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Abstract. This paper proposes a suboptimal tour-and-charging sched-
uler for electric vehicles which need to select a DC charging station on
their single day trips. As a variant of the traveling salesman problem, the
tour scheduler finds a visiting order for a given set of destinations and
one of any charging stations. To reduce the search space stemmed from
a larger number of candidate stations, our distance-based heuristic finds
first the nearest destination from each charging station, and calculates
the distance between them. Then, m′ out of the whole m candidates will
be filtered according to the distance. The reduced number of candidates,
namely, m′, combined with constraint processing on the waiting time,
significantly cuts down the execution time for tour schedule generation.
The performance measurement result obtained from a prototype imple-
mentation reveals that the proposed scheme just brings at most 4.1 %
increase in tour length and its accuracy is at least 0.4 with 5 picks, for
the given parameter selection.

Keywords: Electric vehicles, tour scheduler, DC charging, TSP variant,
distance-based heuristic.

1 Introduction

EVs (Electric Vehicles) are powered by battery-stored electricity [1]. It makes
even the transport system be a part of the power network, as their batteries
are mainly charged by the energy provided from the grid. EV-based transport
will be highly eco-friendly as EVs create no air pollution, while electricity can
be produced even from renewable sources such as wind and sunlight [2]. Here,
their wide penetration must be preceded by the construction of charging infras-
tructure, particularly because their driving range is quite short and charging
time is much longer than gasoline-powered vehicles. In the early stage charging
infrastructure, AC chargers, by which it takes about 6 hours to fully charge an
EV battery, are dominating, as they are cheap and pose less burden on the grid
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[3]. However, their long charging time inherently prevents users from readily
purchasing EVs.

Gradually, DC chargers are more preferred as they can reduce charging time
to 30 minutes [4]. They are quite expensive and may bring a sharp increase in
the energy consumption to the grid, especially when many EVs are plugged-in
to the grid at the same time [5]. Moreover, fast charging 2 or more times a day
may shorten the battery life. However, the convenience brought by the reduced
charging time outweighs such problems. In addition, as the daily driving distance
is usually covered by overnight AC charging, EVs need to be charged at most
once with a DC charger during the daytime. Now, EVs driving beyond the
driving range are required to consider where to charge. It is desirable for them
to decide the driving route and charging station before they start a trip, possibly
making a reservation of a charger. This problem becomes complex when an EV
visits multiple destinations like in rent-a-car tours, and the computation time
gets longer beyond the tolerable bound.

For the given set of DC chargers, how to select one can be considered a variant
of the well-known TSP (Traveling Salesman Problem), which is known to be
one of the most time-intensive applications [6]. Basically, it decides the visiting
order for n fixed destinations, and many researchers have developed excellent
algorithms. However, in our problem, (n + 1)-th destination is not given and
there are m candidates. Intuitively, it is necessary to add each candidate to the
destination set and run the TSP solver one by one to find the best solution.
Hence, the time complexity reaches O(m × (n + 1)!). Here, if we exclude those
chargers having little possibility to be selected, we can cut down the response
time. Moreover, we can further improve the computation speed by investigating
only a set of promising m′ (not m) chargers. According to our observation for
the problem, a DC charger near a destination is highly likely to reduce the total
tour distance and time.

In this regard, this paper designs a distance-based heuristic in selecting a DC
charger to make a tour-and-charging schedule for a given set of destinations. A
classic computer algorithm is customized to this problem and integrated into
our smart grid framework. The information server manages all necessary status
records, tracks the current location of each EV, and finally provides the requested
operation result to the mobile terminals. Importantly, many articifial intelligence
techniques enrich the EV information service [7]. Here, the system design is
targeting at a real-life road network and the geographic distribution of chargers
and tour spots on Jeju city, Republic of Korea.

2 Related Work

Especially for the fleet management, EV planning is more important for better
availability and service ratio. [8] designs an information service architecture for
both prior and en-route planning. It focuses on economic itinerary planning
based on the retrieval of real-time charging station information. It is built upon
location and SoC (State of Charge) tracking for EVs as well as status monitoring
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for charging stations and road conditions. The global server estimates the battery
consumption along the route using previous trip reports and searches the nearest
charging station from its local database, when the battery shortage is foreseen.
Here, the authors develop a battery consumption model consisting of not only
the force factor for an EV to move at a given speed but also the necessary amount
of power to overcome the resistance force. Out of several routes recommended
by the server, a driver can choose and load the best itinerary to his or her
smart phone, which also collects the trip records and reports to the server when
returning to the company.

For charging-combined routing, it is necessary to search and reserve a charg-
ing station on the way to a destination. [9] presents a routing mechanism in
which a broker selects the best charging station for the driver to reserve. The
broker considers resource availability, location convenience, price signal change,
and others, contacting with various information sources. For the reservation ser-
vice, each charging station supports the coordination among multiple charging
requests over the time slots for both predictable operations and peak-load reduc-
tion. In addition, City Trip Planner can create personalized tour routes, provid-
ing its service in major cities [10]. For a given set of user-selected tour spots, it
maximizes the sum of scores gained by visiting the spot. It automatically inserts
tour spots not chosen by users but thought to be preferred. We think that the
local search heuristic taken by this approach is worth being considered also for
EV tour services.

Not just restricted to charging and tour planning, EVs can bring more profits
to EV owners and grids of different levels [11]. Basically, an efficient charging
schedule can significantly reduce the fueling cost, considering day-ahead energy
prices. The Danish Edison project investigates various EV application areas in-
cluding a design of EV aggregators operating under the control of mathematical
prediction models of driving patterns and charging demand [12]. Those models
identify the available charging interval, pursuing cost optimization. In addition,
DC charging allows EVs to be charged quickly, namely, within tens of minutes,
and even sell electricity back to the grid on peak intervals based on the V2G
(Vehicle-to-Grid) technologies [13]. Interestingly, integrating more renewable en-
ergies is an attractive advantage of EV charging infrastructure. In [14], the con-
trol agent tries to capture as much energy available from renewable sources as
possible, maintaining power output as stable as possible. It stores surplus energy
to the second-life batteries for better energy efficiency.

Our research team has been developing a tour-and-charging scheduler for EVs
which want to visit multiple destinations, considering various options and re-
quirements specified by EV rent-a-car users. The first step of this service design
is to trace the SoC change along the tour route [15]. Our team is also refining
a battery consumption model for the major roads in Jeju City. The designed
scheduler does not only reduce the tour length but also avoids the waiting time,
making the tour time overlap EV charging as much as possible. Moreover, a set of
system-recommended tour spots facilitating chargers and hosting other activities
can eliminate the waiting time. Instead of waiting for batteries to be charged,
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the tourist can take other actions like dining. In the service implementation,
we take both the exhaustive search for accuracy and the genetic algorithm for
responsiveness. In addition, one of our previous work has designed a DC charger
selection scheme based on the sequential distance from the starting point [16].

3 DC Charging Station Selection

In the target city, namely, Jeju City, Republic of Korea, 21 DC chargers are
currently installed. DC chargers evenly distribute over the whole island area
and the number of DC chargers keeps increasing. To decide a TSP path, it is
necessary to know the cost of every destination pair. Our service allows tourists
to select the tour spots only from this fixed set for manageable computation time.
This restriction makes it possible to precalculate all inter-destination distances
by conventional point-to-point shortest path algorithms such as Dijkstra or A*,
regardless of their execution time. The north region has the largest population
and many facilities such as the international airport and hotels, making many
tours start from here. The in-town chargers are mainly used by local residents
during day and night time.

In Jeju City, having the perimeter of 250 km and a variety of tourist attrac-
tions, the statistics tell that the daily tour length usually falls into the range
of 100 to 150 km. Hence, one charging is essential during the trip, but it may
extend the tour length and time. Straightforwardly, given a set of user-selected n
destinations, every DC charger is added to the tour set and the one making the
tour length smallest will survive the competition. With the exhaustive search,
the tour scheduler investigates all feasible schedules. Here, the first level of the
search tree has m subtrees, each of which has n! leaves, making the depth of the
tree (n+1). Lke other optimization technologies, reaching a leaf node, a complete
schedule is built and its cost is evaluated according to the given criteria. If its
tour length is less than the current best and it does not violate the constraint,
this schedule will replace the current best.

If a schedule makes passengers to wait somewhere on the route to charge the
battery with slow chargers, they cannot accept it. To remove such a schedule,
the search procedure estimates the SoC change along the route [17]. The Soc
decreases according to the distance the EV has taken. If SoC drops below 0
somewhere on the sequence specified in the schedule, the schedule will be au-
tomatically discarded without further evaluation. In the process of the search
space traversal during which each node is expanded one by one, a subsequence
from the root, namely, the subpath from the starting point to the currently ex-
panding node, can be already larger than the current best. Then, it is necessary
to stop the expansion immediately by pruning the branch. In the tour schedule,
the number of selected tour spots, namely, n, is usually less than 10 in most tour
cities, and the tour schedule can be generated within a tolerable bound even
with an average-performance PC. In spite of much achievable improvement in
response time, a large m can make the execution time too much.

Our main idea lies in achieving an acceptable response time even if m gets
larger according to the installation of more DC chargers. The responsiveness
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comes with a small accuracy loss as the scheduling procedure investigates just
m′ out of m chargers. m′ is a tunable parameter and the number of chargers
to investigate. The problem definition and the main idea are both illustrated in
Figure 1, where D1, D2, D3, and D4 are destinations an EV wants to visit and
tour length will be decided by the visiting order. We assume that the EV starts
from and returns to D1. There are 5 DC charging stations from C1 to C5 and
the EV needs to be charged once during the tour and thus it must additionally
visit one of them. In addition, the pure tour length decided by a TSP solver for
{D1, D2, D3, D4} is defined as TSP length. It must be distinguished from the
travel distance which includes the addition of some Ci.

A preprocessing procedure has calculated the battery consumption and the
distance for each pair of two destinations and also for each pair of a destination
and a charging station. By a legacy TSP solver, we can traverse the search space
and find an optimal schedule for n destinations based on the inter-destination
cost matrix. Hence, the problem is reduced to finding Ck which minimizes the
tour length of a schedule for {D1, D2, .., Dn, Ck} without making its waiting
time nonzero. Basically, the TSP sovler can be invoked m times, namely, for
{D1, D2, .., Dn, C1}, {D1, D2, .., Dn, C2}, ..., {D1, D2, .., Dn, Cm} to find
the optimal schedule. However, if m is large, the execution time is extended too
much, as the TSP solver basically belongs to the O(n!) problem category. If we
can find a reasonable quality solution with m′ candidates (m′ � m), the search

space will be significantly cut down, and m′
m is the speedup ratio.

Our heuristic of selecting m′ candidates can be better explained with the
example of Figure 1. An addition of a charging station to the tour inevitably
increases the tour length and time. However, if a station on the tour route
is selected, the tour distance is hardly affected. We cannot know which link
(pair of two destinations) will be included in the final schedule until the time-
intensive TSP solver completes the schedule. On the contrary, if a station near
any destination is selected, it is highly likely not to increase the tour length.
Hence, in Figure 1, for each charging station, it is necessary to find the closest
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destination. Here, C1 and C2 are commonly closest to D1. As the cost matrix
from a station to every destination is also given, this step just finds the Di

having the smallest distance. Now, excluding the start point, which is the first
and last destination of a sequence and thus charging near this point may make
the waiting time nonzero, we can find the charging station having the smallest
distance. In this figure, C3 has 0.1 and will be chosen to the m′ candidates first.
If m′ is 2, C4 will be selected.

4 Performance Measurement

This section first implements a prototype of the proposed tour scheduler and
evaluates its performance. An optimal scheduler, which investigates all feasible
schedules, namely, m=m′, is also developed for performance comparison. For
simplicity, we assume that there is no queuing delay to focus on the pure effect
of DC charger selection, as it can be easily integrated with a charging sched-
ule. When multiple charging requests concentrate on the same time slot, the
queuing time must be considered. In selecting m′ candidates, those stations al-
ready reserved on the estimated arrival time of the EV should be avoided. Main
performance metrics include tour length and accuracy. The accuracy means the
probability that a scheduler finds the optimal sequence. For 40 destinations, the
distance for each pair of them is calculated in priori. (n-1) destinations are ran-
domly picked in addition to the airport, the start point. If a schedule is found
for a given set of destinations, it will be regarded as a feasible one. For each
parameter setting, 10 sets are generated and the results are averaged.

The first experiment measures the travel distance according to the number of
destinations and also the number of picks, while the results are plotted in Figure
2. As shown in Figure 2(a), the experiment changes the number of destinations
from 5 to 8. Here, the destination sets having the TSP length of 100.0 to 120.0
km are chosen. For 9 or more destinations, it is hard to find a destination set
whose TSP length falls in this range. Figure 2(a) shows 3 curves. As expected,
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the optimal scheme has the smallest travel distance on the whole range. The
Pickn curve corresponds to the case m′ is n. The performance gap is largest
on 5 destinations and gets smaller according to the increase in the number of
destinations. With 8 destinations, Pick5 and Pick1 are just 0.7 % and 1.6 %
longer than the optimal result, respectively. This behavior can be explained by
the observation that with more destinations, the scheduler is more likely to find
candidates closer to destinations.

Next, Figure 2(b) shows a deeper investigation result on the effect of the num-
ber of picks. Here, the number of destinations is fixed to 7 and the TSP length is
made to range from 100.0 to 120.0 km as in the previous experiment. The travel
distance of the optimal schedule outperforms others and with more candidates we
can expect a better travel distance. In this parameter setting, evenwith just 1 pick,
which corresponds to 1

21 of the legacy computation time, the travel distance is just
1.6 % longer than the optimal schedule. Furthermore, the gap linearly decreases
each time a candidate is added. This result indicates that Pick5 almost always
finds the optimal schedule for 10 sets just with the 5

21 of the execution time.
The second experiment measures the effect of the TSP length to the travel

distance. It must be mentioned again that the difference between them comes
from the addition of a charging station to the entire tour schedule. Figure 3
shows the travel distance according to the TSP length. Here, for each 10 km
interval in the TSP length, for example, from 100.0 to 110.0 km and from 130.0
to 140.0 km, 10 destination sets are selected. The number of destinations is fixed
to 7. In Figure 3, the Pick1 graph goes quite higher than the others, especially
when the TSP length is over 120.0 km. It reaches 19.3 % for the range of 130.0
to 140.0 km. In selecting a DC charger, Pick1 simply considers the distance
from any one of the destinations. If a DC charger close to the start (or last)
destination in the sequence is selected, it can lead to the nonzero waiting time.
On the contrary, when m′ is 5, this effect can be almost completely masked out.
As shown in the figure, Pick5 generates a schedule at most 4.1 % longer than
the optimal scheme.
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The final experiment measures the accuracy according to the number of picks
and also the number of destinations, the results being shown in Figure 4. Figure
4(a) plots the measured accuracy according to the number of picks from 1 to
5. In all experiments, the TSP length is made to range from 100.0 to 120.0
km. Each curve corresponds to the respective number of destinations. For all
curves, the increase in the number of picks essentially improves the accuracy.
With 5 picks, the accuracy is at least 0.5, reaching 0.8 for the cases of 5 and
7 destinations. Even in the case the scheduler fails to find an optimal schedule,
its quality is comparable to it. This result indicates that our scheme can find a
near optimal schedule with much less and even tunable response time compared
with the optimal schedule which may take too much time when there are many
charging stations.
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In addition, Figure 4(b) plots the accuracy according to the TSP length. Here,
the number of destinations is fixed to 7. This figure includes 5 curves, each of
which is associated with each number of picks. Unlike Figure 4(a), Figure 4(b)
doesn’t seem to be linearly dependent on the TSP length. The destination set
specific features, such as tour spot distribution, have more effect on the accuracy.
The accuracy tends to deteriorate according to the increase in the TSP length,
but this effect is not so vivid. However, during the interval from 110.0 to 130.0
km, we can find the accuracy remains at least 0.6 with 5 picks and this result
confirms again that it is possible to obtain a reasonable quality schedule for the
whole range of TSP length, with much less response time, compared with the
optimal scheme.

5 Conclusions

Modern grids are getting smarter with the integration of computational intelli-
gence supported by information technologies. EVs, still facing an obstacle of long
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charging time and short driving range towards their wide penetration, can also
benefit from intelligent tour planning. For EV rent-a-cars which visit multiple des-
tinations and need to be charged once a day, an efficient selection of a charging
station along with a tour schedule can reduce the tour length and save energy.
However, we must cope with the time complexity according to the increase in the
number of available chargers following the expansion of charging infrastructure.
This paper achieves this goal by constraint processing and the reduction of the
number of candidate stations fromm tom′, wherem is the number of all stations
in the area and m′ is that in the selected subset. The subset is built by a heuris-
tic which selects m′ candidates based on the distance from each station to any of
given destinations.

The performance measurement result, conducted on the real-life environment
of the target city, shows that with 5 candidates, the tour length is prolonged just
by 0.7 % and finds the optimal schedule with the probability of 0.8, with the
speedup of 5

21 . Next, for the given TSP length range, the proposed scheme just
brings at most 4.1 % of distance overhead, compared with the optimal scheme.
As future work, we are planning to combine with the spatial query processing
system to cope with the increase in the number of DC chargers. By filtering out
those chargers far away from selected destinations, we can further reduce the
size of m.
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