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Abstract. Deontic logic is a very well researched branch of mathemati-
cal logic and philosophy. Various kinds of deontic logics are discussed for
different application domains like argumentation theory, legal reasoning,
and acts in multi-agent systems. In this paper, we show how standard
deontic logic can be stepwise transformed into description logic and DL-
clauses, such that it can be processed by Hyper, a high performance
theorem prover which uses a hypertableau calculus. Two use cases, one
from multi-agent research and one from the development of normative
system are investigated.
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1 Introduction

Deontic logic is a very well researched branch of mathematical logic and phi-
losophy. Various kinds of deontic logics are discussed for different application
domains like argumentation theory, legal reasoning, and acts in multi-agent sys-
tems [11]. Recently there also is growing interest in modelling human reasoning
and testing the models with psychological findings. Deontic logic is an obvious
tool to this end, because norms and licenses in human societies can be described
easily with it. For example in [9] there is a discussion of some of these problems
including solutions with the help of deontic logic. There, the focus is on using
deontic logic for modelling certain effects, which occur in human reasoning, e.g.
the Wason selection task or Byrne’s suppression task.

This paper concentrates on automated reasoning in standard deontic logic
(SDL). Instead of implementing a reasoning system for this logic directly, we
rather rely on existing methods and systems. Taking into account that SDL is
just the modal logic K with a seriality axiom, we show that deontic logic can
be translated into description logic ALC. The latter can be transformed into
so called DL-clauses, which is a special normal form with clauses consisting of
implications where the body is, as usual, a conjunction of atoms and the head
is a disjunction of literals. These literals can be atoms or existential quantified
expressions.
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DL-clauses can be decided by the first-order reasoning system Hyper [22],
which uses the hypertableau calculus from [4]. In Sections 2 and 3 we shortly
depict this workflow, and in Section 4 we demonstrate the use of our technique
with the help of two problems from the literature, one from multi-agent research
and the other one from testing normative systems. We choose these examples,
because they hopefully document the applicability of reasoning of SDL in various
areas of AI research.

2 Deontic Logic as Modal Logic KD

We consider a simple modal logic which consists of propositional logic and the
additional modal operators � and ♦. Semantics are given as possible world se-
mantics, where the modal operators � and ♦ are interpreted as quantifiers over
possible worlds. Such a possible world is an assignment, which assigns truth
values to the propositional variables. An interpretation connects different pos-
sible worlds by a (binary) reachability relation R. The �-operator states that
a formula has to hold in all reachable worlds. Hence if v and w are worlds, we
have

w |= �P iff ∀v : R(w, v) → v |= P

Standard deontic logic (SDL) is obtained from the well-known modal logic K
by adding the seriality axiom D:

D : �P → ♦P

In this logic, the �-operator is interpreted as ‘it is obligatory that’ and the ♦ as
‘it is permitted that’. The ♦-operator can be defined by the following equivalence:

♦P ≡ ¬�¬P

The additional axiom D: �P → ♦P in SDL states that, if a formula has to
hold in all reachable worlds, then there exists such a world. With the deontic
reading of � and ♦ this means: Whenever the formula P ought to be, then there
exists a world where it holds. In consequence, there is always a world, which is
ideal in the sense, that all the norms formulated by ‘the ought to be’-operator
hold.

SDL can be used in a natural way to describe knowledge about norms or
licenses. The use of conditionals for expressing rules which should be considered
as norms seems likely, but holds some subtle difficulties. If we want to express
that if P then Q is a norm, an obvious solution would be to use

�(P → Q)

which reads it is obligatory that Q holds if P holds. An alternative would be

P → �Q
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meaning if P holds, it is obligatory that Q holds. In [21] there is a careful dis-
cussion which of these two possibilities should be used for conditional norms.
The first one has severe disadvantages. The most obvious disadvantage is, that
P together with �(P → Q) does not imply �Q. This is why we prefer the latter
method, where the �-operator is in the conclusion of the conditional. We will
come back to this point in Subsection 4.1 where we consider several formaliza-
tion variants of the well-known problem of contrary-to-duty-obligations. For a
more detailed discussion of such aspects we refer to [10].

3 Automated Reasoning for Deontic Logic

Deontic logic is the logic of choice when formalizing knowledge about norms like
the representation of legal knowledge. However, there are only few automated
theorem provers specially dedicated for deontic logic and used by deontic logi-
cians (see [1,3]). Nonetheless, numerous approaches to translate modal logics into
(decidable fragments of) first-order predicate logics are stated in the literature.
A nice overview including many relevant references is given in [19].

In this paper, we describe how to use the Hyper theorem prover [22] to han-
dle deontic logic knowledge bases. These knowledge bases can be translated effi-
ciently into description logic formulae. Hyper is a theorem prover for first-order
logic with equality. In addition to that, Hyper is a decision procedure for the
description logic SHIQ [6].

Fig. 1. From SDL to Hyper. Note that concept D occurring in the DL-clauses is an
auxiliary concept.
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In Figure 1, we depict the entire workflow from a given SDL knowledge base
to the final input into the Hyper theorem prover. In the following, we describe
these three steps in more detail.

3.1 Transformation from Deontic Logic into ALC
First, we will show how to translate SDL knowledge bases into ALC knowledge
bases. An ALC knowledge base consists of a TBox and an ABox. The TBox
(terminological box) gives information about concepts occurring in the domain
of interest and describes concept hierarchies. The ABox (assertional box) intro-
duces individuals and states, to which concepts the individuals belong and how
they are interconnected via relations called roles . The ABox contains assertional
knowledge and can be seen as the representation of a state of the world. We do
not give the syntax and semantics of ALC here and refer the reader to [2].

There is a strong connection between modal logic and the description logic
ALC. As shown in [18], the description logic ALC is a notational variant of
the modal logic Kn. Therefore any formula given in the modal logic Kn can be
translated into an ALC concept and vice versa. Since we are only considering
a modal logic as opposed to a multimodal logic, we will omit the part of the
translation handling the multimodal part of the logic. Mapping ϕ translating
from modal logic K formulae to ALC concepts is inductively defined as follows:

ϕ(�) = �
ϕ(⊥) = ⊥
ϕ(b) = b

ϕ(¬c) = ¬ϕ(c)
ϕ(c ∧ d) = ϕ(c) � ϕ(d)
ϕ(c ∨ d) = ϕ(c) 
 ϕ(d)
ϕ(�c) = ∀r.ϕ(c)
ϕ(♦c) = ∃r.ϕ(c)

Note that the mapping ϕ is a one-to-one mapping.
Formulae given in SDL can be translated into ALC concepts using the above

introduced ϕ mapping. For a normative system consisting of the set of deontic
logic formulae N = {F1, . . . , Fn} the translation is defined as the conjunctive
combination of the translation of all deontic logic formulae in N :

ϕ(N ) = ϕ(F1) � . . . � ϕ(Fn)

Note that ϕ(N ) does not yet contain the translation of the seriality axiom.
As shown in [12] the seriality axiom can be translated into the following TBox:

T = {� � ∃r.�}

with r the atomic role introduced by the mapping ϕ.
For our application, the result of the translation of a normative system N and

the seriality axiom is an ALC knowledge base Φ(N ) = (T ,A), where the TBox T
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consists of the translation of the seriality axiom and the ABox A = {(ϕ(N ))(a)}
for a new individual a. In description logics performing a satisfiability test of a
concept C w.r.t. a TBox is usually done by adding a new individual a together
with the ABox assertion C(a). For the sake of simplicity, we do this construction
already during the transformation of Φ by adding (ϕ(N ))(a) to the ABox.

An advantage of the translation of deontic logic formulae into an ALC knowl-
edge base is the existence of a TBox in ALC. This makes it possible to add
further axioms to the TBox. For example we can add certain norms that we
want to be satisfied in all reachable worlds into the TBox.

3.2 Translation from ALC into DL-Clauses

Next we transform the ALC knowledge base into so called DL-clauses introduced
in [15] which represent the input format for the Hyper theorem prover.

DL-clauses are constructed from so called atoms. An atom is of the form b(s),
r(s, t), ∃r.b(s) or ∃r.¬b(s) for b an atomic concept and s and t individuals or
variables. They are universally quantified implications of the form

m∧

i=1

ui →
n∨

j=1

vj

where the ui are atoms of the form b(s) or r(s, t) and the vj may be arbitrary
DL-clause atoms, i.e. including existential quantification, with m,n ≥ 0.

Comparing the syntax of DL-clauses to the syntax of first order logic clauses
written as implications, the first obvious difference is the absence of function
symbols. The second difference is the fact, that in DL-clauses all atoms are
constructed from unary or binary predicates. The most interesting difference
however is the fact, that the head of a DL-clause is allowed to contain atoms of
the form ∃r.b(s).

The basic idea of the translation of an ALC knowledge base into DL-clauses
is that the subsumption in a TBox assertion is interpreted as an implication
from the left to the right side. Further concepts are translated to unary and
roles to binary predicates. Depending on the structure of the assertion, auxiliary
concepts are introduced. For example the TBox axiom

d � ∃r.b 
 ∀r.c

corresponds to the following DL-clause

d(x) ∧ r(x, y) → c(y) ∨ ∃r.b(x)

For detailed definitions of both syntax and semantics of DL-clauses and the
translation into DL-clauses, we refer the reader to [15]. The translation pre-
serves equivalence, avoids an exponential blowup by using a well-known struc-
tural transformation [17] and can be computed in polynomial time. In the follow-
ing, for an ALC knowledge base K = (T ,A), the corresponding set of DL-clauses
is denoted by ω(K).
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3.3 Reasoning Tasks

With the help of Hyper, we can solve several interesting reasoning tasks:

– Consistency checking of normative systems: In practice, normative
systems can be very large. Therefore it is not easy to see, if a given norma-
tive system is consistent. The Hyper theorem prover can be used to check
consistency of a normative system N . We first translate N into an ALC
knowledge base Φ(N ), then translate Φ(N ) into the set ω(Φ(N )) of DL-
clauses. Then we can check the consistency of ω(Φ(N )) using Hyper.

– Evaluation of normative systems: Given several normative systems, we
use Hyper to find out for which normative system guarantees a desired out-
come is guaranteed.

– Independence checking: Given a normative system N and a formula F
representing a norm, we can check whether F is independent from N . If F
is independent from N , then F is not a logical consequence of N .

In Section 4, we will give detailed examples for those tasks. Subsection 4.1
gives an example for a consistency check of a normative system and illustrates
how the independence of a formula from a normative system can be decided.
In Subsection 4.2, we use an example from multi-agent systems to show how to
evaluate normative systems.

4 Applications

The literature on deontic logic deals with numerous small but nonetheless in-
teresting examples. They are mostly used to show typical problems or special
features of the logic under consideration (cf. [10]). In Subsection 4.1, we deal
with one of these examples. In Subsection 4.2, we formalize a ‘real-life’ problem
from multi-agent research.

4.1 Contrary-to-duty Obligations

Let us now consider consistency testing of normative systems and independence
checking. As an example, we examine the well-known problem of contrary-to-duty
obligations introduced in [8]:

(1) a ought not steal.

(2) a steals.

(3) If a steals, he ought to be punished for stealing.

(4) If a does not steal, he ought not be punished for stealing.

Table 1 shows three different formalizations of this problem. Those formalizations
are well-known from the literature [5,14,13,21]:
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Table 1. Formalizations of the contrary-to-duty obligation introduced in [8]

N1 N2 N3

(1) �¬s �¬s �¬s
(2) s s s
(3) s → �p �(s → p) s → �p
(4) �(¬s → ¬p) �(¬s → ¬p) ¬s → �¬p

Table 2. Translation of the normative system N1 into ϕ(N1)

N1 (in Deontic Logic) ϕ(N1)

�¬s ∀r.¬s
s s
s → �p ¬s � ∀r.p
�(¬s → ¬p) ∀r.(s � ¬p)

Consistency Testing of Normative Systems. The contrary-to-duty obliga-
tion formalized above is a very small example. In practice, normative systems
can be rather complex. This makes it difficult to see if a normative system is
consistent. We will show how to use the Hyper theorem prover to check the
consistency of a given normative system.

As an example, we consider formalizationN1 given in Table 1 which, according
to [21], is inconsistent. We will use Hyper to show this inconsistency. For this, we
first translate normative system N1 into an ALC knowledge base Φ(N1). Table 2
shows ϕ(N1).

To perform the satisfiability test, we transform the description logic represen-
tation Φ(N1) into a set of DL-clauses ω(Φ(N1)). Hyper constructs a hypertableau
for ω(Φ(N1)). This hypertableau is closed and therefore we can conclude that
N1 is inconsistent.

Independence Checking. Normative SystemN2 given in Table 1 is consistent.
However it has another drawback: The different formulae in this formalization
are not independent from another. Formula (3) is a logical consequence of (1),
because �(s → p) ≡ �(¬s ∨ p) (definition of →) which clearly is implied by the
(subsuming) formula (1) �¬s. We can use Hyper to show this by transforming
the problem into a satisfiability test. For this, we remove formula (3) from N2

and add its negation ¬�(s → p) to N2. If the resulting normative system is
inconsistent, we can conclude, that formula (3) is not independent from the
other formulae in N2.

The problem of independence of formulae given in a normative system is in-
teresting in practice as well. If an existing normative system is extended with
some new formulae, it is interesting to know, whether the new formulae are inde-
pendent from the original normative system. This can be checked automatically
using Hyper as described above.
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In the same way, we can show, that formula (4) is not independent from
N3. Note that only this normative system is both consistent and represents all
conditionals carefully, i.e. with formulae of the form P → �Q (cf. Section 2).
Only for this formalization we have: If a steals in the actual world, a will be
punished in the corresponding reachable ideal world.

4.2 An Example from Multi-agent Systems

In multi-agent systems, there is a relatively new area of research, namely the
formalization of ‘robot ethics’. It aims at defining formal rules for the behavior
of agents and to prove certain properties. As an example consider Asimov’s
laws, which aim at regulating the relation between robots and humans. In [7]
the authors depict a small example of two surgery robots obeying ethical codes
concerning their work. These codes are expressed by means of MADL, which is an
extension of standard deontic logic with two operators. In [16] an axiomatization
of MADL is given. Further it is asserted, that MADL is not essentially different
from standard deontic logic. This is why we use SDL to model the example.

Formalization in SDL. In our example, there are two robots ag1 and ag2
in a hospital. For sake of simplicity, each robot can perform one specific action:
ag1 can terminate a person’s life support and ag2 can delay the delivery of pain
medication. In [7] four different ethical codes J , J �, O and O� are considered:

– “If ethical code J holds, then robot ag1 ought to take care, that life support
is terminated.” This is formalized as:

J → �act(ag1 , term)

– “If ethical code J � holds, then code J holds, and robot ag2 ought to take
care, that the delivery of pain medication is delayed.” This is formalized as:

J � → J ∧ J � → �act(ag2 , delay)

– “If ethical code O holds, then robot ag2 ought to take care, that delivery of
pain medication is not delayed.” This is formalized as:

O → �¬act(ag2 , delay)
– “If ethical code O� holds, then code O holds, and robot ag1 ought to take
care, that life support is not terminated.” This is formalized as:

O� → O ∧O� → �¬act(ag1 , term)

Further we give a slightly modified version of the evaluation of the robot’s acts
given in [7], where (+!!) describes the most and (−!!) the least desired outcome.
Note that terms like (+!!) are just propositional atomic formulae here.

act(ag1 , term) ∧ act(ag2 , delay) → (−!!) (1)

act(ag1 , term) ∧ ¬act(ag2 , delay) → (−!) (2)

¬act(ag1 , term) ∧ act(ag2 , delay) → (−) (3)

¬act(ag1 , term) ∧ ¬act(ag2 , delay) → (+!!) (4)
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Table 3. Translation of the normative system N into ϕ(N )

Deontic Logic ALC
J → �act(ag1 , term)

J� → J ∧ J� → �act(ag2 , delay)

O → �¬act(ag2 , delay)

O� → O ∧O� → �¬act(ag1 , term)

¬J � ∀r.act(ag1 , term)

(¬J� � J) � (¬J� � ∀r.act(ag2 , delay))
¬O � ∀r.¬act(ag2 , delay)

(¬O� �O) � (¬O� � ∀r.¬act(ag1 , term))

act(ag1 , term) ∧ act(ag2 ,delay) → (−!!)

act(ag1 , term) ∧ ¬act(ag2 ,delay) → (−!)

¬act(ag1 , term) ∧ act(ag2 ,delay) → (−)

¬act(ag1 , term) ∧ ¬act(ag2 ,delay) → (+!!)

¬(act(ag1 , term) � act(ag2 ,delay)) � (−!!)

¬(act(ag1 , term) � ¬act(ag2 ,delay)) � (−!)

¬(¬act(ag1 , term) � act(ag2 ,delay)) � (−)

¬(¬act(ag1 , term) � ¬act(ag2 ,delay)) � (+!!)

These formulae evaluate the outcome of the robots’ actions. It makes sense
to assume, that this evaluation is effective in all reachable worlds. This is why
we add formulae stating that formulae (1)–(4) hold in all reachable worlds. For
example, for (1) we add:

�(act(ag1 , term) ∧ act(ag2 , delay) → (−!!)) (5)

Since our example does not include nested modal operators, the formulae of the
form (5) are sufficient to spread the evaluation formulae to all reachable worlds.
The normative system N formalizing this example consists of the formalization
of the four ethical codes and the formulae for the evaluation of the robots actions.

Reduction to a Satisfiability Test A possible query would be to ask, if the most
desirable outcome (+!!) will come to pass, if ethical code O� is operative. This
query can be translated into a satisfiability test: If

N ∧O� ∧ ♦¬(+!!)

is unsatisfiable, then ethical code O� ensures outcome (+!!).

Translation into Description Logic. As described in Section 3.1, we translate
normative system N given in the previous section into an ALC knowledge base
Φ(N ) = (T ,A). Table 3 shows the result of translating N into ϕ(N ).

We further add the following two assertions to the ABox A:

O�(a)

∃r.¬(+!!)(a)

Next we translate the knowledge base into DL-clauses and use Hyper to test the
satisfiability of the resulting set of DL-clauses. Using further satisfiability tests,
we can show, that ethical codes J , J� or O are not sufficient to guarantee the
most desired outcome (+!!).

Formalization in Description Logic Using a TBox. In the formalization
given in the previous subsection, we added formulae stating that the evaluation
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of the agents’ actions holds in all worlds, which are reachable in one step, see (5)
for an example. In our case it is sufficient to add formulae of the form (5)
because the formalization does not include nested modal operators. In general it
is desirable to express that those formulae hold in all reachable worlds including
worlds reachable in more than one step. However this would mean to either
add infinitely many formulae or to use a universal modality, i.e. the reflexive-
transitive closure of the respective simple modality.

In description logics we can use a more elegant way to formalize that all worlds
are supposed to fulfill certain formulae. Description logic knowledge bases con-
tain a TBox including the terminological knowledge. Every individual is sup-
posed to fulfill the assertions given in the TBox. Hence, we can add the formulae
stating the evaluation of the agents’ actions into the TBox. For this, we reformu-
late implication (→) by subsumption (�). We model the deontic logic formulae
given in Table 3 by the following TBox T :

� � ∃r.�
J � ∀r.act(ag1 , term)

J� � J

J� � ∀r.act(ag2 , delay)
O � ∀r.¬act(ag2 , delay)
O� � O

O� � ∀r.¬act(ag1, term)

act(ag1 , term) � act(ag2 , delay) � (−!!)

act(ag1 , term) � ¬act(ag2 , delay) � (−!)

¬act(ag1 , term) � act(ag2 , delay) � (−)

¬act(ag1 , term) � ¬act(ag2 , delay) � (+!!)

Reduction to a Satisfiability Test Like in the previous section, we now want to
know, if the most desirable outcome (+!!) will come to pass, if ethical code O� is
operative. We perform this test by checking the satisfiability of the description
logic knowledge base K = (T ,A), with T as given above and A given as:

A = {O�(a), ∃r.¬(+!!)(a)}

If this knowledge base is unsatisfiable, we can conclude, that (+!!) will come
to pass, if O� is operative. Again we can perform this satisfiability test, by
translating the TBox and the ABox into DL-clauses and using Hyper to check
the satisfiability. We obtain the desired result, namely that (only) ethical code
O� leads to the most desirable behavior (+!!).

4.3 Experiments

We formalized the examples introduced in this section and tested it with the
Hyper theorem prover as described above. Since all formalizations are available
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Table 4. Time in seconds Pellet needed to show the unsatisfiability of the introduced
examples. Time in seconds Hyper needed to show the unsatisfiability of the DL-clauses
for the examples (the second number includes the translation into DL-clauses).

Multi-agent Systems Multi-agent Systems
(with TBox)

Contrary-to-duty
Obligations

Pellet 2.548 2.468 2.31

Hyper 0.048 / 2.596 0.048 / 2.102 0.03 / 1.749

in ALC, we used the description logic reasoner Pellet [20] to show the unsatisfia-
bility of the formalizations as well. Table 4 shows the results of our experiments.
In the first column we see the time in seconds the two reasoners needed to show
the unsatisfiability of the formalization of the example from multi-agent systems.
For Hyper we give two different numbers. The first number is the time Hyper
needs to show the unsatisfiability given the set of DL-clauses. In addition to that
the second number contains the time needed to transform the ALC knowledge
base into DL-clauses. The second column gives the runtimes for the example
from multi-agent systems using the formalization with a TBox. And in the last
column we present the runtimes for the consistency test of normative system N1

from the example on contrary-to-duty obligations.
For the examples we considered, the runtimes of Pellet and Hyper are compa-

rable. Further investigation and comparison with other modal and/or description
logic reasoning tools is required and subject of future work. In order to use Hy-
per to perform the satisfiability tests, we first have to translate the examples
into DL-clauses. Our experiments show, that this translation is not harmful.

5 Conclusion

In this paper, we have demonstrated that by means of deontic logic complex nor-
mative systems can be formalized easily. These formalizations can be checked
effectively with respect to consistency and independence from additional formu-
lae. For normative systems described with deontic logic, there is a one-to-one
translation into description logic formulae. These formula can be checked auto-
matically by automated theorem provers, which is in our case Hyper.

We are aware that deontic logic has several limitations. This is why future
work aims at using more recent formalisms. For example we want to apply deon-
tic logic in the context of natural-language question-answering systems. There
the normative knowledge in large databases often leads to inconsistencies, which
motivates us to consider combinations of deontic with defeasible logic.
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