Leg length (of lower clothing) 3.478 5.07E-15 
5. Upper body clothing category 3.324 4.25E-14 3. Face covered 2.186 5.30E-07 
13. Shoes category 3.265 9.66E-14 7. Neckline size 2.140 1.03E-06 
14. Heel level 3.057 1.80E-12 14. Heel level 1.852 6.07E-05 
6. Neckline shape 2.608 1.16E-09    
20. Style category 2.326 6.96E-08    
10. Shape (of lower clothing) 1.618 0.0013    
7. Neckline size 1.608 0.0015    
4. Hat 1.471 0.0081    
21. Tattoos  1.214 0.1129    
15. Attached object category 0.874 0.7910    
18. Object in hand 0.874 0.7910    

5.2 Correlations and Significance  

The exploration of clothing traits’ significance and correlations, is deemed to be an 
important analysis resulting in a better comprehension of which of traits contribute 
most to identification and leading to wider potential predictability of other traits [3]. 
The proposed clothing traits were assessed to investigate their correlation and 
effectiveness for subject description. For the sake of this investigation, we used the 
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correlation matrix computed using (Pearson’s r) correlation coefficient to highlight 
the significance of an attribute and the mutual relations between traits. Note that, 
when one or both of correlated labels are binary or multi-class describing pure 
(nominal) categorical traits, this indicates that they are simultaneously present in a 
single annotation. That is because the assigned numeral values of such labels are 
unlike (ordinal) labels of relative measurements, so they can be assigned values in any 
order or their values can be exchanged. 

 

 
(a) Categorical clothing traits (b) Comparative clothing traits 

Fig. 3. Correlation matrix between the soft clothing traits 

Fig. 3 demonstrates the correlation between the most significant categorical traits 
and comparative traits (see Table 2); traits without correlation are not shown. High 
correlation is symbolized by orange, and low by blue/green. In the categorical matrix, 
traits relating to head coverage (2) and (4) are highly correlated, as are the traits (15) 
and (18) relating to the description of items attached to the body. Clothing categories 
are well correlated for upper (5) and lower (9) body, as expected. In the comparative 
matrix, sleeve length (8) and heel level (14) are highly correlated. Heel level is also 
well correlated with leg length (11) and neckline size (7). The structures of both 
correlation matrices suggest that the desired uniqueness has indeed been achieved. 

 

6 Retrieval Using Soft Clothing Traits 

The main objective of this experimental work is to validate and evaluate the proposed 
soft clothing approaches, described in Section 4, in retrieval and to explore their 
viability to supplement the performance of soft body biometrics. The distinction 
between retrieval and recognition concerns the ability to generalise to unseen data. 
We use the previously collected soft body descriptions from the Soton database [11] 
where each of 115 individuals was labelled by multiple users’ describing 23 soft 
bodily traits. These traits were grouped into three categories: Body shape, Global, and 
Head. Our clothing analysis is used to enhance the retrieval in two different respects. 
Firstly, to enhance the performance of only the traditional soft traits (Age, Ethnicity, 
Sex, and Skin Colour) which were grouped as Global attributes as in [4]. Secondly, to 
enhance all the mentioned 23 soft body traits including the four traditional traits. 
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Biometric based retrieval can be described as a task that aims to identify an 
unknown subject by comparing and matching their biometric signature with those 
signatures enrolled in a database [1]. For the sake of retrieval, the collected clothing 
annotations were divided into two sets: a Query set comprising one annotation per 
subject for each of the 128 subjects, which is used (as unseen data) to examine 
retrieval; and a Training set containing all the remaining annotations, which is used 
for training and feature selection processes. All annotations in the Query set are 
excluded from the label data, and not reused in Training set and not involved in any 
training processes. The body Training set is used to derive for each subject a single 
feature vector consisting of 23 normalized average-labels. These average-labels are 
computed for a set of annotations provided by multiple users describing the 23 body 
traits of the same subject. A set of all computed feature vectors comprises a gallery 
called softBody to be tested separately in retrieval. Then each of the soft clothing 
galleries (Cat-21, Cat-7, Cat-5, and Cmp) is used to supplement softBody such that, 
each feature vector describing a single subject in softBody is concatenated to a 
corresponding feature vector describing the same subject in each of clothing galleries, 
resulting in: softCat-21, softCat-7, softCat-5 and softCmp galleries. Another gallery 
called tradSoft is derived from softBody, consisting of a four-trait feature vector per 
subject subset of only comprising only the four traditional soft descriptions (i.e. Age, 
Ethnicity, Sex, and Skin Colour). Likewise, tradSoft is extended to four versions 
supplemented by clothing to construct new galleries: tradCat-21, tradCat-7, tradCat-
5 and tradCmp. Query-vectors are normalised and reshaped according to the feature-
vectors in a tested gallery to enable comparison and matching. 

The likelihood between every single query-vector and all subject-vectors in a 
gallery is estimated and retrieved, resulting in an ordered list of all subjects based on 
likelihood evaluated by the sum of Euclidean distance between query and gallery 
vectors. A number of standard performance evaluation methods are used to enable 
comparison between approaches from different perspectives. The Cumulative Match 
Characteristic (CMC) curve is applied to summarize the retrieval accuracy, which 
scores the existence of the correct subjects within a (likelihood-based) ranked list 
starting from list-length of 1 to 128 the total number of subjects in a tested gallery. 
Receiver Operator Characteristic (ROC) analysis is used to assess and compare the 
approaches performance and their generated errors. A set of further performance 
metrics are deduced from the ROC analysis comprising the Area Under the Curve 
(AUC) as in our consideration a smaller are under the ROC curve reflecting a less 
error and a better performance, and the Equal Error Rate (EER). Also the Decidability 
Index (d') metric is computed form the normalized distance between the two means of 
Genuine (G) and Imposter (I) distributions such that d' ൌ ீߤ| െ ଶீߪூ|/ඥሺߤ ൅  .ூଶሻ/2ߪ
The overall performance, with respect to all evaluation metrics, is deduced for all 
approaches to rank them by overall score. 

6.1 Retrieval Using Clothing and Traditional Soft Biometrics 

The ROC performance of the examined approaches is compared in Fig. 4, where all 
clothing approaches but tradCat-21 provide better retrieval accuracy and less error. 
Table 3 reports the CMC scores and the average-sum scores along different ranks, 
besides the ROC analysis results for the traditional soft traits (Age, Ethnicity, Sex, 
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and Skin Colour) and when adding soft clothing traits to them; all the best values are 
shown in bold. In all the retrieval match score, all clothing approaches enhance the 
retrieval performance of the traditional soft biometrics up to 9% in average at rank 
128 achieved by tradCat-5. The best overall performance achieved by tradCat-5 
followed by tradCmp with slightly low performance and very close scores across all 
assessment metrics. However, tradCmp receives the best scores in the average score 
up to rank 10 and reaching, and tradCat-7 attains the highest score at rank 1, then is 
exceeded by tradCat-5 and tradCmp with the rank increase. 

 

Fig. 4. ROC performance of traditional soft biometrics and when supplemented by clothing 

Table 3. Performance metrics of traditional soft biometrics and when supplemented by clothing 

Approach 
Top 
rank 

AVG sum match 
scores up to rank 100% accuracy 

achieved at rank 
EER AUC d' Performance 

overall rank 
=1 =10 =128 

tradSoft 0.14 0.27 0.838 106 0.094 0.039 2.379 4 
tradCat-21 0.23 0.41 0.866 108 0.107 0.050 1.829 5 
tradCat-7 0.25 0.47 0.900 95 0.116 0.039 2.292 3 
tradCat-5 0.24 0.49 0.925 70 0.086 0.032 2.436 1 
tradCmp 0.24 0.50 0.919 67 0.094 0.037 2.416 2 

6.2 Retrieval Using Clothing and Soft Body Biometrics 

Fig. 5 presents the CMC curves of the retrieval performance of soft body traits and 
compare the performance the clothing approaches. The figure shows the CMC curves 
up to rank 25 where the differences between compared approaches are more 
significant and can be appreciated. Table 4 provides all the produced metric results of 
CMC and ROC of body soft biometrics and the clothing approaches. The approaches 
softCat-5, softCmp, and softCat-7 respectively gain a highest performance that 
improves retrieval performance of using soft body biometrics alone, softCat-21 starts 
with a higher accuracy than softBody but provides a lower performance between rank 
2 and 23, and then increase rapidly over all approaches.  

The best overall performance is achieved by softCat-5 as it yields the best scores  
in all evaluation measurements but two as can be observed in Table 4. All clothing 



244 E.S. Jaha and M.S. Nixon 

approaches started with better retrieval accuracy at rank 1 than the soft body traits, 
while softCat-5 considerably increase the retrieval from only 67% to 82%. Although 
the inferiority of the softCat-21 in all used evaluation criteria compared with its 
clothing-based counterparts, it is the first to reach the reach 100% at a minimum rank 
of 32. softCmp receives the best score in terms of decidability metric d'. 

Table 4. Performance metrics of body soft biometrics and when supplementd by clothing 

Approach 
Top 
rank 

AVG sum match 
scores up to rank 100% accuracy 

achieved at rank 
EER AUC d' Performance 

overall rank 
=1 =10 =128 

softBody 0.668 0.900 0.988 56 0.196 0.146 1.611 4 
softCat-21 0.695 0.882 0.987 32 0.259 0.177 0.942 5 
softCat-7 0.742 0.923 0.990 49 0.209 0.133 1.417 3 
softCat-5 0.820 0.946 0.992 47 0.167 0.105 1.552 1 
softCmp 0.742 0.927 0.990 40 0.170 0.113 1.770 2 

 

Fig. 5. CMC performance (up to rank 25) of the soft body biometrics and when supplementd by 
clothing 

7 Conclusions and Future Work 

This paper explores the viability of using soft clothing attributes to achieve enhanced 
subject retrieval. The results of this exploration using clothing traits highlights a 
potentially valuable addition to the field of soft biometrics. This can lead to new and 
useful enhanced biometric applications and systems, using soft clothing biometrics for 
various purposes including subject search, retrieval, identification, and re-identification. 
Our analysis of soft clothing traits indicates that such clothing characteristics can be 
associated in biometric signatures and achieve successful subject retrieval. 

Future work will continue to investigate the ability and significance of the new soft 
clothing biometrics for retrieval in more challenging scenarios. One possible scenario 
could be the retrieval using newly collected query annotations describing unseen  
subjects’ images derived from different viewpoints in which some clothing attributes 
can be occluded or difficult to observe. Therefore, such an analysis appears more 
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vulnerable to subjectivity and missing information. Another future work could be to 
focus on learning a fully automated clothing labelling for data images and query 
images for retrieval purposes. 
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Abstract. The continuously increasing art market activity and international art 
transactions lead the market for stolen and fraudulent art to extreme levels. Ac-
cording to US officials, art crime is the third-highest grossing criminal enter-
prise worldwide. As a result, art forensics is a rising research field dealing with 
the identification of stolen or looted art and their collection and repatriation. 
Photographs of artwork provide, in several cases, the only way to locate stolen 
and looted items. However, it is quite common these items to be damaged as a 
result of excavation and illegal movement. Digital processing of photographs of 
damaged artwork is therefore of high importance in art forensics. This pro-
cessing emphasizes on “object restoration” and although techniques from the 
field of image restoration can be applied it is of high importance to take into ac-
count the semantics of the artwork scene and especially the structure of objects 
appeared therein. In this paper, we assess the application of face image restora-
tion techniques, applied on damaged faces appearing in Byzantine icons, in an 
attempt to identify the actual icons. Several biometric measurements and facial 
features along with a set of rules related to the design of Byzantine faces are uti-
lized for this purpose. Preliminary investigation, applied on 25 icons, shows 
promising results. 

Keywords: Biometrics · Forensics · Looted Damaged Art · Icon Restoration · 
Icon Identification 

1 Introduction 

Looted art has been a consequence of looting during war, natural disaster and riot for 
centuries. Looting of art, archaeology and other cultural property may be an opportun-
istic criminal act or may be a more organized case of unlawful or unethical pillage by 
the victor of a conflict [2]. As the demand for artifacts increases, criminal groups 
respond promptly with an unfailing supply of illegally obtained or excavated objects 
by plundering cultural sites, destroying their context and significance [5]. Renfrew 
[19] noted: “the single largest source of destruction of the archaeological heritage 
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today is through looting – the illicit, unrecorded and unpublished excavation to pro-
vide antiquities for commercial profit”. 

According to FBI and UNESCO records, looting and trade of antiquities has grown 
into a multi-billion dollar industry and constitutes the third most profitable illegal 
traffic after narcotics and arms [5]. As a result, art forensics is a rising research field 
dealing with the identification of stolen or looted art and their collection and repatria-
tion. Art crime lawyers, forensic experts, computer scientists, and other major players 
working on legal, forensic, governmental, and political join their efforts to address the 
enormity of this phenomenon. 

Insufficient standardized procedures, the lack of reliable data and the pressing need 
for improvement of methods employed in forensic practice, have been recognized by 
the National Academic of Sciences with the publication in 2009 of a scientific report 
stating: “It is clear that change and advancements, both systematic and scientific, are 
needed in a number of forensic disciplines to ensure the reliability of work, establish 
enforceable standards, and promote best practices with consistent application” [17]. 
This is also true in the case of looting and illicit trade of antiquities. As the origin of 
looted artifacts is primarily unknown, typological and stylistic studies do not always 
provide strong support in criminal justice cases for the artifacts’ attribution and repat-
riation. 

Scientific investigations of incidents involving stolen or looted art pose many tech-
nological difficulties. Methods providing proof beyond reasonable doubt are therefore 
required to help assign the precise location of origin / provenance through: chemical 
composition analyses; isotopic fingerprinting; or through other types of analysis that 
can identify diagnostic markers for an accurate attribution. 

This paper deals with a very early stage of art forensics, that of locating artwork 
which might be stolen or looted, with the aid of simple digital photographs. Since 
stolen or looted artwork is in many cases damaged (i.e., cutting a larger artwork into 
small pieces for easy carrying) digital processing of artwork photographs is necessary. 
This processing is in some cases similar to the classical image restoration. However, 
the aim here is to digitally restore the “objects” that appear in the artwork scene. 
Therefore, it is important to take into account the semantics of the artwork scene and 
especially the structure of objects appeared therein. In this paper, we assess the appli-
cation of face image restoration techniques, applied on damaged faces appearing in 
Byzantine icons, in an attempt to identify the actual icons. Several biometric meas-
urements and facial features along with a set of rules related to the design of Byzan-
tine faces are utilized for this purpose. 

In the remainder of the paper we present a brief literature review followed by the 
description of the case study considered in this paper. In Section 4 we describe the 
experimental set up and present results. Conclusions and plans for future work are 
presented in Section 5. 

2 Literature Review 

The art forensics is a new research field. Application of image processing techniques 
in this field is limited. However, there is a quite extensive literature concerning appli-
cations of digital image processing in cultural heritage. This paper borrows several 
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ideas from these techniques and especially from the area of digital restoration of  
artwork.  

A variety of digital image processing techniques have been used in cultural heritage 
applications for guiding the actual restoration process (e.g. cleaning dirty paintings) or 
for providing virtual restoration. Morphological techniques and Radial Basis Function 
(RBF) Neural Networks (NN) have been utilized for crack detection, while order 
statistics and anisotropic diffusion have been used for crack filling in paintings  
[11, 20]. In a similar perspective, a methodology based on the Retinex theory of hu-
man vision for chromatic restoration of paintings has been proposed by Drago & Chi-
ba [10]. Watermarking techniques have also been applied for protecting the digital 
reproduction of artworks as well as for simulating the actual restoration process [9]. A 
“from local to whole” approach methodology to remove cracks from old paintings 
and frescoes is presented in [3]. 

The Byzantine icon restoration methodology adopted in this paper combines estab-
lished statistical methods for occlusion detection and texture restoration on human 
faces. For instance, in [24], the eyeglasses of a face are removed by learning the joint 
distribution between pairs of face images with and without eyeglasses from a data-
base. Moreover, in [12, 18, 23] methods for removing facial occlusion based on recur-
sive PCA reconstruction are described. The occluded regions are restored by iterative-
ly processing the difference between the PCA-reconstructed and the original image. 

3 Case Study 

3.1 Byzantine Icons 

Byzantine art refers to the artistic style associated with Byzantine Empire. A large 
number of Byzantine icons and frescoes showing different Saints, dating back to the 
5th century, can be found in churches and monasteries mainly in Eastern Europe. Like 
numerous other forms of artwork, a number of Byzantine icons of archeological value 
have been stolen and traded illegally [8]. Especially in the case of frescoes the process 
of extracting artworks from walls usually causes damages on the original artifacts. 
Similarly in the case of stolen icons the illegal transportation coupled with non-
careful handling, often inflicts damages.  

3.2 Byzantine Icon Restoration 

In [13, 16] an integrated methodology that can be used for detecting and restoring 
damages on digitized Byzantine icons is described. The icon restoration method was 
influenced by the work of professional Byzantine icon conservators. It relies on the 
use of rules that describe the geometric and chromatic structure of faces appearing in 
Byzantine icons [22].  The restoration framework was also influenced by previous 
research efforts in the area of biometrics and in particular in the area of detecting and 
eliminating occlusions on human face images [12, 18, 24]. However, because faces in 
Byzantine icons are governed by unique geometrical and chromatic rules, face image 
processing algorithms were customized for dealing with the unique case of Byzantine 
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style. The final application consists of several modules that include landmark annota-
tion, shape restoration, damage detection and texture restoration. 

Given a damaged face appearing in a Byzantine icon, its shape, as this is defined 
by a set of 68 landmarks, is recovered through a 3D reconstruction process [4], using 
a Byzantine specific shape model that has been trained by imposing a set of Byzantine 
geometric rules on a generic human face model [13]. Detection of damaged areas on 
the shape-restored face involves the estimation of the residuals obtained after the 
coding and reconstruction of the face image regions using trained Principal Compo-
nent Analysis (PCA) texture models. Extracted residuals can be used as the basis for 
obtaining information about the amount of damage and the positions of damaged 
regions [15].   

The texture of damage-detected regions is, then, restored by utilizing the Recursive 
PCA algorithm. This is an iterative scheme based on data-driven statistical infor-
mation [18]. Given a dataset consisting of non-damaged Byzantine faces, a texture 
model is trained. Changing the parameters of the model results in several synthetic 
face instances. In a partially damaged face image, the occluded regions are firstly 
located using the aforementioned automatic occlusion detection method and replaced 
by the corresponding regions of the nearest face, in terms of intensity distance, from 
the dataset. The resulting face is coded in model parameters and back reconstructed in 
the initial face space. Pixel residuals that correspond to the damaged areas between 
the initial and the reconstructed face are calculated. The above code-reconstruction 
process is repeated until the total residual is minimized. 

As a result of the restoration process, an overall 3D instance of the restored face is 
created. The final step of the restoration phase involves the projection of the 3D in-
stance onto the original 2D face, so that the restored model instance overlaps with the 
damaged face, completing in that way the process of digital restoration.  

The developed algorithms have been incorporated within an integrated user-
friendly software application that can be used for digital restoration of faces appearing 
in Byzantine icons. The application performs all of the above functionalities, 
i.e. damage detection, shape restoration and texture restoration. A quantitative  
experimental process proved the effectiveness of this Byzantine icon restoration 
framework [16].  

3.3 Identifying Damaged Stolen Icons  

Assuming that digital records of stolen Byzantine icons are available, we wish to have 
an automated system that indicates possible matches between a digital icon found in 
different archives (i.e. internet sites) and the stored dataset of digital icons. Towards 
this end it is sufficient to use standard image similarity metrics that enable the identi-
fication of stolen artifacts. However, in the case that a stolen icon appears damaged, 
either as a result of normal condition degradation or as a result of human actions, the 
possible identification of such artwork may be inhibited.  For example, Figures 1 and 
2 show images of icons that were deliberately corrupted with damages and/or noise. 
The key question is whether it is still possible to obtain positive identifications be-
tween the distorted and original icons, despite the appearance transformations caused 
by damages and noise. Towards this end we propose to use the Byzantine icon  
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restoration method described in section 3.2, in an attempt to minimize the effects of 
damages assisting in that way the positive identification of stolen icons.  

Figure 1 shows, also, examples of digitally restored images (right column), when the 
restoration method is applied to damaged images (Figure 1, center column). The ques-
tion that arises concerns the possibility of improving the chances of locating stolen 
artwork based on the restored versions of the icons rather than utilizing damaged 
icons.  

4 Experimental Evaluation 

A preliminary investigation that aims to assess the viability of using icon restoration 
for enhancing the chances of locating stolen icons is described in the following sec-
tion. In our approach we only utilize data from the facial region because faces consti-
tute a central part of Byzantine icons and as a result in digitized versions of (possibly 
stolen) icons the facial region is always shown, unlike other parts of an icon, such as 
labels, that may not be shown in order to impede the icon identification.   

4.1 Experimental Set Up 

During the preliminary investigation 25 Byzantine icons were used. On each of the 25 
icons, parts of the face were artificially damaged. For each face a set of 68 landmarks 
is located in order to enable the accurate derivation of facial features of the face 
shown in the image. Further to artificial damages imposed on the icons in the test set, 
noise, of three different types and increasing intensity, was also added. In particular 
the images were blurred using a Gaussian filter with standard deviations ranging from 
0 to 50, salt and pepper noise covering 0% to 50% of the image and the correct posi-
tions of the landmarks were displaced by a random amount of 0 up to ±10 pixels. It 
should be noted that the displacement of the landmarks, although it does not affect the 
image itself, it affects the overall process of feature extraction. Furthermore in real 
applications it is expected to encounter non-accurate landmark localization, hence it is 
crucial to assess the effects of shape-displacement on the identification process. Ex-
amples of damaged and noise corrupted icons used in the experiments are shown in 
Figures 1 and 2. The feasibility of using restored icons was assessed through two 
main experiments.  

Experiment 1: This experiment involves the comparison of the difference between 
image features derived from the original and damaged icons against the difference of 
image features between the original and restored icons.  

Experiment 2: In this experiment image features derived from either damaged or 
restored icons are used for identifying the actual icon against the original set of 25 
icons used in the experiment. For the classification experiment a closest distance clas-
sifier was used because the primarily aim of this experiment was to assess the good-
ness of different features rather than the classifier itself. In addition the relatively 
small number of samples involved in this pilot study does not allow the training of 
more statistically rigorous classifiers. 
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Fig. 1. Examples of original (left), artificially damaged (center) and restored icons (right) 

4.2 Image Features 

For the two experiments described in section 4.1 six different types of features were 
used as the means of assessing the image similarity and/or identifying the damaged 
icon. The actual features used are: 

Shape Free Texture (SFT): The textures from the internal facial region are warped to 
a common shape and the intensities within the shape-normalized facial region are 
used as the feature vector. 
Active Shape Model (AAM) Parameters: The facial region is coded into a number of 
Active Appearance Model [6] parameters, using an AAM trained on 100 training 
Byzantine faces. AAM parameters describe in a compact way both the texture of a 
face and its facial shape as described by a set of 68 landmarks. 
Local Binary Patterns (LBP): The shape normalized internal facial region from an 
icon is divided into 33 patches and from each patch the LBP [1] is estimated. By con-
catenating the individual LBP vectors an overall feature vector is created. 
Histogram of Oriented Gradients (MHOG): A bounding box of the facial area is di-
vided in four windows (2x2) and a 36-dimension Histogram of Oriented Gradients [7] 
feature is computed in each window leading to a 144x1 vector representation (by 
concatenating the HOGs in the four windows).  
Local Histograms of Oriented Gradients (PHOG): Histogram of Oriented Gradients 
[7] derived at windows located on 68 key points of each face under consideration. 
These features highlight the local texture intensity fluctuations at the selected key 
points.  
Spatial Histogram of Key-points (SHIK): Based on an 8x8 fractal grid and SIFT [14] 
descriptors of 128 elements, each image is represented by a 64x128 element vector 
made of the concatenation of the accumulated SIFT descriptors ordered according to 
the order of fractal points so that the final descriptor does not depend on the number 
of SIFT key-points detected [21].  
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Fig. 2. Examples of noise corrupted icons. The top row shows blurred damaged icons (with 
sd=20), the middle row shows icons corrupted with 20% salt and pepper noise and the bottom 
row shows damaged icons with points displaced (red marks show the correct landmark posi-
tions and blue marks show landmark positions after a random displacement of ±6 pixels is 
applied) 

4.3 Experimental Results 

Experiment 1 (comparison of the difference between image features derived from the 
original and damaged icons): Figures 3, 4 and 5 show plots of the mean distance be-
tween feature vectors derived from damaged and original icons (blue lines) and the 
mean distance between feature vectors derived from restored and original icons (pink 
lines) among all samples in the test set, against the amount of noise added.  

 

 
(a) (b) (c) 

 
(d) (e) (f) 

Fig. 3. From (a) to (f) mean distance for SFT, AAM, LBP, MHOG, PHOG and SHIK features 
when damaged icons are blurred with a Gaussian filter with sds ranging from 0 to 50 
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(a) (b) (c) 

 
(d) (e) (f) 

Fig. 4. From (a) to (f) mean distance for SFT, AAM, LBP, MHOG, PHOG and SHIK features 
when a percentage from 0-50 of damaged icons are corrupted with salt and pepper noise 

 
(a) (b) (c) 

 
(f) (e) (f) 

Fig. 5. From (a) to (f) mean distance for SFT, AAM, LBP, MHOG, PHOG and SHIK  features 
when landmarks on damaged images are displaced by 0-10  pixels 

In the case of the raw shape-free texture (SFT), AAM and SHIK features and despite 
the different types and amount of noise added on the damaged icons, the similarity 
between the restored faces and the original image remains always higher than in the 
case of the similarity between damaged and original icons. These findings indicate 
that the restoration process can play an important role in identifying damaged and/or 
noise corrupted icons. In general the performance of methods relying on local infor-
mation (i.e. LPB, PHOG) is not as high as the introduction of noise effects distorts the 
local structure. 

Experiment 2 (icon identification based on a damaged or restored icon): Tables 1, 2 
and 3 show the correct classification rates when features derived from damaged and 
restored icons, against the amount of noise added. According to the results, AAM 
features seem to be the most suitable for identifying damaged icons as in the case of 
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using AAM-based features in most cases a 100% identification rate is achieved de-
spite the corruption of the image with damages and noise. The only case that identifi-
cation based on AAM’s featured falls below 100% is the case involving increased 
shape displacement. Even in these cases classification based on the restored faces 
yields better results than classification based on the actual damaged icons. Although 
the classification performance of features relying on local structures (i.e. SHIK fea-
tures) is worse than global features (i.e. AAM) under certain circumstances local fea-
tures could be combined with global features in order to achieve improved overall 
performance.  

Table 1. Correct identification rates for different features when damaged icons are blurred with 
a Gaussian filter with varying sds 

 sd 0 5 10 20 30 50 

SFT 
Damaged 100 20 17 14 16 16 
Restored 100 44 44 44 44 44 

AAM 
Damaged 100 100 100 100 100 100 
Restored 100 100 100 100 100 100 

LBP 
Damaged 56 0 4 4 4 4 
Restored 60 20 16 16 16 16 

MHOG 
Damaged 40 32 32 28 28 28 
Restored 56 44 40 36 36 36 

PHOG 
Damaged 60 12 8 8 8 8 
Restored 44 4 4 4 4 4 

SHIK 
Damaged 64 24 28 24 24 24 
Restored 92 36 32 32 32 32 

Table 2. Correct identification rates for different features when a percentage from 0-50 of 
damaged icons are corrupted with salt and pepper noise 

 Noise level 0% 5% 10% 20% 30% 50% 

SFT 
Damaged 100 100 90 80 70 70 
Restored 100 100 100 100 100 100 

AAM 
Damaged 100 100 100 100 100 100 
Restored 100 100 100 100 100 100 

LBP 
Damaged 70 50 30 10 10 0 
Restored 80 70 30 30 20 10 

MHOG 
Damaged 40 2 8 8 8 8 
Restored 56 8 8 8 8 8 

PHOG 
Damaged 60 4 4 4 4 4 
Restored 44 8 4 4 4 4 

SHIK 
Damaged 64 36 24 8 8 8 
Restored 92 32 12 8 8 8 
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Table 3. Correct identification rates for different features when landmarks on damaged images 
are displaced by 0-10 pixels 

 Displacement ±0 ±2 ±4 ±6 ±8 ±10 

SFT 
Damaged 100 76 60 40 36 44 
Restored 100 100 80 68 52 36 

AAM 
Damaged 100 100 96 96 76 68 
Restored 100 100 96 100 96 72 

LBP 
Damaged 56 4 4 0 4 0 
Restored 60 12 4 8 0 12 

MHOG 
Damaged 40 24 24 16 14 12 
Restored 56 40 32 20 24 20 

PHOG 
Damaged 60 28 20 8 4 4 
Restored 44 32 24 8 8 8 

SHIK 
Damaged 64 60 48 50 46 41 
Restored 92 84 64 63 61 58 

5 Conclusions 

A pilot study that aims to assess the feasibility of using digitally restored icons in an 
attempt to identify damaged icons with respect with a dataset of original icons. Within 
this context, damaged icons undergo a restoration process that aims to predict the 
appearance of the missing parts, based on the appearance of the visible parts and a set 
of rules related to the design of Byzantine faces, incorporated in the restoration sys-
tem. Preliminary results indicate that the use of the restored instead of the damaged 
icon, results in reduced differences in different feature spaces, enhancing in that way 
the chances of positive identifications of the icons involved. In the actual identifica-
tion experiments for most features a noticeable improvement in identification perfor-
mance is observed when utilizing digitally restored icons. Apart form few cases  
involving increased displacement of facial landmarks, AAM features achieve perfect 
identification performance using either damaged or restored faces. However, it is 
envisaged that the improved image similarity between a damaged icon and the origi-
nal icon, observed when using AAM parameters extracted from a restored rather than 
a damaged icon will lead to improved identification performance when dealing with 
test sets containing large numbers of icons. 

In the future we plan to stage extended experiments that will involve a large num-
ber of icons, in order to verify the early findings across a large number of test sam-
ples. We also plan to investigate the use of other feature types and metrics that could 
potentially be used to offer enhanced identification performance between the restored 
icons and the original. We expect that our preliminary work and findings in this area 
will be expanded to cater for different types of artworks so that the efforts of prevent-
ing stealing, looting and trafficking of artworks are enhanced.  
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tion Foundation and the European Union Structural Funds (project RESTORE: 
TPE/PLIRO/0609(BIE)/05). 



256 A. Lanitis et al. 

References 

1. Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: Appli-
cation to face recognition. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 28(12), 2037–2041 (2006) 

2. Atwood, R.: Stealing History, Tomb Raiders, Smugglers and the Looting of the Ancient 
World. St. Martin’s Griffin, New York (2006) 

3. Barni, M., Bartolini, F., Cappellini, V.: Image processing for virtual restoration of art-
works. IEEE Multimedia 7, 34–37 (2000) 

4. Blanz, V., Vetter, T.: Face recognition based on fitting 3D morphable model. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 25, 1063–1074 (2003) 

5. Bowman, B.A.: Transnational Crimes Against Culture: Looting at Archaeological Sites 
and the ‘‘Grey’’ Market in Antiquities. Journal of Contemporary Criminal Justice 24(3), 
225–242 (2008) 

6. Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active Appearance Models. IEEE Transactions 
on Pattern Analysis and Machine Intelligence 23(6), 681–685 (2001) 

7. Dalal, N., Triggs, B.: Histograms of Oriented Gradients for Human Detection. In: Proc. of 
the 2005 IEEE Conference on Computer Vision and Pattern Recognition, pp. 886–893 
(2005) 

8. Hadjisavvas, S.: The Destruction of the Archaeological Heritage of Cyprus. Trade in Illicit 
Antiquities: The Destruction of the World’s Archaeological Heritage, 133–139 

9. Del Mastio, A., Cappellini, V., Caldelli, R., De Rosa, A., Piva, A.: Virtual restoration and 
protection of cultural heritage images. In: 15th International Conference on Digital Signal 
Processing, pp. 471–474 (2007) 

10. Drago, F., Chiba, N.: Locally adaptive chromatic restoration of digitally acquired paint-
ings. International Journal of Image and Graphics 5, 617–637 (2005) 

11. Giakoumis, I., Nikolaidis, N., Pitas, I.: Digital image processing techniques for the detec-
tion and removal of cracks in digitized paintings. IEEE Transactions on Image Processing 
15, 178–188 (2006) 

12. Lanitis, A.: Person Identification From Heavily Occluded Face Images. In: Procs. of the 
ACM Symposium of Applied Computing, vol 1, pp. 5–9 (2004) 

13. Lanitis, A., Stylianou, G., Voutounos, C.: Virtual restoration of faces appearing in Byzan-
tine icons. International Journal of Cultural Heritage 13(4), 404–412 (2012) 

14. Lowe, D.G.: Distinctive image features from scale invariant keypoints. International  
Journal of Computer Vision 60(2), 91–110 (2004) 

15. Maronidis, A., Lanitis, A.: An Automated Methodology for Assessing the Damage on 
Byzantine Icons. In: Ioannides, M., Fritsch, D., Leissner, J., Davies, R., Remondino, F., 
Caffo, R. (eds.) EuroMed 2012. LNCS, vol. 7616, pp. 320–329. Springer, Heidelberg 
(2012) 

16. Maronidis, A., Voutounos, C., Lanitis, A.: Designing and Evaluating an Expert System for 
Restoring Damaged Byzantine Icons. Multimedia Tools and Applications, 1-24 (2014) 

17. National Academy of Sciences. Strengthening Forensic Science in the United States: A 
Path Forward. Doc. No. 228091, Washington, D.C. (2009) 

18. Park, J.S., Oh, Y., Ahn, S., Lee, S.W.: Glasses removal from facial image using recursive 
PCA reconstruction. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688. 
Springer, Heidelberg (2003) 

19. Renfrew, C.: Loot, legitimacy and ownership: the ethical crisis in archaeology.  
Duckworth, London (2000) 



 On the Application of Biometric Techniques for Locating Damaged Artworks 257 

20. Spagnolo, G.S, Somma, F.: Virtual restoration of cracks in digitized image of paintings. 
Journal of Physics Conference Series 249(1) (2010) 

21. Theodosiou, Z. Tsapatsoulis, N.: Spatial Histogram of Keypoints. In: Proc. of the 20th 
IEEE Intl. Conference on Image Processing, pp. 2924–2928. 

22. Vranos, I.C.: H Techniki tis Agiographias. P. S. Pournaras (In Greek), Thessaloniki (2001) 
23. Wang, Z.M., Tao, J.H.: Reconstruction of partially occluded face by fast recursive PCA. 

In: International Conference on Computational Intelligence and Security Workshops,  
Harbin (December 15-19, 2007) 

24. Wu, C., Liu, C., Shum, H.Y., Xy, Y.Q., Zhang, Z.: Automatic eyeglasses removal from 
face images. IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 322–336 
(2004) 



Multifractal Analysis of Posturograms
of Young and Elderly Persons

Peter Dojnow(B)

Institute of Information and Communication Technologies,
Institute of General and Inorganic Chemistry,
Bulgarian Academy of Sciences, Sofia, Bulgaria

Dojnow@bio.bas.bg

Abstract. Multifractality Sw, auto- and crosscorrelations h2 of medio-
lateral and anteroposterior postural sways of healthy young and elderly
subjects is studied by the MDFA, WTMM and MDCA methods. MDFA
and MDCA reveal a random walk like time series with h2 ∼ 1.7. Vibrat-
ing soles or aging decreases h2 of the elderly persons. Sw of the medi-
olateral sways is lesser than the anteroposterior sways. The random
permutation of the series vanishes the multifractality which is related
with the long-range power-low correlations.

Keywords: Multifractality · Crosscorrelations · Posturography

1 Introduction

The vestibular system and motor control as a complex nonlinear system can
be studied with a variety of experimental and mathematical analytical methods
that can give different, seemingly noncomparable estimates. Posturography is
a method which studies the variations (sways) of the standing human body. It
is used for clinical and experimental studies. Advantage and convenience of the
method is that it is noninvasive and one of the easiest to implement/execute by
experienced persons/patients: they usually just stand upright resting 30 seconds.
Posturography is used in clinical medicine for studying patients with problems of
the vestibular system. As a research method it is used to study the motor control.
Recorded sways are called posturograms and they are like other biosignals non-
stationary, noisy-like with power law spectrum density. Mathematical methods
of the nonlinear dynamics, the theory of chaos and the fractals are appropriate
for analysis of such signals [1], using monofractal metods such as DFA [2,3] but
the contemporary multifractal metods are more suitable to extract additional
information from the complex biosignals.

2 Methods

2.1 Posturographic Experiment

Data used here is obtained from the experiment described in [4] and are published
in [5](Noise Enhancement of Sensorimotor Function). 15 healthy young (yng),
c© Springer International Publishing Switzerland 2014
V. Cantoni et al. (Eds.): BIOMET 2014, LNCS 8897, pp. 258–264, 2014.
DOI: 10.1007/978-3-319-13386-7 21
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mean age 23, and 12 elderly (eh), mean age 73, participants took part in 10 and
respectively 5 30-second trials with stimulations (stim) with subsensory vibration
in the insoles, and equal number of trials (null) without vibration. The order of
the null and the stim trials is random so the participants were not aware about
the stimulus. The sampling rate is 60 Hz and the length of the record is 1800
samples. The vibration is low-pass filtered at 100 Hz white noise signal. The
posturograms are records of displacements of Medio/Lateral (ML) (left-right)
and Antero/Posterior (AP) (forward-backward) directions.

2.2 Mathematical Methods

The following methods are used: Multifractal Detrended Fluctuation Analysis
(MDFA) [6], Wavelet Transform Modulus Maxima Method (WTMM) [7] and
Multifractal Detrended Crosscorrelatoin Analysis (MDCA). MDFA in the devel-
oped MFA toolbox is modified version of the original one with double sliding
windows for smoothing of the fluctuation function and extracting the dynamics
of the (multi)fractal parameters in the course of time in case of nonstationar-
ity. MDCA is a method for investigation of crosscorrelations of series, possessing
multifractal characteristics. It is appropriate for investigation of interdependence
of the sources of the multichannel signals such as sways in ML and AP direc-
tions. MDCA is a generalization and further development of MDFA and DCCA
[8] therefore in the following subsubsection a brief description of the method will
be given. The evaluated parameters are generalized Höledr (Hurst) correlation
exponent h(q) (6), scaling exponent τ(q) (7), multifractal spectrum f(α) (8)
and the multifractality - the multifractal spectrum with Sw (10). From the ini-
tial posturograms labeled as Si after random shuffling Sirp values are obtained.
Amplitude (Am) and phase (Ph) are derived from analytical signal with Hilbert
transform from the initial posturograms and thence Amrp and Phrp components.

Multifractal Detrended Crosscorrelation Analysis. As it was pointed out
above MDCA is a combination of MDFA and DCCA. As the real data is often
multichannel, let we have an array of time series X with dimension (M × N),
where M is their length (number of points (samples)), N is the number of the
time series, for example the channels of EEG or the sways in Medio/Lateral
(left-right) and Antero/Posterior (forward-backward) directions in the
posturograms.

Firstly we calculate the integrated series (the columns of the matrix):

X̃ij =
i∑

ı=1

(Xıj − 1
M

M∑

i=1

Xij) ,

X̃ik =
i∑

ı=1

(Xık − 1
M

M∑

i=1

Xik) .

(1)

Next we divide the series (the columns of the matrix) on a M −s overlapping
segments, every one with a length s + 1. For every segment from i to i + s, we
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define the “local trends” X̃ıj and X̃ık, i ≤ ı ≤ i + s, ı ∈ [i, i + s] and their

linear approximations X
(r)

ıj and X
(r)

ık , obtained by the least-square method. For
an approximation curve a polynomial of a higher order can be used, like in a
DFA(r) and MDFA(r), but in this case it will be limited to the first order: r = 1.
We define the residuals as the difference between X̃ıj and X

(r)

ıj and from X̃ık

and X
(r)

ık . From the residuals, the crossdispersion f2
ijk is obtained,

f2
ijk =

1
s − 1

i+s∑

ı=i

(X̃ıj − X
(r)

ıj )(X̃ık − X
(r)

ık ) . (2)

The fluctuation function F
(q)
jk (s) is obtained after summation of all segments,

raised to the q-th degree,

F
(q)
jk (s) =

{
1

M − s

M−s∑

i=1

[f2
ijk]

q/2

}1/q

. (3)

At q = 0,

F
(0)
jk (s) = exp

{
1

2(M − s)

M−s∑

i=1

ln[f2
ijk]

}
. (4)

If the analyzed series (the columns of the matrix) are power-law, long-range
correlated, then the following relation is valid as well,

F
(q)
jk (s) ∼ shjk(q) . (5)

From where the generalized crosscorrelation Höledr (Hurst) exponent hjk(q)
is derived,

hjk(q) ∼ log F
(q)
jk (s)

log s
, (6)

thence the crosscorrelation scale exponent τjk(q)

τjk(q) = qhjk(q) − 1 , (7)

and the crosscorrelation multifractal (singular) spectrum fjk(α)

αjk =
dτjk(q)

dq
, (8)

fjk(α) = qαjk − τjk(q) . (9)

The multifractality is evaluated form the singular spectrum fjk(α),

Swjk = αjkmin
− αjkmax

. (10)
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3 Results

Figures 1a-3b are boxplots that show lower quartiles, median, upper quartile
values of h2 or Sw of the posturograms (Si), the amplitudes (Am) and the phases
(Ph). Comparison of medians is as a visual nonparametric test of hypothesis,
analogous to the t-test used in the averages [9]. Medians in contrast to means
are resistant (robust) to outliers.
The cases for MDFA and WTMM are:

1 - MLsi,eh,null; 2 - APsi,eh,null; 3 - MLam,eh,null; 4 - APam,eh,null;
5 - MLph,eh,null; 6 - APph,eh,null; 7 - MLsi,eh,stim; 8 - APsi,eh,stim; 9 -
MLam,eh,stim; 10 - APam,eh,stim; 11 - MLph,eh,stim; 12 - APph,eh,stim;
13 - MLsi,yng,null; 14 - APsi,yng,null; 15 - MLam,yng,null; 16 - APam,yng,null; 17
- MLph,yng,null; 18 - APph,yng,null; 19 - MLsi,yng,stim; 20 - APsi,yng,stim; 21 -
MLam,yng,stim; 22 - APam,yng,stim; 23 - MLph,yng,stim; 24 - APph,yng,stim.
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Fig. 1. MDFA: (a) Hurst correlation exponent h2; (b) Multifractality Sw

The values of h2 shown on Fig. 1a are ∼ 1.7, which is a Brownian noise, only
the phases are slightly smaller. Stimulation of young people does not change the
correlation and aging slightly loweres it. Stimulation of old ones shows slightly
decreased correlation. The correlation of the old on stable support is slightly
higher compared to the others. Changing h2 from ∼ 1.7 to ∼ 0.52 after random
permutation of series indicates that multifractality of the posturograms is of the
correlation type.

The results for multifractality Sw are presented Fig. 1a. No difference between
Si, Am is revealed. Ph have bigger multifractality compared to Si and Am. The
AP values are distinctly higher than those of the ML. There is no distinction
between unstimulated (null) and stimulated (stim) eh persons. There is no differ-
ence between the three components of the AP. Si has multiple outliers. There are
no statistically distinguishable differences between individuals and conditions,

http://www.mathworks.com/help/stats/boxplot.html?searchHighlight=boxplot
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except a slight increase at eh,null and yng,stim against eh,stim and yng,null. The
phase gradually declines from 1 to 0.9 in the following order: eh,null, eh,stim,
yng,null, yng,stim. There aren’t statistically distinguishable differences between
persons and conditions as the medians ML are ∼ 0.65, by 0.1 less than that of
AP, between Si and Am and between null and stim, as eh medians are ∼ 0.75, 0.1
more than those of Si and Am. yng are slightly larger than eh and are the highest
at yng,null - over 0.8. The change of Sw from ∼ 0.65.. ∼ 1 to ∼ 0.2.. ∼ 0.3 at
Swrp, shows that the random permutation destroys the multifractality of the
posturograms. The multifractality of ML is always ∼ 0.15.. ∼ 0.25 less than the
AP, and outliers are mainly above.
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Fig. 2. WTMM: (a) Hurst correlation exponent h2; (b) Multifractality Sw

The results of WTMM multifractal analysis of posturograms are shown on
the following figures 2a and 2b.

Correlation exponent h2: At the eh people all ML medians are ∼ 0.9, and APs
are ∼ 1, which is 1/f, pink noise. Opposite to MDFA, the outliers are underneath.
ML values are with greater dispersions, whiskers and outliers. At the yng people
all ML medians are ∼ 0.86, and APs are ∼ 0.95. Outliers at AP are opposed
to ML. The distinction between the medians of ML (∼ 0.85.. ∼ 0.9) and AP
(∼ 0.95.. ∼ 1) is clear. Outliers are mainly underneath. Random permutations
decreas h2 to ∼ 0.15, which is unexplained anomaly, as it is expected to be
h2rp ∼ 0.5.

Comparison with the results of MDFA: h2 from MDFA are ∼ 1.7, which is
a Brownian noise, only the phases are slightly smaller. Since MDFA is verified
with the reference DFA and with an external (foreign) program realizing MDFA,
then the differences in results from experimental signals are inexplicable, given
that the methods showed similar accuracy, but with synthesized, not real (exper-
imental) signals. Identical results for the two methods are that the ML are always
smaller than the AP.
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Multifractality Sw: ML is always less than the AP with ∼ 0.15.. ∼ 0.25. Outliers
are mainly above. Permutation not only reduces the multifractality, but at ML
even increases and equalizes with AP, which is absolutely inexplicable anomaly.

The results of MDCA multifractal crosscorrelation analysis of ML and AP
components of the posturograms are shown on the following figures 3a and 3b.
The cases for MDCA are:
1 - si,eh,null; 2 - am,eh,null; 3 - ph,eh,null; 4 - si,eh,stim; 5 - am,eh,stim; 6 -
ph,eh,stim; 7 - si,yng,null; 8 - am,yng,null; 9 - ph,yng,null; 10 - si,yng,stim; 11 -
am,yng,stim; 12 - ph,yng,stim.

The values of h2 are ∼ 1.68, which is a Brownian noise, only the phases are
slightly smaller. The crosscorrelation at eh,stim is slightly lower, while yng,stim
is slightly higher than the others. Stimulation increases the multifractality of the
posturograms and their amplitudes, but decreases their phases. As it should be
expected, randomization of the posturograms breaks of crosscorrelations apart
of the multifractality as h2 ∼ 0.49, Sw ∼ 0.2.
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Fig. 3. MDCA: (a) Hurst crosscorrelation exponent h2; (b) Multifractality Sw

4 Conclusion

The posturograms showed that they possess multifractal properties of the second
type with nonlinear temporal correlations. The correlations h2 from MDFA and
the crosscorrelation from MDCA, showed Brownian motion type. This was veri-
fied by the reference DFA. This significantly differs by ∼ 0.7 from those obtained
with WTMM, but WTMM has shown that contrary to the ideal deterministic
synthesized signal, there is a problem with the real noisy complex data, which
in this case are relatively short.

On the other hand the multifractality Sw obtained with MDFA, MDCA and
WTMM proved similar - ∼ 0.8, so the issue of the discrepancy at h2 remains
open for further study. The fluctuations in the Antero/Posterior (AP, back and
forth) direction were found to have larger values of h2 and Sw than those of
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Medio/Lateral (ML, left and right) direction, which coincides with their larger
amplitudes. The change of Sw ∼ 0.65.. ∼ 1 to Swrp ∼ 0.2.. ∼ 0.3, shows
that the random permutation destroys the multifractality of the posturograms.
The multifractality of ML is always ∼ 0.15.. ∼ 0.25 less than AP and extreme
deviations are mainly above.
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